
PRECOMPLETE NEGATION AND UNIVERSAL QUANTIFICATION

by

Paul J. Vada

Technical Report 86-9

April 1986

Precomplete Negation And Universal Quantification.

Paul J. Voda

Department of Computer Science, The University of British Columbia,
Vancouver, B.C. V6T IW5, Canada.

ABSTRACT

This paper is concerned with negation in logic programs. We propose to
extend negation as failure by a stronger form or negation called precomplete
negation. In contrast to negation as failure, precomplete negation has a simple
semantic charaterization given in terms of computational theories which deli­
berately abandon the law of the excluded middle (and thus classical negation) in
order to attain computational efficiency. The computation with precomplete
negation proceeds with the direct computation of negated formulas even in the
presence of free variables. Negated formulas are computed in a mode which is
dual to the standard positive mode of logic computations. With uegation as
failure the formulas with free variables must be delayed until the latter obtain
values. Consequently, in situations where delayed formulas are never sufficiently
instantiated, precomplete negation can find solutions unattainable with negation
as failure. As a consequence of delaying, negation as failure cannot compute
unbounded universal quantifiers whereas precomplete negation can. Instead of
concentrating on the model-theoretical side of precomplete negation this paper
deals with questions of complete computations and efficient implementations.

April 1986

Precomplete Negation And Universal Quanti.flcation.

Paul J. Voda

Department or Computer Science, The University or British Columbia,
Vancouver, B.C. V6T 1W5, Canada.

1. Introduction.

Logic programming languages ba.5ed on Prolog experience significant difficulties with negation.
There are many Prolog implementations with unsound negation where the computation succeeds
with wrong results. Some Prologs, most notably IC-Prolog and MU-Prolog 13,121, have sound
negation. The basic strategy of computing the negation ., A is to compute the formula A. When
the computation fails the formula -, A succeeds, and vice versa. This is the well known negation
as failure 12]. Such a negation is implemented in the sound Prologs by delaying the negated for­
mula until the values or free variables in it are sufficiently known. Then the formula is reduced to
truth or falsehood.

Quite often we want to compute a negated formula with some variables existentially or univer­
sally bound in it. Here Prolog's lack of expressive power comes to light. Although, by introducing
auxiliary predicates, one can express any form of quantification [91, in the absence of a preproces­
sor, the additional predicates and the double negation certainly do not increase readability. Quite
a few researchers, the present author among them [18,19] proposed computations with explicit
quantifiers. The latest attempt within the framework of Prolog is in the Corm of N -Prolog [14].
With negation as failure it is impossible to compute general universal quantifiers. The formula
'fxA is computed as .., :Ix .., A, where the inner negation cannot possibly get instantiated unless
l he quantifier is bounded, i.e. there are only finitely many x satisfying A.

The restrictions of negation as failure spawned quite a vivid research in this area. If a logic pro­
gramming language is embedded within a full theorem prover, such as TABLOG [101 or F-Prolog
[17], then classical negation can be attained . We hav ::irgued in a prcviou. paper ['.:!O[that cb.ssi­
cal negation is very ro t.ly in terms of implementation elliciency when doing lo ic computations
rather than full theorem proving. \Ve underst::ind log ic computations as a rl! ·tricted form of
theorem proving. This means in practice that we abandon the law of the excluded middle for for­
mulas of the form P (c) V-, P (c). We restrict the excluded middle only to certain formulas
which we can resolve without costly computations.

We can illustrate the cost of classical negation as follows. Suppose we are trying to prove a for­
mula in Herbrand normal form (all free variables are implicitly existentially quantified)

A 1 V A2 V · · · VA". (1)

We have to look for all possible pairs of formulas of the Corm A, = P (a) & C and
A1 = -, P (b) & D. When we succeed in unifying the term a with the term b int.o the term c we
can employ the tautology

C' & D'-+ P (c) & C' V., P (c) & D'

which is dual to the cut and follows from the excluded middle P (c) V ., P (c). Using this tautol­
ogy we try to prove the formula

A 1 V A 2 V · · · VA" V (C' & Dl
If we succeed in proving the last formula we have proven (1). Readers used to proofs by refuta­
tion will note that the process just described is dual to resolution. The price of classical negation
lies in the enormous cost or trying out all candidates for resolution. The reason for the efficiency
of Prolog (without negation) is that the Horn clause based proofs restrict the candidates of

- 2 -

resolution only to to the heads or clauses.

By abolishing the law or the excluded middle we have to expand both negative and positive calls
or predicates until we obtain a formula we can decide directly. In [20] we have formulated a logic
theory which we can call a computational logic. The theory is called CTP (Computational Theory
or Pairs) and although it pertains to pairs (S-expressions or LISP) the principles can be applied to
any other universe. We have expressed our conviction that this is probably the most one can rea­
sonably expect to compute efficiently. We did not present any computat.ional algorithm beyond
observing that the computation or negations must proceed even in the presence of free variables
by the employment of dual rules. This means that conjunctions are computed as disjunctions,
identities a = b as inequalities a :/: b, and so on. Consider the predicate

M(x) .-. x :/: 3 & :z: :/: 2. (2)

Negation as failure will not be able to compute the formula .., M(y) & y :/: 3 because the variable
y will never get instantiated. We, however, shall compute the negative call .., M(y) and end up
with the solution y = 2 (see section 5).

This paper presents an algorithm for the computation with such a negation. We propose to call
the extended negation Precomplete Negation, i.e. almost complete negation, as it is more than
negation by failure and deliberately less than the complete classical negation. With precomplete
negation we expand negated formulas even in the presence of free variables. As a consequence we
have universal quantification over infinite domains, something impossible with negation as failure.

