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Abstract 

%'e examine the problem of planning a path through a 
low dimensional continuous state space subject to up- 
per hounds on several additive cost metrics. For the 
single cost case, previously published research has pr- 
posed constructing the paths by gradient descent on 
a local minima free value function. This value func- 
tion is the solution of the Eikonal partial differential 
equation, and efficient algorithms have been designed 
to  compute it. In this paper we propose an auxiliary 
partial differential equation with which we can evaluate 
multiple additive cost metrics for paths which are gen- 
erated by value functions; solving this auxiliary equa- 
tion adds little more work to the value function compu- 
tation. We then propose an algorithm which generates 
paths whose costs lie on the Pareto optimal surface for 
each possible destination location, and we can choose 
from these paths those which satisfy the constraints. 
The procedure is practical when the sum of the state 
space dimension and number of cost metrics is roughly 
six or below. 

1 Introduction 

Few problems are as well studied as the path plan- 
ning or routing problem; it appears in engineering dis- 
ciplines that vary from robotics to wireless communica- 
tion to matrix factorization. A major challenge in de- 
veloping solutions to the problem are the many, some- 
time subtle, variations it can adopt: the topology of the 
state space and cost metrics, the types of acceptable 
paths, the number of sources and destinations, the ac- 
ceptable degree of optimality, etc. While every variant 
has at  least one solution method--enumerate all feasi- 
ble paths until an acceptably optimal one is found-the 
key to developing efficient solution algorithms is to take 
advantage of the particular properties of the variant of 
interest. 

In this paper we examine the path planning problem in 
a continuous state space subject to constraints on ad- 
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ditix-e path integral cost metrics. The original motiva- 
tion for this work was the planning of fuel constrained 
flight paths for unmanned aerial vehicles through envi- 
roments with varying levels of threat. Paths are gener- 
ated by gradient descent on a value function (with no 
local minima), which is the solution of an Eikonal par- 
tial differential equation (PDE).' Path integral costs 
are evaluated by solving an auxiliary PDE. Both PDEs 
can be solved quickly for low dimensional systems, thus 
yielding a practical algorithm for path planning. Be- 
cause both PDEs are solved over the entire state space, 
paths to any possible destination can he rapidly evalu- 
ated. 

To handle constraints, we sample the Pareto optimal 
surface looking for paths with feasible combinations of 
costs. The sampling method only reaches the convex 
hull of the Pareto surface, so for nonconvex problems i t  
may not always find the optimal feasible pa th  however, 
in our experience the degree of nonconvexity has not 
been enough to cause significant problems. 

The asymptotic cost of the algorithm is 
O(AldNdlogN), where A l  is the number of sam- 
pled points on the Pareto optimal surface, d is the 
state space dimension, and N is the number of grid 
points in each state space dimension. To adequately 
sample the Pareto surface, A f  will typically he expo- 
nential in the number of separate cost functions k. 
TVhile these two exponentials are daunting, in practice 
the algorithms described below are quite practical on 
the desktop when the sum IC + d is less than around 
five or six; for example, section 3 includes a problem 
in two dimensions with three cost functions that can 
be solved to reasonable accuracy in about one minute 
on the authors' laptop computer. 

Gradient descent on a value function solution of the 
Eikonal equation has been used previously for uncon- 
strained, single cost path planning problems. The in- 
novative contrihution of this paper is the application 

'Classical applicat.ions of the Eikonal PDE are in the fields of 
optics and seismology. Its solution can he interpreted as a tint 
a r r i d  time or a cost to  go, depending on whether the boundary 
conditions represent sources or sinks. 
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of auxiliary PDEs to calculate multiple path integral 
cost@ and the use of those costs to find constrained 
optimal paths. 

In the remainder of this section we formally outline 
our path planning problem and examine related work. 
Suhsequent sections describe the algorithm, provide an 
example, and discuss extensions to more general prob- 
lems. 

We work in a state space Rd. Unless otherwise speci- 
fied, norms are Euclidean /I. 11 = II.112. Let Iw+ = (0: CO) 
he the set of strictly positive real numbers, and Iws = 
[O, m) be the set of non-negative real numbers. 

1.1 Problem Definition 
A p a t h  p : Re x Id  -t Rd is parameterized hy an ar- 
clength s E R e  and a destination location z E Rd. 
Assume that all paths have a single source location 
zs E lRd (we will relax this assumption later). The path 
costfunctions { C ~ ( Z ) } ~ = ~ ,  wherec, : Rd i Wf, are con- 
tinuous, bounded and strictly positive. The cost along 
a path is additive, so the total cost of a path can be 
evaluated by a path. integral  

In words, Pi : Rd i Iw is the total cost, according to 
path cost function ci(.), of following the path p( . , z )  
from the source location 2, to the point 2. 

