Cache Coherence
Protocols

2222222

DATA
00000000OCGOCGO

Multinmces Sors

i/22/2029 COMP522

»Caches

» Consistency
» Coherence

» Victim Replication

1/22/2019 COMP 522

Hiding Memory Latency

* How can we hide memory latency?
* Prefetching
e Out of order execution
» Speculation
* On-chip Cache

Set Associative Caches

Address issued Cache Cache
by processor core controller memory Miss
31 R | Way3
| Way 2
Way 1
Tag Compare B=
] a Hit || Way 0
F 117 "I P(' Directory
B _C store Status Data
S SE
e mlwale e |
- Cache-tag | v [d | word3 [word2 | word 1 | word(
Set L ,-% o Cache-tag | v [d | word3 | word2 [word] | word(
index a LE rt C
| (G . 64 cache
‘: < a 41 O Cache-tag | v [d | word3 | word2 | word] | word() - lines per
U Ay Cache-tag)v [d [word3 [word2 [word 1 | wordO way
'Di"“) 1| q[[]| Cache-tag |v|d|word3[word2 [wordl | word0
index =11 | Cache-tag [v [d [word3 | word2 [word] [word0
0 - = Cache-tag | v |d | word3 | word2 | word] | word()
Cache-tag | v | d [word3 [word2 | word] | word()
— >
{ — J Address/data
X
4 bus
1/22/2019 COMP 522 5

Andrew N. Sloss, Chris Wright, In Arm System Developer's Guide, 2004

Inclusive, Non-Inclusive, and Exclusive Caches

e |f Datais in L1 cache, isitin L2 Cache?
* Inclusive: Yes
* Exclusive: No
* Non-Inclusive: Maybe

* Pros/Cons of each?
* Need inclusion for other processors to get hit if multiple using same block
* Inclusive duplicates data
* More bandwidth then Non-Inclusive

Write-Back vs Write-Through

Processor 1 P1 P2 Pt P2 P1 P2
Caches X X X1 p ¢ X1 X
Bus
Shared
Memory X X1 X
Before Update Write -through Write - back
1/22/2019 COMP 522 7

Balasubramonian, Rajeev and Jouppi, Norman, In Multi-Core Cache Hiearchies 2011

Uniform Access vs. Non-Uniform Access (NUMA)

L2 cache
ol -
connected
o s e
on-chip
.|..|..|. network
| Cache controller

1/22/2019 COMP 522 8
Daniel Sorin, Mark Hill, David Wood. A Primer on Memory Consistency and Cache Coherence 2011

Centralized Last Level Cache

SPARC core L2 bank0
SPARC core L2 bankl
L2 bank?2
SPARC core
L2 bank3
SPARC core Cache
Crossbar L2 bank4
SPARC core (CCX)
L2 bank5
SPARC
core L2 bank6
SPARC core 1.2 bank7
SPARC core 1/0 bridge
1/22/2019

COMP 522

DR2:.2 -

!,E'"’{. ity
o s
VAP T

-
o e oy
s

9
Xi-chuan Wang, Bin-fend Qian. The design of the cache crossbar based on OpenSPARC architecture 2008

Scalable Network for Shared Last Level Cache

Care 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core g Core 7 Core 0 Core 1 Core 2 Core 3 Core d Core s Core 6 Core 7
1Ll L1 L1 L1]L1 L1 L1 L1 | L1 11 L1 L1jL1 L1 L1 L1 | L1 11]|L1 L1111 1)L L1 (Ll 1)L 1] L1 1)L
Ds |1 [D5 |15 D5 | 15 os | 15 os |15 o5 | s g D515 | |DSfis [|DsS{is | (DS ([DS]IS | (DSfI5]||DS]1S||[DS]IS

L2 Cache
[Controller that
Shared L2 Cache and Directory State handles L2 misses
Replicated Tags of all pe—{ff-chip access
L2 and L1 Caches
1/22/2019 COMP 522 10

