

Service Computing

This page intentionally left blank

Service Computing
Concepts, Methods and Technology

Zhaohui Wu
Shuiguang Deng

Jian Wu

Amsterdam • Boston • Heidelberg • London

New York • Oxford • Paris • San Diego

San Francisco • Singapore • Sydney • Tokyo

Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have
a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

ISBN: 978-0-12-802330-3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

For Information on all MK publications
visit our website at http://mkp.com

Typeset by TNQ Books and Journals
www.tnq.co.in

Printed and bound in the USA

Contents

Preface ...xi

Chapter 1: Introduction.. 1
1.1 Overview .. 1

1.1.1 The Origin of Service Computing... 2
1.1.2 The Concept of Service Computing.. 4

1.2 Technical Framework of Service Computing ... 5
1.2.1 Service Resource Layer ... 6
1.2.2 Service Convergence Layer ... 7
1.2.3 Service Application Layer ... 8
1.2.4 Service System Layer .. 9

1.3 The State-of-the-Art of Service Computing.. 10
1.3.1 The State-of-the-Art in Industry.. 10
1.3.2 The State-of-the-Art in Academia... 12

1.4 Organization ... 14
References... 14

Chapter 2: Service-Oriented Architecture and Web Services 17
2.1 Web Services .. 18

2.1.1 Overview of Web Services .. 18
2.1.2 Basic Standards of Web Services.. 20
2.1.3 Web Services Security ... 26
2.1.4 Web Services Transaction.. 30
2.1.5 Semantic Web Services.. 31

2.2 Service-Oriented Architecture ... 32
2.2.1 Overview of SOA... 32
2.2.2 Model of SOA.. 33

2.3 Service Component Architecture... 35
2.3.1 Concepts of SCA ... 35
2.3.2 Model of SCA.. 35
2.3.3 Strategy Framework ... 38

2.4 Service Data Objects.. 38
2.4.1 Concepts of Service Data Object .. 38
2.4.2 Framework of Service Data Object... 39

v

2.5 Open-Source Platforms for SOA... 40
2.5.1 Apache Tuscany ... 40
2.5.2 Eclipse SOA Tools Project... 40

2.6 Summary .. 41
References... 41

Chapter 3: Web Service Quality of Service and Its Prediction 43
3.1 Introduction .. 43
3.2 Collaborative Filtering-Based Quality of Service Prediction............................. 45

3.2.1 Neighborhood-Based Collaborative Filtering.. 45
3.2.2 Trust-Based Collaborative Filtering .. 47

3.3 Matrix Factorization-Based Quality of Service Prediction 53
3.3.1 Basic Matrix Factorization Model... 53
3.3.2 Neighborhood-Based Matrix Factorization Model ... 54
3.3.3 Location-Based Matrix Factorization Model .. 63

3.4 Summary .. 76
References... 77

Chapter 4: Service Discovery .. 79
4.1 Introduction .. 79
4.2 Related Work.. 81

4.2.1 Interface-Level Service Discovery .. 81
4.2.2 Behavioral-Level Service Discovery ... 82

4.3 Interface-Level Service Discovery .. 84
4.3.1 Framework of Web Services Discovery.. 85
4.3.2 Web Services Clustering based on WSDL and Tags 86
4.3.3 Tag Recommendation .. 89
4.3.4 TiTan: A Search Engine for Web Services Discovery 91

4.4 Behavior Level Service Discovery .. 93
4.4.1 Behavioral Perspectives of Services.. 94
4.4.2 Formalizing Services Behavior with p-Calculus.. 96
4.4.3 Analyzing Behavioral Simulation of Services .. 99
4.4.4 Implementation of Reasoning on Services Behavioral Equivalence............ 102

4.5 Summary .. 103
References... 104

Chapter 5: Service Selection ... 105
5.1 Introduction .. 106
5.2 QoS-Based Skyline Service Selection... 108

5.2.1 Preliminaries... 108
5.2.2 Basic Skyline Service Selection .. 109
5.2.3 Representative Skyline Service Selection ... 109
5.2.4 Dynamic Skyline Service Selection .. 114
5.2.5 Uncertain Skyline Service Selection ... 118

Contents

vi

5.3 MapReduce and Skyline Service Selection .. 119
5.3.1 Architecture .. 120
5.3.2 MapReduce and Skyline Service Selection Algorithms............................... 121
5.3.3 Experiments.. 128

5.4 Summary .. 130
References... 131

Chapter 6: Service Recommendation .. 133
6.1 Overview of Service Recommendation... 133
6.2 Bayes-Based Service Recommendation .. 135

6.2.1 Preliminary ... 135
6.2.2 Architecture .. 137
6.2.3 Bayes Theorem for Service Recommendation ... 139
6.2.4 Recommendation Algorithms .. 142
6.2.5 Experiments.. 147

6.3 Instant Service Recommendation .. 154
6.3.1 Overview .. 154
6.3.2 Definition and Problem Description.. 156
6.3.3 Recommendation Algorithms .. 159
6.3.4 Experiments.. 166

6.4 Summary .. 174
References... 175

Chapter 7: Service Composition .. 177
7.1 Introduction .. 178
7.2 Top-k QoS Composition .. 181

7.2.1 Problem Formalization... 182
7.2.2 Composition Algorithm ... 184
7.2.3 Experimental Evaluation.. 193

7.3 Parallel Optimization for Service Composition .. 197
7.3.1 Problem Formalizing.. 198
7.3.2 Composition Algorithm ... 199
7.3.3 Parallel Optimization ... 201
7.3.4 Experiments.. 204

7.4 Service Composition Based on Historical Records .. 206
7.4.1 Framework Based on Graph Mining... 207
7.4.2 Processing Stages... 208
7.4.3 Experimental Evaluation.. 219

7.5 Summary .. 225
References... 226

Chapter 8: Service Verification and Dynamic Reconfiguration............................. 229
8.1 Introduction .. 230

8.1.1 Overview of Service Verification .. 230
8.1.2 Overview of Dynamic Reconfiguration of Service-Based Application 232

Contents

vii

8.2 Service Verification .. 233
8.2.1 Basic Theory .. 234
8.2.2 Modeling for Different Granularity Services.. 235
8.2.3 Determining Substitutability between Different Granularity Services 242
8.2.4 Case Study.. 247

8.3 The Dynamic Reconfiguration of a Service-Based Application 251
8.3.1 QoS Metrics ... 252
8.3.2 Quality of Service-Driven Dynamic Reconfiguration Method..................... 253
8.3.3 Reconfiguration Factor... 255
8.3.4 Evaluation... 258

8.4 Summary .. 262
References... 263

Chapter 9: Complex Service Computing ... 267
9.1 Introduction .. 268

9.1.1 Crossover Service... 268
9.1.2 Complex Service Computing... 269

9.2 Service Computing with Big Data .. 271
9.2.1 Tagging Data Relevance Measurement ... 272
9.2.2 Tagging Data Recommendation .. 277
9.2.3 Tagging Data-Based Service Mining .. 279

9.3 Service Computing with a Complex Mobile Environment 283
9.3.1 Motivating Scenarios ... 283
9.3.2 Mobility Model .. 286
9.3.3 Mobility-Aware Quality of Service Computation... 288
9.3.4 Mobility-Enabled Selection Algorithm ... 289
9.3.5 Experimental Evaluation.. 294

9.4 Service Computing with Service Pattern Model .. 303
9.4.1 Business Model and Service Computing .. 303
9.4.2 Service Pattern Description Language .. 304
9.4.3 Business Process Model Notation for Service Pattern 309
9.4.4 Case Study.. 310

9.5 Summary .. 313
References... 314

Chapter 10: JTang Middleware Platform ... 317
10.1 Overview of JTang ... 317
10.2 Platform Architecture... 318

10.2.1 Basic Application Server ... 318
10.2.2 Service Computing Component Library ... 320
10.2.3 Integrated Development Environment... 322
10.2.4 Integrated Management Console ... 323

10.3 JTang Development Environment for Service Components........................... 323
10.3.1 Model-Driven Development of Service Components............................... 323
10.3.2 Assembling Service Component ... 324
10.3.3 Service Component Library... 325

Contents

viii

10.4 JTang Distributed File Storage Service... 326
10.4.1 Architecture .. 327
10.4.2 File Data Block Storage Management Mechanism 328
10.4.3 Multifile Replication Management.. 330
10.4.4 File Transmission Based on Cache ... 331

10.5 JTang Enterprise Service Bus.. 331
10.5.1 Architecture .. 332
10.5.2 Massage Exchange Based on Content Router .. 332
10.5.3 Reliability Management of Distributed Nodes ... 334

10.6 JTang-Plus .. 335
10.7 Summary .. 336

Index .. 337

Contents

ix

This page intentionally left blank

Preface

Service computing is a cross-discipline that covers the science and technology and represents the
promising direction of distributed computing and software development methodology. It aims to
bridge the gap between business services and information technology services by supporting the whole
life cycle of services innovation. The last 10 years has witness the progress and success from both
academic research and industry application.

This book compiles some recent work from the E-service research group of the CCNT (advanCed
Computing aNd sysTem) laboratory at Zhejiang University, China. It presents the concept of service
computing and proposed a multilayered technical framework for service computing, which divided the
main issues of service computing research into four layers from bottom to up: service resource layer,
service convergence layer, service application layer, and service system layer. And then it briefly
introduces two underneath technologies, i.e., Web services and service-oriented architecture. After
that, it presents the research group’s latest research findings in the hot topics such as Web service QoS
prediction, Web service discovery, service selection, service recommendation, composition, and
verification. Some new models and methods are proposed including collaborative filtering-based QoS
prediction, behavior-based service discovery, skyline-based service discovery, Bayes-based service
recommendation, top-k service composition, type theory-based service formalization and verification,
and so on. And also, it discussed three challenging issues of complex service computing, i.e., service
computing with big data, with complex mobile environment, and with service pattern model. At last,
this book introduces JTang, an underneath platform supporting service computing, which has been
widely used in more than seven different areas such as e-business, e-government, public services, and
financial industry. This book presents the architecture and components of JTang and gives the details
on its core systems such as distributed storage system for big data and distributed service enterprise
bus for service integration.

This book would not have been possible without many contributors whose names did not make it
to the cover. We would like to give our special thanks to Prof. Jianwei Yin and Prof. Ying Li in our
research group, Prof. Li Kuang and Prof. Yuyu Yin who had been affiliated to the CCNT laboratory of
Zhejiang University, as well as some Ph.D. candidates in our group including Mr Liang Chen,
Mr Longtao Huang, Mr Yuesheng Xu, Mr Wei Luo, Mr Zhiling Luo, and Mr Hongyue Wu. For a long
time already, it has been our pleasure to do research with them in service computing. They have
devoted their energy and enthusiasm to this area and relevant research projects.

The work in this book was mainly supported by the Natural Science Foundation of China
(No. 61170033, No. 61173176, and No. 61272129), the National Key Basic Research Program of
China (No. 2013CB329504), the National Technology Support Program (No. 2013BAD19B10 and

xi

No. 2013BAH10F02), the National 863 High-Tech Program (No. 2013AA01A604), and the Zhejiang
Provincial Natural Science Foundation of China (LR13F020002).

Zhaohui Wu, Shuiguang Deng, and Jian Wu
Hangzhou, China

October 2014

Preface

xii

CHAPTER 1

Introduction
Chapter Outline
1.1 Overview 1

1.1.1 The Origin of Service Computing 2

1.1.2 The Concept of Service Computing 4

1.2 Technical Framework of Service Computing 5
1.2.1 Service Resource Layer 6

1.2.2 Service Convergence Layer 7

1.2.3 Service Application Layer 8

1.2.4 Service System Layer 9

1.3 The State-of-the-Art of Service Computing 10
1.3.1 The State-of-the-Art in Industry 10

1.3.2 The State-of-the-Art in Academia 12

1.4 Organization 14

References 14

Throughout the history of the software industry, each birth of new software development

technology and design ideas has triggered a major revolution in the software industry. In

the 1960s, the emergence of object-oriented technology was a substantive revolution for

structured programming design and analysis. It greatly reduced the complexity and

improved the efficiency of software development. In the 1980s, the flourish of software

component technology initiated the transformation of the software production mode from

workshop production to industrial production. It fundamentally changed the traditional

software production mode and brought the software industry into an unprecedented rapid

developmental track. Today, with services as the basic elements, service-oriented

architecture (SOA) as the guiding principle, and service reuse and service composition as

the software design methods, service-oriented computing has become the latest

developmental direction in current distributed computing. It is undeniable that service

computing is leading the new round wave in software industry development. This chapter

mainly focuses on the concept and research framework of service computing, as well as

state-of-the-art of service computing both from the industrial and academic perspective.

1.1 Overview

With the development of computer and network technology, modern enterprise is entering

an era when enterprise forms are continuously changing, enterprise extensions are being

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00001-1

Copyright © 2015 Elsevier Inc. All rights reserved. 1

continuously expanded, enterprise environments are continuously changing, and enterprise

businesses are being continuously adjusted. The traditional software development concepts

and methods, characterized by “once development” and “continuous usage,” are becoming

increasingly stale and outdated. How to solve the problem of “on-demand” for enterprise

application systems has become an increasing critical issue for the modern software

industry. Moreover, it has been the stumbling block that hinders the rapid development of

the software industry. Under such circumstances, service computing technology is

proposed, as a new kind of computing schema, to resolve this problem.

1.1.1 The Origin of Service Computing

From the time service computing was first proposed, it took only three years’ time for

service computing to be established as an independent computing discipline. The concept

of service computing can be traced back to the International Conference on Internet

Computing held in June 2002. In the web service computing track of this conference,

service and computing were combined for the first time. The important role that web

service played in distributed computing and dynamic business integration was emphasized

and widely approved by all experts and scholars at the conference, which laid the

foundation for the future promotion of service computing. From that time, service

computing has continuously attracted the interests of researchers and industrial giants and

has become regarded as the latest development direction of distributed computing. In

November 2003, the Technical Community for Service Computing was established by the

Institute of Electrical and Electronics Engineers (IEEE). In May 2004, it was renamed

the Technical Steering Committee for Service Computing, dedicated to promoting the

development of service computing disciplines and creating related standards. This marked

the point at which service computing became an independent computing discipline. In

September 2004, the first session of the IEEE International Conference on Service

Computing was held by the Technical Steering Committee for Service Computing in

Shanghai. It was the first global event on service computing. A large number of scholars

and experts were attracted, and a large number of research results emerged from this

conference. The successful holding of this conference drew wide attention from both

academia and industry, greatly promoted the development of service computing discipline,

and made service computing become a popular computing discipline.

The reason service computing could rapidly grow and develop in only three years lies in

the continuously evolving computing environments. The computing environment consists

of a group of computers, software platforms, protocols, and interconnected networks. In

this environment, computers and software platforms can exchange data and process

information through the network according to the established protocols. The computing

environment has transformed from an early centralization mode to a current distribution

2 Chapter 1

mode. In this process, it has gone through four stages: mainframe computing environment,

client/server computing environment, multilayer distributed computing environment, and

service computing environment.

The mainframe computing environment in the 1960s was a completely centralized

computing environment, in which the majority of the computing devices and resources

were concentrated on the expensive and bulky mainframe. Users could use it only through

their dumb terminals, which contained only a display and a keyboard.

In the early 1980s, with the development of hardware technology, especially the large-

scale integrated circuit technology, small personal computers began to enter households.

Computing devices and resources had been transferred from the central machine rooms

with mainframes to households, while the computing environment was still limited to the

signal-machine environment. In the middle and late 1980s, with the development of

computer networks and the growing popularization of personal computers, the computing

environment entered the distributed era. Interoperability and sharing were achieved in this

distributed but interconnected computing environment. During this period, the client/server

computing environment emerged, in which client computers and server computers were

separated. The former are always personal computers or workstations, while the latter are

always mainframes, minicomputers, personal computers, and workstations, which provide

clients with functions including large-scale data storage, file sharing, printing, key business

processing, etc.

In the 1990s, to provide better performance, flexibility, and scalability, a multilayer

distributed computing environment was derived from the client/server environment. It

realized the separation of the presentation layer, business layer, data layer, etc. However,

the computing environments were still built on relatively closed protocols, so they lacked

general standardization support. Owing to the more open Internet, especially the

continuous application and development of XML and web services technology, the

computing environment had evolved into an Internet-oriented service computing

environment, which is based on open standards and protocols. In the service computing

environment, computing devices and software resources also evolved by showing

necessary trends, including both standardization and transparency. This new computing

environment needed a new computing technology to support, which led to the

environmental foundation for service computing.

The formation of the service computing environment brought new requirements for

software architecture and software-development methods. Software architecture refers to

the software elements that constitute the software system, the external visible properties of

these software elements, and the relationships between these software elements [1]. The

ever-changing computing environment that made up the centralized software architecture

in the early era of mainframe computing gradually developed into service-oriented

Introduction 3

software architecture. In the service computing environment, all kinds of computing

devices and software resources are highly distributed and autonomous. Variation becomes

the essential innate characteristic of this environment. Software systems are facing

unprecedented challenges brought about by dynamic elements, the changing environment,

and complexity. Service-oriented software architecture is a loose, flexible, scalable,

distributed software architecture scheme that is formed to be adapted to the dynamic,

distributed, autonomous, and transparent service-computing environment. The formation of

service-oriented software architecture lays the most important technical foundation for the

formation of a service computing discipline.

Meanwhile, with the variations in the service computing environment and software

architecture, the concepts, principles, and methods of a service-oriented software system

design and development emerge as required. Every variation in software development

methodology had brought significant changes to the software industry. As we know, the

birth of component-oriented software development technology initiated the

transformation of the software production mode from traditional workshop production to

industrial production. Service-oriented software system design and the development

approach is the real source power to further promote this transformation and the critical

theory and method to complete this transformation. Therefore, the concepts, principles,

and methods for service-oriented software system design and development, continuously

developed and improved with service-oriented software architecture, provide the basis

for the most important methodology foundation for the formation of service computing

discipline.

In conclusion, the birth of service computing is the result of the continuously evolving

computing environment, software system architecture, and software development methods.

It is the inevitable result of further enhanced and accelerated development of the software

industry.

1.1.2 The Concept of Service Computing

Although service computing has become a new research hotspot both in current academia

and industry, it has not a unified concept. Besides, as it is in a continuously developing

process, its definition and connotation are also constantly changing. Experts and scholars

have different understandings from different perspectives.

Mike P. Papazoglou, who is from the software system design and development perspective,

thinks that “Service computing is a way of developing application systems with services as

the basic elements” [2].

Munindar P. Singh and Michael N. Huhns, who are from the application of service

technology, think that “Service computing is the set of technologies that combine service

4 Chapter 1

concept, service system architecture, service technology and service infrastructure together

to guide how to use these services” [3].

Maria E. Orlowska and Sanjiva Weerawarana, who are from the distributed computing

perspective, think that “Service computing is a kind of distributed computing paradigm

evolved from object-oriented and component-oriented computing. It makes different

commercial application systems that are distributed within the enterprises or across the

border of enterprises achieving rapid, flexible seamless integration and cooperation” [4].

Liangjie Zhang, who is from the discipline perspective, thinks that “Service computing is

a basic discipline that crosses computers, information technology, commercial

management and consultation services. Its objective is to use service science and service

technology to eliminate the gap between commercial services and information technology

services” [5].

The definitions above were formed in different developmental periods of service

computing. They focus on different perspectives and do not conflict with each other. To

sum up, we think service computing is put forward in terms of the dynamic, versatile, and

complex Internet environment. It is a new computing discipline with web service and

service-oriented system architecture as the basic supporting technology, service

composition as the main software development approach, and service-oriented software

analysis and design principles as the basic ideas. Service is the most important core

concept in the technical framework of service computing. Note that service here refers to

the software entity that is based on the network environment and characterized by adaptive

ability, self-description, modularity, and good interoperability, while web service is a

specific representative form and function carrier that is in accordance with these

requirements.

1.2 Technical Framework of Service Computing

As an independent computing discipline, service computing is established on a series of

key technologies, which together form the technical framework of service computing. This

framework offers solutions for service computing system design, software development,

application integration, and business integration under the dynamic, versatile, and complex

Internet environment. It covers technologies including service modeling, service

description, service development, service implementation, service management,

service discovery, service selection, service recommendation, service composition, service

adaptation, service coordination, service validation, service execution, service monitoring,

enterprise service bus, etc. These technologies are divided into four layers from bottom to

top: service resource layer, service convergence layer, service application layer, and

service system layer, shown in Figure 1.1.

Introduction 5

1.2.1 Service Resource Layer

As the bottom layer of the framework, the service resource layer mainly provides the basic

standards, techniques, and methods necessary to transform data and software resources to

services. This layer mainly solves two problems. The first is to understand the essence of

service; namely, what does the service model include? What language should we use to

describe service? What are the basic protocols of service? The second is how to

implement and use service; namely, how to develop, encapsulate, test, deploy, publish

service, etc.? With web service technology and its related standards becoming mature and

improved, the industry community has almost reached a common understanding on the

essence of service. Web service has become the technical standards of service

implementation in the industry community. The corresponding software and systems for

service development, testing, deployment, operation, and publication are emerging in an

endless stream, which provides solid support for data and software resources to be used as

services. However, the discussion about service essence and connotation has never stopped

Service
system layer

Service application layer

Service convergence layer

Service resource layer

Service modeling

Service
discovery

Service
monitoring

Service composition

Enterprise service bus

Service development

Service execution

Service
validation

Service
recommendation

Service
adaptation

Service coordination

Servic-oriented architecture

Service system
engineering

Service
invocation

Service
maching

Service choreography Service orchestration

Service integration Service flow

Service testing

Service deployment

Service publicationService language Service protocol

Service encapsulation

Service
trust

Figure 1.1
Technical framework of service computing.

6 Chapter 1

in academia. To enable services to be automatically understood by machines and

intelligent agents, so as to realize the automatic service invocation, discovery, and

composition, the semantic web service is put forward in academia, which has become a

hotspot of current service computing research.

1.2.2 Service Convergence Layer

The service resource layer achieves the service standardization of various heterogeneous

software resources. Based on the service resource layer, the service convergence layer further

realizes the transformation from fine-grained service to large-grained service. In other words,

the service convergence layer offers a series of standards, technologies, and methods for the

collaboration of different services and the management of service flows that consist of

several services. It covers service integration, service collaboration, service composition,

service orchestration and service choreography, service process management, etc.

Service integration and coordination is the technology needed to achieve seamless

integration and business collaboration for the remaining business systems within the

enterprise or across enterprise boundaries under service computing environments. This

technology requires flexibility and scalability. Therefore, compared with traditional point-

to-point system integration and message agent-based system integration technology, it can

be better adapted to the dynamic versatile business environment.

When a single service cannot meet users’ requests, service composition can be used to

compose several services to a large-grained composite service with Internal process logic.

Service composition is not only an important way to achieve value-added services, but

also a basic software development method in the service computing environment. There

are two main kinds of service composition schemas, service orchestration and service

choreography. The former requires a control center to control the participating services

and coordinate the implementation of these services. The services involved do not know

that they are parts of the collaborative process, and only the central control center knows

how to conduct the collaborative work. In contrast, the service choreographer does not rely

on the service control center, and each involved service knows when to perform its

operations and with whom to interact [6].

Service flow is the process generated by performing message exchange and logic

composition to the related services according to their business processes. It is a new

representation form of workflow technology after its combination with service technology

[7]. The management of service flow is similar to the traditional workflow, which is also

divided into a management in modeling stage and an implementation stage. The former

mainly achieves the theoretical modeling and formal definition of service flow, while the

latter mainly manages the operation, monitoring, optimization, and analysis of service flow.

Introduction 7

1.2.3 Service Application Layer

Through the service resource layer and service convergence layer, various heterogeneous

data and software resources are transformed to standard services with different granularity,

ensuring services are invoked in a convenient, rapid, and transparent way. The service

application layer mainly offers the basic technical and methodology support in the service

invocation process. Specifically, it consists of technologies including service invocation,

service discovery, service matching, service validation, service adaptation, service

monitoring, etc. In the following, we give a brief introduction for several of the key

techniques.

Service discovery is an important prerequisite to apply service technologies. It uses service

discovery algorithms to search services from the service registry according to the users’

functional and nonfunctional needs and constraints. Service recommendation is a proactive

service-discovery technique, which proactively recommends services to users according to

users’ preferences.

Service matching and service discovery are closely related, and the latter is always based

on the former. In particular, service discovery matches user’s’ specific requirements with

the description of the services in the registry, and then selects the matched service.

Therefore, service matching can be viewed as an important step for service discovery.

Service verification aims to examine whether the semantic, function, and behavior of the

service is in accordance with the requirements of the user, intelligent agent, or system

before invoking the service. Its objective is to reduce the possibility of service misuse and

ensure that only appropriate services are invoked. Service verification also includes testing

the correctness of the composite flow of the component services.

Service adaptation is used when the service cannot fully satisfy the requirements of the

user. It establishes corresponding adapters between target services and customer services,

intelligent agents, or systems to solve problems including interface mismatch, parameter

mismatch, or behavior mismatch, thus resolving the problems that the service cannot

successfully invoke.

Service trust aims to comprehensively evaluate services, including service function,

service quality, service ability, service security, etc., thus comprehensively evaluating the

availability and reliability of the services.

The service application layer links the service resource layer and service convergence

layer. It offers important technical support for the service resource layer to realize integrity

and collaboration. The technologies involved in this layer are the most popular

technologies in current service computing research and development.

8 Chapter 1

1.2.4 Service System Layer

Based on the technology of the service application layer, the service system layer is a set

of standards, techniques, and methods to guide the design, development, operation, and

management of service-oriented software systems under the service-oriented computing

environment. It includes the SOA, enterprise service bus, and service system engineering.

SOA is a loosely coupled framework, which is used to guide the design of service-oriented

software systems [8]. It ends the 40-year dominance of the current centralized software

architecture and becomes the most fashionable and popular distributed system architecture.

It has already been sought after by the industry enterprise giants. A series of related

reference implementation, standards, tools, and platform software are emerging in an

endless stream. Gartner, a globally famous IT research and analysis organization, predicts

that by 2010, more than 80% of the enterprises will adopt SOA. Furthermore, some

scholars and experts believe that the previous 10 years witnessed the achievements of the

giants including Microsoft, IBM, Oracle, etc.; while looking toward the future, SOA is

undoubtedly the most competitive technique that will become the software overlord. From

that, we can see how immensely SOA influences the future of the software industry. Just

because of that, the continuous maturity of SOA makes service computing, as a computing

discipline, gradually acknowledged.

Service system dynamic configuration is a kind of management and maintenance

technique that has been built based on service in application systems. With users’ requests

or system environment changes, it can use a series of configuration policies and methods

to ensure that the service system can continue to provide services. When a service with

higher quality is required, or some component services of the system are not accessible,

the service system dynamic configuration can dynamically replace it by seeking a better

service or the candidate’s service without a machine halt. Therefore, this technology is an

important way to improve the reliability and robustness of service systems.

Enterprise service bus (ESB) is an important message transmission technology that

supports and realizes SOA. It is the product of the combination of traditional middleware

technology and technologies including XML and web service, etc. ESB supports

interaction between services, messages, and events in heterogeneous environments.

Therefore, it can achieve an accurate, efficient, and safe transmission of different messages

and information between enterprise applications and services. Therefore, it plays a

backbone role in the integration of enterprise information systems [9].

Currently, ESB receives significant attention from the enterprise giants in the service

computing technology system. These giants have launched their own implementation

standards and software platforms. For example, Sun proposes JBI (Java Business

Introduction 9

Integration) [10], which provides an ESB implementation reference scheme based on Java

technology. For another example, IBM proposes the WebSphere Enterprise Service Bus

[11], which is an ESB product executed under the J2EE environment.

A service system project is a set of methods that guide service-oriented software system

planning, design, development, implementation, deployment, operation, and management.

It covers a full life-cycle service system process including requirement analysis,

theoretical modeling, system design, development testing, operation management,

implementation, and maintenance. Currently, the research and practice on service system

engineering is still in its infancy, and the relevant theories and methods are still being

continuously developed and improved.

1.3 The State-of-the-Art of Service Computing

The rapid development of service computing is the result of the joint efforts of industry and

academia. Industry mainly focuses on setting relevant technical standards and developing

various supporting software tools and platforms, while academia focuses on service

computing discipline construction, theoretical innovation, and methodology research.

1.3.1 The State-of-the-Art in Industry

The industry is the source power that promotes the generation and development of service

computing. It is the strong demand for “on-demand” software systems that creates the

most important supporting technologies in the web service system, such as web service

technology and SOA. We can view the current development of service computing in

industry from the standardization organizations and enterprise giants.

In terms of standardization organizations, the World Wide Web Consortium (W3C) and

Organization for the Advancement of Structured Information Standards (OASIS) are active

in the specification and standardization construction of a service computing technology

system.

W3C is a non-profit organization founded by Tim Berners-Lee, the father of the world

wide web, in October 1994 at the computer science laboratory of Massachusetts Institute

of Technology. It is dedicated to creating web-related technical standards and promoting

the development of web technology [12]. Focusing on basic technology of service

computing, especially web service technology, this organization has founded several work

groups, covering web service description, web services architecture, web services strategy,

web services choreography, web services semantic annotation, etc. Through its efforts,

several important service computing technology standards were developed, such as Web

Services Description Language (WSDL), Simple Object Access Protocol (SOAP), and

Web Services Choreography Description Language (WS-CDL).

10 Chapter 1

OASIS, founded is 1993, is dedicated to promoting the development, integration,

popularization, and application of e-business standards. It is the organization that has

developed the most standards in the current service computing technology area [13]. It has

founded several technical committees for service computing technology, covering service

safety, reliability, quality, transaction, trust and flow, etc. Moreover, it has developed a

series of important standards, such as Universal Description, Discovery, and Integration

standard (UDDI), Business Process Execution Language (WS-BPEL), Service Component

Architecture (SCA), and Service Data Object (SDO).

The continuous efforts of these two major standardization organizations have developed a

series of basic specifications and standards in the past several years, which laid the

foundation for the application of service computing-related technologies. However, with

the further promotion and application of service computing, the standardization

requirements, such as service coordination, service security, service transactions, and

service trust, become particularly critical. Therefore, the standardization work will be

continued in the future.

The continuous improvement of specifications and standards of service computing

technology makes it popular for enterprise giants to develop service computing

middleware. Many famous software giants, such as IBM, Microsoft, BEA, and SAP,

turned to service computing technologies represented by web services technology and

SOA. They developed corresponding supporting tools, software, and system platforms,

such as WebSphere at IBM, BizTalk at Microsoft, AquaLogic at BEA, and NetWeaver at

SAP, which all helped with supporting the rapid application and implementation of service

computing technology. These middleware products became important weapons for

software giants to attract users and partition the software market.

Meanwhile, some Chinese middleware manufacturers have gradually realized the

important influence of service computing technology to the future software industry. They

began to invest in service computing-related software technology platforms and started to

apply and implement service computing technologies in industries including

e-government, telecommunication, tobacco, etc. Among them, some influential technology

platforms and solutions include the SOA application platform EOS and SOA process

platform BPS of Shanghai Puyuan, SOA solution Apusic of Kingdee that integrates Portal,

ESB, integrated components, and development tools, and service-oriented middleware

management product UFIDA of U9. Among them, it is worth mentioning that Shanghai

Puyuan, a burgeoning middleware technology manufacturer, is the only Chinese enterprise

that is involved in the development of international service computing technology

standards. It successfully held “SOA China Technology Forum” several times in several

Chinese cities and played a positive role in the application and promotion of service

computing technology in China.

Introduction 11

1.3.2 The State-of-the-Art in Academia

Service computing as an independent computing discipline has received high attention

from academia and become a popular research topic for various experts and scholars. In

recent years, major academic organizations and research institutes have founded multiple

service computing and technology-themed academic journals, such as IEEE Transactions

on Service Computing, International Journal of Web Services Research, Service

Oriented Computing and Applications, and International Journal of Web Services

Practices. Meanwhile, some important international conferences focusing on service

computing also emerged, such as the International Conference on Service-Oriented

Computing (ICSOC), IEEE International Conference on Web Services (ICWS), and IEEE

International Conference on Service Computing (SCC). In China, the China Computer

Federation (CCF) established the Technical Committee of Service Computing in 2010,

which holds a national conference on service computing every year to promote the

development of Chinese service computing science and industry and strengthen

international exchanges and cooperation in this field. The two leading computer journals,

Chinese Journal of Computers and Journal of Software, have several times organized

special issues on service computing, which have drawn wide attention from Chinese

researchers. In the journals and conferences mentioned above, a large number of research

results are produced every year. These results cover theories, methods and techniques in

the service model, service language, service technology, service method, service

engineering, etc., and they have greatly promoted the development of the service

computing discipline. In the following, the academic institutions and research

organizations active in service computing research will be briefly introduced.

The Information Laboratory at Netherland University (Infolab) [14] is one of the earliest

research organizations that advocated service computing. Researchers, represented by

Mike P. Papazoglou, extended the standard SOA and presented an xSOA system. Based on

the xSOA system, they proposed an SOC Research Road Map and defined the research

scope, research content, and research direction of service computing. This research

roadmap has received very good acknowledgments from various researchers. It is one of

the research results that has been cited most often in the service computing field.

The Intelligent Software Agent Lab at Carnegie Mellon University in the United States

[15] proposed the concept of semantic web service and introduced it into service

computing technology. It is the major power for developing and promoting the first

semantic web service description language, DAML-S (the predecessor of OWL-S). This

lab proposed the first DAML-S-based semantic web service matching algorithm and

matching tools in 2002, and hence set off a research boom of semantic-based service

discovery technology.

12 Chapter 1

The Large Scale Distributed Information Systems Laboratory at the University of

Georgiain the United States [16] focuses on applying semantic technology to service

annotation, Quality of Service (QoS) description, service discovery, service composition,

and service process management in its under development project, METEOR-S. They

proposed the concept of a semantic web process and realized a semantic-based service

discovery architecture and service composition framework. In addition, the WSDL-based

lightweight semantic web service description language WSDL-S, developed by this

laboratory and IBM, has greatly promoted the development and application of semantic

web service.

The Service Oriented Computing Group at the University of New South Wales, Australia

[17], is committed to the research of rapid service composition and execution in its early

SELF-SERV project. Researchers represented by Boualem Benatallah proposed a service

flow implementation scheme based on Peer-to-Peer. After that, this group produced many

influential research results in the QoS of service and service composition, service

coordination adaptation, service trust management, and service computing in the mobile

environment, etc. Due to these contributions, it has become an influential research group

in the current service computing area.

The Grid and Service Computing Research Center at the Institute of Computing

Technology, Chinese Academy of Sciences [18], is the first team that worked on the

research of grid and service computing in China. The service grid platform VINCA,

developed by this center, can support on-demand and real-time service integration and

business systems construction. It has been applied in e-government and enterprise

information management. This platform proposes an integration methodology system

CAFISE, which can support dynamic integration of service resources, and on-demand

construction of business applications. In addition, it can provide a corresponding

development tool set and business side programming language under a service computing-

oriented open environment VINCA and realize rapid and real-time business application

construction for business users.

The Middleware Technology and Engineering Research Center at the College of

Computer Science and Technology, Zhejiang University [19], is dedicated to the research

of basic middleware technology. The JTang middleware platform, produced by this

center, provides a series of methodology and tool support for the application and

implementation of service computing technology, including basic methods such as

semantic-based service discovery methods, backward tree-based automatic service

composition methods, and pi calculus-based service verification methods. It also provides

basic tools, including the service component development environment, visualized service

community, distributed enterprise service bus, etc. These methods and tools can help

Introduction 13

users quickly design, develop, operate, maintain, and manage large-scale distributed

service systems.

1.4 Organization

This book comprehensively introduces the concept of service computing and the related

technologies, methods, and platforms. It is divided into 10 chapters. The contents of each

chapter are briefly introduced as follows:

Chapter 1 discusses the origins, concepts, and technical framework of service computing.

It also introduces the current development of service computing in the fields of industry

and academia, both at home and aboard.

Chapter 2 presents the fundamental technologies of service computing: web service and

SOA. The relevant standards of web service and semantic web service are particularly

introduced. As for SOA, the reference models and two important supporting standards,

service component architecture and service data object, are presented.

In Chapters 3e9, the key technologies of service QoS prediction, service discovery,

service selection, service recommendation, service composition, service verification, and

complex service computing issues are introduced.

Chapter 10 introduces the JTang middleware platform, which was developed by the

authors’ research group to support service computing.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed., Addison-Wesley
Professional, Boston, 2003.

[2] M.P. Papazoglou, D. Georgakopoulos, Introduction to a special issue on service-oriented computing,
Commun. ACM 46 (10) (2003) 24e28.

[3] Munindar P. Singh, Michael N. Huhns, Service-Oriented Computing: Semantics, Processes, Agents, John
Wiley & Sons, Ltd, 2005.

[4] Maria E. Orlowska, Sanjiva Weerawarana, et al. (Eds.), Proceeding of First International Conference on
Service-Oriented Computing, Springer, 2003.

[5] Liangjie Zhang, Jia Zhang, Hong Cai, Service Computing, Springer, 2007.
[6] C. Peltz, Web services orchestration and choreography, Computer 36 (10) (2003) 46e52.
[7] S.G. Deng, Z.H. Wu, K. Li, C. Lin, Y.P. Jin, Z.W. Chen, Management of serviceflow in a flexible way,

Int. Conf. Web Info. Syst. Eng. (2004) 428e438.
[8] Dirk Krafzig, Karl Banke, Dirk Slama, Enterprise SOA: Service-Oriented Architecture Best Practices,

Prentice Hall, 2004.
[9] M.T. Schmidt, B. Hutchison, P. Lambros, R. Phippen, The enterprise service bus: making service-oriented

architecture real, IBM Syst. J. 44 (4) (2005) 781e797.
[10] Ron Ten-Hove, Peter Walker, Java� Business Integration (JBI) 1.0, Sun Microsystems, 2005.
[11] http://www-01.ibm.com/software/integration/wsesb/.
[12] http://www.w3.org/.

14 Chapter 1

[13] http://www.oasis-open.org/.
[14] http://infolab.uvt.nl/.
[15] http://www.cs.cmu.edu/wsoftagents/.
[16] http://lsdis.cs.uga.edu/.
[17] http://selfserv.web.cse.unsw.edu.au/.
[18] http://vega.ict.ac.cn/.
[19] http://middleware.zju.edu.cn.

Introduction 15

This page intentionally left blank

CHAPTER 2

Service-Oriented Architecture
and Web Services
Chapter Outline
2.1 Web Services 18

2.1.1 Overview of Web Services 18

2.1.2 Basic Standards of Web Services 20

2.1.2.1 Simple Object Access Protocol 20

2.1.2.2 Web Service Description Language 22

2.1.2.3 Universal Description, Discovery and Integration 24

2.1.3 Web Services Security 26

2.1.3.1 WS-Security 27

2.1.3.2 WS-Policy 28

2.1.3.3 WS-Trust 29

2.1.4 Web Services Transaction 30

2.1.4.1 WS-Coordination 30

2.1.4.2 WS-AtomicTransaction 30

2.1.4.3 WS-BusinessActivity 31

2.1.5 Semantic Web Services 31

2.1.5.1 OWL-S 31

2.1.5.2 Web Service Modeling Ontology 31

2.1.5.3 Semantic Web Service Ontology 32

2.1.5.4 WSDL-S 32

2.2 Service-Oriented Architecture 32
2.2.1 Overview of SOA 32

2.2.2 Model of SOA 33

2.2.2.1 Service 34

2.2.2.2 Visibility 34

2.2.2.3 Service description 34

2.2.2.4 Interaction 34

2.2.2.5 Real-world effects 34

2.2.2.6 Contract and policy 34

2.2.2.7 Execution context 35

2.3 Service Component Architecture 35
2.3.1 Concepts of SCA 35

2.3.2 Model of SCA 35

2.3.2.1 Property 36

2.3.2.2 Reference 36

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00002-3

Copyright © 2015 Elsevier Inc. All rights reserved. 17

2.3.2.3 Service 37

2.3.2.4 Wire 37

2.3.3 Strategy Framework 38

2.4 Service Data Objects 38
2.4.1 Concepts of Service Data Object 38

2.4.2 Framework of Service Data Object 39

2.5 Open-Source Platforms for SOA 40
2.5.1 Apache Tuscany 40

2.5.2 Eclipse SOA Tools Project 40

2.6 Summary 41

References 41

2.1 Web Services
2.1.1 Overview of Web Services

A web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the web service in a

manner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other web-related standards. [1]

A web service is a concrete manifestation and function carrier of the concept of service

computing. It is a kind of application, based on a web environment, that is adaptive, self-

describing, and modular and has good interoperability. However, different organizations

for the web service concept and its connotation may create different understanding and

awareness.

IBM believes that a web service should use XML to describe a group of messaging

through XML for its operation, but these operations can be accessed via the network and

still meet the target task. The description of the service provides all the details of what is

necessary to interact with the service, including message formats, transport protocols, and

location.

Microsoft thinks that a web service is an application logic unit providing data and services

to other applications. The application accesses the web service by the ubiquitous web

service protocols and data formats, such as HTTP, XML, and Simple Object Access

Protocol (SOAP), and it does not need to care about how to implement each web service.

SUN thinks that a web service is a software component that has the features of being

discoverable, reusable, and re-combinable, solving the problems or requirements of users.

W3C thinks that a web service is a system supporting interoperability interaction through

the network. It uses the Web Services Description Language (WSDL) to describe the

18 Chapter 2

service interface and uses the SOAP message based on HTTP protocol to implement the

implementation between the service and the service and customer communication.

Each view above emphasizes some parts of a web service, and there are no conflicts. By

combining the above views, we think that the biggest characteristics of a web service lies

in its interoperability and reusability. The interoperability makes the web service become a

kind of attractive adhesive, used for seamless integration of heterogeneous applications

and systems; and the feature of reuse makes the web service a good carrier to convert a

software to service. Compared with other software entities, a web service has the

following features:

• Can be described: A web service can be described by a service description language.

• Can be released: A web service can be registered in the registering center and released.

• Can be found: The user can send a search request to a registering center to find the

service and the access information.

• Can be bound: The web service description information can be bound with a runable

service instance or service proxy.

• Can be called: A web service can be called by remote code with the description

information.

• Can be composited: The web services can be composited together to a large granularity

service.

In recent years, web service technology went through a long development period and

formed the web service protocol stack as shown in Figure 2.1, with service

communication, service description, service quality, and service processes. We can divide

the development process into two parts: the web service foundation protocol developing

Messaging

Description
and

Discovery

Quality of
Service
(QoS)

Business
Processes

Simple Object Access Protocol (SOAP)

Extensible Markup Language (XML)

HTTP
SMTP
FTP

Web Service Description Language (WSDL)

Universal Description, Discovery
and Integration (UDDI)

WS-Policy Family of
Specification

WS-Security
Specification

WS-Reliable Messaging
Specification

WS-Transaction

WS-Coordination

Web Service Business Process
Execution Language

(WS-BPEL)

Web Service Choreography Definition
Language

(WS-CDL)

Figure 2.1
Web service protocol stack.

Service-Oriented Architecture and Web Services 19

period and the web service high-level protocol developing period. The first period

completed the foundation protocols, such as SOAP [2], Web Service Description Language

(WSDL) [3], and Universal Description, Discovery and Integration (UDDI) [4]. In this

period, the majority of the research in technology was about service developing, testing,

calling, and other basic problems. The second period completed the high-level protocols,

such as Business Process Execution Language (BPEL) [5], Web Service Choreography

Language (WS-CDL) [6], and Web Service Choreography Interface (WSCI) [7]. The

technologies were about service interaction and cooperation. Now we are in the second

period, and the service composition, service process management, service interaction, and

service adoption are the hot topics. The concept of web service totally satisfies the

definitions in service-oriented computing (SOC) and service-oriented architecture (SOA).

Web service technology is thought to be the best for supporting SOC and SOA.

2.1.2 Basic Standards of Web Services

With the development of standards and protocols, web service computing has stepped into

the mature period. The basic standards include SOAP, WSDL, and UDDI.

2.1.2.1 Simple Object Access Protocol

SOAP is a light protocol used in the distribution environment to exchange information,

which was published by W3C in 1999. SOAP 1.0 is based totally on the HTTP protocol,

while SOAP 1.1 published in May 2000 supports several different transport protocols. The

latest version is SOAP 1.2, which was published in July 2001 by W3C.

SOAP is a no-state single-direction message exchange protocol, containing the following

four aspects:

1. Defining a format used for single-direction message exchange, it describes how to orga-

nize the information into an XML document.

2. Describing how to transfer the SOAP message, it uses many different carriers, such as

the web (using HTTP protocol) and e-mail (using simple mail transfer protocol).

3. Defining a group of rules compiled within the process of an operating SOAP message

and the classification of related entities; it can assign a particular receiver and can

handle strategies when the messages cannot be parsed.

4. Defining a group contract about Remote Procedure Call Protocol (RPC) calling and

SOAP message exchanging, it solves the problem about how to encapsulate the RPC

calling into the SOAP message, re-encapsulate the SOAP message to RPC, calling back

to the server and returning the final result in the same strategy to the client.

The main design purpose is simple and extendable. To implement these two destinations, the

core message framework of SOAP does not include some of the normal features found in

other distribute systems, e.g., reliability, security, and Message Exchange Patterns (MEPs).

20 Chapter 2

A SOAP message consists of a SOAP envelope, encoding rules, RPC representation, and a

SOAP binding.

1. SOAP envelope: SOAP protocol is based on message exchange. Each message can be

thought of as an envelope with some data information inside. A SOAP envelope con-

tains two parts, the header and the body. Each part can also be divided into low levels.

The header is optional, while the body is necessary. In most situations, some informa-

tion that is not related to an application, such as cooperation information, signal, and a

security certificate, is put in the head. We can also assign the particular operator and

detailed operation. A SOAP message body contains the data related to the application.

The errors that happen in message parsing are also reported in the message body.

2. SOAP encoding rules: The rules define a data coding mechanism to declare the data

type used in the application. It follows the XML structure and data-type definition,

including simple types (e.g., integer and string) and some complex types (e.g., structure

and array).

3. SOAP RPC representation: It defines how to express the calling and replying of the

remote process. In most situations, a SOAP RPC contains following information:

a. The node address of the SOAP destination

b. The name of the called method

c. The parameters and returned information

d. The web resource identification of the real destination of the RPC calling

e. Message exchanging pattern

f. The information included in the SOAP head (optional).

4. SOAP binding: It defines which low-level transmission protocol is used to imply the

SOAP message exchange.

The following is an example using SOAP to represent a notification message:

<env:Envelope xmlns:env=http://www.w3.org/2003/05/soap-envelope>
<env:Header>

<n:notification xmlns:n="http://www.jtang.org/notification">
<n:priority>1</n:priority>
<n:expires>2008-12-11T15:30:00</n:expires>

</n:notification>
</env:Header>
<env:Body>

<m:meetingnotify xmlns:m="http://www.jtang.org/meetingnotify">
<m:msg>We have a meeting at 4pm.</m:msg>

</m:meetingnotify>
</env:Body>
</env:Envelope>

This message is used to express a simple meeting notification. The SOAP head

describes the priority and expiration time of this message. The SOAP body describes the

Service-Oriented Architecture and Web Services 21

detailed message content, which is to notify each participant that the meeting will be held

at 4 pm.

There are four request methods in an HTTP protocol: GET, POST, DELETE, and PUT.

SOAP can use the first two methods. When using the GET method, the request from the

client is not a SOAP message, but the server returns a SOAP message. When using a

POST method, both the request and response are a SOAP message. For a SOAP message

using HTTP, the Multi-Purpose Internet Mail Extensions (MIME) type of the HTTP head

should be set as text/xml to indicate that this HTTP content is an XML document.

The following is an example of an HTTP response message:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<env:Envelope xmlns:env=http://www.w3.org/2003/05/soap-envelope>
<env:Body>

<m:meetingresponse xmlns:m="http://www.jtang.org/meetingresonse">
<m:delay>20</m:delay>
<m:persion>Joe</m:person>
</m:meetingresponse>

</env:Body>
</env:Envelope>

This message is a response for the meeting notification, expressing that the participant Joe

will be late by 20 min.

2.1.2.2 Web Service Description Language

WSDL is language used to describe web service and explain how to communicate with the

web service. It was introduced in common by Ariba, Intel, and Microsoft. WSDL 2.0, the

latest version, has been promoted as a recommended standard by W3C.

WSDL describes a web service from two different levels, abstract level and concrete level.

In the abstract level, WSDL describes a web service by describing sending/receiving

messages. The messages are described by an XML schema. The operation composites the

messages by a message exchange pattern. The message exchange pattern points out the

sequence of send/receive messages and the send and receive logic. The interface organizes

the operation independently with protocol and formats.

In a concrete level, the binding points out the protocol and formats for the interface. The

endpoint associates the network address with the binding. The service organizes the

endpoints related to the same interface.

22 Chapter 2

AWSDL 2.0 document contains the following elements:

• Type: <types> element defines the data type used in the web service. To keep the stan-

dard independent with the platform, the XML schema grammar is used to define the

data type and data structure.

• Message: The message reference component includes the message reference, direction,

and message. The message reference points out the message pattern. The message data

is defined by <types>. When using a SOAP binding, a WSDL document element is

corresponding to the body of a SOAP message, and this process is automatic.

• Operation: <operation> defines the set of messages. The message exchange pattern de-

termines the order of the message process. The optional message exchange patterns

include: IN-ONLY, ROBUST IN ONLY, IN-OUT, IN-MULTI-OUT, OUT-ONLY,

ROBUST OUT-ONLY, OUT-IN, ASYNCHRONOUS OUT-IN, and OUT-MULTI-IN.

• Interface: <interface> is the abstract description of the web service, which contains

neither the detailed address nor the transmission protocol. The interface, which is an in-

heritance, can reuse the operations of the existing interfaces. It replaces the

<portType> in WSDL 1.1.

• Binding: <binding> element describes the detailed message format and transmission

protocol. The binding is either general or used for a particular interface. It is possible to

define a binding for the interface or a detailed operation in the interface. WSDL 2.0

defined the binding for HTTP, SOAP, and MIME.

• Endpoint: <endpoint> element associates the network address with a detailed binding.

It replaces <port> in WSDL 1.1.

• Service: <service> element groups the endpoint related to a particular interface.

The relation between elements is shown in Figure 2.2. The following is an example of a

WSDL segment of a web service:

<interface name="PriceInterface">

<operation name="getPrice" pattern="http://www.w3.org/ns/wsdl/in-out">
<input messageLabel="getPriceRequest" element="tns:request"/>
<output messageLabel="getPriceResponse" element="tns:response"/>

</operation>
</interface>

<binding name="PriceInterfaceHttpBinding" interface="tns:PriceInterface"

type="http://www.w3.org/ns/wsdl/http">
</binding>
<service name="PriceService" interface="tns:PriceInterface">

<endpoint name="PriceServiceHttpEndpoint" Binding="tns:PriceInterfaceHttpBinding"

Address="http://www.jtang.org/price/">
</service>

Service-Oriented Architecture and Web Services 23

In this example, interface “PriceInterface” is defined. It contains an operation “getPrice.”

“getPrice” owns an input message named “getPriceRequest” and an output message named

“getPriceResponse.” The message exchange pattern is IN-OUT. “PriceInterface” is bound

on “PriceInterfaceHttpBinding.” Endpoint “PriceServiceHttpEndpoint” associates

“PriceInterfaceHttpBinding” with the service address http://www.jtang.org/price.

2.1.2.3 Universal Description, Discovery and Integration

For a web service provider, it does not make sense if a service cannot be easily found and

used by the user. UDDI standard provides an agency for building the bridge between

service providers and service users to make it easy to find and discover the web service.

UDDI was created by 33 companies, including Ariba, IBM, and Microsoft, and the latest

version is UDDI 3.0.2.

UDDI standard aims in providing an implication of foundation architecture, including

service providers (companies and organizations) releasing service in this platform

and service users searching and getting complete information about the services.

UDDI is built on a series of existing standards, including HTTP, XML, XML Schema, and

SOAP.

Figure 2.2
The Web Service Description Language document elements.

24 Chapter 2

The core component of UDDI is the UDDI business registration. It uses an XML

document to describe the company and its web services. The UDDI registering center has

four main data types. Figure 2.3 presents the relationship between these data types.

Based on the abovementioned data types, UDDI has the ability to describe companies and

services. Generally, the registration information can be divided into three classes:

• White page information: the basic company information including company name,

description of business scope, contact information, and contactors.

• Yellow page information: the classification information based on UNSPSC (universal

standard products and services classification) or ISO 3166 state codes.

• Green page information: the technology information about how to use a web service,

including how to refer to the WSDL description file and other technical standards. The

information is not stored in the UDDI registration center.

Generally, a business entity has stored the white and yellow page information. Each

business entity has a unique identification code, businessKey, which is pointed to when the

business entity was created in the UDDI registration center. A business Key is a point to a

particular business entity, and this index relationship is available in the context of the

registration center. As shown in Figure 2.3, a business entity can own many business

services. UDDI permits a service register to belong to other service providers.

A business service represents a web service or a group of related web services (these web

services should be provided by the same business entity). A business service contains

many binding templates.

Figure 2.3
Universal Description, Discovery and Interface data types relationship.

• Business entity: the companies and organizations providing services.

• Business service: the service list.

• Binding template: tech-information describing particular service.

• tModel: used to store the reuse elements, including web service type and protocols.

Service-Oriented Architecture and Web Services 25

The binding template is used to bind the description of the web service in a logic level to

the concrete solution. A business service can have many binding templates.

The binding template describes the concrete implementation of the web service, including

the web service network address and technologies. It also contains a group of tModels.

The tModel is a general container to express information, which can envelope technical

information within it, such as interface implementations.

Figure 2.4 presents the detailed role and its interaction with other models of UDDI in the

web service architecture. UDDI uses HTTP protocol and SOAP protocol to communicate

with the service requester and service provider. At first, the service provider should create

a business entity representing itself and provide some basic information. Then, the service

provider releases and registers its service in the UDDI service registration center. This

service description should be placed so it belongs to the provider’s business entity. When a

service requester uses UDDI searching, it is using this service description that helps to

understand how to locate and call this service. So far, UDDI has finished its work. With

the help of UDDI, a binding relationship is built between the service provider and the

service requester. After that, the service requester can begin calling information from the

description.

2.1.3 Web Services Security

More and more companies are beginning to use web service to provide functions through

their network to their customers and partners. This is because the message exchanged

when calling a service usually contains some business data, and it is secure. Therefore, the

message should not be illegally cut out or modified in the process of network transmission.

Figure 2.4
Universal Description, Discovery and Interface (UDDI) working diagram.

26 Chapter 2

OASIS organizes a series of standards, including WS-Security [8], WS-Policy [9],

WS-Trust [10], etc. These standards construct a web service security protocol clan to solve

the problem of service security.

2.1.3.1 WS-Security

WS-Security, an extension on the SOAP protocol, aims at adding a security token in the

SOAP head to strengthen the message integrity and security [8]. This standard helps to

ensure the security of the message source and the integrity of the message. Besides, it can

ensure that the security message will not be cut out of the third party. WS-Security, which

is quite flexible, can be used in SOAP 1.1 and SOAP 1.2. It supports many security tokens

and encryption techniques.

The structure of a SOAP message head with WS-Security is shown as follows:

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope>
<soapenv:Header>

..

<wsse:Security>
..

</wsse:Security>
..

</soapenv:Header>
<soapenv:Body>

..

<xenc:EncryptedData>
..

</xenc:EncryptedData >
..

</soapenv:Body>
</soapenv:Envelope>

• <soapenv:Envelope>: the start and end signal of a SOAP message.

• <wsse:Security>: contains three parts, the security token for identification, the signa-

ture information, and key information.

WS-Security standards define four optional types for a security token: user/password,

binary, XML, and token reference. The simplest way is to use the user/password token. In

WS-Security, <UsernameToken> is used to verify the user name and password.

<wsse:UsernameToken>
<wsse:Username>JTang</wsse:Username>
<wsse:Password>mY5ecRet</wsse:Password>
</wsse:UsernameToken>

In message integrity, WS-Security ensures that the message will only be modified by using

the XML signature and the security token. This mechanism supports many kinds of

Service-Oriented Architecture and Web Services 27

signatures and even the extensions to more signatures. Besides, the signature can also

prove the availability of the token.

In security, WS-Security uses XML encryption and a security token to ensure its safety.

2.1.3.2 WS-Policy

WS-Policy describes how to extend the WSDL language to create a policy that describes

the needs, preference, and performance. This standard contains a policy assertion, policy

alternative, and policy.

• Policy assertion is the atomic unit of the policy, which defines a behavior describing the

need, function, and other properties of the policy.

• Policy alternative is a set (can be empty) consisting of policy assertions. It can contain

0, 1, or more policy assertions.

• Policy is a set consisting of policy alternatives. It can contain 0, 1, or more policy

alternatives.

The policy based on XML in WS-Policy has the following structure:

<wsp:Policy.>
<wsp:ExactlyOne>

<wsp:All>
.

</wsp:All>
<wsp:All>
.

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Policy assertion is included in the policy operators (wsp:Policy, wsp:ExactlyOne, wsp:All).

The following example describes a policy expression:

<wsp:Policy xmlns:sp=http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

xmlns:wsp="http://www.w3.org/ns/ws-policy">
<wsp:ExactlyOne>
<wsp:All>
<sp:SignedParts>
<sp:Body/>

</sp:SignedParts>
</wsp:All>
<wsp:All>
<sp:EncryptedParts>
<sp:Body/>

</sp:EncryptedParts>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

28 Chapter 2

2.1.3.3 WS-Trust

WS-Trust is a web service security standard used for handling role and token

identification. This standard is based on the security message exchange of WS-Security

and extends the token exchange to implement the password and the digital token of

different trusty domains.

WS-Trust defines a web service security model, in which the service can ask for a

security token from the service requester to prove that the requester satisfies the conditions

(safety, priority) set by the service provider. This security token can be described by a

WS-Policy or WS-Policy attachment. If the requester cannot provide this security token,

the service can ignore or reject this request. The following is an example of a request of

X.509 v3:

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:soapenv="." xmlns:wsse="." xmlns:wsu=".">

<soapenv:Header>
<wsse:Security>
<wsse:UsernameToken wsu:Id="x509cert">
<wsse:Username>JTang</wsse:Username>
<wsse:Password>mY5ecRet</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>
<soapenv:Body>
<wsse:RequestSecurityToken>
<wsse:TokenType>wsse:X509v3</wsse:TokenType>
<wsse:RequestType>wsse:ReqIssue</wsse:RequestType>
<wsse:Base>
<wsse:Reference URI="# x509cert"/>

</wsse:Base>
</wsse:RequestSecurityToken>

</soapenv:Body>
</soapenv:Envelope>

If the request is a success, the following SOAP message should be returned:

<soapenv:Body>
<wsse:RequestSecurityTokenResponse>
<wsse:RequestedSecurityToken>
<wsse:BinarySecurityToken
ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">

</wsse:BinarySecurityToken>
</wsse:RequestedSecurityToken>

</wsse: RequestSecurityTokenResponse>
</soapenv:Body>

Service-Oriented Architecture and Web Services 29

2.1.4 Web Services Transaction

A reliable web service transaction [11] ensures that the many different web services

cooperate together and complete the function. Therefore, it is the main foundation of the

distribution system based on the web service. WS-Transactions are proposed by BEA,

IBM, and Microsoft. The earliest version, proposed in August 2002, consisted of three

basic standards: WS-Coordination [12], WS-AtomicTransaction [13], and

WS-BusinessActivity [14].

2.1.4.1 WS-Coordination

WS-Coordination provides a coordinate framework of web services in a distribute system.

A remarkable feature of this framework is its openness and expandability.

In this framework, the coordination protocol, coordination protocol service, and

coordination service are the three most important concepts. The coordination protocol is a

process of message exchange between the service requester and the coordinator. The

coordination protocol service builds the coordination service and coordinates the message.

The coordination service contains activate service, registration service, and some

coordination protocol services. The following is an example of an activate service:

<wscoor:CreateCoordinationContextResponse>
<CoordinationContext>
<Identifier>

http://www.jtang.org/transactions/context1211
</Identifier>
<CoordinationType>
http://docs.oasis-open.org/ws-tx/wast/2006/06
</CoordinationType>

<RegistrationService>
<wsa:Address>
http://www.jtang.org/transactions/registration
<wsa:Address>
</RegistrationService>
</CoordinationContext >

</wscoor:CreateCoordinationContextResponse>

The activate service contains: <CoordinationType> element, which points out the type of

coordination of the service requester.

2.1.4.2 WS-AtomicTransaction

WS-AtomicTransction defines the atomic service coordinate type. This standard defines

two coordinate protocols, completion protocol and two-phase commit (2 PC) protocol. The

former is used to submit or re-roll the transaction. The latter defines how to commit when

two or more participants exist.

30 Chapter 2

2.1.4.3 WS-BusinessActivity

WS-BusinessActivity defines the function coordinate protocol type. It is used with the

WS-Coordination standard. This standard defines two coordinate protocols:

BusinessAgreementWithParicipantCompletion and Business

AgreementWithCoordinatorCompletion. These two coordinate protocols support long-time

processes. The participants using the former should know when to complete all the tasks,

while the participants using the latter rely on the coordinator to tell them when to start.

2.1.5 Semantic Web Services

Since the standard web service lacks semantic information, the function of the service

cannot be clearly described. It impacts service selection, discovery, and composition. A

semantic web service is used to solve the challenges from these problems. It is a

combination of web service and semantic web [15].

Semantic web is the concept proposed by Tim Berners Lee and James Hendler in 1998. It

is defined as the extension of the existing web helping process interacting between humans

and machines [16]. These important works include Web Ontology Language for Service

(OWL-S) [17], WSMO/WSML (Web Service Modeling Ontology) [18], SWSO/SWSL

[19], and WSDL-S [20].

2.1.5.1 OWL-S

The predecessor of OWL-S is DARPA agent markup language for services (DAML-S),

which is a service ontology based on OWL. It is the most influential work on semantic

service. OWL-S divides the ontology into three levels: service profile, service model, and

service grounding.

• Service profile is used to describe the basic service information, including information

about the service provider and service function.

• Service model describes the inner process of the service. It describes both the atomic

process and composite process. In addition, it includes an abstract process that can be

executed by binding to the concrete process.

• Service grounding describes the service calling details, including protocol, message

format, and address.

2.1.5.2 Web Service Modeling Ontology

WSMO is a service ontology based on WSMF (Web Service Modeling Framework)

through a European Semantic Systems initiative. WSML is a language describing WSMO.

WSMO/WSML describes the web service from four aspects: ontology, web service, goal,

and mediator.

Service-Oriented Architecture and Web Services 31

• Ontology provides the concepts used for description including relation, function, and

theorem.

• Web service is the functional part.

• Goal describes the nonfunctional request from the user.

• Mediator, the core element of WSMO, is used to solve the problem of incompatibility.

There are four kinds of mediators: GG mediator, OO mediator, WG mediator, and WW

mediator.

2.1.5.3 Semantic Web Service Ontology

Semantic Web Service Ontology (SWSO)/SWSL is a web service ontology description

language proposed by the Semantic Web Initiative based on OWL-S and WSMO/WSML.

• SWSL includes two sublanguages, SWSL-FOL and SWSL-Rules. The former, based on

first-order logic, proposes the ability to operate with other process model and service

ontology. The latter is a language based on rules. These two languages are both hierar-

chical languages.

• SWSO provides a group of concept models describing the web service. It has two web

ontologies: FLOWS (First-Order Logic Ontology for Web Service) and ROWS (Rules

Ontology for Web Service).

2.1.5.4 WSDL-S

WSDL-S is an ontology-based Web Service Description Language proposed by the

University of Georgia and IBM. It extends the WSDL service model and adds semantic

information in the operation, interface, and message. Differing from OWL-S, WSMO/

WSML, and SWSO/SWSL, WSDL-S is independent from the ontology language. Both

OWL and Unified Modeling Language (UML) can be used in WSDL-S.

2.2 Service-Oriented Architecture
2.2.1 Overview of SOA

Since SOA was proposed by Gartner Inc. in the 1990s, it has been in development for

nearly 20 years. The detailed explanation of the latest version of SOA can be found in

[21]. This section presents a brief introduction on SOA.

The concept of SOA is also in the process of changing and developing. Although there is

not a widely acceptable definition for SOA, generally it is defined as a component model

facing service. It associates the application units by well-defined interfaces and protocols.

Basically, SOA is a business-IT-aligned approach in which applications rely on available

services to facilitate business processes. A service is a self-contained reusable software

32 Chapter 2

component provided by a service provider and consumed by service requestors.

SOA creates a vision of IT flexibility that enables business agility. Implementing an

SOA mainly involves componentizing the enterprise and/or developing applications that

use services, making applications available as services for other applications to use, etc.

2.2.2 Model of SOA

Although the implementation of SOA is closely related to a user request, the

implementations are all referred to some basic rules. This section mainly discusses the

Reference Model for Service-Oriented Architecture 1.0 proposed by OASIS.

The referenced model is an abstract model that helps understand the relationship between

the entities in a particular environment. It provides a unified standard and explanation. A

referenced model usually contains the unified concepts, theorems, and relationships. It

does not rely on particular techniques, implementations, and details.

A Reference Model for Service-Oriented Architecture provides the high-level elements

being adopted for all SOA implementations. Figure 2.5 presents the relationship with the

SOA referenced model and other distribute systems.

Abstract

Requirements

Motivation

Goals

Input

accounts for

accounts for

Reference
 model

Service-oriented architecture implementations

Reference
architectures

Concrete
architectures

guided by

Patterns

Architecture work

constrained
by

Related models

derived

considers

use

Protocols

Profiles

Specifications

Standards

Related work

Concrete

Figure 2.5
Service-oriented architecture referenced model [21].

Service-Oriented Architecture and Web Services 33

There are seven basic elements (service, visibility, service description, interaction, real-

world effect, contract and policy, and execution context) of a SOA referenced model, and

these elements will be discussed in detail in the following sections.

2.2.2.1 Service

Service is a mechanism ensuring that the service requester can access the functions

provided by the service provider. It hides the detailed implementation of the functions and

provides some needed information for the requestor.

2.2.2.2 Visibility

SOA most ensure that the service provider is visible to the service requestor and vice

versa. The elements of the visible node and interactive node are as follows:

• Sensible: Each service participants should be aware of the existence of others.

• Willing: A participant can reject all the operations once it is willing to in this process.

• Accessible: The participants can communicate with each other.

2.2.2.3 Service description

An important feature of SOA is containing lots of descriptive documents, including the

following:

• whether the service existed and is accessible,

• whether the service provides a particular function,

• what are constraints and policy of the service on which it operates,

• whether the service is suitable for the requestor,

• how to communicate with the service.

2.2.2.4 Interaction

There are two steps of interaction between services: sending and receiving the message.

The interaction of services uses the behavior model and information model from both

semantic and structure perspectives.

2.2.2.5 Real-world effects

The destination of a user request is to get some result, which is called the real-world

effects. It can be the returned message or changed share state.

2.2.2.6 Contract and policy

Policy contains the service constraints, conditions, and ownership. It is a measurable

assertion and is used for managing requests and expectations.

34 Chapter 2

2.2.2.7 Execution context

Service context contains some basic foundation elements, process entities, policy assertion,

and protocols. It is a path connecting the service requestor and service provider.

Service context does not belong to any part of the service, and it only cares about the

procedure of interactive.

2.3 Service Component Architecture

Currently, the development of SOA has stepped into the standard phase. Service

component architecture (SCA) [22] is being proposed by IBM, Oracle, IONA, and SAP to

help refer to the implementation of SOA.

2.3.1 Concepts of SCA

SCA defines a simple service-based design model for constructing an SOA system. The

main idea of SCA is composing a series of services to satisfy the new request. SCA

provides a high-level entensive, and independent programming language model. It supports

Java, Cþþ, BPEL, and PHP. Both Java Message Service (JMS) and Enterprise JavaBeans

(EJB) are supported as the bottom interactive mechanism. In constructing a SOA system,

the different size of the service granularity is one of the most difficult problems being

considered. However, in SCA, different granularity services can be defined by a recursive

definition, which provides a good situation for SOA. On the other hand, SCA allows for a

different binding (Web Service, JMS, and EJB) in solving the problem of service

communications in distribute systems.

2.3.2 Model of SCA

The SCA assembly model consists of a series of composites and defines a profit for the

SCA domain. The composites include component, service, reference, properties, and

wiring. Among them, composite is the atomic unit of the SCA application, which consists

of an implementation of a profit. Service is the way of using this function. Reference

describes the relay relationship between an implementation with the other service.

Property is the data in operation. Wiring describes the relationship between all these

elements.

An SCA composite, as shown in Figure 2.6 [23], is a set containing components, service,

reference, and their wires. A special property setting is also a part of the SCA composite.

The SCA composite consists of 0 or more properties, services, components, references,

and wires.

Service-Oriented Architecture and Web Services 35

2.3.2.1 Property

A property has a type, which can be a simple type or a complex one. A property defined

in a composite adopts the following format:

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.000

name="xs:QCName".>
.

<property name="xs:NCName" (type="xs:QName" j element="xs:QName")
many="xs:boolean"? mustSupply="xs:boolean"?>*
default-property-value?

</property>
.

</composite>

2.3.2.2 Reference

The reference is expressed under the composite element. A composite can have 0 or more

reference elements. The following code segment presents the definition of the reference

elements:

<?xml version="1.0" encoding="ASCII"?>
<!--Reference schema snippet-->

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="xs:anyURI"
name="xs:NCName" local="xs:boolean"? autowire="xs:boolean"?
constrainingType="QName"?
requires="list of xs:QName"? policySets="list of xs:QName"?>

.

<reference name="xs:NCName" target="list of xs:anyURI"?
promote="list of xs:anyURI" wiredByImpl="xs:boolean"?

Component
A

Component
B

Composite A

Promote PromoteWire

Binding

Service Reference

Binding

ReferenceService

Property
se ng

Proper es

Figure 2.6
Service component architecture composites [23].

36 Chapter 2

multiplicity="0..1 or 1..1 or 0..n or 1..n"?
requires="list of xs:QName"? policySets="list of xs:QName"?>*

<interface/>?
<binding uri="xs:anyURI"? name="xs:QName"?

requires="list of xs:QName" policySets="list of xs:QName"?/>*
<callback>?

<binding uri="xs:anyURI"? name="xs:QName"?
requires="list of xs:QName"?
policySets="list of xs:QName"?/>+

</callback>
</reference>

.

</composite>

2.3.2.3 Service

A composite can have 0 or more service elements. The following code segment presents

the definition of a service element in its composite description file:

<?xml version="1.0" encoding="ASCII"?>
<!--Servicee schema snippet-->

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="xs:anyURI"
name="xs:NCName" local="xs:boolean"? autowire="xs:boolean"?
constrainingType="QName"?
requires="list of xs:QName"? policySets="list of xs:QName"?>

.

<service name="xs:NCName" promote="xs:anyURI"
requires="list of xs:QName"? policySets="list of xs:QName"?>*
<interface/>?
<binding uri="xs:anyURI"? name="xs:QName"?

requires="list of xs:QName" policySets="list of xs:QName"?/>*
<callback>?

<binding uri="xs:anyURI"? name="xs:QName"?
requires="list of xs:QName"?
policySets="list of xs:QName"?/>+

</callback>
</service>
.

</composite>

2.3.2.4 Wire

The way of defining a wire is to set a composite reference by the target property. When

the multiplicity is 0..n or 1..n, multiple services can be defined as targets. The following

code segment presents the wire definition in a composite description file:

<?xml version="1.0" encoding="ASCII"?>
<!--Wires schema snippet-->

Service-Oriented Architecture and Web Services 37

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="xs:anyURI"
name="xs:NCName" local="xs:boolean"? autowire="xs:boolean"?
constrainingType="QName"?
requires="list of xs:QName"? policySets="list of xs:QName"?>

.

<wire source="xs:anyURI" target="xs:anyURI"/>*
</composite>

2.3.3 Strategy Framework

Strategy framework defines the ability and constraints used in a service composite and the

interaction between composites. The strategies can be divided into two classes: interactive

strategy and implementation strategy. In SCA, the service and reference can both use some

strategies, the interactive strategies, which affect the way of the interaction. The composite

can use other strategies, the implementation strategies, which affect the way the composite

is able to execute in the container.

In SCA, the strategies are collected in a strategy set. A strategy contains one or more

strategies that are able to exist by a concrete type, such as a WS-Policy. Each strategy

points to a concrete binding type and concrete implementation type.

2.4 Service Data Objects

As we know, the data in different program languages have different formats. To be able to

use the data conveniently in the SOA environment, a service data object (SDO) [24] is

proposed.

2.4.1 Concepts of Service Data Object

SDO is the standard addressing data programming architecture and application

programming interface. It supports many programming languages, including Java, Cþþ,

COBOL, and C. SDO simplifies programming by the following methods: (1) using data

source type to unify programming; (2) supporting a general application pattern; and (3)

using tools and frameworks for helping data query, exploration, binding, updating, and

searching.

An SDO framework contains three important concepts: data object, data graph, and data

access service. A data object contains a series of properties, each of which includes a

simple value or a reference to another data object. A data graph is the envelope of the data

object. It is the standard transmission unit. A data graph can be used to trace the change of

data (including data inserting, deleting, and changing of property). In general, a data graph

can be constructed by a data source (e.g., XML document, EJB, database) and service

38 Chapter 2

(web service, JMS message). A data access service is the component constructing the data

graph by its original data and restoring the data graph back to its original data.

2.4.2 Framework of Service Data Object

In an SDO framework, the data object represents the more general format of the data. A

data graph uses graphs to describe the relationship between data objects, such as those

shown in Figure 2.7. The user can get access to a data graph by a data access service,

which usually adopts a distribute architecture as shown in Figure 2.8. A typical data

accessing procedure includes the following steps:

Purchase order

Id=423

Customer

Name= wayne”

LineItem

qty=“abc”

LineItem

qty=“abc”

Figure 2.7
Data graph and data object.

1. User sends the request to a data access service.
2. Data access service starts a transaction, gets data from the data persistence, creates a data

graph, and terminates the transaction.
3. Data access service sends the data graph to the user.
4. User operates the data graph.
5. User informs the data access service to change data.
6. Data access service starts a new transaction, writes the new data to the data persistence, and

terminates the transaction.

Figure 2.8
Distribute data architecture [24].

Service-Oriented Architecture and Web Services 39

2.5 Open-Source Platforms for SOA

SCA is a complete standard system based on the idea of SOA. There are many developing

tools supporting SCA. The open-source tool includes Apache Tuscany, Eclipse STP,

PECL, SOA for PHP, CodeCauldron Newton, etc. The business tool includes IBM WPS/

WAS, AquaLogic Data Services Platform, TIBCO ActiveMatrix, Rogue Wave HydraSCA,

Covansys SCA Framework for SOA, Infinitflow DSF, etc.

2.5.1 Apache Tuscany

Apache Tuscany [25] provides an SOA and the infrastructure for easily developing and

running applications using a service-oriented approach. This lightweight runtime is

designed to be embedded in, or provisioned to, a number of different host environments.

Apache Tuscany implements the SCA, which defines a flexible, service-based model for

construction, assembly, and deployment of a network of services (existing and new ones).

With SCA as its foundation, Tuscany reduces the cost of developing SOA-based solutions,

because it pushes handling of protocol out of the application business logic into pluggable

bindings. As a result, protocols can be changed only one time, with minimal configuration

changes. Tuscany also removes the need for applications to deal with infrastructure

concerns such as security and transaction and handles this declaratively. This enables SOA

solutions to be flexible and adaptable to change with minimal configuration changes.

Tuscany provides support for SCA 1.0 specification in Java. It also provides a wide range

of bindings (web services, web20 bindings, etc.), implementation types (Spring, BPEL,

Java, etc.), as well as integration with technologies such as web2.0 and OSGi. Tuscany is

working on implementing SCA 1.1 that is being standardized at OASIS.

Apache Tuscany also implements SDOs, which provides a uniform interface for handling

different forms of data, including XML documents that can exist in a network of services,

and provides the mechanism for tracking changes. Tuscany supports the SCO and the SDO

(2.01 for Cþþ/2.1 for Java) specifications.

2.5.2 Eclipse SOA Tools Project

SOATools Project (STP) [26] is a project of Eclipse. The goal of this proposed project is

to put the fundamentals in place, so that an extensible tool set made of components and

exemplary tools for constructing SOA applications can be created. STP will leverage the

existing work of the other projects such as Data Tools and Web Tools Platform projects.

A developer using the proposed STP is interested in an environment that is easy to

usedone in which the challenges of application development are due to the problem

40 Chapter 2

domain, not the complexity of the tools used. To this end, the developer will strive to

create a highly usable and consistent environment that works well with associated

technologies, whether being used by a developer working/creating a service, an

administrator maintaining or monitoring a production system, or someone constructing a

larger SOA network. Such an environment starts with key frameworks designed both for

use and extensibility. Examples include the location or creation of a service consumer or

provider, the consumption of these services, the configuration of the physical attributes

(transport, message format), and the policies required to access or consume the like

(security policy, access control, transactional, availability). Further, the ability to locate

and add services to the SOA interactions like transformation, routing, for process

orchestration to a broker, or endpoint needs to be addressed.

Finally, there is a need for the creation of artifacts that can be used to deploy, enforce, or

manage in an extensible way.

The proposed project will try not to attempt to define every type of service in a SOA, but

to define the contracts to unify them into an SOA through an extensible framework. Then

we can model the policies and interactions with an abstraction so that multiple specific

vendor implementations can be supported from the vendor independent models of WSDL

and other web service standards.

2.6 Summary

Web service, as the supporting technology in service computing, is widely used in many

domains. This section introduces the basic concept of web service, developing procedures,

and standards. Then the basic concept of SOA and its basic elements proposed by OASIS

are discussed. At the same time, SCA and SDO are also introduced as the important

supporting systems in SOA. Finally, two open-source platforms for SOA are discussed.

References

[1] H. Haas, A. Brown, Web Services Glossary, W3C Working Group Note, February 11, 2004.
[2] SOAP, http://www.w3.org/TR/soap.
[3] WSDL, http://www.w3.org/TR/wsdl20.
[4] UDDI, http://www.uddi.org/pubs/uddi_v3.htm.
[5] BPEL, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev¼wsbpel.
[6] WS-CDL, http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/.
[7] WSCI, http://www.w3.org/TR/wsci/.
[8] WS-Security, http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessage

Security.pdf.
[9] WS-Policy, http://www.w3.org/TR/ws-policy/.
[10] WS-Trust, http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html.
[11] WS-Transactions, http://www.oasis-open.org/committees/ws-tx.

Service-Oriented Architecture and Web Services 41

[12] WS-Coordination, http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os.pdf.
[13] WS-AtomicTransaction, http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-errata-os.pdf.
[14] WS-BusinessActivity, http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-os.pdf.
[15] S.A. McIlraith, T.C. Son, H. Zeng, Semantic web services, IEEE Intell. Syst. 16 (2) (2001) 46e53.
[16] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sci. Am. 284 (5) (2001) 28e37.
[17] OWL-S, http://www.daml.org/services/owl-s/.
[18] WSMO, http://www.wsmo.org.
[19] SWSL, http://www.daml.org/services/swsl/.
[20] WSDL-S, http://www.w3.org/Submission/WSDL-S/.
[21] SOA, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.
[22] M. Beisiegel, H. Blohm, D. Booz, J. Dubray, A. Colyer, M. Edwards, et al., Service component

architecture: building systems using a service oriented architecture, Whitepaper [online] (2005) 1e31.
[23] SCA, http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.html.
[24] SDO, http://devzone.zend.com/330/introducing-service-data-objects-for-php/.
[25] A. Tuscany, Apache Tuscany SCA Java Architecture Guide.
[26] Eclipse STP, http://wiki.eclipse.org/STP, 2009.

