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1 Introduction

Different researchers use the term “dialogue system” in different ways with little

in common beyond the belief that a dialogue system necessarily interacts with a

human. For some, a dialogue system involves some mechanism to constrain the

interaction, such as a script that specifies system prompts and user responses. The

most common examples of this type of system in use are the telephone interfaces

based on keyed or spoken menu selection (e.g., “if you want your account balance,

press or say 1,” and so on). The goal here is to restrict the user’s options in the

interaction to simplify the language processing. For others, dialogue work aims to

produce machines that can mimic human conversation. Work in this area aims to

provide intuitive access to a wide range of applications, either over the telephone

using voice only, or with multi-modal interaction at a computer workstation. The

goal of this approach is to expand the user’s options in the interaction.

We have the latter goal. We believe that such systems could be both feasible and

cost-effective within the next decade. While speech-driven “menu-style” dialogue

systems are growing in use today, they have their limitations. Unless the user needs

to perform the most common and expected tasks, and can adapt to the preset

method of performing those tasks, such interfaces can be a source of frustration. In

addition, it appears that more complex tasks will be impossible to perform using

such limited dialogue interaction. To support effective dialogue, the input language

must be sufficiently general to express a wide range of different goals and courses of

action. Effective interaction also requires an ability to support “mixed-initiative”

interaction. The user must be able to “lead” the conversation in ways that best

accomplish their goals, and the system should be able to take the initiative to

speed up the solution when opportunities arise. In all but the simplest tasks, the

system must be able to perform intention recognition (to determine what part of

the task is currently being performed) and it be able to track the flow of topic as it

changes throughout the dialogue. The system must also be able to plan responses

that can only be realized incrementally over several turns in the dialogue. Finally,

the system must be concerned with grounding: it must efficiently signal that the

user was understood, and it must recognize when the user signals understanding or

non-understanding.
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We are, however, faced with a dilemma. Allowing unrestricted natural language

dialogue would appear to require full human conversational competence, which does

not seem feasible in the foreseeable future. We believe this argument is flawed, and

that the required levels of conversational competence can be achieved in applications

in the foreseeable future and at reasonable cost. The reason is that applications of

human-computer interaction all involve dialogue focussed on accomplishing some

specific task. We believe that the goal-seeking nature of such conversations natu-

rally creates a specific genre of conversation, which we call practical dialogues. A

practical dialogue could involve tasks such as performing a simple transaction (e.g.,

ordering some merchandise), information-seeking (e.g., determining the arrival of

flights, accessing medical information), engaging in problem solving (e.g., design-

ing a kitchen), command and control (e.g., managing the response to a natural

disaster), or tutoring (e.g., teaching basic concepts of mathematics). Our optimism

depends on two hypotheses. The first concerns the complexity of practical dialogue:

The Practical Dialogue Hypothesis: The conversational competence required

for practical dialogues, while still complex, is significantly simpler to achieve

than general human conversational competence.

Even though a practical dialogue system might be possible to construct, how-

ever, it might still be too expensive to construct in practice. Again, based on our

experience of building experimental systems in a number of domains, we believe

that it will not. This suggests our second hypothesis:

The Domain-independence Hypothesis: Within the genre of practical dialogue,

the bulk of the complexity in the language interpretation and dialogue man-

agement is independent of the task being performed.

If these hypotheses are true, then it should be possible to build a generic dia-

logue shell for practical dialogue. By “dialogue shell” we mean the full range of

components required in a dialogue system, including speech recognition, language

processing, dialogue management and response planning, built in such a way as to

be readily adapted to new applications by specifying the domain and task mod-

els. This paper documents our progress and what we have learned so far based on

building and adapting systems in a series of different problem solving domains. The

first system, TRAINS, was built in 1995 (Allen et al. 1995; Ferguson et al. 1996),

and the task was to find efficient routes for trains in the northeast United States

(the so-called “TRAINS domain”). In 1996 and 1997, we evaluated the TRAINS

system (Stent & Allen 1997). The users had to find efficient routes for a group

of trains (typically three trains) and avoid problem areas as they were discovered

(e.g., congestion, tracks out). In a controlled experiment involving 80 sessions with

16 users, each of whom received less that three minutes of training, over 90% of the

dialogue sessions resulted in successful plans without any intervention at all from

the experimenter.

