
Eulerian Paths with Regular Constraints

Orna Kupferman and Gal Vardi

School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel *

Abstract
Labeled graphs, in which edges are labeled by letters from some alphabet Σ, are extensively used to
model many types of relations associated with actions, costs, owners, or other properties. Each path in a
labeled graph induces a word in Σ∗ – the one obtained by concatenating the letters along the edges in the
path. Classical graph-theory problems give rise to new problems that take these words into account. We
introduce and study the constrained Eulerian path problem. The input to the problem is a Σ-labeled graph
G and a specification L ⊆ Σ∗. The goal is to find an Eulerian path in G that satisfies L. We consider
several classes of the problem, defined by the classes of G and L. We focus on the case L is regular and
show that while the problem is in general NP-complete, even for very simple graphs and specifications,
there are classes that can be solved efficiently. Our results extend work on Eulerian paths with edge-order
constraints. We also study the constrained Chinese postman problem, where edges have costs and the
goal is to find a cheapest path that contains each edge at least once and satisfies the specification. Finally,
we define and study the Eulerian language of a graph, namely the set of words along its Eulerian paths.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Eulerian Paths, Regular Languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.63

1 Introduction

Many practical problems can be reduced to problems about graphs. A graph consists of vertices,
which model objects, and edges, which model pairwise relations between the objects. Different
settings call for different types of graphs. For example, when the relation between the objects is
not symmetric, the graph is directed, and when it is not binary, the graph may have parallel edges
or be weighted, say for modeling lengths or costs. In many applications, the edges of the graph
carry information beyond weight. For example, edges may be associated with an action (say, in
VLSI design), a query (say, in databases), properties like their owner or their security level (say, in
a network of channels), and many more. Such applications require labeled graphs, in which each
edge is labeled by a letter from some alphabet.1

Each path in a Σ-labeled graph induces a word in Σ∗ – the one obtained by concatenating the
letters along the edges in the path. Classical graph-theory problems give rise to new problems that
take these words into account. For example, rather than finding any shortest path between two given
vertices in a graph [10], it is sometimes desirable, say in transportation planning [5], web searching
[1], or network routing, to restrict attention to paths that satisfy some constraint [4]. The basic query
mechanism in these applications retrieves all pairs of nodes connected by a path conforming to a
given pattern. There have been plenty of theoretical and practical work on the subject of regular
path queries, where we wish to find all objects reachable by paths whose labels form a word in a

* The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 278410, and from The Israel
Science Foundation (grant no 1229/10).

1 Alternatively, one could consider graphs with labels on vertices. It is not hard to alter our results to apply also for
this setting.

© Orna Kupferman and Gal Vardi;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 63; pp. 63:1–63:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 Eulerian Paths with Regular Constraints

given regular language over the alphabet of the labels [8]. As another example, rather than finding
a maximal flow along arbitrary routes in a graph [13], one may want to restrict the used routes to
ones that satisfy some specification [24]. The specification may restrict the length of the routes,
preventing long routes from consuming the system, it may restrict the number of different resources
applied in a route, require an application of specific resources, require a specific event to trigger
another specific event, and so on. As a third example, an extension of network formation games [2]
assumes that the edges in the network are labeled and allows to lift the reachability objectives of the
players to objectives that are arbitrary regular languages [3]. Paths constrained by regular languages
were also considered in the context of finding efficient algorithms for processing database queries
([25, 1]). Finally, online algorithms for finding paths that satisfy regular constraints are given in [7].

An interesting question is how enriching the setting with labels and constrains influences the
complexity of classical problems. Note that now there are two parameters to the problem: the graph
itself, as well as a formal language L ⊆ Σ∗, which is usually regular and is given by means of a
finite automaton or a regular expression. We refer to L as a specification. Existing work shows
that the picture is diverse. For example, in the case of shortest paths, finding a shortest path that
satisfies regular and even context-free specifications can still be done in polynomial time [4]. Their
algorithm is generalized in [6] for graphs with both negative and positive edge weights (but without
negative-weight cycles). However, research in regular path queries shows that the problem of finding
a shortest simple path that satisfies a regular specification is NP-complete (note that a shortest path
that satisfies a specification need not be simple, even when all weights are positive) [25]. In the
context of maximal flow, it is shown in [24] that even simple regular restrictions on the routes make
the problem APX-hard, namely it is even hard to approximate. Likewise, adding regular objectives
to network formation games result in games that are much less stable: they need not have a Nash
Equilibrium, and their Price of Stability is higher than in the case of reachability objective [3].

An Eulerian path in a graph is a path that traverses all the edges of the graph, each edge exactly
once. The problem of deciding whether a given graph has an Eulerian path (the EP problem, for
short) was introduced in 1736, in what is considered the first paper in the history of graph theory.
The problem can be solved in linear time by examining the parity of the degree of the vertices. Back
in 1736, the motivation to study the problem was the challenge of traversing the seven bridges of
Königsberg. Nowadays, the problem and its many variants have applications in planning [21], coding
[9], synchronization [19], DNA sequencing [28], and many more. In many of these applications, it
is useful to restrict attention to Eulerian paths that satisfy some constraint. For example, [22] studies
Eulerian paths that satisfy precedence constraints on the edges, specified by linear orders on subsets
of the edges. In [28], the input to the EP problem contains a set of paths, and the goal is to find an
Eulerian path that contains all the paths in the set as sub-paths. Another related problem is studied in
[17]: each edge e in a graph with m edges is associated with an interval Ie = [le, he] inside [1,m],
and the goal is to find an Eulerian path so that the position of every edge e in the path belongs to Ie.

Once we move to consider labeled graphs, the type of restrictions can be much richer. Eulerian
paths in labeled graphs were considered in [26], where the problem of finding an Eulerian cycle with
a lexicographically minimal label is shown to be NP-complete. Note that the constraint in [26] is
not given by means of a specification L ⊆ Σ∗. Rather, the letters in Σ are ordered and the constraint
refers to the lexicographic order between the Eulerian cycles, possibly with respect to a given word.
In this work we study Eulerian paths with regular constraints. Formally, the constrained Eulerian
path problem (CEP problem, for short) is defined as follows: given a Σ-labeled graph G and a
regular language L ⊆ Σ∗, find an Eulerian path in G that satisfies L. We consider several classes
of the problem, according to the classes of G and L. We first show that the general CEP problem
is NP-complete, and that it is NP-hard already for very restricted graphs and specifications: when
the graph does not have parallel edges or loops, and when the specification is a regular expression

O. Kupferman and G. Vardi 63:3

of a fixed size that can be expressed by a two-state deterministic automaton. In fact, the problem
stays NP-hard even when the specification L is a singleton (that is, requiring the Eulerian path to
be labeled with a specific given word). We then describe classes of regular languages for which
the CEP problem can be solved in polynomial time. For this, we relate the CEP problem with the
problem of finding edge-disjoint paths in a graph. In particular, we show that the CEP problem can
be solved in polynomial time for regular expressions of the form R = b1 . . . bk, where k is fixed, for
every 1 ≤ i ≤ k, we have bi = σ∗i or bi = σi for some σi ∈ Σ, and for every σ ∈ Σ, the expression
σ∗ appears at most three times in R. Alternatively, bi = w∗i or bi = wi for some wi ∈ Σ∗, and every
σ ∈ Σ appears at most once in R. We demonstrate the usefulness of such expressions in specifying
desired behaviors of paths. We also consider multi-labeled graphs, where an edge may be labeled by
several letters, and show that then, the problem is NP-hard even for specifications given by a regular
expression of the form a∗b∗, which essentially partitions the path into two types of labels.

An optimization variant or the EP problem is the Chinese postman problem. There, each edge
in the graph has a non-negative cost, and the goal is to find a postman path – one that contains
each edge in the graph at least once, of a minimal cost. Clearly, when the graph has an Eulerian
path, it induces an optimal postman path. Otherwise, the goal is to get as close as possible to
an Eulerian path. Researchers have studied useful restrictions on the allowed postman paths [12].
In particular, a natural extension of the precedence restrictions studied for the EP problem is the
hierarchical Chinese postman problem [11, 16, 23]. Here, the edges of the graph are partitioned into
clusters E1, . . . , Ek, and a precedence relation ≺ specifies the order in which the clusters should
be traversed. That is, we seek the cheapest path that visits each edge at least once and so that if
Ei ≺ Ej , then all the edges in Ei are visited for the first time before an edge in Ej is visited. The
problem is NP-hard in general, but can be solved in polynomial time in some cases. We consider
labeled graphs and study the constrained Chinese postman problem (the CCP problem, for short),
where the postman path should satisfy a regular specification. We study the complexity of the CCP
problem, show that it is in general NP-complete, but point to useful polynomial cases.

