

Proceedings of
SWDB’ 03

Very
Large
Data
Bases

The first International Workshop on
Semantic Web and Databases

Co-located with VLDB 2003

Humboldt-Universität
Berlin, Germany

September 7-8, 2003

We appreciate the contributions from our sponsors:

OntoWeb Network

Organizers

Program Committee Chairs
Isabel F. Cruz
U. Illinois at Chicago, USA
(ifc@cs.uic.edu)

Vipul Kashyap
National Library of Medicine, NIH, USA
kashyap@nlm.nih.gov)

Proceedings and Publicity Chair
Stefan Decker
USC Information Sciences Institute, USA
stefan@isi.edu

Organization Chair
Rainer Eckstein
Humboldt University, Germany
Rainer. Eckstein@informatik.hu-berlin.de

PC Members
Karl Aberer, EPFL, Switzerland
Sibel Adali, Rensselaer Polytechnic I., USA
Paolo Atzeni, U. Rome Tre, Italy
Alex Borgida, Rutgers U., USA
Olivier Bodenreider, NLM-NIH, USA
Stéphane Bressan, National U. of Singapore
Christoph Bussler, Oracle, USA
Isabel Cruz, U. of Illinois at Chicago, USA
Umesh Dayal, HP Labs, USA
Stefan Decker, USC-ISI, USA
Max Egenhofer, U. Maine, USA
Rainer Eckstein, Humboldt U., Germany
Dieter Fensel, Institut für Informatik, Austria
Mary Fernandez, AT&T Labs - Research, USA
Susan Gauch, U. Kansas
Carole Goble, U. Manchester, UK

Rick Hull, Lucent Technology, USA
Vipul Kashyap, NLM-NIH, USA
Maurizio Lenzerini, U. Rome "La Sapienza", Italy
Ling Liu, Georgia Tech, USA
Robert Meersman, Vrije U., Belgium
John Mylopoulos, U. Toronto, Canada
Aris Ouksel, U. Illinois at Chicago, USA
Dimitris Plexousakis, U. Crete, Greece
Steve Ray, NIST, USA
Amit Sheth, U. Georgia and Semagix, USA
Surya Sripada, Boeing, USA
Munindar Singh, N. Carolina U., USA
V.S. Subrahmanian, U. Maryland, USA
Rudi Studer, U. Karlsruhe, Germany
Ram Sriram, NIST, USA
Clement Yu, U. Illinois at Chicago, USA

Semantic Web and Databases
September 7, 2003 (Sunday) September 8, 2003 (Monday)
8:45-9:00 Welcome
9:00-10:10 Keynote Talk
Can we do better than Google? Using semantics to explore
large heterogeneous knowledge sources
Anatole Gershman, Accenture Technology Labs

9:00-10:10 Keynote Talk
From Semantic Search to Analytics and Discovery on Heterogeneous
Content: Changing Focus from Documents and Entities to
Relationships
Amit Sheth, University of Georgia and Semagix, Inc.

10:10-10:40 Semantic Web at Work
Spatially Navigating the Semantic Web for User Adapted
Presentations of Cultural Heritage Information in Mobile
Environments
Marco Neumann, Dublin Institute of Technology, Ireland.

Text-Based Gene Profiling with Domain-Specific Views. Patrick
Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau
and Bart De Moor, Katholieke Universiteit Leuven, Belgium.

10:10-10:40 Web Services
ODE-SWS: A Semantic Web Service Development Environment
Oscar Corcho, Asunción Gómez-Pérez, Mariano Fernández-López, and
Manuel Lama, Universidad Politécnica de Madrid, Spain, and Universidad de
Santiago de Compostela, Spain.

Applications of PSL to Semantic Web Services
Michael Gruninger, University of Maryland, College Park, USA.

10:40-11:10 Coffee Break 10:40-11:10 Coffee Break
11:10-12:30 Context-Aware Systems
Context-Aware Semantic Association Ranking
Boanerges Aleman-Meza, Chris Halaschek, I. Budak Arpinar,
and Amit Sheth, University of Georgia, USA.

I know what you mean: semantic issues in Internet-scale
publish/subscribe systems
Ioana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen,
University of Toronto, Canada.

A Context-Oriented RDF Database
Mohammad-Reza Tazari, Computer Graphics Center,
Dept. Mobile Information Visualization, Darmstadt, Germany.

An Adaptable Service Connector Model: Gang Li, Yanbo Han,
Zhuofeng Zhao, Jianwu Wang, Roland Wagner, Chinese
Academy of Science, PRC, Fraunhofer, Germany

11:10-12:30 Data Mining and Peer-to-Peer Systems
H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based
Systems. S. Castano, A. Ferrara, S. Montanelli, Università degli Studi di
Milano, Italy.

A Collaborative Approach for Query Propagation in
Peer-to-Peer Systems
Anne Doucet, Nicolas Lumineau, University of Paris 6, France.

OntoMiner: Bootstrapping and Populating Ontologies from
Domain Specific Web Sites
Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan, Arizona
State University, USA.

Can Data Mining Techniques Ease The Semantic Tagging Burden?
Fabio Forno, Laura Farinetti1, Sean Mehan, Politecnico di Torino, Italy,
University of the Highlands and Islands, UK.

12:30-2:00 Lunch (on your own) 12:30-2:00 Lunch (on your own)
2:00-3:10 Keynote Talk
Generic Model Management: A Database Infrastructure for
Schema Manipulation Phil Bernstein, Microsoft Research,
USA
3:10-3:40 Modeling Issues

Building an integrated Ontology within SEWASIE system,
D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini,
Università di Modena e Reggio Emilia, Italy and IEIIT-CNR, Italy.

Ontologies : A contribution to the DL/DB debate
Nadine Cullot, Christine Parent, Stefano Spaccapietra, and
Christelle Vangenot, University of Burgundy, France, Swiss
Federal Institute of Technology, Lausanne, Switzerland,
University of Lausanne, Switzerland.

2:00-3:30 Formal Querying and Reasoning
Formal aspects of querying RDF databases
Claudio Gutierrez, Carlos Hurtado, and Alberto Mendelzon, Universidad de
Chile, Chile, and University of Toronto, Canada.

Event-Condition-Action Rule Languages for the Semantic Web. George
Papamarkos, Alexandra Poulovassilis, Peter T. Wood, Birkbeck College, UK.

Storing and Querying Ontologies in Logic Databases. Timo Weithoener,
Thorsten Liebig, and Guenther Specht, University of Ulm, Germany.

Design Repositories for the Semantic Web with Description-Logic Enabled
Services. Joseph B. Kopena and William C. Regli, Drexel University, USA.

Mediation of XML Data through Entity Relationship Models. Irini Fundulaki
and Maarten Marx, Bell Laboratories, USA, and University of Amsterdam,
The Netherlands.

3:40-4:10 Coffee Break 3:30-4:00 Coffee Break
4:00-5:20 Integration and Interaction)
The ICS-FORTH SWIM: A Powerful Semantic Web Integration Middleware
V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A.
Magkanaraki, D. Plexousakis, G. Serfiotis,and V. Tannen, University of
Pennsylvania, USA, and Institute of Computer Science, FORTH, Greece.

Semantic Representation of Contract Knowledge using Multi Tier Ontology
Vandana Kabilan, Paul Johannesson, Stockholm University and Royal
Institute of Technology, Sweden.

The Visual Semantic Web: Unifying Human and Machine Semantic Web
Representations with Object-Process Methodology
Dov Dori, Technion, Israel and MIT, USA.

Interaction and navigation for a document database: a concrete case study
Isabelle Berrien, François Laburthe, and Jean-David Ruvini, e-lab
BOUYGUES SA, France.

4:10-5:30 RDF Storage and Implementation Issues
Efficient RDF Storage and Retrieval in Jena2
Kevin Wilkinson, Craig Sayers, and Harumi Kuno, HP Labs,
USA.

An Indexing Scheme for RDF and RDF Schema based on Suffix
Arrays. Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi
Yoshikawa, and Shunsuke Uemura, Nara Institute of Science
and Technology, Japan, and Nagoya University, Japan.

RDF Core: A component for effective management of RDF
Models. Floriana Esposito, Luigi Iannone, Ignazio Palmisano,
and Giovanni Semeraro, Università degli Studi di Bari, Italy.

Implementation of a Semantic Network Service (SNS) in the
context of the German Environmental Information Network
(gein®)
Thomas Bandholtz, Germany. 5:20-5:30 Closing

http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-ag.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-ag.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-pb.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-pb.html

Table of Contents
Foreword 1

Invited Talks 3

Ontology and Ontology Maintenance

Spatially Navigating the Semantic Web for User Adapted Presentations of Cultural Heritage
Information in Mobile Environments
Marco Neumann, Dublin Institute of Technology, Ireland. 9

Text-Based Gene Profiling with Domain-Specific Views
Patrick Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau and Bart De Moor,
Katholieke Universiteit Leuven, Belgium. 15

Context-Aware Systems

Context-Aware Semantic Association Ranking
Boanerges Aleman-Meza, Chris Halaschek, I. Budak Arpinar, and Amit Sheth,
University of Georgia, USA. 33

I know what you mean: semantic issues in Internet-scale publish/subscribe systems
Ioana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen, University of Toronto, Canada. 51

A Context-Oriented RDF Database
Mohammad-Reza Tazari, Computer Graphics Center, Dept. Mobile Information Visualization,
Darmstadt, Germany. 63

An Adaptable Service Connector Model
Gang Li, Yanbo Han, Zhuofeng Zhao, Jianwu Wang, Roland M. Wagner:
Chinese Academy of Science, PRC., Fraunhofer Germany 79

Modeling Issues

Building an integrated Ontology within SEWASIE system
D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, Università di Modena e Reggio Emilia,
Italy and IEIIT-CNR, Italy. 91

Ontologies : A contribution to the DL/DB debate
Nadine Cullot, Christine Parent, Stefano Spaccapietra, and Christelle Vangenot,
University of Burgundy, France, Swiss Federal Institute of Technology, Lausanne, Switzerland,
University of Lausanne, Switzerland. 109

RDF Storage and Implementation Issues

Efficient RDF Storage and Retrieval in Jena2
Kevin Wilkinson, Craig Sayers, and Harumi Kuno, Dave Reynolds, HP Labs 131

An Indexing Scheme for RDF and RDF Schema based on Suffix Arrays
Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura,
Nara Institute of Science and Technology, Japan, and Nagoya University, Japan. 151

RDF Core: A component for effective management of RDF Models
Floriana Esposito, Luigi Iannone, Ignazio Palmisano, and Giovanni Semeraro,
Università degli Studi di Bari, Italy. 169

Implementation of a Semantic Network Service (SNS) in the context of the German Environmental
Information Network (gein®)
Thomas Bandholtz, Germany. 189

Web Services

ODE-SWS: A Semantic Web Service Development Environment
Oscar Corcho, Asunción Gómez-Pérez, Mariano Fernández-López, and Manuel Lama,
Universidad Politécnica de Madrid, Spain, and Universidad de Santiago de Compostela, Spain. 203

Applications of PSL to Semantic Web Services
Michael Gruninger, University of Maryland, College Park, USA. 217

Web Services

H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based Systems
S. Castano, A. Ferrara, S. Montanelli, Università degli Studi di Milano, Italy. 231

A Collaborative Approach for Query Propagation in Peer-to-Peer Systems
Anne Doucet, Nicolas Lumineau, University of Paris 6, France. 251

OntoMiner: Bootstrapping and Populating Ontologies from Domain Specific Web Sites
Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan, Arizona State University, USA. 259

Can Data Mining Techniques Ease The Semantic Tagging Burden?
Fabio Forno, Laura Farinetti1, Sean Mehan, Politecnico di Torino, Italy,
University of the Highlands and Islands, UK. 277

Formal Querying and Reasoning

Formal aspects of querying RDF databases
Claudio Gutierrez, Carlos Hurtado, and Alberto Mendelzon, Universidad de Chile, Chile, and
University of Toronto, Canada. 293

Event-Condition-Action Rule Languages for the Semantic Web
George Papamarkos, Alexandra Poulovassilis, Peter T. Wood, Birkbeck College, UK. 309

Storing and Querying Ontologies in Logic Databases
Timo Weithoener, Thorsten Liebig, and Guenther Specht, University of Ulm, Germany. 329

Design Repositories for the Semantic Web with Description-Logic Enabled Services.
Joseph B. Kopena and William C. Regli, Drexel University, USA. 349

Mediation of XML Data through Entity Relationship Models
Irini Fundulaki and Maarten Marx, Bell Laboratories, USA, and University of Amsterdam,
The Netherlands. 357

Integration and Interaction

The ICS-FORTH SWIM: A Powerful Semantic Web Integration Middleware
V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A. Magkanaraki,
D. Plexousakis, G. Serfiotis, and V. Tannen, University of Pennsylvania, USA,
 and Institute of Computer Science, FORTH, Greece. 381

Semantic Representation of Contract Knowledge using Multi Tier Ontology
Vandana Kabilan, Paul Johannesson, Stockholm University and
Royal Institute of Technology, Sweden. 395

The Visual Semantic Web: Unifying Human and Machine Semantic Web
Representations with Object-Process Methodology
Dov Dori, Technion, Israel and MIT, USA. 415

Interaction and navigation for a document database: a concrete case study
Isabelle Berrien, François Laburthe, and Jean-David Ruvini, e-lab BOUYGUES SA, France. 435

Foreword

The Semantic Web is a key initiative being promoted by the World Wide Web Consortium (W3C) as
the next generation of the current web. Machine-understandable metadata is emerging as a new
foundation for component-based approaches to application development. Within the context of reusable
distributed components, Web services represent the latest architectural advancement. Such concepts
can be synthesized providing powerful new mechanisms for quickly modeling, creating and deploying
complex applications that readily adapt to real world need.
The objective of this workshop is to present database and information system research as they relate to
the Semantic Web and more broadly, to gain insight into the Semantic Web technology as it relates to
databases and information systems.

Isabel F. Cruz Vipul Kashyap Stefan Decker Rainer Eckstein
U. Illinois at Chicago
USA

National Library of
Medicine, NIH, USA

USC Information
Sciences Institute, USA

Humboldt University,
Germany

Invited Talks

Can we do better than Google? Using semantics to explore large
heterogeneous knowledge sources

Anatole Gershman

Accenture Technology Labs
USA

Abstract
Researchers in many fields use dozens of different rapidly growing on-line
knowledge sources, each with its own structure and access methods.
Successful research often depends on a researcher's ability to discover
connections among many different sources of information. The popularity of
Google suggests that high-quality indexing would provide a uniform method of
access, although it still leaves researchers with vast, undifferentiated lists of
results. Hence, the research challenge for semantic web designers: can a
knowledge-based approach provide a better way for researchers to explore
knowledge and discover useful insights for their research?

In this talk, I will use the example of bio-medical knowledge discovery to
explore the key issues in semantic indexing of large amounts of
heterogeneous information. I will propose a method and architecture for the
creation of practical tools for semantic indexing and exploration.

The example I'll be using is the Knowledge Discovery Tool, or KDT, which
contains a knowledge model of a large number of bio-medical concepts and
their relationships: from genes, proteins, biological targets and diseases to
articles, researchers and research organizations. Based on this model, the
KDT index identifies over 2.5 million bio-medical entities with two billion
relationships among those entities spanning 15 different knowledge sources.
Clearly, the creation and maintenance of such an index cannot be done
manually. KDT utilizes an extensive set of rules that cleanse, analyze and
integrate data to create a uniform index.

Using its index, KDT presents the user with a uniform graphical browsing
space integrating all underlying knowledge sources. This space is "warped"
and filtered based on domain-specific rules customized for the needs of
various groups of users, such as pharmaceutical researchers, clinicians, etc.
Another customized set of rules discovers and graphically highlights potential
indirect relationships among various entities that might be worth exploring
(e.g., relationships between genes or between diseases). Finally, the tool
enables several modes of collaboration among its users from annotations to
activities tracking.

Currently, KDT is undergoing testing in two pilot settings: an early stage of the
drug discovery process in a pharmaceutical company and a bio-medial
academic research group.

About The Speaker
Anatole Gershman joined Accenture Technology Labs in 1989 and in 1997
became its overall Director of Research. Under his leadership, research at the
laboratories is focusing on early identification of potential business
opportunities and the design of innovative applications for the home,
commerce and work place of the future. These include electronic commerce,
high-performance virtual enterprise, knowledge management, and human
performance support. To achieve these goals, the laboratories are conducting
research in the areas of ubiquitous computing, human-computer interaction,
interactive multimedia, information access and visualization, intelligent agents,
and simulation and modeling.

Prior to joining Accenture, Anatole spent over 15 years conducting research
and building commercial systems based on Artificial Intelligence and Natural
Language processing technology. He held R&D positions at Coopers &
Lybrand, Cognitive Systems, Inc., Schlumberger, and Bell Laboratories. In
1997, Anatole was named among the top 100 technologists in the Chicago
area by Crain's Chicago Business. In 2000, Industry Week named Anatole
one of the "R&D stars to watch."

Anatole studied Mathematics and Computer Science at Moscow State
Pedagogical University and received his Ph.D. in Computer Science from
Yale University in 1979.

Generic Model Management: A Database Infrastructure for Schema
Manipulation

Philip A. Bernstein
Microsoft Research

USA
Abstract
Meta data management problems are pervasive in the development and
maintenance of semantic web applications. Although solutions to these
problems are similar to each other, today they are solved in an application-
specific way and usually require much object-at-a-time
programming. To make solutions more generic and easier to program, we
propose a higher level interface, called Model Management. The main
abstractions are models and mappings between models. It treats these
abstractions as bulk objects and offers such operators as Match, Merge, Diff,
Compose, Extract, and ModelGen. We will present an overview of Model
Management and recent results about some of the operators.
About The Speaker
Phil Bernstein is a researcher at Microsoft Corporation. Over the past 25
years, he has been a product architect at Microsoft and at Digital Equipment
Corp., a professor at Harvard University and Wang Institute of Graduate
Studies, and a VP Software at Sequoia Systems. During that time, he has
published over 100 articles on the theory and implementation of database
systems, and coauthored three books, the latest of which is "Principles of
Transaction Processing for the System Professional" (Morgan Kaufmann,
1997). He holds a B.S. from Cornell University and a Ph.D. from University of
Toronto. A summary of his current research on meta data management can
be found at http://www.research.microsoft.com/~philbe.

From Semantic Search to Analytics and Discovery on Heterogeneous Content:
Changing Focus from Documents and Entities to Relationships

Amit Sheth
LSDIS Lab,

The University of Georgia and Semagix, Inc.
USA

Abstract
Research in search techniques was a critical component of the first
generation of the Web, and has gone from academe to mainstream. Research
and products supporting Semantic Search also look promising.

A second generation ”Semantic Web” is being realized in one form of a
scalable ontology-driven information system, where semantic metadata allow
software to associate meaning with heterogeneous content. This is enabling a
fundamental shift in focus from documents and entities within documents to
discovering and reasoning about relationships. And it will transform the hunt
for documents that humans can examine or analyze into a more automated
content analysis, resulting in actionable information and insights into
heterogeneous content. In this talk, we juxtapose the following shifts, to paint
the exciting new possibilities:

• From documents and entities to relationships
• From techniques that focus on either unstructured data (text) or

structured content to both types and semi-structured data
• From directly analyzing data to ontology based processes of creating

high quality metadata and analyzing metadata
• From search and browsing for delivering relevant documents and

locating entities within contents to discovering complex relationships
and delivering actionable information with insights; from semantic
search to analytics and discovery-based semantic applications

This talk will interleave academic research with state-of-the-art commercial
uses, including tools and real-world applications and experiences. The critical
challenge in dealing with the Web scale of ontologies (with huge description
base/assertion set), metadata (very large RDF graphs), and their analysis in
discovering relationship will be discussed.

About The Speakers
Amit Sheth is a Professor at the University of Georgia and CTO of Semagix,
Inc. He started the LSDIS lab at Georgia in 1994. Earlier he served in R&D
groups at Bellcore, Unisys, and Honeywell. He founded his second company,
Taalee, in 1999 based on technology developed at the LSDIS lab, and
managed it as CEO until June 2001. Following Taalee's acquisition/merger,
he currently serves as CTO and a co-founder of Semagix, Inc. His research
has led to three significant commercial products, several deployed
applications and over 150 publications. More: http://lsdis.cs.uga.ed/~amit

Spatially Navigating the Semantic Web for User
Adapted Presentations of Cultural Heritage Information

in Mobile Environments

Marco Neumann

Digital Media Centre, Dublin Institute of Technology
Dublin 2, Ireland

marco.neumann@dit.ie

Abstract. The integration of local and global information is an essential re-
quirement for future location-based services. The development of two tech-
nologies for mobile devices, namely positioning devices like GPS and wireless
communication networks, is encouraging the development of new kinds of spa-
tial- and context-aware applications. The CHI project investigates the applica-
bility of these technologies for context-aware mobile computing applications
that take advantage of new metadata-standards to enable semantic, user and de-
vice adapted services in the field of Tourism and Cultural Heritage management
and presentation.

1 Introduction

The ability to query hyper-linked cultural heritage data sets, based on the user’s con-
text is a crucial functionality of future location-based services. The local information
here is information about a place with a unique spatial and temporal relationship,
which can be used to distinguish between places or information that only exist with
regard to an explicit reference to a place and time. Global information is information
that exists as conceptual knowledge but does not bear spatial reference e.g. structure
of organisations, abstract knowledge about something applicable to recognise similari-
ties or analogies in other contexts. As emphasised by Dey [1], context is any informa-
tion that can be used to characterize the situation of an entity. An entity is a person,
place or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves. The primary context in the
CHI (Cultural Heritage Interfaces) [2] system is the position of the user in a virtual
environment and a specific mobile device, which are integrated together with the
user’s preferences. The rational of the CHI project is to retrieve automatically relevant
data from a cultural heritage database based on the user’s context, namely the current
GPS coordinates, the display device limitations, the user preference and profile stored
in a Vector data type. Furthermore, the system takes advantage of the available meta-
data information, encoded into the resource to extract the semantic value of existing
documents for a selected area.

2 CHI System

The CHI project technology demonstrator (Figure 1) is implemented in a J2EE
three-tier architecture, consisting of client layer, application server layer and database
layer. The complete system communication between client and database layer is con-
ducted through the application server layer. The Client VRML/JAVA sends the cur-
rent location information in the form of Irish National Grid or Lat/Long coordinates
via HTTP networking protocol to the Oracle application server along with the device
characteristics and user profile and preferences. On the application server the query
building and query result set formatting is executed against a spatially enabled Oracle
database layer.

When the result of the query indicates the existence of content information, the system
notifies the client about available documents with their respective Uniform Resource
Identifiers (URI). The client then requests these documents automatically from the
application server, which generates a XML JDOM document in memory and subse-
quently applies a specific XSLT style conversion to the resulting in a device-formatted
document. The formatted document is then sent via HTTP protocol to the client de-
vice.

Figure 1 Oracle Spatial Index Advisor and CHI Technology Demonstrator

3 Semantic adaptation

After successful implementation of the spatial database components and visualiza-
tion strategies and contextual information tailoring for mobile devices, the CHI pro-
ject proposes the introduction of semantic layers to improve search query results. The
concept of semantics has to be defined in the context of the CHI implementation. The
use of the term “semantics” in regard to information systems is ambiguous and has led
occasionally to false assumptions. Semantics in general describe the relations between

things and their varying significance for the receiver. This rather wide interpretation is
not addressed in current research. However, one prominent and focused attempt at a
pragmatic approach is the Semantic Web representation of data on the World Wide
Web based on the Resource Description Framework (RDF). [3]

RDF integrates applications using XML for syntax and URI for naming. The Semantic
Web therefore extents the current web where information is given well-defined mean-
ing to better enable computers and people to work in cooperation. [4]

The accumulation of vast data resources on the World Wide Web has reached the
limitations of conventional search approaches and new search strategies are needed.
Current search procedures only account for simple string matching and boolean com-
binations of keywords. How much relevant information from unstructured data
sources can be gained is up to the specification and capacity of the interpreter. To
search for particular information in the current web architectures, the user is restricted
to keyword matching or category browsing. The documents bear no explicit semantic
information about themselves. To query documents on the web, search engines have to
index available documents and this happens to be in most cases by parsing the com-
plete document for keywords and Boolean combinations. Advanced search engines
introduce new techniques like Latent Semantic Indexing where patterns in the text are
recognized to assist in categorizing the document.

The semantics of documents and their respective knowledge domain relevance for the
searching system remains untouched in most cases. Adopted approaches from artifi-
cial intelligence and knowledge management research promise to assist in exploiting
the semantic value of online documents. For the most part the application of ontolo-
gies dominate present research where an ontology is used for the construction of com-
plex models of relationships between data features and specialized domain area con-
straints to enhance query results.

The Semantic Web efforts by the World Wide Web Consortium [5] represent the
attempt to extend the current web to give information well-defined meaning, therefore
allowing machine processing and human evaluation.

