
COS 318: Operating Systems 

Virtual Memory Paging 

Prof. Margaret Martonosi 
Computer Science Department 
Princeton University 

http://www.cs.princeton.edu/courses/archive/fall11/cos318/ 



2 

Today’s Topics 

  Paging mechanism 
  Page replacement algorithms 





A long example… 
  The facts… 
  OS & Addressing 

  OS page size = 8K 
  Virtual address space size 

= 44 bits Virtaddr 
  Physical address limit = 

4GB = 32 bits 
  Translation Lookaside Buffer 

(TLB) 
  64 entries 
  16-way associativity 

  L1 Data Cache 
  Parallel TLB & Cache 

lookup 
  32KB (what constrains 

this?) 
  4way set associative 
  64 byte lines 



A long example… 
  The facts… 
  OS & Addressing 

  OS page size = 8K 
  Virtual address space size 

= 44 bits Virtaddr 
  Physical address limit = 

4GB = 32 bits 
  Translation Lookaside Buffer 

(TLB) 
  64 entries 
  16-way associativity 

  L1 Data Cache 
  Parallel TLB & Cache 

lookup 
  32KB (what constrains 

this?) 
  4way set associative 
  64 byte lines 

Virtual page number Page offset 

13 bits 31 bits 

Phys page nbr 

19 bits 

Page offset 

13 bits 

Virtual Address 

44 bits 

Send page num 
through TLB (and 
possibly OS…) 

Physical Address 

Offset 
unchanged 



Example step 1: organization of TLB 

  It’s a 64 entry TLB with 16-
way associativity 
-  TLB offset=  

•  TLBs have no offset!  
An entry is a page 
number.  You need all 
of it.  Never offset into 
the middle of it.  

-  TLB index= 2 bits 
-  TLB tag= everything else 

•  = 31 –2 = 29 bits 
•  Entry size = size of 

Phys Page Num = 19 
bits 

… 

16 way 

4 

Phys page num 

19 bits 

Tag bits 

29 bits 

Valid bits 
LRU, etc 



Example step 2: Organization of L1 data 
cache 

  L1 Data Cache 
-  Semi-virtual 
-  32KB  

•  what constrains this? 
-  4 way set associative 
-  64 byte lines 

  Details: 
-  Offset bits = 6 bits 
-  Index bits = 7 bits 
-  Tag bits = rest = phys 

address size – 13 
-  = 32 –13 = 19 bits 

4 way 

128 

Cache line 

64 bytes 

Tag bits 

19 bits 

Valid bits 
LRU, etc 

…
 

…
 

…
 

…
 



The full path of a data load reference… 
What happens when a processor 

fetches and executes a load 
instruction: lw r3, 12(r4) 

  Fetch instruction 
  Decode instruction 
  Fetch register r4.  Say the value 

in r4 is 16000 
  Do the address calculation to add 

12 to it.  We will be fetching from 
virtual address 16012 (0x3e8c) 

  Split 16012 into two parts: Virtual 
page number and virtual page 
offset.   
-  Say the page size is 8K 
-  VPN = 16012 div 8K, V Offset = 

16012 mod 8K 
-  VPN = 1, Voffset = 7820 

(0x1E8C) 

Virtual Address 

Virtual page number Page offset 

13 bits 31 bits 

To the cache 

Page offset 

13 bits 

To the TLB for 
translation 

Virtual page number 

31 bits 



Full path of a data load reference, part 2… 

  So, VPN = 1…What next? 
  Send VPN through 

translation to get physical 
page number 

  First, try to find the V->P 
mapping in the TLB 

  Send Page offset to data 
cache to start cache access 

  Page offset = 7820 (0x1E8C) 
  L1 Data Cache is 32KB 

cache, 4-way set associative 
with 64 byte lines, so… 
index = 61 

V -> P translation… Meanwhile, Data cache lookup… 

… 

16 way 

4 Check tags of these entries 

4 way 

128 

…
 

…
 

…
 

…
 

??? ??? ??? ??? 