The algorithm is essentially an extension or our algorithms computing negation 3.S failure within
the full first order language [18,19]. These algorithms deal with a theory of pairs, TP. They were
extended by Andrews in his thesis [1] to the full precomplete negation over pairs. We present
precomplete negation in a general framework applicable to many concrete theories. As an illustra­
tion we shall use examples from a simple theory of natural numbers. The soundness of our com­
putations is immediately seen from the form or computational rules.

We have the feeling that the readers of our previous papers have perceived our computational
methods which rely on the rewriting of formulas within a first order language as a transformation
of trees and therefore not readily implementable. We want to correct this mistaken impression.
Actually, we have an implementation employing choice points on the stack. This is the standard
method of implementing Prolog as invented by Warren [21]. As we proceed with the presentation
of our method we comment on the mapping or it into the framework of the Warren model. As it
happens there is no additional price in terms of efficiency Cor programs without negation. Actually
even negations can be implemented efficiently. Only universal quantifiers require extra computa­
tions. Note that this price will be paid tor the computation or negated predicates containing
unbounded existential quantifiers. This is because the last turn into universal quantifiers under
negation.

The completeness of precomplete negation with respect to computational logic is, however,
achieved only if disjunctions in the positive context (conjunctions in the negative context) are
computed in the breadth first manner not achievable with the method or choice points. The
method or choice points treats the connectives sequentially.

Finally, to illustrate the increased power of precomplete negation as opposed to negation as
failure we devote section (5) to the computation of examples not computable with the latter
method.

The inspiring discussions of the author with Jamie Andrews, Karl Abrahamson, and Peter
Ludemann which greatly stimulated this research are gladly acknowledged.

2. Computational Theorle■•

The language or Cormulas we shall compute is the ordinary first order language with identity (see
for instance [161). Formulas are composed from atomic predicates by negations, disjunctions, con­
junctions, universal and existential quantifiers. Certain predicate symbols are designated as basic.
The predicate symbol of identity = as well as the nullary predicate symbols T and F denoting

- 3 -

truth and falsehood are always basic. Formulas built (by the employment or connectives and
quantifiers) rrom only ha.sic atomic predicates are called basic formulas. Whether there are addi­
tional basic predicates than the above three depends on the concrete computational theory but we
always require that basic formulas are decidable. The existence or the decision method for the
basic Cormulas obviates the need Cor an explicit axiomatization or properties or basic predicates.

All non-basic predicate symbols, called defined predicates, must have a single axiom or the Corm

(3)

where A is an arbitrary formula containing at most the variables x 1, x2, ... Xn Cree. Although Pro­
log predicates are not given by equivalences their completion, which is necessary Cor the negative
computation in Prolog, has the form (3). We are not concerned here with interpretations but we
require that the axioms are consistent. This means that there is a classical model satisfying the
properties of basic predicates (as expressed by the decision algorithm). The model must also
satisfy the axioms (3) for all defined predicates.

We could have alternatively characterized the true formulas of Computational Logic by provabil­
ity in a Gentzen-like sequent calculus. The theory CTP is presented in such a style. The rules or
introduction (both on the left and right) or connectives {.., , & , I/) as well as or quantifiers (\/,
:I) are adopted in the st:1nd:ud Corm or Gentzen 's calculus. For each predic:1te P defined by the
formula (3) we add two new rules for predicate introduction left and right .

A(ai, ~ , . . . ,an), f-+ A f-+ A, A(ai, ~ . .. ,a,.)
(P-L) ------- (P-R).

P(ai, ~, ... ,an), f'-+ A f-+ A, P(ai, ~, .. . ,a,.)

The predicate rules allow both positive and negative expansion of predicate calls by their replace­
ment with the bodies after the substitutions or terms a, for the corresponding variables x 1•

Gentzen 's axioms A, r -+ A, A express the excluded middle and thus will not be retained. We
adopt instead as axioms all sequents r -+ A such that when we remove from it all non-basic for­
mulas the remaining basic Cormulas f'-+ A' Corm a true sequent. For instance the sequent

P(6), z = 3-+ R(x, y) & x = y, x = 1, x f= 1

is an axiom because it becomes a true sequent without the non-basic Cormulas

Z = 3 -+ Z = 1, X f= 1.

The existence or a decision procedure for the basic formulas allows us to recognize a true sequent
composed entirely of basic formulas. Consequently , we can always recognize an axiom or compu­
tational logic.

Sequents unprovable within this setup are considered not true. Ir we char:i.cterize the computa­
tional logic in this way we obtain truth value gaps, i.e. certain formulas may fail to obtain a truth
value. It is always possible to construct a model (albeit not a classical one) characterizing as true
formulas exactly those which are provable, and as false exactly those which are refutable . Such
models have been developed by Kripke l8]. For an application of Kripke's models to logic pro­
gramming see l5]. Another application or Kripke's models relevant to computer science which
goes beyond the first order language we employ here is the natural deduction set theory or Gil­
more [6J. The reader interested in details or how to build semantics to reflect a proof theory and
vice versa is referred to this paper.

It is not the goal or the present paper to investigate the model theory or computational logic but
rather to present an efficient algorithm for computing its formulas. The reason why we investi­
gate the question of efficient computability before the general meta-theoretic questions is very
simple. Computational logic is theoretically interesting only if it can be shown to be practically
usable. Without the concern for usability one can invent thousands or non-standard logics. For
the sake of simplicity we henceforth assume that our models can be constructed classically, i.e.
that the predicate axioms (3) are consistent. Under this assumption we show that our computa­
tions are sound, i.e. that whatever is computed as a solution to a formula classically satisfies the
formula. We are preparing a paper showing completeness, i.e. that whatever is true in the non­
classically formulated computational logic can be computed by our method oC precomplete

- 4 -

negation.