3.1 CHI Semantic Query Scenario

While the user navigates the CHI system the client layer dispatches a query to the EJB
middleware. The documents in a selected area are passed on to the semantic inter-
preter to determine the conceptual environment. The user’s agent (i.e. the client)
evaluates the semantic property and compares the conceptual environment of the
document(s). The result is compared to the agent’s conceptual definition to satisfy the
initial search context. However, in order for ontologies to be shared, they must be
congruent with other shared ontologies, otherwise they have to be compared and inte-
grated, which is an active ontology research topic. [6]

The Semantic Web goes beyond these limitations and introduces a predefined seman-
tic markup for web resources. The semantics are encoded in RDF (Resource Descrip-
tions Framework) statements triples, consisting of Resource, Property and Value
sometimes termed 'subject', 'predicate' and 'object' to describe a particular relationship.
Semantics encoded into RDF triples can not only be used by human readers but also
processed by machines. RDF therefore is mainly a mechanism to represent resources
and their description in a direct-labeled graph (Figure 2).

3.2 Ontology description and RDF Schema

To improve the information retrieval process and provide the user of the CHI system
with more relevant information about available data resources the RDF metadata has
to be related to the CHI domain ontology, which is implemented into a RDF Schema.

The query process (see figure 2) for semantic evaluation of RDF descriptions imple-
mented on the Application Server session EJB and utilizes the Jena Java API for RDF
[7] to generate the model graph depicted in Figure 3. For the purpose of the initial
implementation of semantic exploitation, the CHI ontology only defines relationships
between content documents stored in the Oracle database. Each content document can
be accessed with a unique URL, which automatically adapts the database documents
into a XML device independent tree structure and finally applies XSLT style sheet
conversion to suit mobile device requirements for display.

Figure 3 Relationship model of CHI entities

http://chi/JamesConolly http://chi/ICA
 member-of

Actors

Location

- lat/long
- Buffer
- Geometry

Organisation Individual

Event

-Date
-Name
- Description

Figure 2 RDF direct-labeled graph

The introduction of RDF metadata allows the CHI System to locate, through querying
RDF statements with RDQL query language, conceptual similar documents and se-
lects only the spatially nearest related document for immediate display transformation.
Additionally the user can take tangents and traverse the graph manually with the help
of embedded hyperlinks in the cultural heritage document. The curator of cultural
heritage content as well has the option to annotate data with time properties for allow-
ing the introduction of narrative structuring of possible presentations resulting in pre-
defined walk paths. The spatial database guides the user from one cultural heritage
location to another with naive geographic directions: e.g. “go NE 300m” iteratively
refined until the user has reached the next point of interest.

4 Conclusion

In this paper we have presented the applicability of Semantic Web approaches to
enhance query results within the CHI spatial database environments. The CHI project
develops tools to respond to queries without the user of the system having to know
about the conceptual structure. As noted in [8], given the lack of current approaches to
exploit any form of semantics to assist users to accomplish their tasks, the introduction
of metadata information capable of expressing the basic semantic relationships of
resources and furthermore the integration into ontology-driven information systems is
a desirable step to embrace decentralised web resources for information search. [9]
Future location-based services have to take advantage of intelligent information re-
trieval strategies to exploit the potential of augmented information systems in mobile
environments. [10] The exploitation of metadata and their integration into domain
conceptualisations is one necessary condition.

Figure 4 CHI semantic web information retrieval

Retrieve RDF

Primary Spatial Filter

Associate
Domain Ontology

5 Acknowledgement

Support for this research from Enterprise Ireland through the Informatics Programme
2001 on Digital Media is gratefully acknowledged.

References

1. Dey, Anind K.: Providing Architectural Support for Building Context-Aware Appli-
cations. PhD thesis, Georgia Institute of Technology, 2000.

2. Carswell, J.; Eustace, A.; Gardiner, K.; Kilfeather, E.; Neumann, M.: An Environ-
ment for Mobile Context-Based Hypermedia Retrieval. in Proceedings of 13th
International Conference on Database and Expert Systems Applications
(DEXA2002), IEEE CS Press, Aix en Provence, France. 2002. 532-536

3. Resource Description Framework (RDF) Model and Syntax Specification. 1999.
URL http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

4. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web. Scientific American
184(5): 2001. 34-43

5. Semantic Web. W3C. URL: http://www.w3.org/2001/sw/
6. Wache,H.;Vögele, T.;Visser,U.; Stuckenschmidt, H.; Schuster,G.; Neumann, H.;

Hübner S.: Ontology-Based Information Integration: A Survey. The BUSTER Pro-
ject, Intelligent Systems Group. Center for Computing Technologies. University of
Bremen. 200l.

7. McBride, B.: Jena: A Semantic Web Toolkit. Hewlett-Packard Laboratories, Bristol,
UK. IEEE INTERNET COMPUTING, November/December 2002. 55-59

8. Egenhofer, M. J.: Toward the Semantic Geospatial Web. National Center for Geo-
graphic Information and Analysis. Department of Spatial Information Science and
Engineering. Department of Computer Science. Main. 2002.

9. Martin, Philippe: Knowledge Representation, Sharing, and Retrieval on the Web. In:
Web Intelligence. Eds. Zhong, Ning; Liu, Jiming; Yao, Yiyu. 2003 pp. 243-276

10. Zipf, A. and Aras, H.: Proactive Exploitation of the Spatial Context in LBS - through
Interoperable Integration of GIS-Services with a Multi Agent System (MAS). AGILE
2002. Int. Conf. on Geographic Information Science of the Association of Geo-
graphic Information Laboratories in Europe (AGILE). 04.2002. Palma. Spain.

11. Pradhan, S.: Semantic Location. Hewlett-Packard Laboraties, Palo Alto, CA,
USA.Springer-Verlag London. 2000.

12. Farrugia, J.; Egenhofer, M. J.: Presentations and Bearers of Semantics on the Web ,
in Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society Conference (FLAIRS 2002). 2002. 408-412.

13. Fensel, Dieter; van Harmelen, Frank; Horrocks, Ian: OIL and DAML+OIL: Ontology
Languages for the Semantic Web. In: Davies, John; Fensel, Dieter; van Harmelen ,
Frank: editors, Towards the Semantic Web – Ontology-based Knowledge Manage-
ment. Wiley. London, UK. 2002.

Text-Based Gene Profiling

with Domain-Specific Views

Patrick Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau, and Bart
De Moor

Departement Elektrotechniek, Katholieke Universiteit Leuven, Kasteelpark Arenberg
10, 3001 Leuven (Heverlee)

{pgleniss, bcoessen}@esat.kuleuven.ac.be

Abstract. The current tendency in the life sciences to spawn ever grow-
ing amounts of high-throughput assays has led to the situation were the
interpretation of data and the formulation of hypotheses lag the pace
with which information is produced. Although the first generation of
statistical algorithms scrutinizing single, large-scale data sets found their
way into the biological community, the great challenge to connect their
results to the existing knowledge still remains. Despite the fairly large
number of biological databases that is currently available, we find a lot
of relevant information presented in free-text format (such as textual an-
notations, scientific abstracts, and full publications). Moreover, many of
the public interfaces do not allow queries with a broader scope than a
single biological entity (gene or protein). We implemented a methodology
that covers various public biological resources in a flexible text-mining
system designed towards the analysis of groups of genes. We discuss and
exemplify how structured term- and concept-centric views complement
each other in presenting gene summaries.

1 Introduction

The availability of the complete sequence of the human genome, along with
those of several other model organisms, sparked a novel research paradigm in
the life sciences. In ‘post-genome’ biology the focus is shifting from a single
gene to the behavior of groups of genes interacting in a complex, orchestrated
manner within the cellular environment. Recent advances in high-throughput
methods enable a more systematic testing of the function of multiple genes, their
interrelatedness, and the controlled circumstances in which these observations
hold. Microarrays, for example, measure the simultaneous activity of thousands
of genes in a particular condition at a given time. They enable researchers to
identify potential genes involved in a great variety of biological processes or
disease-related phenomena. As a result, scientific discoveries and hypotheses are
stacking up, all primarily reported in the form of free text. A recent query with
PUBMED1 (the key bibliographic database in the life sciences) for the keyword

1 http://www.ncbi.nlm.nih.giv/PubMed/

microarray showed that almost a third (i.e., about 1000) of the publications
related to this technology is dated after January 2003. However, since the data
and information, and ultimately the extracted knowledge itself, lack usability
when offered in a raw state, various specialized database systems are designed to
provide a complementary resource in designing, performing, or analyzing large-
scale experiments. To date, we essentially distinguish two types of databases: the
first type holds essential information, such as genomic sequence data, expression
data, etc. without any extras (e.g., Genbank2, ArrayExpress3); the second type
offers curated annotations, cross-links to other repositories and multiple views
on the same problem (e.g., LocusLink4, SGD5). Although meticulous upkeep
of such databases is still struggling for due credit within the community, it is
indispensable for the advancement of the field [1].

The process of successfully gaining insight into complex genetic mechanisms
will increasingly depend on a complementary use of a variety of resources, in-
cluding the aforementioned biological databases and specialized literature on the
one hand, and the expert’s knowledge on the other. We therefore consider the
knowledge discovery process as cyclic, (i.e., requiring several iterations between
heterogeneous information sources to extract a reliable hypothesis). For exam-
ple, to date, linking up analyzed microarray data to the existing databases and
published literature still requires numerous queries and extensive user interven-
tion. This process of drilling down into the entries of hundreds of genes is notably
inefficient and requires higher-level views that can more easily be captured by
a (non-)expert’s mind. Figure 1 depicts how this cyclic nature applies to the
analysis of gene expression data.

Moreover, until now, it has been largely overlooked that there is little differ-
ence between retrieving an abstract from MEDLINE and downloading an entry
from a biological database [2]. Fading boundaries between text from a scien-
tific article and a curated annotation of a gene entry in a database is readily
illustrated by the GeneRIF feature in LocusLink, where snippets of a relevant
article pertaining to the gene’s function are manually extracted and directly
pasted as an attribute in the database. Conversely, we witness the emergence
of richly documented web supplements accompanying a scientific publication
that allow a virtual navigation through the results presented (see for example
http://www.esat.kuleuven.ac.be/neurdiff/ [3]). Additionally, through the use of
hypertext, electronic publications will be able to offer more structured views.
Hence, we should not expect the growing amount of free text to be halted by
the advent of specialized repositories.

The broadening of the biologist’s scope, along with the swelling amount of
information, results in a growing need to move from single gene or keyword-
based queries to more refined schemes that allow a deeper interaction between
the user- and context-specific views of text-oriented databases.

2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
3 http://www.ebi.ac.uk/arrayexpress/
4 http://www.ncbi.nlm.nih.gov/LocusLink/
5 http://www.yeastgenome.org/

Fig. 1. Cyclic nature of the knowledge discovery process. It shows a high-level view of
how it is embodied in microarray cluster analysis: starting from a cluster of genes re-
sulting from a gene expression analysis (the ‘Data World’), the corresponding literature
profiles are queried and analyzed (the ‘Text World’), resulting in either the addition
of extra genes of interest or the omission of irrelevant genes. This updated cluster can
subsequently be reanalyzed in expression space, which concludes a first cycle.

To facilitate such integrated views, controlled vocabularies that describe all
properties of the underlying concepts are of great value when constructing inter-
operable and computer-parsable systems. A number of structured vocabularies
have already arisen (most notably the Gene Ontology6) and, slowly but surely,
certain standards are being adopted to store and represent biological data.

We can conclude that there is a certain urge towards a semantic biology web
and although far from mature, some semantic web ideas have found their way
into the bioinformatics community as means to knowledge representation and
extraction.

Our general goal is to develop a methodology that can exploit and summa-
rize vast amounts of textual information available in scientific publications and
curated biological databases to support the analysis of groups of genes (e.g.,
resulting from gene expression analysis). As discussed above, the complexity of
the domain at hand requires such a system to provide flexible views on the prob-
lem, as well as to extensively cross-link to other systems. As a result, we created
a pilot text mining system, named TextGate, on top of a prevalent biological
resource (LocusLink [4]) that aims, in the end, at implementing the interactive
(or cyclic) nature of the knowledge discovery process.

A conceptual overview of the system is shown in Figure 2. We essentially
indexed two sources of textual information. Firstly, we downloaded the entire

6 http://www.geneontology.org

LocusLink database7 and identified those fields that contain useful free-text in-
formation. Secondly, we collected all MEDLINE abstracts that were linked to
by LocusLink. We indexed both information sources with two different domain
vocabularies (one based upon Gene Ontology and one based upon the unique
gene names found in the HUGO nomenclature database8). The resulting indices
are used as basis for literature profiling and further query building on the set of
genes of interest.

Fig. 2. Conceptual overview of the methodology behind the TextGate application.
Indexing of textual gene information from the LocusLink database and abstracts from
MEDLINE resulted in indices for respectively genes and documents. Starting from a
gene or group of genes, the most relevant documents can be retrieved by comparing
indices. Afterwards, statistical analysis and further queries can be performed.

Our work is related to several other reported and available systems. Pub-
Gene9 [5] is a database containing cooccurrence and cocitation networks of hu-
man genes derived from the full MEDLINE database. For a given set of genes
it reports the literature network they reside in together with their high scor-

7 as of April 8 2003
8 http://www.gene.ucl.ac.uk/hugo/
9 htpp://www.pubgene.org

ing MESH headings10. MedMiner [6] retrieves relevant abstracts by formulating
expanded queries to PUBMED. They use entries from the GeneCard database
[7] to fish up additional relevant keywords to compose their query. The result-
ing filtered abstracts are comprehensively summarized and feedback loops are
provided. GEISHA is a tool to profile gene clusters, again using the PUBMED
engine, with an emphasis put on comprehensive summarization within a statis-
tical framework [8]. This list of systems is not exhaustive and certainly does not
encompass the spectrum of text-mining methods in genomics. Nevertheless, we
believe that they well represent the first-generation systems oriented towards the
considerations presented above.
The rest of this paper is organized as follows. In Section 2, we describe Lo-

cusLink and MEDLINE as our information sources and how the indexed informa-
tion is used to query the information space we work in. In Section 3, we discuss
the construction of our two domain vocabularies and their rationale. Section 4
describes the web-based application built upon the described methodology. In
Section 5 the possibilities for query expansion and cross-linking to external data
sources are explored. Finally, in Section 6, we provide two illustrative biological
examples of a term-based summarization and a co-linkage analysis.

2 Information Selection

2.1 LocusLink as Gene Information Source

LocusLink [4] was used as the source of textual information about genes. Lo-
cusLink is a database that organizes information from collaborating public data-
bases and from other groups within the National Center for Biotechnology Infor-
mation11 to provide a locus-centric12 view of genomic information from human,
mouse, rat, zebrafish, Drosophila melanogaster, and HIV-1.
Each LocusLink entry (one for each locus and 225,614 in total) has a unique

LocusID and consists of a number of fields with information about a gene. Exam-
ples of fields include the originating organism, summary information about the
gene, official and preferred gene symbols and names, OMIM13 [9] and PUBMED
identifiers, and Gene Ontology annotations.
Although indexing these LocusLink entries can be done on all fields at once,

we identified the subset that was most informative in a text-mining context.
From this subset of fields we identified (possibly overlapping) groups of fields
that constitute either a more specific or a more general view on the database.
The basic aim of this design choice is that, although we wish to create a free-text
index of each entry, we still want to preserve some of LocusLink’s logical field
structure.

10 MESH headings are a set of keywords attached by a manual indexer to each MED-
LINE abstract.

11 http://www.ncbi.nlm.nih.gov/
12 A locus is a specific position on the chromosome.
13 OMIM is a catalog of human genes and genetic disorders.

2.2 MEDLINE as Document Information Source

As introduced before, MEDLINE is the largest bibliographic database containing
over 12,000,000 citations in the biomedical literature from 1960 to present. Its
great value arises from the fact that most citations have an abstract in English
included.

We downscaled the MEDLINE collection to the subset of 73,172 documents
found in the LocusLink entries. We assume this set to be reasonably trusted
and gene-specific, and therefore it constitutes a good resource for conducting
our experiments.

2.3 Textual Information in the Vector Space Model

In the vector space model [10], a text body is represented by a vector (or text
profile) of which each component corresponds to a single (multi-word) term from
the entire set of terms taken into account (i.e., the vocabulary, see Section 3).
For every component a value denotes the presence or importance of a given term,
represented by a weight. Indexing is the calculation of these weights:

di = (wi,1, wi,2, . . . , wi,N). (1)

Each wi,j in the vector of document i is a weight for term j from the vocab-
ulary of size N . This representation is often referred to as bag-of-words. In this
paper we confine the discussion to the IDF weighting scheme, as it turned out to
be a reasonable choice for modeling pieces of text comprising about 500 terms.
The underlying assumption is that term importance is inversely proportional to
frequency of occurrence. Let D be the number of documents in the collection
and Dt be the number of documents containing term t, IDF is defined as:

idf = log

(

1 +
D

Dt

)

. (2)

Since, in principle, we can index the textual information from both LocusLink
and MEDLINE abstracts with the same vocabulary, we can represent both genes

and documents as vectors of term weights [11]. We distinguish two cases:

Combining multiple documents into a single gene profile

Since each gene can have one or more curated MEDLINE references asso-
ciated to it in LocusLink, we combine these abstracts by taking the mean

profile. This is illustrated in Figure 3.

Combining multiple gene profiles into a group profile

To summarize a cluster of genes and explore the most interesting terms
they share, we compute the mean and variance of the terms over the group.
Although simple, these statistics already reveal information on interesting
terms characterizing the gene group.

Fig. 3. Generating profiles for LocusID’s via MEDLINE abstract text profiles. As de-
scribed in Section 2, some indices are generated using the linked abstracts as sole source
of information.

The vector representation of a gene or gene group can be used as a query to
retrieve documents and vice versa. The similarity of one document to another,
or of a document di to a query q, can be calculated using the cosine distance:

simcos(di, q) =

∑

j wi,jwq,j
√

∑

j w2
i,j

√

∑

j w2
q,j

. (3)

3 A Domain Vocabulary as Canvas to the Literature

Depending on the vocabulary chosen, the derived vector space model will be
useful only within a given scope. Both the scale and diversity of the information
contained in the MEDLINE database form a barrier to a fast, functional inter-
pretation of groups of genes. A well-selected corpus, together with a domain- or
problem-oriented vocabulary, already alleviates this problem in a first approxi-
mation. As explained above, the MEDLINE abstracts referred to in LocusLink
constitute an acceptable, noise-free, and domain-specific collection. However, the
information covered in this subset is still immensely vast. Although a corpus-
derived vocabulary might be the first logical choice in a vector-based text mining
approach, we constructed a tailored vocabulary in the light of the following is-
sues:

Phrases

Are additional (statistical or Natural Language Processing) algorithms nee-
ded to extract multi-word terms or are external lists available?

Synonyms

Do we need synonym detection algorithms or can we resort to external lists?

Concept nomenclature

Genes, proteins, diseases, chemical substances, and so on are all possible con-
cepts of interest to the user. Hence, concept-centric views or representations
might be required instead of term-centric ones. Again the question comes up
whether such lists are available or need to be generated.

Database integration

Can the choice of the vocabulary enhance interoperability with other data-
bases or systems?

Structured representation

In which way can we ultimately model dependencies between the vector
components?

These issues gave rise to the construction of two vocabulary types. The first
type is term-centric. It was derived from Gene Ontology (GO) [12] and com-
prises 17,965 terms. GO is a dynamic controlled hierarchy of (multi-word) terms
with a wide coverage in life science literature, and in genetics in particular.
We considered it as an ideal source to extract a highly relevant and relatively
noise-free domain vocabulary. Moreover, since GO is increasingly used to an-
notate databases, we envision an improved interoperability with other systems.
We note that, at this time, we chose to neglect the structure defining the rela-
tions between the objects, as well as the limited amount of synonym information.
Genes, however, are not only referred to by their symbols (e.g., TP53), but often
also by their full name, typically constituting a phrase (e.g., tumor protein p53,
Li-Fraumeni syndrome) that can bear an indication of its function. We extracted
this information and merged it with the terms from GO.
A second vocabulary type is rather concept-centric (here, gene-centric) and

was constructed with the screening of cooccurrence and colinkage in mind. In
our setup cooccurrence denotes simultaneous presence of gene names within a
single abstract, as in [5]. Colinkage is a weaker form of cooccurrence and screens
for simultaneous presence in the pool of abstracts that are linked to a given
group of genes. To this end, we derived from the HUGO database [9] (although
LocusLink could equally have served as a resource) a vocabulary of all uniquely
defined human gene symbols and their synonyms. Since these official gene sym-
bols are frequently requested and used by scientists, journals and databases, we
assume they will occur in scientific literature with high specificity. In total this
vocabulary consists of 26,511 gene symbols.

4 The TextGate Application

As many combinations of restricted views and weighting schemes (Section 2), as
well as representations (Section 3) are possible, we created a database of various
literature indices. Within the scope of this paper this serves the goal of offering

a comprehensive interface to various views on the LocusLink database and the
textual information captured inside. In a broader sense, this literature index
database is part of an experimental platform to test and evaluate (combinations
of) settings on a variety of biological annotation databases.
Different combinations of indexing schemes (by taking different fields of the

LocusLink entries into consideration) and vocabularies show interesting possi-
bilities towards analysis of genes and gene groups (as shown in Section 6 where
three biological analysis cases are discussed).
Figure 4 shows the server architecture of the TextGate application. The dif-

ferent functionalities can be accessed via a browser or more directly by invoking
the appropriate SOAP web service.

Fig. 4. Architectural overview of the TextGate knowledge discovery tool.

The user can perform a lookup of a single gene or a set of genes. In the
case of profiling multiple genes, mean and variance statistics over the terms
are displayed. Also, the application offers the possibility to output a distance
matrix for a cluster of genes, which visualizes the distances (as calculated with
Formula 3) between the text vectors of all genes in a cluster.
As said before, the functionalities of the application are also available via

calls to a SOAP14 web service. The web service can be invoked by sending
the appropriate SOAP request to the TextGate web service router. The SOAP
message is interpreted by an Apache Tomcat server and specific requests are sent
to a number cruncher that executes the necessary calculations (as can be seen
in Figure 4).
This web service architecture allows for an easy integration of the function-

alities of our tool with third-party applications. SOAP clients that invoke the
service can be written in the programming language of choice. Currently, in our
group, we already established an integrated web environment and web service

14 SOAP (Simple Object Access Protocol) is an XML-based W3C Proposed Recom-
mendation for exchanging structured information in a decentralized, distributed en-
vironment.

architecture for microarray analysis, called INCLUSive [13], in which TextGate
fits naturally.

5 Query Expansion and Hyperlinking

Essentially, TextGate adopts a ‘small world’ view by scrutinizing only a restricted
set of textual information extracted by specific canvases on the literature (deter-
mined by the choice of the various representations discussed in Sections 2 and 3).
In practice, relevant keywords, phrases, or gene names are only useful to a re-
searcher if they can be linked (back) to existing biological resources.

In a first attempt to strengthen this desired connection, we implemented
a query composer for a variety of other databases, among which PUBMED,
GeneCards, and the Gene Ontology database are the most prominent, but also
OMIM, UniGene, and 15 other sources belong to the list of possible destinations.
Figure 5 visualizes this functionality.

Fig. 5. The cyclic approach to knowledge mining by composing refined queries to a set
of public databases.

6 Example Biological Cases

In this section, we wish to provide two illustrative examples of a term-based
summarization and a colinkage analysis.

6.1 Gene Ontology and Transcriptional Up- and Downregulation

In this experiment, we generated two gene clusters based upon Gene Ontology
(GO) annotations of human genes. To construct the first cluster, we retrieved
all human genes that are annotated with the concept transcription activation.
The second cluster are all human genes annotated with the concept transcription

repression. Both concepts apply to the process of transcriptional regulation in the
cell (see Figure 6). Whether a protein complex promotes or inhibits transcription
of a gene, depends upon its constitution and environmental conditions. This
makes the distinction between both concepts not a trivial task, since a protein
can be active in a complex as inhibitor and as activator. The genes in both
groups are enlisted in Table 1.

Fig. 6. The activation (a) and repression (b) of the transcription of a gene by DNA-
binding protein complexes. The squares represent genes on the DNA. The circles rep-
resent protein complexes. In case (a), binding of an activator protein (produced by
its corresponding gene) to the complex initiates, and subsequently activates transcrip-
tion of a given gene while in case (b), binding of a repressor protein (produced by its
corresponding gene) inhibits expression of that gene.

In the first place this indicates that our text-mining approach is reasonably
trustable. As our confidence in these kind of methods will grow, one could invert
the reasoning and consider this case to give an indication of whether or not the
GO curators have made a good choice of splitting the concept of transcriptional

Table 1. Gene symbols and LocusLink identifiers for the two clusters of human genes
that are annotated with respectively the Gene Ontology terms transcription activation

and transcription repression.