Based on this experience, we designed a new dialogue system architecture. One of

the main goals of this effort was to separate functionality and enhance postability to

new domains. The result was TRIPS, The Rochester Interactive Planning System
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Table 1. Summary of TRIPS task domains

Domain Date Task Goal Status

TRAINS 1995-7 Finding efficient
routes for trains

Robust
performance on a
very simple task

Robust per-
formance (> 90%
success rate)

PACIFICA 1997-8 Evacuating peo-
ple from an island

Robust
performance in a
task requiring ex-
plicit planning

Demonstration
system supports
untrained users

CPoF 1998 Deployment
of troops in a mil-
itary situation

Scripted demon-
stration in a mili-
tary relevant task

Scripted interac-
tion only

Monroe 1999– Coordinating re-
sponses to emer-
gencies in Monroe
County, NY

Robust
performance on a
dynamic, mixed-
initiative task in-
volving planning,
monitoring and
replanning; larger
domain

In develop-
ment for robust-
ness evaluation

AMC 1999– Planning airlifts
using an airlift
planning system

Demonstrate abil-
ity to use third-
party plan-
ning systems; em-
phasis on agent
technology

Initial demonstra-
tion completed,
work on exten-
sions continuing

Kitchen Planned Planning kitchen
design

Robust
performance on
a significantly dif-
ferent task; multi-
lingual
experiments

Planned for
development

(Ferguson & Allen 1998). TRIPS is designed to support plan-based tasks, and we

have built versions of the system in several domains. TRIPS-PACIFICA involves

evacuating people off an island in the face of an impending hurricane and is robust

for näıve users. TRIPS-CPoF was a limited scripted-only demonstration system

that involved planning the deployment of troops. TRIPS-AMC involves planning

airlifts and investigates how “third-party” back-end systems could be integrated

into the TRIPS architecture. The Monroe domain, under current development,

involves coordinating emergency vehicles in response to simulated 911 calls and

serves as our current experimental domain. This is an exercise in scalability as

the task involves building and evaluating a robust system in a significantly larger

domain than we have previously worked on. Table 1 summarizes the domains and

the status of each project.

In this paper we will address architectural concerns in designing and building
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a generic dialogue shell. We will first describe the component-level architecture,

which reflects our experience in building systems, with a special focus on the need

to separate domain-independent aspects of the system from the domain-specific

components that create a specific application domain. We then describe our pro-

gramming level architecture, which has proven very effective in supporting system

development and porting to new applications. Finally, we will describe a few spe-

cific components in the system to illustrate our approach of developing domain-

independent components that can then be rapidly tailored to a specific domain.

2 A Generic Architecture for Dialogue Systems

Simple dialogue systems may consist of a fixed sequence of processing stages, start-

ing with speech recognition, then parsing/analysis, dialogue management and re-

sponse generation. As the dialogues to be handled become more complex, however,

such a simple architecture does not work effectively. For instance, our current sys-

tem shell under development has six separate modules that together provide the

dialogue management: discourse context management, reference resolution, inten-

tion recognition, the behavioral agent, the plan manager, and response planning.

Each of these plays a distinct role, and while they could be collapsed together for a

particular application (as we did in the original TRAINS system), such monolithic

modules are hard to construct and debug, and are difficult to modify for a new

task and domain. Figure 1 shows the core set of modules in the generic dialogue

shell, and Table 2 gives a brief description of each. The heavier arrows in Figure 1

show the main flow of processing from an input utterance to a response, and the

lighter arrows indicate inter-component interactions along the way. In addition, all

modules have access to a common semantic hierarchy and to a world KB manager

that handles queries about the current situation, managing the interfaces to domain

dependent reasoners and knowledge bases as needed.