A labeled graph G can be viewed as a generator of formal languages. The traditional way to do
this is to designate some of the vertices of G as initial and as final vertices. The language of the
obtained automaton is then the set of words that label paths from some initial to some final vertex.
We introduce and study the Eulerian language of G, denoted EL(G), namely the set of words that
label Eulerian paths in G. Clearly, deciding whether EL(G) 6= ∅ amount to deciding whether G
has an Eulerian path, and can be done in linear time. More interesting questions about the Eulerian
language of G relate it to nontrivial languages: whether EL(G) is contained in some specification
L, whether some set L of desired behaviors is contained in EL(G), and the relation between the
Eulerian languages of two different graphs. Since EL(G) contains only words of a fixed length, we
know that EL(G) is finite and hence regular. On the other hand, given a regular language L ⊆ Σ∗ it
is not clear whether there is a graph G such that EL(G) = L. We study all the above problems and
show that they belong to different levels of the polynomial hierarchy.

2 Preliminaries

2.1 Graphs and Eulerian paths

A graph G = 〈V,E〉 consists of a set V of vertices and a set E of directed edges. The graph G
may contain loops and parallel edges.2 A graph is simple if it does not contain loops or parallel
edges. A path P in G is a sequence of edges e1, . . . , ek such that there are k + 1 vertices v0, . . . , vk

2 Since G may contain parallel edges, we do not refer to E as a subset of V ×V . However, for simplicity of notations,
whenever there is no cause for confusion, we still denote an edge by a pair (v1, v2) ∈ V × V .

MFCS 2016

63:4 Eulerian Paths with Regular Constraints

and ei = (vi−1, vi) for all 1 ≤ i ≤ k. We say that P is a path of length k from v0 to vk. If
v0 = vk, then P is a cycle. We sometimes refer to P as a sequence of vertices, referring to the
vertices v0, . . . , vk. For an alphabet Σ, a Σ-labeled graph is a tuple G = 〈V,E, l〉, where 〈V,E〉 is
a graph and l : E → Σ maps each edge to a letter in Σ. The label of a path P = e1, . . . , ek, denoted
l(P), is the word l(e1) · . . . · l(ek) obtained by concatenating the labels of the edges along P . A
specification for G is a language L ⊆ Σ∗. We say that P satisfies a specification L if l(P) ∈ L.

Consider a graph G = 〈V,E〉. For a vertex v ∈ V , the in degree and out degree of v, denoted
indeg(v) and outdeg(v), are the number of edges entering and leaving v, respectively. An edge
(u1, u2) ∈ E is incident to v if u1 = v or u2 = v. We say that G is strongly connected if for
every two vertices u, v ∈ V there is a path from u to v. An undirected path in G is a sequence of
edges e1, . . . , ek such that there are k + 1 vertices v0, . . . , vk and ei ∈ {(vi−1, vi), (vi, vi−1)} for
all 1 ≤ i ≤ k. We say that G is connected if for every u, v ∈ V there is an undirected path from u

to v. The size of G, denoted |G|, is the number of vertices and edges in G.
A path in a graph G = 〈V,E〉 is Eulerian (EP, for short) if it visits every edge in E exactly once.

We say that G is Eulerian if it has an Eulerian cycle. For two edges e1 and e2 in E, an EP with
e1 ≺ e2 is an EP in which the edge e1 is visited before the edge e2. The following is well known.

I Theorem 1. Consider a directed graph G = 〈V,E〉.
1. The graphG is Eulerian iffG is connected and for every v ∈ V , we have indeg(v) = outdeg(v).
2. The graph G has an Eulerian path from s to t (with s 6= t) iff G is connected, outdeg(s) =

indeg(s)+1, indeg(t) = outdeg(t)+1, and for every v 6∈ {s, t}, we have indeg(v) = outdeg(v).
By Theorem 1, one can decide in time linear in |G| whether G is Eulerian or has an EP between two
given vertices. Furthermore, if G has an EP from s to t, then such path can be found as follows:
Follow some path from s until reaching t. It is not possible to get stuck at any vertex other than t,
because when the path enters another vertex v there must be an unused edge leaving v. The path
formed in this way may not cover all edges of the initial graph. As long as there exists a vertex v that
belongs to the current path but that has incident edges not part of the path, start another path from v,
following unused edges until returning to v (as above, this process does not get stuck), and join the
path formed in this way to the previous path.

A path (cycle) in a graph G = 〈V,E〉 is Hamiltonian if it visits every vertex in V exactly once.
The Hamiltonian path (cycle) problem, namely deciding whether a given graph has a Hamiltonian
path (cycle), is NP-hard already when the graph is simple [15].

2.2 Regular languages and the constrained Eulerian path problem

A nondeterministic finite automaton (NFA, for short) is a tuple A = 〈Σ, Q,Q0, δ, F 〉, where Σ is
a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q × Σ → 2Q is a
transition function, and F ⊆ Q is a set of final states. Given a word w = σ1 · σ2 · · ·σl ∈ Σ∗, a run
of A on w is a sequence r = q0, q1, . . . , ql of states such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi+1) for
all i ≥ 0. The run is accepting if ql ∈ F . The NFA A accepts the word w iff it has an accepting
run on it. The language of A, denoted L(A) is the set of words that A accepts. If |Q0| = 1 and
|δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ, then A is deterministic. Note that a deterministic finite
automaton (DFA) has at most one run on each word.

A regular expression (RE, for short) over Σ is defined as follows.
∅, ε, and σ, for σ ∈ Σ, are REs.
If R1 and R2 are REs, then so are R1 +R2, R1 ·R2, and R∗1.

The language of an RE R, denoted L(R), is defined inductively on the structure of R, where +,
·, and ∗ stand for union, concatenation, and Kleene star, respectively.

O. Kupferman and G. Vardi 63:5

We say that R is a chain RE if it is of the form b1 · b2 · · · bk, where for every 1 ≤ i ≤ k, we have
bi = w∗i or bi = wi for a word wi ∈ Σ∗. We call every such bi a block. Note that a chain RE does
not contain the symbol “+" and does not contain nested Kleene stars. For l ≥ 1, we say that a chain
RE R is l-wide if |wi| ≤ l for all 1 ≤ i ≤ k with bi = w∗i . Note that when R is 1-wide, then for all
1 ≤ i ≤ k, we have that bi = σ∗ or bi = σ, for some σ ∈ Σ. For d ≥ 1, we say that R is d-diverse
if each letter in Σ appears in R at most d times. We say that R is d-star-diverse if for each letter
σ ∈ Σ, the expression σ∗ appears in R at most d times. Note that if R is d-diverse then it is also
d-star-diverse. For example, a∗(ba)∗c∗(bc)∗ is a 2-wide, 2-diverse, 1-star-diverse chain RE. Then,
a∗b∗a∗ is a 1-wide, 2-diverse, 2-star-diverse chain RE, and (a+ b)∗(b+ c)∗ is not a chain RE.

The constrained Eulerian path problem (CEP problem, for short) is defined as follows: given a
labeled graph G and a regular language L, given by means of an NFA, DFA, or RE, find an Eulerian
path in G that satisfies L.

I Example 2. We describe some chain REs that are useful specifications.
[Zone patrolling and periodic checks] Consider a communication, social, or physical network. Let
a, b, c, and d be labels of edges in different zones of the network. We may want to patrol the network
in a certain pattern. For example, in security, one may want a guard to patrol the zones of a physical
network in a certain order, and in commercial applications, one may want to do the same with an
advertisement that traverses a social network. Likewise, several communication protocols are based
on the fact that a message must patrol different zones of the network in some predefined order before
reaching its destination; e.g., in Onion routing, where the message is encrypted in layers, or in proof-
of-work protocols that are used to deter denial of service attacks and other service abuses such as
spam. For this, REs of the form (a+b+c+d+)∗, where σ+ stands for σσ∗, may be useful. If the
pattern of visits is of a known bounded length, it can be specified as a conjunction of 1-wide chain
REs, say a+b+c+d+a+b+c+d+.