As an example, consider planning the flight path of an 
aircraft from its base at 2, to various destinations. The 
most obvious path cost function is fuel, which we ap- 
proximate as a constant crupl(x) = cruel. A second path 
cost function might be the threat of inclement weather 
c,,.~~~(z). A third might be uncertainty about the envi- 
roment, encoded as cuncr(z). The latter two costs are 
inhomogenous, meaning that their value depends on 
z. Examples of cost functions are shown in figures 2 
and 3. 

There are two related problems that we might wish to 
solve starting from the parameters zs and (cj(z)}bl 
described above. Gixzen mme set of cost constraints 
{C;},"=,, where C; E Et+, we might want to find fea- 
sible paths such that Pi(.) 5 C, for all i = 1.. . k. 
Alternatively, we might try to minimize Pl(z) subject 
to constraints on the remaining costs P,(x) 5 Ci for all 
i = 2 .  . .I;. In either case, we will usually he int,erested 
in quantitative measures of the tradeoffs between the 
various path cost functions. 

1.2 Related Work 
The significance of the most closely related algorithmic 
work [I, 2, 31 is discussed in section 2.4.  However, sim- 
ilar problems have been investigated in several other 

fields 

Path planning is a central endeavor in robotics re- 
search [4], so we mention only the most closely related 
work. The algorithm discussed in this paper could be 
categorized as a potential field approach 151, in the 
sense that the paths are determined by gradient descent 
on a scalar function defined over the state space. In 
particular, the value function constructed in section 2 
is an example of a navigation function [SI-a potential 
field free of the local minima that hinder most poten- 
tial field methods (although in general it will contain 
saddle points). The specific use of the Eikonal equa- 
tion for robot path planning in the single cost case was 
examined in 171, and is equivalent to the approach used 
in IS]. 

Independently, the networking community has been 
solving constrained shortest path planning on discrete 
graphs [9, 10, 111, primarily for the purpose of network 
routing. While this research involves problems with 
multiple costs, it makes some discreteness assumptions 
t,hat do not apply in this setting. It should be noted, 
however, that our method for exploring the Pareto op 
timal surface of possible path costs by sampling values 
of X (see sect,ion 2.3) is equivalent to the fastest a,lga- 
rithni proposed for finding constrained shortest paths 
in [ll]. 

The related work that is closest mathematically is a 
tomographic applicat,ion [12], which uses the Eikonal 
equation (2) to calculate travel time and a version of 
the path integral PDE ( 4 )  to determine perturbations 
of a linearized form of the Eikonal equation. To our 
knowledge, the use of (4) for evaluating path integral 
costs is original. 

2 Value Function Solution 

We discuss the value function method for finding the 
shortest path in the single cost case, and then how to 
c0mput.e path integrals along value function generated 
paths. With these tools we can explore the range of 
paths that might meet the constraints when multiple 
cost functions are involved. This section concludes with 
a discussion of an efficient algorithm for solving the 
required differential equations. 

2.1 Single Objective Shortest  Path 
Consider the simplest case k = 1 with a single path cost 
function e(%) = CI (z) (because it will be used to gener- 
ate a value function, we call this cost ~ ( z )  the value cost 
function). It can be shown that the minimum cost to 
go from the sonrce xg t o  any point z in the state space 
is the solution of the inhomogenous Eikonal equation 

Ilvv(z)l/ =e(.) for z E W d ,  
(2)  with boundary condition V(z,) = 0. 
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The solution I/ : Rd + R@ of this PDE is called the 
value function. In practice V is rarely differentiable and 
therefore (2) does not have a solution in the classical 
sense. The viscosity solution 1131 is the appropriate 
weak solution for the shortest path problem. 

Given the viscosity solution V ,  the optimal path p*(., z) 
can be determined by gradient descent of V from a fixed 
target location z. In practical terms, let $(s,z) he a 
path that starts at  a particular z and terminates at  
xs. Then p is the solution to the ordinary differential 
equation (ODE) 

for s E Ra and fixed z E Bd, 
with initial condition p(0,z) = z 

We stop extending the solution at  some d such that 
p(S ,z )  = za. Then S = T is the arclength of the 
shortest path from zs to z, and that path is given by 
p ' ( s , s )  = p(T- s,z). Because V(z) is the cost to get 
t o  z from z, along path pa, the path integral for this 
path is P ( z )  = V(z). The gradient descent (3) can- 
uot get stuck in local minima because V has none.' In 
theory, (3) can get stuck a t  saddle points of V, but the 
stable manifolds of such points are of measure zero in 
the state space, and are thus unlikely to be a problem 
in practical implementations subject t o  floating point 
roundoff noise. 