42 Chapter 2

CHAPTER 3

Web Service Quality of Service
and Its Prediction
Chapter Outline
3.1 Introduction 43

3.2 Collaborative Filtering-Based Quality of Service Prediction 45
3.2.1 Neighborhood-Based Collaborative Filtering 45

3.2.1.1 User neighborhood-based collaborative filtering 45

3.2.1.2 Service neighborhood-based collaborative filtering 47

3.2.2 Trust-Based Collaborative Filtering 47

3.3 Matrix Factorization-Based Quality of Service Prediction 53
3.3.1 Basic Matrix Factorization Model 53

3.3.2 Neighborhood-Based Matrix Factorization Model 54

3.3.2.1 User neighborhood-based matrix factorization model 55

3.3.2.2 Service neighborhood-based matrix factorization model 56

3.3.2.3 User and service neighborhood-based matrix factorization model 58

3.3.2.4 Experiments for neighborhood-based matrix factorization models 58

3.3.3 Location-Based Matrix Factorization Model 63

3.3.3.1 Location regularization-based matrix factorization model 64

3.3.3.2 Location ensemble-based matrix factorization model 70

3.4 Summary 76

References 77

3.1 Introduction

With the exponential growth of web services deployed on the Internet, numerous users

enjoy high-quality services to get connected, and this causes the World Wide Web to be

more flourishing. Quality-of-service (QoS) is used to describe the nonfunctional aspects of

web services. At present, companies and organizations place unprecedented demands for

web services, and studies done on QoS have raised concerns of service-oriented computing

researchers.

QoS covers a whole range of techniques that match the needs of service requestors with

those of the service providers based on the network resources available. QoS is referred to

as the nonfunctional properties of web services such as performance, reliability,

availability, and security [1,2].

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00003-5

Copyright © 2015 Elsevier Inc. All rights reserved. 43

A number of QoS-based paradigms have been applied to the area of service selection

[3e5], service discovery [6,7], service recommendations [8,9], service composition

[10,11], service trust [12,13], service routing [14,15], etc. The common hypothesis of the

above research areas is that QoS values for all of the web services are available.

However, this premise is sometimes challenged in various real-world cases for the

following reasons: (1) The web services hierarchy becomes more complex in different

situations. As a result, it is time-consuming for an end user to explore massive QoS

records. (2) Most web services are operated by commercial companies. Gathering QoS

information by execution can be too costly for an end user. (3) The Internet environment

becomes more dynamic yet vulnerable. It turns out that it is impractical and impossible

to collect QoS records all the time. To satisfy the basic requirements from service-

oriented research domains mentioned above, a necessary preprocess is to predict the

missing QoS values.

QoS prediction is critical to many key problems in the web service domain, such as

web service selection [3], discovery [16], composition [10], and recommendations

[17]. Currently, collaborative filtering (CF) is the most widely adopted algorithm to

predict QoS values in the web service community due to its simplicity and maturity.

Shao et al. [18] used the user-based CF algorithm for QoS prediction, which was

modified through a combination of positive and negative correlations. Zheng et al.

[19] proposed a hybrid CF model fusing together user-based and item-based CF

algorithms, in which confidence weights were used to balance the respective weights

of the two models. Although CF-based methods are easy to implement and relatively

effective, they suffer from declining accuracy in that QoS values are sparse and can

hardly be integrated with any other factors in the model, for instance, the geographical

information used in this chapter. The contribution of geographical information to the

improvement of QoS prediction accuracy has recently been studied. Chen et al. [20]

developed a hierarchical clustering algorithm to identify users’ neighbors with a

similar historical web service invocation experience, and then these people were

supposed to be in the same region. This approach is unreasonable because, for

example, although users in Seoul and in Tokyo may have similar QoS values in a

certain period of time, changes of infrastructure in Seoul cannot make any difference

on users’ experiences of web service invocation in Tokyo. Lo et al. [21] took the

influence of users’ neighbors into consideration from the real geographical sense,

which appended a third regularization term at the end of the objective function of

singular value decomposition (SVD)-like matrix factorization (MF) [22]. Since the

main purpose of this kind of usage is to prevent overfitting in the learning process, it

is hard to give a persuasive interpretation from the perspective of neighbors’

contributions to QoS values.

44 Chapter 3

3.2 Collaborative Filtering-Based Quality of Service Prediction

CF techniques are widely used to fulfill this task and are inspired by the idea of user-

collaboration in the era of Web 2.0. The core idea behind this is to identify a set of

similar neighbors and to collect “the wisdom of the crowds.” In this process, the

measurement of similarity becomes vital. Previous CF approaches on QoS prediction

mainly used a Pearson correlation coefficient (PCC) [23] to build up user-similarity

neighborhoods [17,19].

3.2.1 Neighborhood-Based Collaborative Filtering

Two kinds of memory-based CF algorithms have been primarily used, i.e., user-based and

item-based models, both of which use similar users or items sharing similar historical

records [24]. The core process of CF is the similarity calculation between two users or

items, which usually uses a PCC as the similarity measurement.

3.2.1.1 User neighborhood-based collaborative filtering

Given a data set consisting of M service users and N web services, the invocation records

between users and services can be denoted by an M� N matrix, which is called a

usereservice matrix (see Figure 3.1; Table 3.1). An entry in this matrix rmn represents a

record of invocation (QoS values, e.g., response time and availability). Existing work

[9,18,24] about QoS prediction uses PCC to compute the similarity of users or services. In

a user-based CF approach, PCC is used to define the similarity between two users, u1 and

u2, based on the services they have commonly invoked using the following:

jðu1; u2Þ ¼
P

s˛ S

�
ru1;s � ru1

�T�
ru2;s � ru2

�
ffiP

s˛ S

�
ru1;s � ru1

�2q ffiP
s˛ S

�
ru2;s � ru2

�2q (3.1)

in which S ¼ S1XS2 is the set of services that are both invoked by users u1 and u2, ru1,s is

the vector of the QoS values of service s invoked by user u1, and ru1 stands for the vector

of average QoS values of the services invoked by user u1. While using the PCC equation,

Table 3.1: User-service matrix

Service 1 Service 2 Service 3 Service 4

User 1 q11
User 2 q22 q24
User 3
User 4 q41 q44
User 5 q53

Web Service Quality of Service and Its Prediction 45

the similarity between users is in the range of [�1, 1], with a larger value indicating that

u1 and u2 are more similar.

User-based prediction uses the data of similar users to predict the unknown value of target

service s to target user u as follows:

pu ¼ ru þ
P

u1 ˛ SðuÞjðu1; uÞ
�
ru1;s � ru1

�
P

u1 ˛ SðuÞjðu1; uÞ
(3.2)

in which ru is the vector of average QoS values of services invoked by u, S(u) is the set of

u’s similar users, and ru1 is the vector of average QoS values of services invoked by u1.

0 0 100 200 300 400 500 600 700 800 900 1000

0.45

0.4 0.4

0.45

0.5

0.55

0.5

0.55

0.6

0.65

N
M

A
E

N
M

A
E

N
M

A
E

0.7

0.75

0.8

100 200 300 400

(a) (b)

(c)

500
Execution number Execution number

Execution number

600 700 800 900 1000

UPCC
Trust-UPCC

IPCC
Trust-IPCC

0
0.4

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5

100 200 300 400 500 600 700 800 900 1000

UIPCC
Trust-UIPCC

Figure 3.1
Impact of trust model.

46 Chapter 3

3.2.1.2 Service neighborhood-based collaborative filtering

Similarly, the detailed PCC equation for the similarity computation of services is as

follows:

jðs1; s2Þ ¼
P

u˛U

�
ru;s1 � rs1

�T�
ru;s2 � rs2

�
ffiP

u˛U

�
ru;s1 � rs1

�2q ffiP
u˛U

�
ru;s2 � rs2

�2q (3.3)

Further, the analysis of real-world web service QoS values finds that the QoS scale of

different users is quite different. For example, due to the security or gateway being

used, the response time of all services to user A is greater than 3000 ms, whereas that

to user B is less than 200 ms because of a faster network. In such situations, the

similarity between two services is impacted by other irrelevant issues, instead of the

service itself, when using PCC. Considering the differences in the QoS scale between

different users, the A-cosine equation [25] used to compute the similarity between

services is as follows:

jðs1; s2Þ ¼
P

u˛U

�
ru;s1 � ru

�T�
ru;s2 � ru

�
ffiP

u˛U

�
ru;s1 � ru

�2q ffiP
u˛U

�
ru;s2 � ru

�2q (3.4)

in which U ¼ Us1XUs2 is the set of users who both have invoked services s1 and s2. ru,s1
is the vector of QoS values of service s1 invoked by u, and ru is the vector of average QoS

values of services invoked by u. In this A-cosine equation, the impact of different QoS

scales are removed by using ðru;s1 � ruÞ.

3.2.2 Trust-Based Collaborative Filtering

In a user-based CF QoS prediction approach, the unknown QoS value of user ui to service

sj is calculated based on the QoS values of ui’s similar neighbors to sj. Thus, ui’s feedback

to the prediction result is only related to his similar neighbors. Given this scenario,

assuming uj is one of ui’s similar neighbors, some statistical parameters are set to explore

the user feedback, as the following shows (Table 3.2):

A user may not give feedback to every prediction result, C*(ui,uj)�Cþ(ui,uj)þ C�(ui,uj).
As for the definition of user satisfaction, it is flexible and dependent on the scenario and

dataset. Inspired by the Bayes average voting algorithm, our paper [26] proposes a trust-

based CF model, in which a feedback-based trust model is built to evaluate ui’s trust to uj
as the following shows:

T
�
ui; uj

� ¼ Cþ�ui; uj�þ 0:5� C?
�
ui; uj

�þ v

C��ui; uj�þ v
(3.5)

Web Service Quality of Service and Its Prediction 47

That is, C*(ui,uj) is the number of times that ui does not give feedback. Parameter v is

used to solve the cold-start problem, and the value of v is empirically set as five times the

user number. To use the trust model in the process of QoS prediction, the user trust T(ui,uj)

with user similarity Sim(ui,uj) is combined to generate the trust-based similarity, annotated

as ST(ui,uj).

ST
�
ui; uj

� ¼ 2� Sim
�
ui; uj

�� T
�
ui; uj

�
jSim�ui; uj���þ T

�
ui; uj

� (3.6)

Similarly, in a service-based CF QoS prediction approach, the service trust T(si,sj) and the

trust-based similarity ST(ui,uj) can be obtained in the same way.

User-based prediction uses the data of similar users to predict the unknown QoS value of

the target service s to target user u as follows:

UPu;s ¼ ru þ
P

u1 ˛ SðuÞST
�
u1; u

��
ru1;s � ru1

�
P

u1 ˛ SðuÞSTðu1; uÞ
(3.7)

in which ru is the vector of average QoS values of services invoked by u, S(u) is the set of

u’s trust-based similar users, and ru1 is the vector of average QoS values of services

invoked by u1. Service-based prediction is given as follows:

SPu;s ¼ rs þ
P

s1 ˛ SðsÞST
�
s1; s

��
ru;s1 � rs1

�
P

s1 ˛ SðsÞSTðs1; sÞ
(3.8)

in which rs is the vector of average QoS values of s invoked by different users, S(s) is the

set of s’s trust-based similar services, and rs1 is the vector of average QoS values of s1
invoked by different users.

However, due to the sparseness of the user-service matrix, predicting missing values

only using user-based methods or service-based methods will potentially ignore

valuable information that can make the prediction more accurate. To predict the

missing value as accurately as possible, the user-based and service-based methods are

systematically combined to fully use the information of the user-service matrix. Since

Table 3.2: Statistical parameters for user trust model

Parameters Description

C*(ui,uj) The times of QoS prediction
for ui based on uj

Cþ(ui,uj) The times that ui is satisfied
with the result

C�(ui,uj) The times that ui is not satisfied
with the result

48 Chapter 3

these two prediction methods may have difference prediction accuracy, two confidence

weights, conu and cons, are used to balance the two predicted values. conu is defined as

follows:

conu ¼
X

u1 ˛ SðuÞ

STðu1; uÞP
u1 ˛ SðuÞSTðu1; uÞ

� STðu1; uÞ (3.9)

The confidence weight of the service-based prediction cons is defined as follows:

cons ¼
X

s1 ˛ SðsÞ

STðs1; sÞP
s1 ˛ SðsÞSTðs1; sÞ

� STðs1; sÞ (3.10)

The value of the confidence weight is in the range of [0,1], with a larger value indicating

that the corresponding result is more preferable. Because the final prediction result is the

aggregation of two predicted values, a parameter l˛[0,1] is set to determine how it relies

on each individual prediction. When S(u)sB and S(s)sB, the final equation for the QoS

prediction is:

pu;s ¼ wu � UPu;s þ ws � SPu;s (3.11)

in which wu and ws stand for the participation that each predicted result takes in the final

prediction, and wu þ ws ¼ 1. They are computed as follows:

wu ¼ l� conu
l� conu þ ð1� lÞ � cons

ws ¼ ð1� lÞ � cons
l� conu þ ð1� lÞ � cons

(3.12)

The parameter l means that the participation that the user-based prediction result takes is

the final result. If 0< l< 1, the final result is generated from user-based and service-

based approaches. If l¼ 0, the final predicted result is totally generated from the

service-based prediction. Similarly, if l¼ 1, the user-based prediction approach generates

the final result.

These experiments are conducted on a public real-world web service QoS dataset, which

was collected by Zibin Zheng et al. [27]. It contains the records of 1,974,675 web-service

invocations executed by 339 distributed service users on 5825 web services. The record of

each invocation contains two parameters: response time and throughput. More details

about this dataset can be found in [27]. In addition, 150 users and 100 web services are

selected randomly as the experimental data.

The experiments are implemented with JDK1.6 0.0 21, Eclipse 3.6.0, and Mysql 5.0. They

are conducted on a Dell Inspire 13R machine with 2.27 GHz Intel Core I5 CPU and 2GB

RAM, running Windows 7 OS.

Web Service Quality of Service and Its Prediction 49

In the experiments, NMAE is used to evaluate the accuracy of the prediction. Mean

absolute error (MAE) is as follows:

mMAE ¼
P��ru;s � r̂ u;s

��
N

in which ru,s is the predicted QoS value of services observed by user u, r̂ u;s stands for the

expected or real QoS value, and N is the total number of predictions. The QoS value range

may differ so tremendously that the use of only MAE is not objective enough. As an

adjustment, NMAE normalizes the difference range of MAE by computing:

NMAE ¼ MAEP
U;S

ru;s
N

The smaller NMAE, the more accurate will be the QoS prediction.

The following approaches are proposed with the following state-of-the-art prediction

methods:

1. UPCC: It is a user-based CF prediction approach, in which PCC is used to compute the

similarities between users.

2. IPCC: It is a service-based CF prediction approach, in which PCC is used to compute

the similarities between services.

3. UIPCC: This method [19] is a combination of UPCC and IPCC.

4. MF: In this method, MF is used to predict QoS values [22].

5. SVD: This method is proposed by Y. Korean [28] in the area of CF. It captures the

latent structure of the original data distribution.

6. Trust-UPCC: This method is a combination of UPCC and the trust model.

7. Trust-IPCC: This method is a combination of IPCC and the trust model.

8. Trust-UIPCC: This method is a combination of UIPCC and the trust model.

The dataset used is for an experimental set of invocation records between 150 users and

100 web services, a 150� 100 user-service matrix is created, in which each entry in it

is a vector including two QoS values: response time and throughput. During the

experiment, the 150� 100 matrix is divided into two parts, N rows as the training

matrix and the other (150-N) rows as the testing matrix. The users in the testing matrix

are called target users. Then, the training matrix density is thinned randomly to m% to

simulate the situation in which one user in a training matrix has used only m% of all

services. This step is used to make the condition of experiments similar to that of a real

scenario. In addition, the number of invocation records is varied so that target users can

provide, for example, the number of web services that they have invoked, annotated as

g10, g5 in Table 3.3. To minimize error, each experiment is looped 50 times, and the

average value is reported.

50 Chapter 3

Table 3.3: Comparison of prediction accuracy (a smaller value means a better performance)

Density Methods

T[100 T[140

Response Time Throughput Response Time Throughput

g5 g10 g20 g5 g10 g20 g5 g10 g20 g5 g10 g20

10% UPCC 0.747 0.729 0.707 0.722 0668 0.626 0.699 0.657 0.633 0.656 0.620 0.604
IPCC 0.592 0.559 0.529 0.560 0539 0.476 0.541 0.502 0.460 0.526 0.482 0.466
UIPCC 0.548 0.498 0.473 0.532 0.511 0.470 0.492 0.462 0.457 0.515 0.471 0.451
SVD 0.536 0.483 0.454 0.527 0.502 0.456 0.481 0.454 0.439 0.509 0.459 0.443
MF 0.532 0.480 0.456 0521 0.504 0.456 0.483 0.454 0.440 0.510 0.456 0.445

Trust-UPCC 0.565 0.532 0512 0.553 0.541 0.528 0.512 0.502 0.487 0.515 0.497 0.472
Trust-IPCC 0.534 0.483 0.462 0.519 0.502 0.459 0.478 0.451 0.443 0.508 0.461 0.443
Trust-UIPCC 0.511 0.465 0.434 0.504 0.487 0.443 0.461 0.440 0.432 0.490 0.451 0.429

30% UPCC 0.721 0.707 0.680 0.682 0.630 0.595 0.676 0.637 0.625 0.629 0.609 0.567
IPCC 0.557 0.490 0.462 0.518 0.476 0.458 0.518 0.445 0.422 0.498 0.448 0.428
UIPCC 0.485 0.463 0.441 0.509 0.469 0.446 0.471 0.430 0.412 0.483 0.440 0.419
SVD 0.473 0.450 0.428 0.497 0.447 0.432 0.454 0.427 0.401 0.462 0.428 0.403
MF 0.468 0.451 0.430 0.483 0.452 0.430 0.451 0.432 0.408 0.457 0.431 0.405

Trust-UPCC 0.491 0.472 0.448 0.503 0.487 0.454 0.461 0.434 0.413 0.478 0.445 0.419
Trust-IPCC 0.465 0.450 0.428 0.489 0.450 0.428 0.448 0.437 0.410 0.458 0.436 0.408
Trust-UIPCC 0.451 0.432 0.417 0.476 0.441 0.415 0.437 0.412 0.397 0.430 0.409 0.394

W
eb

S
ervice

Q
uality

of
S
ervice

and
Its

P
rediction

5
1

Table 3.3 shows the prediction performance of the above eight approaches on response

time and throughput using 10%, and 30% density of the training matrix, respectively.

For the users in the testing matrix (target users), the number of invoked web services is

varied as 5, 10, and 20 by randomly sampling (named as g5, g10, g20 in Table 3.3). In

addition, the influence of the size of the training matrix is considered, as is varying the

number of training users, i.e., T¼ 100 or 140. Empirically, l¼ 0.1, J¼ 0.25, and

K¼ 10 (the number of similar neighbors in algorithm 1). As for the prediction

approach with a trust model, the execution number of the prediction is set as 500.

Assuming u1 is the target user, u2 is the similar neighbor, Pre(ru1,s) is the predicted

QoS value based on u2 and other similar neighbors, Exp(ru1,s) is the expected QoS

value (ground truth), then the satisfaction definition discussed in Section 3.2 is given as

follows:

jExpðru1; s� Preðrr1; sÞÞj Expðru1; sÞ � 20%

From Table 3.3, it is can be seen that Trust-UIPCC obtains the smallest NMAE values, which

means the highest prediction accuracy in all cases. This demonstrates that the use of a

feedback-based trust model improves the prediction accuracy. Further, if we observe that the

prediction approach with a trust model outperforms the one without a trust model, e.g., Trust-

UPCC outperforms UPCC, Trust-IPCC outperforms IPCC, and Trust-UIPCC outperforms

UIPCC. Comparing the prediction results for cases of T ¼ 100 and 140, the latter’s NMAE

values are smaller, which indicates that the increase of T improves the prediction accuracy.

Similarly, the increase of the density of a training matrix improves prediction accuracy as

well, because higher density means more training data. Furthermore, the increase of the

number of invoked services (g5, g10, and g20) also improves the performance of QoS.

1. Impact of trust model

In this subsection, the impact of the trust model to the performance of the QoS prediction

is evaluated by evaluating the performance comparison between UPCC and Trust-UPCC,

IPCC and Trust-IPCC, and UIPCC and Trust-UIPCC. The comparison results are found in

Figure 3.1(a)e(c), respectively. From Figure 3.1, it is observed that the use of a feedback-

based trust model largely improves the performance of QoS prediction.

In addition, it should be noted that the proposed trust model could be utilized in all types of

CF-based QoS prediction approaches. Further, we found that the benefit brought by the trust

model decreases when the execution number of the QoS prediction is large.

2. Impact of l

When l¼ 0, the weight of user-based prediction is zero, then the predicted result is

generated by a service-based prediction. Similarly, when l¼ 1, the predicted result is

obtained by a user-based prediction. Figure 3.2 shows the impact of l to two datasets, i.e.,

52 Chapter 3

response time and throughput, with the variation of G and the matrix density. From

Figure 3.2, it can be observed that a service-based prediction outperforms a user-based

prediction, because the NMAE value in l¼ 0 is smaller than the NMAE value in l¼ 1 for

all cases. Further, from the trends of the four figures in Figure 3.2(2), we found that the

prediction accuracy first increases and then decreases with the increase of the l value. It

should be noted that the prediction performance reaches the highest point when l¼ 0.1 for

all cases. Thus, in this scenario, 0.1 should be the optimal value for l.

3.3 Matrix Factorization-Based Quality of Service Prediction
3.3.1 Basic Matrix Factorization Model

In the real-world case, there are m users and n web services. They contribute to an m� n

user-service matrix R, and each entry rui represents a QoS value recording the specific

usage information of the web service i executed by the user u. Usually, R is very sparse,

and thus it contains a lot of missing QoS values. The problem is how to predict the

missing QoS values of the user-service matrix R effectively and efficiently. To address this

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

Lambda

N
M

A
E

Response Time

Given5
Given10
Given20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

Lambda

N
M

A
E

Response Time

Density=10%
Density=20%
Density=30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

Lambda

N
M

A
E

Throughput

Given5
Given10
Given20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

Lambda

N
M

A
E

Throughput

Density=10%
Density=20%
Density=30%

(a)

(c) (d)

(b)

Figure 3.2
Impact of l.

Web Service Quality of Service and Its Prediction 53

problem, the low-rank MF [29] model is widely used. MF factorizes the user-item matrix

and hence makes accurate predictions. The goal is to map both users and items to a joint

latent factor space of a low dimensionality d, such that the user-item interactions can be

captured as inner products in that space. The premise behind a low-dimensional MF

technique is that there are only a few factors affecting the user-item interactions, and a

user’s interactive experience is influenced by how each factor affects the user. The user-

service interactive matrix R is a m� n matrix. This matrix can be divided approximately

into two parts U and S with d-rank factors constraints:

RzUTS (3.13)

in which U˛Rd�m and S˛Rd�n with d<min(m, n) represent user feature space and

service feature space, respectively. The SVD [28] technique is applied to approximate the

original matrix R with U and S by minimizing the following term:

min
U;S

1

2

Xm
i¼1

Xn
j¼1

��RijU
TS
��2
F

(3.14)

in which k,kF denotes the Frobenius norm. In real-world cases, the original matrix R only

contains a few service invocation records. This sparse issue leads to the following

modification in practice:

min
U;S

1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2
(3.15)

in which Iij plays as an indicator that is equal to 1 when user ui interacts with service sj
and is otherwise equal to zero. To avoid the issue of model overfitting, two regularization

terms related to U and S are involved as follows:

min
U;S

1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2 þ l1

2
kUk2F þ l2

2
kSk2F (3.16)

in which l1 and l2 are the learning rates. The optimization problem in Eqn (3.16)

minimizes the sum-of-squared-errors objective function with quadratic regularization

terms. The above form is widely used in the domain of recommender systems.

3.3.2 Neighborhood-Based Matrix Factorization Model

Paper [30] builds a neighborhood-based MF model to incorporate the relational

regularization terms to revamp the traditional MF model. Section 3.3.2.1 first focuses on

using a user’s relationship for the regularization part. Then Section 3.3.2.2 discusses how

to extend this idea to the service side. Section 3.3.2.3 introduces the fusion of users and

service relationships into a unified MF model.

54 Chapter 3

3.3.2.1 User neighborhood-based matrix factorization model

The core idea of user-collaboration is to find a set of neighbors that behave very similarly

to the current user. Similarity computation plays a vital role in the first step of the

prediction process. (1) Generating a user neighborhood: Existing works on QoS value

predictions use the PCC to compute the similarity relationship between users. This elegant

algorithm is applied between user ui and uj as follows:

U Simði; jÞ ¼
P

s˛ Sðris � ruiÞðrjs � rujÞffiP
s˛ Sðris � ruiÞ2

q ffiP
s˛ Sðrujs � rujÞ2

q (3.17)

in which S ¼ SuiXSuj is the set of services both invoked by different users ui and uj, and

rui represents the average QoS values of different services invoked by user ui. The

U_Sim(i,j) is in the range of [�1,1], in which a higher value indicates a higher user

similarity. After calculating the similarity relationship between users, a set of TOP_K

users are chosen as the neighborhood for the target user. The process of identifying the

size of the neighborhood is crucial to the prediction accuracy, since dissimilar neighbors

contribute useless information to make predictions and thus potentially harm the prediction

accuracy. To choose an appropriate size, a traditional TOP_K algorithm is revamped to

remove the dissimilar users in the neighborhood as follows:

TUðiÞ ¼ fkjk˛ TOP K UðiÞ;U Simði; kÞ > 0g
in which TOP_K_U(i) represents a set of the TOP-K similar users ranking by similarity to

user ui, and U_Sim(i,k) is defined in Eqn (3.17).

This modification reduces the number of dissimilar users, and it generates an appropriate

size for the neighborhood. (2) Capturing a user relationship: In practice, the interactive

experience inside a neighborhood should be somehow similar. This captures the intuition

because neighbors are very likely using a similar network infrastructure (network

workloads, routers, etc.). As a result, they contribute similar patterns of web services

usage information and thus are defined as neighbors. Based on this intuition, the following

user relational regularization term is proposed as:

min

������Ui � 1

k TUðiÞ
X

f ˛TUðiÞ
Uf

������
2

F

(3.18)

in which Ui is the feature vector of user ui. The meaning of this term is used to minimize

the interactive experience between a user ui and its neighbors TU(i). Given the

neighborhood for user ui, the assumption is built that ui’s feature vector is similar to the

average feature vector of all its neighbors in this pool. The above constraint term holds

the premise that every user’s experience is close to the average level of neighborhood.

However, this process treats every neighbor with equal importance, which may not be true

Web Service Quality of Service and Its Prediction 55

in real-world cases. For example, there are thousands of neighbors inside a neighborhood.

Apparently, those neighbors with higher relevance should be treated more seriously than

the others. To re-weight the importance inside a neighborhood, the user constraint in Eqn

(3.19) is changed as follows:

min

������Ui �
X

f ˛ TUðiÞ
PUif $Uf

������
2

F

(3.19)

This term combines different weights into the average feature vector of all neighbors. And

PUif is a normalized weight defined as follows:

PUif ¼ U Simði; f ÞP
g˛ TUðiÞU Simði; gÞ (3.20)

This user regularization term is incorporated to revamp the traditional MF model as

follows:

min
U;S

L1 ¼ 1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2 þ l1

2
kUk2F þ l2

2
kSk2F þ a1

2

Xm
i¼1

���Ui �
X

PUif $Uf

���2
F

(3.21)

in which a1> 0 is controlling the importance of this term in the Extended Matrix

Factorization (EMF) model. This objective function takes all the users into

consideration and thus is aiming at minimizing the global differences within different

neighborhoods. Although the objective function L1 in Eqn (3.21) is convex in U only or

S only, it is not convex in both matrixes [28]. Therefore, it is unrealistic to expect an

algorithm to find the global minimum of L1. The gradient descent method is used to

find the local minimum as follows:

vL1
vUi

¼
Xn
j¼1

Iij
�
Rij � UTS

���Sj
�þ l1Ui þ a1

�
Ui �

X
PUif $Uf

�

vL1
vSj

¼
Xm
i¼1

Iij
�
Rij � UTS

���Ui

�þ l2Sj

(3.22)

3.3.2.2 Service neighborhood-based matrix factorization model

The idea of using the wisdom of crowds can also be applied to the service side.

However, the measurement of services similarity is different from that of the user

ones. The reason is that the QoS information of each service is greatly affected by

the network situation of those users. For example, because of network security and

56 Chapter 3

bandwidth constraints, the response time of all services invoked by user Jeremy is

higher than the average level of other users. Meanwhile user Wade enjoys a higher

speed of network bandwidth without constraints. Thus, the response time of all

services is lower than others. This example shows that the QoS values contain

diverse knowledge in each service. To precisely calculate the similarity relationship

among services, the PCC algorithm is slightly modified to fit in the service side as

follows:

S Simði; jÞ ¼
P

u˛Uðrui � ruÞ
�
ruj � ru

�
ffiP

u˛Uðrui � ruÞ2
q ffiP

u˛Uðru � ruÞ2
q (3.23)

in which U¼U1XU2 is the set of users who both have invoked service si and sj. ru means

the average QoS values of service invoked by u. In Eqn (3.23), the impact of different

QoS scales is removed by using ðrui � ruÞ. After understanding the similarity relationship

among services, those dissimilar service neighbors are filtered by using the TOP_K_S

strategy as follows:

TSðiÞ ¼ fkjk˛ TOP K SðiÞ; S Simði; kÞ > 0g
Similarly, the difference in latent features of each service inside a neighborhood is

assumed to be minor. This assumption is transferred into a service regularization term and

evolves to revamp the traditional MF model as follows:

min
U;S

L2 ¼ 1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2 þ l1

2
kUk2F þ l2

2
kSk2F þ a2

2

Xn
j¼1

������Sj �
X

h˛TSðjÞ
PSjh$Sh

������
2

F

(3.24)

in which a2> 0 and PSjh is a normalized weight defined as follows:

PSjh ¼ S Simðj; hÞP
l˛ TSðjÞS Simðj; lÞ (3.25)

A local minimum of L2 can be calculated by performing the gradient descent method as

follows:

vL1
vUi

¼
Xn
j¼1

Iij
�
Rij � UTS

���Sj
�þ l1Ui

vL1
vSj

¼
Xm
i¼1

Iij
�
Rij � UTS

�ð�UiÞ þ l2Sj þ a2

Sj �

X
h˛ TSðjÞ

PSjh$Sh

! (3.26)

Web Service Quality of Service and Its Prediction 57

3.3.2.3 User and service neighborhood-based matrix factorization model

In previous research, most studies are performed on only one side to make predictions

[20,31]. There are two reasons to explain this phenomenon: (1) these works do not treat

the user side and service side symmetrically, and both sides thus could not be combined

into a unified model and (2) the complexities of the previous algorithms lower the

possibility of a combination. From the previous sections, each step in the proposed EMF

framework is symmetrically: similarity calculation, neighborhood generation,

regularization combination. Taking the different natures between both sides into

consideration, two algorithms are used to measure the similarity. Also, different TOP_K

values on both sides are chosen due to the varied population. The EMF framework is very

efficient because the computation time is linear with respect to the matrix density. To sum

up, a unified framework is constructed by fusing user side and service-side regularization

terms as follows:

min
U;S

L3 ¼ 1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2 þ l1

2
kUk2F þ l2

2
kSk2F þ a1

2

Xm
i¼1

���Ui �
X

PUif $Uf

���2
F

þ a2

2

Xn
j¼1

������Sj �
X

h˛TSðjÞ
PSjh$Sh

������
2

F

(3.27)

A local minimum of L3 is calculated by performing the gradient descent method as

follows:

vL1
vUi

¼
Xn
j¼1

Iij
�
Rij � UTS

���Sj
�þ l1Ui þ a1

�
Ui �

X
PUif $Uf

�

vL1
vSj

¼
Xm
i¼1

Iij
�
Rij �UTS

�ð� UiÞ þ l2Sj þ a2

	
Sj �

X
h˛ TSðjÞ

PSjh$Sh

 (3.28)

a is set to equal to a1 and a2 for simplicity.

3.3.2.4 Experiments for neighborhood-based matrix factorization models

The main computation of the EMF framework is evaluating the object function with their

gradient parts. In this part, the EMF_F approach is evaluated because it is a combination

between other methods. For EMF_F, the computational complexities for gradients vL/vU

and vL/vS are both O(rdþ jujkd) and O(rdþ jsjkd), in which r is the number of nonzero

entries in matrix R, juj and jsj are the population of both sides, k is the average population

in each neighborhood and d is the dimensionality. In practice, the number of neighbors is

far less than the total population of users and services. And it is also reasonable to assume

58 Chapter 3

that both populations are less than the total density of matrix R. Therefore, the total

computational complexity in one iteration can be relaxed to O(rd), which indicates that

the computational time of EMF_F is linear with respect to the number of observations in

the user-service QoS matrix. This complexity analysis shows that our proposed framework

is very efficient and can be increased to a large-scale dataset.

The process of our proposed EMF approaches are general. It only requires the information

from the QoS matrix, but not other heterogeneous data sources. As a result, they can be

extended to other QoS invocation scenarios without any modification.

The experiments are conducted based on measuring the prediction accuracy of our EMF

approaches. Our experiments are aimed at answering the following questions: (1) What is

the measurement criterion? (2) How does our proposed EMF framework compare with

other state-of-the art methods? (3) What is the impact of TOP_K thresholds on both sides?

(4) What is the impact of the matrix density and dimensionality to our approaches?

The experiments are conducted on a public real-world web service QoS dataset, which

was collected by Zibin Zheng et al. It contains 1,974,675 web service response time

records. These results were collected from 339 distributed service users on 5825 web

services. More details about this dataset can be found in [9].

The popular MAE is used as the measurement criterion of prediction accuracy. MAE is

defined as:

MAE ¼ 1

N

X
i;j

���Rij � R̂ij

���
in which Rij denotes the response time of the web service j observed by user i, R̂ij is the

predicted response time, and N is the number of predicted values. The MAE places equal

weight on each individual difference.

The proposed approaches are compared with the following state-of-the-art methods.

1. UserMean (UMEAN): This method uses the mean QoS value of each user to predict the

missing values.

2. ItemMean (IMEAN): This method uses the mean QoS value of every service to predict

the missing values.

3. UPCC: This method is a classical one that involves similar user behavior to make

predictions.

4. IPCC: This method is widely used in e-commerce scenarios. It captures similar service

attributes to make predictions.

5. UIPCC: This method [19] is a combination between UPCC and IPCC.

6. SVD: This method is proposed by [22] in the CF area. It captures the latent structure of

the original data distribution.

Web Service Quality of Service and Its Prediction 59

To make our experiments more realistic, QoS values are removed randomly to sparse the

matrix. The matrix density is conducted from 5% to 20% with the ascending rate set as

5%. Matrix density equals 5% means that 5% of the entries are left for training and the

rest, 95%, become test cases. In this part, the above six methods are compared with our

proposed EMFs given the same training and test cases. The parameter settings of our

proposed approaches are TOP_K_U¼ 60, TOP_K_S¼ 300, a ¼ 0.001,

dimensionality¼ 10.

From Table 3.4, it is can be seen that our proposed EMF approaches obtain smaller MAE

values than the others, which implies a higher prediction accuracy. Meanwhile, the MAE

values slightly get smaller with the increase of the matrix density. This can be explained

as more information can contribute to a better prediction performance. Besides, EMF_F

consistently performs better than EMF_U and EMF_S, which means a combination of

both sides can generate a better prediction result. MAE values of EMF_S are lower than

EMF_U in general cases. The reason is that the number of services is approximately six

times to the users, and hence more useful information is collected on the service side.

Among all the prediction methods, the proposed approaches generally achieve lower

prediction errors, which indicates that by incorporating relational constraints in the MF, we

can generate better prediction accuracy.

1. Impact of neighborhood size

In the EMF approach, the parameter TOP_K_U and TOP_K_S directly control the size of

the neighborhood respectively. In the extreme case, if these values are set too small, EMF

only listens to the advice from a few neighbors. If these values are set too high, EMF

generates a large size of neighborhoods that contains varied noises. Figure 3.3 shows the

impact of TOP_K values on the prediction accuracy. On the user side, as TOP_K_U

increases, the MAE values at first decrease. But when TOP_K_U passes over a threshold,

the MAE values soar again. This similar phenomena happens with respect to the service

side. This observation can be explained when the TOP_K is smaller than a certain

Table 3.4: Comparison of prediction accuracy (a smaller value means a better performance)

Density [5% Density [10% Density [15% Density [20% Density [25% Density [30%

Method MAE MAE MAE MAE MAE MAE

UMEAN 0.8813 0.8794 0.8787 0.8784 0.8753 0.8749
IMEAN 0.7888 0.7334 0.6810 0.6255 0.6078 0.5910
UPCC 0.8129 0.7412 0.7060 0.6834 0.6697 0.6504
IPCC 0.7916 0.7311 0.6910 0.6310 0.5937 0.5563
UIPCC 0.7632 0.6806 0.6337 0.6120 0.5736 0.5486
SVD 0.5691 0.5587 0.5437 0.5302 0.5222 0.5205

EMF_U 0.5571 0.5432 0.5391 0.5176 0.5070 0.4858
EMF_S 0.5409 0.5329 0.5192 0.5091 0.4976 0.4831
EMF_F 0.5189 0.5103 0.5022 0.4981 0.4718 0.4632

60 Chapter 3

20
0.5

0.51
0.52

0.53

0.54

M
A

E

0.55
0.56

0.57
0.58

40 60
Values of TOP_K_U

Matrix density = 5%

80 100

TOP_K_S = 30
TOP_K_S = 60
TOP_K_S = 90

100

0.48

0.49

0.5

0.51

0.52

0.53

M
A

E

200 300
Values of TOP_K_S

400 500

TOP_K_U = 10
TOP_K_U = 30
TOP_K_U = 50

M
A

E

20
0.49
0.5

0.51

0.52

0.53
0.54
0.55

0.56
0.57

40 60
Values of TOP_K_U

Matrix density = 10%

80 100

TOP_K_S = 30
TOP_K_S = 60
TOP_K_S = 90

M
A

E

20
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

40 60
Values of TOP_K_U

Matrix density = 15%

80 100

TOP_K_S = 30
TOP_K_S = 60
TOP_K_S = 90

M
A

E

200.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

40 60
Values of TOP_K_U

Matrix density = 20%

80 100

TOP_K_S = 30
TOP_K_S = 60
TOP_K_S = 90

100

0.48

0.49

0.5

0.51

0.52

M
A

E

200 300
Values of TOP_K_S

400 500

TOP_K_U = 10
TOP_K_U = 30
TOP_K_U = 50

100

0.46

0.47

0.48

0.49

0.5

0.51

0.52

M
A

E

200 300
Values of TOP_K_S

400 500

TOP_K_U = 10
TOP_K_U = 30
TOP_K_U = 50

100

0.46

0.45

0.47

0.48

0.49

0.5

0.51

0.52

M
A

E

200 300
Values of TOP_K_S

400 500

TOP_K_U = 10
TOP_K_U = 30
TOP_K_U = 50

Figure 3.3
Impact of neighborhood size.

W
eb

S
ervice

Q
uality

of
S
ervice

and
Its

P
rediction

6
1

threshold, there are few neighbors contributing to the missing QoS value predictions,

which prevents the users from fully absorbing the wisdom of the crowds.

When TOP_K is larger than a certain threshold, the neighbors contain much noise

although the sample size is large enough. These two cases will turn out to lower the

prediction performance. Additionally, no matter what the matrix density is, when

TOP_K_U is around 80, it contributes the smallest MAE values, which means TOP_K_U

meets a threshold in this dataset. At the same time, the smallest MAE values in all matrix

density settings happen when TOP_K_S is around 300. The optimal thresholds of

TOP_K_U and TOP_K_S are different because the population on both sides is varied. This

observation shows that choosing an appropriate size of the neighborhood can achieve a

better prediction result.

2. Impact of dimensionality

In our proposed method, dimensionality directly determines how many factors involve MF.

To study the impact of dimensionality, have TOP_K_U¼ 10, and TOP_K_S¼ 100 and

tune the matrix density. Figure 3.4 shows that with the increase of dimensionality, the

Matrix density =5% Matrix density = 10%

Matrix density = 15% Matrix density = 20%

0.52

0.51

0.5

0.49

0.48

0.47

0.46

0.45

0.51

0.51

0.5

0.5

0.49

0.49
0.48

0.47
0.46
0.45
0.44
0.43

0.5
0.49
0.48

0.47
0.46
0.45
0.44

0.43
0.42

0.48

0.47

0.46

0.45

0.44
1 4 7 10 1 4 7 10

1 4 7 10 1 4 7 10

Values of dimensionality Values of dimensionality

Values of dimensionality Values of dimensionality

M
A

E

M
A

E

M
A

E

M
A

E

Figure 3.4
Impact of dimensionality.

62 Chapter 3

values of MAE at first dramatically decrease. Then the values of MAE increase when

dimensionality goes above a certain threshold (around 90 for MAE). These phenomena

can be explained by the following two reasons: (1) the improvement of prediction

accuracy confirms the intuition that a relatively larger dimension generates better results

and (2) when the dimensionality surpasses a certain threshold, it may cause the issue of

over fitting, which turns out to degrade the prediction performance.

3. Impact of matrix density

To study the impact of the matrix density on MAE, have TOP_K_S¼ 100 and

dimensionality¼ 10, and TOP_K_U set as 5, 10, and 15.

Figure 3.5 shows that when the matrix density increases from 5% to 15%, the MAE values

consistently decrease, which means the prediction accuracy has improved significantly.

With the further increase in matrix density, MAE values slowly decrease. It shows that

with more entries contributing to the training phase, EMF performs much better. Another

observation is that if TOP_K_U¼ 5, the MAE values decrease sharply when the density is

low. However, the MAE values decrease slowly when the density surpasses 20. This can

be explained by the fact that in this configuration, when the training sample is small, our

framework is sensitive to global information. Nevertheless, when the global information is

abundant, the main power of improving prediction accuracy is the inner structure of our

framework.

3.3.3 Location-Based Matrix Factorization Model

Previous CF approaches on web service studies used PCC [28] calculations to find a set of

similar users. However, this type of similarity measurement is inappropriate to make

0.54

0.53

0.52

0.51

0.5

0.49

M
A

E

TOP_K_S = 100

TOP_K_U = 5
TOP_K_U = 10
TOP_K_U = 15

5 10 15 20 25 30 35
Percentage of density

Figure 3.5
Impact of matrix density.

Web Service Quality of Service and Its Prediction 63

predictions on QoS values for the following reasons: (1) The QoS values in history records

are not always accurate due to the complex nature of Internet environments. PCC relies

heavily on accurate QoS values to identify similar user groups. (2) Classic CF methods are

applied to the recommender systems that contain a lot of missing user ratings. Each rate

represents a user’s preference towards a specific item. However in web service scenarios,

each QoS value is determined by the actual physical environment, and not by subjective

judgment. This difference directly lowers the accuracy of the PCC similarity calculation.

It is natural to suppose that users in the same/near area tend to enjoy a similar web service

invocation experience [20]. This idea captures the intuition since local users share the

same IT infrastructures (network workloads, routers, etc.), and they thus tend to receive

similar objective web service usage information. Although the neighborhood might choose

different network configurations, and hence contribute diverse QoS information, these

fluctuations exert far less influence than the geographical factor. Another advantage of

using geographical information is that it can contribute to the framework and be more

sensitive to the recent changes in QoS values. As a result, local information can be used to

minimize the future errors with a higher confidence in the prediction process based on the

above intuition, creating a novel collaborative QoS prediction framework built with a

location-based regularization (LBR). First, the MFmodel [29] is expanded for missing

values predictions. Then by understanding the local connectivity between web services

users, the LBR incorporates geographical information to identify the neighborhood rather

than classic PCC manners. Based on the assumption that users in the same neighborhood

tend to receive similar objective information, two LBR terms are used to revamp the

classic MF framework. More specifically, to capture the diverse experience inside the

neighborhood, local users are treated differently in the above LBR terms. The

computational complexity of the proposed framework is linear in practice, and thus LBR

can be scaled to very large datasets.

3.3.3.1 Location regularization-based matrix factorization model

Paper [21] proposes a location regularization-based MF model. The core idea of user-

collaboration is to identify a set of similar users. These neighbors living in a neighborhood

contribute meaningful information to improve prediction performance. How to define

the term, “neighborhood” becomes crucial in capturing the local connectivity. First, the

Euclidean distance between users is calculated. Assuming the world is a sphere, the

Euclidean distance dist(i, j) between two users ui and uj is shown as the following:

distði; jÞ ¼
ffi
ðaltðiÞ � altðjÞÞ2 þ ðaltðiÞ � altðjÞÞ2

q
(3.29)

in which alt(i) ˛ (�180, 180] represents the altitude in location of ui and lat(i) ˛ (�180,

180] indicates the latitude in location of ui. c is a constant converting the unit of degree to

meter. In this case, c¼ 111, 261. After measuring the distance between users, the size of

64 Chapter 3

the neighborhood needs to be identified. In practice, the neighborhood size cannot be too

large because it may contain a lot of noises and thus degrade the prediction performance.

For a service user i, a set of neighborhood users G(i) can be defined as follows:

GðiÞ ¼ f jjdistði; jÞ � q; i 6¼ jg
in which q is a geographical threshold to control the neighborhood size. This definition

implies that the neighbor relationships are symmetric because the local relationships are

bidirectional. With the help of neighborhood information, two LBR approaches are built

for the QoS prediction.

As mentioned above, it is natural to suppose that users in the same/near area tend to share

a similar web service invocation experience. This intuition indicates that the differences of

user feature vectors in the neighborhood should be minor. This idea is converted into the

following mathematical form:

min

������Ui � 1

jGðiÞj
X

g˛GðiÞ
Ug

������
2

F

(3.30)

The above constraint term is used to minimize the invocation experience between a user ui
and its neighborhood to an average level. More specifically, if the neighborhood of user ui
is G(i), then ui’s invocation experience (feature vector Ui) should be close to the general

experience of all neighbors in G(i), which is 1=jGðiÞj
P

g˛GðiÞUg. This representation is

consistent with this intuition. This regularization term is added in the first proposed

approach to revamp the MF model as follows:

min
U;S

L1 ¼ 1

2

Xm
i¼1

Xn
j¼1

Iij
�
Rij � UTS

�2 þ l1

2
kUk2F þ l2

2
kSk2F þ a1

2

Xm
i¼1

������Ui � 1

jGðiÞj
X

g˛GðiÞ
Ug

������
2

F

(3.31)

in which a1> 0 is controlling the importance of this term. This objective function takes all

of the users into consideration, and thus it is aiming at minimizing the global differences

within different neighborhoods. Similar to the traditional MF model, the global minimum

of L1 cannot be achievable due to the nature of its inner structure [32]. The gradient

descent method is proposed to calculate its local minimum as follows:

vL1
vUi

¼
Xn
j¼1

Iij
�
Rij � UTS

���Sj
�þ l1Ui þ a1

Ui � 1

jGðiÞj
X

g˛GðiÞ
Ug

!

vL1
vSj

¼
Xm
i¼1

Iij
�
Rij � UTS

���Ui

�þ l2Sj

(3.32)

Web Service Quality of Service and Its Prediction 65

In the following, the proposed approaches are compared with the following state-of-the-art

methods:

1. UserMean: This method uses the mean QoS value of each user to predict the missing

values.

2. ItemMean: This method uses the mean QoS value of every service to predict the

missing values.

3. UPCC: This method is a classical one that involves similar user behavior to make

predictions.

4. IPCC: This method is widely used in e-commerce scenarios. It captures similar service

attributes to make predictions.

5. UIPCC: This method [19] is a combination between UPCC and IPCC.

6. RegionKNN: This method is proposed by Chen et al. in [20]. It incorporates the

geographical information to a hybrid memory-based CF method.

7. SVD: This method is proposed by Koren et al. in [22]. It captures the latent structure of

the original data distribution.

In this section, to make our experiments more realistic, QoS values are randomly removed

to sparse the matrix. The matrix density is conducted as 5%, 10%, 15%, and 20%. For

example, the matrix density equals 5% means that 5% of the entries are left for training

and the rest, 95%, become the test cases. In this part, the above seven methods are

compared with our proposed approaches given the same training and test cases. The

parameter settings of our proposed approaches are q ¼ 100, a ¼ 0.001, dimensionality ¼
10, and lU¼ lS¼ 0.001.

Table 3.5 shows that the comparison results and detailed analysis on parameter tunings

will be provided as follows. From Table 3.5, it is can be found that our proposed LBR1

and LBR2 approaches obtain smaller MAE and RMSE values than others, which implies a

Table 3.5: Comparison of prediction accuracy (a smaller value means a better performance)

Matrix

Density [5%

Matrix

Density [10%

Matrix

Density [15%

Matrix

Density [20%

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.8813 1.8601 0.8794 1.8588 0.8787 1.8586 0.8784 1.8588
IMEAN 0.7888 1.6450 0.7334 1.6198 0.6810 1.6962 0.6255 1.6078
UPCC 0.8129 1.7204 0.7412 1.6578 0.7060 1.5753 0.6834 1.5497
IPCC 0.7916 1.5563 0.7311 1.4892 0.6910 1.3843 0.6310 1.3755
UIPCC 0.7632 1.5360 0.6806 1.4442 0.6337 1.4047 0.6120 1.3864

RegionKNN 0.6782 1.5319 0.6429 1.4031 0.6021 1.3784 0.5722 1.3810
SVD 0.5691 1.5022 0.5587 1.3849 0.5437 1.3615 0.5302 1.3495
LBR1 0.5673 1.4529 0.5532 1.3911 0.5376 1.3701 0.5058 1.3396
LBR2 0.5389 1.4130 0.5292 1.3481 0.5180 1.3260 0.4941 1.3147

66 Chapter 3

higher prediction accuracy. Meanwhile, with the increase of matrix density, the MAE and

RMSE values get slightly smaller. This can be explained as more information can

contribute to better prediction performance. The MAE and RMSE values of LBR1 are

consistently higher than LBR2, which means assigning different weights to neighbors

improves the prediction performance. Among all the prediction methods, our proposed

approaches improves by 23.7% the MAE prediction accuracy for general cases, which

indicates incorporating geographical information in the MF model can generate better

prediction performance.

1. Impact of q

In our proposed methods, the geographical threshold q controls the size of the

neighborhood. If the value of q is small, only those neighbors living in a short distance

can be identified. If the value of q is large, neighbors, to a large extent, can be

incorporated.

Figure 3.6 shows the impact of a geographical threshold q on the prediction accuracy. As q

increases, the MAE and RMSE values at first decrease. When q passes over a threshold,

the MAE and RMSE values soar again. This observation can be explained as follows:

When q is smaller than a certain threshold, there are few neighbors contributing to the

missing QoS values predictions, which prevents a user to fully absorb the wisdom of the

crowds. When q is larger than a certain threshold, the neighbors contain much noise even

though the sample size is large enough. These two cases will turn out to lower the

prediction performance. No matter what the matrix density is, q around 100 contributes to

the smallest MAE values, which means q meets a threshold in this dataset. At the same

time, the smallest RMSE values in all matrix density settings happen when q is around 60.

The optimal thresholds of MAE and RMSE are different because they are different criteria

focusing on different aspects. The observation shows that choosing an appropriate size for

a neighborhood can achieve a better result.

2. Impact of a

In the LBR approaches, the parameter a controls how much the regularization terms

influence the objective functions. In the extreme case, if a is set too small, the LBRs mainly

focus on the general MF model and underestimate the importance of the LBR terms.

Meanwhile if a is set too large, the geographical information dominates the prediction

process, which would potentially harm the prediction performance. In other cases, a can be

tuned to appropriately combine the MF and LBR. In the following section, we will mainly

analyze how the changes of a can affect the prediction accuracy. Dimensionality is set to 10.

Meanwhile the parameter q is tuned from 80 to 120 and the density from 10% to 15%.

Figure 3.7 shows that as a increases, the MAE and RMSE values at first decrease (the

prediction accuracy increases). When a goes above a certain threshold, the MAE and

Web Service Quality of Service and Its Prediction 67

Matrix density = 5% Matrix density =10%

Matrix density =15% Matrix density =20%

0.59

0.58

0.57

0.56

0.55

0.54

0.57

0.56

0.55

0.54 0.53

0.56

0.58
0.57

0.56

0.55

0.54
0.55

0.54

0.53

0.53

0.52

0.52

0.51

0.5

0.49

0 40 80 120 160 200 0 40 80 120 160 200

0 40 80 120 160 200 0 40 80 120 160 200

0 40 80 120 160 200 0 40 80 120 160 200

0 40 80 120 160 200 0 40 80 120 160 200

� = 0.001 � = 0.001

� = 0.001 � = 0.001

� = 0.001 � = 0.001

� = 0.001 � = 0.001

Values of θValues of θ

Values of θValues of θ

Values of θValues of θ

Values of θValues of θ

1.44

1.435

1.425

1.42

1.415

1.41

1.43

1.38

1.375

1.37

1.365

1.36

1.355

1.35

1.345

1.365

1.36

1.355

1.35

1.345

1.34

1.335

1.33

1.325

1.345

1.34

1.335

1.33

1.325

1.32

1.315

1.31

M
A

E

M
A

E

M
A

E

M
A

E

R
M

S
E

R
M

S
E

R
M

S
E

R
M

S
E

Figure 3.6
Impact of q.

68 Chapter 3

RMSE values increase slightly. The threshold in MAE is around a¼ 10�3 in all cases.

Meanwhile, a around 10�2 is the threshold in the RMSE criterion. The existence of a

turning point confirms our intuition that solely using MF and geographical connectivity

cannot contribute to a better prediction accuracy, rather than an appropriate combination.

Moreover, the framework is steady because it remains the same for similar trends in all

configurations with respect to different criteria.

3. Impact of dimensionality

In our proposed methods, dimensionality determines how many factors are involved in the

MF. To study the impact of dimensionality, a is set to 0.001. We also tune the parameter q

as 100 and 160, and the density from 10% to 15%.

Figure 3.8 shows that with the increase of the dimensionality, the values of MAE and

RMSE at first dramatically decrease. However, the values of MAE and RMSE increase

when dimensionality goes above a certain threshold (90 for MAE and 80 for RMSE).

These phenomena can be explained by the following two reasons: (1) the improvement

of the prediction accuracy confirms the intuition that a relatively larger dimension

generates better results and (2) when the dimensionality surpasses a certain threshold, it

0.529

0.53

0.531

0.532

0.533

0.534

0.535
Matrix density = 10%

1E–4 1E–3 1E–2 1E–1 1
Values of α

1E–51E–5 1E–4 1E–3 1E–2 1E–1 1
Values of α

1E–5 1E–4 1E–3 1E–2 1E–1 1
Values of α

1E–5 1E–4 1E–3 1E–2 1E–1 1
Values of α

1.36

1.358

1.356

1.354

1.352

1.35

1.348

1.346

1.344

1.342

0.518

0.52

0.522

0.524

0.526

0.528

0.53

Matrix density = 10%

Matrix density = 15%

1.26

1.28

1.3

1.32

1.34

1.36

Matrix density = 15%

M
A

E

R
M

S
E

M
A

E

R
M

S
E

θ = 100

θ = 120

θ = 80
θ = 100
θ = 120

θ = 80

θ = 100

θ = 120

θ = 80
θ = 100
θ = 120

θ = 80

Figure 3.7
Impact of a.

Web Service Quality of Service and Its Prediction 69

may cause the issue of over fitting, which turns out to degrade the prediction

performance.

4. Impact of matrix density

To study the impact of the matrix density on MAE and RMSE, we set q¼ 100 and

q¼ 150 respectively, and vary the density percentage from 2 to 20. Also, we set

a¼ 0.001.

Figure 3.9 shows that when the matrix density increases from 2% to 8%, both MAE and

RMSE decrease sharply, which means the prediction accuracy is significantly improved.

With the further increase in the matrix density, both MAE and RMSE slowly decrease. It

shows that with more entries contributing to the training phase, our proposed approaches

perform much better.

3.3.3.2 Location ensemble-based matrix factorization model

In the LBR model, the contributions of all neighbors are treated equally, which does not

correspond well with the real scenario of web service invocation. In reality, the infrastructure

of the neighbors who are nearer is more similar with that of the user, so the QoS values of

the same web service invoked by them are closer, which is shown in Figure 3.10.

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54
Matrix density = 10%

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 10010 20 30 40 50 60 70 80 90 100

Values of dimensionality Values of dimensionality

Values of dimensionalityValues of dimensionality

1.32
1.325
1.33

1.335

1.34
1.345

1.35
1.355

1.36
1.365

Matrix density = 10%

0.48

0.49

0.5

0.51

0.52

0.53

Matrix density = 15%

1.29

1.3

1.31

1.32

1.33

1.34

1.35

R
M

S
E

Matrix density = 15%

M
A

E

R
M

S
E

M
A

E

θ =100
θ =160

θ =100
θ =160

θ =100
θ =160

θ =100
θ =160

Figure 3.8
Impact of dimensionality.

70 Chapter 3

Taking this fact into account, this paper [33] builds a location ensemble-based MF model.

First, the similarity is defined between two users as:

Simil ¼ expð�dilÞ (3.33)

in which dil is the distance between user i and user l, and Simil ˛ (0,1]. Simil ¼ 1 means

that dil is equal to 0, namely that user i and user l live in the exact same place, and

Sim/0 means that the two users live extremely far apart; for instance, user i lives in

Tokyo, while user l lives in Kabul. Note that the form of the similarity calculation formula

is not exclusive, because any similarity formula satisfying the properties that exp(�dil)

possesses can be a candidate. Further, the normalized similarity as the measurement of the

individual importance of each neighbor is calculated as:

wil ¼ SimilP
g˛LSimig

(3.34)

Finally, the final QoS value of web service j invoked by user i is shown more properly as:

rijzaUT
i Sj þ ð1� aÞ

Xk
l¼1

wilU
T
l Sj (3.35)

0.52

0.53

0.54

0.55

0.56

0.57

0.58

2 5 8 11 14 17 20 2 5 8 11 14 17 20

2 5 8 11 14 17 20 2 5 8 11 14 17 20

Percentage of matrix density Percentage of matrix density

Percentage of matrix density Percentage of matrix density

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

M
A

E

R
M

S
E

R
M

S
E

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
DIMEN=10
DIMEN=50

DIMEN=10
DIMEN=50

DIMEN=10
DIMEN=50

DIMEN=10
DIMEN=50

θ = 100 θ = 100

θ = 150 θ = 150

M
A

E
1.35

1.3

1.4

1.45

1.5

1.55

1.6

Figure 3.9
Impact of matrix density.

Web Service Quality of Service and Its Prediction 71

Therefore, the weighted location-aware PMF model (WL-PMF) is constructed as:

min
U;S

L ¼ 1

2

Xm
i¼1

Xn
j¼1

Iij

	
Rij �

	
aUT

i Sj þ ð1� aÞ
Xk
l¼1

wilU
T
l Sj

2

þ l1

2
kUk2F þ l2

2
kSk2F

(3.36)

in which k$k2F denotes the Frobenius norm. The gradient descent can be used over matrix

U and S to find a local minimum of the objective function in Eqn (3.36). So for the “cold-

start” user or service, even if the result obtained from their own corresponding feature vectors

is not very satisfying, the accuracy of the predicted value can be further improved by the

rectification of the learning results of the neighbors’ feature vectors. The partial derivatives of

the objective function over latent user and service feature vectors are as follows:

vL1
vUi

¼
Xn
j¼1

Iij

	
Rij �

	
aUT

i Sj þ ð1� aÞ
Xk
l¼1

wilU
T
l Sj

��Sj
�

þl1Ui þ ð1� aÞ
X

g˛GðiÞ

Xn
j¼1

IgiwgiSj

	
aUT

g Sj þ ð1� aÞ
Xk
l¼1

wglU
T
l Sj � Rgj

� vL1
vSj

¼
Xm
i¼1

Iij

	
Rij � Rij �

	
aUT

i Sj þ ð1� aÞ
Xk
l¼1

wilU
T
l Sj

ð�UiÞ

�
	
aUT

i þ ð1� aÞ
Xk
l¼1

wilU
T
l

þ l2Sj

(3.37)

in which G(i) contains all the users whose neighbors include user i.

Shorter response
time

Longer response
time

Seoul

Tokyo

Beijing

Figure 3.10
Location-aware web service invocation.

72 Chapter 3

Several other state-of-the-art approaches are chosen to compare with our two models,

including:

1. UPCC: This approach is much similar with user-based CF, which first calculates the

similarity between users based on PCC and then gains the predicted value as the

weighted average of the known values of the similar users [18].

2. IPCC: This approach is similar with UPCC, except that the key procedure is the simi-

larity calculation between items [25].

3. UIPCC: This approach combines the advantage of UPCC and IPCC by balancing the

proportions of them in the final result [19].

4. RegionKNN: This approach classifies services and users into different regions, and

modifies UPCC by the similarity computation between regions and the identification of

similar services and users in the same regions [34].

5. Basic-PMF: This approach is proposed by [22], and has been verified to be effective in

recommender systems. A detailed explanation has been given to show how the basic

PMF model can be used for QoS prediction.

6. LBR2: This approach first calculates the differences of the latent feature vectors

between the user and the neighbors, and then appends the Frobenius norm of the differ-

ences to the objective function of the MF model [21].

The whole dataset is divided into training data and testing data by randomly removing a

large number of QoS values in the usereservice invocation matrix. For instance, 95% of

the values are randomly removed as testing data, and the 5% left in the matrix is trained to

predict those removed ones. More specifically, four types of data sparsity are used to

conduct the experiments, which are 95%, 90%, 85%, and 80%. In our experiments, the

default parameter settings are k¼ 40, a¼ 0.6, and d¼ 10, in which d represents the

dimensionality of the latent feature vector. Moreover, lU and lS are set to 0.001 equally in

all of the following experiments.

Table 3.6 shows that Basic-PMF gets better prediction accuracy than RegionKNN and

UIPCC, which verifies its effectiveness. Meanwhile, our two models achieve smaller

RMSE and MAE under all situations of data sparsity. In addition, WL-PMF achieves

better performance than L-PMF in most cases, which is consistent with the fact that the

neighbors who are nearer share more similar invocation experience with the user. Further,

WL-PMF on average, gains 5.68% and 3.80% performance improvement in RMSE, as

well as 10.27% and 6.61% improvement in MAE, in comparison with Basic-PMF and

LBR2, respectively. Moreover, prediction accuracy increases with the increasing of the

data density, which is a natural phenomenon showing that more historical records can

depict user features more accurately.

Web Service Quality of Service and Its Prediction 73

1. Impact of a

The parameter a regulates the respective proportions of latent feature vectors of the user

and his or her neighbors in the learning process of the missing QoS values. We investigate

the impact of a from the range of 0.1e0.9 in the experiment settings of k¼ 40 and d¼ 10,

under the scenario of the matrix density being equal to 10% and 15%, respectively.

As shown in Figure 3.11, RMSE and MAE both reach the minimum in the range of

0.5e0.7 and get acceptable and relatively small values when a continues increasing. They

suffer from drastic fluctuations and achieve large values below 0.5. This changing trend

indicates that although the contributions of the feature vectors of the neighbors take on

important roles, the significance of the user’s own feature vectors are always dominant.

Finally, we can draw such a conclusion that if the neighbor’s feature vectors account for a

too large proportion, it will lead to the deviation of the predicted value from the real QoS

Table 3.6: Comparison of prediction accuracy (a smaller value means a better performance)

Approach

Matrix Density (MD)

MD [5% MD [10% MD [15% MD [20%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

UPCC 1.6670 0.7839 1.6012 0.7445 1.4745 0.6824 1.4179 0.6418
IPCC 1.5231 0.7838 1.4585 0.7296 1.4184 0.6839 1.3430 0.6111
UIPCC 1.5059 0.7639 1.4349 0.6862 1.4065 0.6698 1.3341 0.5919

RegionKNN 1.4932 0.7620 1.4047 0.6659 1.3564 0.6483 1.3134 0.5911
Basic-PMF 1.4995 0.7450 1.3790 0.6183 1.3326 0.6020 1.2730 0.5649

LBR2 1.4671 0.7132 1.3286 0.6130 1.3196 0.5726 1.2608 0.5332
L-PMF 1.4347 0.6635 1.2955 0.5667 1.2411 0.5292 1.2106 0.5095
WL-PMF 1.4345 0.6702 1.2908 0.5656 1.2389 0.5275 1.2099 0.5077

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Values of α

R
M

S
E

Matrix density=10%
Matrix density=15%

M
A

E

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Values of α

Matrix density=10%
Matrix density=15%

(a) (b)

Figure 3.11
Impact of a.

74 Chapter 3

value, so a must be not less than 0.5. In addition, if a is equal to one, then the WLePMF

model is degenerated into the basic PMF model, the performance of which is

comparatively lower.

2. Impact of k

The parameter k determines the number of neighbors whose latent feature vectors are

integrated into the targeted QoS value. In ideal conditions, only those neighbors who are

near enough to ensure that they really share similar infrastructure with the user should be

involved. We investigate the impact of k in the experiment settings of a¼ 0.6 and d¼ 10.

Figure 3.12 shows that, from the perspective of both RMSE and MAE, WLePMF

achieves the highest prediction accuracy when k¼ 40, and suffers from performance

degradation when k is much smaller or bigger. This phenomenon demonstrates that on the

one hand, those neighbors relatively farther away may introduce noise into the predicted

value, and, on the other hand, too small a number of neighbors cannot provide enough

valuable auxiliary information for the learning process. Meanwhile, because the extent of

the variation of RMSE and MAE is relatively small from k¼ 10 to k¼ 190, it shows that

WLePMF has a high scalability and flexibility to the number of neighbors.

3. Impact of d

The parameter d controls the number of latent features of a user, which cannot be directly

observed. We investigate the impact of d in the value range of 5 to 30 in the experiment

settings of k¼ 40 and a¼ 0.6. As shown in Figure 3.13, as d increases, both RMSE and

MAE at first decrease, and reach the minima at d¼ 10, and then begin to increase again.

Figure 3.13 also shows that WL-PMF gains satisfactory accuracy among values from 5 to

20, but does not perform as well from the value 25, which indicates that the actual number

10 40 70 100 130 160 190
Values of k

1.23
1.24

1.25

1.26

1.27

1.28

1.29

1.3

1.31

1.32

R
M

S
E

Matrix density=10%
Matrix density=15%

10 40 70 100 130 160 190
Values of k

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

M
A

E

Matrix density=10%
Matrix density=15%

(a) (b)

Figure 3.12
Impact of k.

Web Service Quality of Service and Its Prediction 75

of features dominating the experience of a user in web service invocation is limited.

Meanwhile, because the threshold with the smallest RMSE is 10, it is inferred that the

factors influencing the process of the web service invocation varies relatively in the real

world. This result does not mean that in every practical scenario, the optimal value of d is

always 10 due to the variety and complexity of the factors influencing the QoS values.

3.4 Summary

In this chapter, we primarily reviewed the two types of methods for QoS prediction, which

are the CF-based model and MF-based model. In the neighborhood-based CF approach,

the A-cosine equation is used to compute the service-based similarity. This method adds a

data smoothing process to improve the prediction accuracy, and extract information from

the QoS of similar services to similar users to handle the data sparsity problem.

In the neighborhood-based MF models, an extended MF framework with relational

regularization is summarized to make the QoS values prediction. The EMF approaches

adopt different similarity measurement techniques to identify neighborhoods on the user

and service side. Also, two novel relational regularization terms are introduced to revamp

the classic MF model into a unified framework.

Based on the intuition that geographical neighborhood users share the similar web services

invocation experience, a unified MF framework is built with two novel LBR terms to

make the missing QoS values prediction. The LBR approaches focused on capturing

geographical connectivity for identifying similar users.

In future studies, other directions for CF-based service-selection architecture should be

explored, e.g., pruning. Moreover, more QoS data from web services should be collected

5 10 15 20 25 30
Values of d

5 10 15 20 25 30
Values of d

1.24

1.26

1.28

1.3

1.32

1.34

R
M

S
E

Matrix density=10%
Matrix density=15%

Matrix density=10%
Matrix density=15%

M
A

E

0.52

0.54

0.56

0.58

0.6

0.62

0.64(a) (b)

Figure 3.13
Impact of dimensionality.

76 Chapter 3

to perform larger-scale experiments. Finally, tags, which are annotated to web services by

users, will be used to improve the performance of the CF-based service selection. In

addition, more relational regularization terms should be applied to solve the problem of

QoS prediction. The other parts in the EMF service selection framework will be explored

extensively. Moreover, the geographical information of web services should also be used

to further improve the prediction accuracy.

References

[1] L.-J. Zhang, J. Zhang, H. Cai, Services Computing, Springer, 2007.
[2] M.P. Papazoglou, Service-oriented computing: concepts, characteristics and directions, in: International

Conference on Web Information System Engineering, Springer, 2003, pp. 3e12.
[3] Y. Liu, A.H. Ngu, L.Z. Zeng, QoS computation and policing in dynamic web service selection, in:

Proceedings of the 13th International World Wide Web Conference, ACM, 2004, pp. 66e73.
[4] A.F. Huang, C.-W. Lan, S.J. Yang, An optimal QoS-based web service selection scheme, J. Inform. Sci.

179 (19) (2009) 3309e3322.
[5] M. Alrifai, T. Risse, Combining global optimization with local selection for efficient QoS-aware service

composition, in: Proceedings of World Wide Web Conference, ACM, 2009.
[6] D. Grigori, J.C. Corrales, M. Bouzeghoub, A. Gater, Ranking BPEL processes for service discovery, IEEE

Trans. Serv. Comput. 3 (3) (2010) 178e192.
[7] G. Meditskos, N. Bassiliades, Structural and role-oriented web service discovery with taxonomies in

OWL-S, IEEE. Trans. Knowl. Data Eng. 22 (2) (2010) 278e290.
[8] M.-H. Kuo, L.-C. Chen, C.-W. Liang, Building and evaluating a location-based service recommendation

system with a preference adjustment mechanism, Expert Syst. Appl. 36 (2) (2009) 3543e3554.
[9] Z. Zheng, H. Ma, M.R. Lyu, I. King, QoS-aware web service recommendation by collaborative filtering,

IEEE Trans. Serv. Comput. 4 (2) (2011) 140e152.
[10] S.X. Sun, J. Zhao, A decomposition-based approach for service composition with global QoS guarantees,

Inform. Sci. 199 (15) (2012) 138e153.
[11] P. Xiong, M. Zhou, A petri net approach to analysis and composition of web services, IEEE Trans. Syst.

Man Cybern. A Syst. Humans 40 (2) (2010) 376e387.
[12] Y. Lu, W. Wang, B. Bhargava, D. Xu, Trust-based privacy preservation for peer-to-peer data sharing,

IEEE Trans. Syst. Man Cybern. A Syst. Humans 36 (3) (2006) 498e502.
[13] H. Skogsrud, B. Benatallah, F. Casati, Model-driven trust negotiation for web services, Internet

Computing, IEEE 7 (6) (2003) 45e52.
[14] M. Kim, H. Choo, M.W. Mutka, H.-J. Lim, K. Park, On QoS multicast routing algorithms using

k-minimum steiner trees, Inform. Sci. 238 (20) (2013) 190e204.
[15] L. Layuan, L. Chunlin, A QoS multicast routing protocol for dynamic group topology, Inform. Sci. 169

(1) (2005) 113e130.
[16] S. Ran, A model for web services discovery with QoS, ACM SIGecom Exchanges 4 (1) (2003) 1e10.
[17] Z. Zheng, M. Lyu, I. King, WSRec: a collaborative filtering based web service recommender system, in:

Int’l Conf. on Web Services (ICWS ’09), IEEE, 2009, pp. 437e444.
[18] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, H. Mei, Personalized QoS prediction for web

services via collaborative filtering, in: Proc. Int. Conf. Web Serv., Salt Lake City, UT, 2007, pp.
439e446.

[19] Z. Zheng, H. Ma, M.R. Lyu, I. King, QoS-aware web service recommendation by collaborative filtering,
IEEE Trans. Serv. Comput. (2011) 140e152.

[20] X. Chen, Z. Zheng, X. Liu, Z. Huang, H. Sun, Personalized QoS aware web service recommendation and
visualization, IEEE Trans. Serv. Comput., IEEE.

Web Service Quality of Service and Its Prediction 77

[21] W. Lo, J. Yin, S. Deng, Y. Li, Z. Wu, Collaborative web service QoS prediction with location-based
regularization, in: Proc. of ICWS, IEEE, 2012, pp. 464e471.

[22] Y. Koren, R.M. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, IEEE Comp.
42 (8) (2009) 30e37.

[23] D. Goldberg, D. Nichols, B. Oki, D. Terry, Using collaborative filtering to weave an information tapestry,
Commun. ACM 35 (12) (1992) 61e70.

[24] X. Su, T.M. Khoshgoftaar, A survey of collaborative filtering techniques, in: Advances in Artificial
Intellegence Hindawi Publishing Corp, 2009, Volume, 2009, pp. 1e20.

[25] B. Sarwar, G. Karypic, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms,
in: Proc. Int. World Wide Web Conf., Hong Kong, China, 2001, pp. 285e295.

[26] L. Chen, Y. Feng, J. Wu, Collaborative QoS prediction via feedback-based trust model, in: Proc. of IEEE
SOCA, IEEE, 2013, pp. 206e213.

[27] Z. Zheng, Y. Zhang, M.R. Lyu, Distributed QoS evaluation for real-world web services, in: Proc. of
International Conference on Web Services (ICWS), IEEE, 2010, pp. 83e90.

[28] Y. Koren, Factor in the neighbors: scalable and accurate collaborative filtering, ACM Trans. Knowl.
Discov. Data (2010).

[29] Y. Koren, R. Bell, Advances in collaborative filtering, in: Recommender Systems Handbook, Springer,
2011.

[30] W. Lo, J. Yin, S. Deng, Y. Li, Z. Wu, An extended matrix factorization approach for QoS prediction in
service selection, in: Proc. of IEEE SCC, IEEE, 2012, pp. 162e169.

[31] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, H. Mei, Personalized QoS prediction for web services via
collaborative filtering, in: IEEE International Conference on Web Services (ICWS), IEEE, 2007.

[32] Y. Koren, Collaborative filtering with temporal dynamics, Commun. ACM (2010).
[33] Y. Xu, J. Yin, W. Lo, Z. Wu, Personalized location-aware QoS prediction for web services using

probabilistic matrix factorization, in: Proc. of WISE, Springer, 2013, pp. 229e242.
[34] X. Chen, X. Liu, Z. Huang, H. Sun, RegionKNN: a scalable hybrid collaborative filtering algorithm for

personalized web service recommendation, in: Proc. of ICWS, 2010, pp. 9e16.

78 Chapter 3

CHAPTER 4

Service Discovery
Chapter Outline
4.1 Introduction 79

4.2 Related Work 81
4.2.1 Interface-Level Service Discovery 81

4.2.2 Behavioral-Level Service Discovery 82

4.3 Interface-Level Service Discovery 84
4.3.1 Framework of Web Services Discovery 85

4.3.2 Web Services Clustering based on WSDL and Tags 86

4.3.2.1 Content 86

4.3.2.2 Type 87

4.3.2.3 Message 88

4.3.2.4 Port 88

4.3.2.5 Service name 88

4.3.2.6 Tag 89

4.3.3 Tag Recommendation 89

4.3.3.1 Vote 90

4.3.3.2 Sum 91

4.3.4 TiTan: A Search Engine for Web Services Discovery 91

4.4 Behavior Level Service Discovery 93
4.4.1 Behavioral Perspectives of Services 94

4.4.2 Formalizing Services Behavior with p-Calculus 96

4.4.2.1 Atomic operation involving message exchanges 96

4.4.2.2 Execution sequence among operations 97

4.4.3 Analyzing Behavioral Simulation of Services 99

4.4.4 Implementation of Reasoning on Services Behavioral Equivalence 102

4.5 Summary 103

References 104

4.1 Introduction

Web services are self-contained, self-describing, modular applications that can be

published, located, and invoked across the web. The emergence of technologies and

standards for web services has promoted the wide application of web service in many

different areas, such as business, finance, and tourism. As a result, published services have

mushroomed over the Internet, bringing about a pressing challenge to locate target

services in a quick, accurate, and efficient way.

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00004-7

Copyright © 2015 Elsevier Inc. All rights reserved. 79

Web service discovery is aimed at finding and selecting the target services that satisfy

users’ needs and constraints in the functional interface, interactive behavior, and

nonfunctional attributes, through appropriate service-matching criteria and methods,

from one or more service registries over a distributed network. In this process, a

primary step is to analyze and compare service descriptions and service requests based

on certain matching criteria, checking whether it meets and matches the needs of users.

This step is also called service matchmaking. Web service discovery and service

matching are closely related; the former is often built on the basis of the latter. Early

web service description documents are based on natural language, and the description of

service functionality is ambiguous in semantics, while the corresponding service

discovery method is based on keyword matchmaking, which seriously affects the

discovery recall rate and necessary precision.

The integration of semantic technology and web services technology is an effective solution

to accurate and automatic service discovery. By adding machine-understandable semantic

information to service descriptions and service requests, the interfaces, functionality

interactions, etc. of a service can be exactly expressed, and the intrinsic relationship among

messages, interface, and services can be reasoned, so an automatic, intelligent, accurate

semantic web service discovery can be achieved. Among them, the semantic description

models and languages of web services and service requests are the modeling basis of

semantic web service discovery; various levels of service-matching criteria and methods,

which are critical processes of semantic web service discovery, and services ranking and

selection represent further optimization approaches for semantic web service discovery

results. In addition, there are many important research issues in service discovery, e.g., how

to store, organize, and manage vast amounts of web services in centralized, distributed, and

hybrid registries to improve the performance of the service discovery, help to define the

degree of matchmaking between service descriptions and service requests, and help to

design appropriate ranking and selection mechanisms.

A service can be viewed as a primitive, in decomposable process, which is referred to

as the “black-box” view. In this perspective, a service exposes its input and output

interfaces to the outside (such as the service description languages WSDL [1] and

OWL-S [2]). The service discovery for atomic services is always called “interface-level

service discovery,” and its criteria is that a service advertisement matches a request

when all the outputs of the request are matched by the outputs of the advertisement, and

all the inputs of the advertisement are matched by the inputs of the request. The criteria

guarantees that the matched service satisfies the needs of the requester and that the

requester provides to the matched service all the inputs that are needed to operate

correctly. A forward approach is that by sequentially scanning all the services in the

registry, each service is matched against the request. Each matching between the service

and the request can be divided into matching on inputs and matching on outputs. We

80 Chapter 4

may foresee that much time may be wasted on matching many irrelevant services when

there are millions of services kept in the registry.

A service can also be viewed as a process flow composed of a set of operations linked

with control constructs, which is what we call the transparent view. In this perspective,

services expose not only the interfaces, but also the behavior rules, such as the message

exchanges and the state transitions (service model of OWL-S). The service discovery

strategies for composite services are always called “behavioral-level service discovery,”

and its criteria is that a service matches a request on behavior, when the requested

operations are included by the operations of the service, and the invoking order between

the operations within the service is compliant with the requested behavior.

In the following sections, we will first review the related work on service discovery,

including interface-level and behavioral-level service discovery in Section 4.2, and then

introduce our work on interface-level and behavioral-level service discovery in Sections

4.3 and 4.4, respectively. For our work on interface-level service discovery, we propose to

use web service clustering and tag recommendation to improve the effectiveness of web

service discovery. Specifically, both WSDL documents and tags of web services are used

for clustering, while tag recommendation is adopted to handle some inherent problems of

tagging data, e.g., uneven tag distribution and noise tags. For our work on behavioral-level

service discovery, we propose to formalize the behavior of a web service by p-calculus.