As another example, let s label edges in which a checksum is performed on the message, and let
σ label all other edges. We may want a message to be periodically checked for corruptions. This
can be specified by the chain RE (σis)∗, for the duration i after which a check should be performed.
If we want the specification to be more flexible, say allow different durations between successive
checks, all bounded by i, this is possible, but the RE is no longer a chain RE.
[Bounded-delay response and FIFO] Let r, r1, and r2 label edges in which requests are submitted,
possibly parameterized by the user that submits them, and let g, g1, and g2 label edges in which
requests are granted, again possibly parameterized by the granted user. The semantics of requests
and grants depend on the type of the network. Suppose there can be at most one request in the graph
and we want a request, if submitted, to be followed by a grant within 3 steps. Let σ label all edges
that are not labeled r or g. This can be specified byR = σ∗+σ∗rgσ∗+σ∗rσgσ∗+σ∗rσσgσ∗. Note
that R is a union of 1-wide 4-diverse chain REs. In case of a grant bounded by k steps, the REs are
1-wide (k+1)-diverse chain REs. If there are two requests and we want them to be granted in a FIFO
order, the specification is R = σ∗+σ∗r1σ

∗g1σ
∗+σ∗r1σ

∗r2σ
∗g1σ

∗g2σ
∗+σ∗r1σ

∗g1σ
∗r2σ

∗g2σ
∗,

and dually when only r2 is submitted or when r2 is before r1. Note that R is a union of 1-wide
5-diverse chain REs.

3 It Is Hard

In this section we study the general CEP problem and show that it is NP-complete for specifications
given by NFAs, DFAs, or REs. The reductions in this section are simple. We give them here for
completeness and as a warm-up before things get more complicated in the next sections.

I Theorem 3. The CEP problem is NP-complete.

MFCS 2016

63:6 Eulerian Paths with Regular Constraints

Proof. We start with membership in NP. Checking the membership of a given word in the language
of a given NFA, DFA, or RE can be done in polynomial time. Hence, given a labeled graph G =
〈V,E, l〉 and a regular language L given by means of an NFA, DFA, or RE, checking whether a
sequence P of |E| edges is an EP in G and that l(P) ∈ L can be done in polynomial time.

We prove NP-hardness by a reduction from the Hamiltonian-path problem. We prove hardness
for specifications given by DFAs. Hardness for NFAs follows immediately, and hardness for REs
follows from the polynomial translation of DFAs to REs. Given a graph G = 〈V,E〉, we construct
a labeled graph G′ and a DFA A such that there is a Hamiltonian path in G iff there is an EP in G′

that satisfies L(A). The labeled graph G′ is over the alphabet V . It consists of a single vertex u with
|V | parallel self loops, each labeled by a different vertex in V . That is, the EPs of G′ correspond to
permutations of V . We define the specification DFA A so that L(A) includes exactly all words that
label paths in G. It is easy to define A as above by adding to G an initial state that has a transition
to all vertices, and labeling all transitions, including the new ones, by their destination vertex. All
the states in A are final. Now, there is a Hamiltonian path in G iff there is a permutation of V that
forms a path in G iff there is an EP in G′ that satisfies L(A). J

The graphG′ used in the proof of Theorem 3 is not simple. It is easy, however, to add a new letter
to the alphabet V and obtain a simple graph G′′ by replacing every (parallel) self-loop labeled v
in G′ by a (disjoint) cycle labeled v# in G′′. Hence the following theorem (see Appendix A.1 for
the detailed proof).

I Theorem 4. The CEP problem is NP-hard already for simple graphs.

4 It Is Very Hard

While the graph G′′ defined in the reduction in the proof of Theorem 4 is simple, the DFA A used
in the proof is essentially the graph G. This suggests that we may do better with specifications of a
constant size. In this section we show that the CEP problem is NP-hard already for more restricted
cases, in particular for specification of a constant size. As we then show in Section 5, the cases we
point to are tight, in the sense that tightening the restrictions makes the problem feasible.

We first define the Eulerian closure of a given graph – a construction that is going to be useful
in some of our reductions. Given a graph G = 〈V,E〉, the Eulerian closure of G is the graph
G = 〈V, E〉, defined as follows (see an Example in Figure 1).

Figure 1 A graph and its Eulerian closure.

For each vertex v ∈ V we include in V two vertices vin and vout. We also include in V a new
vertex w. That is, V = {vin : v ∈ V } ∪ {vout : v ∈ V } ∪ {w}. The set of edges of G is the union
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6, defined below:

E1 = {(vin, vout) : v ∈ V }. Thus, E1 includes an edge for each vertex in G.
E2 = {(uout, vin) : (u, v) ∈ E}. Thus, E2 includes an edge for every edge in G.

O. Kupferman and G. Vardi 63:7

E3 = {(vout, vin) : v ∈ V }. Thus, E3 includes an opposite edge for every edge in E1.
E4 = {(vin, uout) : (u, v) ∈ E}. Thus, E4 includes an opposite edge for every edge in E2.
E5 = {(v, w) : v ∈ V \ {w}}.
E6 = {(w, v) : v ∈ V \ {w}}.

Note that, by Theorem 1, the graph G is Eulerian. Indeed, the edges in E5 and E6 guarantee that
G is strongly connected regardless of the connectivity of G. Also, for every vertex v ∈ V , we have
indeg(v) = outdeg(v). Finally, if G is simple, then so is G.

I Theorem 5. The CEP problem is NP-hard already for a simple graph and a specification given
by fixed-size RE that can be expressed by a DFA with two states.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given a
simple graph G = 〈V,E〉, we construct a simple labeled graph G′ and a RE R that can be expressed
by a DFA with two states, such that there is a Hamiltonian path in G iff there is an EP in G′ that
satisfies L(R). The graph G′ is defined by G′ = 〈V, E , l〉 where 〈V, E〉 is the Eulerian closure of G,
and l(e) is {a} if e ∈ E1, is {b} if e ∈ E2, and is {c} otherwise. Let R = (a + b)∗(b + c)∗. Note
that L(R) can be expressed by a DFA with two states. In Appendix A.2, we prove that the reduction
is correct. For this, we show that the way we have defined the Eulerian closure of G guarantees that
if there is a Hamiltonian path in G, then it induces a path in G′ that contains only edges labeled by a
or b and can be extended to an Eulerian cycle by appending a path that contains only edges labeled
by b or c. Also, every EP in G′ that satisfies L(R) starts with a subpath that induces a Hamiltonian
path in G. J

We continue and show that the CEP problem is NP-hard already for singleton specifications,
namely when the specification consists of a single word, and for specifications given by a fixed-size
RE without union and without nested Kleene star operators.

I Theorem 6. The CEP problem is NP-hard for singleton specifications and for specifications
given by a fixed-size 2-wide 2-diverse chain RE.

Proof. In both cases, we show a reduction from the problem of Hamiltonian path for simple graphs.
Let G = 〈V,E〉 be a simple graph, and let V = {v1, . . . , vn}. We define the simple graph G′ =
〈V, E , l〉, where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {b} if e ∈ E2 ∪E6,
and is {c} otherwise.

Consider the word x = a(ba)n−1c2n−1(cb)|E|+n+1. We prove that there is a Hamiltonian path
in G iff there is an EP in G′ that is labeled by x. First, it is not hard to see that if G′ has an EP
labeled x, then the prefix a(ba)n−1 of x induces a Hamiltonian path in G. Now, assume that there
is a Hamiltonian path P in G from v1 to vn. We construct an Eulerian cycle in G′ as follows:
The Eulerian cycle starts with the path Q in G′ corresponding to P . This path starts with the edge
(v1
in, v

1
out), ends with the edge (vnin, vnout), and visits the edge (viin, viout) for every i exactly once.

Note that l(Q) = a(ba)n−1. In Appendix A.3, we show how the way the Eulerian closure is defined
enables us to continue Q as required.