Throughout this paper we shail use as an example n:itural numbers . Ap rt Crom =, T , and F we
do not require any :.tdditional basic predicates. The terms of our lo.uguage :\re either v arinbles or
numerals such as 2, 5, etc. ,\II other predicate symbols must b defined by the axioms of the form
(3) subject to the res riction th:\t they have an interpretation in the dom:un f O:ltural numbers.
AH hough the theories thus obtained are very weak they will be s ufficient to illus trate lbe compu­
ta ions. The r a.son for the wea kness is that we do not have any function symbols (such as th~
successor) so we cannot build the arithmetic even though our :1.xioms for defined pr dicatcs permit
recursion.

We could have easily used the successor (unction and the constant O as the starting function sym­
bols. We could have also included < as the basic predicate and we would still have a decision
method !see for instance llj. Now some of aritbmcti<! can be developed by the ddinition of predi­
cates of addition and multiplication. We have d ecided against examples in the s tronger arithmetic
because the description of the decision method woultl be longer . The logic omputati0ns, as
described below, are essentially independent or the concrete form or the decidable subpart.

3. Environments.

Consider t.he binary predicate K over natural numbers:

K(x, y) ++ x = 1 & (y = '.! '/ y = 3) V x f l & (y = l Vy= 3). (-1)

The formula a f b is an abbreviation for -, a = b. Th e r rmul::I. rl <' fi11 ing the prrdfoatt> J(is a
basic formula. The formula 'l:: K(z, v) is not. A <:amputat ion of thi s rormula migb~ repl:i ·e the
applir.ati rn of the predicate K(z,v) by its definition (subst itu t in g for the v:iriablr % and y). The
new formula would be decidable, and equivalent to v = .3, yielding the result of the computation.

This is essentially how we shall compute . We shall repeatedly replace applications of defined
predicates by their definitions until we obtain a decidab le ro rmul u. \ f.' shall, howev er , not employ
:;ubstitution as it is costly to implement. We sh t1II instead emp loy special b:i.s ic rormulas t::\ II Cd
rnvironments which record the computed informati on :ibou Lhe valu s or variables . lo the u.bove
l'Xample, we construct the environment x = z & y = v and compute the formula on the right­
)1:.ind-side of (4) directly without any changes to it. C mp\Jter sc:i ntis ts would say that this
enviro ument expresses the bindings for the varbbles x and y. We prefer to :iy tha.t environm nls
record constraints on the variables. Bindings are given only by ideulit i s , unst rai.nts can be giv n
by any basic predicates in both positive and negated form.

The state of a computation can be visualized by the formula E & A where A is the formula to be
computed and E is the environment constraining the free variables of A. The computation of A
starts in the state T & A ·where the environment T does not constrain the free variables of A in
any way . Environments are shipped around the c0mputcd f rmula ad in the proce!5s they are
transformed and amended. At the end or the computat ion environm nLs give solut ions. The com­
putation proceeds by a transformation or the formula in to a disjun ction of the (orm

(5)

where A' is a not yet converted formula. Those environments E, which can be satisfied give solu­
tions to the formula A. Environments used with the disjunctive form are called disjunctit•e
environments.

As the computation reaches a negation it switches into Lhe constructl c, o of a conjunctive normal
form. The environments used for this are called conjur1cl iue envi.ronment.5 and are negations or
disjunctive environments. Nest~d negations continue to switch b tween disjunctive and conjunc­
tive environments. Wb never a. computation reaches an existential quantifier we switch into the
disjunctive mode (unless we are already in this mode). Within universal quantifiers we switch into
the conjunctive mode.

Our method works for any form of environmt>nts subject to the restrict.ion that they are basic for­
mulas. As will be seen below, our ability to deal with the quantifiers rests on their e/iminability.
This means that for any environment E and any variable x we can always find an environment E'

- 5 -

such that lxE - E' (or VxE - E' for universal quantifiers). The eliminability or quantifiers
comes automatically with the decision procedure for basic predicates.

In the description or the algorithm for precomplete negation we do not use such a general form of
environments. We put additional constraints on their Corm. The additional constraints guarantee
a straightforward implementation or environments on the computation stack. Ir the reader finds
the additional constraints too prohibitive he is welcome to rephrase the algorithm with his own
environments. As it happens, only the rules of basic predicat.e absorption (21-22) and or quantifier
elimination (37-46) depend on the concrete form or environments.

The additional constraint on the form or environments is that the conjunctive environments be
of the form

A 1, A 2, ••. ,A,...,. B 1, B21 ••• ,B 111 (6)

where the formulas At, B, are atomic applications or basic predicates. The operator ..,. can be
viewed either as implication or as Gentzen's sequent symbol. Indeed, the environment (6) is just
an abbreviation for the formula

.., A 1 V .., A 2 V · · · V .., A,. V B 1 V B2 V · · · VB,,.

which can be also written as

A 1 & A 2 & · · · & A,. - B1 V B2 V · · · VB"'.

(7)

We adopt the usual sequent conventions for the environments. We shall use Greek letters to
abbreviate finite sequences or basic atomic predicates: r ... A. We allow r, A, or both to be
empty. Thus ... A stands for T ... A, r ... stands for r ... F, and ..,. lor F. The sequent operator
... binds stronger than & and & binds stronger than V .

For the disjunctive mode or computation we use the negations or (6) in the form .., (r ... A).
This will be abbreviated as f~A. The reader will note that a disjunctive environment is com­
posed entirely or conjunctions whereas the conjunctive one is composed or disjunctions.

It is advantageous to keep the environments in a normalized form. As will be seen below, the nor­
malized Corm guarantees a last execution or the rules for atomic absorption and quantifier elimi­
nation (21-22,37-46). For instance, the environments, i.e. the systems or equations and inequali­
ties, used in Prolog2 l4J have a. special reduc ed form.