Based on the formalization, we introduce two notions of behavioral substitution of web

services, strong and weak simulation. Furthermore, we propose a derivative approach to

analyzing the behavioral substitution of services according to the given notions, which is

implemented based on an existing tool of p-calculus. The proposed approach takes

advantage of the formalization and theory of p-calculus, so that the formalized services

can be naturally analyzed and the behavioral substitution of them can be easily

determined. Finally, a conclusion is given in Section 4.5.

4.2 Related Work
4.2.1 Interface-Level Service Discovery

Much of the work done in service discovery concentrates on the matchmaking of service

interfaces [3e6]. This includes the lexical and semantic match of input/output messages

and operations. The most representative work is the solution proposed by Paolucci and

Sycara, which is able to represent functionalities of web services [3]. In their

matchmaking algorithm, they differentiate among four degrees of matching: exact, plug in,

subsume, and fail. The matchmaking of a service advertisement is separated into two

parts: outputs of the request are matched by that of the advertisement, and inputs of the

advertisement are matched by that of the request. Complex structures of services are not

considered in these discovery approaches.

Service Discovery 81

Since 2006, a lot of efforts have been made in describing the internal structures of

services, evidenced by the emergence of Web Services Conversation Language (WSCL)

[7] and Web Services Choreography Description Language (WS-CDL) [8]. WSCL allows

the abstract interfaces of web services, i.e., the business-level conversations or public

processes supported by a web service. WS-CDL describes collaborations of web services

participants by defining, from a global viewpoint, their common and complementary

observable behavior, by which ordered message exchanges result in accomplishing a

common business goal. However, the capabilities of formalizations are only used for

defining the languages itself, rather than exploring them to draw conclusions over the

semantic of descriptions.

Recently, web service clustering has proved to be an effective solution to boost the

performance of the web service discovery. The most widely used approach for it is

similarity based, including (1) semantic based and (2) nonsemantic based. For the

calculation of nonsemantic similarity between web services, WSDL-based approaches are

the most representative type [9e11]. Content, context, host name, and service name are

extracted as four main features from the WSDL document for web services clustering.

Although WSDL-based techniques are widely adopted, the performance is rather limited

because only WSDL documents are used. With the development of the web service

community, more and more tags are annotated to web services by users. These tags can be

used to enhance the accuracy of service discovery. However, limited work has exploited

tagging data for service discovery. Thus, we propose to use both tagging data and WSDL

documents to improve the performance of web service clustering. Moreover, we propose

tag recommendation strategies to handle another performance limitation caused by the web

services with few tags.

4.2.2 Behavioral-Level Service Discovery

During the past decade, various efforts have been devoted to explore the equivalence

between web services at the behavioral-level. We briefly mention some of these proposals,

focusing on those which use formal methods for the analysis of the behavioral equivalence

of web services.

The most popular formal theories used for the formalization of web services include

automata, Petri nets, and p-calculus. Automata is an effective model to describe a system

with state transitions enabled by actions, while Petri nets and p-calculus are better at

describing the control constructs of a process; hence the latter two are more suited to

formalize composite services. Petri nets provide a series of property detections of a

process such as deadlock and reachability detections, while p-calculus provides a

bisimulation theory, which can be directly used for behavioral comparison between two

processes. Hence we adopt p-calculus to formalize services in this chapter.

82 Chapter 4

Sudhir Agarwal and Rudi Studer [12] combined the power of description logics and

p-calculus to model static (schema and data) and dynamic (behavior) aspects of a web

service. Their formalization can express the functionality of a service clearly, but it is

relatively weak in expressing the working process of a service, only with the support of

sequence and conditional choice. Frank Puhlmann and Mathias Weske [13] modeled a web

service originally in BPMN with p-calculus. They focused on the representation of

choreography of multiple activities by using link passing mobility. Gero Decker et al. [14]

proposed to use p-calculus for formally representing service interaction patterns, which is

summarized by Barros et al. [15]. Roberto Lucchi and Manuel Mazzara [16] proposed to

model a web service in WS-BPEL 2.0 with a lightweight extension of p-calculus. They

focused on the modeling of long-running transactions and compensations for coping with

error handling in web services with the added transactional construct. Antonio Brogi et al.

[17] proposed to model a web service in WSCI with p-calculus. They further modeled all

the control constructs in WSCI, including all, sequence, loop, timeout, exception, switch,

and choice. Compared with their work, we focus on modeling control constructs of a

service process, and we use the idea of creating private channels as triggers to model all

control constructs, which makes all control flows within a service process as internal

actions, being invisible from the outside.

There have been many notions of substitutability/replaceability/equivalence for web services.

A. Wombacher et al. [18] proposed to formalize a service with automata extended by

logical expressions associated to states and the formalization that explicates a message

sequence that allows for more precise matchmaking than current approaches, which are

limited to matching only individual messages. However, it turns out to be a trace-based

equivalence, which is too weak.

Lucas Bordeaux et al. [19] proposed two types of substitutability: context-dependent and

context-independent substitutability, in which the former requires service N0, which is

compatible with a particular M that is compatible with N; and the latter requires N0, which
is compatible with any M that is compatible with N. Benatallah et al. [20] proposed four

classes of replaceability between protocols, namely protocols equivalence, protocol

subsumption, protocol replaceability with respect to a client protocol, and protocol

replaceability with respect to an interaction role. Martens [21] defined the notion of

equivalence, which is based on the usability of a module: a module N0 simulates a module

N if for each M that the composition of N and M is a weak sound, the composition of N0

and M is also a weak sound; N0 and N are equivalent if N0 and N simulate each other.

Bonchi et al. [22] proposed to model a web service by consume-produce-read nets and

defined the notion of a saturated bisimilarity between two CPR nets, checking their

similarity on the interactions with one’s CPR context, which represents a possible

environment in which a service can be embedded. However it turns out to be quite hard to

Service Discovery 83

automatically analyze equivalence between web services according to these notions,

because it is difficult to exhaustively enumerate M.

Researchers continue in-depth discussions on a clear and decidable notion of equivalence

for web services. Jyotishman Pathak et al. [23] determined substitutability of a service by

reducing it to the satisfaction of the quotient mu-calculus formulas. Christian Stahl et al.

[24] proposed three notions of substitutability for services and further presented a decision

algorithm for substitutability based on the concept of an operating guideline, which is an

abstract representation of all environments with which a given service can cooperate. In

[25], they further extended the notion of compatibility that requires that a certain set of

activities is not dead and correspondingly extended the notion of operating guidelines with

a global constraint.

Compared to their work, we take advantage of the formalization and theory of p-calculus,

and the behavioral substitution between formalized services, which can be automatically

analyzed by the modified bisimulation theory of p-calculus.

4.3 Interface-Level Service Discovery

A web service discovery can be achieved by two main approaches: Universal Description

Discovery and Integration (UDDI) and web service search engines. Recently, the

availability of web services in UDDI has decreased rapidly as many web service providers

decided to publish their web services through their own website instead of using public

registries. Al-Masri et al. showed that more than 53% of the UDDI business registry

registered services are invalid, while 92% of web services cached by web service search

engines are valid and active. Compared with UDDI, using search engine to search and

discover web services becomes more common and effective.

Searching for web services using web service search engines is typically limited to

keyword matching on names, locations, businesses, and buildings defined in the web

service description file. If the query term does not contain at least one exact word,

such as the service name, the service is not returned. It is difficult for users to be

aware of the concise and correct keywords to retrieve the satisfied services. The

keyword-based search mode suffers from low recall, in which results containing

synonyms or concepts at a higher (or lower) level of abstraction describing the same

service are not returned.

To handle the drawbacks of traditional web service search engines, some approaches are

proposed. Elgazzar and Liu et al. [9,10] proposed to handle the drawbacks of traditional

search engines by clustering web services based on WSDL documents. In their opinion,

if web services with similar functionality are placed into the same cluster, more relevant

web services could be included in the search result. In this chapter, we propose to

84 Chapter 4

improve the performance of web service clustering for the purpose of more accurate web

service discovery.

In recent years, tagging, the act of adding keywords (tags) to objects, has become a

popular way to annotate various web resources, e.g., web page bookmarks, online

documents, and multimedia objects. Tags provide meaningful descriptions of objects and

allow users to organize and index their contents. Tagging data was proved to be very

useful in many domains, such as multimedia, information retrieval, data mining, and so

on. Recently, a real-world web services search engine Seekda allowed users to manually

annotate web services using tags. In our study, we use both WSDL documents and tags

and cluster web services according to a composite similarity generated by integrating tag-

level similarity and feature-level (features extracted from WSDL documents) similarity

between web services.

4.3.1 Framework of Web Services Discovery

Figure 4.1 shows our proposed framework for web service discovery. This framework

consists of two parts: (1) data preprocess and (2) service discovery. In the first part,

WSDL documents and tags of web services are slowly taken from the Internet and used

for clustering. Similar to Elgazzar’s work [9], we extract five important features from

WSDL documents, i.e., content, type, message, port, and service name. After obtaining

these five features and tags of web services, we use our proposed WTCluster approach

Internet

Crawl

WSDL

Tag

Extrac onFeature

Content

Port

Type

Name

Message

Tag

WTClus
Clustered results

Web services search
engine

Data preprocess Services discovery

Response
Query

Figure 4.1
Framework for web service discovery.

Service Discovery 85

to cluster web services. Since the data preprocess and clustering process is done offline,

the efficiency is not a big concern, whereas the accuracy is more important. In the

process of service discovery, the user first sends a query term to the web service search

engine, and then the search engine returns an expanded search result by retrieving the

clustered results.

4.3.2 Web Services Clustering based on WSDL and Tags

As discussed above, we extract five features (i.e., content, type, message, port, and service

name) from the web service’s WSDL document and use these five features and tags to

cluster web services. In this section, we describe the detailed process of feature extraction,

feature-level similarity computation, and tag-level similarity computation.

4.3.2.1 Content

The WSDL document, which describes the function of the web service, is actually an

XML style document. Therefore, we can use some Information Retrieval approaches to

extract a vector of meaningful content words that can be used as a feature for similarity

computation. Our approach for building the content vector consists of four steps:

1. Building original vectordIn this step, we split the WSDL content according to the

white space to produce the original content vector.

2. Suffix strippingdWords with a common stem will usually have the same meaning, e.g.,

connect, connected, connecting, connection, and connections all have the same stem,

connect. For the purpose of convenient statistics, we strip the suffix of all these words

that have the same stem by using a porter stemmer. Therefore, after the step of suffix

stripping, a new content vector is produced, in which words such as connected and

connecting are replaced with the stem connect.

3. PruningdIn this step, we propose to remove two kinds of words from the content

vector. The first kind of word to be removed is an XML tag. For example, the

words s:element, s:complexType, and wsdl:operation are XML tags that are not

meaningful for the comparison with a content vector. As the XML tags used in a

WSDL document are predefined, it is easy to remove them from the content vector.

The second kind of word to be removed is a function word, which can be distin-

guished from content words using a Poisson distribution to model word occurrence

in documents.

4. RefiningdWords with very high occurrence frequency are likely to be too general to

discriminate between web services. After the step of pruning, we implement a step of

refining, in which words with too general meanings are removed. Clustering-based

approaches were adopted to handle this problem in some related work. In our work,

we choose a simple approach by computing the frequencies of words in all WSDL

documents and setting a threshold to decide whether a word has to be removed.

86 Chapter 4

After the above four steps, we can obtain the final content vector. In this chapter, we use

Normalized Google Distance (NGD) to compute the content-level similarity between two

web services. Given web services s1, s2, and their content vector contents1, contents2, the

detailed equation for content-level similarity computation is as follows:

Simcontentðs1; s2Þ ¼
P

wi ˛ contents1

P
wj ˛ contents2

simðwi;wjÞ
jcontents1 jjcontents2 j

in which jcontents1j means the cardinality of contents1, wi means the word in contents1, and

the equation for computing the similarity between two words is as follows:

simðwi;wjÞ ¼ 1� NGDðw1;w2Þ
In the above equation, we compute the similarity between two words using NGD based on

the word co-existence in web pages. Due to space limitation, we don’t introduce the detailed

computation of NGD. Because the number of words left in the content vector is limited after

the above four steps, the time cost for content-level similarity computation can be accepted.

4.3.2.2 Type

In a WSDL document, each input and output parameter contains a name attribute and a

type attribute. Sometimes, parameters may be organized in a hierarchy by using complex

types. Due to different naming conventions, the name of a parameter is not always a

useful feature; whereas the type attribute, which can partially reflect the service function,

is a good candidate feature.

As Figure 4.2 shows, the type of element ProcessForm (we name it type1) is a complex

type that has five parameters: FormData (string), FormID (int), GroupID (int),

Figure 4.2
Types, message, port, service name in WSDL document.

Service Discovery 87

szPageName (string), and nAWSAccountPageID (int). If another service s2 has a complex-

type type2 that also contains two string-type parameters and three int-type parameters, we

say type1 and type2 are matched. Specifically, in the process of type matching, the order of

parameters in the complex type is not considered. We therefore extract the defined types,

count the number of different types in the complex type, and compute the type-level

similarity between two services using the following equation:

Simtypeðs1; s2Þ ¼ 2�Matchðtypes1; types2Þ
jtypes1 j þ jtypes2 j

in which type1 means the set of defined types in the s1’s WSDL document,

Match(types1,types2) means the number of matched types between these two services, and

jtypes1j means the cardinality of types1.

4.3.2.3 Message

Message is used to deliver parameters between different operations. One message contains

one or more parameters, and one parameter is associated with one type, as discussed

above. Message definition is typically considered as an abstract definition of the message

content, because the name and type of the parameter contained in the message are

presented in the message definition. Figure 4.2 shows two simple message definitions. In

the definition 1, the message named as RequestPagePasswordHttpPostIn contains one

parameter FormData, which is a string type. In the definition 2, the message

RequestPagePasswordPostOut contains one parameter Body, the type of which is a

complex type named as tns:boolean. Similar to the computation of type-level similarity,

we match the messages’ structures to compute the message-level similarity between web

services.

4.3.2.4 Port

The portType element combines multiple message elements to form a complete one-way or

round-trip operation. Figure 4.2 shows an example of portType SendCustomFormHttpGet,

which contains some operations (due to space limitation, we only list one operation in this

portType). Because the portType consists of some messages, we can get the match result of

portType according to the match result of the messages. Similar to the computation of

type-level and message-level similarity, we compute the port-level similarity.

4.3.2.5 Service name

Because the service name (sname) can partially reflect the service function, it is an

important feature in a WSDL document. Before computing the sname-level similarity, we

first implement a word segmentation process for the service name. For example, the service

name SendCustomForm in Figure 4.2 can be separated into three words Send, Custom, and

Form. A simple version of word segmentation is splitting the service name according to the

88 Chapter 4

capital letters. However, the performance of this simple version is not satisfactory due to

different naming conventions. In this chapter, we first use this simple version to split the

service name and then manually adjust the final result. After the process of word

segmentation, s1s’ name SNames1 can be presented as a set of words. Similar to content-

level similarity, we compute the sname-level similarity between web services.

4.3.2.6 Tag

The tagging data of web services describes the function of web services or provides

additional contextual and semantic information. In this chapter, we propose to improve the

performance of traditional WSDL-based web service clustering by using the tagging data.

Because a web service s1 contains three tags t1, t2, t3, we name the tag set of s1 as

T1 ¼ {t1, t2, t3}. According to the Jaccard coefficient method, we can calculate the tag-

level similarity between two web services s1 and s2 as follows:

Simtagðs1; s2Þ ¼ jT1XT2j
jT1WT2j

in which jT1XT2j means the number of tags that are both annotated to s1 and s2, and

jT1WT2j means the number of unique tags in set T1 and T2.

In the proposed approach, we use a K-Means clustering approach to cluster web services.

K-Means is a widely adopted clustering algorithm, which is simple and fast. The drawback

of this algorithm is that the number of clusters has to be predefined manually before

clustering. According to the six similarities calculated above, the composite similarity

CSim(s1,s2) between web services s1 and s2 is as follows:

CSim
�
s1; s2

� ¼ �
1� l

�
Simwsdl

�
s1; s2

�þ lSimtag

�
s1; s2

�
in which l is the weight of the tag-level similarity, and the Simwsdl(s1,s2) is the WSDL-level

similarity that consists of five feature-level similarities between two services. The range of

the value of l is [0,1]. We measure the WSDL-level similarity between web services as

follows:

Simwsdl

�
s1; s2

� ¼ w1Simcontent

�
s1; s2

�þ w2Simtype

�
s1; s2

�þ w3Simmessage

�
s1; s2

�
þ w4Simport

�
s1; s2

�þ w5Simsname

�
s1; s2

�
in which w1,w2,w3,w4,w5 are the user-defined weights of Content, Type, Message, Port, and

Service Name, respectively. In particular, w1 þ w2 þ w3 þ w4 þ w5 ¼ 1.

4.3.3 Tag Recommendation

After examining the tagging data slowly taken from the Internet, we find that the

distribution of tags is not uniform. Some web services have more than 10 tags, while some

only have one or two tags. As we compute the tag-level similarity by matching the

Service Discovery 89

common tags between two services, the web services with few tags reduces the value of

tag-level similarity. In this section, we propose to handle this problem by recommending a

set of relevant tags to the web services with fewer tags.

Figure 4.3 shows the overview of the tag recommendation process. From this figure, we

find that the process of tag recommendation can be divided into two steps. Specifically,

we collect all annotated tags before the process of tag recommendation. In the first step,

we first compute the co-occurrence between the user-defined tags and any other tags, and

then select the top-k co-occurrence tags of each user-defined tag as the candidate tags. In

Figure 4.4, the number of k is set as 4, and the top-4 co-occurrence tags of tourism are

hotel, company, flight, and booking. There are some approaches to compute the

co-occurrence, and we propose to use the Jaccard coefficient method in this section. The

detailed equation is as follows:

Co
�
ti; tj

� ¼
��tiXtj

����tiWtj
��

in which jtiXtjj means the number of web services that have both ti and tj, and jtiWtjj
means the number of web services that have ti or tj. After the first step, for each user-

defined tag t˛ T (T is the set of user-defined tags), we can get a list of candidate tags Ct.

In the second step, we rank the candidate tags and select the top-k tags as the

recommended tags. In this chapter, we propose two strategies to rank candidate tags.

4.3.3.1 Vote

In the vote strategy, we use the idea of voting to compute a score for each candidate tag

c˛C (C is the set of all candidate tags). Given a candidate tag c, we first use the

following equation to compute the value of vote(t, c) between tag c and each user-defined

tag t˛ T:

voteðt; cÞ ¼
�
1 if c˛Cu

0 otherwise

tourismCar rental

User defined tags

Tag

Co-occurrence

Candidate tags

Car rental:

Tourism:

car, automobile,
company, business

hotel, company, flight,
booking

Tag

Rank

Recommended tags

business,
company,
booking,
car

Figure 4.3
Example of the tag recommendation process.

90 Chapter 4

After obtaining the voting result from each user-defined tag, we count the voting results to

get the final score by using scoreðcÞ ¼ P
t˛ Tvoteðt; cÞ. After obtaining all final scores, we

rank the candidate tags to get the top-k recommended tags.

4.3.3.2 Sum

In the sum strategy, we compute the score of the candidate tag c by summing the value of

the co-occurrence between c and each user-defined tag t. The detailed equation is as

follows:

scoreðcÞ ¼
X
t˛T

Coðt; cÞ

4.3.4 TiTan: A Search Engine for Web Services Discovery

Based on above studies about service clustering, we construct a real web service search

engine, which consists of 15,000þ web services and 500,000þ mobile applications.

Figure 4.4 shows the basic architecture of our proposed Titan system. The module of

Figure 4.4
Architecture of Titan search engine.

Service Discovery 91

service clustering is used to do web service clustering for web service discovery, while

the module of tag recommendation is used to smooth the tagging data used in the

process of service clustering. In the module of service clustering, we first extract

features (i.e., content, type, message, port, and name) from WSDL documents and

compute the corresponding feature-based similarity between web services. Before

computing tag-based similarities, the module of tag recommendation has to be

implemented, in which tag mining, tag co-occurrence, and semantic relevance are used.

After the tagging data is smoothed by processing tag recommendation, we combine

feature-based similarities with tag-based similarities to cluster web services. In the

realization of the Titan system, we build the indexing of these clustered web services to

improve the efficiency of the web service discovery. When a web service query is

coming, we not only return the web services that are mostly semantic related to the

query, but also return some services in the same cluster for the purpose of retrieving

more related services.

The Titan search engine is an online variable; users can use the Titan search engine to

discover web services by visiting http://ccnt.zju.edu.cn:8080. Figure 4.5 shows the

Figure 4.5
Search result page of Titan.

92 Chapter 4

search result page when a user uses weather as a query term. From Figure 4.5, we can

find that each search result entity contains four parts: (1) web service name; (2) service

description; (3) tags given by users; and (4) service provider. The clustering result of

the retrieved web services is shown in the division named Filter by Clustering in the

right side of the search result page. Specifically, we use a unique color to represent one

cluster. When users click one color block in the Filter by Clustering division, web

services in the corresponding cluster will be removed from the search result. The

service provider is also used as a metric to filter web services in the search result. In

the division of Filter by Provider, there is a list of service providers. Once a user clicks

the symbol of one service provider, web services provided by this provider will be

removed from the search result.

4.4 Behavior Level Service Discovery

A web service can be any piece of software that is published, found, and universally

invoked through the web according to a series of XML-based standard protocols, such as

SOAP, UDDI, and WSDL.

Traditional service description languages such as WSDL are appropriate to describe

simple services that are invoked by other services within once interaction. However, it

cannot capture the ordering of message exchanges in multiple interactions between

composite services and others. Various proposals have been put forward to feature such

information, namely the behavior of web services. The representative ones include OWL-S

and WS-CDL. Although they place different emphases on how to describe service

behavior, they all try to provide the needed information for priori analysis of what will

happen when a service is interacting with others to ensure successful interactions in the

services invocation and composition.

A necessary behavioral analysis of web services is to identify whether a service can

substitute another service not only in functionality but also in interacting behavior under

some context of a composition. Such analysis can be applied when a service becomes

unavailable so that the composition has to be updated. To achieve such analysis, many

researchers model web services with formal theories, such as automata, Petri nets, and

process calculus. Based on the formalization, different notions of substitution and

corresponding analysis approaches have been used for reference and extended from these

theories. However, most of them stay at a conceptual layer, in which the behavioral

substitution of services is still hard to determine according to the given notions. In this

chapter, we propose to take advantage of formalization and theory of p-calculus [26], so

that the formalized services can be analyzed and their behavioral substitution can be

automatically determined.

Service Discovery 93

4.4.1 Behavioral Perspectives of Services

Suppose there is a French dictionary service1 P as shown in Figure 4.6. It returns the

meaning of a French word in French. It is a composite process using an English

dictionary2 and a BabelFish translator3 service. The given word is first translated from

French to English, then its meaning is obtained from the English dictionary, and the result

is translated back to French.

According to different roles involved in a composite service, Figure 4.1 can be divided into

three parts, client, process, and implementation, in which client is the potential consumer

of the composite service, process is the working process of the service, and implementation

is all atomic services to be invoked, including internal and third-party services.

There is another French dictionary service, P1. It also returns the meaning of a French

word in French. As Figure 4.7 shows, its realization is to invoke an actual French

dictionary service R. Specifically speaking, it passes the French word received from client

to R, waits until R finishes its work, and then passes back the response of R to the client.

P1 is consistent with P in the interface with respect to the client; however, it cannot

substitute P in behavior because it cannot interact with the atomic services that ought to

be invoked by P in a specified order.

French dictionary

Perform translate

Perform English
dictionary

FrenchtoEnglish

Perform translate
EnglishtoFrench

BableFish
translator

English
dictionary

BableFish
translator

Figure 4.6
A French dictionary service, in which F stands for French and E stands for English.

1 Its OWL-S description can be found at http://www.mindswap.org/2004/owls/1.1/FrenchDictionary.owl.
2 Its OWL-S description can be found at http://www.mindswap.org/2004/owl-s/1.1/Dictionary.owl.
3 Its OWL-S description can be found at http://www.mindswap.org/2004/owl-s/1.1/BabelFishTranslator.owl.

94 Chapter 4

Consider another more French dictionary service, P2. It refers to three atomic services,

including a translator, an English dictionary, and a Chinese dictionary service. As

Figure 4.8 shows, its realization is translate the French word received from its client into

English or Chinese randomly, and if it is translated into English, obtain its English

meaning by invoking the English dictionary service; otherwise, get its Chinese meaning by

invoking the Chinese dictionary service; and finally, translate the meaning of the word,

either in English or Chinese, into French.

P2 is consistent with P in the interface with respect to the client, and it can substitute P in

behavior because it can interact with the atomic services that are invoked by P in a

specified order when the input French word is translated into English.

R
in

out

in

out

P
TA

PAP

Figure 4.7
French dictionary service P1.

P

P0

PA

PB

PePP

P

P

PP

Pin

B_outF

Chinese
dic onary

BableFish
translator

(in, F, E/C)

B_outE/B_outC

B_outC

D_out

(C_out,C,F)/
(D_out,E,F)

TA

BableFish
translator

English
dic onary

C_out

C_out

B_outC

B_outE

B_outE

D out

B_outE

D_outD out

D_out

B_outF

OR

OR

Figure 4.8
French dictionary service P2.

Service Discovery 95

In the following section, the services will be modeled in p-calculus, a clear definition of

behavioral substitution will be introduced as being in the analysis above, and a formal

approach to analyzing services behavior will be illustrated. In a word, we aim to automate

the behavioral substitution analysis of web services in a formal approach.

4.4.2 Formalizing Services Behavior with p-Calculus

p-calculus, proposed by Robin Milner, is a kind of algebra process in which the processes

interact by sending communication links to each other. As the complexity of web services

increases, a web service can actually be deemed as a concurrent process composed by a

set of operations, in which operations interact with each other by receiving and sending

messages. It is natural for us to adopt p-calculus to express service behaviors. Also, there

are a series of algebraic theories in p-calculus, such as bisimulation and congruence,

which can help us analyze service behaviors. To introduce p-calculus is beyond the scope

of this chapter; please refer to related literature for details.

Service behavior refers to the dynamic properties of a web service, which includes

atomic operations involving message exchanges that can be performed by the service,

and the constraints between operations of a service that define the allowed order of

execution. Accordingly, we will illustrate how to express service behavior with

p-calculus in two parts.

4.4.2.1 Atomic operation involving message exchanges

An operation in a service corresponds to a basic p-calculus process. To model a single

operation involving message exchanges with p-calculus, we can map operation names to

channels, which are used to communicate with other services, and inputs/outputs to

messages transmitted through channels. Four transmission primitives of operations are

defined in WSDL: one-way, request-response, solicit-response, and notification. For each

transmission primitive, operations are modeled as shown in Table 4.1.

Here we use cs to indicate the communication channel between service s and its partner

services. More concretely, cs? stands for input channel, cs! stands for output channel, and

the data values transmitted through cs? and cs! are input parameters I and output values O,

Table 4.1: Model service operations with p-calculus

Operation Type P-Calculus Expression

One-way cs?(i1, ., in).s.0
Request-response cs?(i1, ., in).s.cs!(o1, ., om).0
Solicit-response cs!(i1, ., in).cs?(o1, ., om).0
Notification cs!(i1, ., in).0

96 Chapter 4

respectively. For operations of request-response and one-way, they are entities that realize

some functions, so they are always waiting to be invoked by others, and whenever they

receive invoking request with inputs, they will do some internal work and finally return

corresponding outputs (or no outputs). For operations of solicit-response and notification,

they are endpoints that invoke some function, so they first send invoking requests with

necessary data to some serving operations and then wait for the returned answer (or no

answer).

Take the following translator service as an example. It translates text from one language to

another language. The service has three inputs: the text to be translated, its original

language, and the target language. A segment of the service description is shown as

follows, and we can translate it into Eqn (4.1) according to the formalizing rules stated

above.

<process:AtomicProcess rdf:ID=“BabelFishTranslator”>
<process:hasInput rdf:resource=“#InputString”/>
<process:hasInput rdf:resource=“#InputLanguage”/>
<process:hasInput rdf:resource=“#OutputLanguage”/>
<process:hasOutput rdf:resource=“#OutputString”/>
<process:hasPrecondition rdf:resource=“#SupportedLanguagePair”/>

</process:AtomicProcess>

PSBhcSB?
�
InputString; InputLanguage;OutputLanguage

�
:�

SupportedLanguagePair ¼ T
�
s:cSB !

�
OutputString

�
: 0

(4.1)

4.4.2.2 Execution sequence among operations

In a composite service, operations interact with each other, and they constitute a process

by sequence, parallel, choice, or other control constructs. In this chapter, we focus on

basic control patterns to show how an execution sequence among operations can be

formalized by p-calculus. The basic patterns include sequence, choice split, parallel split,

choice merge, and parallel merge.

Sequence: If A and B are expressed as PAha*.0 and PB, to formalize that B can only be

executed after A finishes, and A may pass data (x1, ., xn) to B, we create a private

channel for A and B named sigAB as a trigger to B, the dataflow (x1, ., xn) from A to B is

represented as the data through channel sigAB. Hence, it can be translated into Eqn (4.2):�
vsigAB

��
a�:sigAB!

�
x1;.; xn

�
0
����sigAB?�x1;.; xn

�
:PB

�
(4.2)

Choice Split: If A, B, and C are expressed as PAha*.0, PB and PC, to formalize a choice

split from A to B or C, we create a private channel for A, B, and C named sigABC as a

trigger from A to both B and C, and the received data (x1, ., xn) from A is used to

Service Discovery 97

calculate the preconditioned B and C to decide which operation will be executed. It can be

translated into Eqn (4.3): �
vsigABC

��
a�:sigABC!ðx1;.; xnÞ: 0����sigABC?�x1;.; xn

�
:
��
exp1 ¼ T

�
PB þ �

exp2 ¼ T
�
PC

�� (4.3)

Parallel Split: If A, B, and C are expressed as PAha*.0, PB and PC, to formalize a parallel

split from A to B and C, we create a private channel for the two of A and B named sigAB,

acting as a trigger to B with data(x1, ., xn), and another one for the two of A and C named

as sigAC, acting as a trigger to C with data(y1, ., ym). It can be translated into Eqn (4.4):�
vsigAB; vsigAC

���
a�:

�
sigAB!

�
x1;.; xn

�����sigAC!�y1;.; ym
��
:0
�

����sigAB?ðx1;.; xnÞ:PB����sigAC?�y1;.; ym
�
:PC

� (4.4)

Choice Merge: If A, B, and C are expressed as PAha*.0, PBhb*.0, and PC, to formalize

a choice merge from A or B to C, we create a private channel for A, B, and C named

sigABC, along which A passes out (x1, ., xn), B passes out (y1, ., yn), and C chooses

internally which to receive. It can be translated into Eqn (4.5):�
vsigABC

��
a�:sigABC!ðx1;.; xnÞ0

����b�:sigABC!�y1;.; yn
�
:0����sigABC?�z1;.; zn

�
:PC

� (4.5)

Parallel Merge: If A, B, and C are expressed as PAha*.0, PBhb*.0, and PC, to formalize

a parallel merge from A and B to C, we create a private channel for the two of A and C

named sigAC along which A passes (x1, ., xn) to C, and another one for the two of B and

C named sigBC along which B passes (y1, ., ym) to C, and C receives both. It can be

translated into Eqn (4.6): �
vsigAC; vsigBC

��
a�:sigAC!ðx1;.; xnÞ:0����b�:sigBC!�y1;.; ym

�
:0����sigAC?�x1;.; xn

�
:sigBC?

�
y1;.; ym

�
:PC

� (4.6)

We will show how to formalize a composite service with p-calculus. Take the French

dictionary service in Figure 4.1 as an example. It can be represented as follows:

PFDhcFD?ðinÞ:PA

PAh
�
vsigAB

��
cB!

�
in;F;E

�
:cB?

�
BoutE

�
:sigAB!

�
BoutE

�
:0����sigAB?�BoutE

�
:PB

�

98 Chapter 4

PBh
�
vsigBC

��
cE!

�
BoutE

�
:cE?

�
Dout

�
:sigBC!

�
Dout

�
:0����sigBC?�D out

�
:PC

�
PChc0B!

�
D out;E;F

�
:c0B?

�
B outF

�
:cFD!

�
B outF

�
:0

According to the PREFIX and COM rules of p-calculus, the behavioral derivation of PFD

can be represented as Eqn (4.7). It shows that, internal actions (denoted as s) are
triggering message exchanges among operations within the service process, and external

actions are that with other services, including the ones it invokes and serves.

PFD ����!cFD?ðinÞ
PA �������!cB!ðin;F;EÞ�

vsigAB
��
cB?

�
BoutE

�
:sigAB!

�
BoutE

�
:0

����sigAB?ðBoutEÞ:PB

� ������!cB?ðBoutEÞ�
vsigAB

��
sigAB!

�
BoutE

�
:0

����sigAB?�BoutE

�
:PB

�����!ssigAB
PB ������!cE!ðBoutEÞ�

vsigBC
�ðcE?ðDoutÞ:

sigBC!
�
Dout

�
:0
����sigBC?�DoutÞ:PC

�
(4.7)

����!cE?ðDoutÞ �
vsigBC

��
sigBC!ðDoutÞ:0jjsigBC?ðDoutÞ:PC

�
��!ssigBC

PC ������!c0B!ðDout;E;FÞ
c0B?ðBoutFÞ:cFD!ðBoutFÞ:0

������!c0B?ðB outFÞ
cFD!ðB outFÞ:0������!cFD!ðB outFÞ

0:

4.4.3 Analyzing Behavioral Simulation of Services

Based on the formalization of web services, we use monodirectional simulation rather than

bisimulation theory of p-calculus and apply it to analyze behavioral simulation of the

services. Two kinds of simulation, strong and weak simulation, are introduced, which can

adapt to different requirements on substitution.

Definition 1: Strong simulation on visible behavior

PiQ, if and only if, for all a˛Qða˛ fs; a?ðxÞ; a!ðxÞgÞ; whenever Q/a Q0, then for some

P0, P/
a
P0 and P0iQ0.

Strong simulation requires a service N0 that can simulate exactly the same actions of

another service N from the initial state, including internal actions, so as to evolve to a next

simulating state until N terminates.

Definition 2: Weak simulation on visible behavior

PyQ, if and only if, for all a˛Qða˛ fs; a?ðxÞ; a!ðxÞgÞ;

Service Discovery 99

whenever Q/
a
Q0, then for some P0, Pð/s Þ�/a ð/s Þ�P0 and P0yQ0.

Weak simulation just requires a service N0 that can simulate actions of another service N in

combination with the same actions and internal actions from the initial state, so as to

evolve to a next simulating state until N terminates.

In the following, the derivation rules of a service process will be introduced, and the

evolution of a service will be represented as a derivation tree. Formal definitions to the

related concepts are given as follows:

Definition 3: Immediate derivations of P

1. if Pha:P0ða˛ fs; a?ðxÞ; a!ðxÞgÞ; an immediate derivation of P is P/
a
P0, i.e., a

possible derivative is (a,P0), and we call a an action of P, and we call P
0
an a-derivative

of P;

2. if PhðnbÞa:P0ða˛ fs; a?ðxÞ; a!ðxÞgÞ; for the case b ¼ a, an immediate derivation of P

is P/
s
P0; and if bsa, an immediate derivation of P is P/

a
P0;

3. if Pha1:P1 þ/þ an:Pn ðai ˛ fs; a?ðxÞ; a!ðxÞg ; i ¼ 1;.nÞ, immediate derivations of

P are P/
a1
P1 þ/þ P9

an
Pn, i.e., possible derivatives are (a1,P1),.and (an,Pn);

4. if Pha1:P1 k / k an:Pnðai ˛ fs; a?ðxÞ; a!ðxÞ; i ¼ 1;.nÞ; immediate derivations of P

are
Pn

i¼1fP/
ai
Pig þ

PfP/s a1:P1jj/jjPijj/jjPjjj/jjan:Pn : ai:Pi��!a?ðxÞ
Pi;aj:Pj��!a!ðyÞPjg.

Definition 4: Derivation tree of P

The derivation tree of P is the whole of the iterative derivations of P according to

definition 3, in which the root is P, leafs are 0, and for each expression at a nonterminal

node, all its immediate derivations are represented by outgoing arcs.

A general form of derivation tree is shown in Figure 4.9.

P

0

0

0

P1

P12

P2

P11

α1

α2

α11

β

γ

ω

α12

Figure 4.9
A general form of derivation tree of process P.

100 Chapter 4

Next, we will show how to analyze behavioral simulation of services with p-calculus

through some examples. We first formalize the other two French dictionary services in

Figures 4.7 and 4.8, respectively, and then we track their behaviors with PFD in

Figure 4.6 to check whether they can strongly or weakly simulate PFD according to

definitions 1 and 2.

Example one. P1 vs PFD

P1 can be formalized as:

P1hcP?ðinÞ:PA

PAhcR!ðinÞ:cR?ðoutÞ:cP!ðoutÞ:0

And the derivation process of P1 is:

P1 ��!cP?ðinÞ
PA ��!cR!ðinÞ

cR?ðoutÞ:cP!ðoutÞ:0 ��!cR?ðoutÞ
cP!ðoutÞ:0 ��!cP!ðoutÞ

0

P1 can simulate the first action cP?(in) of PFD; however, it cannot simulate the second

action cB!(in,F,E) either in strong or weak simulation, and hence P1 cannot substitute

PFD in behavior, which is consistent with our analysis in Section 4.2.

Example two. P2 vs PFD

P2 can be formalized as:

P2h
�
vsigPAB

��
cP?ðinÞ:sigPAB!:0jjsigPAB?:ðPA þ PBÞ

�
PAh

�
vsigAA0

��
cB!ðin;F;EÞ:cB?ðBoutEÞ:sigAA0 !ðBoutEÞ:0����sigAA0?

�
B outE

�
:PA0

�
PA0h

�
vsigA0A00

��
cE!ðBoutEÞ:cE?ðDoutÞ:sigA0A00 !ðDoutÞ:0����sigA0A00?

�
D out

�
:PA00

�
PA00hc0B!ðD out;E;FÞ:c0B?ðB outFÞ:cP!ðB outFÞ:0

PBh
�
vsigBB0

��
cB!ðin;F;CÞ:cB?ðBoutCÞ:sigBB0 !

�
BoutC

�
:0����sigBB0?

�
B outC

�
:PB0

�
PB0h

�
vsigB0B00

��
cC!ðBoutCÞ:cC?ðCoutÞ:sigB0B00 !ðCoutÞ:0����sigB0B00?

�
C out

�
:PB00

�
PB00hc0B!ðC out;C;FÞ:c0B?ðB outFÞ:cP!ðB outFÞ:0

Service Discovery 101

And the derivation process of P2 is:

P ��!cP?ðinÞ�
vsigPAB

��
sigPAB!:0

����sigPAB?:�PA þ PB

����!ssigPAB
P0b

a

PA��!/

PB��!/

P2 cannot strongly simulate PFD because for the transition PFD���!cFD?ðinÞ
P0, P2 has a

simulating transition P2���!cP?ðinÞðvsigPABÞðsigPAB!:0jjsigPAB?:ðPA þ PBÞÞ; and then for P0,

there is a transition P0�����!cB!ðin;F;EÞ
P00, while P2 can just execute the s action after the action of

cP?(in), rather than an action simulating cB!(in,F,E). But we can deduce that P2 can

weakly simulate PFD by analyzing their behavioral derivation. Hence, P2 can substitute

PFD in behavior, which is consistent with our analysis in Section 4.2.

4.4.4 Implementation of Reasoning on Services Behavioral Equivalence

We can make use of an existing tool, the Mobility Workbench (MWB),4 to automate the

analysis of behavioral simulation of services. MWB is a tool for manipulating and

analyzing mobile concurrent systems described in the p-calculus developed by Bjorn

Victor, Faron Moller, Lars-Henrik Eriksson, and Mads Dam. A basic functionality of MWB

we used is to define an agent with command agent and check whether an agent is a strong

or weak simulation equivalent to another agent with command eq/weq agent1 agent2.

The agent definitions of three French dictionary services mentioned above are shown

in Figure 4.10 according to the input syntax of MWB. Basically, it is consistent with

Figure 4.10
Agent definitions of PFD, P1, and P2 in MWB.

4 http://www.it.uu.se/research/group/mobility/mwb.

102 Chapter 4

the formalization proposed in Section 4.3; however, we need to change it a little when

feeding it to MWB, because in MWB each definition of a process should start with

“agent,” and an agent definition must be closed, i.e., its free names must be a subset

of the argument list.

Based on the agent definitions, we can check whether an agent is a strong or weak

simulation equivalent to another agent. The result is shown in Figure 4.11, which is

consistent with the derivation and analysis shown in Section 4.4. Hence, the analysis of

behavioral simulation between services can be automated with the help of MWB as long

as the services are defined.

4.5 Summary

In this section, we introduced the work on service discovery, consisting of interface-level

service discovery and behavioral-level service discovery. For our work on interface-level

service discovery, we proposed using a web service clustering and tag recommendation to

improve the effectiveness of web service discovery. Specifically, both WSDL documents

and tags of web services are used for clustering, while a tag recommendation is adopted to

handle some inherent problems of tagging data, e.g., uneven tag distribution and noise

tags. For our work on behavioral-level service discovery, we proposed to formalize the

behavior of a web service by p-calculus. Based on the formalization, we introduced two

notions of behavioral substitution of web services namely strong and weak simulation.

Furthermore, we proposed a derivative approach to analyzing the behavioral substitution of

services according to the given notions, which is implemented based on an existing tool of

p-calculus. The proposed approach takes advantage of formalization and theory of p-

calculus, so that the formalized services can be naturally analyzed and the behavioral

substitution of them can be easily determined.

Figure 4.11
Strong and weak simulation analyses between PFD and P1 and that between PFD and P2 in MWB.

Service Discovery 103

References

[1] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl.
[2] OWL-S: semantic markup for web services. http://www.w3.org/Submission/OWL-S/.
[3] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic matching of web services capabilities, in:

Proc. of the 1st International Semantic Web Conference (ISWC), Springer, Berlin, Heidelberg, 2002.
[4] M.C. Jaeger, G. Rojec-Goldmann, G. Muhl, C. Liebetruth, Ranked matching for service descriptions using

OWL-S, in: Proc. of Kommunikation in Verteilten System (KiVS), Springer, Berlin, Heidelberg, 2005.
[5] A. Patil, S. Oundhakar, A. Sheth, K. Verma, Meteor-s web service annotation framework, in: Proc. of the

World Wide Web Conference (WWW), ACM, 2004.
[6] X. Dong, A.Y. Halevy, J. Madhavan, E. Nemes, J. Zhang, Similarity search for web services, in: Proc. of

Very Large Date Bases (VLDB), VLDB Endowment, 2004.
[7] Web Services Conversation Language. http://www.w3.org/TR/wscl10/.
[8] Web Services Choreography Description Language. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.
[9] K. Elgazzar, A.E. Hassan, P. Martin, Clustering WSDL documents to bootstrap the discovery of web

services, in: Proc. of International Conference on Web Services (ICWS), IEEE, 2009, pp. 147e154.
[10] W. Liu, W. Wong, Web service clustering using text mining techniques, Int. J. Agent-Oriented Softw.

Eng. 3 (1) (2009) 6e26.
[11] W. Liu, W. Wong, Discovering homogeneous service communities through web service clustering, in: Service-

Oriented Computing: Agents, Semantics, and Engineering, Springer, Berlin, Heidelberg, 2008, pp. 69e82.
[12] S. Agarwal, R. Studer, Automatic matchmaking of web services, in: Proceedings of IEEE International

Conference on Web Services (ICWS), IEEE, 2006, pp. 45e54.
[13] F. Puhlmann, M. Weske, Interaction soundness for service orchestrations, in: Proceedings of International

Conference on Service-oriented Computing (ICSOC), Springer, Berlin, Heidelberg, 2006, pp. 302e313.
[14] G. Decker, F. Puhlmann, M. Weske, Formalizing service interactions, Lect. Notes Comput. Sci. 4102

(2006) 414e419.
[15] A. Barros, M. Dumas, A.H.M. Hofstede, Service interaction patterns, Lect. Notes Comput. Sci. 3649

(2005) 302e318.
[16] R. Lucchi, M. Mazzara, A pi-calculus based semantics for WS-BPEL, J. Logic Algebr. Progr. 70 (1)

(2007) 96e118.
[17] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo, Formalizing web service choreographies, Electron. Notes

Theor. Comput. Sci. 105 (10) (2004) 73e94.
[18] A. Wombacher, P. Fankhauser, B. Mahleko, E. Neuhold, Matchmaking for business processes based on

choreographies, Int. J. Web Serv. Res. 1 (4) (2004) 14e32.
[19] L. Bordeaux, G. Salaun, D. Berardi, M. Mecella, When are two web services compatible? in: Proceeding

of VLDB-TES, Springer, Berlin, Heidelberg, 2004, pp. 15e28.
[20] B. Benatallah, F. Casati, F. Toumani, Representing, analysing and managing web service protocols, I Data

Knowl. Eng. 58 (3) (2006) 357e527.
[21] A. Martens, On compatibility of web services, Petri. Net. Newsletter 65 (2003) 12e20.
[22] F. Bonchi, A. Brogi, S. Corfini, F. Gadducci, A behavioural congruence for web services, in: Proceedings

of International Symposium on Fundamentals of Software Engineering, Springer, Berlin, Heidelberg,
2007, pp. 240e256.

[23] J. Pathak, S. Basu, V. Honavar, On context-specific substitutability of web services, in: Proceedings of 5th
IEEE International Conference on Web Services (ICWS), IEEE, 2007, pp. 192e199.

[24] C. Stahl, P. Massuthe, J. Bretschneider, Deciding substitutability of services with operating guidelines, in: Jensen,
K., van der Aalst, W.M.P. (eds.). Transactions on Petri Nets and Other Models of Concurrency II, vol. 2, issue
5460, (2009), pp. 172e191, Springer, Heidelberg. Special Issue on Concurrency in Process-Aware Information
Systems.

[25] C. Stahl, K. Wolf, Deciding service composition and substitutability using extended operating guidelines,
Data Knowl. Eng. 68 (9) (2009) 819e833.

[26] R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer, 1980.

104 Chapter 4

CHAPTER 5

Service Selection
Chapter Outline
5.1 Introduction 106

5.2 QoS-Based Skyline Service Selection 108
5.2.1 Preliminaries 108

5.2.2 Basic Skyline Service Selection 109

5.2.3 Representative Skyline Service Selection 109

5.2.4 Dynamic Skyline Service Selection 114

5.2.5 Uncertain Skyline Service Selection 118

5.3 MapReduce and Skyline Service Selection 119
5.3.1 Architecture 120

5.3.1.1 Mapping of partitioned skyline tasks 121

5.3.1.2 Merging in reduce computations 121

5.3.2 MapReduce and Skyline Service Selection Algorithms 121

5.3.2.1 MR-dim algorithm 123

5.3.2.2 MR-grid algorithm 123

5.3.2.3 MR-grid algorithm 124

5.3.3 Experiments 128

5.3.3.1 Experiment setup 128

5.3.3.2 Efficiency 128

5.3.3.3 Scalability 129

5.4 Summary 130

References 131

Service selection is an important issue of service-oriented computing (SOC), which is a

fundamental step in the composition of complex and large-grained services from single-

function components. Since it is relatively easy to match services based on functional

requirements, users always pay more attention to service selection based on the Quality of

Service (QoS) of the candidate. The efficiency of traditional QoS-based service selection

is vastly restricted by the number of alternative services. With the increase in the number

of services, it is becoming a bigger challenge. In this section, we propose an efficient

approach for QoS-based service selection, which decreases the range of choices without

effectively pruning the potential candidates by taking advantage of the skyline method.

The basic selection with QoS-based skyline is to compute all skyline services in a static

environment and then recommend them to be selected, while the advanced selection deals

with real cases in practical applications.

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00005-9

Copyright © 2015 Elsevier Inc. All rights reserved. 105

5.1 Introduction

Web services are self-described software entities that can be located, used, and advertised

through the Internet using a series of standard languages such as WSDL, UDDI, and

SOAP [1,2]. SOC offers a powerful approach to the assembly of complex and large-

grained services from single-function components. The increase in the number of services

brings both opportunity and challenge to service composition. In addition, it was observed

that there are many functionality-equivalent services with different QoS on the Internet [3].

It increases the level of difficulty to select appropriate services for composition,

substitution, and so on. Therefore, an efficient and effective service selection approach is

needed. Because function-based service selection has been addressed by many researchers

[4e8], we focus on addressing QoS-based service selection in this chapter.

Some QoS-based selection approaches [6,9,10] have been proposed during the recent

years. We feel each of these approaches is relevant but has an important restriction. All

these previous studies have not seriously considered some important facts and

requirements. The following is a discussion of these cases.

• Service environment is dynamic. An existing web service may be unavailable because

of some elements, such as network traffic, machine problems, or may even be removed

from the cloud computing platform. Meanwhile, a new functionality-equivalent service

may appear in the list of candidate services for selection. The influence of the dynamic

service environment should be considered in the process of service selection.

• QoS of service is uncertain. In the real world, services are impacted by some elements,

e.g., net-traffic, data randomness, incompleteness, limitation of measuring method,

which can make the performance of service uncertain. Further, due to the service level

agreement, the service provider may periodically change the QoS of existing services.

The uncertainty of service confuses the results of service comparisons, which is the

foundation of service selection.

• User’s preference should be considered. Traditional QoS-based service selection

approaches use utility functions to compute the optimal solution without considering

user’s preferences. It should be noted that user’s preferences have a great influence on

the user’s decision. Therefore, user’s preferences should be carefully deliberated. Also,

it is not a good idea to recommend too many candidate services to users.

Effectiveness is an important indicator to measure the performance of QoS-based service

selection. Suppose one component service of a composite service is unavailable and we

have to select one service from the set of concrete services with the corresponding abstract

service. It should be mentioned that the substitutions of component service will have an

impact on overall QoS (e.g., response time, throughput, availability) of the composite

service. Therefore, we need a criterion to determine which service is the best one to

106 Chapter 5

replace the unavailable component. We believe that selected services should optimize the

overall QoS as much as possible, while satisfying the functional requirements and QoS

constraints.

In addition to the quality of selected services, the efficiency of service selection is also

critical for the performance of service selection. Given three abstract services, each has m

concrete services, and the number of QoS parameters to be considered is n. The goal is to

select one concrete service from each set and compose the three services to be a

composite service. For sake of simplicity, the process of composition is predefined. Then

the time it costs to find the best combination will exceed the constraints for real-time

execution (try mn combinations). This problem becomes especially important and

challenging as the number of functional equivalent concrete services available on the web

increases. The statistics published by the web services search engine Seekda indicate an

exponential increase in the number of web services over the last three years [11].

However, if we can reduce the value of m (the number of candidate concrete services)

before the process of selection, the time cost of selection will decrease substantially.

In this section, we improve the efficiency of QoS-based service selection by using the

skyline [12] method to reduce the number of candidate concrete services. In this approach,

for each abstract service, the range of selection is limited to the services in QoS-based

skyline. It has two features: (1) the number of services in skyline is vastly smaller than the

number of concrete services for each abstract service and (2) each non-skyline service is

dominated by one or more skyline services in respect to QoS. The first feature improves

the efficiency of our approach, while the second feature guarantees the completeness of

the selection result as the skyline service set includes all nondominated services which are

potential candidates for the optimal completion.

Furthermore, we consider three cases that have not been considered in previous research

and propose corresponding solutions. For the first case, we propose an algorithm called

“DSCA” for the dynamic skyline computation by making use of our proposed “paper-

tape” model. Second, we compute the dominance probability of each two uncertain

services and prune the services that are not in the probability skyline. As for the case of

user preference, we propose to recommend the representative services of each cluster of

tradeoffs instead of recommending the services with high utility.

Because the skyline services are trade-offs among QoS parameters, we propose a ranking

mechanism to evaluate the effectiveness of selection by computing the utility of service.

We met some problems while applying this idea into a real scenario. For example, the

number of services in skyline may still be too large. It has been shown in [13,14] that

the expected number of skyline points is Q(lnd�1 n/(d�1)!) for a random dataset (n is the

size of the dataset, d is the number of dimensions). To overcome this problem, we propose

the notion of “similarity-based representative skyline” and present a corresponding

Service Selection 107

algorithm, “similarity-based RSA.” Meanwhile, we also propose the algorithms for the

computation of skyline services in a dynamic environment.

5.2 QoS-Based Skyline Service Selection
5.2.1 Preliminaries

Given a set of points in an n-dimensional data space, point Pj is said to be dominated by

Pi, if Pi is better than or equal to Pj at all dimensions, and further Pi is better than Pj in at

least one dimension [12]. In this n-dimensional space, all points that are not dominated by

other points combine to a set named skyline. According to the skyline query, we can find

the candidate data that users require. Skyline queries are widely applicable to multicriteria

decision-making applications. For the sake of clarity, we formulate the definitions of

skyline and its dominance relationship as follows.

Definition 1: Dominance relationship && skyline. Given a set of points S in an

n-dimension data space and two points x, y ˛ S. x dominates point y, denoted as

x3y; iff ci˛ ½1; n� : xi � yi. Skyline, denoted as SK, is the set of points that are not

dominated by any other points in S, i.e., SK ¼ fx˛ Sjey˛ S : y3xg.
Definition 2: Dominance region && only dominance region. The dominance region of a

point x, denoted as xdr, is the union of the point k, which is the arbitrary point in the data

space and is dominated by x, i.e., xdr ¼ fWkjx3kg. The only dominance region of point x,

denoted as xod, is the union of the point k, which is only dominated by x, i.e.,

xod ¼ fWkjx3k;ep;SK : p 6¼ x; p3kg.
For example, consider the classic scenario shown in Figure 5.1, in which a user wants to

find a hotel both near to downtown and cheap in price among a set of hotels. In Figure 5.1,

each hotel is described by two parameters, namely price and distance. Then these hotels are

projected into a two-dimensional space, with the coordinates of each point corresponding to

the values of the hotel in these two parameters. It is obvious that point A is in the skyline,

Figure 5.1
Skyline example.

108 Chapter 5

because it is not dominated by any other point, i.e., there is no other hotel that has a lower

price and shorter distance than hotel A. The same holds for points B, C, D, and E, which

also belong to the skyline. However, the points F and G are not in the skyline points,

because they are both dominated by point D. The result provided by skyline is a set of

trade-offs among the parameters to be considered, which could be understood as an

anticorrelated set. The blue region in Figure 5.1 is the only dominance region of point D,

because the points in this blue region can only be dominated by point B. However, the

points in the upper or right boundary of the only dominance region could be dominated by

other skyline points.

From the above definition and example, we can determine that for each non-skyline point

p, there exists at least one skyline point that dominates p. Therefore, the QoS-based

service skyline guarantees the completeness of the selection result as it includes all

potential candidates.

5.2.2 Basic Skyline Service Selection

Before calculating the skyline service, we should first project services into

multidimensional data space according to their QoS values. Given a set of services

�s ¼ {s1, s2,., sm}, each service contains n nonfunctional attributes, denoted as Qsi ¼ {q1,

q2,., qn}. In the n-dimension data space, each dimension corresponds to an attribute of

service, and the coordinate of service in this dimension is equal to the value of the

corresponding attribute.

After changing the QoS-based service selection into the traditional scenario of skyline

computation, we could use a basic skyline computation algorithm to address this problem.

Because the basic skyline computation algorithm is not the key point of our research, we

will just give a brief introduction here. There have been many studies on the basic skyline

computation algorithm, and some great algorithms have been proposed, i.e., BNL, NN,

and BBS. Currently, BBS is the most efficient skyline computation algorithm, traversing

an R-tree by using a best-first search paradigm, which has been shown to be optimal with

respect to accessing an R-tree page.

The skyline services are not dominated by any other services in data space. As Figure 5.2

shows, there are 11 services in a two-dimension space with response time and cost as its

coordinates. The set of skyline services, denoted as SK(�s), contains {s1, s2, s3, s4, s5, s6, s7},

because they are not dominated by any other services, i.e., s8.

5.2.3 Representative Skyline Service Selection

To solve the problem of user preference, we propose to recommend the representative

skyline services to users, and the number of representative skyline services should be

Service Selection 109

small. In this way, our solution satisfies the two requirements in the case of user

preference.

It should be recognized that comparability decreases with the increase in the dimension of

data. For example, the QoS of service sA is better than sB in (n�1) dimension (attribute),

but worse than sB in only one dimension. In the skyline definition, sA and sB cannot

dominate each other. Therefore, the number of skyline services may still be too large,

while the number of attributes to be considered is not small. To solve this problem, we

propose a “similarity-based representative skyline” that contains some services that best

describe the contour of the full skyline.

The process of calculating representative skyline services is divided into two steps:

1. Separate the skyline services into several clusters that contain “similar” services;

2. Select one representative service from each cluster. In the first step, we divide the

skyline services into some clusters according to the similarity between each of the two

services. The threshold of cluster-similarity is determined by the requested number of

representative services. In the second step, we select the most representative from each

cluster according to the covering circle approach. Specially, if the user is satisfied with

the representative services, there is no need to consider the other skyline services.

We separate skyline services into some clusters according to their service similarities on

QoS combined with user preferences. The specific formula of similarity computation is

shown in Eqn (5.1). According to the equation of similarity computation, we can

determine that two similar services have a small value of similarity.

simðsA; sBÞ ¼
ffiXn

i¼1

�
QSAðiÞ � QSB

�
i
��2

wi
2

q
;Xn

i¼1
wi ¼ 1 (5.1)

Figure 5.2
Example of skyline services.

110 Chapter 5

Definition 3: l-Similar service (l-SS). Service sA is the l-SS of Service sB if and only if

the similarity between sA and sB is not more than l, i.e., l� SSðsA;sBÞ ¼
true; iff simðsA;sBÞ � l.

As shown in Figure 5.3, if we define l ¼ 2, then (s2,s3), (s3,s4), (s4,s5), (s6,s7) are all 2-SS.

However, as the value of l increases from two to five, only s1 and s2 are similar services.

After observation, we find (s2,s3), (s3,s4) are 2-SS; however, (s2,s4) are not 2-SS. There is

no transitive theory in l-SSs. To emphasize, there is a service s3 that makes (s2,s3), (s3,s4)

to both be 2-SS, we call (s2,s4) approximate 2-SS.

Definition 4: Approximate l-similar service (l-ASS). (si,sj) are l-ASS if and only if

there are (j � i � 1) services such as siþ1, siþ2, ., sj�1 making (si,siþ1), (siþ1,siþ2), .,

(sj�1,sj) are all l-SS, i.e., l-ASS(si,sj) ¼ true, if and only if dðsiþ1; siþ2;.; sj�1Þ :
ck˛ ½i; j� 1�; l� SSðsk; skþ1Þ ¼ true.

From the definition of approximate l-SS, we can also determine that (s2,s5), (s3,s5) are

approximate 2-SS.

Theory 1: The relation of approximate l-SS is transitive. If (si, sj), (sj, sk) are both l-

ASS, then (si,sk) is also l-ASS, i.e., if l-ASS(si,sj) ¼ true and l-ASS(sj, sk) ¼ true, then

l-ASS(si,sk) ¼ true.

Proof: Given (si,sj), (sj,sk) are both l-ASS, then the (sj�1,sj) and (sj,sjþ1) are both l-SS.

According to definition 4, we could determine the fact that (sj�1,sjþ1) are l-ASS, so (si,sk)

are l-ASS, too.

Definition 5: l-Similar service cluster (l-SSC). We call a set of services �s ¼ (s1, s2, .,

sn) a l-SSC if and only if the arbitrary two services in �s are l-ASS, i.e., l� SSCð�sÞ ¼
true; iff ci; j˛ ½1; n�; i 6¼ j; l� ASSðsi;sjÞ ¼ true.

Figure 5.3
Covering circle.

Service Selection 111

Theory 2: If there are two l-SSC, �s1 and �s2 that have the same service si, then the set

�s1 W �s2 is also l-SSC.

Proof: Since �s1 is l-SSC, all services in �s1 are l-ASS to si. Because they are the same, all

services in �s2 are l-ASS to si. According to the transitivity of l-ASS, all services in �s1 W �s2
are l-ASS to si. So we can get �s1 W �s2 is also l-SSC.

The number of l-SSC could be adjusted through changing the value of l. For the sake of

simplicity, we set the weight of each attribute as being equal. Then the similarity between

each two services could be recognized as the distance between these two services in the

n-dimension space. We use Lmax to denote the longest distance of arbitrary adjacent

services and Lmin the shortest one. While the l is larger than Lmax, all the services are

clustered in the same l-SSC. Similarly, if l is smaller than Lmin, each service is a unique

l-SSC, so the range of l to be considered is (Lmin, Lmax).

In Table 5.1, we record the similarity of each of the two adjacent skyline services in

Figure 5.2. The trend of the number of l-SSC is presented in the right part of Table 5.1.

We order the distances in Table 5.1 from long to short and denote it Di, while this distance

is the i-th longest. Also, we use Ni to denote the number of distance that is equal to Di.

Then we can clearly explain the relationship between the value of l and the number of

l-SSC.

Theory 3: When l is in the range of (Diþ1,Di), the number of l-SCC is N1 þ.þ Ni þ 1.

Take the data in Table 5.1 as an example, D1 ¼ 4.5, N1 ¼ 1, D2 ¼ 4.1, N2 ¼ 1, D3 ¼ 1.1,

N3 ¼ 3, D4 ¼ 0.7, N4 ¼ 1. If we set l as 2, then we can get i ¼ 2, the number of

2-SCC ¼ N1 þ N2 þ 1 ¼ 3. When the value of l is 1, then the value of i changes to be 3, the

number of 1-SCC ¼ N1 þ N2 þ N3 þ 1 ¼ 6. According to theory 3, it is able to adjust the

value of l to get the required number of service clusters.

While all the skyline services have been divided into the required number of l-SCC, the

rest of the problem is selecting the most representative service from each l-SCC. We

Table 5.1: Number of similar service clusters

Adjacent Service Distance Value of l Number of l-SSC

s1,s2 4.1 0.7, 1.1 6
s2,s3 1.1
s3,s4 1.1 1.1, 4.1 3
s4,s5 1.1
s5,s6 4.5 4.1, 4.5 2
s6,s7 0.7

112 Chapter 5

propose the covering circle method [15] to select these services. For any 1 � i � j � n, we

use the covering circle (i,j) to denote the smallest circle that covers points si, siþ1,., sj
and has the center at one of these j � i þ 1 points. We compute the smallest covering

circle of the l-SCC and choose the center of this covering circle as the representative point

of the corresponding l-SCC. As Figure 5.3 shows, the center of the covering circle is s2,

as the dis (s1,s2) is the smallest radius of the circles that could cover these five services. In

particular, the center of the covering circle that covers two services could be the arbitrary

one, i.e., (s6,s7). Because the dis (s6,s7) is the same as dis (s7,s6).

After the extraction of the service similarity and the definition of the covering circle, we

could start the computation of the representative skyline services. The pseudo-code of

“similarity-based RSA” is shown as Algorithm 1.

repr

Algorithm 1
Input: (

resentative se
Output: Re
1: int
2:
3:
4: ,
5: λ com
6: for 0<
7: If
8:
9: e
10:
11: end
12: for 0< <
13: compute the
14: ret
15: end

1 Similarity-
),

ervices: N
epresentative

=1

the distance
sort

mpute , ,N
<n

for 0< <n

f <λ
belong to

lse
+=1

<= do
c

turn the cent

-based RSA
the number

e skyline poin

e between

 through t

λ-SSC

o
overing circ
er of the cov

 of request

ts

and

heory 3

le of λ-SCC
ering circle

ted

We first initialize Ncluster (the number of l-SCC) (line 1), then record the distances

between any two adjacent skyline services (lines 2, 3). To choose an appropriate value of

l, we sort all the distances that are recorded in lines 2, 3 and get Ni, Di. Then we use

theory 3 to compute the value of l, which is constrained by the number of requested

services (lines 4, 5); divide all the skyline points into l-SCC (lines 6, 7, 8, 9, 10); for each

l-SCC, we compute the smallest covering circle, and return the center of this circle as the

representative skyline point (lines 12, 13, 14).

In a similarity-based RSA algorithm, any other work should be delayed until all the

services have been checked. After long-term training, the choice of the value of l could be

Service Selection 113

solved without traversing all services and it is easy for the system to choose an appropriate

value of l to extract representative services.

5.2.4 Dynamic Skyline Service Selection

With the development and promotion of service-oriented architecture, the number of web

services increases quickly, which leads to a larger cost for computing skyline.

Furthermore, the dynamic nature of the service environment increases the cost for

computing skyline services. To solve this problem, we propose to maintain the skyline

information instead of computing it over again because the cost of adjusting the skyline is

less than the cost of computing it again.

Take Figure 5.4 as an example; there are three new services registered in the service

registry. Service s11 has no impact on the skyline, while s10 should be added into the new

skyline. The newly added s9 causes a quite large change to the skyline, because it

dominates the three original skyline services.

It could be directly observed that the impact of varying the service depends on its

coordinates. An intuitive approach is to compare the location of the varying service

with each skyline service to determine its influence on the skyline. However, the cost

of this approach is large due to the number of times for pair-wise comparisons. To

decide the influence of the varying service, we propose a paper-tape model to rapidly

locate the coordinate of the varying service. A paper-tape could be treated as an array,

as we record the skyline service’s information of each nonfunctional attribute in the

Figure 5.4
Dynamic skyline example.

114 Chapter 5

corresponding paper-tape; i.e., we record the cost of each skyline service in the cost

tape. Furthermore, we give each skyline service a tag, which means the order of

service in each tape. For sake of simplicity, we just consider two attributes, including

cost and response time, and name these two paper-tapes C-tape and R-tape,

respectively.

Suppose the scenario is as shown in Figure 5.4, s10, s11 first appears, and then another

new service s9 appears as shown in Figure 5.5. According to the definition of skyline,

the original skyline before the appearance of service s9 contains

{s1,s10,s2,s3,s4,s5,s6,s7}.Our objective is to compute the new service skyline after the

appearance of s9 using our dynamic skyline approach. As the preprocess of computing

the dynamic skyline, we order the values of each original skyline service’s response

time from small to large and rename the services; i.e., the response time of s2 is the

third smallest one in the original skyline, so we put s2 into the third bucket in the

R-tape. We then order the cost of the original skyline services from large to small in

C-tape; i.e., the cost of s2 is the third largest in original skyine services, so we put s2
into the third bucket in C-tape. In particular, we can find that the order of the same

service in two different tapes is the same, which is the fundamental point of our

dynamic skyline computation approach.

When service s9 appears as shown in Figure 5.4, we can find s9 has its response time equal

to s2 and its cost equal to s4. Thus, we can get its paper-tape model as shown in Figure 5.5.

The location (bucket) of the varying service si in R-tape is denoted as LR(i). For example,

the location of service s9 is LR(9) ¼ 3, LC(9) ¼ 5. In particular, if the value of si is

between the value of sk and skþ1 in R-tape, then LR(i) ¼ k þ 0.5.

According to the skyline definition and proof, we get the following theory 4. Due to the

limitation of space, we do not give the proof process here.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
R-Tape

C-Tape

Figure 5.5
Paper-tape model.

Service Selection 115

Theory 4: Paper-tape dominance. If LR(i) < LC(i), then si is a skyline service and

dominates one or more original skyline services. If LR(i) ¼ LC(i), then si is skyline service

and does not dominate the original skyline service. If LR(i) > LC(i), then si is a dominated

service.

There are three types of service changes to be considered: (1) new service appears; (2) old

service disappears; and (3) value of QoS changes. In particular, the third case could be

considered as the combination of the second and the first changes. The following

algorithm is only for the scenario that a new service appears. In particular, the initiation of

R-tape and C-tape are considered preprocesses.

Algorithm 2 DSCA_add
Input:R-Tape, C-Tape,
Output: R-Tape, C-Tape
1: compare with values in R-Tape
2: compare with values in R-Tape
3: if <
4: Delete services belong to [,]
5: Insert) and Update R-Tape,
C-Tape
6: end if
7: else if =
8:

9: end else if
10: else
11: end else

We first get the coordinates of the added service in R-tape and C-tape through comparing

qr and qc with the corresponding tape (lines 1, 2); if LR(i) < LC(i), according to Theory 4,

we can know this service dominates one or more original skyline services. We delete those

dominated services in the previous skyline, add the new service to the skyline, and update

R-tape and C-tape (lines 3, 4, 5); if LR(i) ¼ LC(i), we can determine that the new service

does not have a dominance relationship with the original skyline services; thus we can

simply add the service to skyline and update R-tape, and C-tape (lines 7, 8); if LR(i) >

LC(i), we can determine that the new service is dominated by some original skyline

services; thus we do nothing to the skyline (lines 10, 11).

As for the disappearance of service, two cases should be considered. First, the disappeared

service is a skyline service. In this case, we need to compute the local skyline for its only

dominance region and add the local skyline to the previous skyline, and then we get the

full skyline. Second, the disappeared service is not the skyline service. In this case,

nothing needs to be done.

116 Chapter 5

We also consider the representative skyline computation in the dynamic environment. The

“similarity-based RSA” algorithm we mentioned is suitable for a static environment, but

incapable for a dynamic case. For example, services A and B are in two different 2-SSCs

(sA belongs to �s1, sB belongs to �s2); the similarity of sA and sB is 3. If a new service sc is

inserted into the service registry that also leads to the fact that (sA,sc) and (sc,sB) both

change to be 2-SS, then we can determine that (sA,sc) is 2-ASS according to theories one

and two. These two clusters (�s1 and �s2) are combined to be one 2-SSC, which is the union

of �s1 and �s2. In the following section, we will show the solution to solve these three types

of changes:

New service appearsdIn this case, we should take the set of services �snew that are l-SS to

the new service into account, because two arbitrary services that belong to �snew. If sA and

sB are not in the same l-SCC before, then we should combine the clusters to which the

two services previously belonged. If all the services are in the same service cluster, then

we just insert this new service into this l-SCC and compute the center of the covering

circle that covers all services in l-SCC.

Old service disappearsdIn this case, the l-SCCḈold that is the disappeared service that

once belonged to the old service may be divided into several small clusters. Instead of

analyzing the services that are related to disappeared service, we directly compute all the

services that are in Ḉold, because we find that the time directly computing Ḉold costs less

than analyzing the relationship through experiments.

QoS value changesdThe change of the QoS value should be considered as the original

service disappears and a new service appears. Thus the solution of this case is the

combination of the above two solutions.

Algorithm 3 DSCA_delete
Input: R-Tape, C-Tape,
Output: R-Tape, C-Tape
1: compare with values in R-Tape
2: compare with values in R-Tape
3: if =
4: compute the local skyline of ’s only
dominance region
5: Delete and insert into
previous skyline
6: Update R-Tape, C-Tape
7: end if
8: if
9: end if

Service Selection 117

5.2.5 Uncertain Skyline Service Selection

In the real world, services are impacted by different elements, i.e., net-traffic, data

randomness, incompleteness, and limitation of measuring method, which makes the

performance of the service uncertain. The uncertainty of the service also confuses the

results of service comparison, which is the foundation of service selection. How to deal

with uncertainty is becoming a big challenge to service selection. In this part, we propose

to use the probability of dominance to address uncertainty. We compute the probability of

dominance and determine the winner according to the predesigned threshold.

Considering the different performances of the same uncertain service, we use a probability

density function f to describe its distribution in the data space D. Generally, f(u) � 0 for

any service s in data space D, and obviously:Z
s˛D

fðsÞds ¼ 1 (5.2)

However, the probability density function of an uncertain service is practically unavailable.

Actually, a set of performances are collected in the hope of approximating the probability

density function. We model an uncertain service sM, denoted by sM ¼ {m1,., mL1}. The

number of sM’s performances is written as jsMj ¼ L1. In this method, it can be regarded as

the discrete case.

Given sM and sN are two uncertain services, and f and f 0 are the corresponding probability

density functions, then the probability that sM dominates sN is:

Prob½SM3SN � ¼
Z

n˛D

fðnÞ
� Z
m3n

f0ðmÞdm
�
dn

¼
Z

n˛D

Z
m3n

fðnÞf0ðmÞdmdn

(5.3)

For the sake of simplicity, we calculate the dominance probability through the discrete

case. Let sM ¼ {m1, ., mL1} and sN ¼ {n1, ., nL2} be two uncertain services, L1, L2 are

the number of service performances, and each performance information contains the

values of nonfunctional attributes. Then the probability that sM dominates sN is as follows:

Prob

�
sM3sN

#
¼
XL1
i¼1

1

L1
:

��	mj˛M
��mj3ni

��
L2

¼ 1

L1L2

XL1
i¼1

��	mj ˛M
��mj3ni

��
(5.4)

118 Chapter 5

Case study. In Figure 5.6, there are three services sA, sB, and sC. Each of these services

has some different instances. The performance of sB is stable, while the performance of sC
is precarious. To calculate Prob[sB 3 sA], we have that B1 3 A2, B2 3 A2, B3 3 A4, and

A5 is dominated by all the instances of B. According to Eqn (5.2), the probability that

service B dominates A is:

Prob½SB3SA� ¼ 1

5 � 5
X5

i¼1

��	Bj ˛B
��Bj3Ai

�� ¼ 8

25
:

Identically; Prob½SA3SB� ¼ 1

25

Prob½SA3SC� ¼ 9

25
; Prob½SB3SC� ¼ 13

25
and Prob½SC3SA� ¼ 1

5
:

In this way, we can compute the dominance probability between each of the two services.

Then we can compute the probability that service sN is not dominated by any other

service. The detail equation is as follows.

Prob½sN � ¼
Y

sM ˛ S
ð1� Prob½sM3sN �Þ (5.5)

After computing the probability that each service is not dominated by any other service,

we can set a threshold probability to get the probability skyline. Each service with the

probability higher than the threshold is a member of the probability skyline.

5.3 MapReduce and Skyline Service Selection

The skyline method is especially attractive to achieve optimal or semioptimal service

selection in a multiattribute decision-making process. The quality of composite web

services or intercloud applications can be greatly enhanced by fast MapReduce skyline

Figure 5.6
Dominance with uncertainty.

Service Selection 119

query processing. In our earlier work [16,17], we adopted the skyline method for solving

the QoS problem. Basically, we need to solve two fundamental issues to yield

QoS-guaranteed skyline solution in web service applications.

• Exponential growth of the skyline selection process: The complexity of the skyline se-

lection process increases exponentially with the attributes and the cardinality of the data

space. The skyline space may become too complex to be optimized in real-time.

• How to ensure the high QoS in cloud-supported web services? The QoS may degrade

rapidly when Internet traffic becomes saturated or jammed. The situation becomes

worse if both selection complexity and network traffic deteriorate at the same time.

In this section, we will solve the above two problems.

5.3.1 Architecture

Ever since 2001, the skyline operators [18] and their extensions have been advocated for

QoS-based service selection by many authors [10,19e24]. The skyline method is

especially attractive to achieve optimal or semioptimal service selection in a multiattribute

decision-making process.

We apply MapReduce to upgrade the computing efficiency with scalable performance in a

large-scale skyline query processing. We propose a variant of the MapReduce method by

adding a process between Map and Reduce. The idea is illustrated in Figure 5.7 in three

steps.

Figure 5.7
MapReduce model for selecting skyline services to achieve optimal QoS.

120 Chapter 5

1. The map process: Service data points are partitioned by the master server (e.g., UDDI)

into multiple data blocks based on the QoS demand. The data blocks are dispatched to

slaver servers for parallel processing.

2. Local skyline computation: This process is used to generate the local skylines from

service data points in subdivided data blocks.

3. The Reduce Process: In this process, local skylines generated by all slaver servers are

merged and integrated into a global skyline, which applies to all services being evaluated.

Even DeWitt and Stonebraker [25] have assessed MapReduce as ineffective in handling

relational database operations; we find that MapReduce is extremely attractive to speed up the

skyline query processing process. We need to compare pair-wise services in parallel. With

MapReduce, the new service is first mapped into a group and added into the local skyline

computation. Then all local skylines are integrated into the global skyline at the reduce stage.

We have adopted the skyline method for solving the QoS problem in two earlier works.

We evaluate three MapReduce versions of the block name label (BNL) skyline algorithm

based on three different data space partitioning schemes. MapReduce for skyline services

was also studied in [19,26].

5.3.1.1 Mapping of partitioned skyline tasks

The quality of the selected skyline services depends on the efficiency of the local skyline

computation and the performance of the integration process. Thus, the efficiency and QoS

of the MapReduce skyline process depends mainly on how to explore the distributed

parallelism to accelerate the map stage.

The efficiency of the mapping depends on data space partitioning. The service data points

are partitioned into divided regions. The goal is to achieve load balancing, to fit into the

local memory, and to avoid repeated computations when old services are dropped and new

services are dynamically added.

5.3.1.2 Merging in reduce computations

Before the process of reduce, we introduce a middle process (local skyline computation) at

step two. The reason is that computing skyline services is expensive when the number of

candidate services is extremely large. By introducing the middle process, only local

skyline services are delivered to the reduce process at step three. This will largely decrease

the number of services to be processed at the reduce stage.

5.3.2 MapReduce and Skyline Service Selection Algorithms

BNL, NN, Bitmap, and BBS are well-known skyline algorithms. We extend from these

skyline algorithms by incorporating the MapReduce model to exploit distributed

Service Selection 121

parallelism in server clusters or in a cloud platform. We evaluate three MapReduce skyline

methods, denoted as MR-dim, MR-grid, and MR-angular in Table 5.1, in which MR stands

for MapReduce in all figure labels and text bodies.

Consider two service data points, s1 and s2, in the QoS space Q. The service s1 dominates

service s2, if s1 is larger than or equal to s2 in all attribute dimensions of Q. Furthermore,

s1 must be larger than s2 in at least one attribute dimension. The subset S of services form

the skyline in space Q, if all service points on the skyline are larger than or equal to other

services along all attribute dimensions. In other words, all skyline services are not

dominated by any other service in the space Q.

Three MapReduce skyline algorithms are specified below based on the three data

partitioning schemes shown in Figure 5.8(a)e(c). The MR-dim algorithm is the simplest

one to implement, based on one-dimensional partitioning (Figure 5.8(a)). The MR-grid

algorithm is based on grid partitioning (Figure 5.8(b)).

Skyline Service Non-Skyline

Skyline Service Non-Skyline

Skyline Service Non-Skyline

Response Time (s)

Co
st

 ($
)

Co
st

 ($
)

Co
st

 ($
)

Response Time (s)

Response Time (s)

s1s1

s2

s3

s4 s5 s6

s8

s8

s6 s7

s5
s4

s3

s2

s1

s7

s2
s3

s4 s5
s7

s6

s8

(a) (b)

(c)
Figure 5.8

Three data partitioning methods for MapReduce-based skyline query processing.

122 Chapter 5

The MR-angular algorithm is illustrated in Figure 5.8(c), based on the original work by

Vlachou, Doulkeridis, and Kotidis (2008) and simply called the VDK method. There is no

dominance relationship between any two angular sectors in the data space. Therefore, the

execution time of the second step of the MR-angular algorithm is longer than that of

MR-grid algorithm. However, the time at the third step is much shorter than that of the

MR-grid algorithm. In the next section, we will prove these claims via experimental results.

5.3.2.1 MR-dim algorithm

The MR-dim algorithm contains two stages: (1) partitioning job, in which we divide the data

space into some disjoint subspaces and compute the local skyline of each subspace; and

(2) merging job, in which we merge all local skylines to compute the global skyline.

Empirically, the number of partitions is set as (two times of nodes) in the MR-dim algorithm.