We continue to the second class. Let R be the RE R = a(ba)∗c∗(cb)∗. Note that R is indeed a
fixed-size 2-wide 2-diverse chain RE. We show that there is a Hamiltonian path in G iff there is an
EP in G′ that satisfies L(R). Again, it is not hard to see that if G′ has an EP that satisfies L(R), then
the prefix a(ba)∗ of R induces a Hamiltonian path in G. Also, if there is a Hamiltonian path in G,
then an Eulerian cycle in G′ that satisfies L(R) can be constructed as in the case of the word x.3 J

3 Note that we could have defined the RE R to be a∗(ba)∗c∗(cb)∗, implying that NP-hardness applies already for
fixed-size 2-wide 2-diverse chain REs in which all blocks have a Kleene star.

MFCS 2016

63:8 Eulerian Paths with Regular Constraints

5 But Sometimes It Is Easy

In this section we show classes of regular languages for which the CEP problem can be solved
in polynomial time. By Theorem 6, the CEP problem is NP-hard for fixed-size 2-wide 2-diverse
chain REs. We show that when one of the width and diversity parameters is tightened, the problem
becomes feasible. We start with diversity and show that when a chain RE R is 1-diverse, we can
solve the CEP problem for it in polynomial time even when R and its blocks are not of a fixed size.

I Theorem 7. The CEP problem can be solved in polynomial time for specifications given by a
1-diverse chain RE.

Proof. Let G = 〈V,E, l〉 be a labeled graph and let R = b1 . . . bk be a RE, where for every i we
have bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ appears at most once in R. We
assume that every letter that appears in G, appears also in R, because otherwise the CEP problem
is trivial. We show how to find an EP that satisfies L(R) and that starts in a vertex v1 ∈ V . Note
that since every σ ∈ Σ appears at most once in R, then the subpath that corresponds to a block
bi must be an EP in the subgraph Gi induced by the edges labeled by letters in wi. Therefore, the
first vertex in every subpath determines the last vertex in this subpath: if the degrees in every vertex
in Gi are balanced, that is, the in degree is equal to the out degree for every vertex, then an EP
must be a cycle; if the degrees are not balanced then an EP must start in the only vertex si where
outdeg(si) = indeg(si) + 1 and end in the only vertex ti where indeg(ti) = outdeg(ti) + 1. Thus,
the algorithm checks whether G1 has an EP from v1 that corresponds to b1, and if it does then it
finds the vertex v2 in which this EP ends. Then the algorithm checks whether G2 has an EP from v2
that corresponds to b2 and continues similarly.

We now show how to find an EP in Gi = 〈Vi, Ei, l〉 that starts in a vertex vi and corresponds
to bi. If bi = wi, then we check whether Gi contains every letter in wi exactly once, and whether
wi induces a path in Gi from the vertex vi. Assume now that bi = w∗i , and wi = σ0 . . . σn−1.
We construct a graph G′i = 〈V ′i , E′i〉, where V ′i = {〈v, j〉 : v ∈ Vi and 0 ≤ j ≤ n − 1} and
E′i = {(〈u, j〉, 〈v, j + 1 (mod n)〉) : (u, v) ∈ Ei and l((u, v)) = σj}. Thus, G′i includes n copies
of Gi such that every edge (u, v) with l((u, v)) = σj in Gi induces an edge from u in the j-th copy
to v in the (j + 1)-th copy in G′i. Note that there is an EP in Gi from the vertex vi that corresponds
to bi, iff there is an EP in G′i from the vertex 〈vi, 0〉 to some vertex 〈u, 0〉. Therefore, the problem is
reduced to finding an EP from 〈vi, 0〉 in G′i. J

We continue and show that tightening the width also makes the problem solvable in polynomial
time. We first describe another well-studied problem that we show to be strongly related to our
problem. Let G = 〈V,E〉 be a directed or undirected graph and let (si, ti), for i = 1, . . . , k, be k
ordered pairs of vertices. In the edge-disjoint paths problem (EDP problem, for short), we need to
find, for every 1 ≤ i ≤ k, a path in G from si to ti such that the paths are edge-disjoint; that is,
an edge cannot appear in more than one path. The EDP problem is NP-complete for both directed
and undirected graphs [30]. When the graph is undirected and k is fixed, there is a polynomial-time
algorithm ([29, 20]). For directed graphs, the problem is NP-complete already when k = 2 [14].
The directed graph GD = 〈V,ED〉 where ED = {(ti, si) : i = 1 . . . k} is called the demand graph.

Consider the graph G+GD = 〈V,E ∪ED〉 obtained by adding to G the edges from GD. When
G + GD is Eulerian, we say that there is an Eulerian promise on the demand. It is shown in [18]
that when there is an Eulerian promise on the demand, there is a polynomial-time algorithm for the
EDP problem with k = 3. It is also conjectured in [18] that when there is an Eulerian promise on
the demand, there is a polynomial-time algorithm for the EDP problem for every fixed k. To the best
of our knowledge, however, this problem is still open (it is also declared open in [30, 27]).

We first relate the EDP problem to the problem of finding an EP that respects a linear order on
the subset of the edges. The proof of Lemma 8 can be found in Appendix A.4.

O. Kupferman and G. Vardi 63:9

I Lemma 8. Consider a directed graph G = 〈V,E〉 and two vertices s, t ∈ V . Let e1, . . . , ek be
some edges in E and τ = e1 ≺ . . . ≺ ek be an order on them. If k ≤ 2, then finding an EP from s

to t that respects τ can be done in polynomial time. If k > 2 is fixed, then finding an EP from s to
t that respects τ can be solved in polynomial time iff the EDP problem for a directed graph with an
Eulerian promise on the demand can be solved in polynomial time for k + 1 paths.

We now relate the CEP problem for fixed-size 1-wide chain REs to the problem of finding an EP
that respects a linear order on a subset of the edges. Lemma 8 then enables us to relate the former
also to the EDP problem, implying that restricting the width also leads to a polynomial complexity.

I Theorem 9. The CEP problem can be solved in polynomial time for specifications given by
a fixed-size 1-wide 3-star-diverse chain RE. For specifications given by a fixed-size 1-wide d-star-
diverse chain RE, the CEP problem can be solved in polynomial time iff the EDP problem for a
directed graph with an Eulerian promise on the demand can be solved in polynomial time for d
paths.

Proof. Let R = b1 . . . bk for a fixed k, where for every i we have bi = σ∗i or bi = σi for some
σi ∈ Σ. We assume that every letter that appears in G appears also in R. Indeed, otherwise the CEP
problem is trivial. We run over all the options for choosing k + 1 vertices v0, . . . , vk ∈ V (there are
|V |k+1 such options), and check whether G has an EP from v0 to vk that satisfies L(R) and can be
partitioned into k subpaths, such that the i-th subpath starts in vi−1, ends in vi and corresponds to
bi. We now describe how to perform this check.

For every i such that bi = σ for some σ ∈ Σ, the graph G must have an edge e = (vi−1, vi) with
l(e) = σ. All the other subpaths corresponding to bj for j 6= i, cannot use the edge e. In particular, if
bj with j 6= i is a single-letter block, then it cannot use the edge e. In the rest of this proof we assume
that for every single-letter block bn = σn there is an edge en = (vn−1, vn) such that l(en) = σn,
and that if bm is a single-letter block with m 6= n then em and en are different edges (they can be
parallel edges). We denote the set of edges that correspond to a single-letter block by Es.

Let σ ∈ Σ and let bi1 , . . . , bim be the blocks in R such that for every 1 ≤ j ≤ m we have
bij = σ∗. Let Gσ be the subgraph of G induced by the edges {e ∈ E \ Es : l(e) = σ}. Let G′σ
be the graph obtained from Gσ by adding, for every 1 ≤ j ≤ m − 1, an edge eij = (vij , vij+1−1);
that is, we add for every ij an edge from the end of the block ij to the beginning of the block ij+1.
We check whether there is an EP in G′σ from vi1−1 to vim such that ei1 ≺ ei2 ≺ . . . ≺ eim−1 . In
Appendix A.5, we prove that such an EP exists in G′σ for every σ iff the required EP in G exists.

Thus, we reduce the CEP problem to the problem of finding an EP that respects a linear order on
a subset of the edges. By Lemma 8, the latter can be reduced to the EDP problem. Accordingly, we
have a polynomial-time algorithm if for every σ ∈ Σ the expression σ∗, appears at most three times
in R (that is, R is 3-star-diverse). Also, if the EDP problem for a directed graph with an Eulerian
promise on the demand can be solved in polynomial time for d paths, then, according to Lemma 8,
we have a polynomial-time algorithm also if R is d-star-diverse.