Activation cluster Repression cluster

Gene Symbol LocusID Gene Symbol LocusID

BRCA1 672 BTF 9774
BRCA2 675 DMAP1 55929
CGBP 30827 DNMT3L 29947
COPEB 1316 EED 8726
EDF1 8721 EPC1 80314
ELF1 1997 HDAC4 9759
ELF2 1998 HDAC6 10013
EPC1 80314 IFI16 3428
ETV4 2118 LRRFIP1 9208
FOXC1 2296 MBD1 4152
FOXD3 27022 MBD2 8932
HNRPD 3184 NAB1 4664
HOXA9 3205 NRF 55922
HOXC9 3225 NSEP1 4904
HOXD9 3235 PIASY 51588
KLF2 51713 RBAK 57786
MADH1 4086 REST 5978
MADH5 4090 RING1 6015
MITF 4286 THG-1 81628
MYB 4602 UBP1 7342
NSBP1 79366 ZFHX1B 9839
ONECUT1 3175 ZNF24 7572
RREB1 6239 ZNF253 56242
SEC14L2 23541 ZNF33A 7581
SUPT3H 8464 ZNFN1A4 64375
TITF1 7080
TP53BP1 7158
TRIP4 9325
UBE2V1 7335
ZNF38 7589
ZNF148 7707
ZNF398 57541

regulation in transcription activation and transcription repression: if for those
two different clusters TextGate shows that in essence the same terms occur
this would mean that there is not really a significant difference between the
genes GO associated to transcription activation and transcription repression. If,
however, specific terms linked to activation and repression respectively occur for
the activation cluster and the repression cluster, then making two taxons under
transcriptional regulation was a good choice.
In Table 2, the term ranking and variance are shown for the activation cluster

(top of the table) and the repression cluster (bottom). We see an obvious dif-
ference in term occurrence. For the activation cluster, transcript activ ranks
third place, and for the repression cluster, repressor and repress rank first and
second, respectively. Note that dna bind scores high for both clusters because
DNA-binding is a general aspect of transcriptional regulation.

6.2 Colinkage of Colon Cancer Genes

In Section 3 we discussed how changing the way domain vocabularies and index
tables are constructed provides us with a different view on the information. Using
only the gene names from the HUGO database [9] as domain vocabulary, we can
take a specific stance towards investigating colinkage of genes.
For this test case, we constructed a set of genes by consulting a textbook

on molecular biology [14] and choosing genes that are related to colon cancer
manually. This set was then provided to TextGate using the colinkage index.
The set of genes is shown in Table 3. The results are shown in Table 4.
To validate this result, we verified that these gene names indeed turn up in

the literature in relation to colon cancer.
The highest scoring gene is the CD44 antigen. This gene is indeed related to

colon cancer, as shown in a paper by Barshishat et al. [15].
The second ranking gene name is UBE3A (ubiquitin protein ligase E3A). At

first sight, it is not directly related to colon cancer, but after closer investigation
of the available literature, we found that this gene is involved in degradation of
TP53, which plays a crucial role in the regulation of cell division (mitosis) [16].
This explains the detection of frequent co-citation.

7 Conclusion and Future Work

As contemporary biology is evolving towards an information science, integrative
views on biological problems will be of increasing importance. Integration is a
broad term and is understood differently in the database community than for
instance in the field of machine learning. Our perspective on integration was
adopted with both the (presumed) cyclic nature of the knowledge discovery pro-
cess and of a text-mining application in mind. We created various indices on
two text-oriented databases (the annotation database LocusLink and the litera-
ture repository MEDLINE) that enabled text summarization of multiple genes
at once. Supported by grateful realizations in the development of annotation

Table 2. For the transcription activation and transcription repression clusters we show
the ranking of the 20 terms with the highest mean (left side) and the ranking of the 20
with the highest variance (right side). We note the presence of some noise due to the
nature of the term extraction process.

Activation cluster

Term Mean Term Variance

transcript factor 0.205 ovarian 0.011
dna bind 0.188 thyroid 0.007
transcript activ 0.139 site select 0.005
nuclear 0.129 h3 0.005
transcript 0.125 zinc 0.005
promot 0.117 p53 0.004
bind 0.113 ey 0.004
tumor 0.113 hepatocyt 0.004
domain 0.112 melanocyt 0.004
famili 0.11 cluster 0.004
chromosom 0.106 prime 0.004
site 0.098 bridg 0.004
pair 0.096 transcript factor 0.003
involv 0.095 transform growth factor beta 0.003
region 0.093 retino acid metabol 0.003
yeast 0.092 tumor suppressor 0.003
two 0.09 ubiquitin conjug enzym 0.003
zinc 0.088 leukemia 0.003
contain 0.088 7 0.003
map 0.087 pigment 0.003

Repression cluster

Term Mean Term Variance

repressor 0.238 methyl cpg bind 0.019
repress 0.205 deacetylas 0.013
dna bind 0.172 cytosin 5 0.009
zinc 0.164 repressor 0.009
transcript repressor 0.158 histon 0.008
deacetylas 0.157 polycomb group 0.008
transcript factor 0.151 dna methyl 0.006
domain 0.147 ring 0.006
histon 0.127 zinc 0.006
transcript 0.123 transcript repressor 0.005
yeast 0.116 methyltransferas 0.005
famili 0.109 silenc 0.005
gene express 0.109 hi 0.005
methyl cpg bind 0.105 interferon gamma 0.005
region 0.104 stat2 0.004
nucleu 0.104 cell structur 0.004
interact 0.103 leucin metabol 0.004
protein metabol 0.1 polycomb 0.004
bind 0.1 lrr 0.004
line 0.095 methyl 0.004

Table 3. A set of seven genes involved in colon cancer.

HUGO Name LocusID

k-RAS2 3845
NEU1 4758
MYC 4609
APC 324
DCC 1630
P53 7157
MSH2 4436

Table 4. For the colon cancer cluster we show the ranking of the 20 colinkage concepts
with the highest mean (left side) and the ranking of the 20 colinkage concepts with the
highest variance (right side). We note the presence of some noise due to the nature of
the concept extraction process.

Gene Mean Gene Variance

cd44 0.446 myc 0.013
ube3a 0.429 pten 0.012
i 0.344 apc 0.01
wwox 0.28 tp53 0.01
sparc 0.27 dcc 0.009
pax6 0.234 msh2 0.005
wa 0.232 pax6 0.004
rieg2 0.223 ra 0.003
at 0.162 wwox 0.003
nr4a2 0.156 map 0.003
ha 0.136 pms2 0.003
gstz1 0.125 rieg2 0.003
msh2 0.081 mlh1 0.003
1 0.081 12 0.003
3 0.078 ha 0.002
all 0.077 wa 0.002
5 0.075 hla 0.002
kptn 0.066 all 0.002
tp53 0.065 nr4a2 0.002
nup214 0.064 gstz1 0.001

standards, nomenclature conventions, and ontologies, TextGate is able to for-
mulate sensible queries to a variety of other resources (including back the GO).
However, the system is far from complete, and represents only a first step in
the construction of a knowledge discovery platform. Our mid-term challenges
include:

Extension to an IR engine

At this point TextGate uses the index tables in a gene-centric way to sum-
marize and link information. As biological experiments are always carried
out in a particular context, allowing term-centric queries (see e.g., the re-
cently established TREC15 track) would further enhance the usability of the
system. This would fully close the cycle between terms, genes, documents,
and database annotations.

Extension of the conceptual representations

Up to now we neglected the structure of GO. Embedding its structure as well
as adding additional ontologies for functional genomics16, or biomedicine17

would provide more structured views on information. A second improvement
involves the incorporation of improved semantics (e.g., negations) in our
system.

Finally, since the core functionality of the TextGate system is also provided
as a SOAP service, it can seamlessly be integrated with other systems, primarily
the expression analysis pipeline currently present in our lab18.

Acknowledgments

P.G. and B.C. are research assistants of the K.U.Leuven. S.V.V is an intern in
fulfillment of the Master in Bioinformatics Program at the K.U.Leuven. Y.M.
is a post-doctoral researcher of FWO-Vlaanderen and assistant professor at the
K.U.Leuven. B.D.M. is a full professor at the K.U.Leuven. Research supported
by Research Council K.U.Leuven: [GOA-Mefisto 666, IDO (IOTA Oncology,
Genetic networks), several PhD/postdoc and fellow grants]; Flemish Govern-
ment: [FWO: PhD/postdoc grants, projects G.0115.01 (microarrays/oncology),
G.0240.99 (multilinear algebra), G.0407.02 (support vector machines), G.0413.03
(inference in bioi), G.0388.03 (microarrays for clinical use), G.0229.03 (ontolo-
gies in bioi), research communities (ICCoS, ANMMM)]; AWI: [Bil. Int. Collab-
oration Hungary/Poland]; IWT: [PhD Grants, STWW-Genprom (gene promo-
tor prediction), GBOU-McKnow (Knowledge management algorithms), GBOU-
SQUAD (quorum sensing), GBOU-ANA (biosensors)]; Belgian Federal Govern-
ment: [DWTC (IUAP IV-02 (1996-2001) and IUAP V-22 (2002-2006)]; EU:
[CAGE]; ERNSI; Contract Research/agreements: [Data4s, Electrabel, Elia,
LMS, IPCOS, VIB]. We acknowledge Peter Antal for starting up this research
direction.
15 http://trec.nist.gov/
16 for example: http://www.sofg.org/index.html
17 for example: http://www.nlm.nih.gov/research/umls/umlsmain.html
18 http://www.esat.kuleuven.ac.be/inclusive/

References

1. Navarro, D., Niranjan, V., Peri, S., Jonnalagadda, C., Pandey, A.: From biological
databases to platforms for biomedical discovery. Trends Biotechnol. 21 (2003)
263–268

2. Gerstein, M., Junker, J.: Blurring the boundaries between scientific papers and
biological databases. Nature Online, http://www.nature.com/nature/debates/e-
access/Articles/gernstein.html (web debate, on-line 7 May 2001)

3. Dabrowski, M., Aerts, S., Hummelen, P.V., Craessaerts, K., De Moor, B., Annaert,
W., Moreau, Y., De Strooper, B.: Gene profiling of hippocampal neuronal culture.
J. Neurochem. 85 (2003) 1279–1288

4. Pruitt, K., Maglott, D.: RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Res. 29 (2001) 137–140

5. Jenssen, T., Laegreid, A., Komorowski, J., Hovig, E.: A literature network of
human genes for high-throughput analysis of gene expression. Nature Genet. 28

(2001) 21–28
6. Tanabe, L., Scherf, U., Smith, L., Lee, J., Hunter, L., Weinstein, J.: MedMiner:

An internet text-mining tool for biomedical information, with application to gene
expression profiling. BioTechniques 27 (1999) 1210–1217

7. Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.: GeneCards: A novel func-
tional genomics compendium with automated data mining and query reformulation
support. Bioinformatics 14 (1998) 656–664

8. Blaschke, C., Oliveros, J., Valencia, A.: Mining functional information associated
with expression arrays. Funct. Integr. Genomics 1 (2001) 256–268

9. McKusick, V.: Mendelian Inheritance in Man. A Catalog of Human Genes and
Genetic Disorders. Twelfth edn. Johns Hopkins University Press (1998)

10. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

11. Glenisson, P., Antal, P., Mathys, J., Moreau, Y., Moor, B.D.: Evaluation of the
vector space representation in text-based gene clustering. In: Proceedings of the
Pacific Symposium on Biocomputing. Volume 8. (2003) 391–402

12. The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology.
Nature Genet. 25 (2000) 25–29

13. Coessens, B., Thijs, G., Aerts, S., Marchal, K., Smet, F.D., Engelen, K., Glenisson,
P., Moreau, Y., Mathys, J., Moor, B.D.: INCLUSive - a web portal and service
registry for microarray and regulatory sequence analysis. Nucleic Acids Res. 31

(2003) 3468–3470
14. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular

Biology of the Cell. Fourth edn. Garland Science Publishing (2002)
15. Barshishat, M., Levi, I., Benharroch, D., Schwartz, B.: Butyrate down-regulates

CD44 transcription and liver colonisation in a highly metastatic human colon car-
cinoma cell line. Br. J. Cancer 87 (2002) 1314–1320

16. Levine, A.: p53, the cellular gatekeeper for growth and division. Cell 88 (1997)
323–331

Context-Aware Semantic Association Ranking1

Boanerges Aleman-Meza, Chris Halaschek, I. Budak Arpinar, and Amit Sheth

Large Scale Distributed Information Systems (LSDIS) Lab,
Computer Science Department, University of Georgia, Athens, GA 30602-7404

{boanerg, ch, budak, amit}@cs.uga.edu

Abstract. Discovering complex and meaningful relationships, which we call
Semantic Associations, is an important challenge. Just as ranking of documents
is a critical component of today’s search engines, ranking of relationships will
be essential in tomorrow’s semantic search engines that would support discov-
ery and mining of the Semantic Web. Building upon our recent work on speci-
fying types of Semantic Associations in RDF graphs, which are possible to cre-
ate through semantic metadata extraction and annotation, we discuss a frame-
work where ranking techniques can be used to identify more interesting and
more relevant Semantic Associations. Our techniques utilize alternative ways
of specifying the context using ontology. This enables capturing users’ interests
more precisely and better quality results in relevance ranking.

1 Introduction

The focus of contemporary data and information retrieval systems has been to pro-
vide efficient support for the querying and retrieval of data. Search engines have
made good progress in the ability to locate one of the relevant pieces of information
from among huge information on the Web. There has also been noteworthy progress
in metadata extraction, which involves recognition of entities such as names of per-
sons, locations, and in some cases, domain specific attributes of entities. Semantic
metadata are metadata elements that describe in context, domain specific information
offering additional insight about a document or other content items. For example,
relevant semantic metadata relating to a content item about a terrorist organization
could be countries the organization is active in, known terrorist activities, key organ-
izational members, number of members on watch lists, etc. The progress in informa-
tion retrieval or search does not extend to support effective decision-making and
knowledge discovery.

Due to the increasing move from data to knowledge, and the increasing popular-
ity of the vision of the Semantic Web [3], there is significant interest and ongoing
work, in automatically extracting and representing the metadata as semantic annota-
tions to documents and services on the Web [18,8,7]. Several communities such as
the Gene Ontology Consortium, Federal Aviation Administration (Aviation Ontol-

1 This work is funded by NSF-ITR-IDM Award # 0219649 titled “Semantic Association Identification and

Knowledge Discovery for National Security Applications.”

http://lsdis.cs.uga.edu/~aleman/
http://lsdis.cs.uga.edu/~ch/
http://www.cs.uga.edu/~budak/
http://lsdis.cs.uga.edu/~amit/
http://lsdis.cs.uga.edu/

ogy), Molecular Biology Ontology Working Group, Stanford University’s Knowl-
edge Systems Lab (Enterprise Ontology), are also coming together, to effectively
conceptualize the domain knowledge, and enable standards for exchanging, managing
and integrating data more efficiently. Research in the Semantic Web has also
spawned several commercially viable products through companies such as Semagix
[17,14] and Ontoprise [15] to name a few.
 Given these developments, the stage is now set for the next generation of tech-
nologies, which will facilitate getting actionable knowledge and information from
massive data sources thereby assisting in information analysis. Many users try to
analyze information by either browsing the information space, or using a search en-
gine. Search engine based systems only locate documents based on keywords or key
phrases. These approaches are not very representative of what the user actually wants.
Therefore, most of the retrieved documents are either irrelevant, or contain the infor-
mation buried deep within other data. The onus is then on the user, who must decide,
which of the retrieved documents are relevant, and then use their mental model, of the
information they are looking for, in order to obtain the relevant information.

The main goal of this work is to ease the process of analyzing across different
sources of data and enable users to uncover previously unknown and potentially in-
teresting relations (or associations) [2,19]. In the quest for finding associations, it is
also possible to find too many of them between the entities. Therefore, it is also im-
portant to locate interesting and meaningful relations and to rank them before present-
ing to the user.

1.1 Semantic Associations

The associations lend meaning to information, making it understandable and action-
able, and provide new and possibly unexpected insights. When we consider data on
the Web, different entities can be related in multiple ways that cannot be pre-defined.
For example, a “professor” can be related to a “university”, “students”, “courses”,
and “publications”; but s/he can also be related to other entities by different relations
like hobbies, religion, politics, etc. In the semantic Web vision, the Resource Descrip-
tion Framework (RDF) data model [11] provides a framework to capture the meaning
of an entity (or resource) by specifying how it relates to other entities (or classes of
resources). Each of these relationships between entities is what we call a “semantic
association” and users can formulate queries to find the semantic association(s). For
example, semantic association queries in flight security domain may include the fol-
lowing:

1. Is the passenger known to be associated with an organization on the watch
list?

2. Does the passenger work for an organization that is known to sponsor an or-
ganization on a watch-list?

3. Is there a connection between the passenger and one or more passengers on
the same flight or different flights?

Most of useful semantic associations involve some intermediate entities and associa-
tions. Relationships that span several entities may be very important in domains such

http://www.semagix.com/

as national security, because this may enable analysts to see the connections between
disparate people, places and events.

Semantic associations are based on intuitive notions such as connectivity and se-
mantic similarity. In [2], we have presented a formalization of semantic associations
over metadata represented in RDF. Concepts are linked together by properties de-
noted by arcs and labeled with the property name. Different types of semantic asso-
ciations in an RDF graph are formally defined in the following:

Definition 1 (Semantic Connectivity): Two entities e1 and en are semantically con-
nected if there exists a sequence e1, P1, e2, P2, e3, … en-1, Pn-1, en in an RDF graph
where ei, 1 ≤ i ≤ n, are entities and Pj, 1 ≤ j < n, are properties.

Definition 2 (Semantic Similarity): Two entities e1 and f1 are semantically similar if
there exist two semantic paths e1, P1, e2, P2, e3, … en-1, Pn-1, en and f1, Q1, f2, Q2, f3,
…, fn-1, Qn-1, fn semantically connecting e1 with en and f1 with fn, respectively, and
that for every pair of properties Pi and Qi, 1 ≤ i < n, either of the following conditions
holds: Pi = Qi or Pi ⊆ Qi or Qi ⊆ Pi (⊆ means rdf:subPropertyOf). We say that the
two paths originating at e1 and f1, respectively, are semantically similar.

Definition 3 (Semantic Association): Two entities ex and ey are Semantically Associ-
ated if ex and ey are semantically connected or semantically similar.

We use the following operators for expressing queries about semantic associations.

Definition 4 (ρ-Query) A ρ-Query, expressed as ρ(x, y), where x and y are entities,
results in the set of all semantic paths that connect x and y.
Definition 5 (σ-Query) A σ-Query, expressed as σ(x, y), where x and y are entities,
results in the set of all pairs of semantically similar paths originating at x and y.

We are currently working on a ranking technique for similarity associations, which is
not discussed in this paper. Furthermore, it is conceptually different than ranking
semantic connections because it involves ranking the set of all pairs of semantically
similar paths originating at entities x and y. Thus semantic associations and semantic
association queries are used to refer to only semantic connectivity and ρ-Queries
respectively in the rest of the paper.

1.2 Ranking Semantic Relations

A typical semantic query can result in many semantic paths semantically linking the
entities of interest. Because of the expected high number of paths, it is likely that
many of them would be regarded as irrelevant with respect to the user’s domain of
interest. Thus, the semantic associations need to be filtered according to their per-
ceived relevance. Also, a customizable criterion needs to be imposed upon the paths
representing semantic associations to focus only on relevant associations. Addition-
ally, the user should be presented with a ranked list of resulting paths to enable a
more efficient analysis. The issues of filtering and ranking raise some interesting and
challenging scientific problems.

To determine the relevance of semantic associations it is necessary to capture the
context within which they are going to be interpreted and used (or the domains of the
user interest). For example, consider a sub-graph of an RDF graph representing two
soccer players who belong to the same team and who also started a new restaurant
together. If the user is just interested in the sports domain the semantic associations
involving restaurant related information can be regarded as irrelevant (or ranked
lower). This can be accomplished by enabling a user to browse the ontology and
mark a region (sub-graph) of nodes and/or properties of interest. If the discovery
process finds some associations passing through these regions then they are consid-
ered relevant, while other associations are ranked lower or discarded. More formally,
ontological regions can represent context. In this paper we present a flexible method
for specifying context through an ontology-based context specification language.

Ranking of semantic associations effectively requires more than using the “onto-
logical context” for relevance determination. The ranking process needs to take into
consideration a number of criteria which can distinguish among associations which
are perceived as more and less meaningful, more and less distant, more and less
trusted etc. In this paper, the ranking score assigned to a particular semantic associa-
tion is defined as a function of these parameters. Furthermore different weights can
be given to different parameters according to users’ preferences (e.g., trust could be
given more weight than others). This is a new and different problem than ranking
documents using traditional search engines where documents are usually ranked ac-
cording to the number of (sometimes subject-specific) references to them.

Thus our contributions in this paper are two-folds:
• Capturing users’ interests semantically through an ontology-based context

specification language,
• Using a ranking function incorporating user-defined semantics (e.g., context)

and universal semantics (e.g., associations conveying more information).
The rest of the paper is organized as follows: Section 2 presents related work. Section
3 introduces context specification language and discusses ranking technique. Section
4 concludes the paper.

2 Related Work

Knowledge representation approaches tried to capture relationships based on logics,
or sets theory, etc. Our approach is to consider relations in the semantic Web, those
that are expressed semantically using the RDF model. Then from a set of semantic
associations we try to distinguish the relevant ones quantitatively. Research in the
area of ranking semantic relations includes [12], where the notion of “semantic rank-
ing” is presented to rank queries returned within semantic Web portals. Their tech-
nique reinterprets query results as “query knowledge-bases”, whose similarity to the
original knowledge-base provides the basis for ranking. The actual similarity between
a query result and the original knowledge-base is derived from the number of similar
super classes of the result and the original knowledge-base. In our approach, the rele-
vancy of results usually depends on a context defined by users.

Our earlier work [2] introduces using “context”, path length, and property rele-
vance as a basis for ranking. Basically, [2] defines a notion of context which includes
a set of ontologies and a set of relationship name pairs with a value. The value indi-
cates the precedence level, a degree of importance for a particular context. This ap-
proach considers context based on value assignments for different ontologies. In this
work instead, we provide context specification at a level (of classes and properties)
that allows precise definitions of areas of interest for the user.

While the issues of ranking semantic relations are fundamentally different from
those addressed in contemporary information retrieval ranking approaches, it is worth
discussing some of these techniques. [5] presents the page rank algorithm used by
Google. Page rank weights are assigned on the basis of page references, thus more
popular pages have a higher rank. [21] presents Teoma’s technique of subject specific
popularity, in which a page’s rank is based on the number of same-subject pages that
reference it, not just its general popularity. Earlier, Northern Light had introduced the
concept of folders and the documents resulting from keyword search results were
segregated by these folders representing relevant categories. While relevant, these
ranking algorithms lack the consideration of formal semantics (as captured through
ontology representation) and explicitly specified context when assigning ranks, both
of which are needed when ranking semantic associations. Although the current se-
mantic association ranking scheme differs from ranking Web pages through not in-
volving social contributors such as a voting mechanism, it is an interesting research
direction to involve similar techniques for assessing importance and value of seman-
tic associations.

Attempts to model context include [9], which proposed a context representation
mechanism to solve conflicts of semantic and schematic similarities between database
objects. [6] introduced an ontology that captures users’ context and situation by con-
sidering goals, tasks, actions and system’s context in order to observe and model
human activities. The approach is mainly focused to use context to reduce user’s
intervention in the system.

3 Ranking Semantic Associations

In this work, we provide semantic associations which are ranked for a given semantic
association query. Our approach for ranking semantic associations is primarily based
on capturing the interests of a user. Therefore, a context specification is the first step
towards measuring how relevant a semantic association is.

3.1 Context Specification

A context specification captures the users’ interest in order to provide her with the
relevant knowledge within numerous indirect relationships between the entities. We
consider data in an RDF model with an associated RDF Schema [4] that describes the
relationships between entities. Since the types of the entities are described in the RDF
Schema, we can use the associated class and relationship types to restrict our attention

to the entities and relations of interest. Thus, by defining regions (or sub-graphs) of
the RDF Schema (RDFS) we are capturing the areas of interest of the user. Particu-
larly important for us is the ability to define that the path of interest (semantic asso-
ciation) should include properties and/or classes of interest for the user. A region of
interest is a subset of classes (entities) and properties of a schema.

The detail to which a region of interest can be specified may vary for different ap-
plications. We have considered the following cases: (i) Class level: paths that include
instances of that class are relevant, and (ii) Property level: paths including the speci-
fied properties are relevant.

Within the Class level, we may also restrict or allow subclasses to be considered
relevant as well as the classes higher in the class hierarchy. For example, an “Organi-
zation” class may be considered relevant together with subclasses “PoliticalOrgani-
zation”, “FinancialOrganization” and “TerroristOrganization”, but a class “Account”
that is parent of the class “CorporateAccount” may not be of importance.

At a Property level, we can specify restrictions similar to those of the Class level.
An interesting and powerful context restriction that can be specified in properties is
indication of which classes the property can be applied to (“domain” in RDFS) as
well as which classes a property points to (“range” in RDFS). An example is a prop-
erty “involvedIn” with a domain “Organization” and range “Event” (that is, Organi-
zation involvedIn Event). Our context specification allows restriction of the
type of classes for domain and/or range. For example, it is possible to indicate that the
property “involvedIn” is relevant when the entity that it is applied to is of class “Ter-
roristOrganization” (a subclass of “Organization”).

We specify in a flexible yet detailed manner which Classes and Properties are rele-
vant using XML. The following is an example of specifying Classes with restric-
tions:

<region id="R1" weight=".65">

 <classLevel name="TerroristAct" includeSubclasses="all"/>

 <classLevel name="TerroristOrg" includeSubclasses="no"/>

 <propertyLevel name="involvedIn" domainRestrictions="TerroristOrg"
rangeRestrictions="TerroristAct, Kidnapping, SuicideAttack" />

</region>

A region has a weight defining its relative importance. The particular XML example
shown above captures the area of interest that is used as region A in Fig. 5 in Section
3.2.2. Note that a user can define several ontological regions with different weights to
specify the association types s/he is interested in.