2.2 Computing Path Integrals 
Throughout the remainder of this paper, we consider 
only paths generated by (3) for some value function V. 
In this section we examine how to compute the path 
integral when the value cost function is not the same 
as the path cost function. To differentiate the two cost 
functions, we denote the value cost function in (2) by 
e(.) and the path cost function in (1) by ~ ( z ) .  Both 
must use the same source location xs. 

Starting from the differential form of (l), we formally 
derive a PDE for the path integral S(z) 

where (3) is used in the second step and (2) is used in 
the third. Consequently, for all reachable points in the 

$Easily seen if V is differentiable, since a local minimum would 
require V V ( x )  = 0, but c(x )  > 0. A more rigorous argument 
based on the positivity of c can be constructed when V is a 
viscosity solution. 

Parelo c m  

....... ~ ......... ~..p;rx;> .......... :i .. ~ ........... ........ ~~ ........ ~, P,W 

Parelo c m  

....... ~ ......... ~..p;rx;> .......... :i .. ~ ........... ........ ~~ ........ ~, P,W 

Figure 1: Pareto optimal curve for a particular destina- 
tion state x. Left:  each value of X samples a 
point on the curve. Right: testing all wlues 
of X a,ould yield a convex approximation of the 
Paieto curve. 

state space, 

(4) 
VP,(z) ' VV(z) = ce(z)c(z) for z E Bd, 

with boundary condition P,(z.) = 0. 

Because the cost structure is isotropic (independent 
of path direction) the system is small time control- 
lable and for our single source version all states will be 
reachable. The derivation above assumes that all the 
functions involved are differentiable, but as was stated 
earlier this assumption will fail for V(z) arid therefore 
likely also for Pt(z). We are in the process of develop- 
ing a robust proof that the viscosity solution of (4) is 
the path cost integral we seek. 

2.3 Exploring Potential  Paths 
As discussed in section 1.1, one of our goals was an 
algorithm to generate feasible paths subject to a col- 
lection of cost constraints. In the previous two sections 
we described PDEs whose solutions were a path gener- 
ating value function V in (2) and the path integrals P, 
for those paths in (4). The remaining missing ingredi- 
ent is the value cost function c(z) in (2). In this section 
we discuss the results of using convex combinations of 
the path cost functions as the value cost function. 

We start with the simplest multiobjective case, k = 2. 
Let 

c'(z) = >cl(z )  + (1 - x)c~(z) for some A E [0,1]. 

Then evaluate (2) and (4) for Vx(z), Pt(z )  and I?,"(,). 
The first thing to notice is that X = 1 calculates paths 
optimal in c1 and X = 0 paths optimal in c2. Therefore. 
if Pt='(z) > C1 or P,"='(z) > C, for some point z, 
there cannot be any feasible paths from zg to 5. Inter- 
mediate values of X will generate paths lying somexhere 
between these two extremes. 

Testing all possible values of X would effectively con- 
struct the convex hull of the Pareto optimal tradeoff 
curve between the two cost functions. Figure 1 shows 
a possible Pareto curve for a single point z, the points 
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on that curve determined by several values of X, and 
the convex hull of that curve. A point on the curve 
is a pair (P?(x)>P;(x)) and lies where a line of slope & is tangent to the Pareto curve. Therefore, X is 
a quantitative measure of the tradeoff between the two 
cost functions. 

In general the Pareto curve is not convex, so this 
method may fail to detect a feasible path even if one 
exists. Nonconvexity in the Pareto curve will manifest 
itself by jumps in the values of the path integrals P;(x) 
and P,”(z) for fixed z as X is varied continuously; for 
example, consider the jump in path integrals as X is 
varied in the range [A* - E, X? + c] for some small E > 0 
in figure 1. However, neighboring values of X can be 
used to bound the error in the convex approximation 
and nonconvexity has not heen a problem in our expe- 
rience. I t  should he pointed out that the Pareto curve 
characterised above is for a single point x in the state 
space. Because V x  and P,” are calculated over the en- 
tire state space, the technique actually approximates a 
separate Pareto curve for all points z. 

To handle the case k > 2, we simply choose a set 
{Xj}$=l such that Xj  E [ O , l ]  for all j and Er=, X j  = 1. 
Then c(’J)(z) = E:=, Xjcj(z), and we can solve for 
the corresponding value function and path cost inte- 
grals. In this case it is the convex hull of the Pareto 
optimal surface that is explored as the set { A j }  is var- 
ied. 