Now, assume that there is a polynomial-time algorithm for the case R is d-star-diverse. Let
H = 〈VH , EH〉 be a graph and let e1, . . . , ed−1 ∈ EH . Let H ′ be a labeled graph obtained from
H by assigning a label σi for every edge ei, and assigning a label σ for every other edge in EH .
Note that H has an EP with e1 ≺ . . . ≺ ed−1 iff H ′ has an EP that satisfies L(R) for R =
σ∗σ1σ

∗σ2 . . . σ
∗σd−1σ

∗. By our assumption, the latter problem can be solved in polynomial time.
Therefore, by Lemma 8, the EDP problem for a directed graph with an Eulerian promise on the
demand can be solved in polynomial time for d paths. J

We conclude that there is a polynomial-time algorithm for every specification that is a disjunc-
tion of polynomially many REs of the forms handled in Theorems 7 and 9. As demonstrated in

MFCS 2016

63:10 Eulerian Paths with Regular Constraints

Example 2, such disjuncts can specify useful behaviors. We note that with some additional ‘’tech-
nical acrobatics”, it is possible to squeeze the lemon some more and point to additional classes of
chain REs that can be solved in polynomial time. For example, if R = b1 . . . bk, where k is a fixed
number and for every 1 ≤ i ≤ k we have bi = w∗i for some wi ∈ Σ∗, or bi = σi for some σi ∈ Σ,
then it is possible to restrict the diversity of the letters, but allow repetitions of identical blocks, so
that polynomial-time algorithms can be obtained by combining ideas used in the proofs of Theor-
ems 9 and 7. We do not find, however, these special cases or technical acrobatics too interesting.
A good intuitive and practical conclusion is that when the specification is a chain RE, it is recom-
mended to use the ideas here in order to find the complexity of the CEP problem for it, and possibly
to decompose or alter it to a disjunction of specifications of lower width and diversity for which a
polynomial algorithm is possible.

6 Multi-Labeled Graphs

A multi-labeled graph is a tuple G = 〈V,E, l〉 where 〈V,E〉 is a graph and l : E → 2Σ maps
every edge to a subset of letters from the alphabet Σ. For a path P = e1, . . . , ek we define l(P) =
{σ1 . . . σk : σi ∈ l(ei) for every 1 ≤ i ≤ k}. We say that P satisfies a specification L ⊆ Σ∗ if
l(P)∩L 6= ∅. Note that we take here the existential approach in model checking, where satisfaction
amounts to an existence of a correct path.

We show that if the graph is multi-labeled, the CEP problem is NP-hard already for the RE a∗b∗.
Note that a∗b∗ is a fixed-size 1-wide 1-diverse chain RE. Thus, by both Theorems 9 and 7, the CEP
problem in graphs in which each edge is labeled by a single letter can be solved in polynomial time.

I Theorem 10. The CEP problem for multi-labeled simple graphs is NP-hard already for the
specification given by the RE R = a∗b∗.

Proof. We show a reduction from the problem of Hamiltonian path for simple graphs. Given a
simple graphG = 〈V,E〉, we construct a multi-labeled simple graphG′, such that there is a Hamilto-
nian path in G iff there is an EP in G′ that satisfies L(R). The graph G′ is defined by G′ = 〈V, E , l〉
where 〈V, E〉 is the Eulerian closure of G, and l(e) is {a} if e ∈ E1, is {a, b} if e ∈ E2, and is {b}
otherwise. In Appendix A.6, we prove the correctness of the reduction. J

7 The Constrained Chinese Postman Problem

A weighted graph is a tuple G = 〈V,E, c〉, where 〈V,E〉 is a graph and c : E → IR+ maps every
edge to a non-negative cost. The cost of a path P = e1, . . . , ek, denoted c(P), is

∑k
i=1 c(ei); that

is, the sum of the costs of the edges along the path. A postman path in G is a path that visits every
edge in E at least once. An optimal postman path is a least-cost postman path. Similar definitions
apply to cycles. In the well-studied Chinese postman problem, we are given a weighted graph G and
need to find an optimal postman path. Clearly, when G has an EP, it induces an optimal postman
path. Otherwise, the goal is to get as close as possible to an EP. Thus, the Chinese postman problem
can be viewed as an optimization variant of the EP problem. The combinatorial simplicity of the
EP problem is carried over to the Chinese postman problem. In particular, it has a well-known
polynomial-time algorithm [12]. For completeness, we describe this algorithm in Appendix A.7.

A labeled weighted graph is a tuple G = 〈V,E, l, c〉, where 〈V,E, l〉 is a labeled graph and
〈V,E, c〉 is a weighted graph. For a regular language L, an L-postman path in G is a path that
satisfies L and visits every edge in E at least once. An optimal L-postman path is a least-cost L-
postman path. In the constrained Chinese postman problem (CCP problem, for short), we are given
a labeled weighted graph G and a regular language L and need to find an optimal L-postman path in
G. In this section we study the CCP problem.

O. Kupferman and G. Vardi 63:11

First, we show that the corresponding decision problem is NP-complete, and is NP-hard already
for restricted classes of graphs and specifications.

I Theorem 11. Consider a labeled weighted graph G and a regular language L given by an NFA,
DFA, or RE. For k ∈ IR+, deciding whether there is an L-postman path P with c(P) ≤ k is NP-
complete. Furthermore, it is NP-hard already when G is simple, when L is a singleton, when L is
given by a DFA with two states, and when L is given by a fixed-size 2-wide 2-diverse chain RE.

Proof. First, note that a labeled graph H = 〈VH , EH , lH〉 has an EP that satisfies L iff the labeled
weighted graph H ′ = 〈VH , EH , lH , c〉 with c(e) = 1 for every e ∈ EH has an L-postman path with
cost |E|. Thus, the lower bounds follow from Theorems 4, 5, and 6.

We prove the upper bound for L given by an NFA A. The other cases follow. Let G =
〈V,E, l, c〉, A = 〈Σ, Q,Q0, δ, F 〉, and let N be the product NFA of A and G. Formally, N =
〈Σ, Q × V,Q0 × V, δ′, F × V 〉, where δ′(〈q, v〉, σ) = {〈q′, v′〉 : q′ ∈ δ(q, σ), (v, v′) ∈ E, and
l((v, v′)) = σ}. Note that N ignores parallel edges in G. Also, a path P in G satisfies L(A) iff
there is an accepting run in N whose projection on V corresponds to P . We claim that there is an
L(A)-postman path P in G with c(P) ≤ k iff there is an L(A)-postman path P ′ = e1, . . . , en in G
with c(P ′) ≤ k of length n ≤ |E| · |Q| · |V |. Let r be an accepting run inN whose projection on V
corresponds to a path P = e1, . . . , en in G, and assume that P includes every edge in G (including
parallel edges) at least once. Let i1 < . . . < i|E| be the indices in which all edges appear for the
first time in P . If for some j there are more than |Q| · |V | states between the appearance in r of the
transition that corresponds to the edge eij and the appearance of the transition that corresponds to
the edge eij+1 , then r has a loop that can be avoided. By removing these loops we end up with a
path of length n ≤ |E| · |Q| · |V |. Thus, a witness for having an L(A)-postman path P in G with
c(P) ≤ k is of size at most n ≤ |E| · |Q| · |V |. J

Since the CCP problem is at least as hard as the CEP problem, we turn to consider cases for
which the CEP problem is solvable in polynomial time. In particular, we restrict further the class of
fixed-size 2-wide 2-diverse chain RE. First by restricting the width, and then the diversity.

I Theorem 12. The CCP problem can be solved in polynomial time for specifications given by a
fixed-size 1-wide 2-star-diverse chain RE.

Proof. Let G = 〈V,E, l, c〉 and let R = b1 . . . bk be a 1-wide 2-star-diverse chain RE. We assume
that every letter that appears in G, appears also in R. Indeed, otherwise the CCP problem is trivial.
We run over all the (polynomially many) options for choosing k + 1 vertices v0, . . . , vk ∈ V , and
find a least-cost path inG from v0 to vk that satisfies L(R), contains all edges, and can be partitioned
into k subpaths such that the i-th subpath starts in vi−1, ends in vi, and satisfies L(bi).