Balasubramonian, Rajeev and Jouppi, Norman, In Multi-Core Cache Hiearchies 2011

AMD Zen Architecture’s

IR O

HNOA = NO =
¥20(8 21 '~ % ¥ooig z1 | 42018 271 ey m..ﬂ” - 12018 21

81952 .Lﬁ, IM9SZ g19sz | Jm

22018 27 | 42018 27 | o G.J - Wojg z1 :
814952 g149s2 Lﬁ 81952

~“NO =3

VY [3uueyd $¥4aa.
g [3uuey)d yHaa

16 Lanes PCle® Gen 3

1es PCle® Gen 3
16 Lanes PCle® Gen 3

16 Lanes PCle® Gen 3

[| Y ajsuueyd y¥aa

D puueY) pHad

Figure from AMD

11

COMP 522

1/22/2019

v’ Caches
»Consistency

» Coherence

» Victim Replication

1/22/2019

COMP 522

12

Consistency Models

 Specification of the allowed behavior of multithreaded programs
executing with shared memory

* Defines what orderings of distributed stores and loads are valid

* A memory system is consistent if any program on it gives allowed
behavior.

e Often implemented through cache coherence
* Programming language can provide different model then hardware

v Caches

v’ Consistency

» Coherence
» Victim Replication

1/22/2019

COMP 522

17

MESI coherence

Or | o
Own-PutM

Other-GetS

Own-GetM

silent

Own-GetM

Own-GetS
(mem in I)

FIGURE 7.4: MESI: Transitions between

stable states at cache controller

1/22/2019 COMP 522

FIGURE 7.5: MESI: Transitions

between stable states at memory

controller

18

Daniel Sorin, Mark Hill, David Wood. A Primer on Memory Consistency and Cache Coherence 2011

Other coherence protocols

e Lots of them!
* MSI, MESI, MOSI, MOESI, MERSI, MESIF, write-once, Synapse, Berkely, Firefly,
Dragon
* Software Coherence

* FENCE operation
* Evict operation

Snooping Coherence

1/22/2019 COMP 522 20

Daniel Sorin, Mark Hill, David Wood. A Primer on Memory Consistency and Cache Coherence 2011

Power5 Snooping

* MESI snooping on split-transaction bus

* Nodes connected in unidirectional rings

* Message Types: Requests, Snoop response/Decision messages, Data
* Every request goes around the ring

* No shared bus, only point to point communication
e Use ring ordering to ensure consistency ordering

Directory Based Coherence

1/22/2019 COMP 522 22
Daniel Sorin, Mark Hill, David Wood. A Primer on Memory Consistency and Cache Coherence 2011

AMD’s Directory

e /en

e Distributed MOESI cache coherence Directory
» Separate core complexes commination over “infinity fabric” network

* No published information available

* Previous Generation AMD
* Similar idea- and published!
* Core requests to Directory Controller
* Directory request state from cores

* Responds to directory controller at
home node

1/22/2019 COMP 522

DRAM

multicore
processor

DRAM
|
multicore
processor
Coherent
HT link/lﬁ I
multicore
processor
|
DRAM

Daniel Sorin, Mark Hill, David Wood. A Primer on Memory Consistency and Cache Coherence 2011

multicore
processor

DRAM

J |k
i
crossbar g 5
Q
TE |T§
@] @]
23

Complications in Practice

* What are some complications we might need to consider?
e Out of Order Execution
* |Instruction Cache

Multi-level Cache

Write-through caches

Translation Lookaside Buffer (TLBs)

Direct Memory Access (DMA)

Virtual Caches

Hierarchical Coherence

* Performance Issues

v Caches

v Consistency

v Coherence

»>Victim Replication

1/22/2019

COMP 522

25

Memory model

(gx957)

(gwasz)

(gwasz)

(gwasz)

(gwasz)

(gwasz)

(gwasz)

(gwasz)

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Private L2 Cache

CPU Core CPU Core CPU Core CPU Core

N

Frivate L2 cachas
backing up only tha L1
cache on the local tka

L $ < .