3.2 Weight Assignments

Semantic associations represented as paths connecting two entities can span across
multiple domains (or regions) and involve any number of entities and properties. Our
ranking approach defines a path rank as a function of various intermediate weights.

As a path is traversed it will have many different intermediate weights which ulti-
mately contribute to its overall rank. We classify these weights into two categories,
Universal and User-Defined.

3.2.1 Universal Weights

Certain weights will influence a path rank regardless of the query or context of inter-
est. We call them Universal Weights. The following subsections identify and define
Universal Weights that contribute to the overall path rank.

Subsumption Weight. When considering entities in ontology, those that are lower in
the hierarchy can be considered to be more specialized instances of those further up
in the hierarchy [16]. Thus, lower entities have more specific meaning. Fig. 1 depicts
a class, “Organization”, as well as various subclasses of it. In the figure, “Organiza-
tion” is the highest class in the hierarchy, and thus is the most general. It is clear that
a “Political Organization” is a more defined “Organization”.

Fig. 1. Class Hierarchy Example

Similarly, a “Democratic Political Organi-
zation” conveys more meaning than both an
“Organization” and a “Political Organiza-
tion”. Hence, it is very apparent that as the
hierarchy is traversed from the top down,
subclasses become more specialized than
their super-classes. The concept of class
specialization in a path is captured by a
Universal Weight that we call a Subsump-
tion Weight. The intuition is assigning more
weights to more “specific” semantic asso-
ciations because they convey more meaning
then “general” associations.

We will now provide some brief definitions used to define the overall Subsumption
Weight of a path. First, we define a component, c, within a path P to be any entity or
property contained in P. Thus, c = {entity}|{property}.

Next we define a component weight of the ith component ci, in a path P such that

Component Weight i =
H

H
ic .

(1)

where
icH is the position of the ith component in its hierarchy H (the class at the top

has value 1) and │H│ is the total height of the classes/properties hierarchy. Hence,
Component Weighti (0,1] . For example, given Fig. 1 above, the component weight
of the classes Democratic Political Organization, c3, and Political Organization, c2,
would be

Organization

Political
Organization

Democratic
Political

Organization

Terrorist
Organization

c3 = H
H

3c =
3
3

 = 1 and c2 = H
H

2c =
3
2

 = 0.6 .
(2)

We can know define the overall Subsumption Weight of a path P such that

SP = ∏
+

=

×
1||

2||
1 c

i
ic

c
 .

(3)

where |c| is the number of components in P (excluding the start and end entities be-
cause they will never change in a result set) and ci is the component weight of the ith
component in the path. Thus the Subsumption Weight of a path P, SP, is the product of
all the component weights within P, normalized by the number of components in the
path (to avoid bias in path length). To illustrate this, we use the ontology that has
been developed for the national security domain in our lab (see Fig. 2).

Fig. 2. Sample Ontology

Consider the following paths between entities e1 and e5 depicted in Fig. 3. First, one
can see that all three paths are somewhat similar. The middle path seems to be a bit
more specific that the top path, in that the person is member of a “Terrorist Organiza-
tion,” not just any “Organization,” that is “involvedIn” a “Suicide Attack”. When

inspecting the bottom path we see that this person is actually a “leaderOf” some “Ter-
rorist Organization” that was “involvedIn” the same “Suicide Attack”. Thus we as-
sume that the third path conveys more meaning than the first two. When ranking
these three paths with respect to their total meaning conveyed, one would expect to
see that last path ranked higher than the others (in absence of additional user defined
context/weights).

Fig. 3. Subsumption Weight Example

Now we will determine the Subsumption Weight, S1, of the first path in Fig. 3, e1
e2 e5. The corresponding Subsumption Weight for this path would be given by

S1 =)
1
1

2
1

2
1(

3
1

××× = .083 .
(4)

Similarly, the middle path e1 e3 e5 has a Subsumption Weight of .167 and a
higher value of .334 for the path e1 e4 e5.

Hence as desired previously, with respect to only the meaning conveyed in the
path, the Subsumption Weight will assign higher weights to paths with a more defined
meaning. Thus, quality and completeness of the ontology become important to avoid
biased ranking ([16] addresses issues on explicitness and formalization of ontolo-
gies). Note that we are considering specificity of relations besides entities. This is
why the third semantic association is ranked higher than the second one. Furthermore,
statistical properties of ontology (e.g., connectivity of certain nodes, etc.) can con-
tribute to Universal Weight yet discussion of those metrics is out of scope of this
paper.

3.2.2 User-Defined Weights

In contrast to Universal Path Weights, some path weights will be query (or context)
specific. These will be referred to as User-Defined Weights. The following subsec-
tions identify and define User-Defined Weights that contribute to the overall path
rank.

e5:Suicide
Attack

memberOf

leaderOf

e2:Organization

e3:Terrorist
Organization

e4:Terrorist
Organization

memberOf

involvedIn

involvedIn

involvedIn e1:Person

Path Length Weight. In some queries, a user may be interested in the most direct
paths (i.e., the shortest path). This may infer a stronger relationship between two
entities. Yet in other cases a user may wish to find possibly hidden, indirect, or dis-
crete paths (i.e., longer paths). The latter may be more significant in domains where
there may be deliberate attempts to hide relationships; for example, potential terrorist
cells remain distant and avoid direct contact with one another in order to defer possi-
ble detection [10] or money laundering [1] involves deliberate innocuous looking
transactions. Hence, the user should determine which Path Length influence, if any,
should be used (largely domain dependent).

We will now define the Path Length Weight, L, of a path P, where LP [0, 1]
If a user wants to favor shorter paths, (5a) is used, where |c| is the number of compo-
nents in the path P (excluding the first and last nodes). In contrast, if a user wants to
favor longer paths (5b) is used.

LP =
||

1
c

 (a); LP = 1 -
||

1
c

 (b).
(5)

Fig. 4. Path Length Examples

To demonstrate the Path Length Weight, consider Fig. 4. This figure depicts two
possible paths between a person and an organization. Given this example, suppose a
user is interested in more direct path between entities. In this case, the longer of the
two paths (call it P1) should be ranked lower than the shorter one (P2), so (5a) should
be used.

Using (5a), the Path Length Weight of the two paths would be

9
1

1
=PL , where as

1
1

2
=PL .

(6)

Thus the shorter of the two paths has a higher rank value as initially expected. If a
user were alternatively interested in longer paths, (5b) would be used instead. In this
case

889.
9
11

1
=−=PL , where as 0

1
11

2
=−=PL .

(7)

Thus, P1 has a higher Path Length Weight than P2, again as desired.

e1:Person e6:Organization

e2:Person

e3:Person

e4:Person

friendOf

e5:Person

memberOf

memberOf

friendOf

friendOf

friendOf

Context Weight. As discussed in Section 3.1, it is possible to capture a user’s inter-
est through a Context Specification. Thus, using the context specified, it is possible to
rank a path according to its relevance with a user’s domain of interest.

With the Context Specification proposed in Section 3.1, a user can assign a weight
to particular regions of ontology. When considering how to use these weights many
issues arise. For example, paths can pass through numerous regions of interest. Large
and/or small portions of paths can pass through these regions as well. Another con-
sideration is whether all of the nodes in a path actually lie within a specified region.
While we could omit paths that contain some nodes outside of all regions, we have
decided to rank them lower because they are still considered relevant since they pass
through some region. Suppose a user specifies the following region A containing the
class “TerroristAct” and its subclasses and region B containing the class “Financia-
lOrganization” and its subclasses. The resulting regions, A and B, are within the ter-
rorist and financial domains respectively. Fig. 5 illustrates various paths which pass
through these regions.

Fig. 5. Context Related Paths

The topmost path (call it P1) passes through regions B and A, the middle path (P2)
passes through region B, and the third path (P3) at the bottom passes through region
A. Next, let the (user-defined) weight associated with a region x be represented as rx.
Also assume that rA = .75 and rB = .50 .

The weight assignment illustrates the user is more interested in terrorism domain
but also wants to consider financial associations, albeit with lesser priority. If we take
into consideration the components of a path, excluding its start and end entities, the
expected ranking of these three paths would be P3, P1, P2. Path P3 would have the
highest rank because all of its components (entities and properties) are included in
some context, which happens to be the context with the highest weight. P1 would be
ranked next because it has a component in B, but (unlike P2) also has a component in
A. Given this background we will define the Context Weight of a path. First, let the ith
region be represented by Ri. Thus, we define the Context Weight of a given path P,
CP, such that

e1:Person e9:Location

e2:Fin.
Org.

memberOf

where

doesBusinessWith
e3:Org. e4:Terr.

Org.
locatedIn

e5:Person friendOf

doesBusinessWith

memberOf
e6:Fin.
Org. locatedIn

e7:Terr.
Org.

memberOf

e8:Terr.
Act. involvedIn A

B

CP =))
||

#1()))((((
||

1 #

1 c
RcRcr

c

InregionsPis

i
ii

∉
−×∈×∑ ∑

=

 .
(8)

where ri is the user defined weight of the region Ri, c is a component in the path P
(excluding the start and end entities), and |c| is number of components in the path
(again excluding the start and end entities). That is, for each context that P passes
through, sum the total number of components in P that are in the region Ri and multi-
ply it by the weight attributed to that region, ri. In order to reward paths in which all
components are included in some region, the total number of components not in any
region is divided by the total number of components, which is then subtracted from 1.
This is then multiplied by the previous summation. Lastly, this total is normalized by
the total number of components in the path. Note that a property component is con-
sidered to be in some region if it is entirely included in that region or one of the enti-
ties it is involved with (at either end) is in that region. If the two entities in which
some property is involved are contained in two separate regions, the higher of the two
region weights will be the region weight for that property. Also note that due to the
subclass relationship of entities, properties which do not directly appear in a region
may actually be included in some situations. To illustrate this, we will assign a Con-
text Weight to the three paths presented Fig. 5.

P1 passes through both regions A and B, which have a weight of .75 and .50 re-
spectively. In both of these regions, three components are involved. Thus the initial
summation is (0.75 × 3) + (0.5 × 3) = 3.75. There is one component (Organization) in
P1 which is not included in a region, so we have

21.3)
7
11(75.3 =−× .

(9)

This is normalized by the number of components in P1, hence we have

458.21.3
7
1

1
=×=PC .

(10)

Next consider P2. This path only passes through region B, which has a weight .50. In
this region, three components are involved. Thus the initial summation is (0.50 × 3) =
1.5. There are two components (“friendOf” and “Person”) in P2 which are not in-
cluded in a region, so we have

9.)
5
21(5.1 =−× .

(11)

This is normalized by the number of components in P2, so

18.9.
5
1

2
=×=PC .

(12)

Lastly, consider P3. This path only passes through region A, which has a weight .75.
In this region, five components are involved. Thus the initial summation is (0.75 × 5)

= 3.75. There are no components in P3 which are not included in some region, so we
have

75.3)
2
01(75.3 =−× .

(13)

This is normalized by the number of components in P3, so

75.75.3
5
1

3
=×=PC .

(14)

Hence, as expected initially the ranking is P3 (0.75), P1 (0.458), and P1 (0.18).

Trust Weight. Various relationships (properties) in a path originate from different
sources. Some of these sources may be trusted while others may not (e.g., Reuters
could be regarded as a more trusted source on international news than some of the
other news organizations). Thus, trust values need to be assigned to relationships
depending on the source. The process of automatically assigning trust to a specific
relationship is out of the scope of this paper; instead we assume that users or other
processes previously specified the trust value of relationships. Let the trust weight of
the ith property pi of a path be

ipt , where
ipt [0,1]. We now define the Trust

Weight of an overall path P as

TP = ∏
∈

=

P

i

cp

i
pt

#

1

 .
(15)

where cP are all the property components within the path P. Thus, TP is the product of
all property weights in the P.

3.3 Ranking Criterion

Section 3.2, defines various path weight influences. We will now define the overall
path rank, using these weights. As mentioned earlier, Universal Weights will always
affect the overall path weight, while the User-Defined Weights will only be used
when specified by the user. Let the Overall Path Weight of a path P denoting a se-
mantic association be a linear function such that

WP = k1 × SP + k2 × LP + k3 × CP + k4 × TP . (16)

where ki add up to 1.0 and are intended to allow fine-tuning of the different ranking
criteria (e.g., trust can be given more weight than path length).

3.4 Preliminary Results

As a test-bed for querying semantic associations we have implemented a prototype
named PISTA (see Fig. 6). In PISTA (Passenger Identification, Screening, and Threat
Analysis) we have designed an ontology for national security domain (see Fig. 2).
This ontology has names of organizations, countries, people, terrorists, terrorist acts
etc. that are all inter-related to each other with named relationships to reflect real-
world knowledge about the domain (e.g., “terrorist” “belongs to” “terrorist organiza-
tion”).

Fig. 6. PISTA Architecture

The sources from which metadata were extracted were selected to populate the ontol-
ogy with entities related to terrorism. The metadata is represented in RDF, on which
semantic association queries were performed. For information extraction we have
used Semagix’s suite which includes a set of tools for extraction of entities from
(semi)-structured information sources [17]. This toolkit allows extraction of entities
from Web pages and establishes relationships between them. This extraction is based
on our national security ontology thereby placing an extracted entity in its appropriate

place in the hierarchy of classes. Currently, there are over 6,000 entities and more
than 11,000 explicit relations among them.

For querying semantic associations, we have implemented search algorithms,
which use the schema information in conjunction with the RDF data that find seman-
tic associations (Definition 3) that represent the relationships between any two enti-
ties. We represent both the RDF Schema and the RDF data as main memory directed
graphs based on the Jena model [13]. Then, search for semantic similarity recursively
finds similar paths between two entities by relaying on the schema to find similar
entities/relationships (i.e., which belong to same parent class) (see Definition 2). We
also use a graph traversal algorithm (based on breadth-first search), which does not
consider the direction of the edges when searching for semantic connectivity associa-
tions (see Definition 1).

For example, consider following semantic association query ρ(“Nasir Ali”,
“AlQeada”). In PISTA this query results in 2234 associations. A small subset of
these associations is shown in the table below (not in a particular order).

Nasir Ali friendWith T. Smith memberOf AlQeada
Nasir Ali friendWith Cabbar Ali visited Afganistan hosts AlQeada
Nasir Ali friendWith T. Smith hasAccount J. Funds fundsOrganization AlQeada
Nasir Ali friendWith OsamaBinLaden leaderOf AlQeada
Nasir Ali hasAccount J. Funds fundsOrganization AlQeada
Nasir Ali associatedWith A. G. College hasAccount J. Funds fundsOrganization
AlQeada
Nasir Ali memberOf TRO memberOf OsamaBinLaden leaderOf AlQeada
Nasir Ali associatedWith TRO doesBusinessWith AlQeada

For illustration, we have a context defined by a region that captures ‘terrorism’ inter-
est with weight of 0.6 (lower region in Fig. 2) and another region capturing ‘finan-
cial’ interest with weight of 0.4 (upper region in Fig. 2). The following table shows
how the relationships are ranked when we apply our ranking formula. The ranking
criteria (constants ki in equation (16)) for this example assign values of 0.6 to context
weight, 0.2 to subsumption weight, 0.1 to path length weight (longer paths favored),
and 0.1 to trust weight (we assumed same trust for all entities/properties in this exam-
ple).

Ranked Results Rank
Nasir Ali memberOf TRO memberOf OsamaBinLaden leaderOf AlQeada 0.5560
Nasir Ali associatedWith TRO doesBusinessWith AlQeada 0.5488
Nasir Ali has Account J. Funds fundsOrganization AlQeada 0.5123
Nasir Ali friendWith T. Smith has Account J. Funds fundsOrganization
AlQeada

0.3208

Nasir Ali associatedWith A. G. College has Account J. Funds fundsOrgani-
zation AlQeada

0. 2941

Nasir Ali friendWith OsamaBinLaden leaderOf AlQeada 0.2733
Nasir Ali friendWith T. Smith memberOf AlQeada 0..2511
Nasir Ali friendWith Cabbar Ali visited Afganistan hosts AlQeada 0.2344

The top ranked semantic association comes up first because its entities all belong to
the “terrorism” region (with higher relevance than “financial”) and it is one of the

longer associations. The second ranked semantic association includes entities only
within the “terrorism” region as well, but it is a shorter path (longer paths are pre-
ferred in this example). The third association consists only of entities within the “fi-
nancial” region, which we would expect to be ranked lower that the first two because
we have weighted the “terrorism” region higher. The remaining paths contain some
nodes not within any region, thus they are ranked below the previous three associa-
tions as expected. The fourth and fifth semantic associations are ranked as such be-
cause they are both longer than the rest and contain more entities within the two re-
gions of interest. Note that the fourth association is ranked above the fifth because the
“friendWith” relationship is more specific than the “associatedWith” relationship.
When inspecting the last three associations, it is seen that they contain the least num-
ber of entities within a context. Thus, we would expect them to be ranked lower than
the rest (due to the context being weighted so heavily). When we look at the sixth and
seventh ranked associations, we see that the sixth is more specific in that entity
“OsamaBinLaden” is the “leaderOf” “AlQeada”, where the entity “T. Smith” is only
a “memberOf” the same Terrorist Organization. The path ranked lowest contains the
least number of entities in some region of interest, as expected.

4 Conclusions and Future Work

Semantic associations primarily capture information relating two entities. We are
interested in the path that relates two entities by a sequence of interconnected links.
Discovering of such relations (explained in [2]) gives results containing multiple
paths connecting two entities. These paths have different meaning depending on the
type of relation or the type of entities in each of components (either resource or prop-
erty) of the path. The number of semantic associations between entities will grow
much faster than the rate of the growth of a graph representing a knowledgebase and
corresponding ontology. Also, understanding the relevance of each of the semantic
association as a result of a query is arguably harder than determining a document’s
relevance and ranking in a result provided by a typical search engine. Hence deter-
mining a good ranking strategy is crucial.

In this paper, we defined a ranking formula that considers Subsumption Weight
(how much meaning a semantic association conveys depending on the places of its
components in the ontology), Path Length Weight (that allows preference of either
immediate or distant relationships), Context Weight (how relevant is the path to the
user interest – defined using our context specification framework), and Trust Weight
(determining how reliable a relationship is according to its provenance).

Currently we are working on ranking similarity associations (Definition 2). In fact
this involves discovering all semantic connections between two entities (Definition
1), and then measuring if and how these associations can be broken into semantically
symmetric associations (e.g., two terrorist attacks may be similar because they might
be symmetrically connected to same methods). A formal query language for semantic
associations is currently under development.

In order to assess the effectiveness of the ranking scheme outlined in this paper,
standard ranking metrics such as precision and recall can be employed. However, we

think metrics for context-aware ranking should be different than the traditional met-
rics only using precision and recall. Because we rank the results considering a context
specified by the user, and the evaluation criterion would be very subjective according
to user’s interests. Therefore, we believe a user-oriented assessment criterion is
needed.

The future work also includes improving the semantic association discovery algo-
rithms using the ranking scheme we have described in this paper for better scalability
in very large data sets. For example, some partial paths can be pruned on the fly if
their (partial) rank value drops under a predefined threshold.

Acknowledgements: We thank Semagix, Inc. for providing its Freedom product,
which is based on the SCORE technology and related research out at the LSDIS Lab
[20]. PISTA application has benefit from Semagix Inc.'s application in this area [14].
Brainstorming and discussions with members of our research project team, specifi-
cally Krys Kochut, John Miller, Kemafor Anyanwu, and Cartic Ramakrishnan, have
enriched this work.

References

[1] Anti Money Laundering, Application White Paper, Semagix, Inc.
http://www.semagix.com/pdf/anti_money_laundering.pdf

[2] K. Anyanwu and A. Sheth, “r-Queries: Enabling Querying for Semantic Asso-
ciations on the Semantic Web”, The Twelfth International World Wide Web
Con-ference, Budapest, Hungary (2003)

[3] T. Berners-Lee, J. Hendler, and O.Lassila, “The Semantic Web: A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities”, Scientific American, May 2001

[4] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation. March 2000

[5] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search
Engine”, Proc. 7th International World Wide Web Conference (1998)

[6] J. L. Crowley, J. Coutaz, G. Rey and P. Reignier, "Perceptual Components for
Context Aware Computing", UBICOMP 2002, International Conference on
Ubiquitous Computing, Goteborg, Sweden, September 2002

[7] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S.
Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien, SemTag and Seeker:
Bootstrapping the semantic Web via automated semantic annotation, The
Twelfth International World Wide Web Conference Budapest, Hungary (2003)

[8] B. Hammond, A. Sheth, and K. Kochut, “Semantic Enhancement Engine: A
Modular Document Enhancement Platform for Semantic Applications over Het-
erogeneous Content”, in Real World Semantic Web Applications, V. Kashyap
and L. Shklar, Eds., IOS Press, pp. 29-49, December 2002

[9] V. Kashyap, A. Sheth. Semantic and schematic similarities between database
objects: a context-based approach. VLDB Journal (1996) 5: 276–304.

http://www.semagix.com/
http://lsdis.cs.uga.edu/proj/sai/
http://www.semagix.com/pdf/anti_money_laundering.pdf
http://lsdis.cs.uga.edu/lib/download/AS03-WWW.pdf
http://lsdis.cs.uga.edu/lib/download/AS03-WWW.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/KS95b.pdf
http://lsdis.cs.uga.edu/lib/download/KS95b.pdf

[10] V. Krebs, “Mapping Networks of Terrorist Cells”. Connections, 24(3): 43-52.
(2002).

[11] O. Lassila and R. R. Swick: "Resource Description Framework (RDF) Model
and Syntax Specification", W3C Recommendation, World Wide Web Consor-
tium, Cambridge (MA), February 1999

[12] A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure. SE-mantic PortAL
– The SEAL approach. to appear: In Creating the Semantic Web. D. Fensel, J.
Hendler, H. Lieberman, W. Wahlster (eds.) MIT Press, MA, Cambridge (2001)

[13] B. McBride “Jena: Implementing the RDF Model and Syntax Specification”, in:
Steffen Staab et al (eds.): “Proceedings of the Second International Workshop
on the Semantic Web - SemWeb'2001”, May 2001.

[14] National Security and Intelligence, A Semagix White Paper, 2003.
http://www.semagix.com/pdf/national_security.pdf

[15] Ontoprise® GmbH, http://www.ontoprise.com
[16] M. Rodriguez, and M. Egenhofer, “Determining Semantic Similarity among En-

tity Classes from Different Ontologies”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 15, No. 2, March/April 2003.

[17] Semagix. http://www.semagix.com.
[18] U. Shah, T. Finin, A. Joshi, R. S. Cost, and J. Mayfield, “Information Retrieval

on the Semantic Web”, 10th International Conference on Information and
Knowledge Management, November 2002.

[19] A. Sheth, I. B. Arpinar, and V. Kashyap, “Relationships at the Heart of Seman-
tic Web: Modeling, Discovering, and Exploiting Complex Semantic Relation-
ships,” Enhanceing the Power of the Internet Studies in Fuzziness and Soft
Computing, M. Nikravesh, B. Azvin, R. Yager and L. Zadeh, Springer-Verlag,
2003 (in print).

[20] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, Y. Warke, Semantic
Content Management for Enterprises and the Web, IEEE Internet Computing,
July/August 2002, pp. 80-87.

[21] Teoma: http://sp.teoma.com/docs/teoma/about/searchwithauthority.html

http://www.semagix.com/pdf/national_security.pdf
http://www.ontoprise.com
http://www.semagix.com
http://sp.teoma.com/docs/teoma/about/searchwithauthority.html
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SCORE-IC-ToAppear.pdf
http://lsdis.cs.uga.edu/lib/download/SCORE-IC-ToAppear.pdf

I know what you mean: semantic issues in
Internet-scale publish/subscribe systems?

Ioana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen

Department of Electrical and Computer Engineering
Department of Computer Science
University of Toronto, Canada

{ioana,petrovi,jacobsen}@eecg.toronto.edu

Abstract. In recent years, the amount of information on the Internet
has increased exponentially developing great interest in selective informa-
tion dissemination systems. The publish/subscribe paradigm is particu-
larly suited for designing systems for routing information and requests
according to their content throughout wide-area network of brokers. Cur-
rent publish/subscribe systems use limited syntax content-based routing.
Since publishers and subscribers are anonymous and decoupled in time,
space and location, often over wide-area network boundaries, they do not
necessarily speak the same language of use the same data and language
format. Consequently, adding semantics to current publish/subscribe sys-
tems is important. In this paper we identify and examine the issues in
developing semantic-aware content-based routing for publish/subscribe
broker networks.