First, assume that bi = σ∗i for every i; that is, R does not contain single-letter blocks. Let σ ∈ Σ.
If σ∗ appears exactly once inR and σ = σi, then we find an optimal postman path from vi−1 to vi in
the subgraph Gσ induced by the edges in G labeled by σ. If σ∗ appears twice in R, let σ = σi = σj
with i < j. We construct a weighted graph G′σ by adding to Gσ the edge (vi, vj−1) with a large
cost. Now we need to find a least-cost path in G′σ from vi−1 to vj in which every edge appears at
least once, and the new edge (vi, vj−1) appears exactly once. Since the edge (vi, vj−1) has a large
cost, it can be done simply by finding an optimal postman path from vi−1 to vj in G′σ . Finally, as in
Theorem 9, we construct a path P by concatenating the corresponding paths for every block bi in R.
In Appendix A.8 we describe how to handle the case where R contains single-letter blocks. J

The case of 1-diverse chain REs follows similar considerations and applies the ideas used in the
proof of Theorem 7 in the case of the CEP problem. The proof can be found in Appendix A.9.

I Theorem 13. The CCP problem can be solved in polynomial time for specifications given by a
1-diverse chain RE with a fixed number of blocks.

MFCS 2016

63:12 Eulerian Paths with Regular Constraints

8 Eulerian Languages

The Eulerian language of a Σ-labeled graph G, denoted EL(G), is the set of words read along
Eulerian paths inG. Formally, EL(G) = {l(P) ∈ Σ∗ : P is an EP inG}. Clearly, the nonemptiness
problem, namely deciding whether EL(G) 6= ∅, coincides with the EP problem and can thus be
solved in polynomial time. Given a regular language L ⊆ Σ∗, the satisfaction problem for G and L
is to decide whether EL(G) ∩ L 6= ∅. It is easy to see that the satisfaction problem coincides with
the CEP problem, and is thus NP-complete (Theorem 3). Given a word w ∈ Σ∗, the membership
problem for G and w is to decide whether w ∈ EL(G). By Theorem 6, the CEP problem is NP-
complete also for singleton specifications, implying that so is the membership problem.

In this section we study additional problems about the Eulerian language of G. Problems that
compare it with other languages, given by an NFA, DFA, or RE, or given as the Eulerian language
of another graph. Not all our complexities are tight, but we are able to place all problems in different
levels of the polynomial hierarchy.

I Theorem 14. Consider a labeled graph G and a specification L given by an NFA, DFA, or RE.
Deciding whether EL(G) ⊆ L is co-NP-complete. Furthermore, it is co-NP-hard already for a
fixed-size specification.

Proof. For the upper bound, note that a witness for EL(G) 6⊆ L, namely an EP in G that does not
satisfy L, can be verified in polynomial time. For the lower bound, recall that the CEP problem is
NP-hard already for fixed-size specifications (Theorem 5). Observe that there is an EP that satisfies
L iff there is an EP that does not satisfy Σ∗ \ L. Since L is given by a fixed-size NFA, DFA, or RE,
the size of an NFA, DFA, or RE for its complement Σ∗ \ L is also fixed, and we are done. J

I Theorem 15. Consider a labeled graph G and a specification L given by an NFA, DFA, or RE.
Deciding whether L ⊆ EL(G) is in Πp

2 and is NP-hard.

Proof. The lower bound follows from the NP-hardness of the membership problem. The upper
bound follows from the fact that deciding whether L 6⊆ EL(G) can be done with a nondeterministic
polynomial-time Turing machine that uses an oracle for the membership problem. J

I Theorem 16. Consider two labeled graphs G and G′. Deciding whether EL(G′) ⊆ EL(G)
and deciding whether EL(G′) ∩ EL(G) 6= ∅ is in Πp

2 and Σp2 respectively, and is NP-hard.

Proof. For the lower bound, we show a reduction from the membership problem. Given a word w
and a graph G, we construct a graph G′ such that EL(G′) = {w}. Now, w ∈ EL(G) iff EL(G′) ⊆
EL(G) iff EL(G′) ∩ EL(G) 6= ∅. For the upper bound, observe that deciding whether EL(G′) 6⊆
EL(G) and whether EL(G′) ∩ EL(G) 6= ∅ can be done with a nondeterministic polynomial-time
Turing machine that uses an oracle for the membership problem. J

Since EL(G) contains only words of a fixed length, we know that EL(G) is finite and hence
regular. On the other hand, given a regular language L ⊆ Σ∗, even one all whose words are of
the same length, it is not clear whether there is a graph G such that EL(G) = L. For example, it
is possible to find a two-state labeled graph G such that EL(G) = {abcd, adbc, cbad, cdba} (the
reader is encouraged to search for it. See a hint in Appendix A.10), but it is impossible to add abdc
to the Eulerian language. An upper bound for the problem follows from our ability to bound the
number of edges in the candidate graph G. The tight complexity, however, is still open.

I Theorem 17. For a language L given by an NFA, DFA, or RE, deciding whether there is a
labeled graph G such that EL(G) = L is in Σp3.

Proof. Follows from the fact that it can be done by a nondeterministic polynomial-time Turing
machine with oracles for the problems described in Theorems 14 and 15. J

O. Kupferman and G. Vardi 63:13

References

1 S. Abiteboul and V. Vianu. Regular path queries with constraints. J. Comput. Syst. Sci., 58(3):428–
452, 1999.

2 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The price
of stability for network design with fair cost allocation. SIAM J. Comput., 38(4):1602–1623, 2008.

3 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives. In Proc.
17th Int. Conf. on Foundations of Software Science and Computation Structures, volume 8412 of
Lecture Notes in Computer Science, pages 119–133. Springer, 2014.

4 C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained path problems. SIAM Journal
on Computing, 30(3):809–837, 2000.

5 V. Blue, J. Adler, and G. List. Real-time multiple-objective path search for in-vehicle route guidance
systems. Journal of the Transportation Research Board, 1588:10–17, 1997.

6 P.G. Bradford and D.A. Thomas. Labeled shortest paths in digraphs with negative and positive edge
weights. RAIRO-Theoretical Informatics and Applications, 43(03):567–583, 2009.

7 A.L. Buchsbaum, P.C. Kanellakis, and J.S. Vitter. A data structure for arc insertion and regular path
finding. Annals of Mathematics and Artificial Intelligence, 3(2-4):187–210, 1991.

8 D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. Reasoning on regular path queries.
ACM SIGMOD Record, 32(4):83–92, 2003.

9 W. Cheng and M. Pedram. Power-optimal encoding for a DRAM address bus. IEEE Trans. VLSI
Syst., 10(2):109–118, 2002.

10 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

11 M. Dror, H. Stern, and P. Trudeau. Postman tour on a graph with precedence relation on arcs.
Networks, 17(3):283–294, 1987.

12 H.A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part i: The chinese postman
problem. Operations Research, 43(2):231–242, 1995.

13 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.
14 S. J. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theor-

etical Computer Science, 10:11–121, 1980.
15 M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. W. Freeman and Co., 1979.
16 G. Ghiani and G. Improta. An algorithm for the hierarchical chinese postman problem. Operations

Research Letters, 26(1):27–32, 2000.
17 S. Hannenhalli, W. Feldman, H.F. Lewis, S.S. Skiena, and P.A. Pevzner. Positional sequencing by

hybridization. Computer applications in the biosciences: CABIOS, 12(1):19–24, 1996.
18 T. Ibaraki and S. Poljak. Weak three-linking in eulerian digraphs. SIAM journal on Discrete

Mathematics, 4(1):84–98, 1991.
19 J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,

295:223–232, 2003.
20 K.I. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time.

Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.
21 H.L.M. Kerivin, M. Lacroix, and A.R. Mahjoub. Models for the single-vehicle preemptive pickup

and delivery problem. Journal of Combinatorial Optimization, 23(2):196–223, 2012.
22 H.L.M. Kerivin, M. Lacroix, and A.R. Mahjoub. On the complexity of the Eulerian closed walk

with precedence path constraints problem. Theoretical Computer Science, 439:16–29, 2012.
23 P. Korteweg and T. Volgenant. On the hierarchical chinese postman problem with linear ordered

classes. European Journal of Operational Research, 169(1):41–52, 2006.
24 O. Kupferman and T. Tamir. Properties and utilization of capacitated automata. In Proc. 34th Conf.

on Foundations of Software Technology and Theoretical Computer Science, volume 29 of LIPIcs,
pages 33–44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2014.