The normalized Corm or the environments for our theory or natural numbers satisfies two condi­
tions.

No Circularity Condition: A normalized environment does not contain the possibly com­
muted identities

lor n~ 1 at the same time. Note that this prohibits also a = a.

Single Value Condition: If an normalized environment contains the identity x = a in the
antecedent then there is no additional identity x = bin the environment.

For example, the environment

z = 3, y = z, z = 5 ..,. z = 5

violates the second condition. It is, however, equivalent to the normalized environment

z = 3,y = z, z = 5

The negative unnormalized environment

z = y, y = z .i. z = z

is equivalent to another unnormalized environment

X = Y, y = z e--it- y = z

which is again equivalent to the environment violating the first condition

X = y, y = z e--it- z = z

- 6 -

which is finally equivalent to the normalized environment This last example illustrates how
the decision procedure takes care of the transitivity of identity.

There is a very simple implementation of norm:i.lized disjunctive environments f~A. Each vari­
able is allocated on the stack. The identities of the form x = a in the antecedent r give bindings
to the variables. The single value condition prohibits an additional constraint on x . The vari­
ables for which there is no binding of the form x = a in the antecedent are constrained to be
different from b for every occurrence of the identity x = b in the consequent. The circularity
condition is implemented by an ordering of all variables and permitting the identity x = y in an
environment only if the variable x is after the variable y. The variables closer to the top of the
stack are considered to come after the variables deeper in the stack. So we a!Jow only pointers
pointing from the top or the stack towards the bottom. Conjunctive environments have exactly
the same representation as the disjunctive ones, we simply maintain a ffag recording the fact that
we are in the conjunctive mode. Actually, it is possible to compile away the conjunctive mode by
the employment of de Morgan laws by a compiler.

The computation of a formula A which does not contain any environments is commenced in the
disjunctive mode by putting the formula in the context of the most inclusive environment
~ & A. Since A - ~ & A we do not change the solutions of A. At every subsequent stage o(

the computation we apply a rule of computations to the current form At of the computed for­
mula. The rules of computation have always the form B - C with at least one environment in
the formula B. The next formula A 1+1 is then obtained by the replacement of one occurrence of
the formula B by the formula C in the formula Ar The environments serve as markers indicating
positions in the computed fo rmula which can be repl aced. As all rules of computation are valid in
the m del we do not ch ange the set of solutions. We leave it to t he reader to check the almost
obvious validity or our rules of computation. The soundn ss of our compu ta tions is obvious since
we never change the meaning of the computed formula.

The disjunctive computation terminates when either the formula .,... or r~A VA' with r~A
satisfiable is reached. In the former case the original formula is false and does not have any solu­
tions . In the latter case the disjunctive environment f~A, if satisfiable, gives one set of solu­
tions. The formula A' can be viewed as the backtrack formula (it will necessarily contain environ­
ments) and its reduction may supply additional solutions.

There is always at most one rule applicable for each occurrence or an environment in the com­
puted formula. It is, however, possible to apply different rules to the different occurrences of
environments. If the computing agent always selects the leftmost applicable rule we have a
uqucntial computation which can be efficiently implemented by the method of choice points.

The sequential computation, however, does not guarantee completeness with respect to the com­
putational logic . In order to achieve completeness we have to try all applicable rules either in
parallel or in a breadth first manner. The presentation or rules of computation in the next section
is biased towards sequential computation . We assume that the left operand of a binary connec­
tive is reduced first. We could have corrected the situation by adding new rules taking into the
account the situation where the right operand of a disjunction or conjunction reduces first. The
interested reader is referred to !18] where we present a parallel method of computation of binary
connectives. Alternatively, since with parallelism we already have nondeterministic computation ,
we can simply add the rules A & B - B & A as well as AV B - B VA which will bring the
computed formula into the desired form.

4. Computation Rules.

The reader will observe that the disjunctive environment r~~ always travels down the com­
puted formula in the context r.-..A & A. When the computation switches to the conjunctive
mode, the environment f.,...A travels downwards in the context r ~ VA. This continues until
the basic atomic formula A is reached. This formula is then absorbed into the environment (see
rules 2J, 22). The environment starts to retract after the absorption, either in the Corm of truth
val ue propagation or in the form of backtracking.

- 7 -

The goal of the disjunctive mode is to obtain the context r.++~ VA, the goal oC the conjunctive
mode is to attain the context r ... A & A. The reader will note that the computation modes are
completely dual. He is advised to try to understand the disjunctive mode (the one with r.++A)
first. This is because he may be more familiar with it since it is the only mode used in the compu­
tations with negation as failure.

For each mode there is one downward rule applicable depending on the outermost operator of the
computed formula. This formula never contains an environment. We leave it to the reader to
check that the rules are valid in first order logic with identity.

Conjunction Rules. The formulas A and B do not contain environments.

r.++A & (A & B) +-+ (r~A & A) & B
r ... A V (A & B) +-+ (r ... A VA) & (r-A VB).

Disjunction Rulea. The formulas A and B do not contain environments.

r~A & (AV B) +-+ (r~A & A) V (r~A & B)
r ... A V (A V B) +-+ (r ... A VA) VB.

(10)
(11)

The rule (8) (and dually the rule (11)) does not require any special implementation. The rule (10)
(and dually the rule (9)) can be efficiently implemented by hying down a choice point without
any copying of t.he environment. All subsequent changes to the environment must be, however,
recorded (trailed) so the same environment can be restored upon failure.

Negation Rules. The formula A does not contain environments.

f~A & -, A+-+-, (r...,.A VA)
r ... A V-, A+-+-, (r~A & A).

The computation mode is simply switched without any change in the environment.