2.4 Numerical Algorithms 
The discussion above xould be nothing more than 
a mathematical diversion if it were not possible to 
solve (Z), (3) and (4) numerically for some practical 
problems. In this section we provide some pointers to 
the algorithms that we have used. For more details, 
see 1141. 

To treat (3), we assume that (2) and (4) can be com- 
puted for a variety of X values to generate V ’ ( x )  and 
{P;‘(z)};=’=,. Then a particular is chosen such that 
any path integral constraints are satisfied (P:(z) < 
Ci). A path is determined by solving (3) for value func- 
tion Vi(%) with a standard ODE integration method, 
such as Runge-Kutta. 

Solving (2) efficiently relies on an algorithm first de- 
scribed in 111: although our implementation is hased on 
an equivalent version 121 commonly known a s  the Fast 
Marching Method (Fh4h4). This algorithm is basically 
the Dijkst,ra algorithm for computing shortest paths in 
a discrete graph [15], suitably modified to deal with a 
continuous state space. For readers interested in alter- 
natives, there are other algorithms for solving (2); for 
example, [IG, 171. 

Figure 2: Weather threat cost function cWthr(%) 

The value function V(z) is approximated on a Carte- 
sian grid over the state space with N nodes in each 
dimension, for a total of N d  nodes. Direct applica- 
tion of Dijkstra’s algorithm on this discrete C.artesian 
graph remains a popular approximation met,hod for 
this problem; however, the paths generated by such 
an approximation measure their cost metrics in a coor- 
dinate dependent manner,t and are visibly segmented 
at the grid’s resolution. In contrast, FMhI approxima- 
tions can generate paths with subgrid resolution (see 
section 3); paths that are reasonably smooth for prac- 
tically sized grids. Furthermore, these approximations 
are theoretically convergent, meaning that the approx- 
imation approaches the true value function solution 
of (2) as N -f 00 on all of the state space except a 
subset of measure zero. The cost of this algorithm is 
O(dNd log N ) .  

To solve (1), we use an approximation scheme outlined 
in 131. The “extension velocity“ Fext(z )  described in 
that paper is computed by solving 

VF,,(S). VV(z) = 0, 

which is just (4) with a zero right hand side. In prac- 
tice, we integrate the computation of Pi(z) into the 
FMM Computation of V(s),  and it requires little addi- 
tional work. 

3 An Example 

For our example we consider planning a ‘path for an 
aircraft flying across the idealized unit square coun- 
try from lower left to upper right. We focus on a two 
dimensional example primarily because three dimen- 
sional paths are very challenging to visualize on paper. 
The first cost function will be fuel, which we assume is 
a constant eru.l(s) = cruel = 1. 

‘For example, Dijkstra on a square Cartesian grid measures 
distance with the Manhattan or I-norm; in this norm the d i 6  
tance beween two points depends on the alignment of the mor- 
dinate axes. While this axis alignment bias can be reduced by 
adding more edges to the graph, it will persist unless every p m  
sible path is enumerated by making the graph completely dense. 
The solution of the Eikonal equation (2) m e a ~ u r e ~  distance in the 
Euclidean or 2-norm, which is independent of axis alignment. 
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Figure 3: Uncertainty cost function cUncr(z) 

line minimize 
type what? 

The second cost function will represent the threat of 
weather related problems Cwthr(Z). Note that the in- 
tuitive quantification of weather threat would he the 
probability of encountering a storm along the flight 
path. This quantification cannot be used as a cost be- 
cause probabilities are not additive; however, under an 
independence assumption they can be transformed into 
an additive cost by a logarithmic transformation. The 
figures and tables below " n e  that this transforma- 
tion has been performed in generating cut,,,(%) from 
meteorologically determined storm prohahilities. Fig- 
ure 2 shows a simple weather threat cost map cwthr(z). 
Notice that the lower high threat bar extending from 
the left is slightly thinner than the upper high threat 
bar extending from the right. 

Ideally, this weather forecast would be an accurate 
short term estimate of weather threat. Unfortunately, 
only part of our fictional country (the right and bottom 
sides) is well monitored and can thus generate accurate 
short term estimates, The remaining part of the coun- 
try (the upper left) is poorly monitored and in this 
region we are forced to resort to long term climato- 
logical estimates. Because these long term estimates 
are less accurate, we introduce a third cost function 
cancr(z) which will penalize paths through the poorly 
instrumented region of the country. and which is shown 
in figure 3. 