Specially, in the process of implementation, the range of each partition in dimension d is

equal to Vmax/Np, in which Vmax is the maximum value in dimension d, and Np is the

number of partitions. The local skyline of each partition is computed using the BNL

algorithm. In the merging process, all local skyline services are given the same key in the

map process. They are merged to generate the global skyline in the reduce process.

In MR-dim, only the QoS parameter values in one dimension are used to do the

partitioning. For example, we separate the data space into four blocks according to the

response time of each service in Figure 5.8(a). This method is easy to implement, while

the redundant computations still exist in this case. In addition, this method needs to

balance the load in the reduce process.

5.3.2.2 MR-grid algorithm

Different from MR-dim algorithm, there are dominance relationships between partitions in

the MR-grid algorithm, as further illustrated in Figure 5.9. Any point in block A

dominates any point in block D. Therefore, we need not compute the local skyline in

partition D. Many redundant domination computations can be thus pruned.

s1

s2

s3

s4

s8

s6 s7

s5

Response Time (sec)

Co
st

 ($
)

A B

DC

Figure 5.9
Dominance relationship in grid-based partitioning skyline methods.

Service Selection 123

In the MR-grid method as shown in algorithm 1, data space is partitioned into 2d (d is the

dimension number) blocks. To achieve load balance, the dividing point in each dimension

is the median of the dimension. Lines (1e5) specify the process of grid partitioning, while

lines (6e9) generate the local skylines in sections. The global skyline is generated with

lines 10e14. We include algorithm 1 here as a baseline reference. The newly enhanced

method is specified in algorithm 2.

In algorithm 4, we only compute the local skyline services which are not dominated by

other blocks (lines 8e9). By doing so, step two saves 25% of the comparison time, and

the complexity of the pair-wise comparison process increases exponentially with the

dimensionality. The speed improvement of the MR-grid method in step two is rather

limited when the number of dimensions becomes very large. When the number of

dimensions reaches 10, the improvement is less than 11.08% based on our

measurement.

A

s
P

P

P

L

, LS) in file st
9: end for
Merging local skyline subsets into the global skyline

10: forall each service is in file st
11: output (null, (,i iP s))
12: end forall
13: compute the global skyline Ω using
BNL
14: output(skyline set Ω

Ω

)

5.3.2.3 MR-grid algorithm

The angular partitioning method specified in algorithm 5 is enhanced from the original VDK

design. Overall, we emphasize the composition of skyline selected services, which aim at

achieving optimized QoS with respect to a given set of resources and cost constraints.

124 Chapter 5

5.3.2.3.1 Algorithmic enhancement

We modify the VDK method in two technical aspects. First, we apply an equi-volume

partitioning strategy. Second, we do not transform the reduce part in a hyperspherical data

space. These two distinctions make our scheme much faster and space-efficient to take

advantage of the elastic resources and interplay between cloud mashups.

This enhanced angle-based partitioning reduces many redundant computations and

balances the workload, because each subdivided data block involves both high- and low-

quality data points. For instance, each partitioned block (an angular sector) involves some

global skyline services: {s1,s2},{s3},{s4,s5}, and {s6,s7}.

The angular partitioning process contains two steps: (1) mapping the Cartesian coordinate

space into the service data space and (2) dividing the data space into an N sector

according to the angular coordinates. We divide the data space into (0, p/8), (p/8, p/4),

(p/4, 3p/8), (3p/8, p/2).

We check the sector to ensure that the angular tan(Ø) ¼ y/x belongs to and delivers the

service s to the corresponding slave server. The hyperspherical coordinate is used in the

map process. The Cartesian coordinate is used in the local skyline computation and in

the reduce process.

Algorithm 5: MapReduce-angular Skyline
 method
Input: the original data set S
Output: the skyline subset Ω
 Generation of local skyline points
1: forall service in dataset S
2: compute the coordinate of using
Eq.(1)
3: compute the partition that
belongs to based on the service ’s coordinate
value
4: output()
5: end forall
6: forall partitioned sectors
7: compute local skyline using BNL
8: output (,) in file st
9: end forall

Merging of Many Skyline subsets
10: forall service in file st
11: output (null,)
12: end forall
13: compute the global skyline Ω
using BNL
14: output Ω

Service Selection 125

5.3.2.3.2 Complexity analysis

In what follows, we analyze the complexities of the MR-grid and MR-angular algorithms

presented above. As Figure 5.4 shows, service s4 is the nearest one to the axes. It can be

shown that the first nearest neighbor, i.e., s4, is part of the skyline. On the other hand, all

the points in the dominance region of s4 can be pruned to save time.

The dominance ability of skyline services is critical to the efficiency of the skyline

computation. For example, if the dominance ability of s4 is stronger, more services will be

pruned, which leads to higher efficiency. Therefore, dominance ability is selected as the

evaluation metric of the algorithm complexity. The dominance ability of the skyline

service si is defined by the ratio Dsi ¼ Numsi

Numall
, in which Numsi is the number of services

dominated by si, and Numall totals all services.

For simplicity, we assume uniform distribution of the data points in this dominance

definition. Thus we can approximate the dominance ability of si by the area ratio

Dsi ¼ Areasi
Areaall

, in which Areasi is the area dominated by service si in the partition containing

si, as shown in the D-gird and D-angular regions of Figure 5.5. The Areaall is the area of

this partition.

In Figure 5.10, we compare the grid-based and angle-based method to divide the data

space into four partitions, respectively. The data space is a square with 2L long sides. The

area of the overall data space is 4L2, while the area of each partition is L2. Given a skyline

service s with coordinate (x, y), it belongs to the partition closest to the axes in most of the

cases.

Figure 5.10 clearly demonstrates that the D-angular region demands much fewer pair-wise

dominance comparisons than that required in the D-grid region. The following three

Figure 5.10
Comparison of the MR-grid and MR-angular partitioning methods in dominance coverage.

126 Chapter 5

theorems give quantitative differences in dominance ability among three MapReduce

skyline algorithms.

Theorem 1: To use the MR-grid method, the dominance ability of a given service s is

specified by:

Dgrid
s ¼ ðL� xÞðL� yÞ

L2
(5.6)

Proof: As shown in Figure 5.10, the dominance region of s is the brown region using the

MR-grid method, with an area of (L � x)(L � y). The area of the partition is L2, thus the

dominance ability of s is
ðL � xÞðL � yÞ

L2 . Q.E.D.

Similarly, we can compute the dominance ability if the MR-angular method is used.

Theorem 2: To apply the MR-angular method, the dominance ability of a given service

s is specified by:

Dangle
s ¼ L2 � x2

4 � ð2L� xÞy
L2

(5.7)

Proof: The dominance region of service s is the gray region for MR-angular,

L2 � x2

4 � ð2L� xÞy. And the area of partition that s belongs to is still L2 while using the

MR-angular method. Therefore, the dominance ability is:

L2 � x2

4 � ð2L� xÞy
L2

Q:E:D:

In the following Theorem 3, the dominance ability of the MR-grid method is found

weaker than the MR-angular method. This result is also valid in high-dimensional cases.

Therefore, we conjecture that the MR-angular method outperforms the MR-grid method in

theory. We will validate this claim by the Hadoop experimental results.

Theorem 3: The dominance ability of the MR-angular method is higher than that of the

MR-grid method by the following amount.

DD ¼ Dangle
s � Dgrid

s � x

2L2

�
L� x

2

�
(5.8)

Service Selection 127

Proof: To compare the dominance ability of the MR-grid and MR-angular, we compute

the difference amount DD, which is equal to Dangle
s � Dgrid

s as computed below:

DD ¼
L2 � x2

4
� ð2L� xÞy
L2

� ðL� xÞðL� yÞ
L2

¼ 1

L2

� x2

4
� yLþ xL

!

� 1

L2

� x2

4
� x

2
Lþ xL

! �
because y � x

2

�

¼ x

2L2

�
L� x

2

�
Q:E:D:

5.3.3 Experiments

5.3.3.1 Experiment setup

Our experiments apply to the QWS dataset (http://www.uoguelph.ca/wqmahmoud/qws/

index.html). This dataset comprises measurements of nine QoS attributes over 10,000

real-life web services. The majority of web services are obtained from public sources,

including UDDI, search engines, and service portals.

Considering the rapid development of web services, we extended the size of the QWS

dataset by randomly generating QoS values that are limited to a narrow range following

the distribution of the QWS dataset. The number of services was extended to 100,000 over

10 QoS attributes in our experiments.

All experiments are implemented in Java, and the MapReduce-related experiments are run on

a Hadoop 0.20.2 framework. Our Hadoop experiments run on a server cluster built up to 64

server nodes at Zhejiang University. Each server node has an Intel Core Duo E7400 2.99 GHz

CPU, 3.25 GB main memory, with Ubuntu 10.9 OS and 1 GB memory allocated to JVM.

5.3.3.2 Efficiency

To evaluate the efficiency of various MapReduce skyline selection methods, we use the

basic metric of processing time, which consists of both reduce time and map time.

Figure 5.7 shows the processing time used for selecting the optimal or suboptimal skyline

services, because the service cardinality (the number of candidate services) becomes very

large (100,000 data points for 10,000 composite service requests in extended QWS

dataset). The attribute dimension increases from 2 to 10.

When the QoS dimension is low, say two, the total processing time is rather low, around

50 s. As the dimension increases in Figure 5.11, all three methods show hardly any change

128 Chapter 5

in the map time. The MR-angular method shows the lowest increase in reduce time as the

attributes increase to 10. Even with 100,000 data points over 10 dimensions, the total

processing time of the MR-angular method is about 130 s, compared with 430 and 320 s in

the other two methods. The conclusion is that MR-angular performs much better than the

other two methods in a large data space with more attribute dimensions.

The MR-angular method outperforms the MR-grid method with up to 320% reduction in

processing time as the dimension increases to 10. The MR-dim method performs the

worse, with up to 420% longer processing time than the MR-angular method. With 10

dimensions, the reduce time is seven, five, and three times longer than the map times in

the three MapReduce skyline selection processes. It should be noted that 130 s processing

time is obtained on a 64-node server cluster. If a 1000-server cluster is used, this

processing time could be significantly reduced to just a few seconds.

In summary, with a very large service cardinality of 100,000 data points over 10 attributes,

our MR-angular method outperforms the MR-grid and MR-dim methods by a factor of three

and two, respectively. These results clearly demonstrate the advantages of the enhanced

angular-partitioned MapReduce skyline method operating in a very large service data space.

5.3.3.3 Scalability

The number of servers used greatly affects the cluster performance. We consider a large

data space of 100,000 service data points. There are 10 dimensions of performance

attributes. The server cluster used increases from 4 to 8, 12,., 32 and 64 servers.

Figure 5.12 shows the processing time of the MR-angular method plotted against the

number of servers used.

Figure 5.11
Performance effects of three MapReduce skyline methods over a very large dataset.

Service Selection 129

The processing time decreases sublinearly with respect to more servers being used.

When the number of servers exceeds 24, the speedup improvement becomes gradually

saturated. The map time reduces almost flatly as more servers are used. The reduce time

also is reduced by using more servers. In other words, the drop in reduce time contributes

the most to the scalability.

Compared with four servers used, the processing time is reduced by only 10% when eight

servers are used; the processing drops from 230 to 130 s with 70% improvement as the

number of servers used increases from 4 to 32. The sectioned bar diagram in Figure 5.12

clearly shows the scalability of using the MR-angular method to accelerate the reduce

process in skyline selection of optimal web services. The advantages increase with larger

data space and more attribute dimensions adopted.

5.4 Summary

The efficiency of the traditional QoS-based service selection, such as integer programming

and utility function approach, is vastly limited by the number of alternative services. With

the increase in the number of services, it is becoming a big challenge. In this section, we

propose an efficient approach for QoS-based service selection, which decreases the range

of choices without pruning the potential candidates effectively by taking advantages of the

skyline method. The basic selection with QoS-based skyline is to compute all skyline

services in a static environment and recommend them to be selected. Meanwhile, we

consider the different skyline service selection variations for real applications, such as

representative skyline service selection, dynamic skyline service selection, and uncertain

0

50

100

150

200

250

4 8 12 16 20 24 28 32 64
Server Number

Reduce Time

Map Time

Pr
oc

es
si

ng
 T

im
e(

s)

Figure 5.12
Scalability in the MapReduce cluster used in experiments.

130 Chapter 5

skyline service selection. Further, we use the MapReduce framework to handle the skyline

service selection with big scalability and propose three different data space partitioning

algorithms.

References

[1] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, Unraveling the web services
web: an Instruction to SOAP, WSDL and UDDI, IEEE Internet Comput. 6 (2) (2002) 86e93.

[2] L. Zeng, B. Benatallah, A.H.N. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware Middleware for
web services composition, IEEE Trans. Softw. Eng. 30 (5) (2004) 311e327.

[3] M. Alrifai, T. Risse, Combining global optimization with local selection for efficient QoS-aware service
composition, in: Proc. of the 18th International Conference on World wide web, 2009, pp. 881e890.

[4] B. Benatallah, F. Casati, F. Toumani, Representing, analysing and managing web service protocols, Data
Knowl. Eng. 58 (3) (2006) 327e357.

[5] L. Bordeaux, G. Salaun, D. Berardi, M. Mecella, When are two web services compatible? Lect. Notes
Comput. Sci. 3324 (2005) 15e28.

[6] F. Liu, L. Zhang, Y. Shi, L. Lin, B. Shi, Formal analysis of compatibility of web services via ccs, in:
Proc. of The International Conference on Next Generation Web Services Practices, IEEE Computer
Society, 2005, p. 143.

[7] C. Bohm, H. Kriegel, Determining the convex hull in large multidimensional database, in: Data
Warehousing and Knowledge Discovery (DaWaK), 2001, pp. 294e306.

[8] J. Pathak, S. Basu, V. Honavar, On context-specific substitutability of web services, in: Proc. of the
International Conference on Web Services, IEEE Computer Society, 2007, pp. 192e199.

[9] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, IEEE Trans. Software Eng.
33 (6) (2007) 369e384.

[10] S. Ran, A model for web services discovery with QoS, ACM SIGecom Exch. (2003) 1e10.
[11] M. Alrifai, D. Skoutas, T. Risse, Selecting skyline services for QoS-based web service composition, in:

WWW, 2010.
[12] S. Borzsonyi, D. Kossmann, K. Stocker, The skyline operator, IDCE, 2001.
[13] J.L. Bentley, et al., On the average number of maxima in a set of vectors and applications, JACM 25 (4)

(1978) 536e543.
[14] P. Godfrey, R. Shipley, J. Gryz, Maximal vector computation in large data sets, in: Proc. of the 31st

International Conference on Very Large Data Bases, 2005, pp. 229e240.
[15] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: an online algorithm for skyline queries, in:

Very Large Database (VLDB), 2002, pp. 275e286.
[16] L. Chen, J. Wu, S. Deng, Y. Li, Service recommendation: similarity-based representative skyline, in: IEEE

World Congress on Services, 2010, pp. 360e366.
[17] D. Papadias, Y. Tao, G. Fu, B. Seeger, An optimal and progressive algorithm for skyline queries, in: Int’l

Conf. on Management of Data (SIGMOD), 2003, pp. 467e478.
[18] S. Borzsonyi, D. Kossmann, K. Stocker, The skyline operator, in: Int’l Con. on Data Engineering, 2001,

pp. 421e430.
[19] L. Pan, L. Chen, J. Wu, Skyline web service selection with MapReduce, in: International Conference on

Computer Science and Service System, 2011.
[20] J. Sander, M. Ester, H. Kriegel, X. Xu, Density-based clustering in spatial databases: the algorithm

GDBSCAN and its applications, Data Min. Knowl. Discov. 2 (2) (1998) 169e194.
[21] S. Wang, B.C. Ooi, A.K.H. Tung, L. Xu, Efficient skyline query processing on peer-to-peer networks, in:

Int’l Conf. on Data Engineering, 2007, pp. 1126e1135.
[22] Q. Wu, A. Bouguettaya, Computing service skyline from uncertain QoWS, IEEE Trans. Serv. Comput. 3 (1)

(2010) 16e29.

Service Selection 131

[23] T. Yu, Y. Zhang, K.J. Lin, Efficient algorithms for web services selection with end-to-end QoS
constraints, ACM Trans. Web 1 (1) (2007) 1e26.

[24] L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware middleware for web
services composition, IEEE Trans. Software Eng. 30 (5) (2004) 311e327.

[25] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial
databases with noise, in: Proc. of ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, 1996,
pp. 226e231.

[26] H. Han, H. Jung, S. Kim, H. Yeom, A skyline method to the matchmaking web service, in: Int’l Symp.
on Cluster Computing and the Grid (CCGrid), 2009.

132 Chapter 5

CHAPTER 6

Service Recommendation
Chapter Outline
6.1 Overview of Service Recommendation 133

6.2 Bayes-Based Service Recommendation 135
6.2.1 Preliminary 135

6.2.2 Architecture 137

6.2.3 Bayes Theorem for Service Recommendation 139

6.2.3.1 Data generation stage 139

6.2.3.2 Service recommendation stage 141

6.2.4 Recommendation Algorithms 142

6.2.4.1 SSR algorithm 142

6.2.4.2 BSR algorithm 142

6.2.4.3 BKSR algorithm 144

6.2.5 Experiments 147

6.2.5.1 Experiment setup 147

6.2.5.2 Efficiency evaluation 148

6.2.5.3 Effect evaluation 150

6.3 Instant Service Recommendation 154
6.3.1 Overview 154

6.3.2 Definition and Problem Description 156

6.3.3 Recommendation Algorithms 159

6.3.3.1 Exhaustion search-based algorithm 159

6.3.3.2 Replacement-based algorithm 160

6.3.3.3 Improved replacement-based algorithm 161

6.3.3.4 Heuristic search-based algorithm 164

6.3.4 Experiments 166

6.3.4.1 Experiment setup 166

6.3.4.2 Efficiency evaluation 167

6.3.4.3 Effect evaluation 170

6.4 Summary 174

References 175

6.1 Overview of Service Recommendation

The service-oriented computing (SOC) paradigm and its realization through standardized

web service technologies provides a promising solution for the seamless integration of

single-function applications to create new large-grained and value-added services. In

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00006-0

Copyright © 2015 Elsevier Inc. All rights reserved. 133

recent years, SOC, especially service composition, was applied in a lot of domains, e.g.,

workflow management, finances, e-business, e-science, etc.

The growing number of web services brings both opportunities and challenges to SOC.

Similar to service composition and service discovery, service recommendation is also

widely applied in industrial and academic circles. To the best of our knowledge, many

solutions have been proposed to recommend services by using collaborative filtering-based

approaches [1,2], context-aware approaches [3,4], the graph-based approaches [5], and so

on. In the domain of service recommendation, identifying and composing a set of atomic

services to recommend an optimized composite service that the user may be interested in

based on the original composite services that the user has previously used, which we call

composite service-oriented recommendation (CSOR), which has attracted a lot of attention

and is becoming a hot research topic.

Figure 6.1 presents a conceptual overview of the CSOR. As shown in Figure 6.1, the

composite service is composed of several atomic services that achieve part functionality

within the composite service. With the development of SOC, more and more services with

different types of functionalities appear in the service pool (e.g., service repository).

Apparently, some services, which we call candidates, are similar or equal to the atomic

services in the composite service. The goal of a CSOR is to compose and recommend an

optimized composite service that outperforms the original one by using the services in the

service pool.

Although CSOR has attracted a lot of attention in recent years, the current solutions to the

CSOR problem are far from satisfactory. There are two main drawbacks with the current

solutions:

1. CompatibilitydAccurate service matchmaking is the most important fundament

and guarantee of an atomic service replacement. Previous research makes use of the

Figure 6.1
Overview of composite service-oriented recommendation.

134 Chapter 6

input/output and interfaces of services and proposes some semantic-based or adapter-

based approaches to handle this problem. Due to the limitation of semantic information,

the output of these solutions is not ideal. In addition, the robustness of the recom-

mended composite service cannot be guaranteed by existing solutions.

2. QualitydCurrent solutions about the CSOR problem mostly use quality of service

(QoS) as the metric to evaluate the performance of composite services. QoS contains

many attributes, e.g., cost, response time, and availability, and is presented as a set of

numerical values. However there are some features (e.g., user preference) that cannot be

presented by numerical values, which we call implicit quality, while QoS is an explicit

quality. Existing solutions to CSOR problems have not taken implicit quality into

consideration.

In this chapter, we model the problem of service recommendation and propose two

approaches to improve the performance of service recommendation. In the following

sections, we first propose a Bayes-based service recommendation approach in Section 6.2

and then introduce an instant service recommendation approach in Section 6.3. Finally, a

conclusion is given in Section 6.4.

6.2 Bayes-Based Service Recommendation

This section proposes a novel CSOR approach by using service execution logs and a

Bayesian approach. Further, we propose three recommendation algorithms based on this

approach: (1) simple service recommendation (SSR) algorithm; (2) Bayes service

recommendation (BSR) algorithm; and (3) Bayesian approach and K-medoids clustering

(BKSR) algorithm. Experiments based on a large-scale service dataset show the efficiency

and effectiveness of these three algorithms.

6.2.1 Preliminary

Bayes theorem is a theorem of probability theory originally stated by the Reverend

Thomas Bayes. It can be seen as a way of understanding how the probability that a theory

is true is affected by a new piece of evidence [6]. It has been used in a wide variety of

contexts, ranging from marine biology to the development of “Bayesian” spam blockers

for e-mail systems. In this section, we will give a simple introduction of the Bayes theory.

Begin by having a look at the theorem, displayed below. Then we will look at the notation

and terminology involved.

PðT jEÞ ¼ PðEjTÞ � PðTÞ
PðEÞ (6.1)

Service Recommendation 135

In this equation, T stands for a theory or hypothesis that we are interested in testing, and E

represents a new piece of evidence that seems to confirm or disconfirm the theory. P(TjE)
stands for the probability that T is true given that E is true and is the posterior probability

of T. In particular, P(T) represents the best estimate of the probability of the theory we are

considering, prior to consideration of the new piece of evidence. It is known as the prior

probability of T. P(E) stands for the probability that the evidence is true, while P(EjT) is
the likelihood probability that E can be calculated according to T.

In the scenario of CSOR, we want to find the recommended composite service based on

the original composite service. By setting T as the recommend composite service and

setting E as the original composite service, we can introduce Bayes theorem into the

CSOR problem and transform the problem of finding the optimized composite service into

the problem of finding the composite service, which can maximize the value of P(TjE).
Detailed analysis will be presented in the following sections.

Definition 1: Web service (WS). A web service WS is defined by a tuple (N, F, I, O, CI,

CO, QoS), in which N is the name of the service, F is the function of the service, I is the

input list, O is the output list, CI is the list of preconditions, CO is the list of post-

conditions, and QoS is the explicit quality of the service.

Definition 2: Service composition. Service composition [7] can be defined as a directed

acyclic graph G¼ (V, E) of services, in which V is the set of vertices and E is the set of

edges of the graph.

Each vertex in the graph represents a service involved in the composition. The following

condition should be held on the vertices of the graph: Given WSi is a service that has at least

one incoming edge, and WSi1,WSi2, .,WSin are vertices from which there is a directed

edge toWSi, then Ii4ðOi1WOi2W.WOinÞ and CIi) (COi1XCOi2X.XCOin).

Specifically, 4 is the subsumption relation and) is the implication relation. In other

words, a service at any stage of the composition has its inputs from the outputs of its

predecessors, and the post-conditions of services at any stage of the composition should

imply the preconditions of services in the next stage.

In a composite service, there are four kinds of relationships between any adjacent atomic

servicesWSi andWSj, as Figure 6.2 shows: (1) order relationdIfWSj is executed afterWSi,

the relationship betweenWSi andWSj is order; (2) branch relationdIf only one of these two

atomic services is selected to execute according to the post-condition of their predecessors, the

relationship betweenWSi andWSj is branch; (3) parallel relationdIf the execution ofWSi and

WSj does not depend on each other, the relationship betweenWSi andWSj is parallel; and (4)

self-circulation relationdIfWSi is executed continuously for many times,WSi is self-circular.

136 Chapter 6

Definition 3: Service sequence (S). A composite service is a service sequence if there is

only order relation between any adjacent services in the composition. A service sequence

is defined by a tuple (WS1, WS2, ., WSn), in which WSi are the services composing the

service sequence.

Service sequence is a simple and commonly used type of composite service in the real

world. In this chapter, we focus on the recommendation of service sequence and leave

other interesting variants for our future work.

Definition 4: QoS. QoS is the explicit quality of service, which can be measured, while

the implicit quality cannot be measured. It consists of nonfunctional attributes of the

service that can describe some features of the service, such as response time, availability,

reliability, and so on [8].

In this chapter, QoS is presented as a vector, which consists of the values of QoS attributes.

6.2.2 Architecture

The process of Bayes-based service recommendation can be divided into two stages: a

data generation stage and service recommendation stage, as shown in Figure 6.3.

The first stage is data generation. This stage mainly has two aspects. The first is

calculating the similarity between services registered to a service repository to acquire the

WSj WSk

K

WSj

WSi

WSi

WSi

WSk

WSi

Ci

Cj

WSj

(1) (2)

(3) (4)

Figure 6.2
Structures in composite service.

Service Recommendation 137

service similarity set. The second is extracting a service sequence set from the service

execution logs, covered in Section 6.2.3 that describes details about this.

The second stage is service recommendation. This stage can also be divided into two

steps: service replacement and Bayes-based recommendation. First, acquiring a candidate

service sequence set by replacing one or more services in the original service sequence.

With the service similarity set, services with similarity larger than a threshold are selected

to replace the original ones. Specifically, this step is not essential as it is only used in a

BSR algorithm to improve the efficiency. Second, determining the recommended service

sequence by using the Bayes formula based on service sequences in the candidate

service sequence set. This needs the execution times of each service sequence in the

service sequence set. The next section will give a detailed description of this proposed

recommendation approach.

Data generation stage Service recommendation stage

Service
similarity

set

Original service
sequence

Candidate
service

sequence set

Using
Bayesian
formula

Service sequence
recommended

Similarity
calculation

Service
provider

Service
recommender

system

Recommended
service

sequence

Data
extraction

Service
recommendation

Service
replacement

Execution
log

Service
register

Service
repository

Service
information

Service
request

User

Service
sequence

set

Log
repository

Figure 6.3
Architecture of Bayes-based service recommendation.

138 Chapter 6

6.2.3 Bayes Theorem for Service Recommendation

As described in Figure 6.3, the architecture of service recommendation consists of two

components. In this section, we will introduce the details of data generation and service

recommendation, respectively.

6.2.3.1 Data generation stage

Given two services s1 and s2, the similarity between these two services, which is defined

as Sim(s1, s2), consists of many aspects, such as functional similarity, interface similarity,

QoS similarity, and so on [9e11]. Up to now, there were many existing solutions to the

calculation of service similarity. In this chapter, we use a widely accepted method in [12]

to calculate the similarity of four parameters (N, F, I, O) in definition 1. The similarity of

these four parameters is calculated based on the concept hierarchy built by WordNet and

HowNet.

Given a concept hierarchy built by WordNet and HowNet, word w1 is in level l1 and word

w2 is in level l2. The level corresponds to the shortest path from the word to the imaginary

root. Suppose Dis(w1, w2) is the distance between two words, then the similarity between

these two words is calculated as follows:

Simðw1;w2Þ ¼ a� ðl1 þ l2Þ
ðDisðw1;w2Þ þ aÞ �Maxðjl1 � l2j; 1Þ ; (6.2)

in which a is a predefined constant, and jl1� l2j means the absolute value of (l1� l2).

Given service s1¼ (N1, F1, I1, O1, CI1, CO1, QoS1) and s2¼ (N2, F2, I2, O2, CI2, CO2,

QoS2), then similarity Sim(N1, N2), Sim(F1, F2), Sim(I1, I2), and Sim(O1, O2) can be

calculated based on Eqn (6.2). Due to the limitation of space, we do not introduce the

detailed calculating equations of these four parameters.

As for the parameters CI and CO, we use the number of matches to calculate the

similarity, and the detailed equation is as follows:

SimðCI1;CI2Þ ¼ XðCI1;CI2Þ
WðCI1;CI2Þ ; (6.3)

in which X (CI1, CI2) means the number of precondition matches between CI1 and CI2,

and W (CI1, CI2) means the union set of CI1 and CI2.

As the QoS of service is described by a vector that consists of the values of each QoS

attribute, we use the cosine similarity equation to calculate the QoS similarity:

SimðQoS1;QoS2Þ ¼ QoS1$QoS2
jjQoS1jj � jjQoS2jj (6.4)

Service Recommendation 139

After calculating the similarity of these seven parameters, we combine these seven

similarities to get the similarity between two services. In this chapter, we use a weighted

average approach to calculate final service similarity, i.e., Simðs1; s2Þ ¼
SimðN1;N2Þþ/þSimðCI1;CI2ÞþSimðCO1;CO2ÞþSimðQoS1;QoS2Þ

7 . For simplicity, we normalize the

similarity between services to a value in the range of [0,1]; the higher the value is,

the more similar they are. Sim(s1, s2)¼ 0 means that services s1 and s2 are absolutely

dissimilar to each other, while Sim(s1, s2)¼ 1 means that these two services are

completely the same. It should be noted that service similarity Sim(s1, s2) has the

following properties:

1. SymmetrydSimilarity between services s1 and s2 is equal to similarity between ser-

vices s2 and s1; i.e., Sim(s1, s2)¼ Sim(s2, s1).

2. ReflexivitydSimilarity between service s1 and itself is equal to 1; that is, Sim(s1, s1)¼ 1.

3. Nonstrict transitivitydIf s1 and s2 are similar to each other, and s2 and s3 are similar to

each other, then services s1 and s3 are more likely to be similar to each other.

Based on the service similarities, the similar services set can be calculated. The detailed

definition of similar services set is as follows:

Definition 5: Similar services set. A set of services is the similar services set of service

s1 for threshold Simmin, if similarity between each service in the set and s1 is larger than

Simmin, i.e., SS(s1,Simmin)¼ {sjSim(s1,s)> Simmin}.

In experiment and practice, the threshold Simmin is usually a constant, so the similar

services set can be calculated offline. Consequently, it does not affect the efficiency of the

recommendation algorithm, although it is a time-consuming calculation.

As discussed above, we only use the service sequences that have been executed; therefore

the service sequence set for recommendation can be acquired from the execution logs of

service sequences. The definition of a service sequence set is as follows.

Definition 6: Service sequence set (R). The service sequence set R consists of all

service sequences that have been executed before. The numbers of times of

execution of each service sequences in the set are required, and it can be acquired from

the execution log. The number of times of execution of service sequence S is defined by

T(S). For instance, if service sequence S1 appears thrice in the execution logs, then

T(S1)¼ 3.

Similar to the service similarity set, acquiring a service sequence set can be completed

offline in experiment and practices. Therefore it does not affect the efficiency of the

recommendation algorithm either.

140 Chapter 6

6.2.3.2 Service recommendation stage

The service recommendation stage is the second stage of the service recommendation

process. It is also the major stage. It recommends services based on the information

provided by the data-generation stage.

The target of composite service recommendation is, based on an original service sequence

S0 that is composed manually or automatically, to find a similar service sequence S, which

has a higher quality (both explicit and implicit) and is more robust than S0, from the

service sequence set R.

Formally, the target is to maximize the probability P(SjS0). In other words, find a service

sequence S that is more likely to be able to satisfy the user’s requirement, that is, with a

higher quality. According to the Bayesian formula, probability P(SjS0) can be transformed

as follows:

PðSjS0Þ ¼ PðS0jSÞ � PðSÞ
PðS0Þ ; (6.5)

in which the probability P(S0), which means the execution probability of service sequence

S0, can be regarded as the execution times T(S0). As the value of P(S0) is a constant and is

not influenced by service sequence S, thus the above equation can be transformed as:

PðSjS0ÞfPðS0jSÞ � PðSÞ; (6.6)

in which the likelihood function P(S0jS) is regarded as the similarity between service

sequence S0 and S, and the prior probability P(S), which means the execution probability

of service sequence S, can be expressed by the execution times T(S). The detailed

definition of similarity between service sequences is as follows.

Definition 7: Service sequence similarity. Given Si and Sj are two service sequences with

the same length, and they are represented by Si¼ (Si1, Si2, ., Sin) and Sj¼ (Sj1, Sj2, ., Sjn).

The similarity between Si and Sj is defined as:

SSimðSi; SjÞ ¼
Yn
k¼1

SimðSik; SjkÞ (6.7)

Since the value of Sim(Sik, Sjk) is in the range of [0,1], their produce SSim(Si, Sj) is also in

the range of [0,1]. Similar to service similarity, service sequence similarity has three

features: (1) symmetry; (2) reflexivity; and (3) nonstrict transitivity.

Because the probability P(S0jS) can be expressed by SSim(S0, S), and P(S) can be

expressed by T(S), Eqn (6.6) can be transformed as:

PðSjS0ÞfSSimðS0; SÞ � TðSÞ (6.8)

Service Recommendation 141

By using the Bayesian approach, we transform the problem of composite service

recommendation into a novel problem that finding a service sequence S in the service

sequence set to maximize the value of SSim(S0, S)� T(S), in which S0 is the original

service sequence. In the next section, we will present three algorithms based on this novel

recommendation approach.

6.2.4 Recommendation Algorithms

In this section, we present three algorithms for composite service recommendation and

give detailed performance analysis after the introduction of each algorithm.

6.2.4.1 SSR algorithm

In the previous section, we transformed the composite service recommendation

problem into a new problem maximizing the value of SSim(S0, S)� T(S). An

intuitive approach is using the method of exhaustion, the SSR algorithm. In the SSR

algorithm, for each service sequence Si in the service sequence set R, we calculate the

service sequence similarity SSim(S0, Si), acquire the execution times T(Si), calculate the

product SSim(S0, Si)� T(i), and then find the service sequence S with the maximum

product value.

Algorithm SSR Algorithm
Input: S0: original service sequence; R: service sequence set;
Output: S: recommended service sequence

1: int ssim=1, S = S0

2: for all Si in R do
3: = (0,)
4: if × () > × () then
5: S = Si, ssim = ssimi

6: end if
7: end for
8: Return S

According to the definition of service sequence similarity, the time complexity is O(n) for

calculating Sim(S0, Si), with an n-length original service sequence S0. Suppose there are m

service sequences in R, then the time complexity of the BSR algorithm is O(m� n); that

is, the time complexity is proportionate to the size of the service sequence set R.

Obviously, this algorithm is slow when the service sequence set is huge.

6.2.4.2 BSR algorithm

The bottleneck of the BSR algorithm is traversing all service sequence in set R. We

propose to attach this bottleneck by reducing the range of candidate service sequences.

142 Chapter 6

Specifically, we replace one or more atomic services in S0 to generate the set of candidate

service sequences, as Figure 6.1 shows. Before introducing the BSR algorithm, we would

like to give a definition of service sequence edit distance.

Definition 8: Service sequence edit distance. The edit distance between two service

sequences is the number of operations required to transform one sequence into the other.

The operations include replacing one service with another, inserting one service, and

deleting one service. In this chapter, we only consider replacing one service with another.

The process of a BSR algorithm is composed of two steps: (1) finding all candidate

sequences by replacing at most D (the maximum edit distance) atomic services of the

original service sequence; the calculation of candidate sequences can be completed by

using an iteration approach, in which we acquire the candidate sequences with d services

replaced by replacing one more service of the candidate sequences with (d�1) services

replaced (lines 1e14) and (2) iterating all candidate service sequences to find out the

service sequence with maximum value of SSim(S0, S)� T(S) (line 15). It should be noted

that the value of T(S) is set as 0 if S has not appeared in the execution log. In this way, we

guarantee the robustness of the recommended service sequence, because the recommended

service sequence must have been executed before.

Algorithm BSR Algorithm

Input: S0 : original service sequence ; Simmin: service similarity threshold; D: maxi-mum edit
distance
Output: S: recommended service sequence

1: SS = SSd = {S0}
2: for d = 1 to D do

3: SSd−1 = SSd, SSd = {}
4: for all Si in SSd−1 do
5: for all sj in Si do
6: for all sk in SS(sj, Simmin) do
7: St = Si

8: replace sj with sk in St
9: SSd = SSd ∪ {St}

10: end for
11: end for
12: end for
13: SS = SS ∪ SSd

14: end for
15: Return S = SSR(S0, SS)

As discussed previously, a BSR algorithm consists of two steps: (1) calculating the

candidate sequences by replacing and (2) finding out the recommended service sequence.

We first consider the case in which the edit distance is d; that is, replace and only replace

d services. Assume that the length of the service sequence is n, and the average number of

Service Recommendation 143

services that are similar (similarity between services is larger than the minimum similarity

Simmin) with one service is L. In the first step, because there are Cd
n cases while choosing

d services from n service, and average L replaceable services for one service, the time

complexity of calculation candidate sequences is OðCd
n � L

dÞ. In the second step, we have

to evaluate the similarity SSim(S0, S1) between original service sequence and every

candidate service sequence. Because the time complexity of evaluating the similarity

between two n-length service sequences is O(n), the time complexity of the second step is

OðCd
n � L

d � nÞ. Therefore, the time complexity of BSR algorithm is

OðCd
n � L

d þ Cd
n � L

d � nÞ, which could be reduced to OðCd
n � L

d � nÞ.
Further, we consider the case in which the maximum edit distance is D. The time

complexity should be the sum of those with edit distance from one to D; that is,

OðCD
n � L

D � nþ CD�1
n � L

D�1 � nþ/þ C1
n � L

1 � nÞ, which could also be

reduced to OðCD
n � L

D � nÞ. Specifically, CD
n � L

D
could be expressed as

CD
n � L

D¼ n�ðn�1Þ�/�ðn�Dþ1Þ
D! � L

D
. Because the value of D is usually small in practice

(usually two or three), D! can be regarded as a constant. Therefore, the time complexity of

BSR algorithm is OðCD
n � L

D � nÞ ¼ OðnDþ1 � L
DÞ. Compared with the time complexity

of SSR algorithm (m� n), the time complexity of BSR algorithm is less than that of SSR

algorithm when nD � L
D
< m. Because D is usually a small value, as mentioned above,

and the value of L can be controlled via the minimum similarity Simmin, BSR outperforms

SSR in terms of efficiency most of the time.

6.2.4.3 BKSR algorithm

The bottleneck of the BSR algorithm is that replacing services of the original service

sequence produces a lot of candidate service sequences, while the bottleneck of the SSR

algorithm is that it needs to calculate the product of each service sequence with the

original one. K-medoids clustering can be used to improve the service recommendation

algorithms. That is the service recommendation algorithm based on the BKSR.

The BKSR algorithm clusters all service sequences in the service sequence set into K

groups, then finds a service sequence that is the most similar with the original service

sequence among the medoids of K groups; finally the recommended service sequence is

the one with the maximum product SSim(S0, Si)� T(Si) in that group.

Only finding recommended service sequences in the group with the medoid that is the

most similar with the original service sequence is according to the nonstrict transitivity

of service sequence similarity; that is, if the original service sequence is similar with the

medoid, then it is more likely to be similar with the service sequences that are in the

same cluster with the medoid (the value of SSim(S0, Si) is more likely to be high). Our

target is to maximize SSim(S0, Si)� T(Si); it will be more likely to be large when

144 Chapter 6

SSim(S0, Si) is large, although it may not be able to attain the maximum value in the

BKSR algorithm.

Algorithm KSC Algorithm

Input: R: service sequence set; K: number of groups; : maximum loop count
Output: 1 , 2 ,…, : K service sequence groups; 1 , 2 ,…, : K medoids

1: for j=1 to K do
2: =Random(R)

3: end for
4: LP=0
5: While < and 1 , 2 ,…, have changed do
6: for j=1 to K do
7: ={}
8: end for
9: for all in R do

=0
11: for j=1 to K do
12: = (,)
13: if > then
14: = , t=j
15: end if
16: end for
17: = ∪ { }
18: end for
19: for j=1 to K do
20: =0
21: for all in do
22: = ∑ (,)∈

23: if > then
24: = , =

25: end if
26: end for
27: end for
28: LP=LP+1
29: end while

Before describing the BKSR algorithm, we have to introduce the K-medoids service

clustering (KSC) algorithm. The KSC algorithm clusters service sequences according to

the service sequence similarity SSim(Si, Sj) by using the K-medoids clustering algorithm.

We also introduce the maximum loop count LPmax to restrict the loop count of the

algorithm.

The KSC algorithm loops LPmax times at most, and every loop consists of two steps. In

the first step, K medoids are randomly selected, and all sequences in the candidate set are

clustered into K groups according to the similarity between service sequence and each

Service Recommendation 145

medoid (lines 11e16). Assume that there are m service sequences in the service sequence

set, and the average length of service sequences is n, then the time complexity of the first

step is Oðm� K � nÞ. The second step is to recalculate the medoids for each group.

Specifically, we determine the new medoid of a cluster according to the sum of the

similarity between the target sequence with other service sequences in this cluster (lines

21e26). Assume that there are g service sequences in one group on average, and the time

complexity of the second step is OðK � g2 � nÞ. Therefore, the time complexity of each

loop is OðK � n� ðmþ g2ÞÞ, and the total time complexity is OðLPmax � K � n�
ðmþ g2ÞÞ. Although the time complexity of the KSC algorithm is not low, the algorithm

can be run offline. Therefore, it will not affect the efficiency of the BKSR algorithm.

Algorithm BKSR Algorithm
Input: S0: original service sequence; K: number of groups; 1 , 2 ,…, :
K service sequence groups; 1 , 2 ,…, : K medoids
Output: S: recommended service sequence

= 0
2: for j=1 to K do
3: = (0,)
4: if > then
5: = , G=
6: end if
7: end for
8: Return S= (0 ,)

Service sequences are clustered into K groups by using a KSC algorithm, which provides

the foundation for the BKSR algorithm. Similar to the KSC algorithm, the BKSR

algorithm consists of two steps. In the first step, it finds the medoid Cj that is the most

similar to the original service sequence S0 among K medoids and takes the service

sequences in group Gj as candidates (lines 1e7). The second step is to find the

recommended service sequence with the maximum product SSim(S0, Si)� T(Si) among

candidates (line 8).

The time complexity of the first step of BKR algorithm is O(K�n) for an n-length original

service sequence, while the time complexity of the second step is Oðg� nÞ by calling the

SSR algorithm to find the recommended service sequence. Therefore, the total time

complexity is Oðn� ðgþ KÞÞ. Because g is the average number of service sequence in a

group, g can be expressed as m
K. In this way, the total time complexity is transformed into

O
�
n� �mK þ K

��
. Apparently, the time complexity of BKSR reaches its minimum value

Oðn� ffiffiffiffi
m

p Þ when the number of clusters is K ¼ g ¼ ffiffiffiffi
m

p
. Compared with the time

complexity of the SSR algorithm (O(n�m)) and the BSR algorithm ðOðnDþ1 � L
DÞÞ,

the BKSR algorithm outperforms the SSR algorithm and is better than the BSR algorithm

146 Chapter 6

when
ffiffiffiffi
m

p
< nD � L

D
. As discussed above, the value of nD � L

D
is smaller than m most of

the time. And we also find the value of nD � L
D
is larger than

ffiffiffiffi
m

p
empirically. Therefore,

most of time, the efficiency order of these three algorithms is BKSR> BSR> SSR.

6.2.5 Experiments

6.2.5.1 Experiment setup

To evaluate the performance of these three algorithms, we prepared a service repository

containing 10,000 services for the experiment. We artificially created all services.

Among these services, besides the reflexive ones, there are 99,990,000 service pairs. We

counted the symmetrical pairs repeatedly; that is, we regarded (A, B) and (B, A) as two

different pairs, because it can simplify the calculation of the average number of services

that similar with one service. Specifically, the similarities of the symmetrical pairs are

the same.

From the left part of Figure 6.4, it can be observed that almost all similarities concentrate

between 0 and 0.1, while only a small percent of similarities are larger than 0.5.

Specifically, we counted the average number of services that have a similarity with one

service that is greater than 0.5. Among the 9999 services, there are an average 3.199

services with a similarity larger than 0.9 to the target service, and an average 14.216 is

larger than 0.8, an average 35.943 is larger than 0.7, an average 72.741 is larger than 0.6,

and an average 132.054 is larger than 0.5.

The right part of Figure 6.4 shows the distribution of services’ QoS. Similar to previous

studies [13,14], we normalize the QoS of the composite service to one value that is in the

range of [0,1]; the higher the value is, the higher the QoS is. It can be seen that for most

services, QoS is on the high side. About 90% of the services’ QoS are greater than 0.6,

and the percentage of services which have a QoS between 0.7 and 0.9 exceeds 50%.

Figure 6.4
Similarity and QoS distribution in dataset.

Service Recommendation 147

Furthermore, we prepared a service execution log that records 73,242,650 executions of

100,000 different service sequences, which are generated based on the 10,000 atomic

services. In particular, the length of these service sequences varies from 5 to 20, and

there are 100;000
16 ¼ 6250 service sequences for each length. As for the input of the

recommendation system (original service sequences), we generate 1600 service sequences

that have lengths varying from 5 to 20, and there are 100 service sequences for each

length.

Our experiments ran on a desktop PC with Intel Core 2 Duo CPU E7200 2.53 GHz,

4GB-memory, and Ubuntu Server 10.10 OS. The experiment program is written in Java

and runs on OpenJDK 1.6.0 update 20. To minimize the experimental error, all evaluations

were executed in a robust benchmark framework1 for the Java program.

6.2.5.2 Efficiency evaluation

In this group of experiments, we compared the efficiency of the SSR algorithm, BSR

algorithm, and BKSR algorithm. Except for the SSR algorithm, some parameters are

introduced in the execution of the other two algorithms. Therefore, we also evaluated the

impact of these parameters, (1) maximum edit distance, (2) minimum similarity, and

(3) cluster number, and analyzed the evaluation results.

First, we compared the efficiencies by varying the length of the service sequence, because

the time complexities of these three algorithms are all affected by the length of the service

sequence. In particular, the setup of other parameters is Ed(edit distance)¼ 2,

Simmin(similarity threshold)¼ 0.8, and K(number of groups)¼ 318. It should be noted that

318 is the square root of the number of different service sequences (100,000), which

means 318 is the optimal value of the number of groups for the BKSR algorithm

according to our analysis. Without a loss of generality, the execution time in all

experiments means the time used to complete the recommendation based on all original

service sequences.

In Figure 6.5, we find that the average execution time of the BKSR algorithm is obviously

smaller than the average execution time of the BSR and SSR algorithms, which

demonstrates our time complexity analysis about these three algorithms. Meanwhile, the

execution time of BKSR increases slowly with the increased length of the service sequence.

This is because only the service sequences in one group are candidate sequences and the

number of candidates is small. According to our analysis about the time complexity of the

SSR and BSR approaches, BSR outperforms SSR in terms of efficiency when

nD � L
D
< m. From Figure 6.5, we can find that the execution time of BSR is progressively

close to the execution time of SSR with the increase of the length of service sequence and

1 http://www.ibm.com/developerworks/java/library/j-benchmark2/.

148 Chapter 6

even exceeds the execution time of SSR when the length of service sequence exceeds 20.

The trend of these two curves also demonstrates our analysis in the previous section.

The parameters Ed and Simmin affect the efficiency of the BSR algorithm according to the

time complexity of BSR OðnDþ1� L
DÞ. In this experiment, we also evaluated the detailed

impact of these two parameters. In particular, the execution time in Table 6.1 is the sum of

the execution time over all types of service sequence lengths (from 5 to 20). Obviously,

the execution time of BSR in Table 6.1 increases with the increase of the maximum edit

distance (Ed). It is easy to explain, because the value of Ed stands for the value of D in

the time complexity equation of OðnDþ1 � L
DÞ. Meanwhile, the execution time of the

BSR algorithm increases with the decrease of the service similarity threshold Simmin,

which is used to control the value of L. Because the decrease of Simmin increases the value

of L, the execution time of the BSR algorithm increases respectively.

The idea of BKSR is using a K-medoid clustering approach to improve the efficiency of

the BSR algorithm. Therefore, the parameter K is important to the performance of the

Figure 6.5
Efficiency comparison.

Table 6.1: Parameter impact to the efficiency of BSR

Execution Time of BSR (s)

Simmin\Ed 1 2 3

0.9 0.01337 0.14934 2.291
0.8 0.03506 2.59695 187.391
0.7 0.07916 14.0971 2501.287

Service Recommendation 149

BKSR algorithm. In the Table 6.2, we show the trend of the execution time of BKSR with

the variance of K.

In Table 6.2, the volatility reflects the change of the current issue compared with the

former one. For instance, the value of �53.57% means that the execution time decreases

53.57% when the value of K increases from 32 to 100. From Table 6.2, we can find that

the curve of K’s impact to BKSR’s efficiency fits our analysis; that is, the execution time

first decreases and then increases with the increase of K. However, this curve reaches its

wave trough when K has a value between 1000 and 3162, but not 318 (
ffiffiffiffi
m

p
, m¼ 100, 000).

This is caused by the impact of a constant that is ignored in the analysis of time

complexity.

6.2.5.3 Effect evaluation

In this group of experiments, we evaluated the practical effectiveness of these three

algorithms. The robustness of the recommended service sequences has no occasion to be

evaluated because the Bayes approach guarantees the plentiful execution times of the

recommended service sequence. Although QoS itself has incommensurability and

contradictoriness and stands for explicit quality only, we still chose QoS as the metric to

measure the effect of the recommendation algorithms because it is objective and is

measurable, while the implicit quality is subjective and immeasurable. In this experiment,

we measured the effectiveness of the recommendation algorithm by comparing the

incremental QoS of the recommended service sequence against the original service

sequence. The QoS of the service sequence here is the sum of QoS of all services in the

service sequence. The following experiments are all implemented based on 1600 original

service sequences with lengths from 5 to 20, and the average increments of QoS are

average increment QoS values of 1600 recommended service sequences compared with

1600 original service sequences.

Figure 6.6 shows the QoS of service sequences recommended by using the SSR algorithm,

compared with the QoS of original service sequences. In Figure 6.6, the length of the

brown bar means the percentage of recommended service sequences with incremental QoS

is in a certain range. For instance, the first brown bar means that about 42% recommended

Table 6.2: Parameter impact to the efficiency of BKSR

K Execution Time (s) Volatility

32 1.0212 e
100 0.4741 �53.57%
318 0.2149 �54.67%
1000 0.1221 �43.18%
3162 0.1511 þ23.75%

150 Chapter 6

service sequences have a higher QoS than the original service sequence, and the

incremental QoS is in the range of [0,0.1]. From Figure 6.6, we can find that a large

percentage of recommended service sequences obtain a higher QoS (brown, 76.5%) and a

small percentage obtain a lower QoS (dark, 23.5%). The reason why some service

sequences’ QoS decreases is that there are some implicit qualities besides QoS.

Nevertheless, we can see that the QoS of service sequences increases after

recommendation in general, by an 0.06212 average, and more than 65% of QoS

increments are concentrated between 0 and 0.3. The reason why the QoS increments are

small is that the QoS of services are generally high. In particular, besides the increment of

QoS, a larger improvement of our recommendation algorithm compared with existing

service recommendation algorithms is that the robustness of the recommended service can

be guaranteed.

Similarly, we also evaluated the effect of the BSR algorithm, as shown in Figure 6.7. In

particular, the parameter setting of Figure 6.7 is Simmin¼ 0.8, Ed¼ 2. Compared with the

effect of the SSR algorithm, the performance of BSR is apparently worse than the SSR

algorithm, because the percentage of QoS increase of BSR is smaller than the one of SSR.

Meanwhile, the average QoS increment of BSR is 0.018, which is also smaller than the

average QoS increment of the SSR algorithm. It should be noted that the SSR algorithm is

based on an exhaustion approach. Despite the execution time of the SSR algorithm being

longer than the BSR algorithm, the effect of SSR is better.

In this subsection, we also evaluate the impact of two parameters (Simmin and Ed) to the

effect of the BSR algorithm. Table 6.3 shows the trend of the average QoS increment of

Figure 6.6
QoS increment of SSR algorithm.

Service Recommendation 151

BSR algorithm with the variance of Simmin and Ed. From Table 6.3, we can find that the

average QoS increment increases with the increase of Ed because the increase of Ed

stands for the increase of the number of candidate service sequences. Meanwhile, the

average QoS increment increases with the decreases of Simmin for a similar reason. The

decrease of the service similar threshold increases the number of candidate service

sequences. It can be found that the performance of BSR is progressively close to SSR with

the increase of Ed and Simmin and even equal to SSR when Ed¼ 3, Simmin¼ 0.5.

Figure 6.8 shows the distribution of the service sequences on the increment of QoS with

the BKSR algorithm. Similar to the SSR and BSR algorithms, some recommended service

sequences’ QoS increase, while the rest decrease. In particular, the parameter setting of

Figure 6.8 is K¼ 318. The QoS of service sequences increases by 0.061567 on average,

Figure 6.7
QoS increment of BSR algorithm.

Table 6.3: Parameter impact to the effect of BSR

Average QoS Increment of BSR

Simmin\Ed 1 2 3

0.9 0.00253 0.00307 0.00346
0.8 0.01343 0.01815 0.01977
0.7 0.02438 0.03802 0.04178
0.6 0.03261 0.05515 0.05897
0.5 0.03399 0.05832 0.06212

152 Chapter 6

and more than 58% of QoS increments concentrate between 0 and 0.4. As discussed

above, the BKSR algorithm calculates the approximate maximum SSim(S0, S)� T(S) by

using less time. Therefore the effectiveness of BKSR should be a little worse than the SSR

algorithm. To demonstrate this analysis, we do more experiments by varying the number

of K to get a detailed performance for BKSR.

As for the parameter impact to the effect of the BKSR algorithm, we implement a series

of experiments by varying the value of K. Table 6.4 shows the trend of the average QoS

increment with the change of K. With the increase of the value of K, the average QoS

increment of the BKSR algorithm decreases. In particular, the BKSR algorithm is just the

SSR algorithm when K¼ 1. As discussed previously, the effect of the SSR algorithm is the

best for the reason of the exhaustion approach. Meanwhile, the incremental QoS of BKSR

with K¼ 32, 100, 318, 1000, 3162 are all smaller than 0.06217.

Compared with the SSR and BSR algorithm, BKSR should be the preferred

recommendation algorithms for two reasons: (1) efficiency of BKSR is far better than the

Figure 6.8
QoS increment of BKSR algorithm.

Table 6.4: Parameter impact to the effect of BKSR

K Average QoS Increment Volatility

1 0.062127 e
32 0.061881 �0.395%
100 0.061407 �0.766%
318 0.061567 þ0.26%
1000 0.060726 �1.36%
3162 0.061452 þ1.19%

Service Recommendation 153

other two algorithms and (2) the effectiveness of BKSR is only a little worse than SSR

and is better than BSR.

6.3 Instant Service Recommendation
6.3.1 Overview

A traditional service composition scenario is shown on the right part of Figure 6.9 (to the

right of the dashed line). Generally, when users need a complex service and the function

has not been implemented by any existing service, they prefer to use a service

composition tool to compose some simplex services to generate the composite service that

fulfills their demands. Specifically, the simplex services have to be selected from a service

repository or registry, e.g., UDDI [15]. After finishing the process of composition, the

composite service has to be deployed on a composite service execution engine (e.g.,

Apache ODE [7]) for execution.

As described above, traditional service composition schema have three main

drawbacks: (1) some professional domain knowledge is essential to select simplex

services for composition; (2) knowledge about service description language is needed

for composing services to satisfy users’ demands; and (3) manually selecting simplex

services is a time-consuming job. Although the appearance of some service

Deploy
composite
service

Recommended
composite

service

Partially
composed

service
Composite

service
recommender

Execution
log

Composite
service

execution

Execution
log database

User

Compose
service

Service composition

Composite service
execution engine

GUI tools

Figure 6.9
Overview of instant recommendation for web service composition.

154 Chapter 6

composition tools such as Eclipse BPEL Designer [16] overcome the second drawback,

professional domain knowledge is still a roadblock for nonprofessional users to do web

service composition. Furthermore, the reliability of composite service generated by

traditional service composition schema cannot be guaranteed. This is because

traditional service composition approaches are mainly concerned with the matchmaking

of interfaces and functionalities, which cannot guarantee the reliability of the

composite service.

Inspired by Instant Search, Spelling Suggestion, and Autocomplete by Google [17], we

propose a novel web service composition schema, WSCRec, that is faster and smarter

than traditional solutions. Similar to Google Instant Search, a bunch of appropriate

services will be instantly recommended to users, along with the incrementally

implemented composition processes. According to these services recommended by

WSCRec, users refine their partially composed services as well as complete the

composition task.

The newly introduced components of the proposed WSCRec approach are shown in the

left part of Figure 6.9. There are mainly two new components: (1) composite service

recommender, which recommends a list of candidate composite services to the user

according to the partially composed service and execution logs; specifically, it can be

implemented as a local component of the service composition GUI tools (e.g., an Eclipse

plugin) or a remote service for it and (2) execution log database, which records the

execution information of each composite service running on the Composite Service

Execution Engine. When a user attaches a new service to the partially composed service,

the information of the partially composed service will be promptly sent to the composite

service recommender. Then the composite service recommender tries to obtain a list of

proper composite services according to the execution log of the composite services from

the execution log database, and send it back to the service composition GUI tools for users

to choose. If a user does not choose the recommended composite service, while a new

service is attached, the above process will be repeated.

Compared with the traditional service composition schema, the benefit of our approach is

threefold:

1. Instant recommendationdDynamically present recommendations relevant to the

partially composed service. Helps users formulate a better service composition by

providing instant feedback.

2. Smart predictiondProfessional domain knowledge is not essential. Even when users do

not know exactly which web service they are looking for, predictions help guide their

discovery. The top prediction will present beside the user’s partially composed service,

thus they can stop discovering as soon as they see what they need.

Service Recommendation 155

3. Guaranteed reliabilitydA bunch of frequently used web services have been proved to

be more reliable and robust and have higher probability to fulfill the user’s demand.

In the following section, we first provide the essential definitions and form the problem,

and then propose four different recommendation algorithms. Finally, experimental results

with different algorithms are presented.

6.3.2 Definition and Problem Description

In this section, we introduce some definitions that are related to the Composite Service

Recommendation concept.

Definition 9: Web service (ws). A web service ws can be defined by a tuple as ws¼ (N, F,

I, O, CI, CO, QoS), in which N is the name of the service, F is the function, I is the input

list, O is the output list, CI is the precondition list, CO is the post-condition list, and QoS

is the quality of the service.

QoS consists of nonfunctional attributes of the service that describe the features of the

service, such as availability, reliability, response time, and so on [8]. QoS can be presented

as a vector consisting of the values of the QoS attributes.

Definition 10: Composite service. A composite service is defined by a directed acyclic

graph of services as G¼ (V, E), in which V and E are the sets of vertices and edges in the

graph, respectively.

Each vertex in the graph represents a service involved in the composition. This condition

should be held on all vertices of the graph: For each WSi˛V, in which WSi is a service

that has at least one incoming edge, let WSi1, WSi2, ., WSin be the vertices from which

there is a directed edge pointing to WSi. Then Ii4ðOi1WOi2W.WOimÞ and
CIi) (COi1XCOi2X.X COim), in which 4 is the subsumption relation and is the

implication relation. In other words, a service at any stage of the composition has its

inputs from the outputs of its predecessors, and its preconditions should be implied by the

post-conditions of its predecessors.

Definition 11: Service sequence (S). Service sequence S is a special kind of composite

service. A composite service is a service sequence if there is only an order relation

between any adjacent services and no self-circular services in the composition.

A service sequence can be defined by a tuple as S¼ (WS1, WS2, ., WSn), in which for

each i˛ [1, ., n], WSi is one of the services composing the service sequence, and WSi is

executed before WSiþ1. Service sequence is a simple and commonly used type of

composite service in the real world. In this chapter, we focus only on the instant

recommendation of service sequence and leave the other variants (e.g., parallel,

conditional, and loops) for our future work.

156 Chapter 6

For an instant composite service recommendation, we want to find the composite service

that the user wants most, based on the service composed by the user. Formally speaking,

given the fully composed service q from the user, we want to find the composite service s0

with the highest probability p(sjq) among all composite services s. By applying the Bayes

theorem, we can express the problem as the following equation:

s0 ¼ argmaxspðsjqÞ ¼ argmaxspðqjsÞpðsÞ (6.9)

Here, p(qjs) is the probability that the composite service the user wants most is s, but he

prefers to compose q. We assume that the more similar s and q are, the higher probability

the user will prefer to compose q. So the probability p(qjs) can be measured by the

similarity between s and q that is represented as Sim(s, q). Assume s and q are service

sequences with the same length n, and they can be represented as s¼ (s1, s2, ., sn) and

q¼ (q1, q2, ., qn), in which sk and qk are the k-th services of s and q, respectively. Then

Sim(s, q) can be calculated as:

Simðs; qÞ ¼
Yn
k¼1

Sim
�
sk; qk

�
; (6.10)

in which Sim(sk, qk) is the similarity between the services sk and qk. Currently, there are

some methods for service similarity computation [18e20]. In this chapter, we use a

modified version of the method introduced by Khalid Elgazzar et al. [20] to calculate the

similarity between services. We will give more details on this modified method in the

following section.

In Eqn (6.9), p(s) is the prior probability of s. p(s) is usually measured by the frequency of

occurrence of s, that is, the frequency of execution of s. In this chapter, we measure p(s)

with the linear combination of the relative execution frequency and QoS of s as:

pðsÞ ¼ a$QðsÞ þ b$f ðsÞ (6.11)

in which Q(s) is the QoS utility [21] of the composite service s, f(s) is the frequency of

execution of s, which can be easily obtained from the composite service execution log,

a and b are parameters, and a þ b ¼ 1, a � 0, b � 0. As for the computation of QoS

utility, it involves scaling the QoS attribute values to allow a uniform measurement of the

multidimensional service qualities independent of their units and ranges. And the approach

for the QoS utility computation [21] is widely accepted.

The reason we use the linear combination of Q(s) and f(s) to calculate p(s) instead of just

using f(s) is that, p(s) represents how much users may want the service sequence s, and we

assume that it does not only depend on how often s is executed, but also how high the

QoS of s is (for convenience, we will not distinguish between QoS and QoS utility in the

rest of this chapter).

Service Recommendation 157

We use the utility function from [21] to calculate Q(s), which normalizes the QoS

attributes of s into one single value, allowing a uniform measurement of the

multidimensional QoS. The QoS vector of s with r attributes is defined as

qos(s)¼ (qos1(s), ., qosr(s)), in which qosi(s) is the value of the i-th attribute QoS

attribute of s and can be calculated as:

qosiðsÞ ¼ Fn
j¼1qosi

�
sj
�

(6.12)

in which sj is the j-th service of s, and F is an aggregation function depending on the QoS

attribute as shown in [21]. For instance, the availability of s can be calculated as:

qosiðsÞ ¼
Yn
j¼1

qosi
�
sj
�

(6.13)

Then the overall QoS utility of s is computed as:

QðsÞ ¼
Xr
i¼1

qosiðsÞ �min
s˛R

qosiðsÞ
max
s˛R

qosiðsÞ �min
s˛R

qosiðsÞ$wi; (6.14)

in which R is the set of all composite services that have been ever executed, andPr
i¼1wi ¼ 1;wi � 0 is the weight of qosi(s) to represent the user’s priority. It can be

observed that Q(s)˛ [0,1].

We use the following equation to calculate the relative execution frequency f(s):

f ðsÞ ¼
tðsÞ �min

s˛R
tðsÞ

max
s˛R

tðsÞ �min
s˛R

tðsÞ ; (6.15)

in which t(s) is the execution times of s. Obviously f(s)˛ [0,1], therefore p(s)˛ [0,1].

Therefore, Eqn (6.9) can be rewritten as:

s0 ¼ argmaxs

 Yn
k¼1

Simðsk; qkÞ � ða$QðsÞ þ b$f ðsÞÞ
!

(6.16)

Now for the instant composite service recommendation, we are given only the partially

composed service q, which is the prefix of the potential fully composed service q. The

objective is to find the composite service s0 with the highest probability p(sjq) among all

composite services s and q that extend q. Similar to Eqn (6.9), we want to find:

s0 ¼ argmaxs;qjq¼q.
pðsjqÞ ¼ argmaxs;qjq¼q.

pðqjsÞpðsÞ (6.17)

in which q ¼ q . denotes that q is a prefix of q. We can see that the only difference

between Eqns (6.17) and (6.9) is that it is given only the prefix q instead of the entire q.

158 Chapter 6

So we can view the offline composite service recommendation as a special case of the

more general instant composite service recommendation.

Note that the analysis on offline composite service recommendation is also applicable to

instant composite service recommendation. Thus, Eqn (6.17) can be transformed to:

s0 ¼ argmaxs;qjq¼q.

 Yn
k¼1

Simðsk; qkÞ � ða$QðsÞ þ b$f ðsÞÞ
!

(6.18)

Among all composite service q that extend q, when sjqjþ1¼qjqjþ1;sjqjþ2¼qjqjþ2; .; sn¼qn,

that is, Simðsjqjþ1;qjqjþ1Þ¼1; .; Simðsn;qnÞ¼1, in which jqj is the length of q, Sim(s,q) will
be the maximum for any s. Then the task of the instant composite service recommendation is

transformed to the following:

s0 ¼ argmaxs

 Yjqj
k¼1

Sim
�
sk; qk

�� ða$QðsÞ þ b$f ðsÞÞ
!

(6.19)

6.3.3 Recommendation Algorithms

6.3.3.1 Exhaustion search-based algorithm

To solve Eqn (6.19), the easier way is to going through every service sequence s in R,

calculating the value of Simðsk; qkÞ � ða$QðsÞ þ b$f ðsÞÞ, and obtaining the top-k results

with maximum value as return. We call this algorithm an exhaustion-based algorithm, or

E-WSCRec algorithm. The pseudo-code of E-WSCRec is shown in the following algorithm.

First, the algorithm creates a class called TopKList to maintain top-k service compositions

with maximum probability (line 1). There is a method add(s, p) in class TopKList to add

service composition into result, in which s represents the service composition to add and

p is the probability of s. Class TopKList implements a heap structure to maintain the

result. When the add method is called, if the number of the service composition in the

heap is smaller than k, add s directly to the heap; if the number of the service composition

is equal to k, then compare p to the item in the heap with minimum probability. Delete the

item if its probability is smaller than p, and add the new item to the heap, or do nothing.

The time complexity of the add method is O(logk). Notice that the number of the items in

the heap should not be larger than k. And then, the algorithm goes through every service

composition s in set R (line 2). As long as the length of s is larger than or equal to the

length of prefix q (line 3), calculate the probability of s (line 4) and add s to result. Notice

that in Eqn (6.19) implicit is the condition jsj � q, which should be prejudged before

calculation. Eventually the algorithm would return the result set (line 8).

Service Recommendation 159

6.3.3.2 Replacement-based algorithm

Replacement-based algorithm, or algorithm called R-WSCRec, tries to maximize the

posterior probability by maximizing the similarity and uses similar services to replace the

ones in q to speed up the maximization of similarity.

Since the similarity of q and itself is one, if we replace a few of the services as similar

(similarity close to one) of the service in q, the similarity of service we got and q will be

close to one. Then we check whether the service we got is known already; if it is, then we

get a service highly similar to q, and its posterior probability is likely to be great.

R-WSCRec tries to find similar solutions among known service composition by exhaustive

possible replacement. The pseudo-code of the R-WSCRec algorithm is shown in the

following algorithm.

The algorithm creates a TopKList class (see Section 3.1.2) instance to maintain the result

set (line 1), then calls the R-WSCRec recursive, a recursive function to solve the problem

(line 2). Finally, the program returns the result set (line 3). The pseudo-code of the

R-WSCRec recursive is shown in the following algorithm.

At first, the program determines whether the number of services that have been replaced

exceed the maximum number of replacements (line 1). If it is not exceeded, then it

searches S to find the service with prefix q by function findWithPrefix. We can create a

hash table with different prefixes of services in advance, so that findWithPrefix could find

the result in O(1) time. Notice that the set S is empty if there is no result. And then the

program traverses every service composition s in set S (line 3), calculates the posterior

160 Chapter 6

probability of s (line 4), and adds s to the result set (line 5). Then the function checks

whether the number of services that has been replaced is less than the maximum number

of replacements (line 8), to determine if it is allowed to continually replace the services. If

so, it starts from the index and goes through every item in q (line 9). And then it traverses

each service ws with a similarity with qi that is greater than or equal to Mmin(line 10). For

each ws, it copies q to q0(line 11) to prevent the modification of q; then it replaces the i0-th
item of qi0 by ws (line 12). Finally, call function recursively (line 13), which replaces the

prefix of services by q0, increases the replaced number, and starts the index by 1. Notice

that because Mmin is a constant in practice, the set fwsjSimðws; qiÞ � Mmin;ws 6¼ qig in

line 10 can be calculated in advance, so that the function can be run in O(1)’s time to get

this collection.

6.3.3.3 Improved replacement-based algorithm

The problem of the R-WSCRec algorithm is that the result of replacing several items of

q is highly possible to be an unknown service composition, so the program may deal with

many irrelevant service compositions. The improved online service composition

recommend algorithm based on replacement (or algorithm called IR-WSCRec) uses a

so-called search trie data structure to ensure that the result of replacement is always a

known services in the collection, to avoid that unnecessary calculations of unrelated

service compositions.

Let’s take a look at the search trie structure. Figure 6.10 shows the construction of a

search trie of service compositions listed in Table 6.5 (each letter represents a service).

Service Recommendation 161

Search trie is a multibranch data structure. Each internal (nonroot, nonleaf) node

represents a service in some service compositions, while root and leaf nodes are

placeholders. Any path from the root to leaf represents a combination of known services,

and the entity of services is stored in the leaf node. For example, Figure 6.10 highlights a

path that represents a composition of service “BCA” (ignore the probability p). Clearly,

the search trie can be constructed with O(jRj$nmax) offline.
The IR-WSCRec algorithm traverses the search trie by depth first search. In the meantime,

it calculates the similarity of service q and notes in the search trie and limits the range of

similarity (must be greater than or equal to Mmin) and the number of different services

Root
p: 1

ws: B
p: 0.3

ws: C
p: 0.5

ws: A
p: 0.4

ws: B
p: 0.4

ws: D
p: 0.5

ws: E
p: 0.2

ws: D
p: 0.1

Leaf
p: 0.2

Leaf
p: 0.5

Leaf
p: 0.1

Leaf
p: 0.2

Leaf
p: 0.4

ws: A
p: 0.3

Leaf
p: 0.3

ws: C
p: 0.3

Figure 6.10
An example of service trie.

Table 6.5: Service sequence execution log

Service Sequence s p(s)

AB 0.4
BC 0.2
BCA 0.3
BCAD 0.1
CD 0.5
CDE 0.2

162 Chapter 6

(i.e., up to Mrep) to achieve the effect of pruning. So we get a more effective R-WSCRec

algorithm. The pseudo-code of the IR-WSCRec function is shown in the following

algorithm.

At first, we create a TopKList class instance to maintain the result set (line 1). Then we

call the IR-WSCRec recursive, a recursive function to solve the problem (line 2). Finally,

we return the result set (line 3). The pseudo-code of the IR-WSCRec recursive is shown in

the following algorithm.

First, the program determines whether the number of services that have been replaced is

less than or equal to the maximum number of the replacement (line 1). If it is, then you can

continue the search, or otherwise return. Then, if the current node is a leaf node and the

current index exceeds the length of q (line 2), get the combination of services that

corresponds to the leaf node (line 3), calculate the posterior probability (line 4), and add to

Service Recommendation 163

the result set (line 5). If the current node is not a leaf node (line 6), then traversal each child

node of the current node (line 7). For each child, if the current subscript does not exceed jqj
(i.e., qi is effective), and the child is not a leaf node (i.e., the node that services child.ws is

effective), and the similarity of child.ws and qi is greater than or equal to Mmin (line 8), then

recursively call this function (line 9), which increases the current index by one. And when

child.ws and qi are the same, keep replacements unchanged, otherwise, the replace number

increases by one (line 9). If the current index is more than jqj (line 10), then directly call

this recursive function (line 11), which increases the current index by one.

6.3.3.4 Heuristic search-based algorithm

To solve Eqn (6.19), we apply the A* search algorithm on a trie of service. In the

following subsections, we introduce the search trie again with service probabilities. Then

we present the A* search algorithm to find the service sequence maximizing Eqn (6.19) on

the service trie. Last we discuss the pruning technique to speed up the A* search. This

algorithm is mainly inspired by the work of Huizhong et al. on instant spelling correction

for query completion [22].

The A* search algorithm traverses the input service sequence one service by one service

from the beginning and tries to match it with the ones in the execution log. To make the

searching efficient, we hold all service sequences in the execution log with their

probabilities in the service trie. Note that the service trie can be built offline, and the update

is easy and efficient. The service trie can be updated periodically instead of each time a

service sequence is executed. The heuristic function used in the A* search algorithm is:

hðs; iÞ ¼ pmaxðsÞ �

8>>><
>>>:

Yi
k¼1

Sim
�
sk; qk

�
if i � jqj

Yjqj
k¼1

Sim
�
sk; qk

�
otherwise

(6.20)

in which s is a prefix with length i of some service sequences in the execution log, and

pmaxðsÞ is the maximum value of p(s) among all service sequences extending s. pmaxðsÞ
can make sure that the search will tend to find the path with larger probability p(s). When

s is an entire service sequence, i.e., s ¼ s, Eqn (6.20) is equal to Eqn (6.19). Therefore the

heuristic can lead to the objective function.

Equation (6.20) can be rewritten in a recursive form:

hðs0; iþ 1Þ ¼ hðs; iÞ � �pmax�s0�=pmaxðsÞ��
�
Sim
�
s0iþ1; qiþ1

�
if iþ 1 � jqj

1 otherwise
(6.21)

in which s0 is a prefix with length iþ 1 that extends s by one service.

164 Chapter 6

Given the service sequence prefix q, the service trie t, and an integer k, the A* search

algorithm is applied to find the top-k service sequences with the largest probabilities. We

use a triple (p, i, n) to represent each intermediate search state, in which p is the

probability of the current path, which is actually the value of the heuristic function, i is the

index of the current service in the service sequence, and n is the current node in

the service trie. The pseudo-code of the algorithm is shown in the following algorithm.

The algorithm mainly relies on a priority queue (line 4) of the intermediate search

states, sorted by decreasing p, the value of the heuristic function. So in each step of

the search, the state with the current largest p is always processed. The search starts

from the root of the service trie, so the state with p¼ 1 (the probability of the root is

always one), i¼ 0, n¼ root is first added to the queue (line 5). The search repeats until

there are no states left in the queue or the top-k service sequences are found (line 6). In

each step of the search, the state with the largest probability is retrieved from the queue

first (line 7). If the leaf node is reached, which means we have already found a path,

the corresponding service sequence is added to the result list (lines 8 and 9). Otherwise

we iterate over all child nodes of the current node to expand states (line 11). For each

child node, the index is moved forward by one service (line 12). Then we calculate the

probability of the child node according to the heuristic function (this is explained

later; lines 13e17). And the new state with the child node is added to the queue

(line 18). Finally, the top-k service sequences with the largest probabilities are returned

(line 22).

Service Recommendation 165

6.3.4 Experiments

6.3.4.1 Experiment setup

To evaluate the performance of the instant composite service recommendation algorithm,

we took 15,959 web services from seekda.2 In this dataset, we have the name, provider,

country, WSDL file, and availability for each web service. The service name and WSDL

file is used to calculate similarities between services. Because only the availability of

service is available in the dataset, it is used as a representative for QoS, and the QoS

utility of service sequence can be calculated as Eqns (6.13) and (6.14) with r¼ 1 and

w1¼ 1.

Figure 6.11 shows the service similarity distribution in the dataset. It shows how many

services on average yield similarities in each range with one service. In Figure 6.11, 0 on

the x-axis indicates similarity in the range of [0,0.1], 0.1 indicates the range of [0.1,0.2],

and so on; 1 indicates that the similarity equals to 1. From Figure 6.11(a), it can be

observed that almost all similarities concentrate between 0 and 0.3, while only a small

number of similarities are larger than 0.3; that is, most pairs of services are not similar.

Figure 6.11(b) is a zoom-in of Figure 6.11(a), with similarities between 0.3 and 1.

Specifically, there are an average 60.367 services with similarity larger than 0.9, i.e.,

counterintuitive. We examined the dataset and found that a number of the services are

generated by Microsoft Office, and their names and the WSDL files are almost the same.

This explains the counterintuitive situation.

Furthermore, we prepared an execution log that records 75,228,237 executions of 100,000

different service sequences, which are generated based on the 15,959 web services. The

lengths of these 100,000 service sequences are uniformly distributed from 5 to 20. As for

0

2500

5000

7500

10000

0 0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1
Similarity between services Similarity between services

A
ve

ra
ge

 s
er

vi
ce

s
nu

m
be

r

A
ve

ra
ge

 s
er

vi
ce

s
nu

m
be

r

0

20

40

60
(a) (b)

Figure 6.11
Service similarity distribution in dataset.

2 http://webservices.seekda.com/.

166 Chapter 6

the input service sequences of the recommendation algorithm, we generate 1000 service

sequences, the lengths of which vary from 5 to 20.

As for the IR-WSCRec algorithm and H-WSCRec algorithm needs, we constructed a

service trie based on 100,000 service compositions. The number of son nodes of service

trie rapidly decrease with height; the number of son nodes of the first layer is 10,141, and

the average number of branches of the second layer is 9,841 and 1,002 for the third layer.

Our experiments run on a desktop PC with Intel Core 2 Duo E7400 2.80 GHz CPU and

3 G memory, and Windows 7 OS. The program is written in Java and runs on Sun JDK 6

Update 27. To minimize the experimental error, all evaluations are executed in a robust

benchmark framework3 for Java program.

6.3.4.2 Efficiency evaluation

In this group of experiments, we evaluated the efficiency of the three algorithms,

E-WSCRec, IR-WSCRec, and H-WSCRec (not R-WSCRec, because we have an improved

algorithm) and analyzed the evaluation results. We adjusted the parameters of each

algorithm and tested the algorithm’s execution time and the relationship between these

parameters. Finally, we have the execution time of three algorithms for the horizontal

comparison. The average execution time of the experiments is the average execution time

of 1000 inputs.

The execution time of the E-WSCRec algorithm and the relationship between the

parameter a is shown in Figure 6.12. Note that because b¼ 1� a, we only need to adjust

the parameter a. As can be seen from Figure 6.12, the largest difference of algorithm’s

execution time is not more than 0.06 ms. Thus, ignoring measurement error, we can

conclude that the parameter a of E-WSCRec has no effect on the algorithm execution time.

Figure 6.13(a) shows the impact of parameters Mrep (maximum number of replacements)

on the IR-WSCRec algorithm, in which Mrep ranges from 0 to 10, Mmin is 0.1, and a is 0.5.

From the figure we can see, the execution time rapidly increases with the Mrep and then

gently increases when Mrep is larger than 4. The increase of execution time is due to the

increase of Mrep; the algorithm would be able to search the higher of the service trie with

more and more paths. And then the execution time goes flat, because the branches of the

trie have only 0 or 1 nodes when the search reaches a certain level. Then the algorithm

will not search more branch paths, but only goes down to reach the leaf node. So when

Mrep¼ 4, the parameter Mrep has less impact on the execution time.

Figure 6.13(b) shows the relationship of parameters Mmin (minimum similarity) and

IR-WSCRec algorithm execution time, in which Mrep is fixed to 10, and a is fixed to 0.5.

We can see that the algorithm execution time decreases rapidly with the increase of Mmin,

3 http://www.ibm.com/developerworks/java/library/jbenchmark2/.

Service Recommendation 167

then gently increases after Mmin¼ 0.5. With the increase of Mmin, the services with a

similarity greater than or equal to Mmin rapidly decline, so the number of paths the

algorithm would search also decreases rapidly, and the corresponding algorithm execution

time is reduced. There are a few services that have the similarity greater than or equal to

0.5, so when Mmin� 0.5, the parameter has little impact on the execution time.