Existential Quantifier Rules. The formula A does not contain environments.

f~A & lxA +-+ lx'(f'~A' & A')
r ~ V :lxA +-+ r A V :lx'(f'~A' & A').

Universal Quantifier Rules. The formula A does not contain environments.

f~A & V-xA +-+ f~A & \fx'(f'.,..A' VA')
r ... A V V-xA +-+ \/x'(f'.,..A' VA').

(12)
(13)

(11)
(15)

(16)
(17)

When an environment enters the scope of a quantifier some of its free variables may become
bound. The renaming of the bound variable x to x' prevents this problem. The renaming is neces­
sary only within the logical formalism. In an implementation a new bound variable x without any
constraints on it is created on the top of the stack. A disjunctive environment entering the
existential quantifier (14), and dually a conjunctive environment entering the universal quantifier
(17) poses no problem. The rules (15) and (16) require a change or the computation mode. This is
necessary so the quantifier elimination works smoothly (the rules 37-46). The change of the dis­
junctive to the conjunctive mode (16) relies on the tautology

B&C+-+B& (-.BVC).

The rule (15) is dual. The environment entering the quantifier is retained outside or the quantifier.
An implementation does not have to copy the environment provided it will be able to recover it
rrom the trailing information upon quantifier elimination.

There are two different actions when a descending environment reaches an atomic formula: either
a defined predicate is called or a basic predicate is absorbed into the envircnment. The calls of
defined predicates rely on the following properties

lx(x = a & A(x)) +-+ A(a) (18)
V-x(x =a-+ A(x)) +-+ A(a).

The tautologies hold only if the term a does not contain the variable x. Assuming t.hat the

- 8 -

predicate P is defined by the defining axiom (3) the following rules apply.

Predicate Call Rules. The predicate P is defined by (3) and the formula A does not con­
tain environments.

re+u & P(ai, 82, ... ,an)+-+
fe+u & :lx'i, x'2, .. . ,x'.(x'1 = 8 1 & x '2 = "2 & · · · & x\ = an & A ') (19)

fe-+u V P(81, 82, .. . ,a.)+-+
fe-+u V \fx'1, x'2, .. . ,x'.(x'1 =/ 8 1 V x'2 =/ a2 V · · · V x'" =/ ••VA'). (20)

It may happen that t he bound variables x, must be renamed to x,' to prevent t he binding of free
variables in the terms a,. Implemeota tionally this is not necessary. As t he quantifiers are enter d
a new frame is pushed on the top of the stack with the bindings of rormals x, to the actuals 8,.

We should note here that an implementation will combine t he predicate call rule with the subse­
quent n quantifier rules and n basic predicate absorptions into a single action. After the formals
have been bound to the actuals the body A of the predicate P will be computed without any
changes in it. Similarly on the exit from the body, the n--fold quantifier elimination will be done in
a single step.

Basic Predicate Absorption Rules . The atomic formula A is an application of a basic
predicate.

re+u & A A, re+u
fe-+u VA fe-+u, A.

(21)
(22)

These rules construct a new environment by the absorption of the formula A . It the computa­
tions is done with normalized environments the environments on the right hand side should be
now normalized. We note again that the normalization is an implementation optimization step
and from the logical point of view is not necessary . Ir, however, the computation is sequential it is
important that an unsatisfiable environment f e+ A is now reptaced by -, :ind dually an
unfalsifiable environment r-u is repl:i.ced by e+ . T he fir t case r.orre ponds to a fail d test , the
second to its dual. We namely have to enable the F- T propagation rules (-3-26) r. ulminating in
the truth value elimination (27-28) so a back t rack computation can be started. With parallel com­
putation other alternatives (or du :illy conjuncts) contribnte their solutions anyway.

The normalization procedure for our natural numbers consists of about twenty cases. The cases
depend on the form of sequences r, u as well as on the Corm or A. We just sketch some of the
typical cases here and invite the interested reader to fill in the rest.

In the following we shall denote by n, and m two different numerals. Ir A= n = n the rule
(21) yie lds re+u and the rule (22) yields e-tP . Ir A= n = m then the first rule yields e-+ and the
second I' e-+~. If A = x = n then if there is an identity x = a in r the following holds.

X = n, fe+u +-+ X = n, X = a , r'e+u X = n, f'e+A & n = a .

We recursively normalize the last environment observing that the term a is either a numeral or a
variable before x, so the recursion cannot go forever. The situation with x = a in A of the second
rule is dual. With the same A= x = n, if there is no binding x = a in the r or (21), we reorder
A to show all constraints x = a, in it.

X = n, fe+u,.... X = D, fe+u', X = &1, X = 82, ... ,X = &n +-+

X = D, fe+u' & D =F 81 & D =F &2, · •. ,n ~ &n.

The normalization goes into an n-fold recursion with "lesser" formulas. Although the above for­
mula looks as if we had to employ the negation rules n-times, an implementation will only per­
form an equivalent action without actually doing the negations. The reader familiar with delaying
in some Prologs will note that the inequalities x =/ 8 1 were delayed within the environment fe+A
because there was no binding for the variable x. Once the binding arrives the inequalities are
rescheduled for execution.

Once an environment absorbs an basic atomic predicate the environment will start a backward
propagation through enclosing formulas until the context fe+u & A or fe-+u VA is restored for

-9-

a renewed downward travel. Generally the disjunctive environment re+A travels backwards
through the enclosing operators in the context fe+A VA and a conjuctive environment travels
backward in the context r.-+A & A. Ir the environments are kept normalized the backward
movement does not cost anything (see below for details) in most or the cases. The reader i.s
advised to read the backward rules as an explanation of what goes on at the logical level.

The following group of rules is important only with the sequential computation. With parallel
computation the rules can be viewed as only an optimization.