One of the key things to note about this architecture is the separation of the

basic dialogue system components from the more domain-specific components that

provide the application (shown within the dotted lines at the lower left corner

of Figure 1). To illustrate this separation, consider a specific example: a travel-

agent application. The back-end would provide schedule and reservation informa-

tion, booking, and so on, much as current computer systems provide to human

travel agents. The Behavioral Agent and Plan Manager would be driven from a

specification of desired behavior of the system as a travel agent, including the ac-

tions it typically will be asked to perform (e.g., what information is relevant to the

customer when planning a trip), what obligations it has (e.g., find the customer

the most convenient or cheapest flights), and a specification of how to perform ac-

tions (e.g., to book a ticket, first get credit card information, then interact with the

reservation system, confirm booking with user, and so on).

As another example, in the TRIPS-PACIFICA system, the back-end systems

included a movement planner (choosing movement actions including the vehicles

and cargoes involved), route planning (based on map and vehicle capabilities),

and scheduling (based on nominal travel times). The Behavioral Agent knew the
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Fig. 1. Flow of information between TRIPS components

various plan-related operations a person might request, such as introducing a new

goal, modifying an existing plan, evaluating a plan (e.g., by asking “how long will

that take?”), and so on. It also knew how to perform these actions as necessary and

convey the resulting information back to the user. For example, to develop a plan

for a new goal, it needed to first determine the movement actions required, then get

the planner to incrementally modify the appropriate (usually current) plan to add

the actions, call the router to find routes, and finally call the scheduler to produce

a time-line. The resulting changes to the plan were used to produce a spoken and

graphical response.

Separating the Behavioral Agent from the dialogue management is also key to

supporting mixed-initiative interaction. The behavioral agent may have goals inde-

pendent of the current conversation that might influence its response. For example,

in an emergency management task, the behavioral agent may decide that it is more

important to notify the user that an ambulance has become inoperative rather than

to answer the user’s current query about the weather forecast. Thus it might ignore

the question temporarily (still retaining the obligation to answer later). Determin-

ing when to do this, of course, will be a domain-specific decision.

The Behavioral Agent also serves to encapsulate the domain-specific information,
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Table 2. Key modules in the abstract dialogue shell architecture

Module Function

Speech Recognition (SR) Transforming speech input into a word stream or word
lattice

Parser Transforming the SR output into interpretations, each
a set of conventional speech acts, using full and robust
parsing techniques

Reference Manager (REF) Identifying the most salient referents for referring ex-
pressions such as noun phrases

Discourse Context Manager Maintaining the global (topic flow) and local (salience
with a topic) discourse context

Discourse Manager (DM) Identifying the intended speech act, current task, cur-
rent step in the current task, and system obligations
arising from the dialogue

Behavioral Agent (BA) Determines system actions (e.g., answer a question,
notify of a problem, request clarification); Manages the
interface to the back-end systems.

Plan Manager Constructing, modifying, evaluating, and executing
plans (whether they are the subject of the conversation
or the task being executed)

World KB Maintains a description of the current state of the
world under differing assumptions (e.g., based on dif-
ferent plans or hypotheses)

Response Planner Determining the best communicative act(s) (and their
content) to accomplish the system’s current goals and
discourse obligations

Content Planner Determining how to realize the planned speech acts

Display Manager Managing the visual presentations given the available
displays

for the rest of the system interacts with the back-end systems only via the behavioral

agent. By defining a generic interface to the behavioral agent in terms of plans,

actions, goals, and so on, most of the system can be built independent of any

specific domain. For example, The Discourse Manager (DM) coordinates a range of

processes to recognize the user’s intentions underlying the utterance and to compute

new discourse obligations (e.g., if asked a question, one should respond) (Traum &

Allen 1994). The DM first receives input in the form of surface speech acts that

are computed by the parser using the output from the speech recognition system.

It is driven by a set of interpretation rules that match the surface speech acts and

invoke modules such as the Reference Manager, Context Manager, Plan Manager
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and the Behavioral Agent to produce and/or evaluate possible interpretations. It

might seem that the DM needs domain-specific information to perform its task.

Instead, however, it deals with abstract intentions such as introducing a new goal,

modifying an existing plan, and requesting background information. Intentions of

this form are evaluated by the behavioral agent and plan manager with respect to

the specific domain and the results are passed back to the DM. The DM does not

have to know the details of the specific domain.