1 Introduction

The increase in the amount of data on the Internet has led to the development
of a new generation of applications based on selective information dissemination
where data is distributed only to interested clients. Such applications require a
new middleware architecture that can efficiently match user interests with avail-
able information. Middleware that can satisfy this requirement include event-
based architectures such as publish/subscribe systems.
In publish/subscribe systems (hereafter referred to as pub/sub systems),

clients are autonomous components that exchange information by publishing
events and by subscribing to events1 they are interested in. In these systems,
publishers produce information, while subscribers consume it. A component usu-
ally generates a message when it wants the external world to know that a certain
event has occurred. All components that have previously expressed their interest
in receiving such events will be notified about it. The central component of this
architecture is the event dispatcher (also known as event broker). This compo-
nent records all subscriptions in the system. When a certain event is published,

? First International Workshop on Semantic Web and Databases, Berlin 2003
1 We use the terms event and publication interchangeable.

the event dispatcher matches it against all subscriptions in the system. When the
incoming event verifies a subscription, the event dispatcher sends a notification
to the corresponding subscriber.
The earliest pub/sub systems were topic-based. In these systems, each mes-

sage (event) belongs to a certain topic. Thus, subscribers express their interest
in a particular subject and they receive all the events published within that par-
ticular subject. The most significant restriction of these systems is the limited
selectivity of subscriptions. The latest systems are called content-based systems.
In these systems, the subscriptions can contain complex queries on event content.
Pub/sub systems try to solve the problem of selective information dissemi-

nation. Recently, there has been a lot of research on solving the problem of effi-
ciently matching events against subscriptions. The proposed solutions are either
centralized, where a single broker stores all subscriptions and event matching
is done locally [1, 7, 8], or distributed, where many brokers need to collaborate
to match events with subscriptions because not all subscriptions are available
to every broker [3, 5]. The latter approach is also referred to as content-based
routing because brokers form a network where events are routed to interested
subscribers based on their content.
The existing solutions are limited because the matching (routing) is based on

the syntax and not on the semantics of the information exchanged. For example,
someone interested in buying a car with a “value” of up to 10,000 will not
receive notifications about “vehicles,” “automobiles” or even “cars” with “price”
of 8,999 because the system has neither understanding of the “price”-“value”
relationship, nor of the “car”-“automobile”-“vehicle” relationship.
In this paper we examine the issues in extending distributed pub/sub sys-

tems to offer semantic capabilities. This is an important aspect to be studied as
components in a pub/sub systems are decoupled, apriori anonymus, often widely
distributed and do not necessary speak the same language.

2 Related work

We are not aware of any previous work addressing the semantic routing problem
in pub/sub systems. Most research on semantic has been done in the area of
heterogeneous database integration [4, 11, 16]. The issues addressed in this area
refer to enabling integration of heterogeneous information systems so that users
can access multiple data sources in an uniform manner. One way of solving this
problem is by using ontologies. Semantic information systems use an ontology to
represent domain-specific knowledge and allow users to use the ontology terms
to construct queries. The query execution engine accesses the ontology either
directly or via an inference engine in order to optimize the query and generate
an execution plan. Use of an ontology to generate an execution plan is central
in determining the right source database and method for retrieving the required
information. This allows uniform access to multiple heterogeneous information
sources. The problem of adding semantic capability to pub/sub systems can be
seen as an “inverse” problem to the heterogeneous database integration problem.

In semantic pub/sub systems, subscriptions are analogous to queries and events
correspond to data, so now the problem is how to match data to queries.

Some systems [4, 2] use inference engines to discover semantic relationships
between data from ontology representations. Inference engines usually have spe-
cialized languages for expressing queries different from the language used to
retrieve data, therefore user queries have to be either expressed in, or trans-
lated into the language of the inference engine. The ontology is either global
(i.e., domain independent) or domain-specific (i.e., only a single domain) on-
tology. Domain-specific ontologies are smaller and more commonly found than
global ontologies because they are easier to specify. Additionally, there are sys-
tems that use mapping functions exclusively and do not operate with inference
engines [11, 16]. In these systems, mapping functions serve the role of an inference
engine.

Web service discovery is a process of matching user needs to provided ser-
vices; user needs are analogous to events and provided services to subscriptions
in a pub/sub system. Web service discovery systems [13, 17] are functionally
similar to a pub/sub system. During a discovery process, a web service adver-
tises its capabilities in terms of its inputs and outputs. An ontology provides an
association between related inputs or outputs of different web services. A user
looks for a particular web service by searching for appropriate inputs and out-
puts according to the user’s needs. Relevant services are determined by either
exact match of inputs and outputs, or a compatible match according to ontology
relationships.
The main push for using ontologies and semantic information as means of

creating a more sophisticated application collaboration mechanisms has been
from the Semantic Web community2. Recently their focus was on developing
DAML+OIL—a language for expressing, storing and exchange of ontologies and
query languages for DAML+OIL [9]. Our vision of a distributed semantic pub-
lish/subscribe system is similar to that of the semantic web. The issues of dis-
tributing ontological information and bridging of different ontologies are common
to both.

A system for distributed collaboration [6] creates a virtual network of prox-
ies (functionally similar to brokers) using IP multicast connecting both data
producers and consumers (users). Using a common ontology, sources provide
descriptions (metadata similar to subscriptions and events) of multimedia data
they are providing and users provide their capabilities. The metadata is dis-
tributed among proxies to create a semantic multicast graph along which data
is distributed to interested users.
To improve scalability, peer-to-peer systems are looking in the direction of

semantic routing. HyperCuP [15] uses a common ontology to dynamically cluster
peers based on the data they contain. A cluster is identified using a more general
concept then any of its members in the ontology. Ontology concepts map to
cluster addresses so a node can determine appropriate routes for a query by
looking up more general concepts of the query terms in the concept hierarchy.

2 www.semanticweb.org

Edutella [12] uses query hubs (functionally similar to brokers) to collect user
metadata and present the peer-to-peer network as a virtual database, which
users query. All queries are routed through a query hub, which forwards queries
to only those nodes that can answer them.

3 Local Matching and Content-based Routing

Due to space limitation, we will not provide an extensive background about
pub/sub systems and content-based routing. Instead, we briefly present the most
important concepts that help the reader understand the ideas conceived in this
paper.
The key point in pub/sub systems is that the information sent into the system

by the publisher does not contain the addresses of the receivers. The information
is forwarded to interested clients based on the content of the message and clients
subscriptions [5]. In a centralized approach, there is only one broker that stores
all subscriptions. Upon receiving an event, the broker uses a matching algorithm
to match the event against the subscriptions in order to decide which subscribers
want to receive notifications about the event [1, 8].
Usually, publications are expressed as lists of attribute-value pairs. The for-

mal representation of a publication is given by the following expression: {(a1,
val1), (a2, val2), ..., (an, valn)}. Subscriptions are expressed as conjunctions of
simple predicates. In a formal description, a simple predicate is represented as
(attribute name relational operator value). A predicate (a rel op val) is matched
by an attribute-value pair (a, val) if and only if the attribute names are identi-
cal (a = a) and the (a rel op val) boolean relation is true. A subscription s is
matched by a publication p if and only if all its predicates are matched by some
pair in p. In this case we say that the subscription is matched at syntactic level.
The distributed approach involves a network of brokers that collaborate in or-

der to route the information in the system based on its content [3, 5]. In this case,
practically, each broker is aware of its neighbours interests. Upon receiving an
event, the broker matches it against its neighbours subscriptions and sends the
event only to the interested neighbours. Usually, the routing scheme presents
two distinct aspects: subscription forwarding and event forwarding. Subscrip-
tion forwarding is used to propagate clients interests in the system, while event
forwarding algorithms decide how to disseminate the events to the interested
clients. Two main optimizations were introduced in the literature in order to
increase the performance of these forwarding algorithms: subscription covering
and advertisements [3, 5].

Subscription covering

Given two subscriptions s1 and s2, s1 covers s2 if and only if all the events
that match s2 also match s1. In other words, if we denote with E1 and E2 the
set of events that match subscription s1 and s2, respectively, then E2 ⊆ E1.
If we look at the predicate level, the covering relation can be expressed as fol-

lows: Given two subscriptions s1 = {p1
1, p2

1, . . . , pn
1} and s2 = {p1

2, p2
2, . . . , pm

2},
s1 covers s2 if and only if ∀pk

1 ∈ s1,∃pj
2 ∈ s2 (pk

1 and pj
2 refer to the same

Subscription s1 Subscription s2 Covering Relation

(product = “computer”, brand
= “IBM”, price ≤ 1600)

(product = “computer”, brand
= “IBM”, price ≤ 1500)

s1 covers s2

(product = “computer”, brand
= “IBM”, price ≤ 1600)

(product = “computer”, price
≤ 1600)

s2 covers s1

(product = “computer”, brand
= “IBM”, price ≤ 1600)

(product = “computer”, brand
= “Dell”, price ≤ 1500)

s1 does not cover s2,
s2 does not cover s1

Table 1. Examples of subscriptions and covering relations

attribute) such that if pj
2 is matched by some attribute-value pair (a, val), then

pk
1 is also matched by the same (a, val) attribute-value pair. In other words, s2

has potentially more predicates and the common ones are more restrictive than
those in s1 (i.e., the domain of values that satisfy them is potentially smaller).
Table 1 presents some examples of subscriptions and the corresponding covering
relations.

When a broker B receives a subscription s, it will send it to its neighbours if
and only if it has not previously sent them another subscription s′, that covers
s. Broker B is ensured to receive all events that match s, since it receives all
events that match s′ and the events that match s are included in the set of the
events that match s′.

Advertisements

Advertisements are used by publishers to announce the set of publications
they are going to publish [3]. Advertisements look exactly like subscriptions3,
but have a different role in the system: they are used to build the routing path
from the publishers to the interested subscribers.

An advertisement a determines an event e if and only if all attribute-value
pairs match some predicates in the advertisement. Formally, an advertisement
a = {p1

1, p2
1, . . . , pn

1} determines an event e, if and only if ∀(a, v) ∈ e,∃pk ∈ a

such that (a, v) matches pk.

An advertisement a intersects a subscription s if and only if the intersection of
the set of the events determined by the advertisement a and the set of the events
that match s is a non-empty set. Formally, at predicate level, an advertisement
a = {a1, a2, . . . , an} intersects a subscription s = {s1, s2, . . . , sn} if and only if
∀sk ∈ s,∃aj ∈ a and some attribute-value pair (attr, val)4 such that (attr, val)
matches both sk and aj . Table 2 presents some examples of subscriptions and
advertisements and the corresponding intersection relations.

When using advertisements, upon receiving a subscription, each broker for-
wards it only to the neighbours that previously sent advertisements that intersect

3 However, there is an important distinction between the predicates in an advertise-
ment and those in a subscription: the predicate in a subscription are considered to
be in a conjunctive form, while those in an advertisement are considered to be in
disjunctive form.

4
sk and aj refer to the same attribute attr

Subscription s Advertisement a Intersection Relation

(product = “computer”, brand
= “IBM”, price ≤ 1600)

(product = “computer”, brand
= “IBM”, price ≤ 1500)

a intersects s

(product = “computer”, price ≤
1600)

(product = “computer”, brand
= “IBM”, price ≤ 1600)

a intersects s

(product = “computer”, brand
= “IBM”, price ≤ 1600)

(product = “computer”, brand
= “Dell”, price ≤ 1500)

a does not intersect s

Table 2. Examples of subscriptions, advertisements and intersection relations

with the subscription. Thus, the subscriptions are forwarded only to the brokers
that have potentially interesting publishers.

4 Towards Semantic-based Routing

In order to add a semantic dimension to distributed pub/sub systems, we have
to understand how to adapt or map the core concepts and functionalities of
existing solutions for content-based routing to the new context that involves
semantic knowledge.

In this section we first introduce some extensions to the existing matching
algorithms in order to make them semantic-aware and then we discuss the im-
plications of using such a solution for semantic-based routing.

4.1 Semantic Matching

In this section we summarize our approach to make the existing centralized
matching algorithms semantic-aware [14]. Our goal is to minimize the changes to
the existing matching algorithms so that we can take advantage of their already
efficient techniques and to make the processing of semantic information fast. We
describe three approaches, each adding more extensive semantic capability to
the matching algorithms.

The first approach allows a matching algorithm to match events and sub-
scriptions that use semantically equivalent attributes or values—synonyms. The
second approach uses additional knowledge about the relationships (beyond syn-
onyms) between attributes and values to allow additional matches. More pre-
cisely, it uses a concept hierarchy that provides two kinds of relations: specializa-
tion and generalization. The third approach uses mapping functions which allow
definitions of arbitrary relationships between the schema and the attribute values
of the event.

The synonym step involves translating all strings with different names but
with the same meaning to a “root” term. For example, “car” and “automobile”
are synonyms for “vehicle” which then becomes the root term for the three
words. This translation is performed for both subscriptions and events and at

both attribute and value level. This allows syntactically different events and sub-
scriptions to match. This translation is simple and straightforward. The semantic
capability it adds to the system, although important, may not be sufficient in
some situations, as this approach does not consider the semantic relation between
attributes and values. Moreover, this approach is limited to synonym relations
only.

Taxonomies represent a way of organizing ontological knowledge using spe-
cialization and generalization relationships between different concepts. Intu-
itively, all the terms contained in such a taxonomy can be represented in a
hierarchical structure, where more general terms are higher up in the hierarchy
and are linked to more specialized terms situated lower in the hierarchy. This
structure is called a “concept hierarchy. Usually, a concept hierarchy contains
all terms within a specific domain, which includes both attributes and values.

Considering the observation that the subscriber should receive only informa-
tion that it has precisely requested, we come up with the following two rules for
matching based on a concept hierarchy: (1) the events that contain more spe-
cialized concepts have to match the subscriptions that contain more generalized
terms of the same kind and (2) the events that contain more generalized terms
than those used in the subscriptions do not match the subscriptions.

In order to better understand these rules, we look at the following examples.
Suppose that we have in the system a subscription:

S : (book = StoneAge)AND(subject = reptiles).
When the event:

E : {(encyclopedia, StoneAge), (subject, crocodiles)}
is entering the system, it should match the subscription S, as the subscriber
asked for more general information that the event provides (in other words, an
encyclopedia is a special kind of book and crocodiles represent a special kind of
reptiles). On the other hand, considering the subscription:

S : (encyclopedia = StoneAge)AND(subject = reptiles)
and the incoming event

E : {(book, StoneAge), (subject, crocodiles)},
the event E should not match the subscription S, as the book contained in the
event may be a dictionary or a fiction book (as well as an encyclopedia). Note
that, although the subscription S contains in its second predicate a value more
specialized than that in the event, the first predicate of the subscription is not
matched by the event, and therefore, the event does not match the subscription.
The last rule prevents an eventual spamming of the subscribers with useless
information.

Mapping functions can specify relationships that, otherwise, cannot be spec-
ified using a concept hierarchy or a synonym relationship. For example, they can
be used to create a mapping between different ontologies. A mapping function
is a many-to-many function that correlates one or more attribute-value pairs
to one or more semantically related attribute-value pairs. It is possible to have
many mapping functions for each attribute. We assume that mapping functions
are specified by domain experts. In the future, we are going to investigate using

a fully-fledged inference engine as a more compact representation of mapping
functions and the performance trade off this entails.
We illustrate the concept of mapping functions with an example. Let us say

that there is a university professor X, who is interested in advising new PhD
graduate students. In particular, he is only interested in students who have had
5 or more years of previous professional experience. Subsequently, he subscribes
to the following:
S : (university = Y)AND(degree = PhD)AND(professional experience > 4)
Specifically, the professor X is looking for students applying to university Y in
the PhD stream with 5 or more years of experience. For each new student apply-
ing to the university, a new event, which contains among others the information
about previous work experience, is published into our system. Thus, an event
for a student who had some work experience would look like

E : {(school, Y), (degree, PhD), (graduation date, 1990)}.
In addition, the system has access to the following mapping function:

f1 : (graduation date)→ professional experience.
You can think of function f1 implemented as a simple difference between to-
days date and the date of students graduation and returning that difference as
the value of professional experience. For the sake of the example, f1 assumes
that the student has been working since graduation. Finally, the result of f1 is
appended to event E and the matching algorithm matches E to professor Xs
subscription S.
In addition, we can think about events and subscriptions as points or regions

in a multidimensional space [10] where the distance between points determines
a match between an event and a subscription. This way it is possible that an
event matches a subscription even if some attribute/value pair of the event is
more general than the corresponding predicate in the subscription as long as the
distance between the event and the subscription, as determined by all their con-
stituent attribute-value pairs and predicates, respectively, is within the defined
matching range.
To summarize, the synonym stage translates the events and the subscriptions

to a normalized form using the root terms, while the hierarchy and the mapping
stages add new attribute-value pairs to the events. The new events are matched
using existing matching algorithms against the subscriptions in the system. In
conclusion, we say that e semantically matches s5 if and only if the hierarchy
and the mapping stages can produce an event e = e ∪ E6 that matches s at
syntactic level.

4.2 Semantic-based Routing

At first glance, it is apparent that existing algorithms for subscription and event
forwarding can be used with a semantic-aware matching algorithm in order to

5
e and s are in their normalized form

6
E represents the set of attribute-value pairs that are added by the hierarchy and the
mapping stages. Note that E can be an empty set.

achieve semantic-based routing. However, this approach is not straight forward.
In this section we discuss some open issues that arise from using a semantic-aware
matching algorithm in content-based routing.

Subscription covering

Although it is defined at syntax level, the covering relation, as presented in
Section 3, can be used directly with the semantic matching approach, discussed
above, without any loss of notifications. In other words, if s1 covers s2 and a
certain broker B will forward only subscription s1 to its neighbours, it will still
receive both events that semantically match s1 and s2. This happens because
the relation between the set of events E1 and E2 that semantically match s1

and s2, respectively, is preserved, i.e., E2 ⊆ E1. Truly, if e semantically matches
s2, then the hierarchy and the mapping stages can produce an event e′ that
matches s2 at syntactic level. If e

′ matches s2 at syntactic level, then, according
to the definition of covering relation, e′ matches s1 at syntactic level. Since e′

is produced by adding semantic knowledge to e, this means that e semantically
matches s1, i.e. E2 ⊆ E1. Thus, broker B is ensured to receive all events that
semantically match s2, since it receives all events that semantically match s1

and the events that semantically match s2 are included in the set of the events
that semantically match s1.

Although the syntactic covering relation can be used without loss of notifi-
cations, some redundant subscriptions may be forwarded into the network. This
happens because the set of events E1 and E2 that semantically match s1 and
s2 can be in the following relation E2 ⊆ E1 without necessarily s1 covering
s2 at syntax level. In other words, although s1 does not cover s2 at syntactic
level, it may cover it semantically speaking. For example, consider the following
subscriptions: s1 = ((product = ”printed material”)AND(topic = ”semantic

web”)) and s2 = ((product = ”book”)AND(topic = ”semantic web”)). In this
case, all events that semantically match s2 will also match s1 as a book is a form
of printed material ; thus E2 ⊆ E1, but s1 does not cover s2 (at syntax level).
Therefore, the covering relation needs to be extended to encapsulate semantic
knowledge. One simple way of transforming the covering relation to be semantic-
aware is to use the hierarchy approach. In this case, subscription s1 will cover
s2 as the printed material term is a more general term than book.

Advertisements

While the covering relation can be directly used with the semantic matching
algorithms, this is not the case for advertisements. As explained earlier in this
paper, advertisements are used to establish the routing path from the publishers
to the interested subscribers. How the events are routed in the system depends on
the intersection relation between advertisements and subscription. Consider the
following example: advertisement a = ((product = “printedmaterial′′), (price ≥
10)) and subscription s = ((product = “book′′), (price ≤ 20)). Advertisement
a does not intersect s at syntactic level because there is no predicate p in a

and not any attribute-value pair (attr, val) such that (attr, val) matches both p

and the following predicate (product = “book′′) of subscription s. (v. Section 3.
Thus, the subscription will not be forwarded towards the publisher that emitted

Top-level routers

Lower-level routers

to hosts

to hosts

to lower-level routers

Fig. 1. Conceptual illustration of a two-level distributed semantic pub/sub network.
Top-level routers have only high level descriptions of ontologies from the lower level
routers.

the advertisement. All publications that will be produced by this publisher will
not be forwarded to the subscriber, although some of them may matched its
subscriptions.

Distributed semantic knowledge

The discussion above about subscription covering and advertisements con-
sidered that each broker contains the same semantic knowledge (i.e., same syn-
onyms, hierarchies and mapping functions). However, the replication of the same
semantic knowledge to all brokers in the system may not be feasible and it may
be detrimental to scalability.
We envision a system where semantic knowledge is distributed between bro-

kers7 in the same way that the Internet distributes link status information using
routing protocols. A semantic knowledge database is equivalent to routing tables
in terms of functionality.
The Internet is a hierarchical computer network. At the top of the hierarchy

are relatively few routers containing very general information in routing tables.
The tables do not contain information about every host on the Internet, but
only about a few network destinations. Thus, high level pre-defined ontological
information could be distributed in the same way among the top routers (Fig-
ure 1). It is difficult to envision what this higher level information will be at
this time, but we only need to take a look at Internet directories such as Google
and Yahoo to get an idea of top level semantic knowledge. Both of these direc-
tories provide a user with only a few key entries as starting point for exploring
the wast Internet information store. We see top level brokers exchanging only
covering and advertisement information.

7 We use the term broker and router interchangeably.

Lower in the Internet hierarchy routers maintain routing tables with desti-
nations to specific hosts. Even though top level brokers use a common ontology,
lower level brokers do not have to. For example, consider two different pairs of
communicating applications: financial and medical. Financial applications are
exchanging stock quotes, while medical are exchanging news about new drugs.
These two application use different ontologies. The ontology information for each
application can be distributed between multiple routers. These low level brokers
will advertise more general descriptions of the ontologies they have to higher
level brokers. Using this information, any new application will be able to locate
the broker with specific ontologies. Any application wishing to integrate medical
and financial information can create a mapping ontology between the financial
and medical ontologies and provide a general description of the mapping on-
tology to higher level broker like in the previous case. We see that high level
concepts can be used to route information between brokers who do not have
access to specific ontologies. We can look at these general terms as very terse
summaries of ontologies.

Our vision of a large scale semantic-based routing raises many questions:

– top-level routing: How to bridge multiple distributed ontologies to en-
able content routing? How can we avoid or reduce duplication of ontological
information among brokers? What is an appropriate high level generaliza-
tion that can bring together different ontologies? How do semantic routing
protocols look like?

– lower-level routing: How to efficiently store ontological information at
routers? Large knowledge databases will probably require secondary storage
beyond what is available at routers. How does this affect routing? If routers
have to use covering at this level how can they dynamically control the
generality of covering to affect network performance?

5 Conclusions

In this paper we underline the limits of matching and content-based routing
at syntactic level in pub/sub systems. We propose a solution for achieving se-
mantic capabilities for local matching and look into the implications of using
such a solution for content-based routing. We also present our vision on next-
generation semantic-based routing. Our intent was to give rise to questions and
ideas in order to improve existing content-based routing approaches and make
them semantic-aware.

References

1. Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53–61, 1999.

2. Y. Arens and C. A. Knoblock. Planning and reformulating queries for semantically-
modeled multidatabase systems. In Proceedings of the 1st International Conference
on Information and Knowledge Management, pages 99–101, 1992.

3. Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

4. Christine Collet, Michael N. Hubris, and Wei-Min Sheri. Resource integration using
a large knowledge base in CARNOT. IEEE Computer, pages 55–62, December
1991.

5. G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9), 2001.

6. Son Dao, Eddie Shek, Asha Vellaikal, Richard R. Muntz, Lixia Zhang, Miodrag
Potkonjak, and Ouri Wolfson. Semantic multicast: intelligently sharing collabora-
tive sessions. ACM Computing Surveys, 31(2es):Article No. 3, 1999.

7. Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of XML documents. In Proceedings of ICDE2002, 2002.

8. Francoise Fabret, Hans-Arno Jacobsen, Francoise Llirbat, Joao Pereira, Ken Ross,
and Dennis Shasha. Filtering algorithms and implementation for very fast pub-
lish/subscribe systems. In Proceedings of SIGMOD 2001, 2001.

9. Ian Horrocks and Sergio Tessaris. Querying the semantic web: A formal approach.
In Proceedings of the Semantic Web - ISWC 2002: First International Semantic
Web Conference, Sardinia, Italy, 2002.

10. Hubert Leung and H.-Arno Jacobsen. Subject spaces: A state-persistent model for
publish/subscribe systems. In Computer Science Research Group Technical Report
CRSG-459, University of Toronto, September 2002.

11. E. Mena, A. Illarramendi, V. Kashyap, and A. P. Sheth. OBSERVER: An ap-
proach for query processing in global information systems based on interoperation
across pre-existing ontologies. International Journal on Distributed and Parallel
Databases, 8(2):223–271, April 2000.

12. W. Nejdl, B. Wolf, Ch. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr,
and T. Risch. Edutella: A p2p networking infrastructure based on rdf. In 11 th
International World Wide Web Conference (WWWW2002), 2002.

13. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In The 1st International Semantic
Web Conference, 2002.

14. Milenko Petrovic, Ioana Burcea, and H.-Arno Jacobsen. S-ToPSS - A Semantic
Publish/Subscribe System. In Very Large Databases (VLDB03), Berlin, Germany,
September 2003.

15. Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. A scalable
and ontology-based p2p infrastructure for semantic web service. In The Second
IEEE International Conference on Peer-to-Peer Computing, 2002.

16. Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic values to
facilitate interoperability among heterogeneous information systems. ACM Trans-
actions on Database Systems, 19(2):254–290, 1994.