T and F Propagation Rule■ :

e+ VA++ e+ (23)
.-+ & A++.-+ (24)
lx (.-+) ++ - (25)
V-x(e+) ++ e+. (26)

T and F Ellmlnatlon Rules: The formula A contains environments.

e+&A++A
-VA++ A.

(27)
(28)

The rule (2-1) corresponds to the fail situation in Prolog. We had a disjunctive environment which
has changed into .-+ after absorption, i.e. the test in the absorption ru!e (21) failed. The failure
(and dually the success in the rule (23)) is propagated backwards until the situation from the rule
(28) (dually the situation from (27)) is reached. Then the computation continues with the alterna­
tive. Inspection or the rules will reveal that in such situations the formula A will always contain
an environment. In an implementation the failure (dually the success) immediately continues Crom
the la.st choice point with the environment restored Crom the trailed record or changes.

The rule (25) propagates the failure through an existential quantifier. The rule applies only when
the quantifier was entered without the change of the mode via the rule (14). Nothing happens in
the implementation. The ca.c,e when the existential quantifier was entered with the mode change
requires some implementation action and is covered with the quantifier elimination rules (37-46).
The success propagation in (26) is completely dual.

Disjunction Propagation Rulea:

(re+~ VA) VB ++ re+A V (AV B) (29)
(r-~ & A) VB++ (r-A '✓ B) & (AV B). (30)

Conjunction Propagation Rules:

(re+~ VA) & B - (re+~ & B) V (A & B)
(r-.u & A) & B +-+ r-A & (A & B).

(31)
(32)

A retracting disjunctive environment travelling in the context fe+~ I/ A moves backwards
through enclosing disjunctions (29) by employing associativity and through enclosing conjunctions
(31) by employing distributivity. The two other situations are dual. This is what happens at the
logical level. At the level of the implementation all the choice points have been already laid when
the downward travelling disjunctive environment entered a disjunction and the computation
proceeds to the formula B in t.he rule (31) directly without any copying whatsover . Similarly with
the conjunctive environment in the dual situation.

Negation Ellmlnatlon and Propagation Rules:

-, (re+A) ++ r A
-, (re+A VA)++ r-~ & -, A
., (r-A) ++ re+~
., (r.-+A & A)++ fe+A V., A.

(33)
{34)
(35)
(36)

An environment retracting either by itself or with a backtracking companion simply switches
from the disjunctive to the conjunctive mode and vice versa.

• 10.

Existential Quantifier Ellmlnatlon Rules:

:Ix (f..++-A) - E
3x(f-+A VA) - E V3xA
f...,.A V :lx(f'..++-A') - E
f...,.A V :lx(f'..++-A'V A)- EI/ :!xA
r-A V :Ix(-) - r A.

Unlveraal Quantifier Elimination Rule■:

V-x(f...,.A) - E
V-x(r...,.A&A)-E&V-xA
f..++-A & V-x (f '...,.A') - E
f..++-A & V-x(f'....,.A' & A) - E & \fxA
f..++-~ & V-x (..++-) - f..++-A.

(37)
(38)
(39)
(40)
(41)

(42)
(43)
(44)
(45)
(46)

We explain here only the disjunctive case, the conjunctive one is dual. The rules (37-38) apply
when the existential quantifier bas been entered without a mode change by the rule (14). The
environment E is obtained by the existential quantifier elimination to satisfy

E - h:(f..++-A).

This is always possible but unless the environment f..++-A is kept normalized it can be time con­
suming. The rule (38) explains the reason why the formula within an existentb.l quantifier has to
be computed disjunctively. We simply need a disjunction so we are able to split the quantifier by
the application of the tautology

3x (B V C) - h:B V h:C.

The quantifier is then eliminated from the split environment. This is the only way to bring out
the results from within an existential quantifier.

In our theory of natural numbers the environment r~~ is normalized and since the scopes or
quantifiers arc completely nested the bound variable x is on the top of the stack and is simply
popped. By popping the stack we delete all identities containing the variable x from the en\'iron­
ment. The justification for this can be seen from the following.

Since x is the variable occurring after all other variables in the environment all its occurrences in
the environment f..++-A must be of the Corm x = a where the term a cannot be x. When the
identity x = a occurs in the - antecedent then by the single value constraint on normalized
environment there are no other occurrences of x in the environment and one simply uses the tau­
tology (18) to obtain the environment E

:Ix (f..++-A) - :Ix (x = a, f'~.A) - I"..++-A - E.

When x does not occur in the antecedent of f..++-tl. it m:iy occur possibly many times in the con­
sequent

::Ix(r~u) - 3x(r~A', x = a1, x = a2, ... ,.x = an) -
r~~· & :lx (x '/: •1 & X '/: a2 & ... & X-:;" •n) - !'~A' - E.

When an universal quantifier bas been entered Crom a disjunctive mode by the rule (16) the rules
(4 ,1--16) apply for 1.he quantifl r eliminaLion . The universal qu:lDtifie·r can be split (45) s imilarly as
in (38). This is wby we compute in Lhe conjunct.iv mode within universal quantifiers. In both
cases the environment E is obtained by tbe ciuantifler elimination :lJld the collapse of two basic
formulas

(47)

In our theory of natural numbers the environment f'..,.A' is r.orm::i.lized and x comes art.er all
other variables. The universal quantifier is eliminated by sirnpiy dropping all identities containing
the variable x. This is simply implemented by popping the variable x off the st:ick. The
justification is dual to the justification of the existential quantifier elimination. This is not expen­
sive. The expensive part comes when this new environment is conjuncted with the environment

- 11 -

f..+A stored upon the change of mode. This is obviously always pussible but not !lecessarily
cheap. We do not suggest any technique here beyond observing that the methods or implementing
the all-solutions meta-predicate in Prolog (see for instance [131) should be applicable here. An
example or environment operations (47) is given in section (5) where we compute the formula
Vz K(z, v). The reader will note there that the environment E actually becomes a disjunction or
disjunctive predicates.