3 Program Level Infrastructure

We now turn to the second level of architecture, namely the programming infras-

tructure used to build dialogue systems. Portability to new domains and flexibility

in accommodating new components requires a clear and explicit separation of re-

sponsibilities between the components. Not coincidentally, this is also good software

engineering practice. Importantly for our team of researchers, it also allows work

on individual components or small groups of components to proceed independently,

with later integration into the complete system (possibly even at run-time).

3.1 Message-Passing Communication

Our program-level architecture consists of a set of loosely-coupled, heterogenous

components that communicate by exchanging messages. Over the past several years,

we have developed an extensive robust infrastructure for deploying components. Be-

fore describing this infrastructure, it is worth considering why we chose an explicit

message-passing framework for inter-component communication rather than an al-

ternative such as RPC or object-oriented method calls.

The first reason is that explicit message-passing provides platform- and language-

independence. In our work, we use a variety of languages and platforms including

Lisp, C, C++, Java, and Perl on Unix, Windows, and Macintosh platforms. TRIPS

components can also communicate with other systems via agent frameworks such

as the Open Agent Architecture (OAA) (Cohen et al. 1994) and object frameworks

such as CORBA (OMG 1999). From the outset, we didn’t want to restrict ourselves

to a particular object framework or communication model.

The second reason for using explicit message-passing is the separation of trans-

port and content information. The transport mechanisms and protocols are sup-

ported (and enforced) by the infrastructure, while the content is negotiated between

the components. This negotiation can be at compile-time, in the case of objects, or

at run-time in the case of agents. But the fact that message-passing separates trans-

port and content decisions allows us to build a robust communication infrastructure

without requiring prior universal agreement about content.

Third, and extremely important for us as researchers and system developers

interested in rapid portability, is that explicit message-passing provides easy access

to information needed for debugging. The message traffic in a run of the system

is logged and can be used for post-mortem debugging and even replaying entire

sessions.
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3.2 Syntax and Semantics of Messages

In the TRIPS message-passing framework, components exchange messages using ei-

ther the Knowledge Query and Manipulation Language (KQML) (Labrou & Finin

1997), designed as part of the DARPA Knowledge Sharing Effort, or the Agent Com-

munication Language specified by the Foundation for Intelligent Physical Agents

(FIPA 1999). These languages are quite similar—both use a Lisp-like s-expression

syntax and are based loosely on the semantics of speech acts (e.g., (Searle 1969)).

A message in these languages consists of a verb (or performative), indicating

the speech act intended by the message, followed by a set of parameters specifying

particulars of the message. Examples of KQML performatives include “TELL” and

“ASK-IF”. Messages can be addressed to other agents, and there is support in the

specifications for connecting individual messages into conversational threads.

Importantly, neither KQML nor FIPA ACL specifies the semantics of the content

of the messages. That is, there is a parameter with which the content of the mes-

sage can be specified, but this parameter is not interpreted by the message-passing

infrastructure. While this makes it difficult to specify and verify agents in terms

of their communicative behaviors, it does make it possible to use these frameworks

without solving a host of difficult problems in reasoning about other agents (Cohen

& Levesque 1990). The fact that components developed using KQML or FIPA ACL

share a syntax and a basic agreement about the meaning of the performatives gen-

erally makes their integration easier than if they communicated only via specialized

interfaces.

3.3 The TRIPS Facilitator

The TRIPS message-passing infrastructure is based on a hub topology. The central

node in the network of components is the TRIPS facilitator. The choice of a hub

topology was a pragmatic one. While such an organization does lead to a possible

single point of failure for the network if the hub goes down, in practice the advan-

tages (such as support for validation and logging) are more important for a research

system.

The main job of the Facilitator is to route each message to its intended receiver.