17. David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillom. A semantic
web approach to service description for matchmaking of services. In International
Semantic Web Working Symposium, 2001.

A Context-Oriented RDF Database

Mohammad-Reza Tazari

Computer Graphics Center, Dept. Mobile Information Visualization
Fraunhoferstraße 5, 64283 Darmstadt, Germany

Saied.Tazari@zgdv.de

Abstract. The importance of contextual knowledge in knowledge management
and organizational memory is shown in topical literature. Even in an initial
visionary scenario for the Semantic Web, one can immediately encounter the
contextual knowledge needed to realize the necessary services. Hence, it is not
inappropriate to claim that context management is an integral service of the
Semantic Web. After discussing the distributed nature of contextual
knowledge, we define some requirements for a context-oriented database
service and then introduce CORD as a service satisfying those requirements
based on the Semantic Web technologies. Selected features of CORD that
provide some contribution to the discussions within the Semantic Web research
community, like embedded resources, query language, and definition of rules,
are discussed in some detail.

1 Introduction

Most of the Semantic Web applications will be context-aware and personalized
services. A superficial look at the visionary scenario for explaining some of the
features of the Semantic Web in [2] shows the correctness of this claim. Already in
the first two sentences of this scenario1, the following contextual knowledge must be
available to realize the service:

�� User location (here, Pete's location)
�� Setup of the location (to identify devices near Pete and services offered there)
�� States of the resources (which of the sound-making devices are “on”, the phone

“ringing”, the phone in “talk” state)
�� Characteristics and capabilities of resources (which services can operate precisely

those sound-making devices near Pete that are on and loud)

Although the term context has a common meaning in the Semantic Web community –
see, for example, the definition by Tim Berners-Lee under http://www.w3.org/2000/
10/swap/doc/Glossary – we are purposing here a special user-centric view of context.
That is, by context we mean the user context in terms of personal, environmental, and

1 “The entertainment system was belting out the Beatles' "We Can Work It Out" when the

phone rang. When Pete answered, his phone turned the sound down by sending a message to
all the other local devices that had a volume control.” [2]

http://www.w3.org/2000/ 10/swap/doc/Glossary
http://www.w3.org/2000/ 10/swap/doc/Glossary

2 Mohammad-Reza Tazari

temporal conditions surrounding him or her. This is the situational view to the
context as it is investigated in Mobile Computing and Ubiquitous/Pervasive
Computing, too. The whole imaginary scenario in [2] is full of assumptions about the
existence of such contextual knowledge.

As already stated in [5], knowledge about the user context is highly distributed.
Except for the “current time” that in fact belongs to the user context in diverse forms2,
but has nothing to do with the distribution aspect of the contextual knowledge, most
of the other parts of this knowledge can be classified as follows (see also figure 1):

Fig. 1. Distribution of contextual knowledge. At any given time, the user finds himself at a
specific location and may be able to use resources there. Nevertheless, he may also be able to
use resources from his private space, community spaces to which he belongs, and public
resources available globally

�� Knowledge directly bound to the user and captured in diverse logical units, such as
the user profile3, profiles of user's mobile and accompanying devices, application

2 E.g. the absolute time, hour of the day, am / pm, day of the week, etc.
3 We believe that most parts of the user context may be imparted in form of profiles and define

a profile as the storage unit for a coherent collection of key-value pairs describing a distinct
resource, location, or user. If the described resource exists in an electronic form, then its
profile provides the corresponding metadata; otherwise a profile may simultaneously serve as
the electronic representation of the resource itself.

A Context-Oriented RDF Database 3

data from the domain of personal information management (i.e. PIM data, such as
to-dos, appointments, contacts), application-specific user preferences4, etc.

�� Knowledge bound to the user's location and captured as the location profile and
profiles of resources available there, where the location profile serves as an
integrating unit for all other info units.

�� Knowledge bound to communities (to which the user belongs) and captured as
group-based defaults, profiles of shared resources, and shared application data.

�� Public knowledge independent of the user, communities, and locations that will be
made available through the Web, such as profiles of public resources (e.g. services
that can be utilized by all, independent of the locations of the two ends5) and
profiles of classes of resources, which provide default values for a set of concrete
resources.

Obviously, the contextual knowledge includes many shared units, such as the user
profile, the location profile, and the profiles of several resources, of which different
context-aware applications may make use. Hence, a standardized service is needed
for managing profiles and offering shared mechanisms, relieving context-aware
applications from certain common overheads like monitoring the user context and
recognizing interesting situations. We call such a service the context management
service. In [5], we discussed the requirements for a context management service and
in [15], the aspect of modeling user context. Here, we focus on the data management
aspects of this service.

1.1 Requirements for a Context-Oriented Database Service

In the discussion above, we have emphasized three specific points having to do with
data management aspects of the context management service: data distribution,
organizing data in profiles, and support for default values (group-based or class-based
defaults). The first aspect leads us to the requirement that a context-oriented database
service (CODBS) must overcome the problem with the distribution of contextual
knowledge. Secondly, if profiles as a collection of key-value pairs are the storage
units of a CODBS, then it must support arbitrarily structured keys and values6.
Thirdly, support for default values would mean that there must be a mechanism for
profiles of more concrete resources to inherit data from profiles of related, albeit more
abstract, resources. All of the above actually reveal different aspects of data
organization, namely data organization within a profile, between profiles, and
between databases.

To specify further requirements, we must zoom in on the data organization within a
profile. The organization of data within a profile will primarily be reflected in its
keys. That is, a fundamental requirement is the possibility of expressing complex

4 Context-aware and personalized applications may have some personalization scheme that is

specific to them and hence must be managed separately from the user profile that is a shared
unit based on a shared ontology that models user profiles in general.

5 The locality of the resource may eventually play an important role in order for it to be selected
/ referenced / used from among all competing resources.

6 This requirement is refined further in the next paragraph.

4 Mohammad-Reza Tazari

structures via keys. Another aspect, however, has to do with the values. Values may
be literal, which raises the question about support for data types, or references to other
resources. A key may be associated with a single value or with more than one value.
The latter case leads to the support for sequences, bags, and sets of alternative values.
Values may be valid only for a specific time period7 or independent of time. Last but
not least, they may be conditional/situational, meaning that a key may be associated
with different alternative values for different situations.

Assuming that for each profile type there is a schema defining its structure and
asserting some statements about its semantics, a CODBS must also use schemas in
order to be able to ensure data integrity by accepting data that is in accordance with
the structural and type-related assertions made in the schema. In addition, context-
aware applications will be able to ask for the underlying schemas if they are not able
to interpret some contextual knowledge.

Finally, a CODBS must provide a triggering mechanism for catching database
events, because changes in the state of the contextual knowledge may influence the
situation in which the user finds himself. The transition from one situation to another
is an important event for context-aware applications.

Hence, we can summarize the requirements for a CODBS, as follows:

1. Managing profiles in accordance with their underlying schemas and guaranteeing
data integrity based on the assertions made in the schemas

2. Providing a centralized view of the highly distributed contextual knowledge
3. Providing a triggering mechanism depending on complex situational DB events
4. Support for conditional values
5. Support for defining hierarchies of profiles that share the same schema to

facilitate the automatic inheritance of default values
6. Support for expressing complex structures via keys within profiles
7. Support for literal values with different data types
8. Support for sequences, bags, and sets of alternative values
9. Support for temporary values [13]
10. Support for using references to other resources as values

2 CORD: The Context-Oriented RDF Database

We have developed an RDF database called CORD that is the foundation for our
context management service. The context-manager itself is the wrapper agent that
provides an interface for agent communication [5]. CORD implements most of the
features enumerated as requirements for a CODBS in 1.1. After justifying the basic
approach, we discuss in the following subsections those aspects of our solution that
provide some contribution to the discussions within the Semantic Web research
community.

7 Especially sensory data may be of a temporary nature.

A Context-Oriented RDF Database 5

2.1 Choosing the Semantic Web Technology

Obviously, the exchange of contextual knowledge must be based on a knowledge
representation paradigm. On the other hand, profiles are nothing other than
descriptions about distinct resources. These two statements alone, along with the fact
that RDF provides solid concepts for not only describing resources, but also for
modeling them, justify the selection of RDF, RDF schema, and OWL. Besides, the
XML syntax of RDF fit perfectly into our multi-agent system, where XML was the
content language of choice in agent communication messages.

2.2 Why a New Database Service?

Many of the projects dealing with RDF data stores use a relational DBMS (see, for
example, the two surveys in [1] and [10] summarizing some of them). A general-
purpose mapping of the RDF data model onto the relational model, where no
assumptions about the type of resources being described are made, leads to the
definition of few tables with few columns (see, for example, proposed DB schemas at
[11]). Basically, if we consider the RDF data model as a set of triples, a three-column
table will come up with a huge number of rows storing the statements, each with a
subject, a predicate, and an object. Even if we consider the RDF data model as a
directed, labeled graph, the relational database design will come up with similar
results. With such a modeling, answering queries about complex resources may lead
to many self-joins on one big table – depending on the entry point given by the query
– where the consequences for the performance are not known.

Choosing an object-oriented database management system would not change the
above situation, either. The issue is: relational or object-oriented DBMSs may
meaningfully be used where a specific domain with concrete entity types is being
modeled. That is, if you know the types of resources being described in your RDF
data store, then you can provide a conventional database design with a meaningful
database schema. The database schema would then reflect at least parts of what you
state in the RDF/OWL schema for modeling the same resource types. A wrapper
could then provide the knowledge stored in the database in terms of RDF statements
to the world outside.

Due to the fact that the context management solution must be open for managing
profiles of resources having arbitrary types, choosing a relational or object-oriented
DBMS would confront us with the same dilemma as described in the previous
paragraphs. On the other hand, a glance at our requirements, especially the
requirements #3, #4, #5, and #9, shows that an existing database service may hardly
satisfy all of them. Although most of the DBMSs do provide a triggering mechanism,
even the utilization of stored procedures in the domain of relational databases or the
class methods in the domain of object-oriented databases is no solution for the
efficient recognition of interesting situations, that may be defined using complex
conditions8. The main reason is that the situations to be recognized are not definable
all at once, but their definitions will be added and removed dynamically. For the

8 Cp. also the discussion in section 2.5.

6 Mohammad-Reza Tazari

traditional database services, this would mean dynamism at the schema level. The
concept of conditional values, discussed in section 2.5, is new and no direct support
could be found in the domain of relational databases for storing them in arbitrary
columns of arbitrary rows of tables. The methods in Object-oriented databases do not
solve the problem, either, because they are defined within classes and are the same for
all instances. The automatic inheritance of default values requires hierarchical
relationship between rows of tables or instances of classes, which is not given, either.
Finally, support for temporary values presupposes a timeline management for each
column of each row or each field of each instance, which is not supported by
traditional DBMSs.

For the purpose of profile management, we tried to provide the OWL schemas for
user profiles, location profiles, terminal profiles, service profiles, and agent profiles
(as a special case for service-offering software components) [15, 16]. Not only the
term “profile management”, but also the complex structure of the above-enumerated
profile types, the requirement for inheriting default values from more abstract profile
instances in more concrete profile instances, and the concrete use cases in our projects
caused us to choose profiles as our storage units. Having to meet the requirements
listed in section 1.1, choosing profiles as the storage unit, having to manage profiles
of arbitrary types, and considering the fact that each instance of the context manager
deals with few instances of complex resources caused us to decide in favor of
developing CORD.

2.3 Profiles and Their XML-based RDF Representation

A profile is a reusable resource that can be identified via a URI. This URI, which
may be given as the value for xml:base in the XML representation of the profile, has
the following structure:

cord://<host>:<port>/profiles/<profile-name>

Internally, profiles are implemented as (hashed) trees quite similar to ldap or
Windows™ registry. The main difference with those solutions is the lack of a global
root binding all of the (sub-)trees in one big tree integrating them.

As stated before, profiles are containers of key-value pairs. We call each such pair
a context element, where the key serves both as the URI of the context element and as
the source of its semantics. In the tree representation of profiles, however, there is no
clear-cut distinction between keys and values. In addition to the leaves of the tree that
represent the literal values or URI references, any node in the tree can be seen as a
value associated with its path. Then, the path together with the base URI of the
profile serves as the key. Except for the root of the tree that represents the whole
profile resource (denoted as cord://<host>:<port>/profiles/<profile
-name>#), all other branch nodes represent some embedded resource identified with
a URI of the form cord://<host>:<port>/profiles/<profile-
name>#<path>. Paths are made of NDNames (XML-names9 minus ‘.’)
concatenated by dots (‘.’), e.g. a.b.c would be a valid path. Each NDName

9 See http://www.w3.org/TR/REC-xml#NT-Name.

A Context-Oriented RDF Database 7

corresponds to a property of the concrete resource addressed thus far. The possibility
of using paths as part of keys meets the requirement for expressing complex structures
via keys within profiles.

An example will further illustrate the usage of paths in keys. Let’s assume that a
schema with the URI http://www.zgdv.de/CORD/schemas/UserProfile
defines, among others, the following concepts:

�� the classes UserProfile, PersonalInfo, and PersonName.
�� the property personalInfo with domain UserProfile and range PersonalInfo.
�� the property name having PersonalInfo as its domain and PersonName as its range.
�� the properties first, middle, last, and nick having PersonName as their domain and

xsd:string as their range.

Then, the following RDF description represents my profile partially:

Sample 1. Partial RDF representation of a user profile

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.zgdv.de/CORD/schemas/UserProfile#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xml:base="cord://st.zgdv.de:999/profiles/me">
 <UserProfile rdf:about="#">
 <personalInfo>
 <PersonalInfo rdf:about="#personalInfo">
 <name>
 <PersonName rdf:about="#personalInfo.name">
 <first>Mohammad-Reza</first>
 <last>Tazari</last>
 <nick>Saied</nick>
 </PersonName>
 </name>
 </PersonalInfo>
 </personalInfo>
 </UserProfile>
</rdf:RDF>

This results in the tree representation shown in figure 2 and the set of context
elements shown in table 1.

Table1. Set of context elements (key-value pairs) resulting from Sample 1

Key Value
cord://st.zgdv.de:999/profiles/me# The whole profile resource
cord://st.zgdv.de:999/profiles/me#rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#UserProfile
cord://st.zgdv.de:999/profiles/me#personalInfo The embedded resource rooted at ‘personalInfo’
cord://st.zgdv.de:999/profiles/me#personalInfo.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonalInfo
cord://st.zgdv.de:999/profiles/me#personalInfo.name The embedded resource rooted at ‘name’
cord://st.zgdv.de:999/profiles/me#personalInfo.name.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonName
cord://st.zgdv.de:999/profiles/me#personalInfo.name.first Mohammad-Reza
cord://st.zgdv.de:999/profiles/me#personalInfo.name.last Tazari
cord://st.zgdv.de:999/profiles/me#personalInfo.name.nick Saied

http://www.w3.org/1999/02/22-rdf-syntax-ns

8 Mohammad-Reza Tazari

Fig. 2. Internal tree representation resulting from Sample 1 (leaf nodes have no background
color)

Embedded Resources. The above model leads to some issues that are not handled in
RDF or OWL standards. The most important issue concerns resources embedded in
the profile. Each non-leaf node within the tree representation of a profile actually
represents such an embedded resource as an identifiable resource.

The embedded resources result from either the part-of association – one of the
fundamental concepts in object-oriented modeling – or the theorem of weak entity
classes in database management. In UML, for example, associations having a
diamond on one side indicate that the class on that side represents composite objects
having instances of the class on the other side as their parts. They go even further and
say that if the diamond is darkened, then the instances of the class on the other side
may never exist independently from instances of the class on the side of the diamond
– quite similar to the concept of weak entity classes in database management.

However, there is currently no way to specify part-of associations as such in RDF
schema or OWL. CC/PP [8], as an RDF-based approach for articulation and
exchange of contextual knowledge in profiles, has proposed the concept of
components that can be seen as a solution for this problem. It was not consistent
enough, though. It seems that the understanding of profiles in CC/PP is something
like the “.ini”-files in Windows™; i.e. all attributes must appear in some component
and no attributes within components may have another component as value. None of
these restrictions matched our requirements. This approach ignores the evolution of
such config-files into tree structures like Windows™ registry10. This is the main
reason why we decided to establish the following conventions to enforce our idea of
profiles:

10 [6], another research activity on context management, has similar criticisms on CC/PP.

A Context-Oriented RDF Database 9

�� A schema modeling a profile type always defines a special class named after the
schema itself that serves as the “main class”. All other classes defined in the
schema are either super/sub-classes of the main class, appear in a (nested) part-of
association, or represent some weak entity class. The root of a profile instance
always represents an instance of this “main class” or its super/sub-classes.

�� All resources contained in a profile instance other than the root of the profile have
a path as their ID that results from concatenating (via dots) properties binding them
to the root of the profile. Hence, property names may not contain dots.

�� Many-valued properties refer to instances of rdf:Alt, rdf:Bag, or rdf:Seq as
embedded resources with an ID built up in the same way as stated in the previous
bullet. This has two implications: 1) the leaf nodes of a profile are always literal
values or URI references to other resources and 2) if the elements of the container
are some other embedded resources, then they have an ID resulting from
appending a ‘.rdf:_n’ to the ID of the container, where n is a decimal integer
greater than zero with no leading zeros. This means that the requirement for
supporting “sequences, bags, and sets of alternative values” is combined with the
requirement for “expressing complex structures via keys within profiles”.

�� In order to maintain profile boundary, all references to external resources are
stored as URI references.

�� All arcs that transform the tree representation into a graph are automatically
redirected to point to a leaf having the equivalent local URI reference as its value.

2.4 The Query Language

Fig. 3. Concept for CORD queries

Queries submitted to a CORD instance must be RDF descriptions based on the
concept summarized in figure 3. Unlike the existing solutions that try to propose a
general-purpose RDF query language concentrating on the syntax (see, for example,
[7], [9], [12] and [14]), we have concentrated on the application of RDF in describing
profiles and our related concepts like paths. Although we are practically using only
the XML syntax of RDF to submit queries, deriving a compact SQL-like notation
from the same concept is straightforward. In the following subsections, each of the
main parts, from which CORD queries are formed, will be discussed in some detail.

10 Mohammad-Reza Tazari

Query References. A query must contain at least one query reference. Each query
reference will be expanded to a set of matched keys (compare table 1) and an RDF
description containing the context elements identified by those keys will be returned
as query result. A query reference is a CORD URI-reference with the following
wildcarding possibilities (most combinations of them are also legal):

�� If the <host>:<port> slot is missing, then the CORD instance receiving the
query will consolidate all other known CORD instances in the ascertainment of the
query results.

�� If the profile name is missing, then all profiles managed by the CORD instance
will match.

�� If the query reference ends with the fragment separator (#), then the whole content
of the profile will match.

�� If the <path> slot begins with a dot (.), then any context element having the
remainder of the <path> slot as the suffix of its own path will match.

�� If the <path> slot ends with a dot (.), then the sub-tree rooted at the resource
matching the leading part of the <path> slot will match.

�� If the <path> slot contains two subsequent dots (..), then any context element
within the sub-tree rooted at the resource matching the leading part of the <path>
slot and having the remainder of the <path> slot as the suffix of its path will match.

The special case of cord://<host>:<port>/profiles/, where again the
<host>:<port> slot may be left empty, will cause a query result to contain only a
bag of URI references to the matching profiles without the descriptions of their
contents.

Variables. A query may have a sequence of initialized variables that store literal
values or URI references. A subsequent variable may use a previous variable storing
a URI reference to store a subordinate value (cp. last paragraph in this section about
the usage of variables). This facilitates, among other things, the switching to
referenced profiles and inter-profile joins.

Variables may be of type KeyVariable or ValueVariable. The sub-type influences
the interpretation of the value to be assigned to the variable. In the case of key
variables, it is expected that the value is a URI reference that must be resolved so that
its associated value is assigned to the variable. In the case of value variables,
however, the value given will be assigned to the variable as-is, be it a URI reference
or not.

There are some predefined variables that are set automatically, normally just before
CORD begins to process a new request:

�� The current time is stored in variables like currentTime, amPM, dayOfMonth,
dayOfWeek, etc., quite similar to the constant fields defined in java.util.Calendar.

�� The certificate of the agent that sent the request is stored in accessor. This is
interesting for the definition of conditional values (see section 2.5), when the
accessor plays a role in the decision about the applying value.

�� As stated before, a query reference will be expanded to a set of matched keys.
Each time, after selecting one of the matched keys for further processing, two
variables are set automatically that keep their values until CORD leaves the context

A Context-Oriented RDF Database 11

of that matched key. These are currentProfile, which contains the URI reference
of the profile from which the matched context element originates, and
matchedComponent, which contains the URI reference of the lowest embedded
resource matched during the expansion of the query reference into the matched
key.

�� Two other special variables are set automatically whenever a context element is
added, updated, or deleted. These variables are only interesting for the processing
of subscriptions (see section 2.5). They are triggerKey, which contains the URI
reference of the changed element, and triggerValue, which contains the new value
associated with the key of the context element, if applicable. The setting of
triggerKey causes the time variables and the currentProfile variable to be set
automatically in the context of processing the DB event.

In general, whether predefined or defined by the requestor, variables can be used to
build up new query or other URI references, can be used in query filters or conditions
of rules (see section 2.5), or wherever values are expected. Variable substitution
occurs whenever a special construct is found in a way similar to macro expansions in
the C programming language. For example, assuming that the standard variable
currentProfile contains a reference to a user profile in a special context, one can use it
in the following construct in place of a direct value:

<cord:VarRef>
 <cord:variable rdf:resource=”&cord;currentProfile”/>
 <cord:suffix>personalInfo.name.last</cord:suffix>
 <cord:action rdf:resource=”&cord;substituteAndEval”/>
</cord:VarRef>

If at runtime the variable has the value cord://st.zgdv.de:999/profiles/
me#, then, due to the specified action, the above variable reference is first replaced
and expanded to cord://st.zgdv.de:999/profiles/me#personalInfo
.name.last which will then be evaluated to the literal value Tazari. Other
possible values for action are substitute and evalAndSubstitute. Another property of
the VarRef class not used in the above example is cord:prefix.

Query Filters. A container of query filters can be used to select only a subset of the
matched keys resulting from the expansion of query references. If the container is of
type rdf:Seq, then an implicit and-connector is assumed between the query filters
given in the sequence; in the case of rdf:Alt, an implicit or-connector is assumed.
Beside query filters, elements of such containers may also be a container of the other
type to switch between connector types11.

A query filter says which criterion must be satisfied in order to keep a previously
matched context element in the set of those to be returned in the query result by
specifying what must be compared how with which value(s). To specify the how, one
must select an operator from the enumeration defined by CMOperator. Currently, the

11 The point with the container type and its relation with the connector type and the possibility

of nesting them to switch from one connector type to another is not shown in figure 3 in
order to keep the model straightforward.

12 Mohammad-Reza Tazari

possible values are equal, greater, less, in, including, notEqual, notGreater, notLess,
notIn, and excluding.

The criterion must be selected from the enumeration defined by CMProfileProp
and given as the value (in the form of a URI reference) for a property called onProp.
The possible values are basically:

�� schema: to select context elements coming from a specific profile type. For
example, to filter context elements coming from user profiles, one may define a
query filter on schema property, choose the equal operator, and give
http://www.zgdv.de/CORD/schemas/UserProfile as a single URI reference for the
value property.

�� parents/children: to select context elements from a profile that has the given
profiles as its parents/children.

�� begin/end/importance/priority12: to select context elements whose values are valid
during a certain time period (for temporary context values) or satisfy certain
weighting criteria (not to be discussed further).

�� value: to select context elements whose values satisfy the given condition.
�� currentProfile/matchedComponent: combined with a suffix for building up a new

query reference, they can be used to filter the matched context elements further.
The resulting query reference forms a sub-query with the possibility to check the
values returned by the sub-query in the same CMQueryFilter and to further filter
them based on the conditions provided by the optional where property.

2.5 Rules

CORD supports two forms of rules that are structured similarly: one for forming
conditional values and the other one for posting subscription requests. These are
discussed in the following subsections.

Conditional Values. Values (especially those given for preferences) can be rule-
based, in the sense that the value depends on some contextual state or situation.
When a rule-based value is queried, first the cases within the rule will be examined
using the current values of referenced context elements. If one of the alternative cases
applies, then the associated value is returned, otherwise rdf:nil. Figure 4 summarizes
the CORD concept for conditional values.

Basically a CORD rule is a “switch-case” construct. Each case has a condition part
and a value part. The cases are considered in the sequence of their specification. As
soon as a case is found whose condition part evaluates to true, the evaluation will
cease and the value associated with that case is used as the result of the evaluation. A
case without any conditions always evaluates to true. The condition part of each case
is a container (of type rdf:Seq or rdf:Alt quite similar to the containers of query filters
– see also footnote 9) of comparisons, where normally values of context elements are
compared with literal values or with values of other context elements.

12 Special properties introduced by CORD and applicable to all nodes within a profile.

A Context-Oriented RDF Database 13

Due to some complications in the implementation, conditional values are currently
a special case of literal values; this leads to two side effects: 1) the restriction for
cases to contain only one value (literal or URI-reference) and 2) the delay in parsing
until the conditional value is accessed.