0
22.9

22.92

22.94

22.96

22.98

0.2 0.4 0.6 0.8 1
α

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)
Figure 6.12

Efficiency of E-WSCRec.

00 2 4 6 8 10 Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

00

2

4

6

8

10

MsimMrep

40

80

120

0.2 0.4 0.6 0.8 1

0
8.9

8.95

9

9.05

9.1

0.2 0.4 0.6 0.8 1
α

(a) (b)

(c)
Figure 6.13

Efficiency of IR-WSCRec.

168 Chapter 6

The relationship of the parameter a and IR-WSCRec algorithm execution time is shown in

Figure 6.13(c), in which Mrep and Mmin are fixed to 10 and 0.1, respectively. It is obvious

that the parameter a has little impact on the IR-WSCRec algorithm execution time.

Figure 6.14(a) shows that the average execution time increases linearly with the increase

of Tpath(a¼ 0.5, Tpro¼ 0, Tsim¼ 0), while theoretically it should increase exponentially.

This is because the branch number (number of children for a node) in the service trie

decreases rapidly along with the increase of depth. The branch number of the first level

(direct children number of the root node) is 10141, the second level is 9.841 on average,

the third level is average 1.002, etc. Therefore, when Tpath� 10, the pruning impacts little

on/after the second level, and the execution time mainly depends on the number of

branches to search on the first level, which is equal to Tpath.

As shown in Figure 6.14(b) (a¼ 0.5, Tpath¼ 100, Tsim¼ 0) and Figure 6.14(c) (a¼ 0.5,

Tpath¼ 100, Tpro¼ 0), both of the average execution times decrease exponentially with the

increase of Tpro (note that the x-axis is logarithmic) and Tsim, because these two

0 0.00010
2

3

4

5

20 40 60 80 100 0.001 0.01 0.1
Tpro

Tsim α

Tpath

2

3

4

5

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

0
4.7

0 0.1 0.2 0.3 0.4 05
1

2

3

4

5

4.8

4.9

5

0.2 0.4 0.6 0.8 1

(a) (b)

(c) (d)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)
Av

er
ag

e
ex

ec
ut

io
n

tim
e

(m
s)

Figure 6.14
Efficiency of H-WSCRec.

Service Recommendation 169

parameters have a similar role: They are both minimum thresholds, one for probability, the

other for similarity. Unlike Tpath, as the thresholds increase, the number of branches to

search decreases on every level. So the execution time decreases exponentially. In general,

the algorithm is fast after pruning, only several milliseconds.

In Figure 6.14(d), we find that the average execution time decreases with the increase of

a, while we fix Tpath to 100 and Tpro and Tsim to 0, but the difference between the largest

and the smallest execution time is only around 0.2 ms. Although the reason is not obvious,

it is because of the difference between the distribution of QoS and relative execution

frequency of the service sequences. The QoS of the service sequences are generally higher

than their relative execution frequency numerically (Figure 6.13 supports this conclusion).

The larger a is, the more predominant QoS is in p(s); therefore, the larger p(s) is. The

larger p(s) is, the more likely the search will tend to find the path with a larger p value,

which yields less attempts to other paths, and then the search is faster. Nevertheless, the

impact a on execution time is small.

Figure 6.15 shows the three algorithms’ execution time comparison (E for E-WSCRec

algorithm, IR for IR-WSCRec algorithm, HS for H-WSCRec algorithm), in which a¼ 0.5,

K¼ 316, Mrep¼ 10, Mmin¼ 0.1, Tpath¼ 100, Tpro¼ Tsim¼ 0.

It can be seen from the figure, the E-WSCRec algorithm execution time is significantly

higher than that of the other two algorithms. The H-WSCRec algorithm and IR-WSCRec

algorithm require a few milliseconds, while the E-WSCRec algorithm requires 20 ms. In

general, the execution time of the IR-WSCRec algorithm and H-WSCRec algorithm is less

than 10 ms, and meets the requirements of an online recommendation.

6.3.4.3 Effect evaluation

E-WSCRec selects the services with highest probability from all service compositions,

therefore the E-WSCRec algorithm is the best standard algorithm. It represents the best

results the algorithm can achieve.

0

10

20

30

E IR HSA
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Algorithm

Figure 6.15
Efficiency comparison.

170 Chapter 6

Figure 6.16(a) shows the relationship of parameter a and the nonempty results of the

E-WSCRec algorithm. Obviously, the E-WSCRec algorithm can always return a nonempty

result and therefore is not related to the parameters a.

The relationship of the parameter a and the average probability of the E-WSCRec

algorithm is shown in Figure 6.16(b). We can see that the average probability increases

with the increasing of a. The value of QoS of the service compositions is generally larger

than the frequency. So when a increases, the prior probability will increase accordingly, so

that the posterior probability increases.

Figure 6.17(a) shows the impact of parameter Mrep on the nonempty result of the

IR-WSCRec algorithm, and Figure 6.17(b) shows the impact of parameter Mrep on the

average probability of the algorithm, in which Mmin¼ 0.1, a¼ 0.5. The number of

nonempty results of the IR-WSCRec algorithm increased with the increase of Mrep,

because the more services that need to be replaced, the more paths to search, so there will

be more nonempty results. Note that even when Mrep¼ 10, not all inputs return nonempty

results. The average probability of the algorithm rapidly increases with the increase of

Mrep at the beginning and then gently increases after the Mrep� 3. Rapid increases are

the result of the newfound results having higher probability, and then the leveling off is

the result of the newfound result with a probability that has a distribution similar to the

average.

Figure 6.17(c) and 6.17(d) shows the relationship of the parameter Mmin and the number of

nonempty results and average probability of the algorithm, in which Mrep¼ 10 and

a¼ 0.5. The number of nonempty results rapidly declines with the increase of Mmin, then

gently increases after the Mmin� 0.4, and reaches the minimum when Mmin¼ 1. The

average probability has a similar situation, and it has much lower values than the other

αα
0

0.1999

1000

1001

0.12

0.14

0.16

0.2

N
on

em
pt

y
re

su
lt

nu
m

be
r

Av
er

ag
e

pr
ob

ab
ili

ty

0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

(a) (b)
Figure 6.16

Efficiency of E-WSCRec.

Service Recommendation 171

Msim

Msim

Mrep

Mrep

α

α

N
on

em
pt

y
re

su
lt

nu
m

be
r

N
on

em
pt

y
re

su
lt

nu
m

be
r

N
on

em
pt

y
re

su
lt

nu
m

be
r

Av
er

ag
e

pr
ob

ab
ili

ty

Av
er

ag
e

pr
ob

ab
ili

ty

Av
er

ag
e

pr
ob

ab
ili

ty

0
0.1

0.12

0.14

0.16

715

715.5

716

716.5

717

0.2 0.4 0.6 0.8 10
0.05

0.1

0.15

0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0
0

0.05

0.1

0.15

0.2

2 4 6 8 10

0
0

200

400

600

800

2 4 6 8 10 0
0

500

1000

0.2 0.4 0.6 0.8 1

(b)

(a)

(d)

(c)

(f)

(e)

Figure 6.17
Effect of IR-WSCRec.

1
7
2

C
hapter

6

when Mmin¼ 1, because the increase of minimum similarity leads to the reduction of the

number of paths.

Parameter a of the IR-WSCRec algorithm does not have an affect on the number of

nonempty results, and the average probability of the algorithm increases with increasing a,

as shown in Figure 6.17(e) and 6.17(f), in which Mrep¼ 10 and Mmin¼ 0.1. However, the

IR-WSCRec algorithm does not always return nonempty results.

Figure 6.18(a) and 6.18(b) show the relationship between parameter Tpath and the number

of nonempty results and average probability of the algorithm, in which Tpro¼ Tsim¼ 0 and

a¼ 0.5. It can be seen that when Tpath¼ 1, the number of nonempty results and the value

of probability are quite low; the reason is that the algorithm only searches the path with

the highest probability of the first layer of branches. When Tpath� 10, the algorithm

almost always returns nonempty results, while the average probability increases slowly

along with the Tpath. While Tpath� 10, it has less impact on the algorithm.

As Figure 6.18(c) (in which Tpath¼ 100, Tsim¼ 0, a¼ 0.5) and Figure 6.18(e) (in which

Tpath¼ 100, Tpro¼ 0, a¼ 0.5) show, the number of nonempty results of the H-WSCRec

algorithm decreases with the increase of parameter Tpro and parameters Tsim. Similarly,

Figure 6.18(d) (in which Tpath¼ 100, Tsim¼ 0, a¼ 0.5) and Figure 6.18(f) (in which

Tpath¼ 100, Tpro¼ 0, a¼ 0.5) show that the number of nonempty results of the

H-WSCRec algorithm decreases with the increase of parameter Tpro and parameters Tsim.

This is due to increased restrictions, so that the path to the search reduces. So the return

result has less nonempty results and lower average probability.

T
path

T
pro

T
sim α

(a) (c) (e) (g)

T
path

T
pro

T
sim α

(b) (d) (f) (h)

N
on

em
pt

y
re

su
lt

nu
m

be
r

N
on

em
pt

y
re

su
lt

nu
m

be
r

N
on

em
pt

y
re

su
lt

nu
m

be
r

N
on

em
pt

y
re

su
lt

nu
m

be
r

Av
er

ag
e

pr
ob

ab
ili

ty

Av
er

ag
e

pr
ob

ab
ili

ty

Av
er

ag
e

pr
ob

ab
ili

ty

Av
er

ag
e

pr
ob

ab
ili

ty

Figure 6.18
Effect of H-WSCRec.

Service Recommendation 173

Similar to the previous two algorithms, the parameter a does not have impact on the

nonempty results, and the average probability of the algorithm is increased with the

increase of a, as shown in Figure 6.18(g) and 6.18(h), in which Tpath¼ 100, and

Tpro¼ Tsim¼ 0. Figure 6.19(a) shows the comparison of nonempty results of the three

algorithms, and Figure 6.19(b) shows the comparison of average probability of the three

algorithms, in which a¼ 0.5, K¼ 316, Mrep¼ 10, Mmin¼ 0.1, Tpath¼ 100, and

Tpro¼ Tsim¼ 0. Notice that except for the IR-WSCRec algorithm, the other two algorithms

always return nonempty results. And there is no doubt that the average probability of the

E-WSCRec algorithm is the highest. The average probability of the IR-WSCRec algorithm

is very close to the maximum result; however, the number of its nonempty results is much

lower than that of the other two algorithms.

6.4 Summary

Traditional solutions to the service recommendation problem propose to recommend

optimized services based on accurate service (functionality) matchmaking. Similar to the

expert system, these solutions will meet bottlenecks as long as they develop to a certain

extent. To handle this problem, we propose a Bayes-based approach, by recommending

composite services based on the service execution logs that contain diverse information

such as service functionality, QoS record, execution order, etc. Based on this collective

knowledge, the recommended service is more optimized, and the robustness can be

guaranteed as well.

Further, inspired by Google Instant Search, we propose an instant service recommendation

approach, WSCRec, in which a list of candidate composite web services are instantly

recommended to the user according to the partially composed service. Specifically, service

execution logs and the Bayes theorem are adopted for calculating the probabilities of

candidate composite services, while an A*-based algorithm is proposed for generating

top-k composite services.

Figure 6.19
Effect comparison.

174 Chapter 6

References

[1] Z. Zheng, H. Ma, M.R. Lyu, I. King, QoS-aware web service recommendation by collaborative filtering,
IEEE Trans. Serv. Comput., to be published.

[2] X. Chen, X. Liu, Z. Huang, H. Sun, Regionknn: a scalable hybrid collaborative filtering algorithm for
personalized web service recommendation, in: International Conference on Web Services, 2010, pp. 9e16.

[3] D. Liu, X.W. Meng, J.L. Chen, A framework for context-aware service recommendation, in: International
Conference on Advanced Communication Technology, 2008, pp. 2131e2134.

[4] L. Liu, L. Lecue, N. Mehandjiev, L. Xu, Using context similarity for service recommendation, in:
International Conference on Semantic Computing, 2010, pp. 277e284.

[5] R. Wang, G. Zeng, An efficient service recommendation using differential evolutionary contract net for
migrating workflows, Expert Syst. Appl. 37 (2) (2009) 1152e1157.

[6] J.M. Bernardo, A.F.M. Smith, Bayesian theory, Meas. Sci. Technol. 12 (2) (2001).
[7] Apache ODE, http://ode.apache.org/.
[8] G.E. Mathew, J. Shields, V. Verma, QoS based pricing for web services, in: 5th International Conference

on Web Information Systems Engineering (WISE), 2004, pp. 264e275.
[9] Y. Wang, E. Stroulia, Semantic structure matching for assessing web service similarity, in: 1st

International Conference on Service-oriented Computing (ICSOC), 2003, pp. 194e207.
[10] X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang, Similarity search for web services, in: Proc. 30th

International Conference on Very Large Data Bases (VLDB), 2004, pp. 372e383.
[11] S. Dasgupta, S. Bhat, Y. Lee, SGPS: a semantic scheme for web service similarity, in: 18th International

World Wide Web Conference (WWW), 2009, pp. 1125e1126.
[12] J. Wu, Z. Wu, Similarity-based web service matchmaking, in: IEEE International Conference on Services

Computing (SCC), 2005, pp. 287e294.
[13] L.-H. Vu, M. Hauswirth, K. Aberer, QoS-based service selection and ranking with trust and reputation

management, in: OTM Confederated International Conferences CoopIS, DOA, and ODBASE, 2005,
pp. 466e483.

[14] Y. Liu, A.H. Ngu, L. Zeng, QoS computation and policing in dynamic web service selection, in: Proc.
13th International World Wide Web Conference (WWW), 2004, pp. 66e73.

[15] UDDI, http://www.uddi.org/pubs/uddi v3.htm.
[16] Web services business process execution language, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
[17] Google Instant, http://www.google.com/instant/.
[18] Y. Wang, E. Stroulia, Semantic structure matching for assessing web-service similarity, in: International

Conference on Service-oriented Computing, 2003, pp. 194e207.
[19] J. Wu, Z. Wu, Similarity-based web service matchmaking, in: International Conference on Service

Computing, 2005, pp. 287e294.
[20] K. Elgazzar, A.E. Hassan, P. Martin, Clustering WSDL documents to bootstrap the discovery of web

services, in: Proc. of the 2010 IEEE International Conference on Web Services (ICWS), 2010, pp.
147e154.

[21] M. Alrifai, D. Skoutas, T. Risse, Selecting skyline services for QoS-based web service composition, in:
Proc. of the 19th International Conference on World Wide Web (WWW), 2010, pp. 11e20.

[22] H. Duan, B.-J.P. Hsu, Online spelling correction for query completion, in: Proc. of the 20th International
Conference on World Wide Web (WWW), 2011, pp. 117e126.

[23] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, Automating DAML-S web services composition using
SHOP2, in: International Semantic Web Conference, 2003, pp. 195e210.

[24] L. Chen, Y. Feng, J. Wu, Z. Zheng, An enhanced qos prediction approach for service selection, in:
Proceedings of the Eighth International Conference on Service Computing (SCC), 2011, pp. 727e728.

[25] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. Zhou, Z. Wu, Predicting quality of service for selection by
neighborhood-based collaborative filtering, IEEE Trans. Syst. Man Cybernet. Part A 43 (2) (March 2013)
428e439.

Service Recommendation 175

[26] A. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, N. Adam, Semantics based automated service discovery, IEEE
Trans. Serv. Comput. 5 (2) (2012) 260e275.

[27] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.Z. Sheng, Quality driven web services composition,
in: Proc. of the 12th International Conference on World Wide Web (WWW), 2003, pp. 411e421.

[28] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware middleware for
web services composition, IEEE Trans. Softw. Eng. (2004) 311e327.

[29] M. Klusch, A. Gerber, M. Schmidt, Semantic web service composition planning with OWLS-XPlan, in:
Proc. of the First International AAAI Fall Symposium on Agents and the Semantic Web, 2005.

[30] S. Sohrabi, N. Prokoshyna, S.A. Mcilraith, Web service composition via generic procedures and
customizing user preferences, in: International Semantic Web Conference, 2006, pp. 597e611.

[31] S. Sohrabi, N. Prokoshyna, S.A. Mcilraith, Web service composition via the customization of Golog
programs with user preferences, Conceptual Model. Found. Appl. (2009) 319e334.

[32] A.B. Hassine, S. Matsubara, T. Ishida, A constraint-based approach to horizontal web service
composition, in: International Semantic Web Conference, 2006, pp. 130e143.

[33] Z. Zheng, H. Ma, M.R. Lyu, I. King, QoS-aware web service recommendation by collaborative filtering,
IEEE Trans. Serv. Comput. (2011) 140e152.

[34] Y. Jiang, J. Liu, M. Tang, X. Liu, An effective web service recommendation method based on
personalized collaborative filtering, in: International Conference on Web Services, 2011, pp. 211e218.

[35] P.C. Xiong, Y.S. Fan, M. Zhou, QoS-aware web service configuration, IEEE Trans. Syst. Man Cybernet.
Part A 38 (4) (July 2008) 888e895.

[36] P.C. Xiong, Y. Fan, M. Zhou, Web service configuration under multiple quality-of-service attributes, IEEE
Trans. Autom. Sci. Eng. 6 (2) (April 2009) 311e321.

[37] W. Tan, Y. Fan, M. Zhou, A petri net-based method for compatibility analysis and composition of web
services in business process execution language, IEEE Trans. Autom. Sci. Eng. 6 (1) (January 2009)
94e106.

[38] W. Tan, Y. Fan, M.C. Zhou, Z. Tian, Data-driven service composition in building SOA solutions: a petri
net approach, IEEE Trans. Autom. Sci. Eng. 7 (3) (July 2010) 686e694.

[39] P. Wang, Z. Ding, C. Jiang, M. Zhou, Automated web service composition supporting conditional branch
structures, Enterp. Inform. Syst. (June 2011) 121e146. Available online.

[40] J. Wu, L. Chen, Y. Xie, Z. Zheng, Titan: a system for effective web service discovery, in: International
World Wide Web Conference, Demo Track, 2012, pp. 441e444.

[41] L. Chen, L. Hu, Z. Zheng, J. Wu, J. Yin, Y. Li, S. Deng, WTCluster: utilizing tags for web services
clustering, in: International Conference on Service-oriented Computing, 2011, pp. 204e218.

[42] N. Thio, S. Karunasekera, Automatic measurement of a QoS metric for web service recommendation, in:
Australian Software Engineering Conference, 2005, pp. 202e211.

[43] A. Moraru, C. Fortuna, B. Fortuna, R. Slavescu, A hybrid approach to QoS-aware web service
classification and recommendation, in: Intelligent Computer Communication and Processing, 2009,
pp. 343e346.

176 Chapter 6

CHAPTER 7

Service Composition
Chapter Outline
7.1 Introduction 178

7.2 Top-k QoS Composition 181
7.2.1 Problem Formalization 182

7.2.2 Composition Algorithm 184

7.2.2.1 Framework overview 184

7.2.2.2 Forward search 184

7.2.2.3 QoS calculation 186

7.2.2.4 Backward search 189

7.2.3 Experimental Evaluation 193

7.2.3.1 Preparation 193

7.2.3.2 Results and analysis 193

7.3 Parallel Optimization for Service Composition 197
7.3.1 Problem Formalizing 198

7.3.2 Composition Algorithm 199

7.3.3 Parallel Optimization 201

7.3.3.1 Parallel composition framework 201

7.3.3.2 Central agent 201

7.3.3.3 Planning agents 202

7.3.4 Experiments 204

7.4 Service Composition Based on Historical Records 206
7.4.1 Framework Based on Graph Mining 207

7.4.2 Processing Stages 208

7.4.2.1 Data preparation stage 208

7.4.2.2 Data processing stage 210

7.4.2.3 Service composition stage 210

7.4.3 Experimental Evaluation 219

7.4.3.1 Experiment setting 219

7.4.3.2 Distribution evaluation 220

7.4.3.3 Efficiency evaluation 221

7.4.3.4 Effect evaluation 222

7.5 Summary 225

References 226

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00007-2

Copyright © 2015 Elsevier Inc. All rights reserved. 177

7.1 Introduction

A web service is a software application that is network distributed and identified by a

uniform resource identifier (URI) and can be programmatically accessed through the

web [1]. As the Internet progresses toward cloud computing, the evolution of web

services presents new trends. First, more and more enterprises provide services on the

Internet, and thus the number of web services increases rapidly. Second, semantic

information is introduced into web services to describe their functionalities in a

computer readable way. Finally, besides the functionalities, quality of services (QoS)

draws more and more attention when web services are chosen to build applications. As

a result, it becomes a challenge for users to locate and find a proper service quickly

from so many candidate services on the Internet. So, a good service discovery method

is needed, and semantic and QoS information of services must be considered during the

discovery process [2,3]. Moreover, it should support composing services with different

functions into a large service to meet user requests when no single service can fulfill

those requests. For example, if the output parameters of one service can be used as the

input parameters of another service, these two services can be connected as a new

service with input parameters that are the same as the input parameters of the first

single service and output parameters that are the same as the output parameters of the

second single one. This new service is called a composed service or composite service,

and the elemental services are referred to as the member services or component

services. This triggers another important issue, i.e., service composition, in the research

area of service computing [4].

Generally speaking, web service composition problems can be divided into two

categories: manual composition and automatic composition. Manual web service

composition needs to select component services and build the workflow logic by hand.

Therefore, it could not handle a situation in which thousands of web services are

available for composition. On the contrary, automatic web service composition

generates the composite service intelligently by artificial intelligence (AI) planning

methods or search methods without human intervention. However, it is more difficult

than manual web service composition and requires much more research effort. As the

number of web services increase dramatically, it is already beyond human ability to

manually generate the composed service. Thus, the automatic web service composition

aiming at finding a composed service to satisfy the user request becomes an important

technique to reuse existing resources and accelerate the development of web

applications. The automatic service composition problem can be perfectly mapped into

the AI planning problem, in which services correspond to operators in the planning

domain, the user request includes the planning goal, and the composition corresponds

to the plan [5]. So, many approaches based on different kinds of AI planning

178 Chapter 7

techniques were used to solve the composition problem. These included situation

calculus [6,7], state space search [8e11], problem deduction [12e14], automatic

theorem proving [15e17], and the planning-graph [18e23]. These techniques have

different features and can be applied in different situations. Most planning techniques

can model all kinds of web services, including information-providing services and

world-altering services. However, even if heuristic functions are used to guide the

planning process, the running time still increases exponentially in the optimal searching

problem when the search space increases rapidly. Therefore, efficiency improvement is

the key issue for these approaches with classical planning techniques.

Approaches based on the planning-graph technique filtered active services into layers (the

planning-graph) to prune the search space. A planning graph is a very useful and powerful

search space in which layers with proposition are connected with directed arcs. Propositions

are symbols presenting the state of real-world targets. Thus, they have a much higher

performance than approaches with the classical planning techniques. Although planning-

graph-based approaches mainly model the information-providing services (mutual exclusion

is not considered), they still have a good application prospect because information-providing

services are the major category of web services on the Internet. Consequently, approaches

based on the planning-graph are the most efficient approaches to solve the large-scale (tens of

thousands of services) automatic composition of information-providing services.

Up till now, there has been a great deal of successful research performed on service

composition; we review representative approaches with different planning techniques.

McIlraith and Son [6] extended the Golog language for automatic composition. Golog is a

logic programming language built on top of the situation calculus. This approach

addresses the web service composition problem through the provision of high-level generic

procedures and customizing constraints. Some researchers used a state space search

technique to solve the composition problem [8e11]. For these approaches, the design of a

heuristic function is very important. Oh et al. [8] used QoS as a factor for the heuristic

function, but the value of the estimation function is always less than 1, thus it has little

effect in guiding the search process. Wu et al. [10] used the distance between parameters

to design the heuristic function, and it is applicable when the service repository is not very

large. Sirina et al. [12] proposed an approach by using SHOP2 that was a successful

hierarchical task network (HTN) planning system for problem deduction. This approach is

applicable because the concept of task decomposition in HTN planning is very similar to

the concept of composite process decomposition in OWL-S process ontology. In other

words, if we cannot provide decomposition information (e.g., we only describe web

services by WSDL), then this approach is not available any more. Based on the HTN

approach, many variants emerged. Paik and Maruyama [13] proposed a framework

combining logical composition and physical composition for automatic service

composition. Chen et al. [14] proposed a model of combining a Markov decision process

Service Composition 179

model and HTN planning to address web services composition. Some authors modeled the

automatic composition problem as a theorem-proving vproblem [15e17]. Li and Chen

[15] used a theorem prover named Otter to solve the planning problem. Like other

approaches, using the existing AI planner directly makes the performance uncontrollable.

As mentioned before, efficiency improvement is the key issue of all approaches with

classical planning techniques. However, a planning-graph can solve an AI planning

problem effectively and efficiently. It iteratively expands itself one level at a time until

either it reaches a level where the proposition set contains all goal propositions or a fixed-

point level. The goal cannot be attained if the latter happens first. Otherwise, the planning-

graph searches backward from the last level of the graph for a solution. Instead of pruning

the planning-graph by a backward search, Zheng and Yan [18] provided four strategies to

remove the redundant web services during a forward planning-graph generating process.

They attempted to find a solution in the shortest time. However, without the backward

pruning, the solutions may contain some redundant web services. Moreover, they did not

consider QoS and semantics. WSPR is another planning-graph-based algorithm [19],

which adopted a backward search with a heuristic-based greedy algorithm to minimize the

number of web services in a solution and to remove all the redundant services. Li et al.

[20] focused on the semantic matching problem in the planning-graph-based composition

algorithms. In the forward search, it used the concept similarity and some predefined

threshold to calculate the service matching degrees, which were added into the planning-

graph as the weights of services. In addition, it removed services producing the same

parameter, but with lower weights to keep the planning-graph as simple as possible. Just

like other methods, it adopted a backward search to prune the redundant services.

Unfortunately, the threshold is not so easy to define, and this limits the application of this

method. Li et al. [21] defined the semantic matching between concepts by two simple but

effective relationships: the “sameAs” relationship and the “subClassOf” relationship. In

addition, they took the overall QoS of the composed service into account. In the forward

search, they enhanced the traditional planning-graph to store the source service of every

parameter in the state layer, the cost of the source service, and the semantic candidates of

every parameter. After that, a backward indexing algorithm was used to find the web

service composition chain according to the overall QoS of services. This approach can find

a solution with better overall QoS. However, the solution cannot be guaranteed to be

optimal. Furthermore, the way of calculating the overall QoS of the composed service is

too simple. The approach proposed in [22,23] aimed at finding the solution with the best

overall QoS. Compared with the study in [21], it computed the overall QoS with different

types of QoS measures and different composition patterns. In the forward search, this

approach used a hash table to store the best QoS computed for a particular parameter and

its corresponding provider. In the backward search, it found the optimal composition result

from the end node to the start node by the hash table constructed in the forward search.

180 Chapter 7

As service composition techniques are being more widely used, more and more problems

arise. These problems present new challenges to traditional service computing technologies:

1. Most of the existing approaches are designed to return only one optimal composition

with the best QoS. This has several limitations and may cause users some inconve-

nience. For example, when some service in the optimal composition becomes unavai-

lable, the whole composition is void and a re-composition is needed. Besides, returning

only one optimal result cannot satisfy users’ preferences for more alternatives. Hence,

providing top-k service composition solutions that enjoy top-k QoS values, among all

feasible solutions, can avoid these limitations.

2. Traditional service composition approaches are almost always based on a central mech-

anism. With the number of web services growing so much, it may lead to a perfor-

mance bottleneck due to the explosion of the planning and searching space. To improve

the efficiency of the automatic web service composition with large-scale data-intensive

web services, it should be optimized in a decentralized way to ensure that the composi-

tion process is executed in parallel.

3. Traditional service composition schemata require professional domain knowledge. Some pro-

fessional domain knowledge is essential to select simplex services for composition; knowl-

edge about service description languages are needed for composing services to satisfy users’

demands. However, professional domain knowledge is a roadblock for nonprofessional users

to do web service composition. Furthermore, the reliability of composite services generated

by traditional service composition schemata cannot be guaranteed.

To address the above challenges, this chapter introduces three composition methods: an

efficient method for top-k service composition [24], a parallel optimization for service

composition [25], and a service composition based on historical records [26].

7.2 Top-k QoS Composition

This section introduces a novel approach based on the planning-graph to solve the top-k

QoS-aware automatic composition problem of semantic web services. The approach

includes three sequential stages: a forward search stage to generate a planning-graph to

greatly reduce the search space of the following two stages; an optimal local QoS

calculating stage to compute all the optimal local QoS values of services required in the

planning; and a backward search stage to find the top-k composed services with optimal

QoS values according to the planning-graph and the optimal QoS value. To validate this

approach, experiments are carried out based on the test sets offered by the WS-Challenge

competition 2009. The results show that this approach cannot only find the same optimal

solutions as the champion system from the competition, but also can provide more

alternative solutions with the optimal QoS for users.

Service Composition 181

7.2.1 Problem Formalization

In this section, we give clear definitions to the key concepts in QoS-aware automatic web

service composition problems.

In semantic web services, every parameter of services corresponds to a concept in the

ontology that formally represents knowledge as a set of concepts within a domain and the

relationships between those concepts.

Definition 1: Ontology tree. An ontology tree, OT, is a pair, OT ¼ (C, R), in which C is a

set of concepts represented by nodes in the tree, and R is a set of direct inheritance

relationships represented by edges in the tree. If a concept c1 inherits from another

concept c2 directly or indirectly, it can be denoted as c1 / c2.

Definition 2: Semantic match. Given two sets of concepts, S and T, if

cs˛ S$ðdt˛ T$ðt/sn t ¼ sÞÞ, then we say S semantically matches T, denoted as S8T .

Definition 3: Web service. A web service, w, is a triple, w ¼ (I, O, Q), in which I is a set

of input parameters, each of which corresponds to a concept in the ontology tree; O is a

set of output parameters, each of which also corresponds to a concept; and Q is the QoS

value of w. For every parameter p, the corresponding concept is denoted as CON(p).

Definition 4: Composed web service. A composed web service, cw, is a sequence of sets

of web services, cw ¼ <W1,W2, .,WN>, satisfying the following conditions:

1. W1 contains only one service start, such that start.I ¼ Ø and start.Q ¼ 0;

2. WN also contains one service end, such that end.O ¼ Ø and end.Q ¼ 0;

3. let

Outi ¼ U
1�j�jWij

w j
i :O

• 1 < i < N, jWij represents the number of elements ofWi, w
j
i is an element ofWi, such that

w j
i :I8 U

1�k�i�1
Outk

1 < i < N þ 1, 1 � j �jWij, w j
i is an element of Wi.

From an abstract perspective, a composed web service is still a web service. Its input

parameters are the output parameters of the start service, its output parameters are the

input parameters of the end service, and its QoS can be calculated according to the QoS of

its member services (see in the next subsection).

Definition 5: QoS of web service. The QoS of a web service is a value representing the

nonfunctional property of the web service, such as response time, throughput, price cost,

reputation, etc. The QoS properties can be categorized into two classes. One is

182 Chapter 7

negativedthe higher the value, the lower the qualitydsuch as response time and price

cost. The other is positivedthe higher the value, the higher the qualitydsuch as

throughput and reputation.

In this section, we focus on the single QoS dimension. For multiple QoS dimensions, one

possible but not perfect approach is using the weighted sum of all dimensions to transform

all the QoS values into a single aggregate value.

Definition 6: Global QoS computing rules. Given a composed web service, cw, the

global QoS of cw is computed as follows: GQ(cw) ¼ LQ(cw.end), in which cw.end

represents the end service in cw, and the function LQ calculates the local QoS of every

service in cw. LQ is defined as follows:

LQ
�
w j
i

�
¼ F2

�
F1

�
LQ

�
pre

�
w j
i

���
;w j

i :Q
�

in which:

1. pre is a set of services producing parameters that can be consumed by w j
i in the

composed service cw, preðw j
i Þ ¼ fwy

xjcp˛w j
i :I$dq˛wy

x:O$ðCONðqÞ/CONðpÞÞ;
x < i; 1 � y � jWijg;

2. F1 and F2 are functions in the set of {
P

,
Q
, MAX, MIN}. They depend on the QoS

type taken into account, as shown in Table 7.1. For example, if the QoS type is

response time, then F1 ¼MAX, F2 ¼
P

.

According to the definition of the composed web service, we can calculate the local QoS

of services in their sequence order. First, calculate the local QoS of the start service in W1;

then calculate the local QoS of services in W2; and finally, we get the local QoS of the end

service, which is exactly the global QoS of the composed service.

Definition 7: Top-k QoS-aware automatic composition. Given an ontology tree OT, a set of

web serviceW, and a user request req ¼ (I, O) find the top-k-composed services according to

the global QoS, each of which (denoted as cw) satisfies the following conditions:

1. cw j
i ˛ cw:Wi$ðw j

i ˛WÞ;
2. req.I ¼ cw.start.O, req.O ¼ cw.end.I.

Table 7.1: F1, F2, and QoS type

F1 F2 QoS Type

MAX
P

Response time
MIN

P
ThroughputP P

CostQ Q
Reputation

QoS, quality of services.

Service Composition 183

7.2.2 Composition Algorithm

7.2.2.1 Framework overview

In this subsection, we describe the framework of our automatic composition algorithm.

The automatic composition algorithm (algorithm 1) takes OT (an ontology tree), W

(a set of web services), req (a user request), and K (a number) as inputs and returns the

top-k solutions in terms of their global QoS values. In most cases, it includes three

stages: a ForwardSearch stage, a CalculateOptimalLocalQoS stage, and a

BackwardSearch stage. In the ForwardSearch stage, the algorithm generates a planning-

graph. If the planning-graph does not contain the end service, it will return an empty

set (no more stages are needed); otherwise it will calculate the optimal local QoS for

every service in the planning-graph and use this to find the solutions in the

BackwardSearch stage. Details about algorithms in these stages are given in the

following subsections.

7.2.2.2 Forward search

Before we describe the detail of the ForwardSearch algorithm (algorithm 2), we need to

introduce a key data structure (map) that is the basis for many other data structures

(ending with the suffix_Map).

Definition 7e8: Map. A map is a triplet, m ¼ (Keys, Values, f), in which Keys and Values

are sets of objects and f is a function f:Keys 1 Values. In other words, a map is a set of

keyevalue pairs.

Three operations can be defined on a map: Put(m, k, v), Get(m, k), and PutS(m, k, o). The

Put(m, k, v) operation adds a new pair (k, v) into m if k does not appear in the Keys set of

184 Chapter 7

m; otherwise, it updates the corresponding object in the Values set with v. The Get(m, k)

operation returns the object corresponding to k in m. When objects in the Values set are

also sets, the PutS(m, k, o) adds a new object, o, into the set corresponding to k.

The ForwardSearch algorithm is a filtering algorithm based on the planning-graph. It takes OT

andW corresponding to actions in the planning-graph as its inputs and gives AS and PS_Map as

outputs, in which AS is an ordered set of services corresponding to actions in the action levels of

the planning-graph, and PS_Map is a map that maps a service parameter into a set of source

services that produce that same parameter. Initially,W is assigned to valid, which records the

services that can be examined during the expansion of the planning-graph, and P is set to be

empty, which is a set of parameters corresponding to propositions of the planning-graph (lines 1

and 2). Then, the algorithm expands the planning-graph iteratively while some services are still

valid for expansion (lines 3e14). During each iteration, every valid service, w, is examined

(line 5), if its input parameters semantically match P (line 6), it will be added into the AS and

PS_Map (service w will not be examined any more; lines 7e9), otherwise it will be added into

stillValid, which stores all valid services for the next iteration (line 11). At the end of each

iteration, the algorithm checks whether the planning-graph reaches its fixed point (i.e., it cannot

be expanded any more). If this does happen, the algorithm will break the expansion (line 12),

otherwise it will prepare for the next iteration (line 14). Finally, AS (services not in AS are

filtered out) and PS_Map are returned for further processing.

Service Composition 185

7.2.2.3 QoS calculation

The ordered set AS (a sequence of services) returned by the ForwardSearch algorithm is a

trivial solution to the automatic composition problem. However, it may contain some

redundant services that have no contribution to the user-requested output parameters or if

its global QoS is not optimal. Therefore, it is not exactly what we want. To solve these

two problems, we use the CalculateOptimalLocalQoS algorithm (algorithm 3) to calculate

the optimal global QoS value of all solutions, even without enumerating all of them, and

use the BackwardSearch algorithm (algorithm 4) to find the real top-k solutions without

redundant services.

According to the computing rules (definition 6), a local QoS value of a service is relative

to a composed service. In other words, the same service in different composed services

related to the same composition problem may have different local QoS values. Thus, an

optimal local QoS value of a service w (denoted as B(w)) must exist. Additionally, if the

QoS property is positive, the optimal value is the maximum of all possible local QoS

values; otherwise it is the minimum.

Theorem 1. Given a service w, the optimal local QoS of w satisfies:

BðwÞ ¼ F2ðF1ðfGðfBðsvÞjsv˛ SrcðiÞgÞji ˛ w:IgÞ;w:QÞ
in which F1 and F2 are functions in the set of {

P
,
Q
, MAX, MIN}, G is a function in

{MAX, MIN}, which depends on the QoS property (MAX for positive property and MIN

for negative property), and Src(i) is a set of services producing i.

This theorem indicates that if we know the optimal local QoS of the source services for

every input parameter of a service w, we can easily calculate the optimal local QoS of w.

For example, assume a service w1 has two input parameters, i1 and i2, i1 has two source

services, w2 and w3, and i2 also has two sources services, w4 and w5, as shown in

Figure 7.1. If the QoS property is response time, then F1 ¼MAX, F2 ¼
P

, and

G ¼MIN, thus we can calculate B(w1) as follows:

Bðw1

� ¼ X
ðMAXðMINðBðw2Þ;Bðw3ÞÞ;MINðBðw4Þ;Bðw5ÞÞÞ; w1:QÞ

¼ MAXðMINðBðw2Þ;Bðw3ÞÞ;MINðBðw4Þ;Bðw5ÞÞ þ w1:Q:

Proof: We take response time as an example to prove this theorem, and when other QoS

properties are considered, it can be proven in a similar way.

When the response time property is taken into account, F1 ¼MAX, F2 ¼
P

, and

G ¼MIN. For every i in w.I, let q(i) be the number of its source services. Let wi,j

186 Chapter 7

(1 � j � q(i)) be a source service of i and wi,m(i) be the source service with

the minimum local QoS value. Assume theorem 1 does not hold; this

means:ðdi$aðiÞ 6¼ mðiÞÞo ðMAXðwi;aðiÞÞ < MAXðwi;mðiÞÞÞ
However, if MAX(wi,m(i)) �MAX(wi,a(i)), it is contradictory to the former one; thus

theorem 1 must hold.

AS is an invocation sequence of services, thus we can calculate the optimal local QoS of

services by their invocation order in the sequence. However, when we apply theorem 1 to

compute the optimal local QoS of some service w, the optimal local QoS of its source

services may be unknown. If this does happen, we just ignore the unknown values and

compute a temporary value for w, which will then be put back into the unCompleted queue

for recalculation. Algorithm 3 uses AS and PS_Map as its inputs and returns a map,

OptLQ_Map, which records the optimal local QoS values for every service in AS. Initially,

the optimal local QoS of the start service is set to be 0, and other services in AS are put

into the unCompleted queue for calculation (lines 1 and 2). Then, the algorithm calculates

the optimal local QoS of services in unCompleted iteratively (lines 3e12). During each

iteration, current holds all services needed to be calculated, and every service of current is

processed by the algorithm Calculate, which is an application of theorem 1 (line 6). If the

calculating result is a temporary value, the service will be put it into the next queue for

calculation in the next iteration (lines 7 and 8). After calculating all services in the current

queue, if the current queue reaches its fixed point (no services are removed from current

w1

i1

i2

w2

w3

w4

w5

Figure 7.1
An example.

Service Composition 187

and no calculating values of services in current are updated), the algorithm will break out;

otherwise it begins the next iteration (lines 9e12). Finally, the algorithm stops and returns

the OptLQ_Map.

The implementation of Calculate (algorithm 4) depends on the QoS property

considered by us. We will use the response time property as an example to

elaborate this algorithm and prove the correctness of CalculateOptimalLocalQoS

(algorithm 3).

As we mentioned above, if the QoS property is response time, then F1 ¼MAX, F2 ¼
P

,

and G ¼MIN; therefore algorithm 3 first calculates the minimum value of the source

services for every input parameter of service w (lines 3e13) and then calculates the

maximum value of all these minimum ones (lines 14 and 15). In addition, if any optimal

local QoS value of the source services is unknown (line 7) or just a temporary value

(line 12), the minFlag of the corresponding parameter will be set to be true. The maxFlag

records the minFlag of the parameter, the min value of which is the maximum one among

all min values (line 15). The maxFlag determines whether the value should be recalculated

(lines 20 and 21). After all calculations, if the calculated value is better than the existing

one, it will be updated in the OptLQ_Map (lines 17e19).

188 Chapter 7

7.2.2.3.1 Correctness proof

Algorithm 3 must terminate in some limited time. Because the local QoS value of every

service is bounded and discrete and only better values are updated (algorithm 4), the

OptLQ_Map must enter its fixed point after some finite calculating iterations.

When the algorithm stops, the result values in OptLQ_Map must conform to theorem 1. If

any of the result values is not the optimal one, there must be some source service with a

value that is not optimal either. The number of services is limited; thus a cycle must

appear among all these services in the same composed service. According to definition 4,

no cycles can appear in a composed web service; therefore all result values must be the

optimal local QoS values.

7.2.2.4 Backward search

After we get all the optimal local QoS values of every services in AS, we use the

BackwardSearch algorithm to find the top-k solutions. Before we introduce the algorithm,

we need to introduce a key concept.

Service Composition 189

Definition 9: Source combination. Given a service w, a source combination SC of w is a

set of services, which satisfies the following conditions:

1. cwsc˛ SC$ðwsc:OXw:I 6¼ BÞ;
2. ci˛w:I$ðdwi ˛ SC$ðwi:ONfigÞÞ, and wi is the only one.

A source combination produces all input parameters of a service semantically and every

service in the source combination has its contribution to the producing process. Take

Figure 7.1 as an example, w1 has four different source combinations: {w2,w4}, {w2,w5},

{w3,w4}, and {w3,w5}.

The basic idea of the BackwardSearch algorithm is using a threshold to reduce the

search space to improve the efficiency. In other words, the BackwardSearch algorithm

prunes all search branches with global QoS values (calculated on the composition result

in the leaf of the search branch) that are larger than the threshold. This strategy can

find all solutions that have global QoS values that are not larger than the threshold, but

how can we determine the value of the threshold to make sure the number of solutions

is not less than K if there does exist more than K solutions? We use a list of thresholds

in ascending order (the delts list) to solve this problem. First, we use the optimal global

QoS value (i.e., the optimal local QoS value of the end service) as a threshold to find

some optimal solutions (but not all) quickly (line 1). Fortunately, if the number of the

solutions is larger than K, we will return the solutions (lines 2 and 3). Otherwise, we

will change the source combination of every service in the composed services to

generate some new solutions with slight changes, and insert the global QoS values of

these new solutions into the delts list in ascending order (line 5). After this, we use

delts, one by one, as thresholds to search solutions until the number of solutions is not

less than K (line 6). More details of algorithms used in algorithm 5 can be found in

later paragraphs.

The SearchBeforehand algorithm is used for finding the optimal solutions as quickly as

possible. It uses strictPreSvs_Map to keep the sets of source combinations for every

service. The number of source combinations for every service is limited up to width,

190 Chapter 7

which is initially set to be 3 (lines 1 and 2). Then, it enters a loop (line 3) and uses the

findStrictPreSvs algorithm to find the strict source combinations for every service.

A strict source combination for a service w must satisfy the following condition: the

sum of the optimal local QoS value of each service in the strict source combination

and the QoS value of the service w are not larger than the optimal local QoS value of

the service w (line 4). After storing the strict source combinations in strictPreSvs_Map,

it estimates the number of solutions by multiplication of numbers of source

combinations for every service (line 5). If the estimated number is larger than K or no

more source combination can be added into strictPreSvs_Map, it will break out of the

loop; otherwise it will increase width by one and go back to add more source

combinations into strictPreSvs_Map (lines 6e9). The purpose of the loop (line 3) is to

keep the number of strict solutions close to K. After the loop, the SearchBeforehand

algorithm uses findStrictSolutions to construct all possible solutions according to

strictPreSvs_Map (line 10). The findStrictSolutions algorithm at first puts the end

service into the solution structure, then tries each source combination of the end service

and adds it into the solution structure. This process continues until all services in the

solution can be generated from the start service directly or indirectly. The

findStrictSolutions algorithm is a recursive algorithm.

The CalculateDelts algorithm calculates thresholds in an ascending order by relaxing

the constraints in finding the source combinations of every service. First, it adds every

service in the strictSols found by algorithm 6 into svInStrictSols (lines 1e3). Then, for

every service sv in svInStrictSols, the algorithm just finds all the source combinations

of sv (lines 5e9) and removes the strict source combinations that have been considered

in strictSols (lines 10 and 11). It calculates new values according to the rules defined in

definition 6 and inserts all these values into delts in an ascending order (lines

12 and 13).

Service Composition 191

The SearchTopK algorithm uses delts as the thresholds to find all solutions with a global

QoS value that is not larger than the threshold. It searches for the top-k solutions iteratively

until all values in delts have been considered (line 2) or the top-k solutions have been found

(line 8). During each of these iterations, it gets the head of delts (the smallest value) as the

current threshold and constructs all solutions in this way in algorithm 8 (lines 4e6). The

only difference is that here we use thresholds_Map to keep the upper bound of the local

QoS value for every service. When we find the source combinations of a service, we should

make sure that the local QoS value of this service is not larger than the upper bound

recorded in threshold_Map. After finding all solutions under the current threshold, if the

number of solutions is larger than K, the algorithm will return the top-k solutions ordered by

their global QoS values; otherwise, the next iteration will begin (lines 7e10).

192 Chapter 7

7.2.3 Experimental Evaluation

7.2.3.1 Preparation

We use the competition test sets provided by WS-Challenge 2009 to validate our

algorithm. Each test set contains four different files: an OWL file that gives the ontology

tree used in the whole test set; a WSDL file that lists all invocation interfaces of web

services; a WSLA file that describes the QoS value of every service; and a CHALLENGE

file that includes a user request. Although the competition only provides five different test

sets, these sets have some important features. First, semantics is taken into account, and

every parameter in the service interfaces references to a concept in the ontology tree.

Second, the numbers of services in these test sets vary from 500 to 15,000, thus

considering all large-scale services. At last, two major QoS properties are given: the

response time and the throughput.

After choosing the test sets, we implement our automatic composition algorithm with

Java, which is a famous independent platform programming language. Except for the

classes used for reading the XML files in the test sets, we do not use any other third-

party packages; therefore, it is really easy for other researchers to rebuild our

experimental environment to validate our result data or do some further experiments.

The hardware used for our experiments is the Lenovo ThinkPad X200 (2.26 GHz*2,

3GB RAM).

7.2.3.2 Results and analysis

Since our automatic composition algorithm has three stages, we use different metrics for

each stage. Although two QoS properties are given in the test sets, we just record

experimental results with the response time property, because the throughput property has

similar results. Additionally, we run our algorithm five times for each test set, and the

average value is given in the result.

7.2.3.2.1 Stage 1

This stage filters active services that participate in the planning-graph and make

contributions to generate the goal stated for all the services, thus we take the number of

active services and the number of all the services as metrics to prove its effectiveness.

Moreover, the running time for this stage is used to analyze its performance. The results

are shown in Figure 7.2.

From these results, we see that our filtering algorithm can prune a lot of redundant

services (98.44% at most). Therefore, it greatly improves the total performance.

In addition, the function between the number of all services and the running time is

almost linear, and this proves that the time complexity of this stage is polynomial.

Service Composition 193

7.2.3.2.2 Stage 2

This stage calculates the optimal local QoS value of every active service iteratively,

thus we use the optimal local QoS value of the end service (i.e., the optimal global

QoS value), the number of iterations, and the running time as metrics. The optimal

global QoS value can be used to compare with the result given by the champion

system in the WS-Challenge competition. The number of iterations and the running

time can be used for performance analysis. The results are shown in Table 7.2 and

Figure 7.3e7.8.

According to these results, we find that the calculating stage for the test sets can finish

in a short time, because the number of active services returned by the first stage is

small. In addition, the optimal values are exactly the same as the ones found by the

champion system of the WS-Challenge 2009. The function between M*N*N (M is the

number of iterations, and N is the number of active services) and the running time is

almost linear; this proves the time complexity is O(M*N*N), just as we analyzed.

Table 7.2: Results of stage 2

Test Set Optimal Global QoS Number of Iterations Running Time (ms)

01 500 2 0
02 1690 3 17
03 760 2 5
04 1470 2 47
05 4070 1 13

QoS, quality of services.

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000

TS01 TS02 TS03 TS04 TS05

N
um

be
r

of
 se

rv
ic

es

Active services Other services

Active services 80 140 153 330 237

Other services 492 3989 7985 7971 14,974

572, 47

4129, 188

8138, 312

8301, 579

15211, 891

0
100
200
300
400
500
600
700
800
900

1000

0 5,000 10,000 15,000 20,000

R
un

ni
ng

 ti
m

e
(m

s)

Number of all services

Figure 7.2
Results of stage 1.

194 Chapter 7

12800, 0
46818, 5

56169, 13
58800, 17

435600, 47

0

10

20

30

40

50

60

0 100,000 200,000 300,000 400,000 500,000
R

un
ni

ng
 ti

m
e

(m
s)

M*N*N

Figure 7.3
The running time in stage 2.

0
20
40
60
80

100
120
140
160
180

500 600 700 800

N
um

be
r

of
 so

lu
tio

ns

Threshold

0
100
200
300
400
500
600
700
800

500 600 700 800

R
un

ni
ng

 ti
m

e
(m

s)

Threshold

Figure 7.4
Results of test set 01.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1690 2190 2690 3190 3690

N
um

be
r

of
 so

lu
tio

ns

Threshold

0

1000

2000

3000

4000

5000

6000

1690 2190 2690 3190 3690

R
un

ni
ng

 ti
m

e
(m

s)

Threshold

Figure 7.5
Results of test set 02.

Service Composition 195

0
20
40
60
80

100
120
140

760 960 1160 1360 1560

N
um

be
r

of
 so

lu
tio

ns

Threshold

0

1000

2000

3000

4000

5000

6000

760 960 1160 1360 1560

R
un

ni
ng

 ti
m

e
(m

s)

Threshold

Figure 7.6
Results of test set 03.

0

200

400

600

800

1000

1470 1970 2470 2970

N
um

be
r

of
 so

lu
tio

ns

Threshold

0

500

1000

1500

2000

1470 1970 2470 2970

R
un

ni
ng

 ti
m

e
(m

s)

Threshold

Figure 7.7
Results of test set 04.

0

2000

4000

6000

8000

10,000

12,000

4070 6070 8070 10,070

N
um

be
r

of
 so

lu
tio

ns

Threshold

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000

4070 6070 8070 10,070

R
un

ni
ng

 ti
m

e
(m

s)

Threshold

Figure 7.8
Results of test set 05.

196 Chapter 7

7.2.3.2.3 Stage 3

This stage uses some QoS thresholds to find the top-k solutions. Unlike the previous

stages, the search space of this stage depends on the value of K. Therefore, we set K to be

50, 100, and 150 to record as many iterations as possible. Moreover, the threshold and the

number of solutions for every iteration are used as metrics.

From these results, we find that the number of solutions increases with an increase in the

threshold, because a larger threshold causes a larger search space. This stage searches all

the solutions under the threshold; thus, if the number of solutions under some threshold is

larger than K, we can grant the top-k solutions (not just approximate). Moreover, the

running time for each iteration is almost linear with the threshold, and this proves that the

threshold significantly improves the performance.

However, we still find that in some test sets (02, 04, 05) there are too many solutions with

the same optimal global QoS value. This causes our algorithm not to be able to stop in an

acceptable time (2 min). If K is less than the number of optimal compositions, then the

top-k problem will be meaningless. The best test set for the top-k problem is the one

having a large number of compositions, but the global QoS of these compositions are quite

different. Therefore, we conclude that some large test sets of the WS-Challenge

competitions are not suitable for the top-k composition problem.

7.3 Parallel Optimization for Service Composition

With the number of services growing very quickly, it may lead them to a performance

bottleneck due to the explosion within the planning and searching space. To improve the

efficiency of the automatic web service composition with large-scale services, this

section introduces an extension of Automatic Web Service Planner (AWSP). AWSP is

extended by combining the state space and the planning-graph and optimized with a

decentralized method that causes the composition process to execute in parallel. This

approach takes the advantages of the state space approach and the planning-graph

approach to form a parallel composition framework based on multi-agents. The parallel

composition framework consists of a central agent and several planning agents. The

central agent is the interface between the whole composition system and the outside

application system. It distributes the planning task to all the planning agents and keeps

the workload of all the planning agents stable. The planning agent is responsible for

searching the results in their local state space. Experiments show that the decentralized

system can work stably and improve the composition efficiency.

Service Composition 197

7.3.1 Problem Formalizing

In this section, we extend the formal definitions for solving the automatic web service

composition problem.

Definition 10: State. A state s is a two-tuple (O, P), in which O is the set of objectives

represented as “name:type,” and P is the set of first-order predicates represented as

“predicate object.”

Definition 11: Operator. For any service, it can be represented as an operator in the state

space. An operator p is a four-tuple (In, Out, Pre, Effect), in which:

• In is the set of input objectives;

• Out is the set of output objectives;

• Pre represents the precondition of the operator and consists of the predicates of the

input objectives;

• Effect represents the change in the global state after the operator’s execution, which

consists of two categories: positive effect, Effectþ, and negative effect, Effect�. The
positive effect consists of the predicates of the output objectives, and the negative effect

consists of the predicates of the input objectives.

Definition 12: Coordination operators. Given a state s, suppose that the operators p1 and

p2 can be executed with s, and the execution instances are p01 and p02. We say that p1 and

p2 are coordination operators in the state s if and only if the following conditions are met:

• Set o ¼ p01:InXp02:In;
then p01:Effect

þðoÞ ¼ B

or p02:Effect
þðoÞ ¼ B

or p01:Effect
þðoÞ ¼ p02:Effect

þðoÞ;
• p01:Effect

�Xðp02:PreWp02:Effect
þÞ ¼ B;

• p02:Effect
�Xðp01:PreWp01:Effect

þÞ ¼ B

Definition 13: Expansion function. Given a state s and a set of operators P ¼ {p1, p2,

.pn}, suppose that all the operators of P can be executed with s, and the execution

instances are P0 ¼ {p01, p
0
2, .p0n}. If any two operators in P are coordination operators,

then the following state can be achieved through the expansion function fexpansion(s, P
0):

s� W
1�i�n

p0i:In� W
1�i�n

p0i:Effect
� þ W

1�i�n
p0i:Out þ W

1�i�n
p0i:Effect

þ

198 Chapter 7

The expansion function here can cause a series of coordinated services to be

executed in a certain state. Thus you can increase the number of operators for

each expansion and reduce the searching width, which may improve the searching

efficiency.

Definition 14: Planning subgraph. Begin with a start state s0, let a sequence of operator

sets
Q ¼ <P1, P2, ., Pn> function on s0 by the expansion function in order, and then

reach a final state sN. Then si ¼ fexpansionðsi�1;P
0
iÞ is called a planning subgraph of the

sequence of operator sets from s0 to sN.

Definition 15: Automatic web service composition problem. An automatic web service

composition problem j is a six-tuple (S, s0, SG, P, T, P) in which:

• S is the set of all states.

• s0 ˛ S, s0 is the initial state that corresponds to the input objectives and predicates of

user requests.

• SG 4 S, SG contains all possible goal states. Each state in SG contains output objectives

and predicates.

• P is a set of operators.

• T represents the set of reasoning relationships among the predicates.

• P represents a planning subgraph from the initial state to the goal state. It is actually a

solution for the planning problem.

7.3.2 Composition Algorithm

The extended algorithm AWSP-E is illustrated as follows. It takes four inputs: user-

requested input s0, user-requested output sG, a set of services P, and a set of predicate

reasoning T; and it generates a planning subgraph P as the output. The main process, the

heuristic function, and the primary data structures in AWSP-E are the same as AWSP. We

mainly make two extensions:

1. The searching states are extended. In AWSP-E, the searching states contain not only

the type of the objective, but also the name and attributes of the objective. Thus you

can make the searching result more accurate, and more possible solutions can be

achieved.

2. The operators are extended. In AWSP-E, coordination operators are applied in a certain

state. Compared to AWSP, the searching width is reduced. Then the searching space is

reduced, and the searching efficiency is improved.

Service Composition 199

200 Chapter 7

7.3.3 Parallel Optimization

In this section, we introduce the parallel optimization approach for automatic web service

composition based on the AWSP-E.

7.3.3.1 Parallel composition framework

The architecture of the parallel composition framework is outlined in Figure 7.9. This

parallel composition system consists of a central agent and several planning agents. The

central agent is the interface between the whole composition system and the outside

application system. It distributes the planning tasks to all the planning agents and keeps

the workload of all the planning agents stable. The planning agent is responsible for

searching results in their local state space. The number of planning agents can be

dynamically adjusted according to the workload of the tasks.

The main process flow of the parallel composition framework is as follows. First, the central

agent will distribute the composition task to free planning agents when the user request arrives.

Then the planning agents start to search for solutions with AWSP-E. Once a solution is found,

the result is returned to the central agent, and the central agent notifies the other planning

agents to terminate their tasks. Finally, the central agent returns the result to the user.

7.3.3.2 Central agent

The central agent, as the interface between the parallel composition system and the user

request, needs to implement the following functions:

• Service registry and managementdBefore the execution of the composing process, web

services from external applications should register in the parallel composition system.

Figure 7.9
The parallel composition framework.

Service Composition 201

The central agent is responsible for the registry of web services, and then a catalog of

services is maintained. So when a planning agent wants to query an available service, it

only needs to send the query request to the central agent, which can save a great deal of

storage space for the planning agents. In general, the central agent should maintain and

manage the description documents of the registered services and provide access in-

terfaces for the planning agents.

• Handling a composition requestdWhen the user request arrives, the central agent con-

structs an initial task and distributes it to a free planning agent. Then the planning agent

starts to plan the task. When other free planning agents are available, the central agent

will extract some tasks and distribute them to these planning agents. The formal defini-

tion of a task is as follows.

Definition 16: Task. A task for a planning agent distributed by the central agent is

represented as a five-tuple t ¼ (Graph, Tree, Open, Closed, curState), in which Graph is

the state space graph, Tree is the generated tree of the state space, Open is the set of

unvisited vertexes, Closed is the set of visited vertexes, and curState is the start state of

the task.

• Handling a composition resultdThe central agent is also responsible for receiving a

planning result from a planning agent and sending it to the user. If a planning agent

acquires a planning result, it will send the result to the central agent. As soon as the

central agent receives a planning result, it will first notify the other planning agents to

terminate their tasks and reclaim the computation resources. Then, the central agent will

feedback the planning result to the user.

• Management of planning agentsdTo fulfill the scalability of the distributed

computing, agents in the parallel composition system can dynamically join or quit

the system. So the central agent should be in charge of the dynamic change of the

planning agents. When a new planning agent joins the system, it will provide its

information (such as location) to the central agent. If a composition task is being

handled, the central agent will find a planning agent with the maximum load and

extract a to-be-handled task from this agent. Then this task is distributed to the new

planning agent. Similarly, when a planning agent quits the system, it should notify

the central agent. If this agent has unhandled tasks, these tasks will be distributed to

other free planning agents or be cached with the central agent until a planning agent

is free.

7.3.3.3 Planning agents

The planning agents should respond to various management requests from the central

agent, such as load query, task callback, task termination, etc. The most important

responsibility for the planning agents is to handle the distributed task. The task handling is

202 Chapter 7

based on the AWSP-E, and several tasks for multiple planning agents can be executed in

parallel. The parallel algorithm for AWSP-E is as follows:

Service Composition 203

The algorithm takes the distributed task as the input and tries to get a planning result. If a

result is achieved, the planning will invoke the result receiving function of the central

agent (line 7). In contrast, the planning agent will inform the central agent that it is free if

no result is found so that another task can be distributed to it.

7.3.4 Experiments

To validate the feasibility of the proposed approach in this section, we implemented it in

JAVA and conducted a series of experiments using the datasets of WS-Challenge 2009 and

large-scale test sets generated by WSBen [27]. The parallel composition system we built

for the experiments consists of a central agent and four planning agents. The execution

environment is Intel Core2 P7370 2.0 GHZ with 4GB RAM, Windows 7, jdk1.6.0.

We first use the datasets of WS-Challenge 2009 to compare the performance of AWSP

and ParaAWSP-E. The details of the five datasets of WS-Challenge 2009 are shown in

Table 7.3, and the comparison results are shown in Table 7.4 and Figure 7.10.

From the comparison results, we can conclude that: (1) when the scale of the test set is

larger, the parallel composition system can improve the composition efficiency. However,

when the scale of the test set is small as Test01, the parallel composition system will take

more time to get a result. The reason is that the communication between the central agent

and planning agents would cost the parallel composition system some time. Therefore, for

a small-scale test set, the time cost of the communication is more than that for planning. So

the efficiency of the parallel composition system is reduced and (2) although the scale of

Table 7.3: Datasets of WS-challenge 2009

Dataset Number of Services

Test01 572
Test02 4,129
Test03 8,138
Test04 8,301
Test05 15,211

Table 7.4: Execution time of AWSP and ParaAWSP-E

Dataset AWSP (ms) ParaAWSP-E (ms)

Test01 47 102
Test02 188 197
Test03 312 243
Test04 579 398
Test05 891 689

204 Chapter 7

the test set is large enough, as shown in Test05, the performance improvement of the

parallel composition system could not reach 1/N as expected. That’s because the internal

management and communication in the parallel composition system will cost some time,

which can impact the execution performance of the whole system.

Besides the datasets of WS-Challenge 2009, we also used WSBen to generate three groups

of large-scale test sets. Each group has five test sets, and the service number of each group

is set as 100,000, 500,000, and 1,000,000. The average execution time for these test sets is

shown in Table 7.5 and Figure 7.11.

From the above results, we can conclude that: (1) for the super-large-scale test sets, the

parallel composition system can also improve its efficiency and (2) during the execution

for these test sets, all four planning agents are almost fully loaded all the time. Besides,

with the increase of the service number, the performance improvement of the parallel

composition system becomes less and less. The reason is that the number of planning

agents is small for the super-large-scale test sets. However, for the limitation of the

Test01 Test02 Test03 Test04 Test05
0

200

400

600

800

Ex
ec

ut
io

n
tim

e
(m

s)

Datasets

 AWSP
 ParaAWSP-E

Figure 7.10
Performance comparison.

Table 7.5: Execution time with super-large-scale test sets

Dataset Scalibity AWSP (ms) ParaAWSP-E (ms)

100,000 1021 978
500,000 3458 2786
1,000,000 8834 8654

Service Composition 205

experiment’s environment, we can hardly get more planning agents. We may consider

extending the scalability of the parallel composition system in any future work.

7.4 Service Composition Based on Historical Records

Previous studies are less aware of the potential value and the hidden knowledge of the

service usage data for assisting users with their service composition tasks. Frequently used

web services (FUWS) have the following advantages. They carry users’ previous

experiences, have higher probability to fulfill users’ requirements, and have been proved to

be more reliable and robust. Furthermore, composite services that share the same FUWS

may have similar composition process or functionality. By reusing such types of verified

knowledge, it will dramatically increase the correctness and rationality of composed

services and accelerate their rapid application development. By analyzing the historical

composition records in a historical service-composition dataset (HSD), some similar

FUWSs could be recommended to the user as candidates for selection according to the

user’s partially composed service. Further, if the user’s partially composed service share

the same FUWS with composite services in HSD, they may have a similar composition

process in the forwarding step, which could also be recommended to the user to facilitate

the composition task. To handle the above scenario, this section proposes a graph mining

based approach to model and explore the hidden knowledge from a HSD. More

specifically, the approach includes the following: We modeled an executed service

100,000 500,000 1,000,000
0

2000

4000

6000

8000

E
xe

cu
tio

n
tim

e
(m

s)

Scalability of datasets

 AWSP
 ParaAWSP-E

Figure 7.11
Performance comparison with super-large-scale test sets.

206 Chapter 7

transaction or a bunch of web services that compose together and register in a service

repository by using a directed labeled graph. We adopted and extended the graph mining

approach gSpan to identify FUWSs among those directed labeled graphs. Then, we

explored and located those web services that share the same FUWSs with the user’s

partially composed services. After that, we proposed a model to estimate how likely it will

be for a service that shares the same FUWSs to be able to meet the user’s needs. Based on

the likelihood, we recommended some web services as candidates for a user’s composition

task, and then selected the optimal ones with consideration of the overall QoS by using a

skyline approach. Technically, to address the issue of frequent subgraph mining (e.g.,

FUWS identification), we adopted and extended gSpan to discover frequent substructures

efficiently without costly subgraph isomorphism tests and a costly candidate generation.

To the best of our knowledge, this work is the first attempt to exploit such efficient

frequent structured pattern mining techniques to identify FUWSs with their connecting

structure, which could provide instant and smart suggestions to facilitate the composition

of Web services.

7.4.1 Framework Based on Graph Mining

Web service recommendations can accelerate and facilitate the process of service

composition. Suppose a user is composing some web services, our objective is to

understand the intent of the user based on the semifinished (i.e., partially composed)

composite web service, so as to recommend appropriate web services to the user to

help them finish the composition. Moreover, to ensure the effectiveness of the

recommendations, we try to enlarge the probability that users select the recommended

extensions.

In this section, we propose a novel graph mining-based service recommendation

framework to help facilitate service composition. Generally, there are three main stages in

the proposed framework: data preparation stage, data processing stage, and service

recommendation stage, as illustrated in Figure 7.12.

1. Data preparation stage: In this stage, web services with the same or similar function-

ality are clustered and marked with the same class label. Then the executed composite

web services (i.e., historical composition records) are modeled into directed labeled

graphs.

2. Data processing stage: In this stage, we use a graph mining algorithm to identify

frequent subgraphs (i.e., FUWS), representing the key components of web services that

are often executed together.

3. Service recommendation stage: We propose a model to estimate the probability that a

directed labeled graph (e.g., a composition of web services) will meet the user’s needs,

and then select the optimal composite service.

Service Composition 207

7.4.2 Processing Stages

The data preparation stage and data processing stage are the bases for the service

recommendation stage. In this section, we will give a detailed description of data

preparation stage and data processing stage.

7.4.2.1 Data preparation stage

The data preparation stage can be divided into two steps: (1) clustering web services and

(2) modeling historical composition records with directed labeled graphs.

Before identifying FUWSs, we need to cluster similar web services, because the usage

data are very sparse, and the clustering results can help to provide diverse candidates to

users. There are many approaches for web service clustering. In this section, we use the

K-medoids clustering algorithm to group together web services with the same function.

Definition 17: Clustered web service. After service clustering, a web service can be

formally defined by a five-tuple, WS ¼ (WS-ID, In, Out, QoS, Cluster-ID), in which:

• WS-ID is the unique identifier of the web service;

• In/Out is the input/output interface;

• QoS is the quality of service;

• Cluster-ID is the unique identifier of the cluster that the web service belongs to, and all

the web services belonging to the same cluster have the same Cluster-ID.

Historical service-
composition dataset

Clustered
service

Composite
service

Log
repository

Service
repository

Data preparation stage Service recommendation stage

Execution log

registration
Composite service

Data processing stage

User

Services
recommended

Services selected
during composition

Service
recommender system

Labeled
graphs

Graph
mining

Frequent
subgraphs

Extraction Cluster

Figure 7.12
The process for service recommendation based on graph mining.

208 Chapter 7

In most situations, a single web service cannot meet users’ needs, and service composition

is inevitable. Once a composite web service is invoked by a user, we can construct a

corresponding graph for this composite web service, in which the links are built according

to the execution order between the component web services. For the sake of simplicity, in

this approach, we focus on directed acyclic graphs. The formal definitions of a composite

web service and composite service graph are given as follows.

Definition 18: Composite web service. A composite web service can be represented by

a two-tuple, CS ¼ (WSS,WSR), in which:

• WSS is the set of component web services included in this composite web service;

• WSR 4WSS � WSS represents the relation between two web services, i.e.,

(WSi,WSj) ˛WSR when WSj is executed on the neck of WSi.

Definition 19: Directed labeled graph for composite service. A directed labeled graph

for composite service can be represented by a four-tuple, G ¼ (V, E, LV, lV), in which:

• V is the vertex set of the graph, in which each vertex refers to a component web

service;

• E4 V � V is the edge set of the graph, in which each edge represents the execution

order between two web services;

• LV is the label set for the vertex set, which is comprised by Cluster-IDs;

• lV is a function mapping from a vertex to a label. Because each vertex represents a web

service and each web service has a Cluster-ID, each vertex’s label is just the corre-

sponding Cluster-ID.

For example, Figure 7.13(a) gives a sample of a composite web service invoked by the

user, and Figure 7.13(b) shows Cluster-ID for each web service in Figure 7.13(a), then we

can construct the corresponding composite service graph as Figure 7.13(c) shows. In

particular, WS2 and WS3 are in the same cluster C2.

Figure 7.13
Construction of composite service graph.

Service Composition 209

7.4.2.2 Data processing stage

The data processing stage is responsible for the acquisition of the web service clusters that

are often executed together. To achieve this goal, we use graph mining algorithms to mine

frequent subgraphs from the composite service graphs.

Before introducing the proposed method, we first define the subgraph isomorphism for

composite service graphs.

Definition 20: Subgraph isomorphism for composite service. Given two composite

service graphs G ¼ (V, E, LV, lV) and G0 ¼ (V 0, E 0, LV, lV), a subgraph isomorphism from G

to G0 is an injective function f:V / V 0, such that:

1. for any vertex u ˛ V, lV (u) ¼ lV (f(u)), i.e., the two corresponding web services repre-

sented by u and f(u) belong to the same cluster;

2. for any edge (u,v) ˛ E, (f(u), f(v)) ˛ E0.

If there exists a subgraph isomorphism from G to G0, then G is a subgraph of G 0 and G 0 is
a supergraph of G, denoted as G8G 0.

Based on the definition of subgraph isomorphism, we can give the definition of a frequent

subgraph mining as follows.

Definition 21: Frequent subgraph mining for composite service. Given a composite

service graph dataset D ¼ {G1, G2, ., Gn}, and a minimum support min_sup, assume

sup(g) denotes the support of g in D, then:

sup
�
g
� ¼ P

Gi ˛D
Iðg;GiÞ; 1 � i � n; where

I
�
g;G

� ¼
(
1; if g is a subgraph of G;

0; if g is not a subgraph of G:

A subgraph g is called a frequent subgraph pattern if sup(g) � min_sup.

The objective of frequent subgraph mining for composite service is to find the complete

set of subgraphs that are frequently used in the composite service graph dataset D.

7.4.2.3 Service composition stage

The service recommendation stage is the most important one in the framework. When a

user is composing web services, the objective of our recommendations is to extend the

partially composed service by giving some service recommendations or suggestions. Our

approach is proposed based on the results of graph mining (i.e., those frequent subgraphs

obtained in the data processing stage). For each frequent subgraph g, find the frequent

subgraph g0 that is the supergraph of g, such that the probability for g0 appearing together

210 Chapter 7

with g is larger. That is to say, when the frequent subgraph g appears in the user’s partially

composed service, we extend it to g0, because the probability that the user will need g0 is
high. Thus, for the user’s partially composed service, we find the frequent subgraphs it

contains and extend these frequent subgraphs to those corresponding supergraphs, such

that the extensions of the partially composed service are realized. For each extension, we

need to replace it with concrete web services. Because there will be many corresponding

concrete web services for each extension, we have to select and compose the optimal

composite web service according to both the satisfaction probability and QoS. Thus,

this stage can be divided into two steps: (1) determine frequent subgraphs for the

recommendations and (2) select the optimal composite web service. These two steps are

described in the following subsections.

According to the user’s partially composed service, we can construct the corresponding

directed labeled graph as described in Section 7.4.2.1. This directed labeled graph is used

as an original graph Go. We enumerate all subgraphs of Go to find subgraphs that are in

the result set of graph mining. To make it clear, the set comprising these subgraphs is

denoted as So, and the result set of graph mining is denoted as FS. Formally,

So ¼ {gjg8 Go and g ˛ FS}.

For one graph g, if another graph g0 can be obtained by adding one edge to g, then g0 is
the child of g. And the child of g0 is the descendant of g. For each graph g in So, we

enumerate all descendants of g to find those descendants that are also in FS. The set of

those descendants with respect to g is denoted as Des(g). Formally, Des(g) ¼ {g0jg0 is the
descendant of g and g0 ˛ FS}.

Then, we need to find the graph in Des(g) with the highest probability that is extended

from g. For each graph g0 in Des(g), the probability that g0 appears when g appears can be

denoted as P(g0jg). According to the Bayesian formula, probability P(g0jg) can be

transformed as follows:

Pðg0jgÞ ¼ Pðgjg0Þ � Pðg0Þ
PðgÞ ; (7.1)

in which P(gjg0) represents the probability that g appears when g0 appears. Because g0 is
the descendant of g, g must appear when g0 appears. Namely, the value of P(gjg0) is one.
Then, Eqn (7.1) can be transformed as follows:

Pðg0jgÞ ¼ Pðg0Þ
PðgÞ ¼ supðg0Þ

supðgÞ (7.2)

According to Eqn (7.2), the probability P(gjg0) is larger when g0 has fewer edges, and we

cannot get those extensions with more edges. Thus, by introducing the edge count, Eqn

(7.2) is transformed into Eqn (7.3), the value of which is denoted Score(g0,g).

Service Composition 211

Scoreðg0; gÞ ¼ ðjEðg0Þj þ 1Þa � supðg0Þ
ðjEðgÞj þ 1Þa � supðgÞ (7.3)

Next, we need to find the graph in Des(g) with the highest score and denote it as gb, which

is a candidate for our recommendation. The list of candidates for recommendations is

denoted as CFS, in which each graph gib is the graph in Des(gi) that has the highest score.

All graphs in CFS will be ranked according to Score(gib, gi). The higher the score, the

higher the ranking. If scores are equal, we will consider the extended edge count. The

extended edge count for gib is calculated by Eqn (7.4).

Ne

�
gib; gi

� ¼ ��E�gib���� ��E�gi��� (7.4)

The larger the extended edge count, the higher the ranking. If the extended edge counts

are equal, a minimum DFS code is considered. The smaller the minimum DFS code, the

higher the ranking. The number of candidates for recommendations may be large. We set a

parameter k to limit the number of frequent subgraphs recommended for users. If the

number of candidates is larger than k, we just return top k in CFS, otherwise, we return all

the candidates. The list of recommended frequent subgraphs is denoted as RFSk. For each

graph in FS, its descendant with the highest score can be calculated offline, so that we can

speed up the online service recommendation stage.

To make it more convenient for the user, the final recommendation is based on the graphs

that are acquired by joining each graph in RFSk with Go, and the list of these graphs is

denoted as RGk.

For example, Figure 7.14(a) shows the user’s partially composed service, and

Figure 7.14(b) shows the Cluster-ID of each web service in Figure 7.14(a). After that, we

can construct the corresponding original graph Go, which is given in Figure 7.14(c).

Figure 7.14(d) shows the graphs in So. For each graph in Figure 7.14(d), its descendant

with the highest score are given in Figure 7.14(e), and the corresponding scores and

extended edge counts are given in Figure 7.14(f) and 7.14(g), respectively. Then the list of

recommended frequent subgraphs is given in Figure 7.14(h), in which each graph has

already been ranked. Please note that the value of a and k in this example are two and

five, respectively. Figure 7.15 shows the graphs in RG5, in which the solid lines represent

the edges in Figure 7.14(c), and the dotted lines represent the edges in corresponding

graph in Figure 7.14(h).

For a graph g in RGk, the label of each vertex in g is Cluster-ID. For the vertices of g that

are also in Go, they are replaced by the corresponding web services already selected by the

user. For other vertices of g, they can be replaced by any web service in the corresponding

cluster. Thus, we can get many composite web services for g with different replacements.

212 Chapter 7

A criterion is needed to measure the quality of composite web services, so that we can

select the optimal composite web service.

In this approach, we consider six dimensions of QoS, which are shown in Table 7.6. For

all the web services in the service repository, we use the function: y ¼ (x � min(x))/

(max(x) � min(x)) to normalize each dimension of QoS into the range [0,1]. Without

explicit mentioning, QoS discussed below is normalized as QoS.

For each composite web service, we can calculate its QoS in six dimensions according to

its structure and the QoS of the component web services. According to definition 18, we

can use CS ¼ (WSS,WSR) to denote one composite web service. The formulas to calculate

the QoS of CS in six dimensions will be presented next. Because the branch relationship

in composite web services is a common relationship and its calculation is more

complicated, we focus on branch relationships in this approach. However, it is not hard to

cover other relationships in composite web services.

Figure 7.14
Determination of recommended frequent subgraphs.

Service Composition 213

Figure 7.15
Graphs in RG5.

Table 7.6: QoS parameters

Parameter Name Description Units

Response time (RT) Time taken to send a request
and receive a response

ms

Availability (AV) Number of successful
invocations/total invocations

%

Throughput (TP) Total number of invocations
for a given period of time

#/s

Successaibility (SU) Number of response/number of
request messages

%

Reliability (RE) Ratio of the number of error
messages to total messages

%

Latency (LA) Time taken for the server to
process a given request

ms

QoS, quality of services.

214 Chapter 7

To compute the QoS of CS in six dimensions for each component web service WS in

CS, the number of its direct predecessors is called its indegree, denoted as deg�(WS),

and the number of its direct successors is called its outdegree, denoted as degþ(WS).

In additon, we add two more web services, WSs and WSf, which represent the initial

service and final service, respectively. In addition to the relationships in WSR, each

web service with an indegree of 0 has a relationship from WSs, and each web service

with an outdegree of 0 has a relationship to WSf. Thus in CS, WSs is the only web

service with an indegree of 0, and WSf is the only web service with an outdegree of 0.

It should be noted that response time and latency of WSs and WSf are 0, and the

availability, throughput, successability, and reliability of WSs and WSf are 1.

1. Response time for composite web service: For each component web service WS in the

composite web service CS, its response time can be denoted as RT(WS). The aggregated

response time of WS, denoted as Agg_RT(WS), is the response time that an execution

starting from WSf will terminate at WS. For a web service WSi, Agg_RT(WSi) can be

defined recursively as follows:

If degþ(WSi) s 0, then Agg_RT(WSi) ¼

RT
�
WSi

�þ 1

degþðWSiÞ
X

j;ðWSi;WSjÞ˛WSR

Agg RT
�
WSj

�
:

Otherwise, Agg_RT(WSi) ¼ RT(WSi). Namely, Agg_RT(WSf) ¼ RT(WSf) ¼ 0.

Thus, the response time of the composite web service CS is the aggregated response

times of the component web services with an indegree of 0. Formally, we use RT(CS)

to represent the response time of CS, and it can be calculated as follows:

RTðCSÞ ¼ Agg RTðWSsÞ:
2. Availability for composite web service: For each component web service WS in the

composite web service CS, its availability can be denoted as AV(WS). The aggregated

availability of WS, denoted as Agg_AV(WS), is the availability that an execution starting

from WSs will terminate at WS. For a web service WSj, Agg_AV(WSj) can be defined

recursively as follows:

If dege(WSj) s 0, then Agg_AV(WSj) ¼

AV
�
WSj

�� X
i;ðWSi;WSjÞ˛WSR

1

degþðWSiÞAgg AV
�
WSi

�
:

Otherwise, Agg_AV(WSj) ¼ AV(WSj). Namely, Agg_AV(WSs) ¼ AV(WSs) ¼ 1.