The rule (46) is applied when a success is being propagated in the conjunctive mode and it
encounters a change of mode connected with the universal quantifier. The universally quantified
formula acted as a succeeding test, so we simply continue with the stored environment.

5. Negation as Failure venu■ Precomplete Negation.

Negation as failure delays negated formulas with free variables. Ir these variables are not subse­
quently sufficiently instantiated the computation does not lead anywhere. Precomplete negation
simply starts to compute dually. Consider the predicate M defined by (2). The formula

-, M(y) & y =/- 3

will never be computed by delaying. We present the computation with precomplete negation in a
shortened way by omitting the application of straightforward computation rules. We remind the
reader that & binds stronger than V .

..+ & (-, M(y) & y =/:- 3) - -, (.,.. V M(y)) & y =/:- 3 -
-, 'Ix(.,.. V x =/- y V x =/:- 3 & x =/:- 2) & y =/- 3 -
-, V-x(x = y ... V x =/:- 3 & (x = y.,.. V x =/- 2)) & y =/- 3 -
-, V-x(x = 3, y = 3.,.. & (x = y.,.. V x =/- 2)) & y =/- 3 -
-, (y = 3 ... & Vx(x = y.,.. V x =/:- 2)) & y =/:- 3 -
(y = 3 ..+ V-, Vx(x = y.,.. V x =/:- 2)) & y =/:- 3 -
(y = 3 ..+ & y =/:- 3) V-, Vx(x = y .-+ V x =/:- 2) & y =/:- 3 -
.,... V (-, V x(x = y .,.. V x =/- 2) & y =/- 3) -
-, V-x(x = y .-+ V x =/:- 2) & y =/- 3 - y = 2 ..+ & y =/:- 3 - y = 2 ..+

There is a subtle problem with negation as failure in Prolog. The problem is not well-known
because the quantifiers are not explicit. Nevertheless, it is an obvious shortcoming or negation as
failure. The problem stems from the fact that quantifiers are not eliminated properly by delaying.
Consider the Prolog predicate P defined by the clause

P(x) +- x = 2, x =/- y.

The formula P(2) is obviously true, yet it will not be computed by delaying because nothing
instantiates the variable y. The precomplete negation starts with the definition

P(x) - :Iy(x = 2 & x =/- y)

and computes the formula as

..+ & P(2) - :lx(x = 2 ..+ & ly(x = 2 & x =I- 11)) -
lx, y(x = 2 ..+ & x =/:- y) - lx, y.., (x = 2 .-+ V x = y) -
lx, y-, (x = 2 .-+ y = x) - 3x, y(x = 2 ..+ y = x) -
lx(x = 2 ..+) - ..+.

The crucial step is the proper application of quantifier elimination (ly) in the line (48).

(48)

Although both of the above examples are artificially simple one should not jump to the conclusion
that they do not address a real problem with the negation as failure. The problem is that not only
is negation as failure almost impossible to characterize semantically in the presence of free vari­
ables, but also that its treatment by delaying is insufficient.

As the last example we compute the formula V-z K(z, v) with (4) as the definition of the predicate
K. After translation into Prolog by a double negation and an auxiliary predicate we obtain

+--,R(v)
R(v) +--, K(z, v).

- 12 •

Negation as failure will not be able to compute the solution v = 3 beca1!se or delaying. Since the
computation or this formula with precomplete negation is quite long we use the following abbrevi­
ations to improve the readablity:

A = x = z, y = v .,.. V y = 2 V y = 3
B = x "f 1 & (y = 1 V y = 3)
Cav=l.-..Vv=3.-..
D = y = v, x = z .,_. v = 2, v = 3 V y = 1 V 11 = 3

The environment operations (47) associated with the universal quantifier occur in lines (49,50,51).
As mentioned in section (3) the single basic formula E or (47) actually becomes a disjunction or
disjunctive predicates. We give the three applications or (47) in the order or their appearance in
formulas (49,50,51):

v = 1 .-.. V v = 3 .-.. ++ .-.. & V-z, x, y(z = z, y = v.,.. z = 1, v = 1, v = 3)
v = 3 .-.. ++ C & Vz, x, y(y = v, z = 1, z = 1.,.. v = 2, v = 3)
V = 3 ++ V = 3 & \J-z, X, 1/(JI = V, X = Z .,_. V = 2, V = 3, V = 1).

The computation proceeds as follows:

.-.. & 'lz K(z, v) ++ .-.. & 'lz(.,.. V K(z, v)) ++ \fz(.,.. 'I K(z, v)) ++

v z, x, 11 (x = z, y = v v x = 1 & (11 = 2 v y = 3) v n) -
\f z, x, y (x = z, 11 = v e--+ z = 1 & A V B) ++

V z, x, y ((x = z, y = v e--+ z = 1 V B) & (A V B)) ++

V z, x, y (.... & (X = z, y = V e--+ z = 1 V y = 1 V y = 3) & (A 1
/ B)) -

'fz, x, y((x = z, y = v e--+ z = 1 Vy= 1 Vy= 3) & (AV B)) ++

V z, x, y (x = z, y = v .,_. z = 1, v = 1, v = 3 & (A V B)) ++

(v = 1 .-.. V v = 3) & V z, x, y (A V B) ++

C & 'fz, x, y(y = v, x = z.,.. v = 2, v = 3 VB)++
C & 'fz, x, y(y = v, x = 1, z = 1 e--+ v = 2, v = 3 & D) ++

v = 3.,.. & 'fz, x, y D ++

V = 3 & 'fz, X, y(y = V, X = Z e--+ V = 2, ti= 3, V = 1) ++

v= 3.,...

