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Hiding Memory Latency

* How can we hide memory latency?
* Prefetching
e Out of order execution
» Speculation
* On-chip Cache



Set Associative Caches
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Inclusive, Non-Inclusive, and Exclusive Caches

e |f Datais in L1 cache, isitin L2 Cache?
* Inclusive: Yes
* Exclusive: No
* Non-Inclusive: Maybe

* Pros/Cons of each?
* Need inclusion for other processors to get hit if multiple using same block
* Inclusive duplicates data
* More bandwidth then Non-Inclusive



Write-Back vs Write-Through

Processor 1 P1 P2 Pt P2 P1 P2
Caches X X X1 p ¢ X1 X
Bus
Shared
Memory X X1 X
Before Update Write -through Write - back
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Uniform Access vs. Non-Uniform Access (NUMA)
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Centralized Last Level Cache
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Scalable Network for Shared Last Level Cache
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AMD Zen Architecture’s
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Consistency Models

 Specification of the allowed behavior of multithreaded programs
executing with shared memory

* Defines what orderings of distributed stores and loads are valid

* A memory system is consistent if any program on it gives allowed
behavior.

e Often implemented through cache coherence
* Programming language can provide different model then hardware
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MESI coherence
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Other coherence protocols

e Lots of them!
* MSI, MESI, MOSI, MOESI, MERSI, MESIF, write-once, Synapse, Berkely, Firefly,
Dragon
* Software Coherence

* FENCE operation
* Evict operation



Snooping Coherence
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Power5 Snooping

* MESI snooping on split-transaction bus

* Nodes connected in unidirectional rings

* Message Types: Requests, Snoop response/Decision messages, Data
* Every request goes around the ring

* No shared bus, only point to point communication
e Use ring ordering to ensure consistency ordering



Directory Based Coherence
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AMD’s Directory

e /en

e Distributed MOESI cache coherence Directory
» Separate core complexes commination over “infinity fabric” network

* No published information available

* Previous Generation AMD
* Similar idea- and published!
* Core requests to Directory Controller
* Directory request state from cores

* Responds to directory controller at
home node
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Complications in Practice

* What are some complications we might need to consider?
e Out of Order Execution
* |Instruction Cache

Multi-level Cache

Write-through caches

Translation Lookaside Buffer (TLBs)

Direct Memory Access (DMA)

Virtual Caches

Hierarchical Coherence

* Performance Issues
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Memory model
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Private L2 Cache
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Movement Caches

* Not in victim replication paper, but part of motivation

* Move data close consumer
* Benefit: low latency
* Cost: locating data requires complex logic



Shared L2 Cache
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Victim Replication

* Need large shared cache like in L2S
* Home slices allow for fast unicast directory lookups

* When evicting from L1, can move to L2 without generating coherence
message since directory already has it at local core

e Can get benefits of both large shared cache and smaller private cache.



Replication Policy

* L2VR replication policy will replace cache lines in this order
* An invalid Line
* Global line with no sharers
* Existing Replica

e If all L2 is global and shared, doesn’t cache victim
* Within category is random
* Never replicates a victim with local home



Required Hardware Support

e 2P
* Need to store full tag bits

* L2S

* Don’t need to store tag bits for home tile, since data is always at home tile

* L2VR

e Can discern victim cache with share with home bits
* Tag width same as L2P — must hold tags from any tile



Experiment Design

* Cache associativity
e Simulation sampling
* Benchmark suite



Limitations

* What are some limitations of the paper’s simulation?
» Simple in-order processor, measure average memory latency

* No consideration of prefetching, decoupling, non-blocking caches and out-of-
order execution

e Simulation only uses 8 processors
* Set associativity

* Average memory latency should still mirror actual performance of a
system with these techniques

* Reducing on chip traffic useful goal in its own right



Single Threaded Benchmarks

Average Data Access Latency

Single-Threaded Benchmarks 10 g or
Benchmark Description o % Sﬁﬁ _
(Instruction Count
in Billions) 8
bzip (3.8) | bzip2 compression algorithm .
crafty (1.2) | High-performance chess program
con (2.9) | Probabilistic ray tracer 26
gap (1.1) | A language used for computing in groups é . 1
gce (6.4) | gcc compiler version 2.7.2.2 2
gzip (1.0) | Data compression using LZ77 3 4
mcf (1.7) | Single-depot vehicle scheduling algorithm ;
parser (5.6) | Word processing parser
perlbmk (1.8) | Cut-down version of Perl v5.005_03 2
twolf (1.5) | The TimberWolfSC place/route package 1 H |H H
vortex (1.5) | An object-oriented database program H IHH H |HH
vpr (53) A FPGA place/rOUte paCkage 0 bzip crafty eon gap gcc Bg;ir?chmglrfs parserperlbmk twolf vortex vpr
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Off Chip Miss Rate (Single Threaded)