In so doing, it performs full syntactic validation of the message with respect to the

underlying protocol (e.g., KQML). This again simplifies component development

by removing much of the burden of protocol-level error-checking. To perform the

routing, the TRIPS Facilitator allows clients to register one or more names. The

Facilitator also allows the online specification of “client groups” to which individual

clients can subscribe. In the TRIPS prototype system, these groups are used to

describe categories of services, such as “user input” or “display.” The Facilitator

accepts group names (i.e., service classes in the TRIPS prototype) as valid recipients

for messages, and routes such messages to all members of the group.

These capabilities support an extended form of point-to-point addressing between

components exchanging messages. However, in a system like TRIPS where the com-

ponents are effectively members of an agent society, broadcasting is a common way
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of informing other agents of new information or requesting services. The TRIPS Fa-

cilitator therefore supports two separate forms of broadcast: (1) a “true” broadcast,

which is used for various control messages, such as to indicate that a conversation

is starting or has ended; and (2) a “selective broadcast”, a subsumption mechanism

in which components can indicate interest in the output of a particular client or

client group. Combined with the use of client groups, selective broadcast provides

a powerful and flexible communication framework. For example, the Parser can

indicate interest in the “user input” group, of which the Speech Recognizer is a

member, along with other clients.

In summary, the TRIPS Facilitator provides robust message-passing facilities

built on TCP sockets. It provides naming services, content- and service-based ad-

dressing, broadcast, selective broadcast, and logging. It has many similarities with

agent-based communication frameworks like the OAA and can easily be extended to

interact with OAA agents. We differ significantly from the Communicator Architec-

ture (Goldschen & Loehr 1999) in that we do not use “Hub scripts” to control the

flow of information between the components. We believe that the communication

infrastructure should look after getting the messages where they need to go, and

that the patterns of communication should be controlled by the components them-

selves. Programming these connections into the hub, while potentially useful for

quick prototyping, eliminates the possibility of more sophisticated agents reasoning

about their communicative behavior in order to use other agents and services more

effectively.

4 Issues in Porting to New Applications

The final issue we will discuss is the issue of adapting the generic dialogue shell

to new domains. As discussed above, our general strategy is to develop generic

components that are domain-independent but limited to practical dialogues. In

some cases, a generic component can work “as is” in a new domain. In others, we

need techniques for rapidly specializing the components to perform effectively in

each specific domain. We will discuss only a few specific examples here as there is

not the space to cover every aspect of the system in detail.

4.1 Speech Recognition

We use a general-purpose speech recognizer, Sphinx-II (Huang et al. 1993) and

generic acoustic and pronunciation models to achieve generality. We then tailor

the lexicon and the language model to the task domain in order to achieve good

recognition performance. This is especially important because our dialogues involve

more spontaneous speech than applications such as dictation.

Most approaches to building language models for new domains are framed as

adaptation problems: assume the availability of a good general model that can be

made more specific by incorporating knowledge from a text corpus in a new domain.

However, these approaches require the existence of a corpus for the new domain,

which may become prohibitively lengthy and expensive. We have successfully built
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language models for new domains in a very short time by applying two techniques

(Galescu, Ringger, & Allen 1998). First, in the absence of text data in the task

domain, we generate an artificial corpus from a hand-coded context-free grammar

(CFG) that is easily adaptable to new domains, and train a language model on

this corpus. Second, we use a class-based approach to LM adaptation from out-

of-domain corpora that allows us to re-use the dialogue data collected from other

practical dialogue domains to build models for new domains.

The first technique involves generating an artificial corpus by Monte Carlo sam-

pling from a hand-coded task-specific context-free grammar The purpose of the

artificial corpus is to provide a source of plausible word collocations for the new

domain. As such, a simple grammar based on a blend of syntactic and semantic

categories is sufficient, and has the advantage of being very easy to write. Our

grammars contain just a few hundred rules. We built the first CFG (for the Paci-

fica domain) starting from a few sentences (e.g., from a script) in a manner similar

to that suggested by Rayner (1997).

The second technique we use to obtain training material for language model-

ing is based on reusing data from other domains. Language models trained on the

data from other domains might actually give worse performance than not using

any language model at all. Therefore, we need to provide a transformation between

language models in the remote domain and language models in the target domain.