O. Conclusions.

(49)

(50)

(51)

We hope that we have sufficiently demonstrated the weaknesses or negation as failure. The
~trengthening of negation as failure to precomplete negation allows us to compute both positive
::rnd negative formulas dually without a concern for the free variables within negations.

\Ve cousicler precomplete negation as a natural barrier on the way to the cla.ssical negation. Clas­
sical negation is certainly computationally pos8ible but unfortun::itely it is very expensive. On the
other hand, the implementation or precomplete negation is a straightforward extension of known
efficient techniques. The only computationally expensive part is concerned with the rules (39-
·10,44-45) when we generate values of free variables accross a quantifier entered with a change of
mode. Ir the stored environment contains bindings for the free variables then the quantified for­
mula acts as a mere test. Otherwise quite complex environment operations are necessary. 'We
think that these operations can be efficiently handled by the methods or all-solutions meta­
predicates in Prolog. The reader will note that the relatively high cost or the environment opera­
tions is not to be associated with our particular method but rather with the inherent complexity
or computing universal quantifiers disjunctively (existential quantifiers conjunctively).

Although we have demonstrated the techniques or environment manipulation with a very simple
theory or natural numbers the method is completely general and applies to any decidable theories.
We are currently implementing the precomplete negation in our logic h.:,g 11age R-~faple where we
decide also the relation < over integers and allow terms or the form x+n with n an integer
numeral. We are seriously contemplating adding the Cull treatment of addition by allowing arbi­
trary terms a+b. This requires the implementation or the decision procedure Cor Pressburger
arithmetic [7] where the multiplication terms must have the form n.a. The decision procedure for

- 13 -

Pressburger arithmetic is in general extremely costly !151 but may be worthwhile for small pro­
grams. Obviously, there is no decision procedure for the general terms a.b. Outside or the
domain or integers we decide equations and inequalities among pairs (S-expressions). R-Maple is a
typed language where the types have a Pa.seal-like form allowing recursion in types. Associated
with each type T is a predic3te T(a) s3tisfied ilI the object denoted by a is or the type T. We
impose certain restrictions on the form or types and as a consequence we can decide arbitrary ror­
mul3S involving the predicates T. In other words, we count the type predicates as basic predi­
cates.

We are currently preparing a paper where we prove the completness or precomplete negation with
respect to the computational logic characterized by the Gentzen-like axioms in section (2). Com­
putational logic restricts the law or the excluded middle. The excluded middle applies only to
decidable formulas. The proof or completness requires that we show that everything provable in a
computational theory is computable with the precornplete neg:'ition. The converse merely states
the obvious fact that precomplete negation is sound. However, completness is achieved only when
we apply the rules or computations to all environments in parallel. The sequential case is very
difficult to characterize semantically. We shall discuss this in the prepared paper.

References:

jl] Andrews J., An Environment Theory with Precomplete Negation over Pairs, Msc. thesis UBC,
Vancouver 1986.

['2] Clark K., Negation as Failure, in: Logic and Databa.ses, Galla.ire and Minker (eds.), Plenum
Press, 1978.

[31 Cbrk K., ~·kCabe F ., micro-Prolog: Programming in Logic, Prentice Hall, 1084.

[4) Colmerauer A., Kanoui H., van Caneghem· M., Prolog, Theoretical Principle and Current
Trends, Tech, Sci. Inf. 2:4, 1983.

[SI Fitting M., A Kripke-Kleene Semantics for Logic Programs, J. Logic Programming 4:295-312,
1085.

[6] Gilmore P., Natural deduction B:i.sed Set Theories: A new Resolution or the Old Paradoxes, J.
Symbolic Logic 51:2, 1986.

[7] Hilbert D., Bernays P., Grun<llagen der t-hthematik, Springer ICJ68.

[8] Kripke S., Outline or a Theory of Truth, J. Philosophy i2:690-716, 1975.

[9] Lloyd J., Topor R., Making Prolog more Expressive, J, Logic Programming 3:225-240, 1984,

[10] Malachi Y., Manna z., Waldinger R., TABLOG: The Deductive-Tableau Programming
Language, STAN-CS-84, Standford 1984.

[11] Monk J., Mathematical Logic, Springer 1976.

[12] Naish L., MU-Prolog 3.ldb Reference Manual, University or Melbourne 1984.

[13] Naish L., All Solutions Predicates in Prolog, IEEE Symposium on Logic Programming, Bos­
ton 1985.

[14] Naish L., Negation and Quantifiers in ~'U-Prolog, Proceedings of :~rd International Confer­
ence on Logic Programming, London, Springer 1986.

- H -

!tSj Ra bin M., Fischer M., Superexponential Complexity of Pres~burger's Arithmetic, SL<\M-AMS
Proceedings 7:27-41, 1974.

II61 Shoenfield J., Mathematical Logic, Addison-Wesley l'J67.

II7I Umrigar Z., Pitchumani V., An Experiment in Programming with Full First-order Logic,
IEEE Symposium on Logic Programming, Bo ton 1985.

l18] Yoda P ., A View or Programming L:inguages as Symbiosis of Meaning and Computations,
New generation Computing 3:71-100, Springer 1085.

119I Yoda P., Computation or Full Logic Programs Using One-Variable Environments, New gen­
eration Computing 4:2, Springer 1986.

120I Yoda P ., The Choices in, and Limibtions or, Logic Programming, Proceedings of 3rd Interna­
t-iooal Conference on Logic Programming, London, Spri nger 1'J86.

121I Warren D., An Abstract Prolog Instruction Set. SRI Note 309, Standford Research Institute
1983.