The full path of a data load ref, part 3 
V->P translation 
If lookup is a hit in the TLB: return 

PPN to cache controller and 
continue with Cache lookup 
sequence 

Cache lookup: 
  Have used lower portion of virtual 

address to figure out which index 
to search.  Now what? 

  Need tag bits to go any further.   
  Tag bits are in the upper part of 

the address 
  Need to wait for V->P mapping to 

complete. 
  If TLB hit, this will be fairly fast.  
  If TLB Miss, very slow 
  If PPN doesn’t arrive within a 

certain interval, abort and then… 

Phys page nbr 

19 bits 

Page offset 

13 bits 

Send page num 
through TLB (and 
possibly OS…) 

Physical Address 

Offset 
unchanged 

To the cache 

Page offset 

13 bits 

To the TLB for 
translation 

Virtual page number 

31 bits 



The full path of a data load ref, part 4 
V->P translation 
  Meanwhile, what’s happened to 

our V->P translation? 
  The TLB missed. What’s next? 

  The TLB is simply a cache of 
commonly used V->P 
translations.  It is not complete.  
The OS stores the complete page 
table (V->P mappings) as a 
software data structure. 

  Assuming this is a machine with a 
software PT walker, we need to 
invoke the OS and ask them what 
the mapping is. 
-  Let pipeline drain of any 

instructions before this load 
-  The load cannot complete 

because we don’t know where to 
reference from. 

-  Store away the PC of this load; 
that’s where we’ll start from after 
we ask the OS. 

V->P translation, cont’d. 
  Enter privileged mode since we want 

to execute OS code, not user code, 
now. 

  Load the PC with the value of the 
instruction address for the beginning 
of the TLB miss handler routine.  
(software) 

  Start executing this software 
  It will do a lookup in OS data 

structures to look for the right 
mapping. 

  Will it find it or not?! 



The full path of a data load 
reference, part 5 

V->P translation, cont’d. 
  It will do a lookup in OS data 

structures to look for the right 
mapping.  2 possible outcomes: 
  If it does NOT FIND a mapping, 

that means the page is NOT 
currently in memory.  It must be 
out on disk.  Initiate a disk 
transfer… 

  Else, if it finds mapping, the page 
is currently in main memory.  Just 
give TLB the info 

  Once OS finds the correct mapping, it 
executes instructions that load the 
right TLB entry with the PPN info. 

V->P translation, cont’d. 
  Leave privileged mode 
  Restore context of user program 
  Restore program PC to offending load 

instruction. 
  Rerun instruction… 

  Fetch 
  Decode 
  Address calculation 
  Mem access 

  This time, TLB access will be a 
hit.  V->P mapping succeeds! 

  Pass PPN bits to cache ctller… 



The full path of a data load 
reference, part 6 

  This time, we have the tag 
bits to compare against… 

Meanwhile, back at the cache… 
  Recall that the cache had gotten this 

far: 
  Have used lower portion of virtual 

address to figure out which index 
to search.  Now what? 

  Need tag bits to go any further.   
  Tag bits are in the upper part of 

the address 
  Need to wait for V->P mapping to 

complete. 
  If TLB hit, this will be fairly fast.  
  If TLB Miss, very slow 
  If PPN doesn’t arrive within a 

certain interval, abort and then… 
  This time, instruction is restarted 

and TLB access succeeds. 
  Q: What does this say about the 

OS handler code? 

4 way 

128 

…
 

…
 

…
 

…
 

??? ??? ??? ??? 

Phys page nbr 

19 bits 
Page offset 

13 bits 

Line 
offset index L1 cache tags 

6 7 19 



The full path of a load instruction, 
part 7 

  This time, we have the tag 
bits to compare against… 

Meanwhile, back at the cache… 
  Compare tag bits from address to tag 

bits in cache.  Find which of 4 sets is 
match (if any).   

  If hit, return data 
  If miss…….. 

4 way 

128 

…
 

…
 

…
 

…
 

??? ??? ??? ??? 