To compute approximations to (2) and (4), we haire 
implemented a version of the Fhlh4 described in sec- 
tion 2.4 in C++ for Cartesian grids. While the code 
itself can handle any dimension, in practice the physical 
memory limits of desktop machines restrict the dimen- 
sion to at most five even with very coase grids. Using 
a MEX interface, these PDE solving routines can be 
called directly from Matlab. We use Matlab scripts to 
sample in 

For this example, wt: plan paths from the source to a 
single destination; however, once the V x ( z )  and P>(z) 
are built, the cost of a path to any destination can 
be found by simply evaluating these functions at  that 
destination point. 

A variety of optimal paths from the source zs = 

space, ahd Atatlab's ode23t to solve (3).  

constraints 
fuel I wthr 

I , # , # , ,  I 
'0 0 1  02 03 0 4  0 5  0 6  0 7  08 09 I 

Figure 4: Some constrained and unconstrained optimal 
The properties of each path are ex- paths. 

plained in table 1. 

11 dotted 1 un; 1 no;; 1 n: 
dotted wthr none none 
solid 1.6 none 
dashed 1.3 none 
dash dot uncr 

costs 

Table 1: Properties of paths in figure 4. 

ij 2.84 

[0.1 0.1IT (marked by a 0 symbol) to the destina- 
tion Zd = [0.9 0.91 (marked by a U symbol) are 
shown in figure 4 and described in table 1. The first 
three (marked by dotted lines) are each optimal in one 
of the three cost metrics, ignoring the others. They 
can be distinguished by their lengths: the shortest is 
the fuel optimal cost, the slightly longer one is the un- 
certainty optimal cost, and the longest is the weather 
optimal cost. The remaining paths are constrained in 
some manner. Notice in particular the difference b e  
tween the dashed and dash dot paths. The latter sat- 
isfies the same fuel constraint, hut trades a lower un- 
certainty cost (taking a route in the lower right) for a 
higher weather cost (it crosses the thicker high weather 
threat bar at  the top rather than the thin one at  the 
bottom). 

This example in d = 2 dimensions and with k = 3 
cost metrics was run on an N = 201 grid, sampling 
the Pareto surface uniformly at AA = 0.01 intervals 
(so At' = 101'). It took 13.5 minutes to run, of which 
all hut 10 seconds were spent solving instances of (2) 
and (4). Results of nearly the same quality can be 
achieved in just one minute by halving AT and doubling 

T 
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AA. For a three dimensional example and more details 
on t,he implementation, timing and the effects of grid 
refinement, see [14]. 

4 Discussion 

We have demonstrated an algorithm for constrained 
path planning in continuous state spaces for additive 
cost metrics and isotropic hut inhomogenous and non- 
convex cost functions. In those cases with multiple cost 
functions, a convex approximation of the Pareto op- 
timal surface is explored; consequently, the algorithm 
may not find all feasible paths although in practice this 
has rarely heen a prohlem. While the asymptotic cost 
of the algorithm is exponential in the dimension and in 
the number of cost functions (assuming uniform sam- 
pling of the Pareto optimal surface), it can be run at, 
interactive rates on the desktop if their sum is five or 
less, and overnight if their sum is six. 

There are sexreral straightforward extensions of this 
work to more general path planning problems. We can 
immediately incorporate multiple source locations, by 
making each source a boundary condition with \ d u e  
zero of the PDEs (2) and (4). The resulting d u e  
function uill generate paths from t,he nearest source 
to each destination state. Hard obstacles in the state 
space can be treated by either making the cost func- 
tion very large in their interior or by making the ob- 
stacle's boundary a part of the PDEs' boundaries with 
very large value. Ckeating boundary nodes with in- 
termediate values (neither zero nor very large) can he 
interpreted as penalizing those nodes as possible source 
locations. We can also swap the meaning of source and 
destination, in which case the value function can be 
used to generat,e a feedback control. 

The hasic FMAl algorithm described in section 2.4 has 
been extended to unstructured meshes, and a more ac- 
curate second order approximation scheme has been 
developed. For more details on FR4A4 and its exten- 
sions, we refer the reader to [18]. We are in the process 
of developing a version of Fhihl  that runs on an adap- 
tively refined Cartesian grid, so as to better represent 
problems with hard obstacles. We are also investigat- 
ing how ot,her path cost models might he incorporated 
into this franiework, including anisotropic cost metrics 
(the cost depends on state and direction of travel) and 
ways of evaluating maximum cost along a path, rather 
than integral cost. 
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