To do this we use a class-based approach. The general procedure for generating

class-based n-gram models (Issar 1996) follows three steps: (1) tagging the corpus

according to some predefined word-class mapping; (2) computing a back-off n-gram

class model from the tagged text corpus; and (3) converting back to a word model

using the word-class mappings in the class tag dictionary. We achieve the adapta-

tion by using a tag dictionary specific to the remote domain for tagging the corpus

(in step 1), and using a tag dictionary specific to the target domain to obtain a

word-based LM from the class-based LM (in step 3). The success of this technique

depends heavily on the compatibility between the two tag dictionaries being used.

To achieve this kind of compatibility, we maintain a domain-independent tag dictio-

nary (containing function words, pronouns, many common-use words and phrases of

basic conversational English), and a specialized tag dictionary for each task domain.

Thus, whenever we work on a new domain, we only need to adapt the specialized

tag dictionary.

One disadvantage of this approach is that no statistics are available for words in

the target domain associated with tags that don’t appear in the remote corpus. We

alleviate this problem by interpolating language models from several practical dia-

logue domain. After deploying the system, as text from the target domain becomes

available, it can be used for building a domain-specific model. This may be used

for further adaptation of the initial model (Rudnicky 1995), or, if reliable enough,

it may replace the initial model.

We conducted a thorough evaluation on the Pacifica domain; see (Galescu, Ring-

ger, & Allen 1998) for extensive details. We observed good perplexity and word

error rate results for both techniques, and especially for their combination. As a
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consequence, we have used the above techniques for building initial language models

in all domains to which we have ported the TRIPS system (see Table 1).

4.2 Parsing

Working with real-time dialogue places many demands on the parser. If an analysis

can be found, this must be done quickly so that the user does not have to wait too

long. At the same time, we want the grammar to cover a wide range of grammatical

constructs, but extending the grammatical coverage often decreases the efficiency of

the parser. We address this problem by extensive use of selectional (i.e., semantic)

restrictions. While it has been argued that selectional restrictions are problematic

as a general theory of semantics, we have found them to be practical and effective

for specific domains. The challenge is to keep a general domain-independent gram-

mar and lexicon for portability and then adapt it to a new domain for accuracy and

efficiency. The parser uses a chart-based best-first algorithm that accepts input in-

crementally. The grammar is a fairly standard feature-based context-free formalism.

The parser and grammatical formalism are based on that in (Allen 1994).

We start with a grammar and a core lexicon that describes general English usage

in practical dialogues and then obtain a domain-specific parser by compiling in

a domain semantics. For example, there are general patterns for the syntax of a

verb phrase: a verb can only take a certain number of complements that are well-

defined constituents. Princeton WordNet (Miller 1995) identifies 35 verb frames

encountered in English. While some domains may not involve all these frames, it

is reasonable to assume that the number and syntactic types of verb arguments

is domain independent. Therefore, they are part of the core lexicon and grammar.

Similarly, there are semantic properties that stay the same in all domains. For

example, a car is a physical object in all domains, and it cannot conceivably be a

living entity.

Specific domains differ primarily in the semantics they assign to lexical items.

Not only do words have different meanings in different domains, but the notion

of a relevant semantic property varies. For example, in the Pacifica domain it is

important to distinguish fixed objects such as cities from movable objects such as

people and cargo. On the other hand, in a kitchen design system we will need to

distinguish between furniture and appliances, something that is not at all important

in Pacifica, where they will be all treated as cargo. In a similar vein, the verb “move”

in Pacifica refers to a transportation action, whereas in the kitchen design domain

it refers to a change in the kitchen plan, and transportation actions are unknown. In

Pacifica, a window in a house would be fixed (not movable), whereas in the kitchen

design domain it is movable (in the design plan).

To build a domain specific grammar, we define mappings from the domain-

independent representations to domain-specific predicates. For example, the generic

grammar contains a domain-independent verb class “MOVE”. In the Pacifica do-

main, transportation actions are important and defined by a domain-specific pred-

icate TRANSPORT. As a result, we produce domain-specific semantic restrictions

on the roles for MOVE-class verbs. For example, the Instrument is required to be
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a vehicle, the Theme is restricted to be movable (also a domain-dependent fea-

ture that selects the set of objects that can be moved in the domain), and so on.