MFCS 2016

63:14 Eulerian Paths with Regular Constraints

25 A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph databases. SIAM Journal
on Computing, 24(6):1235–1258, 1995.

26 E. Moreno and M. Matamala. Minimal Eulerian circuit in a labeled digraph. In LATIN 2006:
Theoretical Informatics, pages 737–744. Springer, 2006.

27 G. Naves and A. Sebő. Multiflow feasibility: an annotated tableau. In Research Trends in Combin-
atorial Optimization, pages 261–283. Springer, 2009.

28 P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to dna fragment assembly.
Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

29 N. Robertson and P.D. Seymour. Graph minors. xiii. the disjoint paths problem. Journal of com-
binatorial theory, Series B, 63(1):65–110, 1995.

30 J. Vygen. Disjoint paths. report no. 94816. Research Institute for Discrete Mathematics, University
of Bonn, 1994.

A Proofs

A.1 Proof of Theorem 4

Given a graph G = 〈V,E〉, we construct a simple labeled graph G′′ and a DFA A such that there
is a Hamiltonian path in G iff there is an EP in G′′ that satisfies L(A). The idea is similar to the
construction ofG′ in the proof of Theorem 3, except that we add a new letter # to the alphabet V and
replace every (parallel) self-loop labeled v in G′ by a (disjoint) cycle labeled v# in G′′. Formally,
G′′ = 〈V ∪ {u}, ({u} × V) ∪ (V × {u}), l〉 is over the alphabet Σ = V ∪ {#} and is such that for
every vi ∈ V , we have l((u, vi)) = vi and l((vi, u)) = #. See Figure 2 for an example. That is, G′′

Figure 2 A graph G′′ for G with V = {v1, v2, v3, v4}.

is “star shaped" and as has been the case with G′, its EPs correspond to permutations of V .
Now, we define the specifications DFA A so that L(A) includes exactly all words w ∈ Σ∗

such that the projection of w on V induces a path in G. In other words, A accepts w iff w is of
the form #∗v1#∗v2 . . . vn#∗, for a path v1, v2, . . . , vn in G. It is easy to define A as above by
adding to G self-loops labeled # and an initial state that has a transition to all states. Formally,
A = 〈Σ, V ∪ {s}, {s}, δ, V 〉, where δ(vi, vj) = {vj} for every (vi, vj) ∈ E, δ(s, vi) = {vi} for
every vi ∈ V , and δ(v,#) = {v} for every v ∈ V ∪ {s}. Now, there is a Hamiltonian path in G iff
there is a permutation of V that forms a path in G iff there is an EP in G′′ that satisfies L(A).

A.2 Correctness of the reduction in the proof of Theorem 5

Assume first that G has a Hamiltonian path P from a vertex s to a vertex t, we show that G′ has an
Eulerian cycle that satisfies L(R). The Eulerian cycle starts with the path Q in G′ that corresponds

O. Kupferman and G. Vardi 63:15

to P (starting from the vertex sin and ending in tout). The word l(Q) is of the form a(ba)∗. Now,
after we remove the edges of Q from G′ the in degree of every vertex except for sin and tout is still
equal to its out degree. Also, the graph G′ is still strongly connected because of the edges in E5 and
in E6. Therefore, after removing the edges of Q from G′, the graph has an EP Q′ from tout to sin.
Since Q already used all the edges labeled by a, then l(Q′) is of the form (b + c)∗. Therefore, the
path obtained by concatenating Q and Q′ is an Eulerian cycle in G′ of the form a(ba)∗(b+ c)∗ and
therefore satisfies L(R).

Assume now that G′ has an EP P that satisfies L(R), we show that G has a Hamiltonian path.
Since P is an EP and l(P) is of the form (a+b)∗(b+c)∗, then it starts by visiting every edge labeled
by a exactly once and using only edges labeled by b in between. Thus, it starts with a path in G′ that
corresponds to a Hamiltonian path in G.

A.3 Correctness of the reduction in the proof of Theorem 6

We detail the second direction of the proof. Assume that there is a Hamiltonian path P in G from
v1 to vn. We construct an Eulerian cycle in G′ as follows: The Eulerian cycle starts with the
path Q in G′ corresponding to P . This path starts with the edge (v1

in, v
1
out), ends with the edge

(vnin, vnout) and visits the edge (viin, viout) for every i exactly once. Note that l(Q) = a(ba)n−1. Let
Q = e1, . . . , e2n−1. For an edge e = (u, v), we denote e′ = (v, u), that is, e′ is the edge in the
opposite direction to e. The Eulerian cycle continues with the path Q′ = e′2n−1, . . . , e

′
1, that is, it

returns from the vertex vnout to the vertex v1
in. Note that l(Q′) = c2n−1. LetE′ = E \(Q∪Q′) be the

set of edges that are left after removing the edges of Q and Q′ from G′. Note that for every e ∈ E′
we have l(e) ∈ {b, c}, and that e ∈ E′ with l(e) = b iff e′ ∈ E′ with l(e′) = c. We denote by di
the in degree in G of the vertex vi, for every 1 ≤ i ≤ n. The Eulerian cycle now visits all the edges
incident to v1

in except for (v1
in, w) and (w, v1

in), by visiting an outgoing edge e and then visiting the
edge e′. We denote this path by Q1 and note that l(Q1) = (cb)d1 . Then, the Eulerian cycle visits
the edges (v1

in, w), (w, v2
in) (labeled by cb) in order to move to the vertex v2

in. The Eulerian cycle
now visits all the edges incident to v2

in, except for (v2
in, w) and (w, v2

in)), with a path Q2 such that
l(Q2) = (cb)d2−1. Note that v2

in had only d2 − 1 such pairs of edges since the paths Q and Q′

have already used one such pair. The Eulerian cycle now moves to v3
in through w and it continues

similarly until it reaches the vertex vnin and its incident edges. The Eulerian cycle continues with
the path Q′′ = (vnin, w), (w, v1

out), (v1
out, w), (w, v2

out), (v2
out, w), (w, v3

out), . . . , (vnout, w), (w, v1
in).

Note that l(Q′′) = (cb)n+1 and that it concludes the construction of the required Eulerian cycle.

A.4 Proof of Lemma 8

Assume that G has an EP from s to t (otherwise, which can be detected in polynomial time, the
algorithm returns a negative answer). Let ei = (ui, vi) for all 1 ≤ i ≤ k, and let G′ = 〈V,E \
{e1, . . . , ek}〉 be the graph obtained fromG by removing the edges e1, . . . , ek. Note that the problem
of finding an EP in G from s to t that respects τ is equivalent to the problem of finding the following
edge-disjoint paths inG′: from s to u1, from v1 to u2, . . ., from vk−1 to uk, and from vk to t. Indeed,
an EP from s to t in G such that e1 ≺ . . . ≺ ek induces the above edge-disjoint paths. Conversely,
the above edge-disjoint paths in G′ can be extended to an EP in G: First, we connect these paths by
adding the edges e1, . . . , ek. This results in a path P from s to t in which no edge appears more than
once. Now, since we assume that there is an EP in G from s to t, we can proceed as in the standard
algorithm for finding an EP, and complete P to an EP from s to t. Thus, the problem is reduced to
an EDP problem in G′.

Let G′D be the demand graph for the EDP problem in G′ described above. Note that for every
vertex in the graph G′ + G′D the in degree is equal to the out degree. Thus, the graph G′ + G′D

MFCS 2016

63:16 Eulerian Paths with Regular Constraints

is either Eulerian (if it is connected) or a union of disjoint Eulerian subgraphs. The case where G′

is not connected is easier, since in this case the edge-disjoint paths problem in G′ can be solved
independently for each connected component. Therefore, we assume that G′ is connected and thus
thatG′+G′D is Eulerian. SinceG′+G′D is Eulerian, the edge-disjoint paths problem for three paths
in G′ has a polynomial-time algorithm, and therefore the problem of finding an EP from s to t with
e1 ≺ e2 in G has a polynomial-time algorithm.