Mameary Mamary Mamary Memary
Channel Channed Channed Channed

1/22/2019 COMP 522 27

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Movement Caches

* Not in victim replication paper, but part of motivation

* Move data close consumer
* Benefit: low latency
* Cost: locating data requires complex logic

Shared L2 Cache

CPU Cora CPU Cora CPU Cora CPU Core
i i f 9 f 9 I 1 I 9 f 9 [8
L i L} L} L} L} L} L J L 3
L11% L1D$‘ L11% | [L1D% L11% | [L1D% L1I% | [L1D%
¥ ']
Shared L? caches + 4
backing up all of the
L1 caches on—chip Router Routear Router Routear

S

=l
o o2 =
.- E H
O (]

e v e
U

Memory Mamory Memory
Channel Channel Channel Channal

1/22/2019 COMP 522 29

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Victim Replication

* Need large shared cache like in L2S
* Home slices allow for fast unicast directory lookups

* When evicting from L1, can move to L2 without generating coherence
message since directory already has it at local core

e Can get benefits of both large shared cache and smaller private cache.

Replication Policy

* L2VR replication policy will replace cache lines in this order
* An invalid Line
* Global line with no sharers
* Existing Replica

e If all L2 is global and shared, doesn’t cache victim
* Within category is random
* Never replicates a victim with local home

Required Hardware Support

e 2P
* Need to store full tag bits

* L2S

* Don’t need to store tag bits for home tile, since data is always at home tile

* L2VR

e Can discern victim cache with share with home bits
* Tag width same as L2P — must hold tags from any tile

Experiment Design

* Cache associativity
e Simulation sampling
* Benchmark suite

Limitations

* What are some limitations of the paper’s simulation?
» Simple in-order processor, measure average memory latency

* No consideration of prefetching, decoupling, non-blocking caches and out-of-
order execution

e Simulation only uses 8 processors
* Set associativity

* Average memory latency should still mirror actual performance of a
system with these techniques

* Reducing on chip traffic useful goal in its own right

Single Threaded Benchmarks

Average Data Access Latency

Single-Threaded Benchmarks 10 g or
Benchmark Description o % Sﬁﬁ _
(Instruction Count
in Billions) 8
bzip (3.8) | bzip2 compression algorithm .
crafty (1.2) | High-performance chess program
con (2.9) | Probabilistic ray tracer 26
gap (1.1) | A language used for computing in groups é . 1
gce (6.4) | gcc compiler version 2.7.2.2 2
gzip (1.0) | Data compression using LZ77 3 4
mcf (1.7) | Single-depot vehicle scheduling algorithm ;
parser (5.6) | Word processing parser
perlbmk (1.8) | Cut-down version of Perl v5.005_03 2
twolf (1.5) | The TimberWolfSC place/route package 1 H |H H
vortex (1.5) | An object-oriented database program H IHH H |HH
vpr (53) A FPGA place/rOUte paCkage 0 bzip crafty eon gap gcc Bg;ir?chmglrfs parserperlbmk twolf vortex vpr
1/22/2019 COMP 522 35

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Off Chip Miss Rate (Single Threaded)

Global Cache Miss Rate

Single-Threaded Benchmarks ! B Lop
Benchmark Description 0o % vk
(Instruction Count
in Billions) 0.8
bzip (3.8) | bzip2 compression algorithm 07
crafty (1.2) | High-performance chess program
con (2.9) | Probabilistic ray tracer =06
gap (1.1) | A language used for computing in groups %o_s]
gce (6.4) | gcc compiler version 2.7.2.2 9
gzip (1.0) | Data compression using LZ77 €04
mcf (1.7) | Single-depot vehicle scheduling algorithm
parser (5.6) | Word processing parser o2
perlbmk (1.8) | Cut-down version of Perl v5.005_03 02
twolf (1.5) | The TimberWolfSC place/route package
vortex (1.5) | An object-oriented database program 01 H H Iﬂ
vpr (5.3) | A FPGA place/route package 0 S Lo Inl‘l 1 Inﬂ il |1
bzip crafty eon gap gcc gzip mcf parserperlbmk twolf vortex vpr
Benchmarks
1/22/2019 COMP 522 36