Global Cache Miss Rate

Single-Threaded Benchmarks ! B Lop
Benchmark Description 0o % vk
(Instruction Count
in Billions) 0.8
bzip (3.8) | bzip2 compression algorithm 07
crafty (1.2) | High-performance chess program
con (2.9) | Probabilistic ray tracer =06
gap (1.1) | A language used for computing in groups %o_s ]
gce (6.4) | gcc compiler version 2.7.2.2 9
gzip (1.0) | Data compression using LZ77 €04
mcf (1.7) | Single-depot vehicle scheduling algorithm
parser (5.6) | Word processing parser o2
perlbmk (1.8) | Cut-down version of Perl v5.005_03 02
twolf (1.5) | The TimberWolfSC place/route package
vortex (1.5) | An object-oriented database program 01 H H Iﬂ
vpr (5.3) | A FPGA place/route package 0 S Lo Inl‘l 1 Inﬂ il |1
bzip crafty eon gap gcc gzip mcf parserperlbmk twolf vortex vpr
Benchmarks
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Multithreaded benchmarks

5.5
Multi-Threaded Benchmarks 5
Benchmark Description
(Instruction Count 4.5
n Billions) )
BT (1.7) | class S. block-tridiagonal CFD
CG (5.0) | class W. conjugate gradient kernel _.35
EP (6.8) | class W. embarassingly parallel kernel ;S, \
FT (6.6) | class S. 3X 1D fast fourier transform (-O0) Q.
IS (5.5) | class W. integer sort. (icc-v8) ?:2_5
LU (6.2) | class R. LU decomp. with SSOR CFD K
MG (5.1) | class W. multigrid kernel 2
SP (6.7) | class R. scalar pentagonal CFD application 15
apache (3.3) | Apache’s "ab’ worker threading model (gcc 2.96)
dbench (3.3) | executes Samba-like syscalls (gcc 2.96) 1
checkers (2.9) | Cilk checkers (Cilk 5.3.2, gcc 2.96) 0
0
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On Chip Network Messages (multithreaded)

On—-Chip Coherence Messages

=0 2P
Multi-Threaded Benchmarks 'I:ER
Benchmark Description
(Instruction Count @ o I
in Billions) ‘§
BT (1.7) | class S. block-tridiagonal CFD B
CG (5.0) | class W. conjugate gradient kernel ®
EP (6.8) | class W. embarassingly parallel kernel g 150
FT (6.6) | class S. 3X 1D fast fourier transform (-O0) §
IS (5.5) | class W. integer sort. (icc-v8) =
LU (6.2) | class R. LU decomp. with SSOR CFD Emn _
MG (5.1) | class W. multigrid kernel =
SP (6.7) | class R. scalar pentagonal CFD application E
apache (3.3) | Apache’s "ab’ worker threading model (gcc 2.96) E
dbench (3.3) | executes Samba-like syscalls (gcc 2.96) < 50
checkers (2.9) | Cilk checkers (Cilk 5.3.2, gcc 2.96) I|-|H I|_|ﬂ Iﬂﬂ
° FT 1S

BT CG EF Lu MG 5P  apache dbenchcheckers

Benchmarks
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Victim Replication Performance

* When is L2S better?

* When is L2P better?

* What costs does L2VR have?

* |s the victim replacement policy optimal?




IBM Power?7 Architecture

* Adaptive Victim L3 Cache

* Each core has 4 MG local region
* Adaptive cache policy routes data to L3 region close to cores that use them

* Directory has 13 states, L3 cache policy works with these states to minimize
coherence messages

* On L2 miss, goes to local L3 region
* On local L3 miss, is broadcasts on coherence fabric, snooped by other L2/L3s

* Datum evicted from L2 go into L3 under similar circumstances as the
paper

* L3 associativity improved by utilizing multiple L3 caches, rather then
predefined “home” slices as in paper



AMD Zen Architecture

e L3 Cache is A Victim Cache
e CCX level granularity

 Similar on chip network to Power for directory based coherence
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Some other papers to check out

* https://doi.org/10.1109/ISCA.2005.39
* https://doi.org/10.1109/MICR0.2006.10
* https://doi.org/10.1145/1150019.1136509
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