Service Composition 215

Thus, the availability of the composite web service CS is the aggregated availability

of component web services with an outdegree of 0. Formally, we use AV(CS) to

represent the availability of CS, and it can be calculated as follows:

AVðCSÞ ¼ Agg AVðWSf Þ:
3. Throughput for composite web service: For each component web service WS in the

composite web service CS, its throughput can be denoted as TP(WS). The aggregated

throughput of WS, denoted as Agg_TP(WS), is the throughput that an execution starting

from WSs will terminate at WS. For a web service WSj, Agg_TP(WSj) can be defined

recursively as follows:

If dege(WSj) s 0, then

Agg TP
�
WSj

� ¼ min
�
TP

�
WSj

�
;

X
i;ðWSi;WSjÞ˛WSR

1

degþðWSiÞAgg TP
�
WSi

��
:

Otherwise, Agg_TP(WSj) ¼ TP(WSj). Namely, Agg_TP(WSs) ¼ TP(WSs) ¼ 1.

Thus, the throughput of the composite web service CS is the aggregated throughput of

component web services with an outdegree of 0. Formally, we use TP(CS) to

represent the throughput of CS, and it can be calculated as follows:

TPðCSÞ ¼ Agg TPðWSf Þ:
4. Successability for composite web service: For each component web service WS in the

composite web service CS, its successability can be denoted as SU(WS). The aggre-

gated successability of WS, denoted as Agg_SU(WS), is the successability that an

execution starting from WSs will terminate at WS. For a web service WSj, the method

for calculating Agg_SU(WSj) is similar to Agg_AV(WSj). It can be defined recursively

as follows:

If dege(WSj) s 0, then Agg_SU(WSj) ¼

SU
�
WSj

�� X
i;ðWSi;WSjÞ˛WSR

1

degþðWSiÞAgg SU
�
WSi

�
:

Otherwise, Agg_SU(WSj) ¼ SU(WSj). Namely, Agg_SU(WSj) ¼ SU(WSs) ¼ 1. Thus,

the successability of the composite web service CS is the aggregated successability of

component web services with an outdegree of 0. Formally, we use SU(CS) to

represent the successability of CS, and it can be calculated as follows:

SUðCSÞ ¼ Agg SUðWSf Þ:

216 Chapter 7

5. Reliability for composite web service: For each component web service WS in the com-

posite web service CS, its reliability can be denoted as RE(WS). The aggregated reli-

ability of WS denoted as Agg_RE(WS) is the reliability that an execution starting from

WSs will terminate at WS. For a web service WSj, the method for calculating

Agg_RE(WSj) is similar to Agg_AV(WSj). It can be defined recursively as follows:

If dege(WSj) s 0, then Agg_RE(WSj) ¼

RE
�
WSj

�� X
i;ðWSi;WSjÞ˛WSR

1

degþðWSiÞAgg RE
�
WSi

�
:

Otherwise, Agg_RE(WSj) ¼ RE(WSj). Namely, Agg_RE(WSs) ¼ RE(WSs) ¼ 1.

Thus, the reliability of the composite web service CS is the aggregated reliability of

component web services with an outdegree of 0. Formally, we use RE(CS) to

represent the reliability of [EQUATION], and it can be calculated as follows:

REðCSÞ ¼ Agg REðWSf Þ:
6. Latency for composite web service: For each component web service WS in the com-

posite web service CS, its latency can be denoted as LA(WS). The aggregated latency of

WS, denoted as Agg_LA(WS), is the latency that an execution starting from WSf will

terminate at WS. For a web service WSi, the method for calculating Agg_LA(WSi), is

similar to Agg_RT(WSi). It can be defined recursively as follows:

If degþ(WSi)s0, then Agg_LA(WSi) ¼

LA
�
WSi

�þ 1

degþðWSiÞ
X

j;ðWSi;WSjÞ˛WSR

Agg LA
�
WSj

�
:

Otherwise, Agg_LA(WSi) ¼ LA(WSi). Namely, Agg_LA(WSf) ¼ LA(WSf) ¼ 0.

Thus, the latency of the composite web service CS is the aggregated latency of the

component web services with an indegree of 0. Formally, we use LA(CS) to represent the

latency of CS, and it can be calculated as follows:

LAðCSÞ ¼ Agg LAðWSsÞ:
For example, Figure 7.16(a) gives a sample composite web service CS. According to the

formulas we defined above, we can calculate its QoS in six dimensions, as illustrated in

Figure 7.16(b).

After calculating the QoS of the composite web services, we select the composite web

service that has a QoS that is optimal for the recommendation. To select an optimal

composite web service, we unite the six dimensions of QoS into one value ranging

Service Composition 217

between [0,1], and the greater the value, the higher the quality of the composite web

service. A weight vector W ¼ (w1,w2,w3,w4,w5,w6) is introduced to represent the

importance of the QoS in each dimension. For response time and latency, the higher the

value is, the lower is the quality of the composite web service. For other dimensions of

QoS, the higher the value is, the higher is the quality of the composite web service. Thus,

for a composite web service CS, its QoS can be calculated as follows:

QoS
�
CS

� ¼ w1$
1

RTðCSÞ þ 1
þ w2$AV

�
CS

�þ w3$TP
�
CS

�þ w4$SU
�
CS

�þ w5$RE
�
CS

�
þ w6$

1

LAðCSÞ þ 1
;

where
P6

i¼1wi ¼ 1 and wi � for 1 � i �6.

For a graph g in RGk, we assume that it has N vertices that are not in G0 (i.e., N clusters), and

there areM web services in each cluster. The total number of corresponding composite web

services isMN. The computation cost of selecting an optimal composite web service is

O(MN). Such an approach is impractical for large N andM.

However, from those formulas in Section 7.4.2.3, we can find that the QoS of the composite

web service is only better when the component web services’ QoS is better. Thus, we can use

skyline to boost the selection of optimal composite web services. First, we use skyline to

select web services with a higher QoS in each cluster. And these web services are the skyline

services of each cluster. Then, each vertex is just replaced with the skyline services instead of

any service in the corresponding cluster, so that we can reduce the computation cost. For

example, for each graph in Figure 7.15, we replace each vertex with corresponding web

services to get those composite web services, which are shown in Figure 7.17. Then we can

calculate QoS of each composite web service in Figure 7.17 and get optimal composite web

services. Please note that the process for computing skyline services in each cluster can be

finished offline.

Figure 7.16
Calculation of QoS of a composite web service. Qos, quality of services.

218 Chapter 7

7.4.3 Experimental Evaluation

7.4.3.1 Experiment setting

We prepare a service repository containing 1530 services for the experiments. All services are

selected from the QWS dataset. As mentioned in Section 7.4.2.1, we adopt the K-medoids

clustering algorithm and get 100 clusters at last. While clustering, we use the modified

version of the method in [28] to calculate service similarity. The main modifications are those

features considered and the method for calculating the web service name similarity.

Particularly, we consider these features includingWSDL types,WSDL messages,WSDL ports,

and web service name, while the featureWSDL contents is not considered. This is because the

implementation for the featureWSDL contents is very complex, and this feature is less

important. While calculating web service name similarity, we do not use Normalized Google

Distance (NGD) [29], but use the Lin measure of WordNet similarity [30]. However, the

effectiveness of the Lin measure of WordNet similarity is not better than NGD, because for

those words not in WordNet, there will be no similarity. The main reason we do not use NGD

is that we have 1530 services, and the emphWeb service name of these services has more than

1000 words. NGD needs a search engine to search the number of any two words to both

appear, and there will be more than 10002 searches. Current search engines do not allow that

Figure 7.17
Candidates of composite web service for recommendation.

Service Composition 219

many uses of auto-search (i.e., machine search, not manual search), so we use the Lin

measure of WordNet similarity to calculateWeb service name similarity. For each word not in

WordNet, its similarities with other words are all set to 0.

Furthermore, we prepare a log repository containing 10,000 executed composite services,

which are generated based on the service repository. So the size of the composite service

graph dataset is 10,000. The edge count of each graph in the composite service graph

dataset is uniformly distributed in the range [5,30].

In addition, we generate 1000 composite services, and those corresponding 1000 composite

service graphs are used as a test set, in which the edge count of each graph is uniformly

distributed in the range [10,60]. Then we select half of each graph in the test set as an input

set for recommendation, i.e., each graph in the input set like Go mentioned in Section

7.4.2.3. Thus, the edge count of each graph in the input set is uniformly distributed in the

range [5,30].

While evaluating the efficiency and effectiveness of our approach, random recommendation

is used as a baseline. Random recommendation with skyline means that each vertex is

replaced with a randomly selected skyline service in the corresponding cluster. And random

recommendation without a skyline means each vertex is replaced with a randomly selected

service in the corresponding cluster. In addition, each dimension of the weight vectorW

(mentioned in Section 7.4.2.3) is set to 1
6 for simplicity in our experiments, i.e.,

W ¼ �
1
6;

1
6;

1
6;

1
6;

1
6;

1
6

�
.

Our experiments run on a desktop PC with Intel Core 2 Duo E7400 2.80 GHz CPU and 3GB

memory, and Windows 7 OS. The program is written in Java and runs on Sun JDK 6 Update

26. To minimize the experimental error, all evaluations are executed in a robust benchmark

framework (http://www.ibm.com/developerworks/java/library/jbenchmark2/) for Java

program.

7.4.3.2 Distribution evaluation

In this group of experiments, we evaluate skyline services and those frequent subgraphs

mining from the composite service graph dataset.

Figure 7.18 shows the size of 100 clusters, i.e., the number of services each cluster has. It

can be observed that only one cluster has more than 100 services. Five clusters have more

than 50 services, 15 clusters have 20 to 50 services, and 50 clusters have less than 10

services. We calculate the skyline services in each cluster, and the number of skyline

services in each cluster is also given in Figure 7.18. For larger clusters, the calculation of

skyline services is essential. It should be noted that the largest cluster with 168 services has

28 skyline services.

220 Chapter 7

Then, we evaluate the frequent subgraphs, mining from the composite service graph

dataset. The minimum support is set to 3.

Figure 7.19(a) shows the distribution of frequent subgraphs on the number of edges. Please

note that the y-axis is in logarithmic scale. As the number of edges increases, the number

of corresponding frequent subgraphs first increases exponentially. When the number of

edges reaches three, the number of corresponding frequent subgraphs reaches a peak.

Then, as the number of edges increases, the number of corresponding frequent subgraphs

decreases exponentially. The result is consistent with our understanding.

We calculate the average support of frequent subgraphs with respect to the number of edges.

To get the suitable value of a in Eqn (7.3), we use function y ¼ c$(x þ 1)�b to fit the data.

The reason we use this function is that we hope the result of Eqn (7.3) is around one and the

impact of the edge count for support can be eliminated. Figure 7.19(b) shows the results. We

can observe that the average support of the frequent subgraphs decreases exponentially as

the number of edges increases. And we determine that the value of c is 336.853, and the

value of b is 2.516. So when the minimum support is 3, the suitable value of a is 2.516.

7.4.3.3 Efficiency evaluation

In this group of experiments, we evaluated the efficiency of our approach. Because the

data preparation stage and data processing stage can be completed offline, we just study

the time of service recommendation stage.

180

160

140

120

100

80

60

40

20

0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Size of cluster Number of skyline services

Figure 7.18
The distribution of clusters and skyline services.

Service Composition 221

As mentioned in Section 7.4.2.3, we first determined the frequent subgraphs for the

recommendation. Then, we replaced each vertex with the corresponding cluster’s skyline

services to find the optimal composite web service for each frequent subgraph. We test the

average time when we use or do not use skyline services to obtain the optimal

recommendation. Meanwhile, we also test the average time of the random

recommendation with or without skyline. The results are shown in Table 7.2. For the

optimal recommendation, the average time without skyline is eight times more than the

average time with skyline. Thus, using skyline services is efficient for an optimal

recommendation. Further, it can be observed that skyline does not affect the average time

of the random recommendation. The average time of the random recommendation is much

less than that of the optimal recommendation, which is consistent with our understanding.

Assume that there are N vertices and each vertex can be replaced with M web services; the

time complexity of the random recommendation is O(N), while the optimal

recommendation is O(MN).

7.4.3.4 Effect evaluation

In this group of experiments, we evaluate the practical effectiveness of the proposed

approach. First, we evaluate the extended edge count of the recommendation, as illustrated

in Figure 7.20. In Figure 7.20(a), the extended edge count decreases when the minimum

support increases. This is because the edge count of frequent subgraphs decreases with the

increase of the minimum support. It should be noted that for different minimum support,

the suitable value of a is set according to the method mentioned in Section 7.4.3.2. When

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1000
900
800
700
600
500
400
300
200
100

0

N
um

be
r o

f f
re

qu
en

t s
ub

gr
ap

hs

Distribution of frequent graphs Distribution of average support

(a) (b)
Average support y = c*(x + 1)−β

Number of edges Number of edges

Figure 7.19
The distribution of frequent subgraphs.

222 Chapter 7

the minimum support varies from three to seven, the suitable value of a is 2.516, 2.572,

2.676, 2.804, and 2.72. In Figure 7.20(b), the extended edge count increases along with

the increase of a. This is because when a is small, the result of Eqn (7.3) is mainly

affected by the support. The graphs with larger support often have fewer edges. It should

be noted that the minimum support is set to 3 in Figure 7.20(b) (Table 7.7).

Then, we evaluate the hit rate of the recommendation that mainly considers functionality.

That is to say, we concern the structure of the recommended composite web services (i.e.,

these corresponding composite service graphs). For one graph Gl in the test set, we denote

its corresponding graph in the input set as Gs. Thus, E
�
Gs

� ¼ 1
2E

�
Gl

�
. For Gs, we denote

its list of recommended graphs as RGGs;k
, in which k is the parameter limiting the number

of frequent subgraphs recommended for users (mentioned in Section 7.4.2.3). If one graph

in RGGs;k
is isomorphic to the corresponding subgraph in Gl, this recommendation is hit.

For the entire test set and input set, there will be 1000 recommendations. We can get

the number of hit recommendations, and the hit rate is the corresponding percentage.

Figure 7.20
Effect evaluation on extended edge count.

Table 7.7: Average time of different approaches (ms)

Method With Skyline Without Skyline

Optimal selection 36.379 308.291
Random selection 0.661 0.661

Service Composition 223

Figure 7.21(a) shows the change of hit rate with k when the minimum support varies from

three to seven. For each minimum support, the hit rate increases along with the increase of

k. When k reaches 10, the hit rate for each minimum support is at least 0.768. With the

same k and different minimum support, the differences in hit rate are small. However, in

general, with the same k, the hit rate decreases slightly as the minimum support increases.

This is because the larger the minimum support, the less the number of frequent

subgraphs. Thus, when k is 10 and the minimum support is three, the hit rate reaches the

highest point, i.e., the effectiveness is best. It should be noted that for different minimum

support, the suitable value of a is set according to the method mentioned in Section

7.4.3.2.

We evaluate the impact of a on the hit rate, by setting the minimum support to three. The

results are shown in Figure 7.21(b). For each value of a, the hit rate increases with the

increase of k. With the same k, when a � b the hit rate decreases rapidly along with the

increase of a. Because the result of Eqn (7.3) is mainly affected by the edge count, graphs

for the recommendation should have more edges. However, the larger the number of

edges, the smaller the support. Thus, the hit rate is low. With the same k, when a � b, the

difference in hit rate is small for a different a.

Table 7.8: Effect evaluation of different approaches on QoS

Method With Skyline Without Skyline

Optimal selection 0.5333 0.5333
Random selection 0.5316 0.5313

QoS, quality of services.

Th
e

hi
t r

at
e

(%
)

α = 0.25β

α = 0.5β

α = 1.5β
α = 2β

α = 4β

α = β

(a) 0.85

0.75

0.65

0.55

0.45

0.35

0.25
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

k

min_sup = 3

min_sup = 4

min_sup = 7

min_sup = 6

min_sup = 5

Th
e

hi
t r

at
e

(%
)

k

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0.5

0

(b)

Figure 7.21
Effect evaluation on hit rate.

224 Chapter 7

This is because the result of Eqn (7.3) is mainly affected by the support. However, when

k � 5 and a � b, with the same k, the hit rate increases as a increases. Thus, when k > 5,

the suitable value of a, is b.

Furthermore, we evaluate the recommended composite web services’ average QoS. The

results are given in Table 7.8. For the optimal recommendation, these recommended

composite web services’ average QoS of the approach with skyline is the same with the

one without skyline. That is to say, the optimal composite web service is in the

candidates of the composite web services replaced with skyline services, which means

our approach is feasible and correct. For the random recommendation, these

recommended composite web services’ average QoS is better with skyline, because

skyline services’ QoS is not worse than any service in the same cluster. These

recommended composite web services’ average QoS of the optimal recommendation is

better than that of the random recommendation, which is consistent with our

understanding.

7.5 Summary

The issue of web service composition has grown to be a hot topic and has attracted many

researchers to work on it. This chapter first introduces a novel planning-graph-based

algorithm to address the top-k QoS-aware automatic composition problem of semantic

web services. This method cannot only return required solutions for users, but also gets

top-k QoS solutions for users. Thus we can bring more convenience for users’ selection

and improve the availability of the composition solutions. Then a parallel composition

method is introduced, which can avoid a performance bottleneck due to the explosion of

the planning and searching space and improve the efficiency of automatic web service

compositions with large-scale services. Finally, this chapter introduces a graph mining-

based recommendation approach to model and explore the hidden knowledge to facilitate

the users’ service composition task.

In the future, with advancement of technologies and newly emerging concepts, we predict

that service composition will be quite different. Traditionally, services are mostly running

on enterprise servers. But along with the progress in modern smart devices, they can now

become service providers as well. They can provide certain services that cannot be

supplied by traditional providers. Services provided by mobile providers will be quite

different from conventional computation-intensive services. They could be moving

location-based or context-aware services’ sensing and providing, through their sensors,

immediate real world information. Furthermore, they can also act as intermediaries for

people to enable them to become movable “human-provided services.” Forced by these

new trends, defining a new service model to substitute an obsolete triangle service-oriented

architecture model is now required. Next, to composition, nonfunctional aspects uniquely

Service Composition 225

belonging to mobile devices or applications, such as mobility prediction, may become a

real concern for future mobile service composition, instead of the QoS or transaction

property that are of interest in traditional composition works. Identifying and analyzing

unknown mobile nonfunctional aspects is significant because, to modern software users,

nonfunctional requirements are usually more important than prior functional requirements.

In the future, a composite service probably may blend traditional as well as mobile

services, and the architecture of the composite services may not always be a typical “pipe

and filter.” We imagine that how to define process and aggregate nonfunctional features

will be a baffling problem.

References

[1] Z.H. Wu, S.G. Deng, Y. Li, J. Wu, Computing compatibility in dynamic service composition, Knowl. Inf.
Syst. 19 (1) (2009) 107e129.

[2] J. Wu, L. Chen, Z.B. Zenf, M.R. Lyu, Z. Wu, Clustering web services to facilitate service discovery, Knowl.
Inf. Syst. (2012) to appear.

[3] P.C. Marı́a, B. Rafael, S. Ismael, M.J. Aramburu, A semantic approach for the requirement-driven discovery
of web resources in the life sciences, Knowl. Inf. Syst. (2012).

[4] M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: state of the art and
research challenges, IEEE Comput. 40 (11) (2007) 38e45.

[5] J. Peer, Web Service Composition as AI Planningda Survey, 2005. http://logicstanford.edu/serviceplanning/
readinglist/pfwsc.pdf.

[6] S. McIlraith, T.C. Son, Adapting Golog for composition of semantic web services, in: International
Conference on Knowledge Representation and Reasoning, 2002, pp. 482e493.

[7] M. Phan, F. Hattori, Automatic web service composition using ConGolog, in: IEEE International
Conference on Distributed Computing Systems Workshops, 2006, pp. 17e22.

[8] S.C. Oh, J.Y. Lee, S.H. Cheong, S.M. Lim, M.W. Kim, S.S. Lee, WSPR*: web-service planner augmented
with A* algorithm, in: International Conference on Commerce and Enterprise Computing, 2009, pp.
515e518.

[9] S.C. Oh, B.W. On, E.J. Larson, D. Lee, BF*: web services discovery and composition as graph search
problem, in: IEEE International Conference on e-Technology, e-Commerce and e-Service, 2005, pp.
784e786.

[10] B. Wu, S.G. Deng, Y. Li, J. Wu, J. Yin, AWSP: an automatic web service planner based on heuristic state
space search, in: International Conference on Web Services, 2011, pp. 403e410.

[11] M. Naseri, A. Tomhidi, QoS-aware automatic composition of web services using AI planners, in:
International Conference on Internet and Web Applications and Service, 2007, pp. 29e35.

[12] E. Sirina, B. Parsiab, D. Wu, J. Hendler, D. Nau, HTN planning for web service composition using
SHOP2, Web Semant. Sci. Serv. Agents World Wide Web 1 (4) (2004) 377e396.

[13] I. Paik, D. Maruyama, Automatic web services composition using combining HTN and CSP, in:
International Conference on Computer and Information Technology, 2007, pp. 206e211.

[14] K. Chen, J.Y. Xu, S. Reiff-Marganiec, Markov-HTN planning approach to enhance flexibility of automatic
web services composition, in: International Conference on Web Services, 2009, pp. 9e16.

[15] Y. Li, J.L. Chen, Automatic composition of semantic web servicesda theorem proof approach, in: Asian
Conference on the Semantic Web, 2006, pp. 481e487.

[16] J.H. Rao, P. Kungas, M. Matskin, Application of linear logic to web service compo-sition, in:
International Conference on Web Services, 2003, pp. 3e9.

226 Chapter 7

[17] J.H. Rao, P. Kungas, M. Matskin, Logic-based web services composition: from service description to
process model, in: International Conference on Web Services, 2004, pp. 446e453.

[18] X.R. Zheng, Y.H. Yan, An efficient syntactic web service composition algorithm based on the planning-
graph model, in: International Conference on Web Services, 2008, pp. 691e699.

[19] S.C. Oh, D. Lee, S.R.T. Kumara, Web service planner (WSPR): an effective and scalable web service
composition algorithm, Int. J. Web Serv. Res. 4 (1) (2007) 1e23.

[20] W.Q. Li, X.M. Dai, H. Jiang, Web services composition based on weighted planning-graph, in:
International Conference on Networking and Distributed Computing, 2010, pp. 89e93.

[21] X.G. Li, Q.F. Zhao, Y. Dai, A semantic web service composition method based on an enhanced planning-
graph, in: International Conference on e-Business and e-Government, 2010, pp. 2288e2291.

[22] Z.Q. Huang, W. Jiang, S.L. Hu, Z. Liu, Effective pruning algorithm for QoS-aware service composition,
in: IEEE Conference on Commerce and Enterprise Computing, 2009, pp. 519e522.

[23] W. Jiang, C. Zhang, Z.Q. Huang, M. Chen, S. Hu, Z. Liu, QSynth: a tool for QoS-aware automatic
service composition, in: International Conference of Web Services, 2010, pp. 42e49.

[24] S. Deng, B. Wu, J. Yin, Z. Wu, Efficient planning for top-K web service composition, Knowl. Inf. Syst.
36 (3) (2013) 579e605.

[25] S. Deng, L. Huang, B. Wu, L.R. Xiong, Parallel optimization for data-intensive service composition, J.
Internet Technol. (2013).

[26] J. Wu, L. Chen, Y. Xie, L. Ji, Z. Wu, Modelling and exploring historical records to facilitate service
composition, Int. J. Web Grid Serv. 10 (1) (2014) 54e79.

[27] S.-C. Oh, H. Kil, D. Lee, S.R. Kumara, WSBen: a web services discovery and composition benchmark, in:
Proc. IEEE International Conference on Web Services, Salt Lake City, USA, July, 2006, pp. 239e248.

[28] K. Elgazzar, A.E. Hassan, P. Martin, Clustering WSDL documents to bootstrap the discovery of web
services, in: 2010 IEEE International Conference on Web Services (ICWS 2010), 2010, pp. 147e154.

[29] R.L. Cilibrasi, P.M. Vitanyi, The Google similarity distance, IEEE Trans. Knowl. Data Eng. 19 (3) (2007)
370e383.

[30] D. Lin, An information-theoretic definition of similarity, in: Proc. of the 15th International Conference on
Machine Learning (ICML 1998), 1998, pp. 296e304.

Service Composition 227

This page intentionally left blank

CHAPTER 8

Service Verification and Dynamic
Reconfiguration
Chapter Outline
8.1 Introduction 230

8.1.1 Overview of Service Verification 230

8.1.2 Overview of Dynamic Reconfiguration of Service-Based Application 232

8.2 Service Verification 233
8.2.1 Basic Theory 234

8.2.1.1 Martin_Löf’s type theory 234

8.2.1.2 Dependent record types 235

8.2.2 Modeling for Different Granularity Services 235

8.2.2.1 Basic definition 236

8.2.2.2 Interface inverted dependence 239

8.2.2.3 Modelling for different granularity services 241

8.2.3 Determining Substitutability between Different Granularity Services 242

8.2.3.1 Subtyping rules for semantics of services 243

8.2.3.2 Subtyping rules of the improved service behavior type 243

8.2.3.3 Defining substitutability between different granularity services 245

8.2.4 Case Study 247

8.2.4.1 Judging the substitutability between large-granularity services 247

8.2.4.2 Judging the substitutability between small and large-granularity services 250

8.3 The Dynamic Reconfiguration of a Service-Based Application 251
8.3.1 QoS Metrics 252

8.3.2 Quality of Service-Driven Dynamic Reconfiguration Method 253

8.3.2.1 Subprocess for degradation of component QoS 253

8.3.2.2 Subprocess for violation of component services 255

8.3.3 Reconfiguration Factor 255

8.3.3.1 Relative QoS degradation value of component services 255

8.3.3.2 QoS global significance of component services 257

8.3.4 Evaluation 258

8.4 Summary 262

References 263

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00008-4

Copyright © 2015 Elsevier Inc. All rights reserved. 229

8.1 Introduction

Presently, service composition has become an increasingly important way for IT

enterprises to rapidly develop their applications that not only satisfy customer business

requirements but also deliver an expected quality of service (QoS) [1,2]. However,

developing various composite services is not the only critical step in service composition.

To the best of our knowledge, two additionally urgent challenges have been addressed.

One is how to verify whether the composed services can run correctly and achieve their

predefined business goals [3,4]. The other is how to adjust service-based applications to

meet highly dynamic environments (e.g., in a cloud environment) and fast-changing

business requirements [5,6]. This chapter first gives an overview of service verification and

dynamic reconfiguration. Then it introduces an approach to verify the substitutability

between different granularity services. At last, it presents a quality of service (QoS)-driven

dynamic reconfiguration method.

8.1.1 Overview of Service Verification

During the past years, service verification has become a significant research issue in

service-oriented computing. Analyzing compatibility [3,4] and substitutability/

replaceability/equivalence [3,7e14] are of great importance to web services verification

technology. Service compatibility allows for exploiting the correctness of the interactive

relationship between two services. It is the key to ensure that web services, especially

large granularity services, are run correctly and achieve their predefined business goals.

Additionally, because composite services are by nature heterogeneous, dynamic, and

collaborative, they can be recovered by service substitution when one or several of

their component services fail. As a result, service substitutability/replaceability/

equivalence is a key for ensuring that a composite service, once assembled, can

reliably run.

Since 2000 years, a large number of approaches for service verification exist [3,8e14].

Most of them are based on formal methods, such as Petri Net, automata, or process

algebra, etc. Taher et al. [8] determined the similarity in two services based on their

interface descriptions (specified in WSDL). This work assumed the formation of

communities of services that provide similar functionality, and hence can be substituted by

only analyzing syntactical and semantic similarity between services.

Furthermore, various efforts have been devoted to exploring the equivalence between

web services at the behavioral level. Vallecillo and Vasconcelos et al. [9] showed how

session types not only allow high-level specifications of complex object interactions, but

also allow the definition of powerful interoperability tests at the protocol level, namely

compatibility and substitutability of objects. The idea of simulation equivalence is

230 Chapter 8

applied by Benatallah et al. [10] for determining compatibility and substitutability of

web services. Mario Bravetti and Gianluigi Zavattaro [11] related the theory of contracts

with the notion of choreography conformance, used to check whether an aggregation of

services correctly behaves according to a high level specification of their possible

conversations. Filippo Bonchi and Antonio Brogi et al. [12] defined a new behavioral

equivalence for web services, based on bisimilarity and inspired by recent advances in

the theory of reactive systems, in which the proposed equivalence is compositional and

decidable. Martens [3] defined the notion of equivalence based on that of usability of a

module: a module N0 simulates a module N if for each M that the composition of N and

M is a weak sound, then the composition of N0 and M is also a weak sound; N0 and N

are equivalent if N0 and N simulate each other. Based on the behavioral analysis, Lucas

Bordeaux et al. [13] proposed two types of substitutability: context-dependent and

context-independent substitutability, in which the former requires that service N0 is
compatible with a particular M that is compatible with N; and the latter requires that N0

is compatible with any M that is compatible with N. However, neither the formal

condition of substitutability (i.e., replaceability) nor an algorithm for verifying

substitutability is presented in most of the above-mentioned studies. It turns out to be

quite hard to automatically analyze substitutability between web services according to

these notions.

Researchers continued in-depth discussion on a clear and decidable notion of

substitutability for web services. Based on the Petri-net theory, Xitong Li et al. [14]

introduced a formal definition of context-independent similarity and showed that a web

service can be substituted by an alternative peer of similar behavior without intervening

other web services in the composition. Therefore, the cost of verifying service

substitutability is largely reduced. Jyotishman Pathak et al. [7] determined substitutability

of a service by reducing it to the satisfaction of the quotient mu-calculus formulas. Amit

K. Chopra et al. [15] outlined an approach for verifying the correctness of commitment

protocols and their compositions that exploits the well-known software engineering

technique of model checking. Christian Stahl et al. [16] proposed three notions of

substitutability for services and further presented a decision algorithm for substitutability

based on the concept of an operating guideline, which is an abstract representation of all

environments that a given service can cooperate with. Wombacher et al. [17] proposed to

formalize a service with automata extended by logical expressions associated with states

and the formalization that explicates message sequence and allows for more precise

matchmaking than current approaches that are limited to matching only individual

messages. However, it turns out to be a trace-based equivalence, which is too weak. Foster

and Uchitel [18] discussed a model-based approach to verifying process interactions for

coordinated web service compositions. The approach used finite state machine

Service Verification and Dynamic Reconfiguration 231

representations of web service orchestrations and assigns semantics to the distributed

process interactions.

However, these approaches suffer from some limitations. First, most of them are limited

to atomic or simple services, which can be called small granularity services. However,

due to the significant progress of service composition technology, more and more

composed services, which are called large granularity services, are being built at

different platforms, published by different people, and possibly with different uses in

mind. In contrast to the former, the latter have more complex business logic and provide

more functions. Thus, it becomes a new challenge to judge the compatibility and

substitutability between large granularity services or different granularity services.

Second, most of the verification approaches can only better describe the behavior of

services and exactly judge behavior substitutability. However, due to the lack of syntax

and semantics, the existing approaches only capture the ordering of message exchanges

in a service or multiple interactions between services. If two services with different

functions have similar behavior, this may lead to an overestimate of their substitutability.

Therefore, there is still a dearth of overall analysis and verification of web services from

syntax, semantics, and behavior.

8.1.2 Overview of Dynamic Reconfiguration of Service-Based Application

In dynamic environments, service composition needs to support the recovery service-

based applications from unexpected violations of not only function but also QoS.

Therefore, holding the original overall QoS constraints of service-based applications has

caused a big challenge that needs to be addressed. Up to now, although there existed

many valuable works, most of these focused on providing essential services and

functions in the presence of runtime environment changes [19e22]. With the ever

increasing amount of service-based applications that are now adopted in a wide range of

critical domains (such as, real-time system, navigation system, and online payment

system), it has become increasingly important for enterprises to make service-based

applications deliver a desirable QoS. Due to many inevitable factors, such as network

fault, host exception, and replacement of failed component services, delivered QoS from

service-based applications may not comply with their original claims at runtime. Once

this happens, service-based applications should be recovered immediately to continue

holding the original QoS. Moreover, most enterprises would like to recover their

applications with lower cost and better efficiency, so that their customers undergo as few

unexpected business shutdowns as possible. Thus, providing QoS consistent service-

based applications has become a huge challenge.

232 Chapter 8

Although service-based applications can be recovered by recomposition, service

recomposition is extremely time-consuming and may lead to system shutdown, since the

optimal service selection is an non-deterministic polynomial hard (NP-hard) problem [23].

Recently, researchers have introduced and extended the traditional dynamic

reconfiguration technology [21] to service-based applications [19e21,24e26]. Some

studies have looked at dynamic reconfiguration of service-based applications, but without

considering QoS [19e21,26]. For example, Tsai et al. [19] presents an innovative dynamic

reconfiguration technology that can be embedded into a service-oriented application to

make the application reconfigurable. Onyeka Ezen-woye et al. [21] presented a hybrid

model of service composition which supports the dynamic reconfiguration for data-

intensive applications.

Recent works on dynamic reconfiguration for service composition have begun studies to

hold the original overall QoS constraints. Yu et al. [25] presented an approach to conduct

dynamic process reconfiguration under end-to-end QoS constraints. They use the

replacement path idea to reconfigure a business process to avoid only one faulty service.

Yanlong Zhai et al. [24] presented an approach for repairing multiple failed services by

replacing them with new services and ensuring the new system satisfies the end-to-end

QoS constraints. However, they only limit dealing with the case of violation of some of

the component services. Due to some inevitable factors (such as, network fault, host

exception), the delivered QoS from individual services may not always meet their

predefined QoS at runtime. As a result, the delivered QoS from service-based applications

may deviate from their initial QoS constraints. Once that happens, the methods in [24,25]

will be invalid. This is due to the fact that with no service violations, reconfiguration

regions cannot be found. Their idea is to construct a reconfiguration region based on only

failure services and replace the services to meet the original QoS constraints in the region.

8.2 Service Verification

Considering service substitutability has become a significant research issue in service

verification. In this section, we focus on the substitutability between different granularity

services [27]. By analyzing the large granularity services, we found that not all inputs are

imperative for clients to get some output. However, for an existing service model, each

output is defaulted to be fully dependent on all the inputs. Thus, we propose the notion of

interface inverted dependence to capture data dependencies from an output to inputs

within a web service. Next, a formal model is built by Martin_Löf’s type theory (MLTT)

[28] to describe different granularity services from two aspects: input, output,

precondition, and effect (IOPEs) and behavior. Due to the correspondence between types

and logics, IOPEs are clearly described using existing types in MLTT, for example,

dependent record type (DRT), product type, function type, etc. The formalism of DRT is

Service Verification and Dynamic Reconfiguration 233

applied to semantics of the services (ontological knowledge) to get a better expressivity. In

addition, the service behavior type, proposed in our previous work [29], is improved to

formalize the behavior of services. Besides our model, few existing models can describe

not only the behavior of services, but also the syntax and semantics. And then the

subtyping rules of the improved service behavior type are given. Based on these rules, we

propose the notion of substitutability between different granularity services with different

stringency through considering the context of services. Furthermore, because subtyping

can be checked by a type checking mechanism, the substitutability can be determined

automatically.

8.2.1 Basic Theory

8.2.1.1 Martin_Löf’s type theory

MLTT [28] was originally developed with the aim of being a clarification of constructive

mathematics, but unlike most other formalizations of mathematical type theory, it is not based

on first-order predicate logic. Instead, predicate logic is interpreted within the type theory

through the correspondence between propositions and sets. The idea behind propositions as

sets is to identify a proposition with the set of its proofs. MLTT has a basic type and two type

formers. The basic type is the type of sets. For each set S, the elements of S form a type.

Predicates and relationships are seen in type theory as functions yielding propositions as

output. In addition to sets, propositions are inductively defined. So, a proposition is

determined by the rules that construct its proofs. To prove a proposition P, we have to

construct an object of type P. In other words, a proposition is true if we can build an

object of type P, and it is false if the type P is not inhabited. We write “Prop” to refer to

the type of propositions. Furthermore, the way propositions are introduced allows us to

identify propositions and sets, and then we usually write “Set” instead of Prop.

In MLTT, there is a correspondence between types and logics. This is summarized in

Table 8.1:

Table 8.1: The correspondence between types and logics

Logics Types

A&B Product type (�)
AnB Sum type (þ)
A/B Function type (

Q
(A,(x)B))

c ðx : AÞBðxÞ Dependent product type (
Q
(x : A)B(x))

d ðx : AÞBðxÞ Dependent sum type (
P

(x : A)B(x))
False Bottom type
True Unit type

234 Chapter 8

8.2.1.2 Dependent record types

DRT [30] is an extension of dependent product types (
Q
-type) and dependent sum types

(
P

-type), in which types are expressed in terms of data. DRT is much more flexible than

simple dependent types such as
Q
-types and

P
-types.

The syntax of DRT is extended with record types hi and hR; l: Ai and records hi and
hr; l ¼ a : Ai, in which we overload hi to stand for both the empty record type and the

empty record. Records are associated with two operations: field selection r.l that selects the

field labeled by l and first projection (or restriction) [r] that removes the last component of

record r.

Figure 8.1 provides the rules for DRT. L is a finite set of labels. RType denotes all DRTs.

8.2.2 Modeling for Different Granularity Services

Currently, the models of web services have evolved from traditional black-box models,

such as WSDL, into multiviews models, such as OWL-S (http://www.w3.org/Submission/

OWL-S/) and WSMO (http://www.w3.org/Submission/WSMO/). The latter describes every

aspect of web services by defining the different profiles. However, they still regard a

service as a whole. As a result, to use a service, you need to provide all the inputs of the

service to get some output of the service. Although they cater for the specification of the

small granularity services, the large-granularity services are not clearly described. Because

not all inputs are compulsory for each output for large-granularity services, too strict

criteria for service substitutability may be introduced.

To avoid the limitation of existing service models, we propose a new model of

services using the notion of interface inverted dependence (proposed in Section 3.2).

The model can clearly describe not only the small granularity services but also the large

granularity services. Some basic definition should be given first before the model is

introduced.

> >

>

>
>

>

>

>
>

>
>

>

>
>
>

Figure 8.1
Rules for DRT.

Service Verification and Dynamic Reconfiguration 235

8.2.2.1 Basic definition

8.2.2.1.1 IOPEs of web services

The functions of services are often described by IOPEs. IOPEs involve not only syntactic

information of services interfaces, but also their semantic information. To describe

syntactic and semantic information, we give some necessary definitions as follows.

Definition 1: Domain-specific term. Given a set of labels, Lh{l1, ., ln}, and all terms

{c1, ., cn} in the ontology U, for cci˛U, and the DRT C: ¼ hR, l: Li, ci is an object of C.

Inspired by the work [29], definition 1 applies the formalism of DRT to ontological

knowledge (domain-specific term) to get a better expressivity. DRT realizes a continuum

of precision from the basic assertions we are used to expect from types, up to a complete

specification of a representation (e.g., a context). Also, DRT can gather all the knowledge

related to a semantic concept within a single structure.

The following example is given to show how to formalize ontological knowledge.

Figure 8.2 provides a part of ontology for a travel domain.

Train
Travel Flight

Departure
City

SubClass:has-a

Property:require

Client

IDCard
Number

Arrive
Time

CreditCard
Number

CVS
Number

CurrentCredit
Limit

Train
Num

Flight
Price

Notify

Time City

Number

TrainPrice

Flight
Num

Price

Online
Payment

Arrive
City

Departure
Time

Balance

Figure 8.2
The partial ontology for a travel domain.

236 Chapter 8

The domain-specific term in Figure 8.2 is formalized as:

1. DepartureCity = hl1: City, l2:
P

(Train, Require), l3:
P

(Flight, Require)i
2. ArriveCity = hl1: City, l2:

P
(Train, Require), l3:

P
(Flight, Require)i

3. CreditCardNumber = hl1: Number, l2:
P

(OnlinePayment, Require)i
4. CVSNumber = hl1:Number, l2:

P
(OnlinePayment, Require)i

5. Client = hl1:
P

(Flight, Require)i
6. ArriveTime = hl1: Time, l2:

P
(Train, Require), l3:

P
(Flight, Require)i

7. DepartureTime = hl1: Time, l2:
P

(Train, Require), l3:
P

(Flight, Require)i
8. TrainNumber = hl1: Number, l2:

P
(Train, Require)i

9. TrainPrice = hl1: Price, l2:
P

(Train, Require)i
10. FlightNumber = hl1: Number, l2:

P
(Flight, Require)i

11. FlightPrice = hl1: Price, l2:
P

(Flight, Require)i
12. CurrentCreditlimit = hl1: Price, l2:

P
(OnlinePayment, Require)i

13. Balance = hl1: Price, l2:
P

(OnlinePayment, Require)i
14. IDCardNumber = hl1: Number, l2:

P
(OnlinePayment, Require), l3:

P
(Flight, Require)i

15. Notify = hl1:
P

(Train, Require), l2:
P

(OnlinePayment, Require), l3:
P

(Flight,

Require)i

Inputs and outputs specify the data transformation produced by one service.

Definition 2: Input of service. Given a service S and the set Ih{i1, ., in} of all its

inputs, for cii ˛ I, ii is an object of the product type ION � ci, denoted as iihhni, rii:
ION � ci, in which ION is name type, ION:¼Name:Type.

Definition 3: Output of service. Given a service S and the set Oh{o1, ., on} of all its

outputs, for any oi in O, oi is an object of the product type ION � ci, denoted as oi hhni,
rii:ION � ci, in which ION is name type, ION:¼Name:Type.

Using a product type, one input or output is defined as a pair which contains two

elements, the name and the corresponding semantics. The ordinary projection operators are

defined by: fsthx,yi ¼ x, sndhx,yi ¼ y.

Based on the relevance of elements in pairs, such pairs can represent that the semantics is

annotated to each input or output of a service in definitions 2 and 3.

By definitions 2 and 3, the inputs and outputs of service FT in Figure 8.3 can be

formalized as:

IFT = {hDate,Timei , hDCity,DepartureCityi , hACity,ArriveCityi , hCCnum,
CreditCardNumberi , hCVSnum,CVSNumbei, hFnum,Numberi , hFprice,Pricei , hCName,Clienti ,
hCID,IDCardNumberi}
OFT$$hFATime, ArriveTimei$$hFDTime, DepartureTimei $ hFnum, Numberi $ hFPrice,
Pricei,h$$x,CurrentCreditlimiti,hAvailable, balancei,hFInfo, Notifyi$

Service Verification and Dynamic Reconfiguration 237

A service can be performed correctly unless the precondition is true. Thus, the

precondition should be a boolean expression.

Definition 4: Precondition. Precondition is defined as P:¼bexp:Type, in which bexp is a

boolean expression.

Effect of service shows what result will be produced for some given condition. Thus, we

can use function type to formalize it.

Definition 5: Effect. Effect of service is denoted as Eh
Q
(A,(x)Or), in which A:Type,

x˛Or, and Orh{o1, ., on}.

Effect is defined as a function type that returns the elements in Or (some output of one

service). For example, the function (l(s: Int).if s>0 then O.li ¼ s � 1 else O.li ¼ s þ 1) is

the object of E.

8.2.2.1.2 Behavior of web services

The behavior of a service can clearly show how a service interacts with other services.

This has been an important aspect related to specification of services. Currently, many

existing formal approaches have focused on behavioral analysis. However, those

approaches only regard the behavior of service as the sequences of abstract message

passing. Due to a lack of semantics, they may overestimate the substitutability between

services.

To solve the problem, we improve the service of the behavior type, which is proposed in

our previous study [31], by: (1) introducing a domain-specific term C; (2) adding an

Flight ticket service (FT)

i

i

i o

o

AvailableCCnum

FPrice

o FInfoCVSnum

Max

i

i
o

o

Fnum
DCity

Date

o FDtime

FAtime

o FPrice
i

i

Fnum

CName

iCID

iACity

Figure 8.3
Inverted interface dependence of service FT.

238 Chapter 8

assignment type and redefining the loop type; (3) reviewing the operational semantics; and

(4) redefining the subtyping rules of the service behavior type. The two latter

improvements will be introduced in Section 8.4. The syntax of the improved service

behavior type is as follows:

T: Service Behavior Type:¼
jBSkip: T jBAss: ION / ION / T j BAss: ION / T j BSeq:Seq T
jBRev: hl1: ION,..,lx: ION i/T
j BSed: hl1: ION,.,lx: ION i/T
jBAny: T / T / T jBIf: bexp / T/ T / T
jBWhile: bexp / T/ T

where ION: ¼ Name: Type

BSkip is the Skip Type and represents inaction. For our convenience, it is denoted as s.

BAss is the Assignment Type. It represents the fact that some output of a service is

assigned to some input of another service and is denoted as ni ¼ nj.

BSeq is the Sequence Type. It represents the sequence pattern in a composition or the

behavior of a service and is denoted as {c1;c2}.

BRev is the Input Type. It represents a message sequence that is received and is denoted as

Yhl1:fst(m1), ., ln:fst(mn)i, where m1, ., mn: M, M:¼ION � C, The definition of C refers

to Section 8.2.1.1.

BSed is the Output Type. It represents the fact that a message sequence is sent. It can be

denoted as [hl1:fst(m1), ., ln:fst(mn)i.
BAny is the Parallel Type. It represents a parallel pattern in a composition or the behavior

of a service and is denoted as (b,h1jjh2jj.), in which b:Int, h1,h2:T.

BIf is the Selection Type. It represents a select pattern in a composition or the behavior of

a service and is denoted as {If b then c else d}, in which b:bexp, c:T,d:T.

BWhile is the Loop Type. It represents a loop pattern in a composition or the behavior of a

service and is denoted as {While b do c}, in which b:bexp, c:T.

Definition 6: Service behavior. Given a service S, the behavior Bs of S is an object of T,

denoted as Bs:T.

8.2.2.2 Interface inverted dependence

The notion of interface inverted dependence shows which inputs of a service have to be

provided to produce one output of that service. It captures data dependencies from an

output to inputs within a service, especially, a large granularity service.

Service Verification and Dynamic Reconfiguration 239

Figure 8.3 provides the interface inverted dependencies of the service FT that provides the

flight querying and the flight ticket booking. The users can pay for their tickets by credit

cards. Given a departure date (Date), a departure city (DCity), and an arrival city (ACity),

providing the flight number (Fnum), the departure time (FDtime), the arrival time, and

(FAtime) provides the ticket price (FPrice) of all available flights. Given the flight number

(Fnum), the ticket price (FPrice), a credit card number (CCnum), the CVS number of the

credit card (CVSnum), the name of the owner holding the credit card (CName), and his ID

card number (CID), providing the credit limit (max), the balance (Avaiable), and a flight

ticket reservation notice (FInfo). The effect shows that the balance (available) is equal to

the credit limit (max) minus the flight ticket (FPrice) when credit limit (Max) is greater

than the flight ticket (FPrice). In the right area of Figure 8.3, all outputs of the service FT

are shown. In its left area, all inputs of the service are shown. The arrows show these

inputs are indispensable to some output.

Service FT can be viewed as a large-granularity service due to the various functions that

are involved. Through the inverted interface dependences of service FT, clients can use

some or all of the functions, for example, querying a flight or booking flight tickets or

both querying a flight and booking a flight ticket. Thus, inverted interface dependence can

give more clear descriptions of their functions for both small and large granularity

services.

Definition 7: Interface inverted dependence. Given a service S, the set I of inputs of S,

the set O of outputs of S, an interface inverted dependence di of S is an object of D,

denoted as di:D, in which:

D is the record type, D:¼ hI: hl1 : Ir; l2 ¼ p : Pi; O: hl1 : n0i; l2 ¼ e: Eii;
n0i is the name of some output oi of S, and n0i ¼ fst ðoiÞ;
Ir is the set of the indispensable inputs, in order to get oi, and Ir ¼ { fst(i1), ., fst(im)};

e is the effect of oi;

p is the precondition.

Then, the set DIs of all interface inverted dependences of S can be obtained and denoted as

ℝshfdjj1 � j � ng.
The interface inverted dependence of Service FT can be formalized as:

d1h hI= hl1={DCity,ACity,Date}i,O= hl1=FATimeii
d2h hI= hl1={DCity,ACity,Date}i,O= hl1=FDTimeii
d3h hI= hl1={DCity,ACity,Date}i,O= hl1=FPriceii
d4h hI= hl1={DCity,ACity,Date}iiO= hl1=FNumii
d5h hI= hl1={CCnum,CVSnum}i,O=hl1= Maxii
d6h hI=hl1={CCnum,CVSnum,CName,CID,Fnum,FPrice}i, O= hl1=Available,l2= $ x: balance,

y: flightprice, z: currentcreditlimit. If z.l4�y.l2 then x.l4=z.l4 �y.l2ii
d7h hI= hl1={CCnum,CVSnum,CName,CID,Fnum, FPrice}i, O=hl1=FInfoii

240 Chapter 8

Thus, the set of interface inverted dependence of service FT can be obtained and denoted

as ℝFThfdjj1 � j � 7g.

8.2.2.3 Modelling for different granularity services

Based on the above-mentioned definitions, the model is proposed for specification of

different granularity services in this section.

Definition 8: Complete service behavior. Given a service S, if the behavior covers all

business logics of S, it is defined as the complete behavior of S and denoted as Bc
s , in

which Bc
s : T .

Figure 8.4 provides the complete business logic of service FT. It first receives the querying

requests from clients. If the satisfied results are queried, the flight information is returned

to the clients. Then, the clients select the satisfied flight and input their bank account

information to pay for the ticket. If the payment is completed, the ticket information is

sent to the clients. In Figure 8.4, “þ” denotes message receiving and “�” denotes

message sending. By definition 8, the complete behavior of service FT can be formalized

using the improved service behavior type as follows:

BFT ::¼ fa; bg :BSeq
a:: = Yhl1=Date,l2=ACity,l3=DCityi :BRev
b:: = f4;εg :BSeq
4:: = [hl1 = FNum,l2 = FPrice, l3 = FDtime,l4 = FAtimei :BSed
ε:: = fp;kg :BSeq

Service FT

Start

Select

Order

Flight (+)

–

–
Payment (+)

Pay

End

Query

{Datett ,e Acitii ytt ,yy Dcitii ytt }{Date,Acity,Dcity}

{FNFF uNN m,FPFF rPP ice,e FDFF titt mii
e,e FAFF titt mii e}

{FNum,FPrice,FDtim
e,FAtime}

{FNFF uNN m,FPFF rPP icee}}{FNum,FPrice}

{CCNCC uNN m,CVSVV nSS um
,CNCC aNN me,e CICC DII }

{CCNum,CVSnum
,CName,CID}

{FIFF nII fn off ,Availii all blell ,e
MaMM xaa }

{FInfo,Available,
Max}

Figure 8.4
The business logic of service FT.

Service Verification and Dynamic Reconfiguration 241

P:: = Yhl1= FNum,l2 = FPricei :BRev
k:: = fl;jg :BSeq
l:: = Yhl1 = CCNum,l2 = CVSNum, l3 = CName,l4 = CID i :BRev
j:: = if currentcreditlimit.l4 �FlightPrice.l2 then g :BIf
g:: = fn;rg :BSeq
n:: = [hl1 = FInfo,l2 = Available, l3 = Maxi :BSed
r:: = s :BSkip

Unlike most of the existing formal approaches, the proposed service behavior type can

describe the business logics of services through adding syntax and semantics

information, rather than the ordering of abstract message exchanges. For example,

for a: ¼ Yhl1 ¼Date,l2 ¼ ACity,l3¼DCityi, its complete expression is a:: ¼ Yhl1 ¼
hDate, Timei, l2¼ hACity, Cityi, l3¼hDCity, Cityii, and an object of BRev type.

And then, the semantics of the three inputs can be computed by the snd operation of

the pairs.

Definition 9: Context-independent service model. Given a service S, the set ℝs of all its

interface inverted dependences, and its complete behavior Bc
s, the context-independent

model of S is denoted as Shhℝs;B
c
si.

Definition 10: Partial service behavior. Given a service S, all its interface inverted

dependences ℝshfdjj1 � j � ng, and ℝs is the subset of ℝ0
s, if the behavior covers the

business logics of S, which are triggered by the inputs involved in DI0s and all the product

outputs involved in ℝ0
s, it is defined as a partial behavior of S corresponding to ℝ0

s and is

denoted as B
ℝ0

s
s , in which B

ℝ0
s

s : T .

For example, in the dashed ellipse in Figure 8.3, the partial behavior of FT can be described as:

B
ℝ0
s

FT ::¼ fa; bg :BSeq
a:: = Yhl1 =Date,l2=ACity,l3=DCityi :BRev
b:: = [hl1 = FNum,l2 = FPrice, l3 = FDtime,l4 = FAtimei :BSed

in which ℝ0
s ¼ fdjj1 � j � 4g.

Definition 11: Context-dependent service model. Given a composition M, its component

service S, the set ℝ0
s of the interface inverted dependences of S in M, and the partial

behavior B
ℝ0
s

s of S in M, then the context-dependent model of S in M is denoted as

SMhhℝ0
s;B

ℝ0
s

s i.

8.2.3 Determining Substitutability between Different Granularity Services

In this section, we propose the notions of substitutability between different granularity

services with different stringencies through considering the context of services based on

subtyping theory.

242 Chapter 8

8.2.3.1 Subtyping rules for semantics of services

Definition 12: Semantics subtyping. Given ci,cj :C, there can only exist the coercion

F: hR,l:Ai/R, so that ci is a subtype of cj, denoted as ci <:c cj.

In definition 12, coercive subtyping for dependent-type theories is introduced. In coercive

subtyping, A is a subtype of B if there is a coercion c: (A)B, expressed by A<:cB. In other

words, if A is a subtype of B via coercion c, then any object of type A can be regarded as

(an abbreviation of) the object c(a) of type B [30].

Theorem 1: Transitivity of semantics subtyping. Let c1,c2,c3:C, if c1<:c2 and c2<:c3,

c1<:c3.

Proof: Using proof by contradiction, the theorem obviously holds.

Definition 13: Semantics similarity. Given the set Uh{c1, ., cn} of all terms in an

ontology G, and ci, cj, ck:C, if they satisfy the conditions as follows:

1. ci <:c cj;

2. ci <:c . <:c ck and cj <:c . <:c ck,

then the terms ci is similar with cj.

8.2.3.2 Subtyping rules of the improved service behavior type

8.2.3.2.1 Operation semantics of the improved service behavior type

The section introduces the operation semantics of the improved service behavior type.

seval:Type: ¼
BESkipjBEAssjBESeqjBESedjBERevjBEAnyjBEIfTruejBEIfFalsejBEWhileEndjBEWhileLoop
BESkip:BESkip /T:=/
$$$ss:BAss /T:= forall n1 n2 l, BEAss l n1 / BEAss n2 l, where n1 n2:ION, l:DataType
BESeq:BSeq /T:= forall t1 t2.tn,vseqrec({t1 t2.tn},a,e)/seval a, where t1,

t2,.,tn:T
BESed:BSed /M:=forall m1 m2.mn t, hl1:fst(m1),.,ln:fst(mn)i.l/t, where m1 m2,.,mn:M,

M:ION � C, t:T, the definition of C seen in Section 2.1
BERev:BRev /M:=forall n1 n2 . nn t,hl1:fst(n1),.,ln:fst(nn)i.l/t, where n1,

n2,.,nn:M, M:ION � C, t: T
BEAny:BAny/T:= forall t1 t2.tn, aeval b=i/seval t1, where t1 t2,.,tn:T, b, i:Int
BEIfTrue:BIf/T:=forall b1 t1 t2,beval b1 = true / seval t1, where b1:bexp,t1,t2:T
BEIfFalse:BIf/T:=forall b1 t1 t2,beval b1 = false / seval t2, where b1:bexp, t1, t2:T
BEWhileEnd:BWhile/T:=forall b1 t1,beval b1 = false / seval t1, where b1:bexp, t1,

t2:T
BEWhileLoop:BWhile/id/T:=forall b1 t1,beval b1 = true / seval t1 /seval, while b1 do

t1, where b1:bexp, t1 : T

Service Verification and Dynamic Reconfiguration 243

In BEAny, the parameter b is used to decide which parallel branch is run. b is the index of

a branch in a parallel pattern. In BEWhileLoop, the parameter i is used to assign the times

of a loop.

8.2.3.2.2 Subtyping rules of the improved service behavior type

Based on these operation semantics, the subtyping rules of the improved service behavior

type are given in Figure 8.5. The meaning of these rules is also easy to understand, we

also do not cover them in detail here due to limited space.

Figure 8.5
The subtyping rules of services behavior types.

244 Chapter 8

Theorem 2: Transitivity of service behavior type. Let t1,t2,t3:T; if t1<:t2 and t2<:t3, t1<:t3.

Proof: Using proof by contradiction, the theorem obviously holds.

8.2.3.3 Defining substitutability between different granularity services

This section provides the notions of the substitutability that have different stringencies,

considering the context of a composition and catering for different granularity services.

Definition 14: Context-independent substitutability of complete IOPEs. Given service

s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s1
i, the sets of all inputs of s1 and s2 are I1 ¼ {i1,.,in} and

I2 ¼ fi01;.; i0mg, respectively, and the sets of all outputs of s1 and s2 are O1 ¼ {o1,.,op}

and O2 ¼ fo01;.; o0qg, respectively, if dO0
13O1;O

0
23O2, and satisfy:

1. for coi˛O0
1;do0i ˛O0

2, snd(oi)<<: sndðo0iÞ holds;
2. for ci0i ˛ I02;dii ˛ I01, snd(ii)<<: sndði0iÞ holds;
Then s2 can substitute for s1 on the complete IOPEs of s1, denoted as s2 w ws1.

Definition 15: Context-independent substitutability of complete behavior. Given

service s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s1
i, for some behavior Bs2 of s2, if B

c
s1
<: Bs2 , s2

can substitute s1 on the complete behavior of s1, denoted as s2 w ns1.

Definition 16: Context-independent substitutability of partial IOPEs. Given service

s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s1
i, the sets of all inputs of s1 and s2 are I1 ¼ {i1,.,in} and

I2 ¼ fi01;.; i0mg, respectively, and the sets of all outputs of s1 and s2 are O1 ¼ {o1, ., op}

and O2 ¼ fo01;.; o0qg, respectively, if dO0
13O1;O

0
23O2 and satisfy:

1. for coi˛O0
1;do0i ˛O0

2, snd(oi)<<: sndðo0iÞ holds;
2. for co0i ˛O0

2;doi˛O0
1, snd(oi)<<: sndðo0iÞ holds;

3. Let <0
s1 and <0

s2 be respectively the sets of interface inverted dependences of s1 and s2
corresponding to O0

1 and O0
2, the compulsive inputs of s1 and s2 are I

0
13I1 and I

0
23I2,

respectively, for ci0i ˛ I02;dii ˛ I01; sndðiiÞ <<: sndði0iÞ holds, then s2 can substitute s1 on

ℝ0
s1
and ℝ0

s2
, denoted as s2 z ws1.

Definition 17: Context-independent substitutability of partial behavior. Given service

s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s1
i, for the partial behavior Bℝ0

s1
s1 of s1 and B

ℝ0
s2

s2 of s2, if

B
ℝ0

s1
s1 <: B

ℝ0
s2

s2 , s2 can substitute s1 on the partial behavior B
ℝ0
s1

s1 of s1 and B
ℝ0

s2
s2 of s2, denoted

as s2z ns1.

Definition 18: Context-dependent substitutability of IOPEs. Given a composition M, its

component service s1hhℝs1 ;B
c
s1
iand s2hhℝs2 ;B

c
s1
i, the set of all inputs of s2 is

I2 ¼ fi01;.; i0mg, and the set of all outputs of s2 is O2 ¼ fo01;.; o0qg. Let the part of s1 in

Service Verification and Dynamic Reconfiguration 245

M be sM1 hhℝ0
s1
;B

ℝ0
s1

s1 i, the sets of the inputs and outputs s1 in M are IM ¼ {i1, ., in} and

OM ¼ {o1, ., op} respectively. If:

1. for coi ˛O0
M;do0i ˛O0

2, snd(oi)<<: sndðo0iÞ holds;
2. for ci0i ˛ IM;dii˛ I0i, snd(ii)<<: sndði0iÞ holds,
then under the context of M, s2 can substitute s1 on IOPEs, denoted as s2N

M
w s1.

Definition 19: Context-dependent substitutability of behavior. Given a composition M,

its component service s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s2
i, Let part of s1 in M be

sM1 hhℝ0
s1
;B

ℝ0
s1

s1 i, if there exits Bs2 , and B
ℝ0
s

s1 <: Bs2 , then under the context of M, s2 can

substitute s1 on the behavior, denoted as s2N
M
n s1.

From definitions 14e19, we can find some important relationships between different

notions of substitutability as follows: (1) substitutability on behavior is stricter and implies

substitutability of IOPEs; (2) substitutability on the complete IOPEs or behavior is stricter

than substitutability of the partial IOPEs or behavior; (3) context-independent

substitutability is stricter than context-dependent substitutability; and (4) context-

dependent substitutability on IOPEs or behavior is one case of substitutability of the

partial IOPEs or behavior. Therefore, some theorems can be proposed.

Theorem 3: If s2 w ws1, then s2 z ws1.

Proof: Let s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s2
i, there must exist subsets ℝ0

s1
and ℝ0

s2
of ℝs1

and ℝs2 , respectively, so that s2 can substitute s1 on ℝ0
s1
and ℝ0

s2
by definitions 14 and 16.

Thus s2 z ws1 holds.

Similarly, theorem 4 can be obtained.

Theorem 4: If s2 w ws1, then s2N
M
w s1.

Proof: Ignored.

Theorem 5: If s2 w ns1, then s2 z ns1.

Proof: Let s1hhℝs1 ;B
c
s1
i and s2hhℝs2 ;B

c
s2
i, in which Bc

s1
¼ ft011; t012;.; t01ng and

Bc
s2
¼ ft021; t022;.; t02mg, we can obtain Bc

s1
<: Bc

s2
by s2 w ns1, thus t11<:t21,.,t1n<:t2n,

so that s2z ns1 holds by definition 17.

Similarly, theorem 6 can be obtained.

Theorem 6: If s2 w ns1, then s2N
M
n s1.

Proof. Ignored.

Theorem 7: If s2N
M
w s1, then s2 z ws1.

246 Chapter 8

Proof: Let the part of s1 in M be sM1 hhℝ0
s1
;B

ℝ0
s1

s1 i and s2hhℝs2 ;B
c
s2
i, we can obtain that

there exists the subset ℝ0
s1
of ℝs2 by s2N

M
w s1, so that s2 z ws1 holds by definition 16.

Theorem 8: If s2N
M
w s1, then s2 z ns1.

Proof: Let the part of s1 in M be sM1 hhℝ0
s1
;B

ℝ0
s1

s1 i and s2hhℝs2 ;B
c
s2
i, in which B

ℝ0
s1

s1 ¼
ft011; t012;.; t01ng and Bc

s2
¼ ft021; t022;.; t02mg, we can obtain that there exists the behavior

Bs2 of s2 and Bs2 ¼ ft021; t022;.; t02jg, j � m, so that B
ℝ0

s1
s1 <: Bs2 by s2N

M
w s1, thus s2 z ns1

holds by definition 17.

8.2.4 Case Study

The section gives some examples to show the effectiveness of the proposed notions of the

substitutability for different granularity services.

8.2.4.1 Judging the substitutability between large-granularity services

Figure 8.6 provides the travel service TR and the online payment service OP. TR is a

large granularity service. Given the date (Date), the departure city (DCity), and the

arrival city (ACity), it provides the train or flight number (Num), the departure time

(Dtime), the arrival time (Atime), and the ticket price (Price) of all available trains or

flights. Given the arrival city (ACity), it provides the names (HName) of all hotels in

the city. Given the arrival city (ACity) and the name of a hotel, it provides the

information on the hotel. OP is a small granularity service. Given the price (Payment),

the credit card number (CCnum), the CVS number of the credit card (CVSnum), and

the ID number of the owner holding the credit card (CID), it provides a balance

(avaiable).

Travel service (TR)

o HName

o HInfo

i

i

o

o

Num

DCity

Date o Dtime

Atime

o Price

iHName

iACity

Online payment (OP)

i

i

i o AvailableCCnum

Payment

CVSnum

iCID

Figure 8.6
Service travel service (TR) and online payment (OP).

Service Verification and Dynamic Reconfiguration 247

Example 1: Substitutability on IOPEs

Recalling service FT, Figure 8.3 shows its interfaces. Similar with TR, FT can also provide

flight querying. Thus, for flight querying, TR should substitute FT on partial IOPEs. By

definition 16, the proposition TRz wFT is needed to be proved.

The interface inverted dependences of FT have been given in Section 8.2.2.3. The part of

the interface inverted dependences of FT corresponding to flight querying is ℝ0
FThfdjj1 �

j � 4g. The part of interface inverted dependences of TR corresponding to flight querying

is ℝ0
TRhfd0jj1 � j � 4g, in which:

d’1h hI=hl1={DCity,ACity,Date}i ,O= hl1=ATimei i
d’2h hI=hl1={DCity,ACity,Date}i ,O= hl1=DTimei i
d’3h hI=hl1={DCity,ACity,Date}i ,O= hl1=Pricei i
d’4h hI=hl1={DCity,ACity,Date}i ,O= hl1=Numi i

The inputs and outputs of FT and TR in ℝ0
FT and ℝ0

TR are respectively:

I’FT={ hDate,Timei , hDCity,DepartureCityi , hACity,ArriveCityi }
O’FT={ hFATime,ArriveTimei , hFDTime,DepartureTimei , hFnum,Numberi , hFPrice,

FlightPricei }
I’TR={ hDate,Timei , hDCity,DepartureCityi , hACity,ArriveCityi }
O’TR={ hATime,ArriveTimei , hDTime,DepartureTimei , hnum,Numberi , hPrice,Pricei }

FT–S

Conditions
Start

Select

Order

Flight (+)

Payment (+)
Pay

End

Success

Item

Fail

Query

No (–)

Valid

Isavaliable

{Datett ,e Acitii ytt ,yy Dcitii ytt }}{Date,Acity,Dcity}

{FNFF uNN m,FPPPFF rPP icee}}{FNum,FPrice}

{CCNCC uNN m,CVSVV nSS um
,CNCC aNN me,e CICC DII }

{CCNum,CVSnum
,CName,CID}

{FNuNN m,FPFF rPP ice,e FDFF titt mii
e,e FAFF titt mii e}

{FNum,FPrice,FDtim
e,FAtime}

{FIFF nII fn off ,Availii all blell ,e
MaMM xaa }

{FInfo,Available,
Max}

{FaFF lsll e}{False}

{FaFF lsll e}{False}

–

–

–

Figure 8.7
The behavior of service FT-S.

248 Chapter 8

To judge TRz wFT, two subgoals need to be obtained:

1. for cii ˛ I0FT , only one i0j˛ I0TR, snd(ii)<<: sndði0jÞ holds.
2. for coi ˛O0

FT, only one o0j ˛O0
TR, snd(oi)<<: sndðo0jÞ holds.

Due to the same semantics of all inputs of FT and TR in ℝ0
FT and ℝ0

TR, the first subgoal

obviously can be obtained. Similarly, there are the same semantics of some outputs of FT

and TR in ℝ0
FT and ℝ0

TR. Thus, FlightPrice<<: Price can be obtained by definition 13.

By FlightPrice ¼ hl1: Price, l2:
P

(Flight, Require)i(referred to Section 8.2.1.1) and

definition 12, we can obtain FlightPrice <:c Price, in which the coercion c:hl1:Price, l2:P
(Flight, Require)i/Price. Thus, the second subgoal is proved. By the two subgoals, we

can obtain TR z wFT.

Example 2: Substitutability on behavior

Figure 8.7 provides the behavior of service FT-S. FT-S has similar behavior with service

FT. However, unlike service FT, FT-S can check if there are any tickets left. Thus, FT-S

should substitute FT on the complete behavior of FT, that is FTw nFT-S.

The complete behavior of FT-S can be formalized as:

Bc
FT-S ::¼ fa0; b0g :BSeq

a’::=Yhl1 = Date, l2 = ACity, l3:DCityi :BRev
b’::={ f’;ε0} :BSeq
f’::=[hl1 = FNum, l2=FPrice, l3=FDtime, l4=FAtimei :BSed
ε’::={g0; r0} :BSeq
g0::=Yhl1=FNum,l2=FPricei :BRev
r0::=if seati0 then m’ else k’ :BIf
m0::={p0;q0} :BSeq
p0::=Yhl1 = CCNum, l2 = CVSNum, l3=CName, l4=CIDi :BRev
q0::=if currentcreditlimit.l4 �FlightPrice.l2 then g0elsek0 :BIf
g0::={y0;s0} :BSeq
y0::=[hl1 = FInfo, l2=Available, l3=Max :BSed
s0::= s :BSkip
k0::=[hl1=Falsei :BSed

To get FTw nFT-S, J
c
FT <: Jc

FT�s should be proved by definition 15. The proving process

is as follows:

fa; bg <: fa0; b0g by S� Seq
a<:a0�

Yhl1 ¼ Date; l2 ¼ ACity; l3 : DCityi <:

Yhl1 ¼ Date; l2 ¼ ACity; l3 : DCityi

�
by S�Rev

Time<<:Time ArriveCity<<:ArriveCity DepartureCity<<:DepartureCity

b<:b0

:::

Service Verification and Dynamic Reconfiguration 249

Obviously, we can obtain a <:a
0
. For b <:b

0
, the proving process is as follows:

b <: b0
ff;εg<:ff0;ε0g by S�Seq

f<:f0 by S�Sed

Similar with a<:a0
ε<:ε0

fp;kg<:fg0 ;r0g by S�Seq

p<:g0
Similar with a<:a0

k<:r0
fl;jg<:r0 by S�Sel6

fl;jg<:BEIfTrue r0
fl;jg<:m0 by S�Seq

l<:p0
Similar with a<:a0

j<:q0 by S�WhileL

BEWhileLoop j<:q0
g<:q0 by S�Sel6

g<:BEIfTrue q0
fn;rg<:fn0 ;s0g by S�Seq

n<:n0
Similar with a<:a0

r<:s0
s<:s

W

8.2.4.2 Judging the substitutability between small and large-granularity services

Example 3: Substitutability of IOPEs

In recalling the small granularity service OP in Figure 8.6 and the large granularity service

FT in Figure 8.3 from Figures 8.3 and 8.6, we find that both OP and FT can provide

online payment. However, unlike OP, FT can also query the balance of the credit card.

Thus, FT can substitute OP in the complete IOPEs of OP; that is, TR3wOP. Obviously,

we can obtain it by definition 12. The proving process is similar with example 1.

Example 4: Substitutability of behavior

Figure 8.8 provides a composition M composed by two services FT and OP. FT can

provide flight querying in M, while OP provides online payment.

i

i

i
o
AvailableCCnum

FPrice

CVSnum

iCID

i

i

o

o

ACity

Date

o

FDtime

FAtime

o

iDCity

Fnum

Output

Input Output

i

i

i o

o

AvailableCCnum

FPrice

o FInfoCVSnum

Max
iCName

iCID

Figure 8.8
The composition M.

250 Chapter 8

Suppose FT fails in runtime. To recover M, a substitution service is expected to replace

FT. The behavior J
<0

s

FT of FT in M is shown in the dashed ellipse of Figure 8.4 and has

been formalized in Section 8.2.2.3. Service FQ is a small granularity service and only

provides flight querying. However, the behavior of FQ is more complex than the partial

behavior of FT in M, because FQ can allow clients to perform another request when the

querying result is null. The complete behavior of FQ is shown in Figure 8.9 and is

formalized as:

Jc
FQ ::¼ fa; bg : BSeq

a ::¼ Yhl1 ¼ Date;l2 ¼ ACity;l3 : DCityi : BRev
b ::¼ If item 6¼ nil then f else a : BIf
f ::¼ [hl1 ¼ FNum;l2 ¼ FPrice;l3 ¼ FDtime;l4 ¼ FAtimei : BSed

To judge the substitutability between FQ and FT in M, that is FTfM
n FQ, the subgoal

J
<0

s

FT <: Jc
FQ needs to be proved by definition 19. We can apply S-Seq, S-Rev, S-Sel6, and

S-Sed to obtain the subgoal. Thus, FTfM
n FQ holds. The complete proving process is not

given due to limited space.

8.3 The Dynamic Reconfiguration of a Service-Based Application

We now present a QoS-driven dynamic reconfiguration method [32]. In the rest of this

section, the term component QoS and overall QoS are used to refer to QoS of a

component service and QoS of an application, respectively. The method involves two

subprocesses as follows: one is to deal with the original overall QoS violation that is

caused by degradation of the component QoS, and the other is to deal with the original

overall QoS violation caused by the violation of one or multiple component services in a

Flight Quering Service FQ

Conditions

Start

Flight (–)
End

Item nil

Query
No

Yes

Figure 8.9
The behavior of service flight quering (FQ).

Service Verification and Dynamic Reconfiguration 251

service-based application at runtime. When degradation of the component QoS leads to a

violation of the original overall QoS, we always try to replace the d component services

that have the biggest reconfiguration factor, as long as they are reconfigured to deliver the

original QoS. When some component services are violated, our method first replaces them

with new services, and then repeats the above process for the rest of the component

services. In this way, our method can recover overall QoS with less attempts and shorter

response time. Meanwhile, inspired by our previous work [33], the notion of the

reconfiguration factor is presented to guide us to find the component services that are

replaced to most likely achieve the original overall QoS constraints.

For the clarity of this research, we make the following assumptions: all candidate services

of each component services have been given for services based applications; they can

provide functions similar with its corresponding component service; this can be checked

based on substitutability of services that were studied in the above section.

8.3.1 QoS Metrics

In this chapter, we use the existing QoS model that is presented in [34]. Moreover, four

QoS attributes of web services are considered as follows: Response Time (Ts), Cost (Cs),

Reliability (Rs), Availability (As).

Given a service-based application S, its QoS model is denoted Qs ¼ (Ts, Cs, Rs, As), and

S1, ., Sn are its component services. For some component service Si, its QoS model is

denoted Qsi ¼ (Tsi, Csi, Rsi, Asi). To calculate QoS of S, four types of structure patterns are

considered in our study: sequence, parallel, condition, and loop.

1. Sequence (Figure 8.10(a))

Ts ¼
Xn

i¼1
Tsi; Cs ¼

Xn

i¼1
Csi; Rs ¼

Yn

i¼1
Rsi; As ¼

Yn

i¼1
Asi; (8.1)

S1 S2 Sn...

S1

S2

Sn

...
S S

p1

p2

pn

+ S1 S2 ...

m

S1

S2

Sn

...
S S×(a) (c)

(d)(b)

Figure 8.10
Structure pattern.

252 Chapter 8

2. Condition (Figure 8.10(b))

Suppose the execution probability for the i-th branch is pi, and
Pn

i¼1pi ¼ 1.

Ts ¼
Xn

i¼1
Tsipi; Cs ¼

Xn

i¼1
Csipi; Rs ¼

Xn

i¼1
Rsipi; As ¼

Xn

i¼1
AsiPi; (8.2)

3. Parallel (Figure 8.10(c))

Two following types of parallel structures are discussed in this chapter: and parallel and or

parallel.

In and parallel, Response time equals the maximal response time of all components, while

other QoS attributes can be calculated by Eqn (8.1). Equation (8.3) shows the calculation

of Response Time.

Ts ¼ Max ðTs1;.; TsnÞ (8.3)

In or parallel, the QoS attributes of Response Time, Cost, and Availability can be

computed using Eqn (8.2). Equation (8.4) shows the calculation of Reliability.

Rs ¼ 1�
Yn

i¼1
½1� Rsi�: (8.4)

4. Loop (Figure 8.10(d))

Suppose the loop body Tsi executed m times for some time.

Ts ¼ m � Tsi; Cs ¼ m � Csi; Rs ¼ ðRsiÞm; As ¼ ðAsiÞm: (8.5)

8.3.2 Quality of Service-Driven Dynamic Reconfiguration Method

8.3.2.1 Subprocess for degradation of component QoS

In this section, algorithm RecDeg is presented to maintain the original QoS

constraints when component QoS degrades at runtime. Once the original overall QoS

constraints are broken, the algorithm first computes reconfiguration factors for all

component services in a service-based application, and sorts all component services

according to their reconfiguration factor (steps 3 and 4). The reconfiguration factor is

introduced in Section 8.3. Next, the reconfiguration process is divided into two phases

as follows:

(1) Individual service replacement: We try to replace individual component services one

by one in the descending order of the reconfiguration factor only if there exists some

candidate service for which the QoS is not worse than the predefined QoS of the replaced

service (steps 6e13). Obviously, the original overall QoS constraints can also be satisfied

by such replacement.

Service Verification and Dynamic Reconfiguration 253

If such a replacement cannot be found in this phase, then move to the second phase. (2)

Multiple services replacement: We begin to try to replace the d component services with a

reconfiguration factor that is the highest among all component services. QoS of the

substitutions of the d component services is the best among all their respective candidate

services. The range bound of d starts from two and increases gradually until a replacement

is found to deliver the original overall QoS (steps 14e24).

Algorithm: RecDeg
Input: all replaceable component services {S1,…,Sn} in a services based

application S.
Output: the replaced services RS {S1,…,Sn} and their substitutions

RD {CSi}.
Require: candidate services CSi={CSi1,…,CSim} of service Si.
1: SET RS =φ, RD =φ, Sr =φ, Dg[i]=null;
2: FOR (INT i = 0; i < n; i + +){
3: Dg[i]=CalDg(Si); }/*CalDg(Si) is to calculate reconfiguration

f a c t o r o f S i * / (S e e S e c t i o n 3 . 3)
4: S’ = Sort(S); /*Sort(S) sorts S1,…, Sn in ascending order according to

Dg[]*/
5: SET j = n;
6: While(j > 0) {
7: Sk = Get(S’. j); /* GetSr(j) is to get the j-th element in S’*/
8: IF (CSkp CSk && QoS of CSkp is not worse than the pre-defined

QoS of Sk){
9: SET j = 0;

10: RS = RS {Sk} ; Rd = Rd {CSkp}; Goto 27;
11: }Else{ j = j – 1
12: }
13: }
14: SET d=2;
15: Do{
16: FOR(INT l = 0; l < d; l ++){
17: Rs[l] = Rs[l] {Get(S’. j-l) };
18: RD[l] =RD[l] {Select(S’.j-l) }; /*Select a service CSkp for

M[l] whose QoS is the best among all its candidates*/
19: Replace M [l] with CSkp

20: }
21: IF (the current QoS of S comply with the original overall QoS of

S){ Goto 27;
22: }Else{ d= d+1;
23: }
24: }While (d < n + 1);
25: RETURN RS[],RD[];

Once it happens, no such reconfigurations can deliver the original overall QoS in the current

given candidate services repository. A recomposition should be needed to achieve original

overall QoS for service-based applications. But this goes beyond our current study.

254 Chapter 8

8.3.2.2 Subprocess for violation of component services

Component services may fail at runtime. This may lead to a violation of the original overall

QoS constraints. In this section, algorithm RecViol is presented to repair failed component

services by replacing them with new services and ensuring that the new service-based

applications still meet the original overall QoS constraints. In the algorithm, we first replace

each failed service with the substitution with a QoS that is the best among all candidate

services of the failed services (steps 2e7). Next, if the delivered overall QoS by the new

service-based application still does not satisfy the original overall QoS, the algorithm

RecDeg will be called to reconfigure the rest of the component services (steps 8e11).

Algorithm: RecViol
Input: normal component services Sn = {Snn,…,Snn-p} and fault component

services Sf = {Sf1,…,Sfp} {S1,…,Sn} in a services based application S at
runtime.