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Multithreaded benchmarks

5.5
Multi-Threaded Benchmarks 5
Benchmark Description
(Instruction Count 4.5
n Billions))
BT (1.7) | class S. block-tridiagonal CFD
CG (5.0) | class W. conjugate gradient kernel _.35
EP (6.8) | class W. embarassingly parallel kernel ;S, \
FT (6.6) | class S. 3X 1D fast fourier transform (-O0) Q.
IS (5.5) | class W. integer sort. (icc-v8) ?:2_5
LU (6.2) | class R. LU decomp. with SSOR CFD K
MG (5.1) | class W. multigrid kernel 2
SP (6.7) | class R. scalar pentagonal CFD application 15
apache (3.3) | Apache’s "ab’ worker threading model (gcc 2.96)
dbench (3.3) | executes Samba-like syscalls (gcc 2.96) 1
checkers (2.9) | Cilk checkers (Cilk 5.3.2, gcc 2.96) 0
0
1/22/2019 COMP 522

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Average Data Access Latency

Bl L2P
B L2s

= L2ve
[L2VR

BT

CG

EP

FT

1S

LU MG SP apache dbenchcheckers
Benchmarks

37

On Chip Network Messages (multithreaded)

On—-Chip Coherence Messages

=0 2P
Multi-Threaded Benchmarks 'I:ER
Benchmark Description
(Instruction Count @ o I
in Billions) ‘§
BT (1.7) | class S. block-tridiagonal CFD B
CG (5.0) | class W. conjugate gradient kernel ®
EP (6.8) | class W. embarassingly parallel kernel g 150
FT (6.6) | class S. 3X 1D fast fourier transform (-O0) §
IS (5.5) | class W. integer sort. (icc-v8) =
LU (6.2) | class R. LU decomp. with SSOR CFD Emn _
MG (5.1) | class W. multigrid kernel =
SP (6.7) | class R. scalar pentagonal CFD application E
apache (3.3) | Apache’s "ab’ worker threading model (gcc 2.96) E
dbench (3.3) | executes Samba-like syscalls (gcc 2.96) < 50
checkers (2.9) | Cilk checkers (Cilk 5.3.2, gcc 2.96) I|-|H I|_|ﬂ Iﬂﬂ
° FT 1S

BT CG EF Lu MG 5P apache dbenchcheckers

Benchmarks

1/22/2019 COMP 522 38

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

replica (%)

replica (%)

iy
o

w
o

[xe]
o

-
o

B
o

30

20

10

L2VR allocation

BT

FT

1/22/2019

40

30

20

10

40

30

20

10

CG

40

30

20

10

40

30

20

10

EP

LU

40

30

20

10

40

30

20

10

MG

dbench

COMP 522

10

40

30

20

10

SP

checkers

apache

39

Michael Zhang and Krste Asanovic. Victim Replication: maximizing capacity while hiding wire delay in tiled chip multiprocessors 2005

Victim Replication Performance

* When is L2S better?

* When is L2P better?

* What costs does L2VR have?

* |s the victim replacement policy optimal?

IBM Power?7 Architecture

* Adaptive Victim L3 Cache

* Each core has 4 MG local region
* Adaptive cache policy routes data to L3 region close to cores that use them

* Directory has 13 states, L3 cache policy works with these states to minimize
coherence messages

* On L2 miss, goes to local L3 region
* On local L3 miss, is broadcasts on coherence fabric, snooped by other L2/L3s

* Datum evicted from L2 go into L3 under similar circumstances as the
paper

* L3 associativity improved by utilizing multiple L3 caches, rather then
predefined “home” slices as in paper

AMD Zen Architecture

e L3 Cache is A Victim Cache
e CCX level granularity

 Similar on chip network to Power for directory based coherence

v Caches
v’ Consistency
v Coherence

v Victim Replication

1/22/2019

COMP 522

43

1/22/2019

COMP 522

44

Some other papers to check out

* https://doi.org/10.1109/ISCA.2005.39
* https://doi.org/10.1109/MICR0.2006.10
* https://doi.org/10.1145/1150019.1136509

1/22/2019 COMP 522

45

https://doi.org/10.1109/ISCA.2005.39
https://doi.org/10.1109/MICRO.2006.10
https://doi.org/10.1145/1150019.1136509