Phys page nbr 

19 bits 
Page offset 

13 bits 

Line 
offset index L1 cache tags 

6 7 19 



AMD Opteron TLB 



More Opteron 



AMD Opteron Page Table Organization 

  Sequence of lookups required if TLB misses 
  Multi-level page table allows large Virtual Address 

space to be mapped without devoting lots of space 
when phys mem requirements are small. 



A few more details… 

  The OS page table is a large data structure, and a full software 
traversal is slow.  How to optimize? 

1)  TSB in Software: Software data structure that holds the most 
commonly used mappings.   
-  OS code move mapping entries between it and full page table.  

“Translation Storage Buffer”.  Like a TLB except in software.   
-  Goal: TSB entries should at least be hits in L2 cache. 20-50 

cycles 
2)  Hardware Page Table Walks:    

1)  When the TLB misses, invoke a **hardware** state machine that 
traverses the memory that holds the software page table.   

2)  Implications:  Software page table must have a fixed, unchanging 
format that hardware knows how to walk.   

3)  But this is not free.  Still lots of memory fetches to wait for. 50-100 
cycles. 



19 

VM Paging Steps 

Steps 
  Memory reference  

(may cause a TLB miss) 
  TLB entry invalid triggers a page 

fault and VM handler takes over 
  Move page from disk to memory 
  Update TLB entry w/ pp#, valid bit 
  Restart the instruction 
  Memory reference again 

. . . 
subl $20 %esp             

movl 8(%esp), %eax  
. . . 

vp# 
v vp# 
i vp# 
v vp# 

v vp# 

TLB 

pp# 
pp# 
dp# 
pp# 

pp# 

. . . 

v 

VM 
system 

pp# v 

fa
ul

t 



Policies for Paged Virtual Memory 

  The OS tries to minimize page fault costs incurred by all 
processes, balancing fairness, system throughput, etc. 
  (1) fetch policy: When are pages brought into memory? 

•  prepaging: reduce page faults by bring pages in before needed 
•  on demand: in direct response to a page fault. 

  (2) replacement policy: How and when does the system select 
victim pages to be evicted/discarded from memory? 

  (3) placement policy: Where are incoming pages placed? 
Which frame? 

  (4) backing storage policy: 
•  Where does the system store evicted pages? 
•  When is the backing storage allocated? 
•  When does the system write modified pages to backing store? 
•  Clustering: reduce seeks on backing storage 



Fetch Policy: Demand Paging 

  Missing pages are loaded from disk into memory at time 
of reference (on demand).  
The alternative would be to prefetch into memory in 
anticipation of future accesses (need good predictions). 

  Page fault occurs because valid bit in page table entry 
(PTE) is off.  The OS: 
  allocates an empty frame*  
  initiates the read of the page from disk 
  updates the PTE when I/O is complete 
  restarts faulting process 

11/10/11 21 

* Placement and possible 
   Replacement policies 



Prefetching Issues 
  Pro: overlap of disk I/O 

and computation on 
resident pages.  Hides 
latency of transfer. 
  Need information 

to guide predictions 
  Con:  bad predictions 

  Bad choice: a page that 
will never be referenced.  

  Bad timing: a page that is 
brought in too soon 

   Impacts: 
  taking up a frame that 

would otherwise be free. 
  (worse) replacing a 

useful page. 
  extra I/O traffic 

22 

CPU 

I/O 

fault 

Demand fetch Prefetch 



Page Replacement Policy 

  When there are no free frames available, the OS must 
replace a page (victim), removing it from memory to 
reside only on disk (backing store), writing the contents 
back if they have been modified since fetched (dirty). 

  Replacement algorithm - goal to choose the best victim, 
with the metric for “best” (usually) being to reduce the 
fault rate. 
  FIFO, LRU, Clock, Working Set… 

(defer to later) 

11/10/11 23 



Placement Policy 

  Which free frame to chose? 
  Are all frames in physical memory created equal? 

24 

•  Yes, if only considering size.  Fixed size. 
•  No, if considering 

– Cache performance, conflict misses 
– Access to multi-bank memories 
– Multiprocessors with distributed memories 



25 

How Does Page Fault Work? 