Output: the replaced services RS {S1,…,Sn} and their substitutions

RD {CSi}.
Require: candidate services CSi={CSi1,…,CSim} of service Sfi.
1: SET RS =φ, RD =φ, Sr =φ;
2: FOR (Sfi Sf){
3: RD[l] = Select(Sfi);/*Select a service CSkp for Sfi whose QoS is the

best among all its candidates*/
4: Replace Sfi with CSkp;
5: RD[l] = RD[l] {CSkp};
6: Rs = Sf ;
7: }
8: IF (the current QoS of S comply with original QoS of S){ Goto 12;
9: }Else{

10: Call RecDeg(Sn);(Algorithm RecDeg)
11: }
12: RETURN RS[],RD[];

8.3.3 Reconfiguration Factor

For our method, we would like to find and replace the most promising component services

so that the original overall QoS can be delivered with as few attempts and as soon as

possible. Thus, all component services in a service-based application need to be evaluated

from the two following aspects: QoS degradation level and QoS global significance.

8.3.3.1 Relative QoS degradation value of component services

The relative QoS degradation value of a component service shows the degree of its QoS

actual degradation relative to other component service. When the original overall QoS

constraints are violated, the bigger the relative degradation value of a component service

is, the bigger its contributions to the violation are.

Service Verification and Dynamic Reconfiguration 255

In this section, we calculate relative QoS degradation value of a component service by the

following steps:

1. To compute the actual QoS degradation rate of a component service by Eqn (8.6):

Given a service-based application U and all its component services S1, ., Sn,

DSi
K ¼

P
j�m

DSi
K;j

m
� m

n
; (8.6)

in which DSi
K is the actual degradation rate of the QoS property K ˛ fTSi ;CSi ;RSi ;ASig from

Si; n is the monitored time in a period (user defined) before violation of the original

overall QoS constraints; m(m � n) is the degradation time; and DSi
K;j is the actual

degradation value of QoS property K ˛ fTSi ;CSi ;RSi ;ASig from Si.

2. To sort S1, ., Sn according to the QoS actual degradation rate: Four sorts are obtained

as follows: DT[], DC[], DR[], and DA[]. They are the descending sorts of the actual degra-

dation value of Response time, Cost, Reliability, and Availability. And then a 4*n matrix

G is built by the four sorts and is denoted as [DT[], DC[], DR[], DA[]]
T. Every column in

the matrix is assigned to a weight. The weight of the j-th column is set to (n � j þ 1)/n.

3. To set the effective weight of S1, ., and Sn: Effective weight of Si is a vector

WEi ¼ (WETi, WECi, WERi, WEAi). WEi components are the column weights of Si in G.

Thus, the relative QoS degradation value DVi of Si equals the sum of all components of its

effective weights. The equation is as follows:

DVi ¼ WETi þWECi þWERi þWEAi

4
(8.7)

For example, Figure 8.10 gives an online store system that is built by JTangComponent

in [33]. The system is composed of eight services as follows: Login(S1), CheckforRecieve(S2),

PaytoSeller(S3), CheckforSatifaction(S4), Search(S5), AddtoCart(S6), PaytoThirdParty(S7),

and Logout(S8). Suppose QoS actual degradation D4 of S4 is (a, 0, b, c), and Martix G is as

follows:

Weight 1 7 =

8 6 =

8 5 =

8 4 =

8 3 =

8 2 =

8 1 =

8

G ¼

2
666664

S8 S7 S4 S1 S6 S3 S5 S2

S7 S8 S6 S1 S2 S4 S3 S5

S4 S5 S6 S3 S8 S1 S2 S7

S4 S5 S6 S3 S8 S2 S1 S7

3
7777775

DT ½ �

DC½ �

DR½ �

DA½ �
The column weights of S4 in G are (6 =

8, 3 =

8, 1, 1). Due to DT4 ¼ 0, the effective weight

WE4 of S4 is (6

=

8, 0, 1, 1). Thus, the relative QoS degradation value DV4 of S4 is 2.75.

256 Chapter 8

8.3.3.2 QoS global significance of component services

The QoS global significance shows how the changes of the component QoS influence the

changes of the overall QoS. This has been reported in our previous work [33]. A partial

derivative is used to calculate the QoS global significance. For a component service, the

greater QoS global significance means that the component QoS has a greater influence on

the overall QoS. Here, it is used to compute the reconfiguration factor for component

services as another indispensable element.

Computing the global significance of a component service depends on the following four

types of attribute significances: Response Time significance Dt, Cost significance Dc,

Reliability significance Dr, and Availability significance Da. Given a service-based

application U, attribute significances of its component service A can be derived from

the following equations:

DtðU;AÞ ¼ vTðUÞ
vTðAÞ ¼

vTðUÞ
vTðSÞ �

vTðSÞ
vTðAÞ; DcðU;AÞ ¼ vCðUÞ

vCðAÞ ¼
vCðUÞ
vCðSÞ �

vCðSÞ
vCðAÞ;

DrðU;AÞ ¼ vRðUÞ
vRðAÞ ¼

vRðUÞ
vRðSÞ � vRðSÞ

vRðAÞ; DaðU;AÞ ¼ vAðUÞ
vAðAÞ ¼

vRðUÞ
vRðSÞ � vRðSÞ

vRðAÞ (8.8)

Now we will discuss how to compute attribute significance values in different structures in

detail.

8.3.3.2.1 Sequence

Suppose that a sequence S consists of the component C1, C2, ., Cn. By Eqn (8.1) and

Eqn (8.7), we can derive:

DtðS;CiÞ ¼
Xn

j¼1

�
Dt

�
Cj;Ci

��
; DcðS;CiÞ ¼

Xn

j¼1

�
Dc

�
Cj;Ci

��
;

DrðS;CiÞ ¼
Xn

j¼1

h
Dr

�
Cj;Ci

� �Yn

k¼1;k 6¼j
RðCkÞ

i
;

DaðS;CiÞ ¼
Xn

j¼1

h
Da

�
Cj;Ci

� �Yn

k¼1;k 6¼j
AðCkÞ

i
(8.9)

8.3.3.2.2 Condition

Suppose a condition S is composed of component C1, C2, ., Cn, and the probability of

each branch is P(C1), P(C2), ., P(Cn), respectively. By Eqn (8.2) and Eqn (8.7), the

following equations are obtained:

DtðS;CiÞ ¼
Xn

j¼1

�
Dt

�
Cj;Ci

� � P�Cj

��
;

DcðS;CiÞ ¼
Xn

j¼1

�
Dc

�
Cj;Ci

� � P�Cj

��
;

Service Verification and Dynamic Reconfiguration 257

DrðS;CiÞ ¼
Xn

j¼1

�
Dr

�
Cj;Ci

� � P�Cj

��
;

DaðS;CiÞ ¼
Xn

j¼1

�
Da

�
Cj;Ci

� � P�Cj

��
; where

Xn

j¼1
P
�
Cj

� ¼ 1 (8.10)

8.3.3.2.3 Parallel

For And Parallel, we use Eqn (8.8) to calculate the significance values of Cost, Reliability,

and Availability. If Response time of a service is the maximum among all individuals, its

significance value of Response Time is set to one; otherwise the value is zero.

For Or Parallel, the significance value of Response Time, Cost, and Availability are

obtained by Eqn (8.10). And Eqn (8.11) is adopted to compute the attribute significance

value of Reliability.

DrðS;CiÞ ¼
Xn

j¼1
Dr

�
Cj;Ci

� �Yn

k¼1;k 6¼j
½1� RðCkÞ� (8.11)

8.3.3.2.4 Loop

Suppose the loop structure L from a service-based application S, and m is the execution

times of L. Then Eqn (8.12) is given to compute the attribute significances:

DtðS;LÞ ¼ m;DcðS; LÞ ¼ m; DrðS; LÞ ¼ m � Rm�1ðLÞ; DaðS;LÞ ¼ m � Am�1ðLÞ; (8.12)

To calculate the global significance of each component service, all component services

need to be sorted in descending order according to each of the types of attribute

significances. This chapter uses Gt, Gc, Gr, and Ga to represent the sorts of Response Time,

Cost, Reliability, and Availability, respectively. Then a 4*n matrix can be built and be

denoted as [Gt,Gc,Gr,Ga]
T. The weight of the j-th column is set to (n e j þ 1)/n. Suppose

there are n existing component services in U, and w1, w2, w3, and w4 are the column

weights of its component service A in G. The global significance of A can be calculated by

Eqn (8.13):

DgðAÞ ¼ w1 � DtðU;AÞ þ w2 � DcðU;AÞ þ w3 � DrðU;AÞ þ w4 � DaðU;AÞ (8.13)

Finally, reconfiguration factor li of Si can be computed as follows:

li ¼ DVi � DgðSiÞ (8.14)

8.3.4 Evaluation

To evaluate the efficiency and effectiveness of our proposed method, three groups of tests

are conducted.

258 Chapter 8

Test case generation: We use a service test collection from JTangComponent previously

built in [26], in which 1056 services have been included to generate the needed

application in the test. In addition, to support the test, QoS of candidate services is

simulated and produced in the following way: Cost and Response Time are randomly

generated with a uniform distribution from one to 100; Availability and Reliability are

randomly generated with a uniform distribution from zero to one and are assigned to each

candidate service.

Test A: With the increasing number of candidate services from 20 to 1000, the run time of

algorithm RecDeg is given in Figure 8.11. Furthermore, to illustrate the effects of different

QoS constraints on the runtime, a QoS constraint number from one to four is applied to

algorithm RecDeg to test the runtime. In the test, the application is the online store system

that has been built by the JTangComponent in [33] (see Figure 8.12).

The test results are shown in Figure 8.11. The following conclusions can be drawn: (1)

Although the runtime of algorithm RecDeg is near when the QoS constraints number is

one and two, the runtime of algorithm RecDeg is proportionate to the QoS constraints

number on the whole. (2) With the gradual increase in the number of candidate services,

the run time of the algorithm fluctuates. Furthermore, the trends of fluctuation are different

for the different QoS constraints numbers. The reason for the fluctuations lies in the

different number of candidate services. The more candidate services there are, the more

are the times for traversing all candidate services. For example, when the QoS constraints

number is four, the run time declines sharply, with the number of candidate services

0.5

1

1.5

2

2.5

M1 constraints = 1
M1 constraints = 2
M1 constraints = 3
M1 constraints = 4

20 50 100
Number of candidate services

R
un

 ti
m

e
(m

s)

200 1000

3

3.5

4

4.5

Figure 8.11
Run time of algorithm RecDeg with different QoS constraints.

Service Verification and Dynamic Reconfiguration 259

increased from 20 to 50. The reason is that the original overall QoS is satisfied only

through replacing an individual component service when the number of candidate services

is 50, while multiple component services need to be replaced when the number of

candidate services is 20. The run time slowly increases again when the number of

candidate services increases from 50 to 100. This is because more time needs to be spent

on selecting a suitable one from all the candidate services when the number of candidate

services is 100. Although, the test is done based on a given composite service, we can still

conclude that the number of candidate services has a greater influence on the run time.

Test B: Reference [24] has proposed a region-based reconfiguration method to repair

multiple failed services and maintain the original overall QoS. The test is to compare the

performance between M1 and M2. Two groups of tests are conducted. One is to evaluate

the run time of M1 and M2 with the number of component services of service-based

applications. The other is to evaluate the run time of M1 and M2 with the increasing

number of candidate services from 20 to 1000.

In the first test, five applications are built by JTangComponent and are composed of 5, 10,

15, 20, and 25 component services with two, three, four, five, and six structure patterns.

Randomly select two services to be failed services. Figure 8.13 shows the test results.

Obviously, the run time of M1 is less than that of M2 on the whole. Meanwhile, with the

increasing number of candidate services, the run time always increases gently for M1; while

the run time of M2 increases sharply because the number of candidate services is 10.

In the second test, the same application is used as in Test A. Randomly select two services

to be failed services. With the increasing number of candidate services, the run time of

M1 and M2 are given in Figure 8.14. Furthermore, to illustrate the effects of different QoS

constraints on the runtime, two and four QoS constraints are applied to test the run time.

Figure 8.12
The structure of online store system.

260 Chapter 8

Figure 8.14(a) shows that the run time of M1 and M2 satisfy the predefined overall QoS.

Otherwise Figure 8.14(b) shows that for the run time of M1 and M2, the predefined

overall QoS is not satisfied. The former can show which method is faster to maintain the

original overall QoS, while the latter can show their single complete execution time. Thus,

M1 when the number of candidate services = 20
M1 when the number of candidate services = 50
M1 when the number of candidate services = 200
M2 when the number of candidate services = 20
M2 when the number of candidate services = 50
M2 when the number of candidate services = 200

50

20

40

60

80

100

120

140

10
Number of component services (constraints = 4)

R
un

 ti
m

e
(m

s)

15 20 25

Figure 8.13
Performance comparison between M1 and M2 with different component services (M1 and M2

refer to algorithm RecViol and the method in [12]).

20
0

0.5

1

1.5

2

2.5

3

3.5

50 100
Number of candidate services Number of candidate services

R
un

 ti
m

e
(m

s)

R
un

 ti
m

e
(m

s)

200 1000 20
4

5

6

7

8

9

10

11

12 M1 constraints = 2
M2 constraints = 2
M1 constraints = 4
M2 constraints = 4

13

50 100 200 1000

M1 constraints = 2
M2 constraints = 2
M1 constraints = 4
M2 constraints = 4

(a) (b)
Figure 8.14

Performance comparison between M1 and M2 with different candidate services.

Service Verification and Dynamic Reconfiguration 261

under the above conditions, our method takes less time than [24] to maintain the original

overall QoS.

Test C: This test is to compare the attempt times of M1 and M2 with three different groups

of original overall QoS. The application is still used as in Test A. Randomly select two

services to be faulty services. Using M1, the three original overall QoS can be satisfied by

only replacing the individual component services. With the number of candidate services

increasing from 20 to 1000, the attempt times of M1 and M2 are shown in Figure 8.15.

Numbers one and two refer to M1 and M2, respectively, at the top of Figure 8.15. The figure

shows the attempt times for M1 is less than that for M2 in most cases.

8.4 Summary

In this chapter, we proposed an approach to verify the substitutability between different

granularity services. We proposed the notion of interface inverted dependence to make up

for the specification of large granularity services by the existing service description

languages. Interface inverted dependence captures data dependencies from output to inputs

within a large-granularity web service. Also, we built a model to formally describe

Figure 8.15
Comparison of attempt times between M1 and M2 with different candidate services.

262 Chapter 8

different granularity services by applying and extending MLTT. Unlike other existing

formal models that are built by Pi-calculus, Petri-net, automata, etc., this model can also

describe syntax and semantics information of services except for behavioral information of

services. Based on subtyping theory, we proposed the notions of substitutability between

different granularity services with different stringencies through considering the context of

services. Furthermore, because subtyping can be judged by a type-checking mechanism,

the substitutability can be determined automatically. Compared to other studies, we take

advantage of the formalization, type theory and the substitutability between formalized

services that can be analyzed from not only behavior, but also from syntax and semantics.

Furthermore, considering large-granularity services and the context of services, we defined

the substitutability between different granularity services with their different stringencies.

Additionally, we discussed how to ensure that the composite services can run reliably in

dynamic environments. Due to failed services or degradation of component QoS, the

original QoS of service-based applications may be broken. Once that happens, it is

undesirable to halt and recompose service-based applications. Service-based applications

should be recovered as soon and as efficiently as possible. The chapter proposes a

QoS-driven dynamic reconfiguration method to maintain the original QoS of service-based

applications. The key to our method is the reconfiguration factor of component services

that can guide us to find the component services which provide the most contributions

to the violations of the overall QoS. The results of our evaluation show that our method

can recover the original overall QoS by reconfiguring only a small number of services

with fewer attempts in an acceptable time frame. We believe this is a feasible and effective

way to make service-based applications adaptive to QoS violations. Compared to our

study, other studies are limited to recovery when component services become faulty; while

they become invalid when the delivered QoS of component services degrades.

Furthermore, our test has shown the performance of our method is better than the other

proposed studies.

References

[1] L.J. Zhang, J. Zhang, H. Cai, Services Computing, Springer & Tsinghua University Press, 2007.
[2] M. Brian Blake, W. Tan, Florian Rosenberg, composition as a service, IEEE Internet Comput. 14 (1)

(2010) 78e82.
[3] A. Martens, On compatibility of web services, Petri Net Newsl. 65 (2003) 12e20.
[4] H. Foster, S. Uchitel, J. Magee, J. Kramer, Compatibility verification for web service choreography, in:

Proc. of International Conference on Web Service (ICWS), 2004, pp. 738e741.
[5] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyperski, K. Sullivan, D. Lea, Web services

engineering: promises and challenges, in: Proc. ICSE 2002, Orlando, 2002, pp. 647e648.
[6] W. Vambenepe, C. Thompson, V. Talwar, et al., Dealing with scale and adaptation of global web services

management, Int. J. Web Serv. Res. 3 (2007) 65e84.
[7] J. Pathak, S. Basu, V. Honavar, On context-specific substitutability of web services, in: 5th IEEE

International Conference on Web Services (ICWS), Beijing, China, 2007.

Service Verification and Dynamic Reconfiguration 263

[8] Y. Taher, D. Benslimane, M.-C. Fauvet, Z. Maamar, Towards an approach for web services substitution,
in: 10th Intl. Database Engineering and Applications Symposium, Delhi, India, 2006.

[9] A. Vallecillo, V.T. Vasconcelos, A. Ravara, Typing the behavior of software components using session
types, Fund. Inform. 4 (2006) 583e598.

[10] B. Benatallah, F. Casati, F. Toumani, Representing, analysing and managing web service protocols, Data
Knowl. Eng. 58 (3) (2006) 327e357.

[11] M. Bravetti, G. Zavattaro, Towards a unifying theory for choreography conformance and contract
compliance, in: Proc. of 6th Symposium on Software Composition, Braga, Portugal, 2007.

[12] F. Bonchi, A. Brogi, S. Corfini, F. Gadducci, A behavioural congruence for web services, in: International
Symposium on Fundamentals of Software Engineering, Tehran, Iran, 2007.

[13] L. Bordeaux, G. Salaun, D. Berardi, M. Mecella, When are two web services compatible? in: VLDB-TES,
Toronto, Canada, 2004.

[14] X. Li, Y. Fan, Q.Z. Sheng, Z. Maamar, H. Zhu, A petri net approach to analyzing behavioral compatibility
and similarity of web services, IEEE Trans. Syst. Man Cybernet. Part A Syst. Hum. 41 (3) (2011)
510e521.

[15] N. Desai, Z. Cheng, A.K. Chopra, M.P. Singh, Toward verification of commitment protocols and their
compositions, in: The 6th International Joint Conference on Autonomous Agents and Multiagent Systems,
Honolulu, Hawaii, USA, 2007.

[16] C. Stahl, P. Massuthe, J. Bretschneider, Deciding substitutability of services with operating guidelines,
Trans. Petri Nets Other Models Concurrency II Spec. Issue Concurrency Process Aware Inf. Syst. 2
(5460) (2009) 172e191.

[17] A. Wombacher, P. Fankhauser, B. Mahleko, E. Neuhold, Matchmaking for business processes based on
choreographies, Int. J. Web Serv. Res. 1 (4) (2004) 14e32.

[18] H. Foster, S. Uchitel, J. Magee, J. Kramer, Compatibility verification for web service choreography, in:
The Intl. Conf. on Web Service, San Diego, California, USA, 2004.

[19] W. Tsai, W. Song, Y. Chen, R. Paul, Dynamic system reconfiguration via service composition for
dependable computing, in: Reliable Systems on Unreliable Networked Platforms, 2007, pp. 203e224.

[20] P. Avgeriou, Run-time reconfiguration of service-centric systems, in: Proc. of the European Pattern
Languages of Programming (EuroPLOP), 2006.

[21] O. Ezenwoye, S. Busi, S.M. Sadjadi, Dynamically reconfigurable data-intensive service composition,
WEBIST (2010) 125e130.

[22] Y. Yan, P. Poizat, L. Zhao, Repair versus recomposition for broken service compositions, ICSOC (2010)
152e166.

[23] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware middleware for
web services composition, IEEE Trans. Softw. Eng. 30 (5) (2004) 311e327.

[24] Y.L. Zhai, J. Zhang, K.-J. Lin, SOA middleware support for service process reconfiguration with
end-to-end QoS constraints, in: The IEEE International Conference on Web Services (ICWS), 2009,
pp. 815e822.

[25] T. Yu, K.J. Lin, Adaptive algorithms for finding replacement services in autonomic distributed business
processes, in: Proc. of the 7th International Symposium on Autonomous Decentralized Systems, 2005.

[26] Y.Y. Yin, Y. Li, J.W. Yin, et al., Ensuring correctness of dynamic reconfiguration in SOA based software,
in: 2009 Congress on SERVICES-I, 2009, pp. 599e606.

[27] Y. Yin, S. Deng, Analysing and determining substitutability of different granularity web services, Int. J.
Comput. Math. 90 (11) (2012) 2201e2220.

[28] B. Nordstrom, K. Petersson, J.M. Smith, Programming in Martin-Löf Type Theory: An Introduction,
Oxford University Press, 1999.

[29] Y.I.N. Yu-yu, L.I. Ying, D.E.N.G. Shui-guang, Y.I.N. Jian-wei, Determining on consistency and
compatibility of web services behavior, Acta Electron. Sin. 37 (3) (2009) 433e438 (in Chinese).

[30] Z. Luo, Manifest fields and module mechanisms in intensional type theory, in: Types for Proofs and
Programs, Proc. of Inter. Conf. of TYPES ’08, Torino, Italy, 2008.

264 Chapter 8

[31] R. Dapoigny, P. Barlatier, Towards a conceptual structure based on type theory, in: The International
Conference on Computational Science (ICCS) 2008, Krakow, Poland, 2008.

[32] Y. Yin, Y. Li, Towards dynamic reconfiguration for QoS consistent services based applications, ICSOC
(2012) 771e778.

[33] Y. Li, Y.L. Lu, Y.Y. Yin, et al., Towards QoS-based dynamic reconfiguration of SOA-based applications,
APSCC (2010) 107e114.

[34] Y.T. Liu, A.H.H. Ngu, L.Z. Zeng, QoS computation and policing in dynamic web service selection, in:
Proc. of the 13th International World Wide Web Conference, 2004, pp. 66e73.

Service Verification and Dynamic Reconfiguration 265

This page intentionally left blank

CHAPTER 9

Complex Service Computing
Chapter Outline
9.1 Introduction 268

9.1.1 Crossover Service 268

9.1.1.1 Crossover 268

9.1.1.2 Convergence 269

9.1.1.3 Complex 269

9.1.2 Complex Service Computing 269

9.1.2.1 Big data management 270

9.1.2.2 Complex computing environment 271

9.1.2.3 Service management 271

9.2 Service Computing with Big Data 271
9.2.1 Tagging Data Relevance Measurement 272

9.2.1.1 Overview of web service tag relevance measurement 272

9.2.1.2 Semantic relevance computation 273

9.2.1.3 STNet-adapted hyperlink-induced topic search 275

9.2.1.4 Relevance integration 276

9.2.2 Tagging Data Recommendation 277

9.2.3 Tagging Data-Based Service Mining 279

9.3 Service Computing with a Complex Mobile Environment 283
9.3.1 Motivating Scenarios 283

9.3.1.1 Single service selection 283

9.3.1.2 Composite service selection 284

9.3.2 Mobility Model 286

9.3.3 Mobility-Aware Quality of Service Computation 288

9.3.4 Mobility-Enabled Selection Algorithm 289

9.3.4.1 Optimization problem 289

9.3.4.2 Service selection algorithm 290

9.3.4.3 Time complexity analysis 293

9.3.5 Experimental Evaluation 294

9.3.5.1 Setup 294

9.3.5.2 Impact of mobility 295

9.3.5.3 Optimality evaluation 298

9.3.5.4 Scalability evaluation 301

9.4 Service Computing with Service Pattern Model 303
9.4.1 Business Model and Service Computing 303

9.4.2 Service Pattern Description Language 304

9.4.2.1 Basic set 304

9.4.2.2 Entity 305

9.4.2.3 Resource 306

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00009-6

Copyright © 2015 Elsevier Inc. All rights reserved. 267

9.4.2.4 Role 306

9.4.2.5 Schema 307

9.4.2.6 Atom 307

9.4.2.7 Activity 308

9.4.2.8 Rule 309

9.4.3 Business Process Model Notation for Service Pattern 309

9.4.4 Case Study 310

9.4.4.1 Information flow analysis 311

9.4.4.2 Value flow analysis 311

9.5 Summary 313

References 314

9.1 Introduction

The development of the human economy, after the agricultural economy and industrial

economy, ushered in the era of the service economy in 1950s. In recent years, with the

popularization of the computer, Internet, mobile communications, and especially the

development and application of new information technology such as cloud computing and

the Internet of Things, the service economy has shown a new trend of crossover

development.

9.1.1 Crossover Service

“Crossover” means breaking the existing boundaries and realizing collaborations that take

place in and out of bounds. Crossover marketing, crossover consumption, crossover

design, crossover music, crossover cars, etc., have arisen. All the above proves that

crossover has become a new trend and fashion. With the support of the new revolution of

information technology, the modern service industry not only promotes the crossover

industry integration development of the first, the second, and the third industry, but also

promotes the mutual penetration and fusion of different enterprises.

Crossover service is a concept of multiple subjects, which can be understood as a new

economic phenomena and economic activity in the modern service industry. It also can

be regarded as the new content and new form of modern enterprise management.

Furthermore, it is also the new application scenario of the information technology age for

the modern service industry. Crossover services have three “C” characteristics: Crossover,

Convergence, and Complex.

9.1.1.1 Crossover

Crossover is the basic characteristic of crossover services. Crossover services are services

provided across different business areas, different industries, and different industrial

268 Chapter 9

domains. Intangible products formed or derived from crossover services are always cross-

domain. For example, banks begin to cross the traditional banking business to provide

ticket selling services; traditional network carriers start to provide broadcasting services;

Internet enterprises begin to set foot in the field of mobile communication; etc. All the

above reflects the natural attribute of crossover services.

9.1.1.2 Convergence

Modern enterprises provide crossover services on the premise of realizing convergence.

Convergence occurs among different industries and gradually forms a new crossover

industry through interaction and mutual infiltration. Convergence is a dynamic

development process, in which there will be technology convergence, product

convergence, service convergence, enterprise convergence, and market convergence.

Intangible products formed or derived from crossover services are the result of

convergence. For example, Apple Corp, the IT industry upstart, has made great

achievements in business thanks to its culture and creativity being converted into products.

The convergence innovation of technology and culture makes Apple stand out among the

crowd.

9.1.1.3 Complex

Compared with traditional services, crossover services are more complicated in the

innovation process, development process, and operation process. It is difficult for the

providers of crossover services not only to cross the boundaries of different industries and

integrate all kinds of resources into industries or areas in which they are not familiar, but

also to conduct a series of innovative activities such as service innovation and business

pattern design by combining their advantages of resources, market, and technology.

Furthermore, these enterprises already existing in the market have advantages in

marketing, technology, and services, which brings more risks and challenges to the

crossover service providers.

9.1.2 Complex Service Computing

Service computing is an emerging discipline that is moving toward a dynamic,

changeable, and complex Internet environment, which takes web services and service-

oriented architecture as the supporting technology, takes service composition as the main

methods for developing software, and takes the service-oriented software analysis and

design principles as the basic concepts for innovative development. It is a basic subject

across the computer and information technology, business management, and consulting

services. Service computing, the goal of which is to use science and technology to

eliminate the gap between business services and information technology services, can

provide technical support for crossover service innovation patterns. The 3 “C”

Complex Service Computing 269

characteristics of crossover services lead the traditional service computing to the complex

service computing with the characteristics of large-scale, high dynamic, crossover, and

integration.

To explore the three major characteristics of crossover services, we propose a technical

framework of complex service computing by combining the basic theories and methods of

economics, management, and information science. The technical framework includes three

phases of crossover services design, implementation, and operation, which contains

relevant theoretical models, techniques, methods, and a tools platform.

1. In the design phase, the support technology enables the capability assessment of enter-

prise crossover services, crossover services pattern design, business pattern value anal-

ysis, and risk prediction and assessment.

2. In the implementation phase, the support technology provides information technical

support for the construction and implementation of specific crossover services.

Specifically, the main realization is for the management and application of the huge

amounts of enterprise data, processes, and services.

3. In the operation phase, the support technology is responsible for the daily operation and

optimizing the crossover services for enterprises and provides a series of related tech-

nology for enterprises to carry out crossover services value analysis, business model

bottlenecks mining, a new round of service innovation, and business pattern design.

From the prospect of information technology, we think that the study of complex service

computing has three important technical challenges: big data management for crossover

services, complex environment of crossover services, and service pattern models for

crossover services.

9.1.2.1 Big data management

Big data management refers to the data processing in a scale of PB (1015), EB (1018), or

ZB (1021) and/or greater size. Traditional file systems, relational databases, and parallel

processing techniques can hardly deal effectively with big data calculations. Big data

management is also known as big enough computing or extreme-scale computing.

Recently, a large number of big data platforms have emerged, including Oracle’s Big Data

Appliance, EMC Greenplum, Hadoop, etc. At the same time, there are more and more

applications in three-dimensional data, medical imaging, network video service, remote

sensing information processing, intelligent transportation, and other fields. The emergence

of crossover services increases the requirements and demands for large data processing.

On one hand, big data computing provides new technical means for crossover services. On

the other hand, crossover services also bring new technical challenges to big data

computing.

270 Chapter 9

9.1.2.2 Complex computing environment

As crossover services enable collaborations across multiple domains, future service

computing will no longer be limited under traditional context and environments; it should

be more flexible and complex. For example, service computing techniques will be

extended to cloud environments, mobile environments, Internet of Things, etc. New

problems will arise when using traditional service-computing techniques in these complex

computing environments. For example, services provided by mobile providers will be

different from conventional computation-intensive services. They could be moving

location-based or context-aware services for sensing and providing, through their sensors,

immediate real-world information. Therefore, it is essential to study new service-

computing techniques for complex computing environments.

9.1.2.3 Service management

Cloud computing has been increasingly applied and deployed in the industrial

environment. This new paradigm and service model has had great influence on modern

enterprise information. In the process of enterprise information based on cloud computing,

service management will become the support technology for a modern enterprise to build

and operate crossover business applications. However, crossover services create new

requirements for this technology. Compared to traditional business, an enterprises’

crossover business is more complex, and the service involved is large-scale, various, and

multi-granularity. This brings new challenges to the enterprise service resources

management, such as how to realize service sharing, invocation, composition, and

collaboration. To support the efficient collaboration of crossover business process flow,

data flow, logistics, transaction flow, and workflow, is the key issue of complex service

computing to support crossover services.

To address the above challenges, this chapter introduces three exploring methods: a service

discovery method by using the big data of services, a service composition method in

mobile environments, and a service pattern model analysis method.

9.2 Service Computing with Big Data

With the prevalence of service computing and cloud computing, more and more services

are emerging on the Internet, generating huge volumes of data, such as trace logs, quality

of service (QoS) information, service relationship, etc. The overwhelming service-

generated data become too large and complex to be effectively processed by traditional

approaches. How to use, manage, and create values from the service-oriented big data

becomes an important research problem. Web service tags, i.e., terms annotated by users

to describe the functionality or other aspects of web services, are being treated as

Complex Service Computing 271

collective user knowledge for web service mining. Since user tagging is inherently

uncontrolled, ambiguous, and overly personalized, a critical and fundamental problem is

how to measure the relevance of a user-contributed tag with respect to the functionality of

the annotated web service. In this section, we propose a hybrid mechanism by using Web

Services Description Language (WSDL) documents and service-tag network information

to compute the relevance scores of tags by using a semantic computation and hyperlink-

induced topic search (HITS) model, respectively. Further, we introduce tag relevance

measurement mechanisms into three applications of web service mining: (1) web service

clustering; (2) web service tag recommendation; and (3) tag-based web service retrieval.

To evaluate the accuracy of tag relevance measurement and its impact on web service

mining, experiments are implemented based on Titan, which is a web service search

engine constructed and based on 15,968 real web services. Comprehensive experiments

demonstrate the effectiveness of the proposed tag relevance measurement mechanism and

its active promotion to the usage of tagging data in web service mining.

9.2.1 Tagging Data Relevance Measurement

In this section, we first give an overview of the proposed web service tag relevance

measurement (WS-TRM) approach and then introduce the computation of semantic tag

relevance and HITS-based tag authority. Finally, we introduce the computation of final tag

relevance by integrating semantic tag relevance and tag authority.

9.2.1.1 Overview of web service tag relevance measurement

Figure 9.1 presents an overview of our proposed WS-TRM mechanism, which mainly

consists of two parts: (1) semantic relevance computation and (2) tag authority

computation by using the HITS model. Given a tag list associated with one web service,

we first compute the relevance score of each tag by evaluating the sematic relevance

between each tag and the WSDL document of the corresponding service. In particular, we

extract a content vector (i.e., a set of keywords) from the WSDL document for semantic

Web Service ...

Web Service 2

report
free

Web Service 1

Web Service ...

Web Service 2

Web Service 1

company
ZIP code
weather
USA

WS-TRM

Tags WSDL

Seman�c Relevance HITS

report 0.62
free 0.48
company 0.27
ZIP code 0.52
weather 0.85
USA 0.54

Figure 9.1
An overview of web service tag relevance measurement (WS-TRM) mechanism.

272 Chapter 9

relevance computation between a tag and service. Although the relevance scores obtained

in this way reflect the semantic relevance between tags and services, the relationships in

STNet have not been considered. In the second part, the HITS model is used to explore

the relationships in STNet to compute the authorities of tags, which reflect the

meaningfulness of tags. In particular, phSTNet is constructed by using the association

relationship between tags and web services. Finally, the relevance score of a tag is

generated by integrating semantic relevance and tag authority.

9.2.1.2 Semantic relevance computation

AWSDL document, which describes the functionality of a web service, is actually an

XML-style document. Therefore, we can use some information retrieval (IR) approaches

to extract a vector of meaningful content words that can be used as a feature for semantic

relevance computation. This concept has been demonstrated to be effective in some

previous works [1e3]. In this section, we build the content vector in four steps:

1. Building original vector. In this step, we split the WSDL content according to the

white space to produce the original content vector. For a term such as “WeatherReport,”

we split it into two single words “Weather” and “Report.”

2. Suffix stripping. Words with a common stem will usually have the same meaning; for

example, connect, connected, connecting, connection, and connections all have the

same stem, “connect” [4]. For the purpose of convenient statistics, we strip the suffix of

all the words that have the same stem by using a Porter stemmer [5].

3. Pruning. In this step, we propose removing two types of words from the content vector.

The first type of words to be removed are XML tags, e.g., s:element and s:complex-

Type, which are not meaningful for the semantic relevance computation. The second

type of words to be removed is function words that have little or no contribution to the

meaning of texts. Poisson distribution is used to model word occurrence in documents

for the purpose of distinguishing function words [6]. Typically, a way to decide whether

a word w in the content vector is a function word is computing the degree of over-

estimation of the observed document frequency of the word w, denoted by nw, using

Poisson distribution. The overestimation factor can be calculated as follows:

Lw ¼ nw
nw

; (9.1)

in which nw is the estimated document frequency of the word w. Specifically, the word

with a higher value of Lw has a higher possibility to be a content word. In this section,

we set a threshold LT for Lw, and take the words that have Lw higher than the

threshold as content words. The value of threshold LT is as follows:

LT ¼
�
avg½L� ifðavg½L� > 1Þ

1 otherwise
(9.2)

Complex Service Computing 273

in which avg[L] is the average value of the observed document frequency of all words

being considered. After the process of pruning, we can obtain a new content vector, in

which both XML tags and function words are removed.

4. Refining. Words with a very high frequency occurrence are likely to be too general to

discriminate between web services. After the step of pruning, we implement a step of

refining, in which words with too general meanings are removed. Clustering-based

approaches were adopted to handle this problem in some related work [2,4]. In this

section, we choose a simple approach by computing the frequencies of words in all

WSDL documents and setting a threshold to decide whether a word has to be

removed.

After the above four steps, we can obtain the final content vector. Through our

observation, the dimension of the content vector of most web services for experiments

(i.e., 15,968 real web service) is in the range of 10e30.

As mentioned above, WSDL is an XML structure document. Thus the position of a

content word taken in the XML structure should be considered in the process of semantic

relevance computation. That is, the importance of content words in different positions of

the structure should be discriminated. In this section, we classify the positions of content

words in an XML structure into four categories:

1. Name property. In the definition of elements or other objects (e.g., message, type,

operation) in a WSDL document, there is always a name property. Take this record

<s:element name ¼ “GetWeatherResponse”> as an example; the positions of “Get,”

“Weather,” and “Response” are all name properties.

2. Value property. Similar to name property, value property is another kind of property

for an element or other objects in a WSDL document.

3. Text. There is always some text description for the operation in WSDL. We call this

kind of position text.

4. Annotation. At the beginning of a WSDL document, there may be some annotation

given by a service provider. In annotation, some information about the service provider

or the functionality of service is presented.

In this section, we use c1, c2, c3, and c4 to represent name property, value property, text,

and annotation, respectively. And f1, f2, f3, and f4 are their corresponding weights for

different position categories, f1 þ f2 þ f3 þ f4 ¼ 1. Given a content vector content (consists

of a set of words, w1,.,wn) and a tag t, the semantic relevance between t and content is

computed as follows:

SRðt;contentÞ ¼
Pn

i¼1Simðt;wiÞ
P4

j¼1fj � OccurijPn
i¼1

P4
j¼1fj � Occurij

; (9.3)

274 Chapter 9

in which Occurij means the occurrence number of word wi in position cj, and

Sim(t,wi) means the semantic similarity between t and wi. In this section, normalized

Google distance (NGD) [7] is used to compute the semantic similarity between two

words:

Simðt;wiÞ ¼ 1� NGDðt;wiÞ
NGDðt;wiÞ ¼ maxflog f ðtÞ; log f ðwiÞg � log f ðt;wiÞ

log N �minflog f ðtÞ; log f ðwiÞg ; (9.4)

in which f(wi) denotes the number of pages containing wi, and f(t,wi) denotes the number

of pages containing both t and wi, as reported by Google. N is the total number of web

pages searched by Google.

By using Eqns (9.3) and (9.4), we can obtain the semantic relevance between tag t and the

content vector extracted from the WSDL document of service s, and we set SR(t,s) ¼
SR(t,content) as the semantic relevance of t to s. Because the number of words left in the

content vector is limited after the above four steps, the time cost for semantic relevance

computation can be accepted.

9.2.1.3 STNet-adapted hyperlink-induced topic search

HITS (also known as hubs and authorities) is a link analysis algorithm that rates web

pages and was developed by Kleinberg. It is a precursor to PageRank. The idea behind

HITS stemmed from a particular insight into the creation of web pages when the Internet

was originally forming. Compared with PageRank, the authority value computed by the

HITS algorithm is more appropriate to reflect the importance of tag, while the meaning of

the value computed by PageRank is more general. Thus, we propose to obtain the

authority of a tag based on the STNet, which could reflect the importance of a tag. In the

following, we first introduce how to build STNet, and then present a STNet-adapted HITS

algorithm for tag authority computation.

9.2.1.3.1 STNet building

STNet can be modeled as a weighted directed graph G, in which node si means a service,

and node ti means a tag. For each node in G, it has two values, i.e., hub and authority.

There are three kinds of directed edges in G:

Edge from a service node to tag node. Given a service s1 annotated with three tags t1, t2,

and t3, then there is a directed edge from s1 to t1, t2, and t3, respectively. In particular, the

weight of this kind of edge is one.

Edge from a service node to service node. Given two services s1 and s2, if there is one

or more than one common tag annotated to these two services, we create one directed

edge from s1 to s2 and one directed edge from s2 to s1. These two edges have the same

Complex Service Computing 275

weight, which depends on the common tags; i.e., wðs1;s2Þ ¼ wðs2;s1Þ ¼ jts1Xts2 j
jts1Wts2 j, in which

ts1 and ts2 mean the set of tags annotated to s1 and s2, respectively.

Edge from a tag node to tag node. Given two tags t1 and t2, these two tags are annotated

to one or more than one service. Similarly, we create one directed edge from t1 to t2 and

one directed edge from t2 to t1. The weight of edge also depends on the common services;

i.e., wðt1;t2Þ ¼ wðt2; t1Þ ¼ jst1Xst2 j
jst1Wst2 j, in which st1 and st2 mean the set of services containing

t1 and t2, respectively.

In this way, we obtain STNet by building a weighted directed graph. It should be noted

that the reputation of taggers and web services will be helpful to make the weights of

edges more accurate. However, these types of data cannot be crawled as of yet.

9.2.1.3.2 Tag authority computation

HITS is a kind of iterative algorithm. We consider two types of updates as follows:

Authority update. For each node p (could be service node or tag node) in G, we update

the authority of node p to be:

AuthðpÞ ¼
Xn
i¼1

Hub
�
pi
�� w

�
pi; p

�
; (9.5)

in which pi(i¼ 1,.,n) means the node that points to p, and w(pi,p) is the weight of the

edge from pi to p; that is, the authority of node p that is the sum of all the weighted hub

values of nodes that point to p.

Hub update. For each node p in G, we update the hub value of p to be:

HubðpÞ ¼
Xn
i¼1

Auth
�
pi
�� w

�
p; pi

�
; (9.6)

in which pi(i¼1,...,n) means the node that p points to, and w(p,pi) means the weight of the

edge from p to pi.

9.2.1.4 Relevance integration

Semantic relevance score SR(t,s) obtained in Section 9.2.1.2 reflects the semantic

relevance between tag t and service s, while the authority of tag Auth(t) obtained in

Section 9.2.1.3 reflects the meaningfulness of tag t in the whole STNet. In this section, we

integrate semantic relevance and tag authority to be the final relevance of the user-

contributed tag t with respect to service s.

276 Chapter 9

Given a service s with a set of tag T annotated to it, the relevance score of each tag t˛ T is

computed as follows:

Scoreðt;sÞ ¼ ð1� lÞSRðt;sÞ þ lAuthðtÞ; (9.7)

in which l is the weight of the tag authority. The range of l is [0,1]. Specifically,

WS-TRM only considers the semantic relevance of t to s when l ¼ 0, while WS-TRM

ranks tags only according to the tag authority in STNet when l ¼ 1.

9.2.2 Tagging Data Recommendation

Similar to the multimedia tagging and document tagging, some inherent properties in web

service tagging, e.g., uneven tag distribution, influence the effectiveness of tagging data in

web service mining. This property is easily understood because tagging is a kind of user

behavior. Hot web services are usually annotated with lots of tags, while less popular web

services may be annotated with few or even no tags.

Tag recommendation technique is a widely accepted approach to handle this problem. Vote

and sum are two classical tag recommendation approaches, in which tag co-occurrence is

used to compute a score for each candidate tag and the top-K tags with the highest scores

are selected as the recommended tags. Details about vote and sum can be found in [8]. In

this section, we use the proposed WS-TRM to improve their performance by considering

both tag relevance and co-occurrence in the process of web service tag recommendations.

In particular, for a candidate tag t, the weighted average value of the normalized tag

relevance TR(t) and the normalized tag co-occurrence score TC(t) are utilized for tag

recommendations. To evaluate the impact of tag relevance, the following approaches are

implemented:

• Sum. In this approach, tag co-occurrence score TC(t), which is computed by using the

Sum strategy, is used as the metric for tag recommendations.

• Vote. In this approach, TC(t) is also used as the metric for tag recommendations, while

it is computed by using the Vote strategy.

• Sumþ. In this approach, the tag relevance value TR(t) is introduced to improve the per-

formance of sum.

• Voteþ. In this approach, the tag relevance value TR(t) is used to improve the perfor-

mance of vote.

Before evaluating the performance of tag recommendations, we select 1800 web services

that contain 1254 unique tags as the dataset for evaluation. The ground truth is manually

created through a blind review pooling method, in which for each of the 1800 web

services, the top 10 recommendations from each of the two strategies are taken to

Complex Service Computing 277

construct the pool. The volunteers are then asked to evaluate the descriptiveness of each of

the recommended tags in context of the web services. We provide the WSDL documents

and web service descriptions to volunteers to help them. The volunteers are then asked to

judge the descriptiveness on a three-point scale: very good, good, not good. The

distinction between very good and good is defined to make the assessment task

conceptually easier for the user. Finally, we received 212 very good judgments (16.9%),

298 good judgments (23.7%), and 744 not good judgments (59.4%).

To evaluate the performance of the web service tag recommendations, we adopt two

metrics that capture the performance in different aspects:

• Success at rank K (S@K). The success of rank K is defined as the percentage of good

or very good tags taken in the top-K recommended tags, averaged over all judged web

services.

• Precision at rank K (P@K). Precision of rank K is defined as the proportion of

retrieved tags that is relevant, averaged over all judged web services.

Table 9.1 shows the S@K comparison of the four tag recommendation strategies, in which

the given tag means the number of tags that the target web service has. Take the sum

strategy as an example. When the given tag varies from 1 to 2, the average value of S@K

is more than 0.7, which means that more than 70% of the recommended tags have good or

very good descriptiveness. From Table 9.1, it can be observed that the introduction of tag

relevance largely improves the performance of traditional tag recommendation strategies,

because the S@K values of both Sumþ and Voteþ are larger than the S@K values of the

original strategies. A trend can be identified, which is that in most cases, the S@K values

of all four strategies decrease with the increase of K. This is because the most relevant

tags have a high probability to be included in the tag recommendation list when K is

Table 9.1: S@K comparison of four tag recommendation strategies

Given Tag Method K[1 K [2 K [3 K [4 K [5

1e2 Sum 0.8132 0.7081 0.6738 0.7087 0.7181
Sumþ 0.8331 0.7192 0.7033 0.7221 0.7318
Vote 0.6329 0.5949 0.6737 0.7005 0.6972
Voteþ 0.6875 0.6112 0.6745 0.7143 0.7348

3e5 Sum 0.7534 0.7143 0.7380 0.6852 0.6720
Sumþ 0.7745 0.7322 0.7449 0.7208 0.6775
Vote 0.7867 0.6646 0.7042 0.7022 0.7103
Voteþ 0.7958 0.7436 0.7323 0.7128 0.7219

>5 Sum 0.7632 0.7211 0.6944 0.6975 0.6647
Sumþ 0.7822 0.7318 0.7098 0.7145 0.6897
Vote 0.8136 0.7769 0.7749 0.7262 0.6973
Voteþ 0.8364 0.8012 0.7943 0.7438 0.7012

278 Chapter 9

small, and some irrelevant tags may also be included in the top-K recommendation list

when K is large.

Table 9.2 shows the comparison of four tag recommendation strategies in terms of P@K.

Similarly, it can be found that the introduction of WS-TRM improves the performance of

tag recommendations in terms of P@K. From Table 9.2, one trend can be identified, which

is that the P@K values of all four strategies decrease when the given tags increase. This is

because the number of relevant tags to one certain web service is limited. When the given

tags increase, the number of still relevant tags decreases, which leads to the decrease of

P@K. In addition, P@K achieves its largest value when K ¼ 1, and decreases when K

increases.

9.2.3 Tagging Data-Based Service Mining

Recently, web service clustering was used to handle the low recall of web service search

engines, which is caused by the keyword matching [2,4]. In their opinion, if web services

with similar functionality are placed into the same cluster, more relevant web services

could be retrieved in the search result. In our prior work [1], a hybrid approach of using

both WSDL documents and tags to cluster web services was proposed, and this approach

outperformed the previous clustering approaches, in which only WSDL documents were

used. Specifically, given two web services s1 and s2, not only the similarity between the

WSDL of s1 and the one of s2 (i.e., Simwsdl(s1,s2)) is considered, but also the similarity

between the tags of s1 and the ones of s2 (i.e., Simtag(s1,s2)) is considered. The detailed

process of web service clustering can be found in [1].

However, the relevance of user-contributed tags with respect to the web services has not

been considered in [1]; that is, the tags associated with web services were all treated as

Table 9.2: P@K comparison of four tag recommendation strategies

Given Tag Method K [1 K[2 K [3 K [4 K [5

1e2 Sum 0.6933 0.5083 0.4277 0.3788 0.3562
Sumþ 0.7612 0.5329 0.4879 0.4374 0.4038
Vote 0.7879 0.5409 0.4503 0.3947 0.3689
Voteþ 0.7945 0.5983 0.4832 0.4329 0.3925

3e5 Sum 0.6512 0.4857 0.4171 0.3654 0.3345
Sumþ 0.6856 0.5134 0.4658 0.3765 0.3564
Vote 0.7415 0.5414 0.4496 0.3925 0.3494
Voteþ 0.7667 0.5934 0.5092 0.4333 0.3764

>5 Sum 0.5894 0.4656 0.4365 0.3451 0.3508
Sumþ 0.6219 0.5043 0.4754 0.3922 0.3657
Vote 0.7148 0.5478 0.4105 0.4026 0.3658
Voteþ 0.7443 0.5874 0.4459 0.4322 0.3745

Complex Service Computing 279

totally relevant, which may limit or even bring negative effects on the performance of

tagging data in web service clustering. In this section, we propose to use WS-TRM to

obtain tag relevance scores, and weight Simtag(s1,s2) by the relevance of the corresponding

tags. That is, the similarity between s1 and s2 is generated by integrating Simwsdl(s1,s2) and

weighting Simtag(s1,s2).

To evaluate the impact of WS-TRM on web service clustering, we implement two versions

of clustering; one version uses WS-TRM, while the other one does not use WS-TRM. In

this experiment, we use the six categories of web services (i.e., weather, e-mail, stock,

tourism, finance, and communication) to do web service clustering. To evaluate the

performance of web service clustering, we introduce two metrics (precision and recall),

which are widely adopted in the IR domain:

Precisionci ¼
succðciÞ

succðciÞ þ misplðciÞ ; (9.8)

Recallci ¼
succðciÞ

succðciÞ þ missedðciÞ (9.9)

in which succ(ci) is the number of services successfully placed into cluster ci, mispl(ci) is

the number of services that are incorrectly placed into cluster ci, and missed(ci) is the

number of services that should be placed into ci, but are placed into another cluster.

Figure 9.2 shows the performance comparison of the above two versions of web service

clustering. From Figure 9.2, we can observe that clustering with WS-TRM outperforms

clustering without WS-TRM in both precision and recall. Specifically, the average

improvement caused by the use of WS-TRM achieves 16% in terms of precision and 10%

in terms of recall. As we discussed above, the neglect of tag relevance limits or even

brings a negative effect on the performance of tagging data. The results in Figure 9.2

demonstrate that the use of tag relevance facilitates web service clustering.

Tagging data was recently used to improve the performance of web object retrieval due to

the rich semantic information included in the user-contributed tags, especially in the

domain of multimedia. The performance of web service retrieval is also unsatisfied

because the simplicity of the information source can be used for service retrieval, i.e.,

WSDL. Intuitively, tagging data associated with web services could be used to improve

the performance of web service retrieval. In our prior work [1], a brief introduction to

tagging data in web service retrieval is proposed. Figure 9.3 shows the tag cloud of the

Titan web service search engine, in which the most frequently annotated tags are listed

and the tags with higher frequency have larger fonts.

However, if the web service tag relevance is ignored, the use of web service tags may

provide limited contribution or even have a negative effect on the performance of web

service retrieval. To evaluate the impact of tag relevance on the performance of web

280 Chapter 9

service retrieval, we implement two versions of service retrieval; one version does not use

WS-TRM and treats the relevance of every tag as one (called baseline), while the other

one uses WS-TRM and considers the relevance of tags in the process of service retrieval.

Due to the limitation of space, we could not introduce the detailed process of service

retrieval. As for the evaluation metric, we choose precision at K (P@K), which means the

proportion of relevance instances in the top-K retrieved results.

Table 9.3 shows the results of the implemented evaluation based on the Titan web service

search engine. In Table 9.4, for each query, we compare the performance of baseline and

WS-TRM in terms of P@5 and P@20. From Table 9.3, it can be determined that

WS-TRM largely outperforms baseline in most cases, in terms of P@5 and P@20. This is

Clustering without
WS-TRM

Clustering with WS-
TRM

Clustering without
WS-TRM

Clustering with WS-
TRM

Wea
ther

E-m
ail

Stock
Finan

ce
Communica

tio
n

To
uris

m

Wea
ther

E-m
ail

Stock
Finan

ce
Communica

tio
n

To
uris

m

Pr
ec

is
io

n
(%

)
R

ec
al

l (
%

)

100
90
80
70
60
50
40
30
20
10
0

100
90
80
70
60
50
40
30
20
10
0

(b)

(a)

Figure 9.2
Impact of web service tag relevance measurement (WS-TRM) to the performance of web service

clustering.

Complex Service Computing 281

because some user-contributed tags are imprecise, ambiguous, or even irrelevant. In

baseline, all associated tags are treated as totally relevant, which limits the performance of

tagging data in web service retrieval. On the other hand, by using WS-TRM, the effect of

these imprecise, ambiguous, irrelevant tags are weakened in the process of tag-based web

service retrieval.

Figure 9.3
Tag cloud of Titan web service search engine.

Table 9.3: P@K performance of web service retrieval

Precision at 5 Precision at 20

Query Baseline WS-TRM Baseline WS-TRM

Weather 0.800 1.000 0.650 0.900
sms 0.800 1.000 0.700 1.000

Tourism 0.400 0.800 0.500 0.650
Stock 0.800 0.800 0.750 0.900
ZIP 0.600 1.000 0.800 1.000

Location 0.400 0.800 0.550 0.750
Commercial 0.800 0.800 0.650 0.850

Bioinformatics 0.400 0.600 0.500 0.750
University 0.600 1.000 0.650 0.900
Average 0.640 0.840 0.645 0.845

Table 9.4: Integration rules for QoS of service composition

QoS Property J1 J2

Cost
P P

Response time
P

Max
Throughput

P
Min

Availably
Q Q

282 Chapter 9

9.3 Service Computing with a Complex Mobile Environment

As service-oriented applications have been increasingly developed and widely used,

service-oriented architecture (SOA) becomes popular in more and more domains and the

application environments become more complex. For example, SOA has stepped into

mobile environments. Characteristics of the mobile environment, such as mobility,

unpredictability, and variation of the mobile network’s signal strength, present challenges

in selecting optimal services for service composition. Traditional QoS-aware methods that

select individual services with the best QoS may not always result in the best composite

service, because constant mobility makes the performance of service invocation

unpredictable and location-based. This section discusses the challenges of this problem

and defines it in a formal way. To solve this new research problem, we propose a mobility

model, a mobility-aware QoS computation rule, and a mobility-enabled selection

algorithm with teaching-learning-based optimization (TLBO). The experimental simulation

results demonstrate that our approach can obtain better solutions than current standard

composition methods in mobile environments. The approach can obtain near-optimal

solutions and has a nearly linear algorithmic complexity with respect to the problem size.

9.3.1 Motivating Scenarios

Because of the mobility of mobile users and the dynamics of mobile networks, service

selection in a mobile environment is notably different from that in the traditional Internet

environment. We will outline the differences using examples for single service selection

and composite service selection.

9.3.1.1 Single service selection

Figure 9.4 illustrates an example of a single service selection in a mobile network.

Assume a mobile user, Tom, wants to invoke a hotel booking service when he is walking

from base station A to base station B. Assume that the signal strength of B is stronger than

A, the average data transmission rate between Tom’s cellphone and A is 10 Kbps, and the

data transmission rate between Tom’s cellphone and B is 20 Kbps. A virtual service

provider sp is responsible for selecting the service with the best response time for Tom.

Suppose that sp finds two candidates that can provide hotel booking service, Ctrip and

Elong, which are well-known hotel booking services in China. sp would make the

selection decision for Tom depending on the QoS of each service. The booking

confirmation wait time is 100 s for Ctrip and 120 s for Elong.

In the traditional Internet environment, it is intuitive that sp would select Ctrip for Tom

because Ctrip performs faster than Elong. However, Tom is moving when he invokes the

services. He sends the hotel booking request while at location A (we assume the time of

Complex Service Computing 283

sending a request is 1 s). If sp selects Ctrip for Tom, he would obtain the response when at

location B and start receiving confirmation with 1000 KB of data. Because of the handover

principles of cellular networks [9], Tom would not switch his connection to station B as

soon as he gets into its coverage area. He would continue the connection with station A

until its signal strength is lower than a threshold (we set it zero for simplification). Finally,

Tom finishes receiving the confirmation at location C. Thus, the total service time of Ctrip

is 1 s þ 100 s þ 1000/10 ¼ 201 s. If Tom selects the service Elong, he would have moved

to location B0 before he begins to receive the confirmation. Next, he would establish a

connection with station B because of its stronger signal. Finally, Tom finishes receiving the

confirmation at location C 0; the total service time of Elong is 1 s þ 120 s þ 1000/20 ¼
171 s. Thus, it is faster for Tom if sp selects Elong, although its execution time is longer.

Hence, we can see that service selection in a mobile environment is different from that in

a traditional environment. It is essential to take a users’ mobility into consideration when

selecting services in mobile networks.

9.3.1.2 Composite service selection

Figure 9.5 illustrates a more complicated example of service selection for service

composition.

This time Tom wants to arrange business travel to Beijing. He needs to know the weather

conditions, book a flight, book a hotel, and pay. To this end, the virtual service provider sp

A

A B

B

a b c

a bʹ cʹ

Ctrip

Elong

10 kb/s 50 kb/s

10 kb/s 50 kb/s

Figure 9.4
An example of single service selection in mobile networks.

284 Chapter 9

will compose multiple mobile services from different providers for Tom. Figure 9.5(a)

shows the candidates for each task found by sp. Figure 9.5(b) shows that Tom will invoke

the composed services when he goes to work by subway.

If sp used a traditional approach for service selection, the service composition would be

composed of the fastest candidate for each task. However, data transmission time may

vary as Tom travels to work. The data transmission time cannot be guaranteed by

traditional methods. As Figure 9.5(b) shows, the total response time of the whole service

composition is 850 s using traditional methods. If sp considers Tom’s mobility when

Traditional approaches Considering mobility

Tom Virtual Service Provider

Weather
Forecast

Flight
Booking

Hotel
Booking Payment

200

280

300

240

90
100

120

80

50

50

80

100

(a)

(b)

Figure 9.5
An example of service selection for service composition in mobile networks. (a) A services

composition for arranging travel and (b) comparison of different solutions.

Complex Service Computing 285

selecting services, sp may choose some suboptimal candidates, but the data transmission

time can be reduced. Then the total response time of the whole service composition is now

reduced to 830 s.

Hence, it is important to consider the users’ mobility when selecting services for service

composition in mobile networks. This is more complicated than the individual service

selection problem because a different selection for one task may result in issuing the

following task from a different place, which could affect its data transmission time.

9.3.2 Mobility Model

In a mobile scenario, we face the challenge of managing the users’ mobility; that is, users

are moving when they invoke a service composition in the mobile environment. During

the users’ movement, the mobile network latency for transmitting input/output data for

services varies, depending on their location. Thus, our mobility model consists of two

parts: the user’s path and the quality of the mobile network.

Definition 1: User’s path. A user’s path is modeled as a triple mp ¼ (Time, Location, M),

in which:

1. Time is the set of continuous time points ranging from t0 to tn, t0 is the time point that

the user starts the service composition, and tn is the time point that the user finishes the

service composition;

2. Location is the set of the user’s locations corresponding to all time points in Time;

3. M is a function that maps time points to the user’s locations on the motion path.

M: Time/ Location. The function M can be implemented by the random waypoint

mobility model [10].

Definition 2: Quality of the mobile network. The quality of the mobile network (QoMN)

usually describes the mobile signal strength at a specific location. In this section, we

mainly consider the data transmission rate as the quality of the mobile network. The

function L is used to map locations to QoMN, L: Location/ QoMN.

Figure 9.6 shows an example that represents the mobility model in Figure 9.5(b). First, we

can draw Tom’s path in a two-dimensional space; we can obtain the location of Tom at

any specific time point via function M. We can find the location where Tom starts to send

or receive data for a service invocation by calculating the time points of the service

invocations. For example, Tom starts invoking the weather forecast service at the time

point t0 and receives a response at time point t1. Meanwhile, given a location, we can

obtain the quality of the mobile network corresponding to this location. Thus, the mobile

network latency for transmitting input/output data can be calculated. Lastly, the final

response time of the whole service composition can be calculated.

286 Chapter 9

To make the mobility model computable, we build an overlay grid on the two-dimensional

space, as in Figure 9.7. Each cell of the grid corresponds to an area of constant QoMN.

This is equivalent to the practical situation when the cells are infinitely small. We can

approximately measure the QoMN of the area covering the user’s path and build this grid

by associating QoMN values with each cell. Based on the mobility model, we can define

the problem that is the focus of this section.

Another challenge of adding a mobility model to service selection in composite services is

the question of who is responsible for maintaining the model and generating service

Figure 9.6
Mobility model.

Figure 9.7
Mobility model grid.

Complex Service Computing 287

response time. Telecom service providers have sufficient capability to maintain the

proposed mobility model. First, the location information of mobile users can be monitored

by GPS or other location-based services provided by the telecom service providers.

Additionally, telecom service providers have the QoMN knowledge through their

monitoring of their network. They can even obtain the quality of the mobile network at a

specific location in real time. Hence, telecom service providers are able to implement the

path function M and the mobile network quality function L. Therefore, they are ideal

maintainers of the proposed mobility model, which makes the model practical.

Definition 3: Service selection for service composition in mobile networks. Given a

user’s path and the QoMN within the area covering the path, for a service composition

required by the mobile user, select concrete services from service candidates to obtain the

optimal global QoS (the shortest response time).

9.3.3 Mobility-Aware Quality of Service Computation

In this section, we first introduce the concept of mobility-aware QoS (MQoS) based on the

mobility model. Next, we present how to compute the global QoS of the mobile service

composition.

Assumption 1. During the time of data transmission of each task, the QoMN remains

constant.

The assumption can be justified as follows. On one hand, the data volume for a mobile

service is normally not large because Internet fees and energy consumption must be

controlled. Therefore, the time duration for data transmission is short. On the other hand,

the covered area of a mobile network base station is usually large enough to ensure that

the QoMN stays similar during the relatively short interval of data transmission.

Definition 4: Mobility-aware quality of service. MQoS describes the performance of a

component service in a mobile service composition consideration. In this section, we

consider only one property of QoS (response time). The MQoS of a component service s

can be calculated as follows:

MQoSs ¼ tdi þ Qs þ tdo (9.10)

in which tdi is the mobile network latency of transmitting input data, Qs is the execution

time of s, and tdo is the mobile network latency of transmitting output data. tdi and tdo can

be calculated as follows:

tdi ¼
di

QoMNi

tdo ¼ do
QoMNo

(9.11)

288 Chapter 9

in which di is the volume of input data and QoMNi is the QoMN at the location from

which the user starts sending the input data. By assumption 1, QoMNi will not change

during tdi . do and QoMNo are the corresponding variables for the output data.

Consider the example in Figure 9.5(b). To calculate the MQoS of a weather forecast

service s, we first need the time point tp when Tom starts to send the input data; Tom’s

location at the time point tp can be found through the function M: location ¼ M(tp). The

quality of the mobile network at that location is derived through the function L:

QoMN ¼ L(location). Next, tdi is calculated with Eqn (9.11). td0 is computed similarly.

Finally, the MQoS of s can be found with Eqn (9.10).

Definition 5: Global quality of service. Global QoS describes the performance of the

entire service composition. The global response time of a service composition so can be

calculated as follows:

GQoS ¼ j
s˛ so

MQoSs (9.12)

in which j is an operator that integrates the values of local QoS. We adopt the QoS

integration rules in [11] to implement j, as shown in Table 9.4, in which j1 is the

integration function for QoS of services in a sequential execution path. j2 is the integration

for QoS of multiple parallel paths. For the notations in the table, we only use their intuitive

mathematic meanings. For example, “
P

” means summation, “
Q
” means product, “max”

means maximum, and “min” means minimum. The optimal QoS of a composition is the

best value obtained from the integration rules. For simplicity, we consider only a

one-dimensional QoS value (response time) in this section. It is not difficult to extend to

other criteria by aggregating the overall QoS value of the service composition through the

computation rules. If an efficient aggregating function of multiple QoS properties is

provided, our proposal can also handle QoS values of multiple-dimensions.

9.3.4 Mobility-Enabled Selection Algorithm

Our selection algorithm is based on the TLBO, which belongs to the “swarm intelligence”

optimization methods. First, we illustrate how our problem is transformed to an

optimization problem. Then, we introduce our service selection algorithm based on TLBO.

9.3.4.1 Optimization problem

An optimization problem is to find the smallest F(Q) with a feasible parameter vector Q,

which can be modeled as follows [12]:

inf FðQÞ
subject to qi˛ ½1;N�

qi˛ Z

(9.13)

Complex Service Computing 289

This means the feasible set of parameter vectors is constrained by qi˛ [1,N] and is an

integer. The optimal solution bQ satisfies the following conditions:

1. bQ belongs to the feasible set

2. cQ;FðbQÞ � FðQÞ
The following theorem presents the relationship between this optimization problem and

our mobility-aware service selection problem.

Theorem 1: Optimization problem. A mobility-aware service selection problem with a

user’s given path and a given quality of mobile network in this area is equivalent to the

optimization problem described in Eqn (9.13).

Proof: For the problem of selecting optimal services with the shortest response time while

considering mobility, the vector Q¼(q1,...,qm) can describe a possible solution as a service

composition with m tasks. An element qi in Q corresponds to a selected service from the

candidates for the i-th task. The evaluation function for the parameter vector Q can be

implemented by Eqn (9.12):

FðQÞ ¼ j
qi ˛Q

MQoSqi (9.14)

The target of the mobility-aware service selection problem is to find a Q to obtain the

smallest F(Q). Thus the problem is equivalent to the optimization problem described in

Eqn (9.13).

The problem in Eqn (9.13) is an integer programming problem, which is a famous

non-deterministic polynomial (NP) problem. Generally, there is no known algorithm with

a non deterministic polynomial time complexity to solve such a problem. Thus, we

propose a solution method based on the TLBO algorithm, which can achieve an

approximately optimal solution in polynomial time.

9.3.4.2 Service selection algorithm

In this section, we give a basic overview of the TLBO algorithm. We then introduce our

customizations of the algorithm for the problem of service selection for mobile service

composition.

9.3.4.2.1 Overview of teaching-learning-based optimization algorithm

The TLBO was first proposed by Rao and Kalyankar [13]. Like other nature-inspired

algorithms, TLBO is a population-based method that uses a population of solutions to

proceed to the global solution. For TLBO, the population is considered to be a group or

class of learners. For our mobile service composition problem, each learner in the

290 Chapter 9

population corresponds to a feasible service composition. Moreover, different tasks in the

service composition plan are analogous to different subjects offered to learners; the

learners’ results are analogous to “fitness,” as in other population-based optimization

techniques. The teacher is considered to be the best solution obtained so far. Table 9.5

shows the analogous term matches between the TLBO and the service composition

domains.

TLBO consists of two parts: “teacher phase” and “learner phase.” The “teacher phase”

means learning from the teacher, and the “learner phase” means learning through

interactions between learners (Figure 9.8).

9.3.4.2.2 Initialization phase

One advantage of TLBO is that there are not as many parameters to be tuned, as in other

population-based methods. Only two basic parameters need be decided in the initialization

phase. One is the population size P, and the other is the maximum iteration number I.

Next, the initial population is generated randomly.

For each learner in the class, Xi ¼ ðxi1; xi2;.; xidÞ is generated randomly, in which

i ¼ (1, 2, 3,., P), d is the number of tasks in the service composition plan, and xij is the

selected candidate for the j-th task in solution Xi, an integer that represents the selected

candidate.

9.3.4.2.3 Teacher phase

In the teacher phase of TLBO, every learner Xi (i ¼ 1, 2, 3,., P) in the class learns from

the teacher Xteacher through the difference between the teacher Xteacher and the mean value

of the learners, Mean:

Xi
new ¼ Xi

old þ difference (9.15)

Table 9.5: Terms matching between teaching-learning-based optimization

(TLBO) and service composition domain

Terms in TLBO Terms in Service Composition Domain

Teacher The optimal service composition
Learner One feasible service composition
Class The feasible set of service compositions

Subjects Tasks in the service composition plan
Grade Fitness (GQoS) of a service composition

Complex Service Computing 291

difference ¼ ri � ðXteacher � TFi �MeanÞ (9.16)

in which Xi
old and Xi

new is the i-th learner before and after learning from the teacher,

ri ¼ rand(0,1) is the learning step length, TFi ¼ round[1 þ rand(0,1)] is the teaching factor,

and Mean is the average of all learners:

Mean ¼ 1

P

XP
i¼1

Xi (9.17)

Initialize number of students (population), termination criterion

Identify the best solution (teacher)

Select any two solutions randomly Xi and Xj ,

Is Xi better than Xj

No Yes

No Yes

Yes

No

NoYes

Accept

Teacher
Phase

Student
Phase

Reject

AcceptReject

Is new solution
better than existing?

Is new solution
better than existing?

Is termination
criteria satisfied?

Final value of solutions

Modify solution based on best solution
Xnew = Xold + r(Xteacher – (TF)Mean)

Calculate the mean of each design variables

Xnew = Xold + r(Xj – Xi)Xnew = Xold + r(Xi – Xj)

Figure 9.8
Teaching-learning-based optimization (TLBO) flow chart [13].

292 Chapter 9

In our mobile service composition problem, each variable in a solution vector X must be

an integer. We therefore add a refine operation for TLBO after each vector operation:

def refine
�
Xi
�
:

for xj in X
i :

xj ¼ round
�
xj
�

if xj > up : xj ¼ up

if xj < low : xj ¼ low

(9.18)

in which up and low are the upper and lower bounds of the candidates, respectively.

After learning from the teacher, all learners update themselves with the learned result:

if F
�
Xi
new

�
< F

�
Xi
old

�
:

Xi
old ¼ Xi

new

(9.19)

in which the function F is used to calculate the fitness of the learner according to

Eqn (9.14).

9.3.4.2.4 Learner phase

Instead of learning from the teacher, learners increase their knowledge through interaction

between themselves in the learner phase. A learner learns something new if another

learner has more knowledge than he or she. This keeps the population diverse, which can

avoid the algorithm converging too early to obtain a good result.

For each learner in the class, Xi ¼ ðxi1; xi2;.; xidÞ will randomly choose a learning target

Xj ¼ ðxj1; xj2;.; xjdÞi 6¼ j. Xi will analyze its difference between Xj, then make the learning

decision:

Xi
new ¼

(
Xi
old þ ri,

�
Xi � Xj

�
F
�
Xj
�
> F

�
Xj
�

Xi
old þ ri,

�
Xj � Xi

�
F
�
Xj
�
< F

�
Xj
� (9.20)

in which ri ¼ rand(0,1) is the learning step length.

After learning between learners themselves, learners should also update as in Eqn (9.19).

9.3.4.3 Time complexity analysis

Suppose the number of learners in the population is P, the number of tasks in a service

composition plan is d, and the maximum iteration number is I. The process of the

proposed method can be summarized as follows:

1. Initialization: randomly generate P service compositions;

2. Calculate the fitness of every composition;

for i ¼ 1:P

Complex Service Computing 293

3. Decide which is the teacher in the class;

for j ¼ 1:d

4. Update the candidate for each task by learning from the teacher through Eqns (9.15)

and (9.19);

5. Update the candidate for each task by teaching from other learners following Eqns

(9.20) and (9.19);

EndFor

EndFor

6. If the iteration number reaches I, the algorithm terminates. Otherwise, return to step (2).

We can see that the main computation time is spent in steps (4) and (5): computing the

difference between learners and the teacher/learners and then updating the candidates for

each task. The time complexity of each of steps is O(d). Thus, for each learner in the

population, the time complexity of the teacher and learner phases is O(d). Next, the time

complexity for the whole population is O(P*d). Finally, the overall time complexity with I

iterations is O(I*P*d).

9.3.5 Experimental Evaluation

In this section, we describe a series of simulations we conducted to evaluate and validate

our proposed approach. The experiments were designed to answer the following questions:

1. Why is it necessary to consider user mobility when selecting services for service

composition in a mobile environment? What is the impact of the mobility?

2. Compared with other metaheuristic algorithm-based methods, can our approach find

more optimal results?

3. Compared with other metaheuristic algorithm-based methods, how does our approach

perform as to scalability?

9.3.5.1 Setup

The evaluation was run on a machine with an Intel Core 2.3 GHz i7 CPU. All algorithms

were implemented in Python 2.7 and evaluated sequentially; they were given up to a

maximum of 8 GB of memory if needed. We generated our service compositions with

randomly inserted tasks and control structures. For each task, we randomly created a

number of candidate services, each with a different QoS. To avoid other factors affecting

the evaluation results, we set it up so that the candidates for the same task required the

same amount of input/output data. The execution time of each service was generated from

a uniform distribution. Figure 9.9 depicts an example of a generated service composition

with five tasks.

294 Chapter 9

For all the implemented algorithms, the population size P ¼ 10, and the maximum

iteration number was 100; all the algorithms were run independently 50 times for

unprejudiced statistical results.

9.3.5.2 Impact of mobility

To validate the necessity of considering mobility when making selections for mobile

service composition, we compared our method with the standard composition method that

considers only services’ individual QoS. This method selects the candidate with the

optimal execution time for each task without considering mobile network latency. For the

experiments in this section, we generated service compositions with 50 tasks and 100

candidates available per task.

9.3.5.2.1 Impact of variation of signal strength

In the proposed mobility model, the two functions M and L determine the relationship

between users’ movements and the variation of signal strength. For our experiments, we

combined the user movement function location ¼M(time) and the mobile signal-strength

function QoMN ¼ L(location) into one function of signal strength: QoMN¼G(time) ¼
L(M(time)), which gives the signal strength with increasing time. Because there are many

factors affecting the variation of signal strength (such as a user’s speed, distance from

signal stations, properties of each signal station, etc.), the variation of signal strength in

practice cannot be defined by any functions, and it is difficult to acquire the real data of

signal strength. Therefore, we generated four different functions of signal strength to

simulate the variation of signal strength during the users’ movements:

G1: constant function. We set G1 ¼ a. This function simulates a traditional environment

and was used to evaluate how our method compares to the standard method for traditional

service composition.

Figure 9.9
Example service composition with five tasks.

Complex Service Computing 295

G2: cosine function. We set G2 ¼ a*(cos(b*time)þ 1)þ 1, which makes the signal

strength vary between 1 and a þ 1, with a variation cycle of 2p/b. This function simulates

a user moving with constant velocity and regularly distributed base stations.

G3: piecewise function. We set G3 to be a piecewise function: G3 ¼ a:time˛ [0,t1)j
b:time˛ [t1,t2)jc:time˛ [t2,t3)j.... This function simulates the user in different periods and

that the signal strength changes in each period.

G4: random function. We set G4 ¼ random(a, b). This function simulates unpredictable

situations.

Figure 9.10 shows the comparison results of the four signal-strength functions; the x-axes

are the iteration number and the y-axes are the response times of the service compositions

found by the two methods. Figure 9.10(a) shows that the standard method can find better

service compositions (with shorter response times) than our method. The standard method

can guarantee to find the optimal solution with the shortest response time because the

mobile network latency is always the same with function G1. However, our method

approaches the optimal result closely after a sufficient number of iterations, which

validates that our method can find near-optimal solutions.

Figure 9.10(b)e(d) shows that our proposed method outperforms the standard method with

the three variations of the signal strength function. This indicates that the standard method

is not effective at finding compositions when signal strength varies in a mobile

environment. We also find that our method performs better whether the signal strength

varies regularly or randomly.

9.3.5.2.2 Impact of amplitude of variation of signal strength

In this experiment, we aim to evaluate the impact of the amplitude of the variation of

signal strength (that is, how much the signal strength varied) on the improvement of our

approach. To this end, we selected the cosine function G2 as the variation function of

signal strength because of the ease of adjusting the amplitude of variation through the

tuning parameter a in G2. We set the range of a from 60 to 120, and b ¼ 1. We used the

metric improve_rate to evaluate how much better our method is compared to the standard

method.

improve rate ¼ rs � rm
rs

in which rs is the optimal result achieved by the standard method, and rm is the optimal

result from our method.

Figure 9.11 shows the improvement of our method with different values of the amplitude

of the variation of signal strength. The average improvement using our method is

approximately 20% compared to the standard composition method. We observe that as the

296 Chapter 9

amplitude of variation increases, there is no obvious regularity in how improve_rate varies.

This indicates that our method outperforms the standard method no matter how the

amplitude of variation of signal strength varies, because the values of improve_rate are

always positive. Furthermore, we note that the improvement fluctuates with different

amplitude values; this is because the improvement of the mobile network latency cannot

remain fixed under all conditions.

9.3.5.2.3 Impact of frequency of variation of signal strength

In addition to the amplitude, we also evaluated the impact of the frequency of the variation

of signal strength on the improvement of our approach. Similarly, we also selected the

0
200

240

280

320

360

20 40

Iterations

R
es

po
ns

e
tim

e

Iterations

R
es

po
ns

e
tim

e

60 80 100

TLBO
Standard

TLBO
Standard

0
300

325

350

375

400

425

20 40

Iterations

R
es

po
ns

e
tim

e

Iterations

R
es

po
ns

e
tim

e

60 80 100

0
340

360

380

400

420

20 40 60 80 1000

400

425

450

475

20 40 60 80 100

(a)

(c) (d)

(b)

TLBO
Standard

TLBO
Standard

Figure 9.10
Comparison results with the standard method. (a) Under function G1; (b) under function G2;

(c) under function G3; and (d) under function G4.

Complex Service Computing 297

cosine function G2 as the variation function of signal strength. The frequency was adjusted

by the tuning parameter b in G2. We set the b to range from 0.5 to 100, and a ¼ 100. The

same improve_rate metric was used to evaluate the improvement of our method compared

to the standard method.

Figure 9.12 shows the improvement of our method with different values of the frequency

of the variation of signal strength. The results show that as the frequency of variation

increases, the improve_rate value increases initially. When the frequency passes over a

certain threshold, the improve_rate value begins to decrease. Thus, we can conclude that

our method cannot continue to improve as signal strength changes more quickly. There

are two reasons for this: (1) the initial increase of improve_rate confirms the intuitive

notion that a relatively obvious variation of signal strength leads to better improvements

and (2) when the variation frequency surpasses a certain threshold, it may cause the

signal strength to vary so quickly that it returns to its previous value when the user

re-issues a data request; thus there is less change in signal strength from the user’s

perspective.

9.3.5.3 Optimality evaluation

Because few studies have investigated the problem of service selection for mobile service

composition, we have not found many existing methods for the problem to compare with

ours. Because TLBO is a fundamental population-based algorithm, we chose several other

population-based algorithms and compared their optimality with our method.

60
0.0

0.1

0.2

0.3

0.4

0.5

70 80

Values of a in G2

im
pr

ov
e_

ra
te

90 100 110 120

Figure 9.11
Impact of amplitude of variation.

298 Chapter 9

Genetic algorithm (GA): A search heuristic algorithm that mimics the process of natural

selection [14]. This has been used by existing service composition approaches [15e17].

We extended it by adding mobility.

Particle swarm optimization (PSO): A computational method that optimizes a problem

by iteratively trying to improve a candidate solution with regard to a given measure of

quality [18]. PSO has also been widely used in service composition research [19e21].

Negative selection algorithm (NSA): NSA belongs to the field of artificial immune

systems inspired by theoretical immunology and observed immune functions, principles,

and models [22]. It has recently been used in solving service composition problems and

proved to have high efficiency [23,24].