We have now significantly reduced the number of sentences that could be parsed,

which increases the efficiency of the parser, improves structural disambiguation,

and provides strong semantic guidance for robust processing to recover from speech

recognition errors. In the kitchen domain, on the other hand, MOVE would map to

a kitchen plan modification action, where the Agent can only be one of the dialogue

participants, the Theme is a “movable” design element in the design plan, while

the Instrument will be always absent. The grammars that result from those two

specializations result in very different sentences being understandable, giving us the

advantage of domain-specific semantic grammars without the complexity of having

to define different grammar rules by hand.

4.3 Reference Resolution

Resolution of referring expressions is part of the semantic interpretation phase of the

Dialogue Manager. In TRIPS, referring expressions are resolved by first construct-

ing a list of known properties of the referent, calling knowledge managers within

the system (such as the context manager and display manager) to return entities

matching those properties, then calculating a confidence rating that each matching

entity is the correct referent. By depending on other knowledge managers for any

domain-specific information or reasoning, the reference resolution module can re-

main effectively domain-independent in generating possible candidates. Calculation

of the confidence rating varies depending on the form of the referring expression

(e.g., pronoun, definite or indefinite description) and is domain independent. Re-

turning a list of possible referents, rather than just the one most probable referent,

leaves the Dialogue Manager with more flexibility to combine the results with infor-

mation from other sources such as domain-specific reasoners. Because there may be

different sources of information available in different domains, reference resolution

must be robust to missing or incomplete information.

In practical dialogues, we find a larger variety of referring expressions and re-

ferring behavior than one finds in other language genres. We analyzed two spoken

corpora for their referential behavior (Byron 1999). While 89% of the pronouns in

a spoken monologue corpus were co-referential with a noun phrase, only 25% of the

pronouns in our practical dialogue corpus were. That means that using a pronoun

resolution technique that relies solely on identifying noun phrase antecedents in the

prior discourse (a commonly used technique in language understanding systems)

is entirely inadequate for practical dialogues. In this genre, reference to events,

propositions, entire stretches of discourse, etc. is much more common. Therefore,

the pronoun resolution technique used must allow a wide variety of candidate ref-

erents. Practical dialogues also contain many more bare demonstrative pronouns.

In the TRAINS corpus (Heeman & Allen 1995), 50% of the pronouns are demon-

strative, compared to less than 10% in the spoken monologue corpus.

To resolve this variety of referring expressions, reference resolution often needs to

draw on semantic type information. For example, verb semantic restrictions com-
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puted by the parser can be used to limit the possible semantic type of allowable

referents. To do this we use a semantic hierarchy that is shared by all modules in

the system and that contains a combination of domain-independent and domain-

dependent information. Reference resolution does not contain details about the

representation of domain objects, it only knows which knowledge manager to query

to get particular information. For example, to resolve a reference to “the green

route,” the reference module does not need to know what routes are or how they

are represented in this domain. It simply handles ROUTE as a possible object

type and knows to ask the Display Manager which ones are currently green. The

flexibility of our message-passing infrastructure supports this style of component in-

teractions without hard-coding any domain-specific information into the Reference

component.

4.4 Content planning and generation

In the current TRIPS system, the response planner receives conversational goals

from the discourse manager (which is driven by directions from the behavioral

agent). It selects content for output and passes the generator a set of role-based

logical forms with associated speech acts. The generator decides which logical forms

to produce and how to sequence them, and then passes commands on to modality-

specific generators (prosodically-annotated textual sentences are sent to the speech

synthesizer; commands to display maps and charts are sent to the Display Manager).

Our current language generator uses a domain-specific template-based approach.

Templates work well in near-fixed-initiative situations where there are few types of

system utterances; they are fast and flexible. Grammar-based approaches work well

when broad language coverage is needed, but are not usually fast enough for use in

real-time dialogue systems.