  User program should not be aware of the page fault 
  Fault may have happened in the middle of the 

instruction!  
  Can we skip the faulting instruction?  
  Is a faulting instruction always restartable?  

    . 
    . 
    . 

subl $20 %esp      
movl 8(%esp), %eax  
    . 
    . 
    . 

VM fault handler() 
{ 
  Save states 
    . 
    . 
    . 
  iret 
} 



26 

VM Page Replacement 

  Things are not always available when you want them 
  It is possible that no unused page frame is available 
  VM needs to do page replacement 

  On a page fault 
  If there is an unused frame, get it 
  If no unused page frame available, 

•  Find a used page frame 
•  If it has been modified, write it to disk 
•  Invalidate its current PTE and TLB entry 

  Load the new page from disk 
  Update the faulting PTE and remove its TLB entry 
  Restart the faulting instruction 

  General data structures 
  A list of unused page frames 
  A table to map page frames to PID and virtual pages, why? 

Page 
Replacement 



27 

Which “Used” Page Frame To Replace? 

  Random 
  Optimal or MIN algorithm 
  NRU (Not Recently Used) 
  FIFO (First-In-First-Out) 
  FIFO with second chance 
  Clock 
  LRU (Least Recently Used) 
  NFU (Not Frequently Used) 
  Aging (approximate LRU) 
  Working Set 
  WSClock 



28 

Optimal or MIN 

 Algorithm:  
  Replace the page that won’t be 

used for the longest time  
(Know all references in the future) 

 Example 
  Reference string:  
  4 page frames 
  6 faults 

  Pros 
  Optimal solution and can be used as an off-line analysis method 

  Cons 
  No on-line implementation 

1 2 3 4 1 2 5 1 2 3 4 5 



29 

Not Recently Used (NRU) 
  Algorithm 

  Randomly pick a page from the following (in this order) 
•  Not referenced and not modified 
•  Not referenced and modified 
•  Referenced and not modified 
•  Referenced and modified 

  Clear reference bits 
  Example 

  4 page frames 
  Reference string 
  8 page faults 

  Pros 
  Implementable 

  Cons 
  Require scanning through reference bits and modified bits 

1 2 3 4 1 2 5 1 2 3 4 5 



30 

First-In-First-Out (FIFO) 

  Algorithm 
  Throw out the oldest page 

  Example 
  4 page frames 
  Reference string 
  10 page faults 

  Pros 
  Low-overhead implementation 

  Cons 
  May replace the heavily used pages 

5 3 4 7 9 11 2 1 15 Page 
out 

Recently 
loaded 

1 2 3 4 1 2 5 1 2 3 4 5 



31 

More Frames → Fewer Page Faults? 

  Consider the following with 4 page frames 
  Algorithm: FIFO replacement 
  Reference string: 
  10 page faults 

  Same string with 3 page frames 
  Algorithm: FIFO replacement 
  Reference string: 
  9 page faults! 

  This is so called “Belady’s anomaly” (Belady, 
Nelson, Shedler 1969) 

1 2 3 4 1 2 5 1 2 3 4 5 

1 2 3 4 1 2 5 1 2 3 4 5 



32 

FIFO with 2nd Chance 

  Algorithm 
  Check the reference-bit of the oldest page 
  If it is 0, then replace it 
  If it is 1, clear the referent-bit, put it to the end of 

the list,  
and continue searching 

  Example 
  4 page frames 
  Reference string: 
  8 page faults 

  Pros 
  Simple to implement 

  Cons 
  The worst case may take a long time 

5 3 4 7 9 11 2 1 15 Recently 
loaded 

Page 
out 

If ref bit = 1 

1 2 3 4 1 2 5 1 2 3 4 5 



33 

Clock 

  FIFO clock algorithm 
  Hand points to the oldest page 
  On a page fault, follow the hand to 

inspect pages 
  Second chance 

  If the reference bit is 1, set it to 0 
and advance the hand  

  If the reference bit is 0, use it for 
replacement 

  Compare with the FIFO with 2nd 
chance 
  What’s the difference? 