To compare the above algorithms with our approach, we tuned the parameters for each

algorithm to achieve their best performance. The most suitable parameters are shown in

Table 9.6. We generated service compositions with sizes between 10 and 100 (in steps

Table 9.6: Parameter setting of different algorithms

Algorithms Parameter Setting

GA Cross rate ¼ 0.7; mutate rate ¼ 0.3
PSO c1 ¼ c2 ¼ 2; weight ¼ 0.8
NSA a ¼ 0.1; b ¼ 3; r ¼ 1

im
pr

ov
e_

ra
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Values of b in G2

0 10 20 30 40 50

Figure 9.12
Impact of frequency of variation.

Complex Service Computing 299

of 10). We varied the number of candidate services available per task between 100 and

1000 (in steps of 100), which is considerably more than most of the previous studies used.

To evaluate the optimality of the algorithms, we plotted the total response time of the

service compositions found by all algorithms versus an increasing problem size.

9.3.5.3.1 Impact of different task number

Figure 9.13 plots the response time of the optimal service composition achieved by

different algorithms against an increasing number of tasks with a fixed number (100) of

services available per task.

From the comparison results in Figure 9.13, we observe that our method has outstanding

performance of solution optimality with all different task numbers. The response time of

the optimal service composition returned by TLBO is at least 10% lower than others, the

advantages becoming more obvious with the increasing numbers of tasks. Thus, we can

conclude that our approach manages to achieve a good approximation ratio of the optimal

solution regardless of the composition size.

9.3.5.3.2 Impact of different numbers of candidates

Figure 9.14 shows that the optimal response time decreases slightly as the number of

services per task increases. This is because there are more choices available as the number

of services increases. We also observe that our method outperforms the others no matter

what the number of candidate services are.

From the comparisons in this and the previous sections, we observe that our approach

maintains good performance with large-scale datasets both for tasks and candidates. This

GA
PSO
NSA
TLBO

Number of tasks

R
es

po
ns

e
tim

e

0
0

200

400

600

800

1000

1200

20 40 60 80 100

Figure 9.13
Response time of service composition with different numbers of tasks.

300 Chapter 9

is because TLBO keeps the population diverse through the learning phase, which

efficiently avoids converging to a suboptimal value too early. PSO performs better than

GA because it has an evolution target in each generation, but this can also result in early

convergence. For the problem we address, NSA performs worst, which is not consistent

with previous research in [23]. This is because NSA-based methods focus more on local

fitness, which is efficient in traditional service composition problems but not suitable in

mobile environments. In summary, our proposed TLBO-based method has the best

performance for optimality when compared to the other methods.

9.3.5.4 Scalability evaluation

In this section, we compared the scalability of our approach with the same other

algorithms using the same settings as for optimality.

9.3.5.4.1 Impact of different numbers of tasks

Figure 9.15 shows that GA runs fastest compared to the other three algorithms. However,

the qualities of its solutions are much worse than those of PSO and TLBO, although it

takes much less than 100 ms to compute. It seems that GA is faster only because it fails to

significantly improve the quality of its solutions, thus converging more quickly to a bad

local optimum. Similarly, NSA also runs faster than PSO and TLBO, but the quality of

NSA solutions are even worse than those of GA. PSO and TLBO obtain much better

quality of solutions, but they sacrifice some runtime to improve their optimality.

Furthermore, TLBO takes longer than PSO. This is because TLBO adds a learning phase

to avoid early convergence; this takes considerable runtime. Although TLBO uses a little

0
10

20

30

40

50

60

70

80

200

Number of services per task

R
es

po
ns

e
tim

e

400 600 800 1000

GA
PSO
NSA
TLBO

Figure 9.14
Response time of service composition with different numbers of services per task.

Complex Service Computing 301

more runtime than the other algorithms, it has a low algorithmic complexity, which is

roughly linear with regard to the composition size. This observation validates the time

complexity analysis in Section 9.3.4.3.

9.3.5.4.2 Impact of different numbers of candidates

In Figure 9.16 we note that the runtime of NSA increases significantly as the number of

services per task increases. Thus, NSA quickly becomes unfeasible for practical purposes;

it takes six times longer compared to the other algorithms for 1000 services per task. On

GA
PSO
NSA
TLBO

0
0

15

30

45

60

20 40 60 80 100

R
un

tim
e

(m
s)

Number of tasks

Figure 9.15
Runtime per iteration with different number of tasks.

200 400 600 800 10000
0

20

40

60

80

100

Number of services per task

R
un

tim
e

(m
s)

GA
PSO
NSA
TBLO

Figure 9.16
Runtime per iteration with different numbers of services per task.

302 Chapter 9

the other hand, the runtimes of the other three algorithms do not change as much with an

increasing number of services per task. Hence, all three algorithms scale well in this

regard in our scenario.

9.4 Service Computing with Service Pattern Model

The research on how to model business patterns is a hot topic in recent years. It is an

interesting problem to study the business model of service computing. There are three

kinds of related models: classical service models, business process (BP) models, and the

enterprise business (EB) models in management. However, none of them covers all the

properties of the service business model. In this section, we define the business model of

service as the combination of four kinds of strategies and name it the service pattern. We

also propose a language named service pattern description language (SPDL) covering all

the elements involved in these strategies. We formulate the language syntax and two basic

extraction rules assisting economic analysis. Furthermore, we extend the business process

model notation (BPMN) to support SPDL, which is named BPMN for service pattern

(BPMN4SP). The example of a mobile application platform is studied in detail for a better

understanding of SPDL.

9.4.1 Business Model and Service Computing

Nowadays the competition between businesses is not the competition of products but the

competition of business models, just as Peter F. Drucker, the master in management,

had said.

Taobao is a typical modern service company in China, which was established in 2003. The

online mall (http://www.taobao.com) is the primary business of Taobao, which does not

sell any goods, but it provides a platform service to sellers and attracts buyers. This

business model is called customer to customer (C2C) in e-business. Taobao does not

charge sellers for the basic platform service. The advertisement and the value-added

services (e.g., website decorating service) are the major sources of income. Since the

trading volume reaches 17.2 billion yuan (nearly 2.7 billion US dollars) in a single day,

Taobao now is the largest online mall in China. The trading data (logs) are very valuable

for helping to analyze customer behaviors. In recent years, the magic of this business

model has attracted lots of researchers studying the business model. There are three basic

questions on the business model:

• Q1: What is the business model of the service (e.g., Taobao)?

• Q2: How do you analyze the business model of a special service?

• Q3: How do you modify and redesign the business model of the service to provide a

better benefit?

Complex Service Computing 303

To address Q1, we define the business model of the service as the combination of four

kinds of strategies: resources allocating (RA), activities organizing (AO), shareholders

coordinating (SC), and productions designing (PD). We name the business model of this

type of service the service pattern.

There are three types of models related to address Q2:

• Classical service model concentrates on the service function and quality, and it does not

cover the business strategy and business process.

• Business process (BP) model defines the business process. Both Business Process

Execution Language (BPEL) [25] and Business Process Model and Notation (BPMN)

[26,27] solve the problem of business modeling and process optimization and have

achieved great success in the last few years. However, the economic elements (e.g.,

resources) are not defined clearly in BP.

• Enterprise business (EB) model in management is a hot topic. EB does well in assisting

to analyze the business strategy, while it is poor in process analysis. And EB cannot

figure out the relationship between the business processes with the business strategy.

To address Q2, we extract four basic elements from these four strategies: resource from

RA, activity from AO, role from SC, and entity from PD. In this section, we propose a

language named SPDL covering these elements. Furthermore, we propose two basic

analyzing tools based on SPDL. The SPDL is a high-level language that can bridge the

gap between BP and EB. For better implementation, BPMN4SP is introduced, which

extends the basic BPMN with the elements of SPDL. We replace the definition of resource

and activity in BPMN. We have studied the basic idea of artifact-centric business process

model (artifact BP) [28] and introduce the entity life cycle into our model.

To solve Q3, we need to first address Q1 and Q2. Both Q1 and Q2 are discussed in this

section, while Q3 is left for a future study.

9.4.2 Service Pattern Description Language

This section formulates the key syntaxes and basic notions of SPDL. Figure 9.17 presents

the relationship of basic notions through a Unified Modeling Language (UML) diagram.

There are four basic elements (resource, activity, role, and entity) in service pattern

strategies (RA, AO, SC, and PD). A role class owns many resources, and an entity class

has many attributes and states. The concept of activity is redefined by adding roles and

attributes. The step denotes the execution order, from one activity to another.

9.4.2.1 Basic set

We assume the existence of the following pair-wise disjoint countable infinite sets: TP of

primitive types, CE of entity classes (names), AT of attributes (names), S of entity states,

304 Chapter 9

IDCE
of (entity) identifiers for each class CE˛ CE, CR of role classes (names), RE of

resources (names), A of activities (names), and BR of business rules. A type is an element

in the union T¼ TPWCE.

The domain of each type t in T, denoted as DOM(t), is defined as follows:

• if t˛ Tp is a primitive type, the domain DOM(t) is some known set of values (integers,

strings, etc.);

• if t˛CE is an entity type, DOM(t)¼ IDt.

9.4.2.2 Entity

Definition 6: Entity class. An entity class is a tuple (CE,AT,s,Q,s,F) in which CE˛CE is

an entity class name, AT4 AT is a finite set of attributes, s:AT/T is a total mapping,

Q4 S is a finite set of states, and s˛Q, F4Q are initial and final states, respectively.

Definition 7: Entity instance. An entity instance of entity class (CE,AT,s,Q,s,F) is a triple
(e,m,q) in which e˛ IDCE

is an identifier, m is a partial mapping that assigns each attribute

AT˛AT an element in its domain DOM(s(AT)), and q˛Q is the current state.

<<enumeration>>

<<enumeration>>

<<enumeration>>

+Financial +Resources

+ReadRoles

+ToActivity

1..*

1

+FromActivity

+WriteEntities

+Attributes

+ReadEntities

+States

–WriteRoles

+Labor

+Fixed

+Intangible

Resource

Participant

Step
State

Entity

Activity

Attributes

–Name : string

–Name : string +Name : string

–Name : string

0..1

0..1

1

1

1

1

0..1

0..1

0..1

0..1

*

*

*

*

*

*

Figure 9.17
The UML diagram of basic notions.

Complex Service Computing 305

The concept of entity covers the business data objects. We may denote an entity class

(CE,AT,s,Q,s,F) simply as CE. A class CE2 is referenced by another class CE1 if an

attribute of CE1 has type CE2. Similarly, an identifier e2 is referenced in an entity instance

e1 if e2 occurs as an attribute value of e1.

Example 1. In MAP, APP is an important entity. The APP class and APP instance are

presented in Table 9.7. The APP instance we used here is Angry Birds. Its state is on sale,

meaning that it is available at an APP store. Its price is zero, meaning that this version is

free. Its ID is id391231.

9.4.2.3 Resource

Before defining the role, we first define the resource. The resources are those valuable in

the process. There are four basic kinds of resources.

• The financial resource is the money in various forms.

• The fixed resource includes the houses, office equipment, etc.

• The labor resource is the resources of available manpower.

• The intangible resource includes the brand and information resources.

We define the type of each kind of resource as the basic float type for simplification.

9.4.2.4 Role

Definition 8: Role class. A role class is a triple (CR,RE,s) in which CR˛CR is the role

class name, RE4 RE is a finite set of resources, and s:RE/T is a total mapping.

Definition 9: Role instance. The role instance of a role class (CR,RE,s) is a two-tuple

(r,m) in which r˛ IDCR
is an identifier, and m is partial mapping that assigns each resource

RE˛RE an element in its domain DOM(s(RE)).

In SPDL, the key characteristic of the role is owing resources (financial, fixed, labor, and

intangible resources), and it is different from the concept of a participator in BP. An

independent software company is a role, but a software engineer is only a participator.

Table 9.7: Entity example: APP entity and an APP instance

APP Entity An APP Instance

Attributes: States: ID:id391231
Name:string Initialized State: on sale
Quantity:int Unchecked Attributes:
Price:float Not on sale Name: Angry Birds
Version:int On sale Quantity: 5
Sales:int ... Price: 0

... Version: 12

306 Chapter 9

Example 2. In MAP, there are four roles: customer, developer, platform and advertiser.

Table 9.8 presents a develop role and an instance, which has an ID of id191231.

9.4.2.5 Schema

Definition 10: Entity schema. An entity schema is a finite set GE of entity classes with

distinct names such that every class referenced in GE also occurs in GE. The role schema

followed GE is a finite set GR of role classes with distinct names such that every class is

referenced in GE. The schema is a finite set G¼ GEWGR.

9.4.2.6 Atom

Definition 11: Atom. An atom over a schema G is one of the following:

1. bolean expression,

2. t1¼ t2, in which t1,t2 are instances of entity class (or role class) C in G,

3. DEFINED(t,D), in which t is an instance of the entity class C and D an attribute in C,

or t is an instance of the role class C and D a resource in C,

4. NEW(t,D), in which t is an instance of the entity class C, and D is an entity typed

attribute in C, or t is an instance of the role class C, and D is an entity typed resource

in C or,

5. s(t) (a (state) atom), in which t is an instance of the entity class C, and s is a state of C,

6. :c, in which c is an atom, and

7. c1oc2 and c1nc2, in which c1 and c2 are atoms.

A condition is stateless if it contains no state atoms.

Example 3. An example of a condition is as follows:

DEFIND(id391231,APP.price) o on sale(id391231)

The condition is the combination of two atoms. The price of id391231 has been defined.

id391231 is in the state of on sale.

Table 9.8: Role example: developer and developer instance

Developer Developer Instance

Resources: ID:id191231
Labor:float Resource:

Financial:float Labor: 20.3
Fixed:float Financial: 32000

Invisible:float Fixed: 1230000
Invisible: 31233

Complex Service Computing 307

9.4.2.7 Activity

Definition 12: Activity. An activity over schema G is a tuple (n,VEr,VEw,VRr,VRw,M,P,E), in

which n˛ A is an activity name, VEr,VEw are finite sets of variables of entity classes in G,

VRr,VRw are finite sets of variables of role classes in G, P is a condition over V that

does not contain NEW, M is a partial mapping from VEr to VEw, and E is a conditional

effect.

M describes the mapping as which input attributes influenced each output. Considering a

sequence of input attributes xe1,...,xek and output attributes ye1,...,yel (k,l � 1), M˛Rk�l is a

matrix.

Mi;j ¼
�
1 if xei to yej is a mapping in M

0 elsewise

We denote M(i,j)¼Mi,j.

Example 4. In MAP, an example of purchasing an APP is presented in Table 9.9. An

entity instance (id391231) is used and two roles, namely id231441, id231357 have

participated in this activity. This activity reads the price and sales of the APP as input

attributes. It reads the financial resource of the customer and platform as input resources.

The mapping relationship is that the sales of the APP influence itself. The precondition

consists of three parts:

1. This APP has declared its price.

2. The price of the APP should be smaller than the amount of the customer’s money.

Table 9.9: Activity example

Purchasing APP

Entity: id391231:APP
Role: id231441:Customer, id231357:Platform

Read Attributes: id391231.Price, id391231.sales
Write Attributes: id391231.sales
Read Resource: id231441.Financial, id231357.Financial
Write Resources: id231441.Financial, id231357.Financial
Mapping Relation: id391231.Sales/ id391231.Sales

Precondition: DEFINED(id391231,Price)^
id391231.Price � id231441.Financial^

On sale(id391231)
Effect: id391231.Sales ¼ id391231.Salesþ1^

id231357.Financial ¼ id231357.Financial þ id391231.Price^
id231441.Financial ¼ id231441.Financial � id391231.Price

308 Chapter 9

3. The APP is in the state of on sale.

There are three effects of this activity:

1. The sales of the APP increases 1;

2. The money of the platform increases;

3. The money of the customer decreases.

9.4.2.8 Rule

Definition 13: Business rule. Given a schema G and a set of activities A, a business rule

is an expression with one of the following two forms:

• “If f invoke

sðxe1;.; xek; ye1;.; yel; xr1;.; xrm; yr1;.; yrnÞ00; or
• “If f change state to 4,”

in which f is a condition over variables xe1,...,xek;ye1,...,yel;xr1,...,xrm;yr1,...,yrn(k,l,m,n�1),

s is an activity in A such that xe1,...,xek are all entity variables to be read, ye1,...,yel are all

entity variables to be written, xr1,...,xrm are all role variables to be read, yr1,...,yrn are all

role variables to be written, and 4 is a condition consisting of only positive state atoms

over ye1,...,yel.

9.4.3 Business Process Model Notation for Service Pattern

The BPMN4SP is the extension of BPMN 2.0 [26,27] for better support of SPDL. As

mentioned in Table 9.2, there are three major extensions:

1. The entity extends the concept of data object with states. The entity can be created and

modified from one state to another and archived at last. The process is the life cycle of

the entity. In the model of artifact BP [29], the data with its life cycle is called artifact,

and we use the entity instead. The entity class must be declared in the head of BPMN,

and entity instances are defined in the process.

2. The participator is replaced by the role in our extension. The essential difference

between participator and role is that the role owns resources and takes its resources into

the service process to create (promote) values. Instead, the concept of participator

cannot distinguish resources and normal attributes.

3. We extend the definition of activity with the reading and writing on the attributes of

entities and the resources of roles, respectively.

Table 9.10 provides the detailed extension of BPMN4SP on BPMN.

Complex Service Computing 309

9.4.4 Case Study

This section discusses the example of MAP in detail. To analyze the value creation of each

role in MAP, we format the process, which is presented in Figure 9.18.

Table 9.10: BPMN4SP extends BPMN

BPMN2.0 BPMN4SP

Description Attributes Description Extended attributes

Data
object

Basic data object
for processes

Replaced by entity

Entity Data attributes
and states

Attributes, states

Participant Partner entity
or partner role

Name, processRef,
partnerRoleRef,
partnerEntityRef,
interfaceRef,

participantMultiplicity,
endPointRefs

Replaced by role

Role Roles and its
resources

Resources

Resource Available source
of wealth

Task Atomic activity Name,
isforcompensation

Replaced by activity

Activity Work performed
within process

isForCompensation,
loopCharacteristic,
resources, default,
ioSpecification,
properties,

boundaryEventRefs,
dataInputAssociations,
dataOutputAssociations,

startQuantity,
completeQuantity

Work performed
within process

Name, readAttributes,
writeAttributes,
readResouces,
writeResources,

mapping,
preCondition,

conditionalEffect

Data
object

Basic data object
for processes

Replaced by entity

Entity Data attributes
and states

Attributes, states

Participant Partner entity or
partner role

Name, processRef,
partnerRoleRef,
partnerEntityRef,
interfaceRef,

participantMultiplicity,
endPointRefs

Replaced by role

Role Roles and its
resources

Resources

Resource Available source
of wealth

310 Chapter 9

9.4.4.1 Information flow analysis

With the help of the extraction rule defined in Section 9.4.2, we can extract the n-th order

attributes from the origin process in Figure 9.18. Figure 9.19 is the second-order attributes

analysis result on feedback. Figure 9.19(a) is the information flow for the second-order

attributes of feedback, and Figure 9.19(b) is the attributes influence diagram. We can see

that feedback is directly influenced by the quality and price, and the feedback has an

impact on the sales of APP by the influence of its ranking.

9.4.4.2 Value flow analysis

With the defined resources and roles, the value flow can be extracted from the origin

diagram by the extraction rule defined in Section 9.4.2.8. Figure 9.20 presents the value

flow of the MAP.

To quantitatively analyze the value flow of each role, we study the value flow of the

advertiser. The value creation process can be divided into three parts.

• The investment phase is the first step. The advertiser uses 10 to buy fixed resources, 500

to employ programmers, and 30 to pay the advertising fee to the developer. The relative

value of financial resource is (�10) þ (�500) þ (�30) ¼ �540 now.

Figure 9.18
The swim lane diagrams of mobile application platform service example.

Complex Service Computing 311

• The creation phase is the second step. The advertiser designs the advertisement and

implants it into APP. In this step, 5 of 10 fixed resources and all 500 labor resources

are used. The value promotion from the APP is 50. So the relative intangible resource

is now 500 þ 5 þ 50 ¼ 555.

Figure 9.19
The second-order attributes information flow of feedback.

Parchasement

Earn

Fixed

Financial

Financial

Financial

Labor

Intangible

C
us

to
m

er
P

la
tfo

r
m

D
ev

el
o

pe
r

A
dv

er
tis

er Intangible

Intangible

Intangible

Fixed
Labor

Fixed
Labor

Fixed
Labor

Investment
Phase

Creation
Phase

Manage

Manage

Develop

Develop

Design
Design

Put in market

Put in market

Procurement

Parchasement

Procurement

Procurement

Employment

Employment

Employment
Implant Ad.Implant Ad.

Use APP

Reward
Phase

Financial

Figure 9.20
The value flow of four roles in mobile application platform.

312 Chapter 9

• The reward phase is the last step. The advertiser converts the value of the advertisement

(555) to income. The financial resource is now �540 þ 555 ¼ 15.

After performing the three steps, we can see that the labor and intangible resources are not

changed, but the financial and fixed resources increased. The last result is depicted in

Figure 9.21. With the help of the value flow, we can now understand that the advertiser

earns by such a process, and the return on investment is (15 þ 5)/(10 þ 500 þ 30) ¼ 3.7%.

The discussion on how to calculate each resource changing with the influence of activities

and how to re-allocate the resources to get a higher return are beyond the scope of this

section. It will be presented in a future study.

We have studied 62 enterprises from 355 public companies in the Growth Enterprise

Market (GEM) in China and analyzed their service pattern [30]. The GEM is the second-

board market, which is very similar to the NASDAQ Stock Market. We have extracted six

types of service patterns: long tail service pattern, multiplatforms service pattern, free

service pattern, secondary innovation service pattern, unbundling service pattern, and

systematic service pattern.

9.5 Summary

The competition in the area of the modern service industry is becoming a focal point of

the world’s economic development. Service computing, which provides flexible computing

architectures to support the modern service industry, has emerged as a promising research

area. With the prevalence of cloud computing, more and more modern services are

deployed in cloud infrastructures to provide rich functionalities. The number of services

and service users are rapidly increasing. The issues in service computing become too

large-scale and complex to be effectively processed by traditional approaches. This

chapter first introduced the concept of crossover services and complex service computing.

Then we analyzed three challenges of complex service computing. Then we introduced

three of our studies on overcoming the above challenges. The study on tagging data

service mining is a solution to use the big data generated in services. The study on service

selection for mobile service composition is an example of service computing in complex

environments. The study on a service pattern model is an innovation on service

Figure 9.21
Advertiser value flow.

Complex Service Computing 313

management. Above all, as the prevalence of service computing and information

technology expand, the issues of service computing will become more complex and new

research topics will emerge.

References

[1] L. Chen, L. Hu, Z. Zheng, J. Wu, Wtcluster: utilizing tags for web services clustering, in: Proc. of the
Ninth International Conference on Service Oriented Computing (ICSOC), Springer, 2011, pp. 204e218.

[2] K. Elgazzar, A.E. Hassan, P. Martin, Clustering WSDL documents to bootstrap the discovery of web
services, in: International Conference on Web Services, IEEE, 2009, pp. 147e154.

[3] R. Nayak, Data mining in web service discovery and monitoring, Int. J. Web. Serv. Res. 5 (1) (2008)
62e80.

[4] W. Liu, W. Wong, Web service clustering using text mining techniques, Int. J. Agent-Oriented Softw.
Eng. 3 (1) (2009) 6e26.

[5] M.F. Porter, An algorithm for suffix stripping, Program 14 (3) (1980) 130e137.
[6] K. C, W. G, Inverse document frequency (IDF): a measure of deviations from Poisson, in: Proc. of the

ACL Third Workshop on Very Large Corpora, Springer, 1995, pp. 121e130.
[7] R.L. Cilibrasi, P.M.B. Vitnyi, The Google similarity distance, IEEE Trans. Knowl. Data. Eng. 19 (3)

(2007) 370e383.
[8] B. Sigurbjrnsson, R. van Zwol, Flickr tag recommendation based on collective knowledge, in: Proc. of the

17th International Conference on World Wide Web (WWW), ACM, 2008, pp. 327e336.
[9] S. Tekinay, B. Jabbari, Handover and channel assignment in mobile cellular networks, J. Commun. Mag.

IEEE 29 (11) (1991) 42e46.
[10] D.B. Johnson, D.A. Maltz, Dynamic Source Routing in Ad hoc Wireless Networks[M]//Mobile

Computing, Springer, 1996, 153e181.
[11] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-aware middleware for

web services composition, J. Softw. Eng. IEEE Trans. 30 (5) (2004) 311e327.
[12] F. Glover, Future paths for integer programming and links to artificial intelligence, J. Comput. Oper. Res.

13 (5) (1986) 533e549.
[13] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching-learning-based optimization: a novel method for

constrained mechanical design optimization problems, J. Computer-Aided Des. 43 (3) (2011) 303e315.
[14] Genetic algorithms and their applications, Proceedings of the Second International Conference on Genetic

Algorithms[M], Psychology Press, 2013.
[15] M. Tang, L. Ai, A hybrid genetic algorithm for the optimal constrained web service selection problem in

web service composition, in: [C]//Evolutionary Computation (CEC), 2010 IEEE Congress on, IEEE, 2010,
pp. 1e8.

[16] Z. Ye, X. Zhou, A. Bouguettaya, Genetic Algorithm Based QoS-Aware Service Compositions in Cloud
Computing[C]//Database Systems for Advanced Applications, Springer Berlin Heidelberg, 2011,
321e334.

[17] H. Jiang, X. Yang, K. Yin, S. Zhang, J.A. Cristoforo, Multi-path QoS-aware web service composition
using variable length chromosome genetic algorithm, J. Inform. Technol. 10 (1) (2011) 113e119.

[18] M. Clerc, Particle Swarm Optimization[M], John Wiley & Sons, 2010.
[19] S. Wang, Q. Sun, H. Zou, F. Yang, Particle swarm optimization with skyline operator for fast cloud-based

web service composition, J. Mob. Netw. Appl. 18 (1) (2013) 116e121.
[20] G. Kang, J. Liu, M. Tang, Y. Xu, An effective dynamic web service selection strategy with global optimal

QoS based on particle swarm optimization algorithm, in: [C]//Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, IEEE, 2012, pp.
2280e2285.

314 Chapter 9

[21] H. Yin, C. Zhang, B. Zhang, Y. Guo, T. Liu, A hybrid multiobjective discrete particle swarm optimization
algorithm for a SLA-aware service composition problem, J. Math Probl. Eng. 2014 (2014).

[22] D. Dasgupta, K. KrishnaKumar, D. Wong, M. Berry, Negative Selection Algorithm for Aircraft Fault
Detection[M]//Artificial Immune Systems, Springer Berlin Heidelberg, 2004, 1e13.

[23] X. Zhao, Z. Wen, QoS-aware web service selection with negative selection algorithm, Knowl. Inf. Syst.
40 (2) (2013) 349e373.

[24] S. Deng, L. Huang, Y. Li, J. Yin, Deploying data-intensive service composition with a negative selection
algorithm, Int. J. Web. Serv. Res. 11 (1) (2014) 76e93.

[25] C. Barreto, V. Bullard, T. Erl, J. Evdemon, D. Jordan, K. Kand, et al., Web Services Business Process
Execution Language Version 2.0 Primer, OASIS Web Services Business Process Execution Language
(WSBPEL) TC, OASIS Open, 2007.

[26] S.A. White, Business process modeling notation, Version 1.0, May 3, 2004. www.bpmn.org.
[27] S.A. White, Process modeling notations and workflow patterns, Work Handb. 2004 (2004) 265e294.
[28] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, J. Su, Towards formal analysis of artifact-centric business

process models, in: Business Process Management, Springer, 2007, pp. 288e304.
[29] D. Cohn, R. Hull, Business artifacts: a data-centric approach to modeling business operations and

processes, Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 32 (3) (2009) 3e9.
[30] Z.H. Wu, X.B. Wu, M.M. Yao, Business Model Innovation of Modern Service Company a Value Network

Perspective, 1st ed., Science Press, Beijing, 2013.

Complex Service Computing 315

This page intentionally left blank

CHAPTER 10

JTang Middleware Platform
Chapter Outline
10.1 Overview of JTang 317

10.2 Platform Architecture 318
10.2.1 Basic Application Server 318

10.2.2 Service Computing Component Library 320

10.2.3 Integrated Development Environment 322

10.2.4 Integrated Management Console 323

10.3 JTang Development Environment for Service Components 323
10.3.1 Model-Driven Development of Service Components 323

10.3.2 Assembling Service Component 324

10.3.3 Service Component Library 325

10.4 JTang Distributed File Storage Service 326
10.4.1 Architecture 327

10.4.2 File Data Block Storage Management Mechanism 328

10.4.3 Multifile Replication Management 330

10.4.4 File Transmission Based on Cache 331

10.5 JTang Enterprise Service Bus 331
10.5.1 Architecture 332

10.5.2 Massage Exchange Based on Content Router 332

10.5.3 Reliability Management of Distributed Nodes 334

10.6 JTang-Plus 335

10.7 Summary 336

10.1 Overview of JTang

The software industry works as a country’s basic strategic industry, which occupies an

important position and role in the economic and social development of the country.

Throughout the development of the global software industry, 2000s has seen a steady

improvement in industrial sectors and also the trend of accelerated growth. One of the

main reasons for the boosting in software industry is that middleware technology has been

widely accepted and adopted.

Middleware has been regarded as one of the key components in fundamental software

area, with operating systems and databases. It is located on the operating system, the

network, and the database. It also works beneath the application tier, which hides the

complexity of software structures and provides a unified development and runtime

Service Computing: Concepts, Methods and Technology. http://dx.doi.org/10.1016/B978-0-12-802330-3.00010-2

Copyright © 2015 Elsevier Inc. All rights reserved. 317

environment for the upper applications. Therefore, it can quickly help users build complex

software applications with flexibility and efficiency. The last 10 years have seen a rapid

development in middleware technology. It has transformed from early single type

(messaging middleware, data access middleware, object middleware, etc.) to complex

large-scale middleware. There are a variety of integrated middleware platforms, which are

provided by many well-known middleware vendors, such as BEA, IBM, Oracle, and SAP.

The essential of a software platform is to partition complex systems into several tiers,

which is to find the right midpoint between standardization and personalization. Currently,

the middleware platform is the fundamental part of a national technology plan. In general,

middleware platform software has two basic elements: one is to support the environment,

and the other is to develop systems. The former part provides conditions for the

development of application software and operating systems. The latter provides a range of

basic tools for software management. Middleware software has been chosen as a

fundamental supporting platform to accelerate the pace of software development and

improve software reliability.

The JTang middleware software platform is developed in the background of the service-

oriented research and development of the modern service industry. It was supported by

China’s “eleventh five-year” plan, a major project that was to support one of the topics in

the “modern service support system and common technology demonstration project.” The

result is aimed at boosting modern service e-commerce, logistics, electronic finance,

digital tourism, digital education, digital communities, and digital media sectors. During

the eleventh five-year program, the JTang middleware platform was adopted in finance,

securities, public services, e-government, e-commerce and industry, and other fields. In

2008, Zhejiang University worked with Hangzhou National Software Industry Base Co.

and Alibaba Network Technology Co., Ltd, and 13 units to launch a JTang platform

software industry alliance in Hangzhou, which aims to further expand the industrial impact

of the JTang middleware platform.

10.2 Platform Architecture

The JTang modern services-oriented middleware platform is a large, integrated middleware

platform software, including pond-based application servers, a service computing component

library, and an integrated development environment with an integrated management console

consisting of four parts. Its overall architecture structure is shown in Figure 10.1.

10.2.1 Basic Application Server

The JTang basic application server is a lightweight J2EE application server that provides

object middleware, reliable messaging services, container security, object/relational

318 Chapter 10

mapping, and other basic services. It provides the basis for the calculation of the upper

component library services and a variety of industry software components operating

environments, following the introduction of the base application server, consisting of

several core modules.

1. Micro-kernel services

The JTang micro-kernel is the core of the application server startup process, which is

primarily responsible for the entire application server loading the system modules

(registration, start, stop, cancel) and deploying the J2EE applications (EAR, EJB, WAR).

The micro-kernel services uses inversion of control technology to achieve the dynamic

loading of components among the application server modules.

2. JTang EJB container

The JTang EJB container is the basis for enterprise-class application server object

middleware to provide transparency and security, transaction services, such as support for

distributed enterprise-class Java object running calls. Compared with the widely used EJB

application server, the JTang EJB container provides support for multiple network

transport protocols (RMI, Socket, SSL, Http, IIOP, Https, etc.). Also it performs

optimization and usability EntityBean, which integrates new object-relational mapping

technology and other key features.

Figure 10.1
JTang middleware platform architecture.

JTang Middleware Platform 319

3. JTang messaging middleware

The JTang messaging middleware is consistent with Sun’s JMS1.1 (Java Message Service)

standardization. Messaging middleware provides reliable, high-performance messaging

services for business, finance, manufacturing, government, and other sectors. It also

provides security (user authentication authorization, message encryption and

authentication) scalability (using interceptor technology), distributed capabilities (news

bridge), support for large messages, and a variety of formats with persistence features.

4. JTang naming service

The JTang naming service is designed for a JTang-based application. Its server is

developed to provide a lightweight naming service, through the use of a stored flat tree

using JNDI 1.2 specification standards. It also supports binding objects, unbinding, and

heavy-binding operation, and ensures stable and efficient features.

5. JTang cluster service

The JTang cluster services use packet multicast technology to provide for the EJB session

bean. The session bean, load balancing, and other types of cluster services provide higher

performance through a simple increase in the number of hardware servers.

6. Container security services

Based on the Java Authentication and Authorization Service authentication and access

control system, this system provides secure authentication and authorization mechanisms.

It achieves Java Authorization Contract for Containers declarative rights management,

making the EJB module object access method the declared rights management, thereby

providing fine-grained access control.

10.2.2 Service Computing Component Library

The JTang services computing library provides technical services for the calculation of

basic components, tools, and methods, including visualization community service,

enterprise service bus (ESB), messaging service component, file service components,

portable management interface (PMI) security service component, process management

services components, single sign-on service components, forms service components, and

reporting services components.

1. Visualization services community

The JTang visualization community service provides an intuitive and convenient services

organization and management component, improves service registration, offers

classification services, and provides retrieval and efficiency operations. It provides a

service management framework based on an Eclipse plug-in development technology, with

320 Chapter 10

full service registration, discovery, management and user management, category

management, and other functions.

2. Message service component

The JTang message system works between service components using the service

computing environment. The system provides news releases, news subscriptions,

messaging, events, matching, event routing, and other functions, with loosely coupled and

scalable features. It also supports efficient interaction with the news service system.

3. Distributed enterprise service bus

The JTang distributed ESB follows the Java Business Integration 1.0 specification, which

is to provide business services to achieve integration of heterogeneous information systems

based on the service-oriented architecture-based communications platform integration. The

proposed container enterprise service bus (ESB container) operating in the platform

concept designs and implements a fully distributed ESB engine, which provides

integration reliability and throughput.

4. Distributed file storage service component

The JTang distributed file storage service component provides a distributed file storage

service for the e-government and e-commerce requirements of massive document data.

Based on a series of multisource downloading technology, virtual directory provides high-

performance heterogeneous distributed file storage service, system backup and recovery,

storage encryption, full-text search, and a series of back-office services.

5. PMI security service component

The JTang security services PMI is an enterprise-level rights management

component that provides authentication and accesses control systems and other

security-related applications. This component introduces grid technology, distributed

architecture to improve the efficiency of system access privileges constrained by

simplifying the mechanism, the use of Lightweight Directory Access Protocol

(LDAP) data storage, and enterprise-class authority on request.

6. Process management service components

The JTang process management services is a generic process management system that

provides Eclipse platform-based process design, process execution and process monitoring,

and other functions, which can speed up the processing of business processes, increase

productivity, and improve efficiency levels of the organization. The system proposes a

service flow concept, the definition of support services, references, bindings, and

combinations of a variety of ways to support third-party application integration and staff

organization integration.

JTang Middleware Platform 321

7. Single sign-on services component

The JTang single sign-on service is a single sign-in service component that can simplify

access to different computing environment services and systems designs. This component

provides a single point of landing multimode support for desktop applications, providing

automated, unified, and secure login web services and also applications to improve the

efficiency of development and access to complex distributed service systems.

8. Forms services components

The JTang forms services component provides automatic generation and deployment of

electronic forms, information collection, and processing functions. The component

supports Dreamweaver plug-in development and Eclipse plug-in development in two ways

through the WYSIWYG visual customization form to simplify and speed up the modern

service industry software required for data collection with the user interface design

process.

9. Reporting services components

Reporting services is a set of network protocols. The JTang service components provide

report design and deployment. They print through network report design components,

providing convenient services for all types of industry report output software. This component

uses B/S architecture. It supports dynamic selection of a variety of statistical chart types and a

variety of report output formats, such as images, PDF files, and other Flash files.

10.2.3 Integrated Development Environment

The JTang integrated development environment works on the application server. JTang

service computing components include JBuilder and the Eclipse integrated development

environment, providing service components, and application software from modeling,

designing, and development. It supports running and managing the necessary technical

methods, in addition to tool support. Through this development environment,

application software development and application integration using Unified Modeling

Language (UML) modeling tools can provide the required environment, and model-

driven (MDA) tools can be used to achieve application requirement descriptions, along

with an automatic and semiautomatic code generation software system. It takes

advantage of the service component development tools to allow someone to develop his

own service components and do any necessary debugging and deployment. It takes

advantage of the service package tools, services component assembly tools gray box,

black box assembly tools for on-demand application assembly, deployment, and

operation and dynamic tracing and debugging, thus speeding up the modern service

industrial application software development.

322 Chapter 10

10.2.4 Integrated Management Console

The JTang integrated management console is a web browser-based middleware platform.

It supports configuration, monitoring, maintenance, and other functions in an integrated

set of management tools that provide a platform for configuration, application

deployment, performance monitoring, performance optimization, log management,

security management, version management, and other management functions. The web

application can help users to quickly and easily manage the JTang middleware platform,

monitoring the operation of the platform and deploying a variety of external

applications.

10.3 JTang Development Environment for Service Components

Compared with traditional binary components such as EJB and CORBA, service

components provide functionalities with greater granularity, more independence, and a

higher level of abstraction. How to design, develop, assemble, and manage service

components in an agile way has become an important issue for a distributed computing

software system structure. The JTang service component development environment

provides UML service component modeling, code conversion, source-level Java

component visual assembler, and service component lifecycle management. It includes

MDA service component development tools, assembly tools, and services component

library services.

Based on the concept of model driven, the JTang service component development

environment provides user demand modeling and code conversion functionality. As a

result, users do not need to be concerned with the code itself, but rather can focus on the

requirement modeling. The service component assemble toolkit manages tools into the

gray box and black box. The former box focuses on invasive methods, which provides a

graphic way to achieve fine-grained service components assembler. The latter tool supports

an encapsulation mechanism identifying the differences between the heterogeneous

components, and also it provides graphic assembly methods, along with authentication and

assembly models. Service component library management tools support semantic

technology to provide registration services for different types of components, deployment,

and other routine maintenance functions.

10.3.1 Model-Driven Development of Service Components

Based on MDA technology, the service component development method can, to some

extent, simplify the work for developers. It only creates a platform-independent model,

and then automatically converts to code through the model, thus completing the

development work.

JTang Middleware Platform 323

In the JTang service component development environment, the service component

development toolkit uses a MDA service to provide a complete set of service components

for functional transition from model to code through Eclipse plug-ins. It composes using

UML tools, resources, tools, and MDA libraries form the core of the engine. First, the

UML design tool supports UML2.0 standards to the MDA standard UML modeling

process design models and adds a reference to the archives of MDA. MDA-related

information is transferred to the design process. Second, the main components of the

repository are responsible for storing PIM tools to provide a variety of functional MDA

engineering project management. Finally, the MDA core engine consists of three parts:

including the translation library, metafacade library, and template engines. The translation

library, primarily Object Constraints Language, queries into various forms of language

under this component and is mainly responsible for the conversion of the PIM model

constraints content. The metafacade library contains metadata for each platform to

achieve, a template engine configuration, and implementation cartridge script, a template

based on the template’s engine encapsulation technology, combined with model

transformation rules metafacade objects, and ultimately generates a technology platform-

specific model of products.

10.3.2 Assembling Service Component

Based on the fine-grain development method, the service component assembly method is a

direct way by which service members have used r for the rapid development of large-

grained granularity of service members. The JTang service component development

environment offers two different services component assembly methods: gray box and

black box assembly. In general, the study of the service component assembly technology

research services component assembly mechanism is based on the service component

model, including the source code level assembly and component object-based service

interoperability level assembly operation. According to the degree of openness, assembling

service components can be classified into three categories: the white box assembly

technology, the gray box assembly technology, and the black box assembly technology.

• White box assembly: The white box, which has visibility to all the implementation

details of the reuse of service components, is visible. Using the white box assembly

method, developers understand the service component; the service component is modi-

fied as needed; and then the service component assembly is created. From the service

component reuse perspective, the presence of the white box assembly can only be

temporary and partial; one can freely modify the software, but it does not allow for

reusable service components with a true sense of the product. This limitation restricts

the flexible reuse and the completeness of performance.

324 Chapter 10

• Black box assembly: This method does not require the implementation details of the

service member. Also, the service member does not need to understand configuration.

Application developers assemble reusable service components to obtain the imple-

mentation of the system. Developers need to understand the external interface of the

service member, without understanding the internal implementation of the service

component assembly in the best way.

• Gray box assembly: Between “black box” and “white box,” the gray box assembly is

the hot spot of service technology. In general, the gray box service members are not

allowed to modify the source code directly, but provide a service component behavior

that can be modified to extend the language or programming interface. Currently, the

research gray box assembly method focuses on methodological framework-based

linker-methods and veneers based on respect. The gray box assembly method is able

to achieve the flexibility of the service component assembly and is not too

complicated.

The JTang service component development environment supports the black box and gray

box assembly methods in two ways. The former service members on the proposed

preassembled components with a consistent service description specification package, and

component assembly may understand the external interface black box service components

through the specification and thus be assembled; while the latter uses the intrusive

thoughts assembler to achieve a service component assembly at the source code level. This

approach does not require modifying the source code and is not limited to a specific

programming language, which allows it to achieve a better level of service components

assembly code.

10.3.3 Service Component Library

The service component library service system supports rapid development and

deployment of a service member management tool, which contains a series of highly

multiplexed service member capabilities. By reusing the service component library,

service members can quickly customize, develop, and build business applications,

which greatly improve the level of software reuse, and improve the development

efficiency of the services of the system. Existing large general service components

provide applications for a variety of management systems, which are used more

commonly in faceted classification management. It can greatly improve retrieval

efficiency, but can also help users understand complex service members and target

areas. However, with the complexity of the business services component reuse member

extending from the base service component, retrieving the appropriate service

components from a traditional library service component becomes particularly difficult.

Therefore, the design becomes increasingly important based on a high degree of

JTang Middleware Platform 325

automation within the semantic service component library. JTang service component

library management tools use semantic technology to service members. It supports not

only an increase in the basic components of semantic information in the service, but

also the service member’s functional, behavioral, and semantic annotation fields. After

the service members are fully semantic, a high precision and recall rate of retrieval are

expected.

JTang service component library management tools are an important part of the JTang

service component development environment, which provides a service member

registration, classification, search functions, and user access control capabilities,

support for distributed database management, and application service components.

Users can easily access these through the web service component library, registration,

retrieval service member, audit, etc. To support the rapid development of the service

system, users can register service components through Eclipse plug-ins, download and

deploy the service member to a current workspace, and make a service component

assembly.

10.4 JTang Distributed File Storage Service

Computer technology has undergone considerable change through decades of

development. The mainstream of applications is to compute into pan-computing

applications, especially in service-oriented information. This change requires the computer

to maintain a CPU as the center stage in memory, to enter an I/O issue, in a particular

storage system as the center stage. In this environment, how to efficiently store huge

amounts of data has become a hot topic for current computer application services. For this

purpose, the need for a large-capacity and high-speed distributed storage system came into

being. Distributed storage systems, the basic service content stored on multiple machines,

use a small storage space on multiple machines to form a unified huge storage space.

The JTang distributed file storage service provides distributed mass storage files and

supports large-scale concurrent access. With a file server-based service content stored on

multiple machines, it allows for the use of multiple machines on a small storage space to

form a unified huge storage space.

It is optimized for file access, allowing a file to be accessed and distributed across multiple

machines, so that there can be access to a file at the same time, and allowing distribution

to multiple machines to improve file access performance. By supporting distributed storage

and load-balancing technology, JTang distributed file server storage systems can achieve

optimal performance. It also provides users with a unified view and is stored

independently of the underlying storage structure, so the user can manipulate files on the

server as the operation of the local copy.

326 Chapter 10

10.4.1 Architecture

JTang distributed file storage services architecture can be divided into three main

components: the main server (master server), file block storage server (from the server/

slave server), and client.

• Master server

The master server primarily takes responsiblity for metadata management. Metadata

includes the name space mapping file to the file data blocks and data blocks to the file

server from the map or the like. In the system, there is one and only one master server.

The main function of the primary server includes:

• Request listeners: Includes the event listener requests from the client and the server.

Client events include namespace to create, delete, create files, write, read, delete,

and rename the file list to information, access to resources, lock, release, and so on.

From the server-side, events include heart rate information, file data block informa-

tion, error messages, and so on.

• Request processing: Mainly responsible for handling the request and the results

returned from listening for the event.

• Metadata management: Metadata here mainly refers to the name space and file data

files to mapped data blocks to block file mapping from the server.

• Name space management: The system uses the directory structure on the way to the

tree namespace management.

• File management: Includes the basic operations on files, which are create, append

write, delete, and rename.

• File data block management: The main block is creating a new file, copy, remove

invalid and orphaned files, recovery block, and file blocks.

• Server load balancing: Due to a large number of file blocks written, loading

balance will result in the deletion of each file block from the uneven distribution

between servers, so there is a need for file blocks from the server load-balancing

operations.

• Lease management: The client has a lease management, including lease acquisition

and release; if the client’s lease expires, this should be recycled.

• Heartbeat: Reporting periodically from the server load through own heartbeat infor-

mation to the master server.

• Server side

Server side is responsible for managing the file blocks I/O operations. Based on the

master server command, file data blocks can create, delete, and copy operations. The

server functions include:

• Management block information: There may be thousands of data in block from the

server; at any time there may be any one of a block of data to operate, so to ensure

JTang Middleware Platform 327

these blocks go to the centralized management, one uses a high data block informa-

tion storage structure.

• Read and write data blocks: A client will frequently read and write operations to

the data block from the server. Data block read and write operations are performed

for the flow. Write data blocks performed during the backup operation should block

the operation.

• Transfer data block: Data block transfer operations between servers are very

frequent. When the backup operation writes data blocks, data blocks are created

from data transmission between the server blocks. The same operation is also

performed for the current operation.

• Sending a heartbeat message to the master server: The master server determines

whether a heartbeat message from the server is working properly.

• Deal with the main server command information: The system is running, the server

will notify the primary backup files from the server block, and then delete or

perform a migration operation.

• Report to the master server file information block: Because of file blocks from the

server, changes will occur. The main server regularly reports such information to

the master server as the latest piece of information.

• Processing customer requests: System interaction is ultimately controlled by the

client and the server from the interaction, such as read and write operations of

data blocks. So you want to build an interface from the client and server

interaction.

• Client

The client provides documentation for the application end user interface, including the

creation of the document, append, read, and delete operations. It is the primary server

for sending a command from the server to provide services. Client features include:

• Directory management: Including the new directory, renaming the directories, and

deleting the directories.

• Document management: Including basic file operations, such as uploading files,

appending files, renaming files, deleting files, and downloading files.

• Data streams: When a client uploads to the local file system, creates a file system to

the output stream. When the client downloads the files onto the local system,

creates a system to read from the input stream.

• Resource lock operation: A major resource lock and release resource to get the

lock.

10.4.2 File Data Block Storage Management Mechanism

When storing file data blocks, you need to ensure the reliability and data integrity, while

the block by copying files is to prevent accidental loss of data. For deleted files, these are

files of data blocks for garbage releases of the corresponding storage space.

328 Chapter 10

1. File block data check

Because the components of the system may contain hundreds of thousands of units from

the server disk, disk corruption frequently occurs in the case of reading and writing data,

resulting in the destruction of the integrity of the data. Therefore, discovering each of the

corrupted data from the server will provide a check and a way through the data. Although

it is possible to recover from the other by a backup file on the server data block, a file

comparison operation is clearly unrealistic. Based on the above considerations, the server

must be verified by the integrity of the file and block data. Each 64-KB data system

generates a 32-bit checksum and stores it to a local file.

When a client or other data reads data from the server, they will first be verified to be read

to ensure that no data will be returned damaged. Once an error occurs during verification,

the error message is returned to the requesting client, and it is reported to the main server.

After the requesting client receives an error message, it will be copied to another file to read

the data block and block the main server from recopying the file. When a new generation of

file blocks occurs, it will then inform the damaged files from the server to delete the block.

In the spare time of the server, one can create a new master file server backup block.

Because these pieces are rarely accessed files, they will probably be damaged if the

primary data server is not aware of it; therefore, scanning from the server and verifying

the operation of file blocks can help to further ensure data integrity.

2. Copy of file block

The main server has a single copy of the management in which the thread exists, the

thread maintains a queue of file block information that needs to be copied, which is stored

in the queue. Cloning manage threads simultaneously manage multiple copies of threads;

the number of copies of threads can be configured by the configuration file. A thread will

be sent a copy of the management task (to be cloned file block) under each copy of the

copy task execution file blocks.

A copy of the queue is a priority queue, the master server based on multiple factors to

assess the priority of file blocks and to determine the priority of those files that will be a

copied block. Among them, the factors are evaluated, including the file block, the

remaining number of copies, if the file block has a client waiting to read and write, and if

the file block damaged several copies of the file block in the past period that need to be

read and written.

Users can configure the weight of each of the above factors and, according to their

weights, set a copy management priority thread to calculate each file block. Generally,

only one copy of the file’s remaining blocks is assigned the highest weight, and the client

would wait for additional writing file blocks.

JTang Middleware Platform 329

Copying the files into the queue blocks can also remove them as a monitoring thread. The

reason could be that the file blocks are located from the server back to normal, so there is

no need to continue to copy resources and waste systems. For a copy of the failure of file

blocks to be generated, manage threads will reduce its priority waiting to allow later

scheduling to try again.

When a file is deleted, the operating system will immediately record it in the log file.

However, the system does not immediately delete the file, but the file will be renamed

through a special mark. These files in the system will be marked with a special regular

scan; if the file has exceeded a preset period (such as 24 h, you can set this up in the

configuration file), the system will actually delete the file. In this period, the file can still

be accessed via the special file name; if you want to restore the file, you simply need to

change the file name.

The system in the scanning process will block those orphaned files (files that do not

belong to any file block) for recycling and delete their information. A report to the master

server file information block from the server will have its own heartbeat information,

while the main server will move those files back to the isolated pieces of information and

will be the last block to delete these files from the disk on the server.

A garbage collection mechanism to ensure the consistency of the file has a very important

role. In large-scale distributed file systems, a wide variety of hardware failure may

frequently occur. For example, when you create a file block from the server and it

suddenly fails, resulting in only part of the file block being written, the master server does

not record the document information; when you delete a file block, it may also lead to a

network failure, which will not receive the news from the server, like a hardware failure,

as this would lead to inconsistent data throughout the system. By using the garbage

collection mechanism, data consistency problems can be solved. A garbage collection

system is a relatively idle thread that only runs as needed; in addition, the file system

provides a delay file delete function that ensures that in the case of an accidental deletion

you can still be able to ensure a fast recovery time.

10.4.3 Multifile Replication Management

Management strategy can copy multiple files to improve the availability and reliability of the

system. Copies of documents pose a problem of management. Copy management can be

divided into specific forms for the selection and creation and deletion of files and also

provide a copy of the maintenance performed. When some data access is peaked (the existing

number of copies cannot meet these visits), it is necessary to create a new copy to share

the load. Selecting the appropriate strategy to create a copy helps to further improve the

availability and performance of the system. This method creates a copy that takes the

physical characteristics of the system load nodes, storage space, network status, a copy of

330 Chapter 10

the files size, and other factors into account. At the same time, it is necessary to remove some

copies from the system; these copies are often of low utilization or long idle time and should

be deleted as appropriate. These copies are conducive to the effective use of system space.

Copies of documents relate to the operation of the main selection and generation of

copies. Redundant files can improve storage reliability. The relatively high frequency of

downloading files can be made redundant, and load-balancing functionality can be

achieved through multiple copies. Distributed storage load conditions are mainly

controlled by disk space, and CPU utilization network usage. To improve the success rate

and access to establish the efficiency of a copy, one should try to select a high-

performance node to place a copy of the data.

10.4.4 File Transmission Based on Cache

The file upload and download rate is an important indicator of the decision of the

distributed file storage service, and a multithreading and buffer block file transfer-based

approach can effectively enhance file upload and download speeds.

• Dynamic buffer management

To improve the efficiency of file storage, the file is received with the data in this buffer.

When the buffer is reached, the thread will be in a unified buffer. The data are written to

disk. It is important when writing disk thread extraction blocks from the buffer to choose

the best one in the full block.

Dynamic expansion of the buffer algorithm generates a default size and number of data

blocks in the transmission task; these two values in the file transfer process will change

dynamically based on network speed and disk access speed. Each block of data is

generated by default. When it is not allocated in memory, a thread is needed to write data.

When there is no thread in this block for reading and writing, the data block can be used

to mount on the buffer, thereby reducing memory overhead that can create a data block,

and improve memory usage.

There are two threads that buffer operations: a writing thread (idle buffer to write data

blocks) and a reading thread (when the buffer block buffer is full, it writes the data to disk

space; it is also called a disk write thread). Although at the same time there may be multiple

threads to write data to a write buffer, one can ensure that only one thread writes to the file.

10.5 JTang Enterprise Service Bus

The ESB is a core component of computing service technologies to provide reliable

messaging, service access, protocol conversion, data format conversion, content-based

routing, and other functions. It is important to build a service-oriented architecture-based

JTang Middleware Platform 331

infrastructure for distributed software systems. JTang’s distributed ESB provides the

foundation for enterprise communications platform integration. Supporting components,

which as the service hot deployment, can be configured with an easy-to-deploy, high-

stability, and high-reliability service.

10.5.1 Architecture

JTangSynergy contains ESB general features and components, such as communications,

interactive services, integration, quality of service, security, service levels, message

processing, management and self-government services, modeling, intelligent infrastructure,

etc. In addition, it provides the integration of many useful business modeling components,

such as the rules engines and workflow engines. When building ESB-based services to

facilitate development and maintenance, JTangSynergy uses a distributed architecture and

uses the event mechanism to manage and monitor the environment. The architecture is

shown in Figure 10.2.

The JTang distributed ESB can be divided into a container, service components, and a

custom assembly services set with three major components. JTangSynergy includes several

containers (synergy container (SC)), consumers, and service providers in the form of the

container components interact. Each container runs on a different Java virtual machine,

and you can install any number of components. The main function of the container

assembly includes the local management functions, the routing of messages among

components (i.e., the service selection), service consumers, and providers, so that the

decoupling can be achieved. The underlying messaging between components works

through JTangMQ (JTang messaging middleware application server). Meanwhile, SC

registration information will also collect information and push the local information to the

registry container and to the different components of the container so they can

communicate. The SC also contains all the components, making it the ideal management

tool for unified management of all components.

10.5.2 Massage Exchange Based on Content Router

In the distributed ESB environment, service providers and components can be deployed on

the ESB, which is equipped with a container for any network node, and can interact in the

form of a message. The message must be packaged into a formal specification and provide

message exchanges through the routing function of the container to complete the transfer

between consumers and providers.

The ESB exchanges messages as the core functionality for deployment. It provides reliable

interaction mechanisms. The traditional message exchange method commonly uses remote

procedure call technology to reduce the complexity of system development. This

332 Chapter 10

technology supports synchronous calls and message exchanges. They work between both

sides of the call interface, which are tightly coupled. Currently, a popular message

exchange method is to use a message-oriented middleware, which can support

synchronous/asynchronous transmission and event-driven architecture news while

providing message persistence features.

Message exchange determines the performance of the main factors of a distributed ESB,

which uses a simple message-oriented middleware technology that provides a greater

impact to the whole system. Two sides exchanging messages are in the same node in a

distributed environment. Message-passing performance and the JTang distributed ESB

work through a content-based routing message exchange method, which provides a very

good fit to solve this problem.

Figure 10.2
JTangSynergy architecture.

JTang Middleware Platform 333

Deploying messages are exchanged among components. The JTang distributed ESB must

be constructed in a certain format. Components can be set synchronously or

asynchronously when sending a message, while providing the message exchange patterns

and the need for persistence. The system provides the ability to receive a message queue

for each service.

When the service consumer sends a service request, it must be in a container for routing

messages based on the address information in the message, which is set to determine the

service provider. Exchange of messages between service consumers and providers can be

divided into two cases.

When two components are involved in the exchange of messages in a distributed

environment, the message is not required by the JMS servers, but is saved directly to the

target service corresponding message queue. If the message needs to be persistent, it is

saved to the file system. Using this type of optimization strategy can significantly improve

the efficiency of the message exchange. When the two services involved in the exchange

of messages are located in different nodes in a distributed environment, the message is

encapsulated into a JMS message object and sent through the JMS server to the target

service named JMS queue. When the JMS message consumers receive the message, the

message is saved to the target service message queue. The process of message persistence

is achieved by the JMS server.

10.5.3 Reliability Management of Distributed Nodes

Distributed ESB nodes tend to access their services running on the same physical machine,

which may run at any time due to hardware or software stop failures. It therefore becomes

important how to ensure that, in the case of a node failure, other nodes are still able to

correctly run. After restarting the failed node synchronization, it has to ensure its

information is correct, which will reduce the loss of function in the enterprise information

system. With the reliability and maintenance methods, the management is good for solving

this problem.

• Agent framework

In a distributed computing environment containing nodes for synchronization and remote

management, agent nodes work with statistical information to monitor components and

service information issues among a broad framework with the use of proxies.

Agent framework uses dynamic proxy technology, the advantage of which is a flexible

structure that can facilitate the use of multiple transport protocols and is able to take full

advantage of the computing power of the client part of the inspection. In addition, the

complex dynamic proxy can adapt to the component environment. When a container

334 Chapter 10

cannot get another component implementation class, dynamic agency will still be able to

work properly and ensure the completion of the basic functions.

Agent framework primarily includes the client and server as two key parts.

Client side is responsible for monitoring the receiver for the results of remote call requests

and to ensure calls were returned. The server is mainly composed of Invoker and

ProxyFactory, as shown in Figure 10.3.

Invoker is responsible for monitoring and handling remote requests to receive and make

calls through the Java reflection mechanism, and the results are serialized back to the

client.

• ProxyFactory is responsible for the building client agent.

• The client is responsible for calling the serialization and is responsible for checking the

reasonableness of the call. Client contains InvokerProxy and InvocationFilter

components.

• InvokerProxy is responsible for packaging Invocation and serialized transmitting to a

remote server via different transport protocols.

• InvocationFilter is responsible for Invocation. Before being transmitted to the server, the

client calls to check the validity.

10.6 JTang-Plus

In recent years, the rapid development in Internet, mobile Internet, and Internet of Things

are requiring networks to transform into a software development platform. To address the

challenges from the cloud computing and big data management, JTang-plus has been

developed by research teams in Zhejiang University based on JTang architecture.

The JTang-plus platform faces the requirements in a variety of novel network applications

for cloud services. It provides personalized services, such as application-aware

Figure 10.3
Agent framework.

JTang Middleware Platform 335

applications, which intend to break hurdles in the massive heterogeneous data process,

complex systems adaptation, and performance optimization. It supports all kinds of

computing-intensive, data-intensive, and network-intensive applications, which satisfy

application development in a flexible way.

The JTang-plus platform contains the original JTang parts and will include three new

parts: the cloud service management platform, the cloud application development

platform, and a cluster of middleware tools supporting three types of typical network

applications.

10.7 Summary

The JTang middleware platform is a system that supports application development in an

agile and flexible way in different industrial sectors. This chapter describes the research

background and architecture of the platform. It basically outlined the platform into four

components and then focused on the JTang service development environment, JTang

distributes file storage services, and JTang distributed ESB. Finally, it showed the future

direction of the JTang middleware platform.

336 Chapter 10

Index

Note: Page numbers followed by “f” and “t” indicate figures and tables respectively.

A

A* search algorithm, 164
Activities organizing (AO), 304
Agent framework, 334, 335f
AO. See Activities organizing
Apache Tuscany, 40. See also

Service component
architecture (SCA)

Approximate l-Similar Service
(Approximate l-SS), 111

Approximate l-SS. See
Approximate l-Similar
Service

Assembling service component,
324–325

Authority update, 276
Automata, 82
Automatic web service

composition problem, 199

B

BackwardSearch algorithm,
189–193. See also
ForwardSearch algorithm

Basic application server, 318–320
Bayes service recommendation

algorithm (BSR
algorithm), 135, 142–144

parameter impact to effect, 152t
QoS increment, 152f

Bayes theorem, 135
for service recommendation, 139

data generation stage,
139–140

service recommendation
stage, 141–142

Bayes-based service
recommendation, 135.
See also Instant service
recommendation

architecture, 137–138, 138f
effect evaluation, 150–154
efficiency evaluation, 148–150
experiment setup, 147–148
preliminary, 135–137
recommendation algorithms,

142–147
similarity and QoS distribution,

147f
Bayesian approach and

K-medoids clustering
algorithm (BKSR
algorithm), 135, 144–147

parameter impact
to effect, 153t
to efficiency, 150t

QoS increment, 153f
Behavioral level service

discovery, 82–84, 93–103.
See also Interface level
service discovery

analyzing behavioral simulation
of services, 99–102

behavioral perspectives of
services, 94–96

formalizing services behavior
with p-calculus, 96, 96t
atomic operation involving
message exchanges, 96–97

execution sequence among
operations, 97–99

implementation of reasoning,
102–103

Big data management,
270

service computing with,
271–282

Big enough computing. See Big
data management

Binding template, 26
Bisimulation theory, 82
BKSR algorithm. See Bayesian

approach and K-medoids
clustering algorithm

Black box
assembly, 325
view, 80–81

BP model. See Business process
model

BPEL. See Business Process
Execution Language

BPMN. See Business process
model notation

BPMN for service pattern
(BPMN4SP), 303, 309,
310t

BPMN4SP. See BPMN for
service pattern

BSR algorithm. See Bayes
service recommendation
algorithm

Business model, 303–304
Business Process Execution

Language (BPEL), 19–20,
304

Business process model
(BP model), 303–304

Business process model notation
(BPMN), 303–304

BusinessKey, 25

337

C

C2C. See Customer to customer
CCF. See China Computer

Federation
Central agent, 197, 201–202
CF. See Collaborative filtering
CF-based quality of service

prediction, 45. See also
MF-based quality of
service prediction

neighborhood-based
collaborative filtering,
45–47

trust-based collaborative
filtering, 47–53

CF-Based Quality of Service
Prediction. See
Collaborative Filtering-
Based Quality of Service
Prediction

China Computer Federation
(CCF), 12

Choice Merge, 98
Choice Split, 97–98
Cloud computing, 271
Clustered web service, 208
Clustering-based approach, 274
Collaborative filtering (CF), 44
Complex computing

environment, 271
Complex service computing,

269–271. See also Service
computing

crossover service, 268–269
human economy development,

268
Component services. See

Member services
Composed service. See

Composite service
Composed web service. See also

Composite web service
Composite service, 137, 137f,

156, 178
selection, 284–286, 285f

Composite service oriented
recommendation (CSOR),
134

drawbacks in solutions,
134–135

Composite web service, 182, 209
directed labeled graph for, 209
for recommendation, 219f
subgraph isomorphism for, 210

Composition algorithm
parallel optimization, 199–200
top-k QoS composition,

184–193
Container security services, 320
Context-dependent
service model, 242
substitutability, 83–84

Convergence, 269
Coordination operators, 198
Crossover service, 268–269
CSOR. See Composite service

oriented recommendation
Customer to customer (C2C), 303

D

Dependent record type (DRT),
233–235

Distributed enterprise service
bus, 321

Distributed file storage service
component, 321

Distribution evaluation, 220–221
DRT. See Dependent record type
DSCA. See Dynamic skyline

computation
Dynamic buffer management,

331
Dynamic reconfiguration,

232–233, 251–252
evaluation, 258–262
QoS metrics, 252–253
QoS-driven dynamic

reconfiguration method,
253–255

reconfiguration factor, 255–258
Dynamic skyline computation

(DSCA), 107

E

E-WSCRec algorithm. See
Exhaustion search based
algorithm

EB model. See Enterprise
business model

Effect evaluation, 222–225

Efficiency evaluation, 221–222
Enterprise business model

(EB model), 303–304
Enterprise service bus (ESB), 9,

321, 331–335
ESB. See Enterprise service bus
Exhaustion search based

algorithm, 159–160
effect, 171f
execution time, 167

Expansion function, 198
Extreme-scale computing. See

Big data management

F

File block data check, 329
File data block storage

management mechanism,
328–330

File transmission, 331
findStrictSolutions algorithm,

190–191
findWithPrefix function, 160–161
First-Order Logic Ontology

for Web Service
(FLOWS), 32

Flight quering (FQ), 251f
Forms services components, 322
ForwardSearch algorithm,

184–186
French dictionary service, 94, 94f
Frequently used web services

(FUWS), 206–207

G

Genetic algorithm (GA), 299
Global quality of service (Global

QoS), 289
computing rules, 183

Golog language, 179–180
Granularity services, modeling

for, 235–242
services behavior types

subtyping rules, 244f
substitutability determination,

242–247
Graph mining, 207, 208f
Gray box assembly, 325
Growth Enterprise Market

(GEM), 313

338 Index

H

H-WSCRec algorithm, 167
effect, 173f
efficiency, 169f

Hierarchical task network (HTN),
179–180

Historical service-composition
dataset (HSD), 206–207

Hub update, 276
Hubs and authorities. See HITS

algorithm
Hyperlink-induced topic search

(HITS), 271–272
algorithm, 275

I

ICSOC. See International
Conference on Service-
Oriented Computing

ICWS. See International
Conference on Web
Services

IEEE. See Institute of Electrical
and Electronics Engineers

Improved online service
composition recommend
algorithm, 161, 172f

Improved replacement-based
algorithm, 161–165

Indegree (deg–(WS)), 215
Information flow analysis, 311,

312f
Information retrieval (IR),

273–274
Input, output, precondition, and

effect (IOPE), 233–234
substitutability on, 248, 250
of web services, 236–238

Instant service recommendation,
154–156, 154f. See also
Bayes-based service
recommendation

definition and problem
description, 156–159

effect comparison, 174f
effect evaluation, 170–174
experiment setup, 166–170
recommendation algorithms

exhaustion search based
algorithm, 159–160

improved replacement-based
algorithm, 161–165

replacement-based algorithm,
160–161

Institute of Electrical and
Electronics Engineers
(IEEE), 2

Integrated development
environment, 322

Interface level service discovery,
80–82, 84–93. See also
Behavioral level service
discovery

framework, 85–86, 85f
tag recommendation, 89–91,

90f
sum strategy, 91
vote strategy, 90–91

Titan search engine, 91–93
web services clustering
content, 86–87
message, 88
port, 88
service name, 88–89
tag, 89
type, 87–88, 87f
on WSDL and tags, 86

International Conference on
Service Computing
(SCC), 12

International Conference on
Service-Oriented
Computing (ICSOC),
12

International Conference on Web
Services (ICWS), 12

InvokerProxy, 335
IOPE. See Input, output,

precondition, and effect
IR. See Information retrieval
IR-WSCRec algorithm. See

Improved online service
composition recommend
algorithm

J

Java Business Integration (JBI),
9–10

JTang
cluster service, 320

development environment,
323–326

distributed file storage service,
326–331

EJB container, 319–320
messaging middleware, 320
middleware platform, 318, 319f
basic application server,
318–320

development environment for
service components,
323–326

distributed file storage
service, 326–331

eleventh five-year program,
318

ESB, 331–335
integrated development
environment, 322

integrated management
console, 323

JTang-plus, 335–336
service computing
component
library, 320–322

software industry, 317
naming service, 320

L

Large-granularity services,
247–250

l-Similar Service (l-SS), 111
l-Similar Service Cluster

(l-SSC), 111
Location ensemble-based matrix

factorization model,
70–76

Location regularization-based
matrix factorization
model, 64–70

Location-based matrix
factorization model,
63–64

location
ensemble-based matrix
factorization model,
70–76

regularization-based matrix
factorization model,
64–70

Index 339

M

MAE. See Mean absolute error
Manual web service composition,

178–179
MapReduce and skyline service

selection, 119–120.
See also QoS-based
skyline service selection

algorithms, 121–128
architecture, 120–121
efficiency, 128–129
experiment setup, 128
performance effects, 129f
scalability, 129–130

Martin_Löf’s type theory
(MLTT), 233–234

Matrix factorization (MF), 44
MDA. See Model-driven
Mean absolute error (MAE), 50
Member services, 178
Message exchange, 332–334
Message service component,

321
MF. See Matrix factorization
MF-based quality of service

prediction, 53–54.
See also CF-based quality
of service prediction

location-based matrix
factorization model, 63–76

neighborhood-based matrix
factorization model,
54–63

Micro-kernel services, 319
Middleware, 317–318
MLTT. See Martin_Löf’s type

theory
Mobile environment, service

computing with, 283–303
Mobile signal strength

base station, 283
impact
of amplitude of variation,
296–297

of frequency of variation,
297–298, 299f

of variation, 295–296
Mobility model, 286–288, 287f
Mobility Workbench (MWB),

102

Mobility-aware quality of service
computation (MQoS
computation), 288–289

Mobility-enabled selection
algorithm, 289–294

Model-driven (MDA), 322–324
MQoS computation. See

Mobility-aware quality of
service computation

MR-angular algorithm, 123–124
algorithmic enhancement, 125
complexity analysis, 126–128

MR-dim algorithm, 122–123
MR-grid algorithm, 122f,

123–124, 126f, 127
Multi-file replication

management, 330–331
MWB. See Mobility Workbench

N

Negative selection algorithm
(NSA), 299

Neighborhood-based
collaborative filtering, 45.
See also Trust-based
collaborative filtering

service, 47
impact of trust model, 46f
user, 45–46

Neighborhood-based matrix
factorization model,
54–63

experiments for, 58–63
service, 56–58
user, 55–56
user and service, 58

Normalized Google Distance
(NGD), 87, 219–220,
274–275

O

Online payment (OP), 247f
Online store system, 260f
Ontology tree, 182
Optimality evaluation, 298–301
Optimization problem, 289–290
Organization for the

Advancement of
Structured Information
Standards (OASIS), 10

Outdegree, 215
Overestimation factor, 273

P

P@k. See Precision at k
Paper-tape model, 115f
Parallel Merge, 98
Parallel optimization, 197, 201
AWSP and PareAWSP-E,

204t
central agent, 201–202
composition algorithm,

199–200
experiments, 204–206
framework, 201, 201f
planning agent, 202–204
problem formalizing, 198–199

Parallel Split, 98
Partial service behavior, 242
Particle swarm optimization

(PSO), 299
PCC. See Pearson correlation

coefficient
PD. See Productions designing
Pearson correlation coefficient

(PCC), 45
Petri nets, 82
p-calculus, 82
Planning
agent, 197, 202–204
graph, 179
subgraph, 199

PMI security service component,
321

Precision at k (P@k), 280–281,
282t

Process management service
components, 321–322

Productions designing (PD), 304
ProxyFactory, 335
Pruning, 273
PSO. See Particle swarm

optimization

Q

QoS. See Quality of service
QoS-based service selection,

105
effectiveness, 106–107

QoS-based skyline, 105

340 Index

QoS-based skyline service
selection. See also
MapReduce and skyline
service selection

basic skyline service selection,
109

dynamic skyline service
selection, 114–117

preliminaries, 108–109
representative skyline service

selection, 109–114
uncertain skyline service

selection, 118–119
Quality of service (QoS), 43,

135, 137, 156, 178, 230,
271–272. See also
Dynamic reconfiguration;
Service verification

calculation, 186–189
distribution in dataset, 147f
increment

of BKSR algorithm, 153f
of BSR algorithm, 152f
of SSR algorithm, 151f

metrics, 252–253
parameters, 214t
QoS-driven dynamic

reconfiguration method,
253–255

R

Real world effects, 34
RecDeg algorithm, 253
Reconfiguration factor, 255–258
Refining, 274
Relevance integration, 276–277
Reliability management, 334–335
Replacement-based algorithm,

160–161
Reporting services components,

322
Resources allocating (RA), 304

S

SC. See Shareholders
coordinating; Source
combination; Synergy
container

SCA. See Service component
architecture

Scalability evaluation, 301–303
SCC. See International

Conference on Service
Computing

SDO. See Service data object
SearchBeforehand algorithm,

190–191
SearchTopK algorithm, 192–193
Semantic match, 182
Semantic relevance computation

(SR computation),
273–275

Semantic Web Service Ontology
(SWSO), 32

Semantic web services, 31.
See also Web service
(WS)

OWL-S, 31
SWSO, 32
WSDL-S, 32
WSMO, 31–32

Semantics subtyping, 243
Sequence, 97
Service
application layer, 8
component library service

system, 325–326
computing with service pattern

model, 303–313
convergence layer, 7
discovery, 8
flow, 7
management, 271
neighborhood-based
collaborative filtering, 47
matrix factorization model,
56–58

registry and management,
201–202

resource layer, 6–7
substitution, 230
trie, 162f

Service component architecture
(SCA), 11, 35. See also
Apache Tuscany

model, 35–38
property, 36
reference, 36–37
service, 37
wire, 37–38

strategy framework, 38
Service composition, 136
efficiency improvement, 180
on historical records, 206–207
experimental evaluation,
219–225

graph mining, 207
processing stages, 208–218
QoS parameters, 214t

parallel optimization for,
197–206

planning-graph technique, 179
service computing technologies,

181
top-k QoS composition, 181–197
web service composition,

178–179
Service computing, 4–5, 269–270
with big data, 271–272
tagging data recommendation,
277–279

tagging data relevance
measurement, 272–277

tagging data-based service
mining, 279–282

titan web service search
engine tag cloud, 282f

with complex mobile
environment, 283

experimental evaluation,
294–303

mobility model, 286–288,
287f

mobility-enabled selection
algorithm, 289–294

motivating scenarios, 283–286
MQoS computation, 288–289

organization, 14
origin, 2–4
with service pattern model, 303
basic notions UML diagram,
305f

BPMN4SP, 309
business model and, 303–304
case study, 310–313
SPDL, 304–309

state-of-the-art, 10
in academia, 12–13
in industry, 10–11

technical framework, 5–10, 6f

Index 341

Service data object (SDO), 11,
38–39

data graph and object, 39f
distribute data architecture, 39f
framework, 39

Service pattern description
language (SPDL),
303–309

Service recommendation,
133–135

Bayes-based service
recommendation, 135–154

instant service recommendation,
154–174

stage, 207, 210–218
Service selection, 105. See also

QoS-based skyline service
selection

algorithm, 290–293
efficiency, 107
QoS-based selection approaches,

106
Service sequence, 137, 156

edit distance, 143
execution log, 162t
set, 140
similarity, 141

Service system
dynamic configuration, 9
layer, 9–10
project, 10

Service verification, 230–234
case study, 247–251
DRT, 235
MLTT, 234
modeling for granularity

services, 235–242
partial ontology for travel

domain, 236f
service FT-S, 248f
substitutability determination,

242–247
Service-based system, 230
Service-oriented architecture

(SOA), 1, 19–20, 32–33,
283

model, 33–35, 33f
contract and policy, 34
execution context, 35
interaction, 34

real world effects, 34
service, 34
service description, 34
visibility, 34

open source platforms, 40
Apache Tuscany, 40
eclipse SOA tools project,
40–41

Service-oriented computing
(SOC), 19–20, 105, 133

Shareholders coordinating (SC),
304

Similar services set, 140
Similarity-based representative

skyline algorithm
(Similarity-based RSA),
107–108, 113–114

Simple Object Access Protocol
(SOAP), 10, 18, 20–22

Simple service recommendation
algorithm (SSR
algorithm), 135, 142

parameter impact to effect,
149t

QoS increment, 151f
Single service selection,

283–284, 284f
Single sign-on services

component, 322
Singular value decomposition

(SVD), 44
Skyline method, 119–120
Skyline service selection
basic, 109
dynamic, 114–117
representative, 109–114
uncertain, 118–119

Skyline services, 107–108, 108f,
110f, 116

SOA. See Service-oriented
architecture

SOA Tools Project (STP), 40
SOAP. See Simple Object Access

Protocol
SOC. See Service-oriented

computing
Software architecture, 3–4
Source combination (SC), 190
SPDL. See Service pattern

description language

SR computation. See Semantic
relevance computation

SSR algorithm. See Simple
service recommendation
algorithm

STNet-adapted hyperlink-induced
topic search, 275–276

STP. See SOATools Project
Substitutability, 83–84
Suffix stripping, 273
SVD. See Singular value

decomposition
SWSO. See Semantic Web

Service Ontology
Synergy container (SC), 332,

333f

T

Tag authority computation, 276
Tag recommendation technique,

277
Tag relevance (TR), 277
Tagging data, 280. See also Web

service tag relevance
measurement
(WS-TRM)

recommendation, 277–279
relevance measurement,

272–277
tagging data-based service

mining, 279–282
Teaching-learning-based

optimization (TLBO),
283, 292f. See also
Service selection
algorithm

Test case generation, 259
Time complexity analysis,

293–294
TLBO. See Teaching-learning-

based optimization
tModel, 26
Top-k QoS composition, 181
composition algorithm,

184–193
experimental evaluation,

193–197
problem formalization,

182–183
TR. See Tag relevance

342 Index

Trust-based collaborative
filtering, 47–53

Two-phase commit protocol
(2 PC protocol), 30

U

Uniform resource identifier
(URI), 178

Universal Description, Discovery
and Integration (UDDI),
11, 19–20, 24–26, 26f, 84

User neighborhood-based
collaborative filtering,

45–46
matrix factorization model,

55–56
User–service matrix, 45, 45t

V

Value flow analysis, 311–313,
312f

Visualization services
community, 320–321

W

W3C. See World Wide Web
Consortium

Web service (WS), 106, 136,
156, 178, 182

behavior, 238–239
discovery, 80
IOPE, 236–238
overview, 18–20

protocol stack, 19f
security, 26–27
WS-Policy, 28
WS-security, 27–28
WS-Trust, 29

standards, 20–26
transaction, 30
WS-AtomicTransction, 30
WS-BusinessActivity, 31
WS-Coordination, 30

Web Service Choreography
Interface (WSCI), 19–20

Web Service Definition
Language. See Web
Services Description
Language (WSDL)

Web Service Modeling
Framework (WSMF),
31–32

Web Service Modeling Ontology
(WSMO), 31–32

Web service tag relevance
measurement (WS-TRM),
272, 272f

SR computation, 273–275
STNet-adapted hyperlink-

induced topic search,
275–276

on web service clustering, 280,
281f

WSDL document, 272–273
Web Services Choreography

Description Language
(WS-CDL), 10, 19–20, 82

Web Services Conversation
Language (WSCL), 82

Web Services Description
Language (WSDL), 10,
18–20, 22–24, 24f

Weighted location-aware PMF
model (WL-PMF model),
72

White box assembly, 324
WL-PMF model. See Weighted

location-aware PMF
model

World Wide Web Consortium
(W3C), 10

WS. See Web service
WS-CDL. See Web Services

Choreography Description
Language

WS-TRM. See Web service tag
relevance measurement

WSCI. See Web Service
Choreography Interface

WSCL. See Web Services
Conversation Language

WSDL. See Web Services
Description Language

WSMF. See Web Service
Modeling Framework

WSMO. See Web Service
Modeling Ontology

X

XML structure, 274

Index 343

This page intentionally left blank