Now, assume that there is a polynomial-time algorithm for finding an EP with e1 ≺ . . . ≺ ek for
k > 2 in a directed graph, we show an algorithm for the EDP problem for k+1 paths with an Eulerian
promise on the demand. LetH = 〈VH , EH〉 be a directed graph, let {(si, ti) : 1 ≤ i ≤ k+1} be the
edge-disjoint paths demand and let HD be the corresponding demand graph. Assume that H +HD

is Eulerian. Also, we can assume that H is connected, as if H is not connected but H + HD is
connected, then there is a demand from some vertex to a vertex in another connected component
in H . Let H ′ = 〈VH , EH ∪ {(ti, si+1) : i = 1 . . . k}〉. Note that H ′ has an EP from s1 to tk+1.
Now, we use the polynomial-time algorithm for finding an EP in H ′ from s1 to tk+1 such that
(t1, s2) ≺ . . . ≺ (tk, sk+1). If such an EP exists, then it induces k + 1 edge-disjoint paths in H as
required. Conversely, if there are k + 1 edge-disjoint paths in H as required, then the required EP
in H ′ exists, and can be obtained by connecting the edge-disjoint paths with the edges (ti, si+1) for
i = 1, . . . , k and extending the resulting path in the standard way.

A.5 Proof of claim in the proof of Theorem 9

We claim that there is an EP in G′σ from vi1−1 to vim such that ei1 ≺ ei2 ≺ . . . ≺ eim−1 iff the
required EP in G exists. If the required EP in G exists then by taking the subpaths corresponding
to bi1 , . . . , bim and connecting them with the edges ei1 , . . . , eim−1 we obtain the required EP in G′σ .
Conversely, if for every σ ∈ Σ the above EP in G′σ exists, then the required EP P in G can be
obtained as follows: For every block bi we append to P a subpath. If bi is a single-letter block
then we add the single-edge subpath (vi−1, vi). If bi = σ∗ for some σ ∈ Σ, we append to P the
corresponding subpath of the EP in G′σ . This subpath starts in vi−1 and ends in vi. Note that P is an
EP in G that satisfies L(R).

A.6 Proof of Theorem 10

Assume first that G has a Hamiltonian path P from a vertex s to a vertex t, we show that G′ has an
Eulerian cycle that satisfies L(R). The Eulerian cycle starts with the path Q in G′ that corresponds
to P (starting from the vertex sin and ending in tout). Since Q uses only edges from E1 ∪ E2, then
l(Q) contains a word of the form a∗. Now, after we remove the edges of Q from G′ the in degree
of every vertex except for sin and tout is still equal to its out degree. Also, the graph G′ is still
strongly connected because of the edges in E5 and in E6. Therefore, after removing the edges of Q
from G′, the graph has an EP Q′ from tout to sin. Since Q already used all the edges in E1, then
l(Q′) contains a word of the form b∗. Therefore, the path obtained by concatenating Q and Q′ is an
Eulerian cycle in G′ that satisfies L(R).

Assume now that G′ has an EP P that satisfies L(R), we show that G has a Hamiltonian path.
Since P is an EP and l(P) contains a word of the form a∗b∗, then it starts by visiting every edge
in E1 exactly once and using only edges from E2 in between. Thus, it starts with a path in G′ that
corresponds to a Hamiltonian path in G.

A.7 A polynomial-time algorithm for the Chinese postman problem

Note that a graph has a postman cycle iff it is strongly connected. Let G be a strongly connected
weighted graph. If G has an Eulerian cycle then it is also an optimal postman cycle. Otherwise, G

O. Kupferman and G. Vardi 63:17

has vertices with unbalanced degrees, that is, their in degrees and out degrees are not equal. In this
case, we construct a graph G′ by adding to G paths from vertices with an in degree greater than their
out degree to those with an out degree greater than their in degree, such that they would make the
in degree of every vertex equal to its out degree. We choose the paths such that the set of edges that
are added to G is of minimal cost. This can be done by solving a network-flow problem. Then, the
optimal postman cycle is obtained by finding an Eulerian cycle in G′. In order to find an optimal
postman path from a vertex s to a vertex t in a weighted graphH , we first add toH a new edge (t, s)
with a large cost and then find an optimal postman cycle in the resulting graph. If there is a postman
path from s to t then the edge (t, s) appears only once in the optimal postman cycle since it has a
large cost.

A.8 Handling the case of single-letter blocks in Theorem 12

We handle the case where R contains single-letter blocks. For every i such that bi = σ for some
σ ∈ Σ, the graph G must have an edge ei = (vi−1, vi) such that l(ei) = σ. If there are parallel
edges (vi−1, vi) that are labeled by σ then we choose ei to be an edge that has not been chosen yet,
and if all of these parallel edges have already been chosen, we choose ei to be the least-cost edge.
Now, assume that the expression σ∗ also appears in R in two blocks (the case where it appears only
in one block is similar). We find a path in G′σ as in the standard algorithm, but now this path does
not have to include edges that have been chosen for the single-letter blocks. Since there is a fixed
number of single-letter blocks, we can run over all the subsets of these edges, and for each subset
remove the edges from G′σ and find the optimal postman path as in the standard algorithm.

A.9 Proof of Theorem 13

Let G = 〈V,E, l, c〉 be a labeled weighted graph and let k be a fixed number. Let R = b1 . . . bk
be a RE, where for every i we have bi = w∗i or bi = wi for some wi ∈ Σ∗, and every σ ∈ Σ
appears at most once in R. We assume that every letter that appears in G, appears also in R, because
otherwise the CCP problem is trivial. As in the proof of Theorem 12, we run over all the options for
choosing k + 1 vertices v0, . . . , vk ∈ V , and find a least-cost path in G from v0 to vk that satisfies
L(R), contains all the edges and can be partitioned into k subpaths, such that the i-th subpath starts
in vi−1, ends in vi and corresponds to bi.

Let Gi = 〈Vi, Ei, l, c〉 be the subgraph of G induced by the edges labeled by letters in wi.
We show how to find a least-cost path in Gi from vi−1 to vi that contains all the edges of Gi and
corresponds to bi. If bi = wi, then we check whetherGi contains every letter inwi exactly once, and
whetherwi induces a path inGi from the vertex vi−1 to the vertex vi. Assume now that bi = w∗i , and
wi = σ0 . . . σn−1. As in the proof of Theorem 7, we construct a weighted graph G′i = 〈V ′i , E′i, c′〉,
where V ′i = {〈v, j〉 : v ∈ Vi and 0 ≤ j ≤ n− 1} and E′i = {(〈u, j〉, 〈v, j + 1 (mod n)〉) : (u, v) ∈
Ei and l((u, v)) = σj} and c′((〈u, j〉, 〈v, j + 1 (mod n)〉)) = c((u, v)). That is, G′i includes n
copies of Gi such that every edge (u, v) with l((u, v)) = σj in Gi induces an edge with the same
weight from u in the j-th copy to v in the (j + 1)-th copy in G′i. Note that finding a least-cost path
in Gi from vi−1 to vi that contains all the edges of Gi and corresponds to bi can be done by finding
an optimal postman path in G′i from 〈vi−1, 0〉 to 〈vi, 0〉.

MFCS 2016

63:18 Eulerian Paths with Regular Constraints

A.10 An example of an Eulerian language of a labeled graph

Figure 3 A labeled graph G such that EL(G) = {abcd, adbc, cbad, cdba}.

	Introduction
	Preliminaries
	Graphs and Eulerian paths
	Regular languages and the constrained Eulerian path problem

	It Is Hard
	It Is Very Hard
	But Sometimes It Is Easy
	Multi-Labeled Graphs
	The Constrained Chinese Postman Problem
	Eulerian Languages
	Proofs
	Proof of Theorem 4
	Correctness of the reduction in the proof of Theorem 5
	Correctness of the reduction in the proof of Theorem 6
	Proof of Lemma 8
	Proof of claim in the proof of Theorem 9
	Proof of Theorem 10
	A polynomial-time algorithm for the Chinese postman problem
	Handling the case of single-letter blocks in Theorem 12
	Proof of Theorem 13
	An example of an Eulerian language of a labeled graph