Fig. 4. Concept for conditional values in CORD

From another perspective, we can say that conditional values equip CORD with
something like “passive inference”. With “passive inference” we mean that on the
one hand CORD does not have its own rules to infer the new state of the contextual
knowledge, but the logic of inferring comes from “producers”/”providers” of the
contextual knowledge. On the other hand, the inferring process only leads to a
selection between suggested alternatives depending on the current situation (cp. [5]
for our concept of situations as contextual states).

The concept of variables and variable references is already discussed in section 2.4.
However, an interesting aspect of using variable references in comparisons is that the
corresponding variables don’t have to be defined in the variables part of the rule. If
they are defined in the rule, they will usually refer to some shared contextual facts
(facts known to the CORD instance at the time of rule interpretation). But, since such
rules are interpreted at query time, one may define the variables in his or her queries.
This way, the facts to be used in the evaluation of the rule may be the premises of the
requestor.

Last but not least, a special feature resulting from the inheritance of default values
is worth mentioning. Assuming that the profile p1 is a parent of the profiles p2 and p3
and a conditional value defined in p1 is being inherited by both p2 and p3, the use of
local URI references in the rule might cause the same rule to return a different value
in the context of p2 compared to the value returned in the context of p3, even if the
two evaluations are performed “simultaneously”. An example may illustrate this nice
effect better: Assume that a travel planing agent stores a profile for each travel to be
planned in the user’s personal context-manager letting it inherit from the default
travel profile provided by the context-manager of the company where he works. If a

14 Mohammad-Reza Tazari

property transportMeans in the default profile has a conditional value in the following
simplified form

if #distance.inKm greater 500
 return my:plane
else if #numberOfCompanions greater 1
 return my:rentACar
else
 return my:train

then a query about the transport means for a concrete travel where the user must travel
alone to a city 225 km far from his residence would result in my:train.

Subscription Requests. Requestors may subscribe for notification or other actions to
be performed by CORD. There are two kinds of subscriptions: simple or conditional.

A simple subscription is formed from a bag of query references and causes CORD
to immediately inform the current context elements whose keys match the given
query references. Additionally, CORD will watch for changes of context elements
and will inform the subscriber about the new value whenever the key of the changed
context element matches one of the given query references. Changes of the value will
occur due to insert, update, and delete requests or due to the expiration of a time-
stamped value (which causes the use of the next alternative value as the current
value). This way, from the time of subscription, the subscriber will always know
about the state of all context elements known to CORD (or made known at any time
in the future) whose keys match the given query references.

The conditional version is based on Event-Condition-Action rules (ECA rules).
The only events supported are again changes of values in the sense of the previous
paragraph; hence, the “event” part of an ECA rule is nothing other than a bag of query
references wildcarding those context elements whose change of states should trigger
the evaluation of the condition-action part. This latter part of an ECA rule is quite
similar to the rules outlined in the previous subsection. That is, there are variables,
and conditions are structured exactly the same way as in the case of conditional
values, i.e. containers of comparisons of context and constant values in a switch-case
construct. Unlike those rules, instead of a value, a sequence of actions can be
specified for each case. Actions are operations that can be done by CORD, which
include:

�� Sending the current values of some specified context elements to the subscriber or
other receivers.

�� Sending a given literal message to the subscriber or other receivers.
�� Inserting new context elements or updating existing ones; this triggers other events

and may lead to indirect notifications.

Usually, the subscribers specify the bag of query references in ECA rules in such a
way that the keys of all context elements that play a role in the condition part would
match those query references. Such rules are quasi “alive”: as soon as a case applies,
it will be recognized. Therefore, they are the cornerstones for situation recognition
for our context management service [5].

A Context-Oriented RDF Database 15

2.6 Insert, Update, and Delete

Insert and update requests must be submitted with the corresponding RDF
descriptions, such as the one given in Sample 1. Delete requests, however, must
contain a query description, which will lead to the deletion of matched context
elements.

3 Summary and Future Work

We showed that contextual knowledge plays an important role in the Semantic Web
and concluded that context management is the missing service in the Semantic Web.
Our work contributes to filling this gap through the development of CORD, the
context-oriented RDF database. CORD provides a solution based on the Semantic
Web technology mainly for managing profiles. The concrete contributions of this
paper are the introduction of: 1) a storage system for RDF-based profile data handling
embedded resources, 2) a query language suitable for querying data organized in
profiles, 3) a concept for storing rule-based values in profiles, and 4) a model for
subscribing to context management services via the so-called event-condition-action
rules.

We will continue this work by: 1) consolidating data from sources other than
instances of CORD to satisfy the requirement #2 from section 1.1 completely, 2)
equipping CORD with a special logic for reasoning about user location when sensory
data is missing, based on information provided by PIM applications and the history of
the location data, and 3) enhancing the existing privacy protection mechanism13 by
employing P3P and APPEL concepts when dealing with public service providers.

Acknowledgement. This work is partially sponsored by the Information Society DG
of the European Commission. It is part of the MUMMY project (IST-2001-37365,
Mobile Knowledge Management – using multimedia-rich portals for context-aware
information processing with pocket-sized computers in Facility Management and at
Construction Site) funded by the Information Society Technologies (IST) Programme.
See http://mummy.intranet.gr.

References

1. Barstow, A (2001). Survey of RDF/Triple Data Stores. World Wide Web Consortium.
Retrieved April 10, 2003 from http://www.w3.org/2001/05/rdf-ds/DataStore (last update
Feb. 26, 2003).

2. Berners-Lee, T. & Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific
American, May 17, 2001. Retrieved February 26, 2003 from http://www.sciam.com
/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21.

13 Currently, CORD provides access control mechanisms for the communication with context-

providing and -consuming components that belong either to the user or to the communities of
which the user is a member.

http://mummy.intranet.gr/
http://www.w3.org/2001/05/rdf-ds/DataStore
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

16 Mohammad-Reza Tazari

3. deVos, A. (2002). An RDF Query Language Based on DAML. Langdale Consultant,
revision 1.0, Feb. 2002. Retrieved April 10, 2003 from http://www.langdale.com.au/RDF/
DAML-Query.html.

4. Fikes, R. & Hayes, P. & Horrocks, I. (2002). DAML Query Language (DQL) – Abstract
Specification. The Joint United States / European Union ad hoc Agent Markup Language
Committee, August 2002. Retrieved April 10, 2003 from http://www.daml.org/2002/08/
dql/dql.

5. Grimm, M. & Tazari, M.R. & Balfanz, D. (2002). Towards a Framework for Mobile
Knowledge Management. Proceedings of the 4th international conference on Practical
Aspects of Knowledge Management (PAKM2002), Vienna, Austria, December 2002.

6. Indulska, J. & Robinson, R. & Rakotonirainy, A. & Henricksen, K. (2002). Experiences
in Using CC/PP in Context-Aware Systems. Proceedings of the 4th International
Conference on Mobile Data Management (MDM2003), Melbourne, Australia, January
2003. Lecture Notes in Computer Science. Springer Verlag, LNCS 2574. pp. 247-261.

7. Karvounarakis, G. & Alexaki, S. & Christophides, V. & Plexousakis, D. & Scholl, M.
(2002). RQL: A Declarative Query Language for RDF. ACM 1-58116-449-5/02/0005,
WWW2002, Honolulu, USA, May 2002.

8. Klyne, G. & Reynolds, F. & Woodrow, C. & Ohto, H. & Hjelm, J. & Butler, M.H. &
Tran, L. (2003). Composite Capability / Preference Profiles (CC/PP): Structure and
Vocabularies. http://www.w3.org/TR/CCPP-struct-vocab/, W3C Working Draft March
25, 2003.

9. Kokkelin, S. (2001). Transforming RDF with RDFPath. Working draft, March 2001.
Retrieved April 10, 2003 from http://zoe.mathematik.uni-osnabrueck.de/QAT/Transform/
RDFTransform.pdf.

10. Magkanaraki, A. & Karvounarakis, G. & Anh, T.T. & Christophides, V. & Plexousakis,
D. (2002). Ontology Storage and Querying, Technical Report No. 308. Foundation for
Research and Technology Hellas, Institute of Computer Science, Information Systems
Laboratory. Crete, Greece, April 2002. Retrieved April 10, 2003 from ftp://
ftp.ics.forth.gr/tech-reports/2002/2002.TR308.Ontology_Storage_and_Querying.pdf.gz.

11. Melnik, S (2001). Storing RDF in a Relational Database. Retrieved April 10, 2003 from
http://www-db.stanford.edu/~melnik/rdf/db.html (last update Dec. 3, 2001).

12. Miller, L. & Seaborne, A. & Reggiori, A. (2002). Three Implementations of SquishQL, a
Simple RDF Query Language. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http://www.hpl.hp.com/techreports/2002/HPL-2002-110.pdf.

13. Schirmer, J. & Bach, H. (2000): Context-Management within an Agent-based Approach
for Service Assistance in the Domain of Consumer Electronics. In: Proceedings of
Intelligent Interactive Assistance, Mobile Multimedia Computing, Rostock, Germany,
November 2000.

14. Sintek, M. & Decker, S. (2002). TRIPLE — A Query, Inference, and Transformation
Language for the Semantic Web. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http://triple.semanticweb.org/iswc2002/TripleReport.pdf.

15. Tazari, M.R. & Grimm, M. & Finke, M. (2003). Modelling User Context. Proceedings of
the 10th International Conference on Human-Computer Interaction (HCII2003), Crete
(Greece), June 2003.

16. Tazari, M.R. & Plößer, K. (2003). User-Centric Service Brokerage in a Personal Multi-
Agent Environment. To be presented in the International Conference on Integration of
Knowledge Intensive Multi-Agent Systems (IEEE KIMAS'03), Cambridge MA (USA),
October 2003.

 1

An Adaptable Service Connector Model1

Gang Li1, Yanbo Han1, Zhuofeng Zhao1, Jianwu Wang1, and Roland M. Wagner2

1 Software Division, ICT, Chinese Academy of Science, PRC

{ligang, yhan}@ict.ac.cn {zhaozf, wjw}@software.ict.ac.cn
2 Fraunhofer ISST, Dortmund, Germany

roland.wagner@isst.fhg.de

Abstract. The volatility of network environments requires service connections to adapt to changes

of service resources and user requirements. In this paper, we treat service connections as individual

components called service connectors and present an adaptable service connector model that adopts

a role mechanism to adjust connections between services. A role is an abstraction of services with

common functionalities. It offers a changeable connector structure, enables reconfiguration of

service interaction and encapsulates changes in interacting participants, making service connections

more adaptable.

1 Introduction

Service oriented computing is gaining popularity. In a typical contemporary service-oriented
application, service connections are pragmatically implemented using protocols like SOAP. Through
this kind of connection, services can be composed into applications. Service composition is regarded as
a new approach for developing applications in network environments.

However, service composition still faces serious challenges due to the openness and dynamism of
network environment, such as grids [1][2]. Let us take service grids as an example. Firstly, services
freely join in or quit from a grid and most services in a grid continue evolving over time. Secondly, user
requirements are subject to dynamic changes in a virtual enterprise environment. All these require
service connections to be adaptable, so that service interactions can be easily reconfigured and involved
services can be changed dynamically, while changes of service resources and user requirements take
place. In this paper, we focus our research on how to make a service connection adapt to those changes.

Existing ways that are used to connect services includes control flow based connections [3], data flow
based connections [4][5] and hybrid forms of these two types, such as service connection mechanisms in
GSFL [6] and BPEL4WS [7]. After setting up an interaction channel between ports of different services
through protocols, the validity of control flow based service connection is determined by service states.
This type of connection is set up following interaction protocols inhering in services. For it is predefined
and fixed, changes of service interactions or requirements tend to invalidate the connection. A data flow
based connection links services through data dependencies. With shared data, this type of connection is
free from influences caused by service port changes to some extent. However, because of its implicit
definition, the structure of data flow based service connections is indistinct, which makes it difficult to
adjust the connection. Although in the hybrid from above the two types complement each other, it does

1 This paper is supported by the Young Scientist Fund of ICT Chinese Academy of Science under Grant No. 20026180-22 and the

National Natural Science Foundation of China under Grant No. 60173018.

 2

not contribute much to service connection adaptation. For example, BPLE4WS provides partner link
types to describe service connections as partner links, but it does not offer methods for dynamically
changing these links.

To make the connection adaptable, the connection structure ought to be changeable. As a semantic
concept, role [8][9] provides an organizing mechanism through which the abstraction of services with
common functions is derived and marked by role features. With this mechanism, a role offers flexible
connection structure, enabling service connection adaptation by reconfiguration. Based on the above
rationale, we implement a service connection as an explicit component named service connector and
present a role-based service connector model. In this model, a role is used to fulfill the adaptation of a
service connection with a stable interaction interface and a changeable connection structure.

The remainder of this paper is divided into 3 sections. Section 2 addresses the role-based service
connector model in detail, including its connection structure and interaction protocol. With a case study,
section 3 demonstrates the support of the model to making service connection adaptable. Finally, the
contribution of our research is concisely summarized in section 4.

2 Role-based Service Connector Model

Service A

Requestor Service

Role

Service Providers

Service B1

Service B2

Role Feature

Fig. 1. Sketch Map of Role-based Service Connector Model

Figure 1 illustrates the main idea of the role-based service connector model by an example that Service
A interacts with a role. Described by its features, the role is an abstraction of services such as Service B1
and Service B2. As a stable interface for service interaction, role features present functions provided by
service providers that interact with the requestor services through the role. Marked by features, functions
that a role provides are implemented by service providers that are invisible to requestors. When
unanticipated changes cause a modification of a service interaction, the connector can adapt to changes
of service interactions or requirements by reconfiguring its role features or service providers. When a
service provider involved in an interaction is unavailable, another one with the same role feature can
replace it, enhancing the adaptability and reliability of the service connection. A role is a virtual service,
and it offers not only a changeable connector structure, but also a unified service interaction interface,
providing essential support to connection adaptation in dynamic service composition [14].

Details about the role-based service connector model follow, namely aspects of the connection
structure and the interaction protocol.

 3

2.1 Connection Structure

In this section, to present the role-based service connector model precisely and concisely, we give its
definition, related semantic and interaction protocol in a formal way. Based on this formalism, we prove
that a role-based service connector is adaptable.
Definition 1 Role-based Service Connector

Given a three-tuple <Namer, Featuresr, Servicer>, where Namer marks a role name; Featuresr is a set
of role features, Featuresr={fr|fr=<rn,fnr,var>}, where rn denotes the role that feature fr belongs to, fnr is
the name of fr, var is the argument vector of fr. Role features are an interface with which a role interacts
with the environment; Servicer is a set of service references, which are related to features.

The three-tuple defines a role-based service connector, if and only if it has the following properties:
• There is a function set, denoted as Map. Given ∀fr∈Featuresr then ∃m∈Map, Ssr⊆ Servicer, m(fr)=Ssr,

and services that belong to set Ssr have the same interaction interface marked by fr.
• There is another function set, denoted as Selectors, consider fr, ∃sel∈Selectors, Ser∈Ssr, sel(Ssr)= Ser.

The function m is named as feature mapping function, and the function sel is named as service
selection function.

Thus a service connector presents a configurable service called instead of a requested service. The
connector selects an appropriate provided service and maps its parameters to the request. Therefore it is
a configurable encapsulation of a service or a group of semantically similar services, abstracted as a role.

There are two interaction patterns involved in a role-based service connector model, namely the
service-role and role-role patterns. In the first pattern, service providers are packaged by the role, which
is depicted by figure 1. It fits the context where service providers are volatile. In the second pattern, both
providers and requestors are packaged by roles, which fits the context where both sides are volatile.
The main parts of the model are presented above. Now, we define its connection semantic using
category theory to deduce connector properties on adaptation. A category consists of object sets and sets
of morphisms between objects, which focuses on describing and analyzing relations among any type of
objects [10]. With category, relations among services and roles can be described formally, which offers
an approach for analyzing and deducing properties of a role-based service connector in a method
independent of implementation details. Hereby it presents the connection semantics in a role-based
service connector model with categories that takes structured sets as objects.

Let Service be the service involved in the interaction, Service=<Names,Featuress>, where Names is
the service name, Featuress={fs|fs=<sn,fns,vas>}, fs is the service feature that describes a service port.
Take Services as objects, and construct the category Serv.

Serv=<objCServ, MorCServ, doms, cods, ◦>, where The set objCServ is the class of objects in Serv;
Given morphism ϕ: objCServ→ objCServ. E,F∈objCServ, ϕ(E)=F, ϕ is specified by the following:

δ1: NameE → NameF

δ2: FeatureE → FeatureF

The set MorCServ is the class of morphisms in Serv, namely MorCServ is the set of connections between
Services. The morphisms in MorCServ is defined by ϕ.

The function doms is defined as doms: MorCServ→objCServ, where f∈MorCServ, then doms (f) denotes
the domain of f.

The function cods is defined as cods: MorCServ→objCServ, where f∈MorCServ, then cods (f) denotes the
codomain of f.

The symbol ◦ denotes an operation, which is defined as ◦: MorCServ×MorCServ→ MorCServ.

 4

Let Connector be the role-based service connector involved in the interaction,
Connector=<Namer,Featuresr,Servicer>. In a similar way, take Connectors as objects, and construct the
category Conn, Conn=<objRConn, MorRConn, domc, codc, ∗>, where morphism ψ is used to define
MorRConn and describes interactions between roles.

Let Ser∈objCServ, Con∈objRConn, constructs function FSR, FSR: objCServ→ objRConn, FSR(Ser)= Con, FSR

is specified by the following:
η1: NameSer → NameCon

η2: FeatureSer → FeatureCon

The connection fulfilled by a role-based service connector is marked as ConnectionR.
ConnectionR={<Ser, FSR (Ser)>} ∪{<Con, ψ(Con)>}.

After giving connection semantics, we can now prove the following results according to it:
Theorem 1

In interaction where roles are involved, a role-based service connector has the following properties:
• Changes in the service set that correspond to a role feature do not cause changes of the connection;
• When the service set that corresponds to a role feature do not satisfy some requirements of requestors,

the connection can adapt to these changes by reconfiguring the role feature and related services.
Proof:

(1) Let r1 be the role involved in an interaction. According to the definition of r1, we conclude:
∀fx∈Featurer1, ∃m∈Mapr1,m(fx)=ssx,ssx⊆Servicer1,and ∃sel∈Selectorsr1, sel(ssx)=Serx, Serx∈ssx .

When changes take place in ssx, a new function sel′ can be constructed, sel′∈ Selectorsr1, such that
sel′(ssx)= Serx′.
Q Serx′ and Serx have the same features, and the requestor service interacts with the service that

belongs to ssx through the role feature.
∴There are no changes in the connection.
Proposition (1) follows.

(2) When the service set that corresponds to a role feature does not satisfy some requirements of the
requestor services, the interaction interface or the service set has to be changed. If only the service
set is to be adjusted, the connection can adapt to those changes according to proposition (1). If the
interaction interface is to be changed, it results in a change of the role feature according to
Definition 1. Then proposition (2) can be proved as follows:
i) when changes take place in a service–role pattern,

let s, r1 be the service and role involved in the interaction, and fs∈Features. According to FSR,
we conclude:

∃ <fs, fr1>, fr1 ∈ Featurer1. When <fs, fr1> changes into <fs, f ′r1>, according to the definition of
r1, ∃m′∈Mapr1, such that ssx1′⊆Servicer1, m′(f ′r1)=ssx1′. m′and ssx1′ keep the connection available.
ii) when changes take place in role-role pattern,

let r1, r2 be the roles involved in the interaction, and fr1∈Featurer1. According to ψ, we
conclude:

∃ <fr1, fr2>, fr2 ∈ Featurer2. When <fr1, fr2> changes into <fr1, f ′r2>, according to the definition of
r2, ∃m′′∈Mapr2, such that ssx2′⊆Servicer2, m′′(f ′r2)=ssx2′. m′′ and ssx2′ keep the connection available.

According to i) and ii), proposition (2) follows.
The proof is now complete.
Theorem 1 says that a role-based service connector is adaptable. In ConnectionR, there is a loose

coupling between interacting participants, which can be changed by adjusting the service selection

 5

function such as sel(). Through role features, services expose a unified interaction interface to requestor
services, reducing the influences between services. When unanticipated changes occur, the connection
can be reconfigured through changing the involved role features and services. In addition, a role feature
can be implemented by several candidates of service providers like services in ssx, which makes the
connection adaptable.

2.2 Interaction Protocol

When a role is introduced, changes occur in service interaction patterns to support connection
adaptation. As mentioned above, service-role and role-role patterns are the main interaction manners in
service compositions where roles are involved. In order to describe them clearly, the interaction
protocols are presented in a formal way.

While analyzing security protocols, I. Cervesato etc. used a multiset rewriting formalism, based on
linear logic. The existential quantification in it provides a succinct way of choosing new values. Besides
that, it has a bounded initialization phase, but allows unboundedly many instances of each protocol
participant, making it especially qualified to analyzing finite-length protocols [11]. In this section, we
present the interaction protocol of a role-based connector model with this method.

(1) Interaction in a service-role pattern
Ser0(), R0()
Ser0()→∃x.Ser1(x), Con1(x)
R0(), Con1(x)→ ∃y.R1(x, y), ∃Ser′0(), Con2(x, y)
Ser′0(), Con2(x, y)→ ∃z. Ser′1(y, z), Con3(x, y, z)
R1(x, y), Con3(x, y, z) → R2(x, y, z), Con4(x, z)
Ser1(x), Con4(x, z)→ Ser2(x, z)

In service-role pattern, service Ser is the requestor service, and Ser0() denotes that service Ser is in
initial state 0. Then it produces message x in state 0, sends x to role R transforming into state 1 that
keeps message x; Con1(x) denotes that the connection is in state 1 that keeps message x. After role R
receives x at state 0, it produces message y, then with the service selection function, role R chooses a
service Ser′ as server according to interaction state, and sends y to Ser′ transforming into state 1. After
processing message y, service Ser′ produces massage z that contains the results the client required and
sends z to role R. After role R receives z at state 1, it delivers message z to service Ser transforming into
state 2; service Ser receives z at state 1 transforming into state 2.

(2) Interaction in a role-role pattern
Ser0(), R0(), R′ 0()
Ser0() →∃x.Ser1(x), Con1(x)
R0(), Con1(x) → ∃y.R1(x, y), Con2(x, y)
R′ 0 (), Con2(x, y) → ∃z.R′ 1 (x, y, z), ∃Ser′0(), Con3(x, y, z)
Ser′0(), Con3(x, y, z) → ∃w. Ser′1(x, y, z, w), Con4(x, y, z, w)
R′ 1 (x, y, z), Con4(x, y, z, w) → R′ 2(x, y, w), Con5(x, y, w)
R1(x, y), Con5(x, y, w) → R2(x, w), Con6(x, w)
Ser1(x), Con6(x, w) → Ser2(x, w)

A role-role pattern is a combination of two service-role patterns. In this pattern, request and return
values pass through two roles.

 6

Above protocols describe how to configure the connector automatically. Besides that, they emphasize
especially on states of connections and interaction participants. On the one hand, a role supports the
dynamic selection of qualified services according to connection states and service states; on the other
hand, when the connection is to be reconfigured, these states determine whether the reconfiguration is
feasible. During connection reconfiguration, states of interacting participants are saved. After
reconfiguring, they are restored to enable service composition to be resumed. It shows that the
interaction protocol of a role-based service connector supports dynamic connection and adaptation.

After presenting the model and demonstrating its adaptability in a formal way, we now present a case
study in the following section.

3 Exploring the Model with a Case Study

A role-based service connector is more adaptable than others, when changes take place in service
resources and/or requirements. In order to strengthen this conclusion and illustrate how to use role-based
service connectors, we briefly present a case study of representing the model in XML and applying it in
project FLAME20082. Note that the case study focuses on the aspect of connection adaptabilities, other
details about the case are beyond this scope.

3.1 A Real Case from FLAME2008

The Olympic Travel Planning application, which is a part of FLAME2008, is to provide pertinent
information to those who watch match and tour in Beijing during Olympic Games 2008. Figure 2
presents a requirement segment of the application, which involves the following services.

User: Mr. John

Match Query
Service

Match Ticket
Query Service

Match Ticket
Service

Gym Query
Service

Match Query Request

Ticket Order Request

Ticket Query
Result

Gym Query
Result

Compositive Match- info
Module

Ticket Query
Request

Match &Ticket
Information

Gym Query
Request

Order &Gym
Information

Fig. 2. A Requirement Description Segment of Olympic Travel Planning Application

− Match Query Service: retrieving a match schedule, getting information about the match that one
wants to watch, and invoking Match Ticket Query Service.

− Match Ticket Query Service: retrieving match ticket information.

2 FLAME2008 (Project Flexible Semantic Service Management Environment) is to develop grid service based applications that provide

integrated, personalized information services to the public during the Olympic Games 2008. The project is supported by MOST PRC

and CAS under Grand No.20012019.

 7

− Match Ticket Service: ordering match tickets after making sure that there are remains, and invoking
the Gym Query Service.