The goal of our current work is to develop a conversational agent capable of

generating varied and complex content in a mixed-initiative fashion. Accordingly,

our proposed generation framework differs significantly from our existing one. It

is based on theoretical and empirical understandings of what dialogue contribu-

tions involve (Traum & Hinkelman 1992) and is designed to support incremental,

real-time generation; broad language coverage; and flexibility in modifying system

behavior and switching to new domains. We consider the three stages of genera-

tion (planning intentions, planning content and planning form) as three different

aspects of utterances that have to be planned, possibly simultaneously (Reithinger

1991; De Smedt, Horacek, & Zock 1996). Grounding and turn-taking acts, for in-

stance, involve the planning of intentions only. Also, these acts often begin a turn,

so generating these acts quickly can give a conversational agent time to produce

other acts that may involve more processing. Because the form of such acts can be

selected from a set of conventional forms, a template-based approach can both be

domain-independent and be fast enough for real-time interaction.

Those utterances that speakers produce to fulfill intentions arising directly from

the domain or the task being solved often have content that must be expressed.

The form may or may not be important. We will generate these types of utterances
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using templates when the forms are limited, but use grammar-based generation in

the more complex cases. Other utterances are produced primarily to complete an

argumentation act. Their production involves the planning of intentions, semantic

content and surface form, and they would usually need to be generated using a

grammar.

Our proposed generator architecture is described in detail in (Stent 1999). The

new response planner will plan the system’s intentions for the continuing dialogue

by considering a set of possible interpretations from the DM and the Behavioral

Agent. It must ensure that none of the selected goals conflict or are redundant.

Generation goals are represented as sets of intention by content pairs. The generator

maintains a list of these sets (we call this list the intention-set). Each set is sent to

all the generation modules. The output from each module is a surface form and a

set of intentions fulfilled by that form. A gate-keeper at the end removes intentions

from the intention-set as they are fulfilled. It can also add sets of intentions to the

intention-set, for instance to keep the turn or if the agent is interrupted. Finally,

it can minimize over-generation by selecting which results to produce, if it gets

simultaneous results that satisfy the same intentions.

Consider an example. Imagine a user has just made a statement to the agent. The

agent wants to acknowledge part of the statement (grounding) and ask a question

about another part. So the intention-set looks like: {take-turn, acknowledge(Utt1),

info-request(Content)} (items with initial capital letters are variables). This set gets

passed to all modules. The turn-taking module returns “Uh” for take-turn and the

grounding module returns “Okay” for take-turn and acknowledge(Utt1). The gate-

keeper therefore removes take-turn and acknowledge(Utt1) and produces “Okay”.

If a pause of more than, say, half-a-second ensues, the gate-keeper might add the

intention keep-turn to the intention-set which will feed it to the various modules.

However, happily the gate-keeper quickly receives a result for info-request(Content)

which it produces, removing that intention (and therefore the whole set) from the

intention-set.

Real-time generation is very important in the context of dialogue. We believe our

architecture will allow for real-time responses with grounding and turn-taking acts,

“buying” the system more time to plan utterances that convey complex content.

5 Conclusions

We have argued that building a generic shell for dialogue systems is both a valuable

and feasible research goal. Such a shell would provide generic language understand-

ing and dialogue management functions that could then be adapted relatively easily

to new task domains. We believe that useful dialogue systems in future applications

must go beyond simple menu-oriented interaction and deal with complex problems

such as intention recognition, topic tracking, grounding, reference resolution and

incremental response planning. To address these goals we have proposed an archi-

tecture derived from our experience building dialogue systems in multiple domains.

While still very much a work in progress, we believe that we have laid a strong

foundation for rapid progress in the next few years. Our agent-oriented architec-
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ture based on KQML communication supports a flexible, plug-and-play approach

to system construction. It is compatible with ongoing work in the emerging area

of agent-based systems, where we believe many of the new applications of dialogue

systems will arise. Our component-level architecture identifies the key capabilities

needed for next-generation dialogue systems that will have to handle more com-

plex tasks than those currently studied. Our approach of making a clean separation

between domain-independent and domain-specific information, and investigating

techniques for rapid adaptation of the domain-independent components provides

us with the necessary compromise between the generality required for portability

and the efficiency required for practical applications.
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