  What if memory is very large 
  Take a long time to go around? 

Oldest page 



34 

Least Recently Used 

  Algorithm 
  Replace page that hasn’t been used for the longest time 

•  Order the pages by time of reference 
•  Timestamp for each referenced page 

  Example 
  4 page frames 
  Reference string:  
  8 page faults 

  Pros 
  Good to approximate MIN 

  Cons 
  Difficult to implement 

5 3 4 7 9 11 2 1 15 Recently 
loaded 

Least 
Recently 
used 

1 2 3 4 1 2 5 1 2 3 4 5 



35 

Approximation of LRU 

  Use CPU ticks 
  For each memory reference, store the ticks in its PTE 
  Find the page with minimal ticks value to replace 

  Use a smaller counter 
Most recently used Least recently used 

N categories 
Pages in order of last reference 

LRU 

Crude 
LRU 2 categories 

Pages referenced since  
the last page fault 

Pages not referenced  
since the last page fault 

8-bit 
count 256 categories 254 255 



36 

Aging: Not Frequently Used (NFU) 
  Algorithm 

  Shift reference bits into counters 
  Pick the page with the smallest counter to replace 

  Old example 
  4 page frames 
  Reference string:  
  8 page faults 

  Main difference between NFU and LRU? 
  NFU has a short history (counter length) 

  How many bits are enough? 
  In practice 8 bits are quite good 

00000000 
00000000 

10000000 
00000000 

10000000 
00000000 

11000000 
00000000 

01000000 
10000000 

11100000 
00000000 

10100000 
01000000 

01110000 
10000000 

01010000 
10100000 

00111000 
01000000 

1 2 3 4 1 2 5 1 2 3 4 5 



37 

Revisit TLB and Page Table 

  Important bits for paging 
  Reference: Set when referencing a location in the page 
  Modify: Set when writing to a location in the page 

offset 

Virtual address 

. . . 

PPage# ... 

PPage# ... 

PPage# … 

PPage # offset 

VPage # 

TLB 
Hit 

Miss Page Table 
VPage# 
VPage# 

VPage# 



38 

Program Behavior (Denning 1968) 

  80/20 rule 
  > 80% memory references are  

within <20% of memory space 
  > 80% memory references are  

made by < 20% of code 
  Spatial locality  

  Neighbors are likely to be accessed 
  Temporal locality 

  The same page is likely to be 
accessed again in the near future 

# Pages in memory 

# 
Pa

ge
 fa

ul
ts

 



39 

Working Set 

  Main idea (Denning 1968, 1970) 
  Define a working set as the set of pages in the most recent K 

page references 
  Keep the working set in memory will reduce page faults 

significantly  
  Approximate working set 

  The set of pages of a process used in the last T seconds 
  An algorithm 

  On a page fault, scan through all pages of the process 
  If the reference bit is 1, record the current time for the page 
  If the reference bit is 0, check the “time of last use,” 

•  If the page has not been used within T, replace the page 
•  Otherwise, go to the next 

  Add the faulting page to the working set 



40 

WSClock 

 Follow the clock hand 
  If the reference bit is 1 

  Set reference bit to 0 
  Set the current time for the page 
  Advance the clock hand 

  If the reference bit is 0, check “time of last use” 
  If the page has been used within δ, go to the next 
  If the page has not been used within δ and modify bit is 1 

•  Schedule the page for page out and go to the next 
  If the page has not been used within δ and modify bit is 0 

•  Replace this page 



41 

Replacement Algorithms 

  The algorithms 
  Optimal or MIN algorithm 
  NRU (Not Recently Used) 
  FIFO (First-In-First-Out) 
  FIFO with second chance 
  Clock 
  LRU (Least Recently Used) 
  NFU (Not Frequently Used) 
  Aging (approximate LRU) 
  Working Set 
  WSClock 

  Which are your top two? 



42 

Summary 

  VM paging 
  Page fault handler 
  What to page in 
  What to page out 

  LRU is good but difficult to implement 
  Clock (FIFO with 2nd hand) is considered a good 

practical solution 
  Working set concept is important 