− Gym Query Service: retrieving information about traffic, gym location and so on.
− Compositive Match-info Module: coordinating above services to get information about match

schedules, match tickets, gym and ordering tickets.
In the initial stage of the project, we constructed a prototype by composing services. However, those

services and their connections were changing with service resources changing and requirements
evolving.
• Change I: In the prototype, the response time of Match Ticket Query Service was too long to endure,

so that the service had to be replaced by a new one.
• Change II: Previously, after ordering tickets, audiences wanted to know something about the gym

where the match was to be held. So, Match Ticket Service interacted with Gym Query Service. Now,
audiences want to retrieve order results after ordering. To meet the changed requirement, Match
Ticket Service is to interact with Order Result Query Service (This service is a service to be added when

requirements change, and it is not shown in figure 2). In this situation, both the interaction interface and
services are changed.

3.2 Representations and Applications of the Model

In the initial prototype of FLAME2008, services were connected by control flow based on SOAP
messages. To adapt to changes in service providers, the adaptors were modified. However, when the
above-mentioned changes occurred, it was very difficult to adjust the application, for the service
connections were almost unchangeable. In order to change them, we had to read through the source
codes, and modify the processing logic or rebuild the module. It involved many efforts of understanding
source code, coding and so on. The modified application was prone to throw exceptions yet.

Hence, we partially adopted and realized role-based service connector in the second prototype, and
constructed a supporting tool named CAFISE Framework. Compared with service connections in the
first prototype, role-based service connector can be adjusted smoothly with the framework that is
depicted in figure 3.

3.2.1 CAFISE Framework
The CAFISE Framework includes a set of essential components and tools assisting to construct and
adjust applications. From a business viewpoint, the Convergent Modeling Tool helps designers to
present their requirements, and then the requirements are transformed into an executable application
specification using XML, which is presented in figure 3 as Specification A. Those specifications
describe the coordination among all involved services. While the CAFISE Virtual Machine interprets the
specification, the required services of the Service Community are dynamically bound and invoked.

 8

Framework

Application

User Designer

Convergent
Modeling Tool

Configuration Tool

CAFISE Virtual Machine Service
Community

Specification A Specification A’

binding

interpreting interpreting

modeling

invoking

Application A Application A’

monitoring and
adjusting

Adjusting

CS1 S2 C’ S1 S2
Service

Connector

Fig. 3. CAFISE Framework

3.2.2 Reconfiguration of Connectors
The service coordination in an executable specification adopts role-based service connectors. When the
aforementioned changes take place, users can reconfigure the role-based connector with the
Configuration Tool. More details about the framework are presented in [12]. The following presents an
example of a connecter implementation and describe how to use this framework to adjust the connector.
Figure 4 illustrates a role named Ticket_querist in XML, which is used to connect match query service
with match ticket query services according to the interaction protocol listed in section 2.2. Its feature
“searcher” describes the ports of the Match Ticket Query Service01 and Match Ticket Query Service 02
that are listed as feature implementations by <Services>. <Selector> specifies the algorithm for
selecting the right feature implementation. In figure 4, it uses another service “MTQSel01” as service
selection function to select the right service involved in the interaction.

<Role Name="Ticket_querist " >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="MatchTicket"
 Type="TicketVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Match Ticket Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select/
MTQSel01

</SelectFunction>
</Selector>

</Role>

Fig. 4. The Role Specification of Ticket_querist

<Role Name="Ticket_querist " >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="MatchTicket"
 Type="TicketVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Match Ticket Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service 02

</URL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service New

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/MTQSel02

</SelectFunction>
</Selector>

</Role>

Fig. 5. The Modified Specification of Ticket_querist

To adapt to Change I, a new service Match Ticket Query Service New was designed and registered in

the Service Community. The connection was to be changed. The CAFISE Virtual Machine, its

 9

Configuration Tool and role Ticket_querist made it easier to reconfigure the service connection. The
CAFISE Virtual Machine interpreted the specification of role Ticket_querist and collected meta-data of
interaction states and the connection structure, supporting the Configuration Tool to modify the
connection. The Configuration Tool monitored all interaction states through meta-data collected by the
virtual machine. While the number of service requests was reduced to zero, users applied the tool to
change the connection meta-data. By modifying meta-data, a new service
“www.FLAME08app.com/search/ Match Ticket Query Service New” was added, and <SelectFuction>
was set as a new one “www.FLAME08app.com/select/MTQSel02”. Thus, the new service co-existed
with the old ones, and the connection was changed without effects to the Match Query Service in a
simple reconfiguration way. The modified specification of Ticket_querist is shown in figure 5.

Figure 6 presents the role connected match ticket service and gym query services that are the service
providers in interaction. With Change II, Match Ticket Service changed to connect with Order Result
Query Service. Adaptation of this connection required adjusting the role’s <Feature>, <Services> and
<Selector> parts. Using CAFISE Framework, users smoothly changed the specification of Gym_querist
to a new one that is presented in figure 7.

<Role Name="Gym_querist" >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="Gym_info"
 Type="GymVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Gym Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Gym Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/Gym_selector01

</SelectFunction>
</Selector>

</Role>

 Fig. 6. The Role Specification of Gym_querist

<Role Name="Gym_querist" >
<Feature Name="result searcher">
<Argument Name="Order Number"
 Type="String"
 PassMode="IN"/>
<Argument Name="Result_info"
 Type="ResultVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Order Result Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Order Result Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/Order_resultSel

</SelectFunction>
</Selector>

</Role>

 Fig. 7. The Modified Specification of Gym_querist

The above case study demonstrates that a role-based service connector enables service connection

adaptation smoothly. Moreover it shows that <Feature> and <Services> separates services from features
and makes it feasible to modify the interaction interface and its implementation independantly. By
changing the <SelectFunction>, the relation between interaction interface and services can be adjusted.

Table 1 lists the comparison of service connection adaptations in those two prototypes of the case. It
says that these connections can be adjusted, and the adjustments all impact application behaviors with
effects to semantics. However, adaptations of control flow based service connections and service
adaptors involve more efforts of executants obviously. Role-based service connector can be
reconfigured at runtime. And changes of the connection are incremental, which means that a new service
can be incorporated into the service composition while old ones co-exist [13]. With the CAFISE
Framework, the adaptation process is semi-automatic, and change impacts can be controlled. The
comparison shows that the role-based service connector model provides more support to connection
adaptation.

 10

Table 1. Properties of Service Connection Adaptations in the Case

3.3 Evaluation Based on the Case Study

The case study demonstrates how to use a role-based service connector model to make service
connections adaptable. In addition, it also shows that a role-based service connector has advantages in
improving connection adaptability at the following aspects:
• Communication Stability

Communication is the essential function of a role-based service connector, which takes charge of data
exchange between services involved in an interaction. Through features, roles expose an interaction
interface, and allow requestors to invoke services. Role features offer a unified interface for service
interaction, improving communication stability from the view of connection structure.
• Structure Expansibility

A role-based service connector is extensible in structure aspect. Service resources and user
requirements are various and mutable. Unavoidably, service connections have to co-evolve with
changes. A role-based service connector provides an extensible cadre composed of <Feature>,
<Services> and <Selector>, which enables the connector to be extended and reconfigured according to
changes.
• Connection Adaptability

The role-based service connector model provides essential support to connection adaptation. With the
extensible cadre, it can be modified and reconfigured. Besides that, it can accommodate changes of
connection to some extent through encapsulating changes in service providers. And the connection can
be adapted at run time, for role-based service connector can dynamically switch service provider in the
way of modifying parameters to change connection structure at run time.

4 Conclusions

Service-oriented application development in network environments meets large challenges due to open
and dynamic features of the environments, which requires service connections to be adaptable.

In this paper, a role-based service connector model is presented to solve the problem. With role
features, a role-based service connector offers a changeable service connection structure, which makes

Control flow based

service connections
Service adaptors

Role-based service

connectors

Adaptation executants programmers programmers users

Adaptation way
by modifying source

codes

by modifying source

codes or customizing
by reconfiguring

Degree of automation non-automation non-automation semi-automation

Adaptation time at non-runtime at non-runtime
at both runtime and

non-runtime

Incremental changes no no yes

Effects to semantics yes yes yes

Change impacts control no no yes

 11

connections more adaptable: by modifying the feature and related service references, the connection can
be reconfigured. In addition, adjustments in a role-based connector are limited to some modifications;
changes of interaction partners do not influence each other. So that, the connector enhances the
flexibility of service coordination.

Through the case study of project FLAME2008, we conclude that the role-based service connector
model has advantages in adaptation of service connection. Besides that, the following work should be
done.
− To reduce side effects of adaptation, a run-time model of the connector should be offered to

monitoring status of service connection;
− The application of the model in Web service chaining, such as BPEL4WS, is to be considered in

further work.

Acknowledgements

When we wrote the paper, Dr. Agnes Voisard gave some good suggestions; Dipl.-Inf. Norbert
Weissenberg corrected the writings. And Dipl.-Inf. Rdiger Gartmann gave generous helps on paper
presentation. We are grateful to them for their helps.

References

1. I. Foster, C. Kesselman, J. Nick, S. Tuecke: Grid Services For Distributed System Integration. Computer. vol.

35, no.6 (2002) 37-46

2. I. Foster, C. Kesselman, S. Tuecke: The anatomy of the grid: Enabling scalable virtual organizations. The

International Journal of Supercomputer Applications. vol.15 no.3(2001) 200-222

3. F. Casati, S. Ilnicki, J. LiJie, S. Ming-Chien: An Open, Flexible, and Configurable System for E-Service

Composition. The Second International Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems, Milpitas, USA, June 2000

4. E. Kiciman, A. Fox: Using Dynamic Mediation to Integrate COTS Entities in a Ubiquitous Computing

Environment. The Second International Symposium on Handheld and Ubiquitous Computing, Bristol, UK,

September 2000

5. Emre Kiciman etc: Position Summary: Towards Zero-code Service Composition. The Eighth Workshop in

Hot Topics in Operating Systems, Oberbayern, Germany, May 2001

6. S. Krishnan1, P. Wagstrom1, G. Laszewski: GSFL: A Workflow Framework for Grid Services.

http://www-unix.globus.org/cog/projects/workflow/, July 2002

7. T. Andrews, F. Curbera etc.: Business Process Execution Language for Web Services Version 1.1.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, May 2003

8. F. Steimann: On the Representation of Roles in Object-Oriented and Conceptual Modeling. Data &

Knowledge Engineering. vol. 35, no.1(2000)83-106

9. B. Kristensen: Object-oriented Modeling with Roles. The 2nd International Conference on Object-Oriented

Information Systems, Dublin, Ireland, 1995

10. J. Goguen: A Categorical Manifesto. Mathematical Structures in Computer Science. vol. 1, no. 1(1991)49-67

11. Cervesato etc.: A Meta-notation for Protocol Analysis. The 12th IEEE Computer Security Foundations

Workshop, Mordano, Italy, June 1999

 12

12. Y. Han, Z. Zhao, G. Li etc.: CAFISE: An Approach to Enabling Adaptive Service Configuration of Service

Grid Applications. Journal of Computer Science and Technology. vol. 18, no.4(2003) 484-494

13. G. Li: Adaptive software architecture and Adaptive software architecture development. Ph.D. Dissertation,

Beijing University of Aeronautics and Astronautics. 2002

Building an integrated Ontology within
SEWASIE system�

Domenico Beneventano1,2, Sonia Bergamaschi1,2, Francesco Guerra1, and
Maurizio Vincini1

1 Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Via Vignolese 905 - Modena
{lastname.firstname}@unimo.it

2 IEIIT-CNR Istituto di Elettronica e di Ingegneria
dell’Informazione e delle Telecomunicazioni

Viale Risorgimento 2 - Bologna

Abstract. The SEWASIE (SEmantic Webs and AgentS in Integrated
Economies) project (IST-2001-34825) is an European research project
that aims at designing and implementing an advanced search engine
enabling intelligent access to heterogeneous data sources on the web.

In this paper we focus on the Ontology Builder component of the SE-
WASIE system, that is a framework for information extraction and in-
tegration of heterogeneous structured and semi-structured information
sources, built upon the MOMIS (Mediator envirOnment for Multiple
Information Sources) system. The result of the integration process is a
Global Virtual View (in short GVV) which is a set of (global) classes
that represent the information contained in the sources being used. In
particular, we present the application of our integration concerning a
specific type of source (i.e. web documents), and show the extension of
a built-up GVV by the addition of another source.

Introduction

Nowadays the Web is a huge collection of data and its expansion rate is very
high. Web users need new ways to exploit all this available information and pos-
sibilities. The problem is that Web information is meaningless for a computer
and so it is very hard to find out what we are looking for. In this context, the
need of a new vision of the Web, the Semantic Web3, arises. Within the Se-
mantic Web, resources could be annotated with machine-processable metadata
providing them with background knowledge and meaning. This new scenario cre-
ates many expectations amongst the users and information providers but new
issues have to be solved before achieving optimum results. One of the main
components in this context is is the ontology; this “explicit specification of a

� This research has been partially supported by EU IST-SEWASIE
3 http://www.w3.org/2001/sw/

conceptualization”[11] might allow information providers to give a shared mean-
ing to their documents. Many studies are defining languages and standards that
can help domain experts in the delicate task of expressing their knowledge in a
formal way4. Another fundamental issue is the “dynamics”. The web environ-
ment is very changeable, it is continuously updated, modified and the users need
to rely on the data they retrieve from the net. Ontologies evolve, and therefore
we have to address the problem of managing the dynamics with respect to the
ontologies [13, 14].

SEWASIE (SEmantic Webs and AgentS in Integrated Economies) (IST-2001-
34825) is a research project funded by EU on the action line ”Semantic Web”
(May 2002/April 2005 - http://www.sewasie.org/). The goal of the SEWASIE
project is to design and implement an advanced search engine enabling intelligent
access to heterogeneous data sources on the web via semantic enrichment to
provide the basis of structured secure web-based communication. A SEWASIE
user has at his disposal a search client with an easy-to-use query interface able
to extract the required information from the Internet and to show it in an easily
readable format.

In this paper we focus on the Ontology Builder component of the SEWASIE
system, that is a framework for information extraction and integration of het-
erogeneous structured and semi-structured information sources, built upon the
MOMIS (Mediator envirOnment for Multiple Information Sources) system [1,
2, 6].

The Ontology Builder implements a semi-automatic methodology for data
integration that follows the Global as View (GAV) approach [15]. The result
of the integration process is a global schema which provides a reconciled, in-
tegrated and virtual view of the underlying sources, the GVV (Global Virtual
View). The GVV is composed of a set of (global) classes that represent the infor-
mation contained in the sources being used and the mappings establishing the
connection between the elements of the global schema and those of the source
schemata. A GVV, thus, may be thought of as a domain ontology [12] for the
integrated sources. We represent the ontology by means an object language,
called ODLI3 , which is an evolution of the OODBMS standard language ODL.
Moreover, ODLI3 permits the definition of integrity constraints (in the form of
if then rules) that are translated, together with the schema properties, into a
description logics OLCD (Object Language with Complements allowing Descrip-
tive cycles) [4, 6]. In this way, inference tasks typical of Description Logics that
are useful for the GVV creation process can be exploited. The Ontology Builder
system relies on a logic layer, ODLI3 is the language to represent the ontology
properties and OLCD to perform reasoning over the data, like other approaches
in the literature (DAML+OIL5).

The outline of the paper is the following: section 1 describes the SEWASIE
architecture, while in section 2 we depict the Ontology Builder and the approach

4 OntoWeb - Ontology-based information exchange for knowledge management and
electronic commerce, http://ontoweb.aifb.uni-karlsruhe.de/

5 http://www.w3.org/TR/daml+oil-reference

Fig. 1. The SEWASIE architecture

for creating a domain ontology from scratch and shows the result of the integra-
tion process (GVV). Section 3 describes the semi-automatic annotation process
of the GVV. Section 4 presents the methodology to support the GVV extensions
in the case of the addition of a new source. Finally, section 5 concludes the paper.

1 The SEWASIE Architecture

The first basic idea underlying the SEWASIE architecture is that semantic en-
richment of data sources is the next step towards building information systems
that are really useful. However, the addition of semantics to data sources is a
formidable task and it may be achieved only if info seekers and info providers
may reach each other across a middle ground. This requires a common language
and strategy, and the tools that actually flesh them both out.

The second idea is that we have to deal with two levels of knowledge. We
envision a multi-level architecture, composed of nodes (the SINodes) integrating
information coming from communities with strong ties, and at a wider level
the relationships among distinct SINodes are established by means of weaker
semantics mappings. The latter is maintained by an infrastructure of brokers,
which will provide the entry points to the system and some routing of the queries
towards the relevant information nodes.

A search system architecture satisfying the aforementioned ideas and desider-
ata is shown in figure 1.

The information nodes (SINodes) are mediator-based systems, each in-
cluding a Virtual Data Store, an Ontology Builder, and a Query Manager. A
Virtual Data Store represents a virtual view of the overall information managed
within any SINode and consists of the managed information sources, wrappers,
and a metadata repository. The managed Information Sources are heterogeneous
collections of structured, semi-structured, or unstructured data, e.g. relational
databases, XML or HTML documents. A Wrapper implements common commu-
nication protocols and translates to and from local access languages. According
to the metadata provided by the wrappers, the Ontology Builder performs se-
mantic enrichment processes in order to create and maintain the Ontology of
the SINode. The Metadata Repository holds the ontology and the knowledge
required to establish semantic inter-relationships between the SINode itself and
the neighboring ones. A Query Manager provides the functionalities for solving
a query within an SINode and constitutes the SINode interface to the network.

The brokering agents (BAs) are the peers responsible for maintaining a
view of the knowledge handled by the network, as well as the information on
the specific content of SINodes which are under direct control (of each brokering
agent). These agents are intermediaries which have direct control over a number
of SINodes, and provide the means to publish a manifesto within the network of
the locally held information with a semantic profile.

The query agents (QAs) are the carriers of the user query from the user
interface to the SINodes, and have the task of solving a query by interacting with
the brokering agent network. Starting from a user- or task- specified brokering
agent, they may access other BAs, connect with other information nodes, collect
partial answers, and integrate them.

The user interface is the group of modules which work together to offer an
integrated user interaction with the semantic search system. This interface needs
to be personalized and configured with the specific user profile and a reference
to the ontologies which are commonly used by this user.

2 The Ontology Builder

The process of semantic enrichment of the sources constituting a SINode is
a crucial step towards building the overall SEWASIE structure. The process
is human assisted and based on a tool, the Ontology Builder. The underlying
strategy and framework are based on ODLI3 , the ontology description language,
and basic lexical ontologies to bootstrap. The final result is a Global Virtual
View encompassing all the sources within the SINode.

In this section, we describe the information integration process for building
the GVV of set of web pages (see Figure2 for the whole process representation).

2.1 ODLI3 + OLCD

For a semantically rich representation of source schemas and object patterns, the
Ontology Builder uses an object-oriented language called ODLI3 [6]. ODLI3 is

Fig. 2. An overview of the ontology integration process

an extension of the ODL language6 and can be used to describe heterogeneous
schemas of structured and semistructured data sources. In particular, ODLI3 ex-
tends ODL with the following relationships expressing intra- and inter-schema
knowledge for the source schemas:

– SYN (synonym of) is a relationship defined between two terms ti and tj that
are synonyms in every involved source.

– BT (broader terms) is a relationship defined between two terms ti and tj ,
where ti has a broader, more general meaning than tj . BT relationships are
not symmetric. The opposite of BT is NT (narrower terms).

– RT (related terms) is a relationship defined between two terms ti and tj that
are generally used together in the same context in the considered sources.

Other main additions are the Integrity constraint rules, introduced in ODLI3

in order to express, in a declarative way, if then constraint rules at both intra-
and inter-source level.

By means of ODLI3 it is possible to describe both the sources (the input
of the synthesis process) and the GVV (the result of the process) by using the
same language.
6 http://www.service-architecture.com/database/articles/odmg 3 0.html

Due to the fact that the ontology is composed of concepts (represented in
ODLI3 with Global Classes) and simple binary relationships, the translation
of ODLI3 descriptions into one of the Semantic Web standards such as RDF,
DAML+OIL, OWL is a straightforward process. In fact, from a general perspec-
tive an ODLI3 concept corresponds to a Class of a the Semantic Web standard,
and ODLI3 relationships are translated into properties (in particular the BT/NT
ODLI3 relationships are subclassof in the Semantic Web standards). Analyzing
syntax and semantics of each standard, further specific correspondences may
be established. For example, there is the correspondence with the DAML+OIL
Class, the simple domain attributes correspond to DAML+OIL DataTypeProp-
erty concept and complex domain attributes correspond to DAML+OIL Ob-
jectProperty concept. Moreover, classes are wrapped in both the approches into
description logics. For a more detailed description of ODLI3 /OLCD translation
see [6]. For a description of the OLCD description logics see [4, 3]

2.2 Wrapping: extracting data structure for sources

The first step of the ontology development process is the construction of a se-
mantic representation of the information sources, i.e. the conceptual schema of
the sources, by means of the common data language ODLI3 . To accomplish
this task, we encapsulate each source with a wrapper that logically converts the
underlying data structure into the ODLI3 information model. Therefore, the
wrapper architecture and interfaces are crucial, because wrappers are the focal
point for managing the diversity of data sources.

For conventional structured information sources (e.g. relational databases,
object-oriented databases), a schema description is always available and can be
directly translated.

For semistructured information sources, a schema description is in general not
directly available at the sources. In fact, a basic characteristic of semistructured
data is that they are ”self-describing”, hence the information associated with
the schema is specified within data. Thus, in order to manage a semi-structured
source a specific wrapper has to implement a (semi-) automatic methodology
to extract and explicitly represent the conceptual schema of the source. We
developed a wrapper for XML/DTDs files.

Information is available on the Web mainly in HTML format that is human-
readable but cannot easily be automatically accessed and manipulated. In par-
ticular, HTML language does not separate data structure from layout. Thus,
in order to manage these kind of sources, we need a further preliminary step
of extraction: by means of a commercial tool we translate the content of a web
page (data and data structure) into a XML file, then we exploit the previously
developed wrapper XML/DTD to acquire the source descriptions.

We have tested many research and commercial tools, such as Lixto [10],
RoadRunner [8], Andes [16], and we select Lixto as the most suitable for our
approach. By providing a fully visual and interactive user interface, Lixto as-
sists the user to create a wrapper program in a semi-automatic way. Once the
wrapper is built, it can be applied automatically to continually extract relevant

information from a permanently changing web page and translate it into a XML
file to be exploited by the XML/DTD wrapper.

2.3 Running example

We consider the creation of an ontology of two web sources related to the Uni-
versity domain. By means of a Lixto generated wrapper, the source content is
translated into XML files according to the DTDs sketched in Table 1.

University Site (UNI)

<!ELEMENT UNI(People*)>

<!ELEMENT People(Research_Staff*|

School_Member*)>

...

<!ELEMENT Research_Staff(name,

e-mail, Section*, Article*)>

<!ELEMENT Section(name, year.

period)>

<!ELEMENT Article(title, year,

journal, conference)>

<!ELEMENT School_Member(name,

e-mail)>

<!ELEMENT name (#pcdata)> ...

Computer Science Site (CS)

<!ELEMENT CS(Person*)>

...

<!ELEMENT Person(Professor*|

Student*)>

<!ELEMENT Professor(first_name,

last_name, e-mail, Publication*)>

<!ELEMENT Student(name, e-mail)>

<!ELEMENT Course(denomination,

Professor)>

<!ELEMENT Publication(title, year,

journal, editor)>

<!ELEMENT School_Member(name,

e-mail)>

<!ELEMENT name (#pcdata)>...

Table 1. A fragment of the University (UNI) and Computer Science (CS) DTDs

By means of the XML/DTD wrapper, the obtained DTDs are translated into
ODLI3 descriptions. An example of the classes obtained in this step is shown
in Table 2.

2.4 Annotation of a local source with WordNet

With reference to the Semantic Web area, where generally the annotation process
consists of providing a web page with semantic markups w.r.t. an ontology, in
our approach we markup the metadata descriptions extracted by the wrappers,
i.e. the ODLI3 schemata, and the reference lexical ontology is WordNet.

The WordNet database contains 146,350 lemma organized in 111,223 syn-
onym sets. WordNet’s starting point for lexical semantics comes from a conven-
tional association between the forms of the words – that is, the way in which
words are pronounced or written – and the concept or meaning they express.
These associations give rise to several properties, including synonymy, polysemy,
and so forth. The correspondence between the words form and their meaning is

University Site (UNI) Computer Science Site (CS)
.
Interface Research Staff Interface Professor

(Source Un site.dtd) (Source Sc site.dtd)

{ attribute string name; { attribute string first name;

attribute string email; attribute string last name;

attribute set<Section> section; attribute string email;

attribute set<Article> article;} attribute set<Publication>
publication;}

Interface Article Interface Publication

(Source Un site.dtd) (Source Sc site.dtd)

{ attribute string title; { attribute string title;

attribute string journal; attribute string year;

attribute string conference; attribute string journal;}
attribute string year; }

.

Table 2. A piece of the University (UNI) and Computer Science (CS) sources in ODLI3

represented in the so-called Lexical Matrix M (see table 3), in which the words
meaning are reported in rows (hence each row represents a synset) and columns
represent the words form (form/base lemma).

WF1 WF2 WF3 . . . WFn

M1 E1,1 E1,2
M2 E2,2
M3 E3,3
.
Mm Em,n

Table 3. WordNet word form and meanings

Thus, entry E1,1 implies that word form F1 can be used to express word
meaning M1. If there are at least two entries in the same column then the
corresponding word form is polysemous (i.e. it can be used to represent more
than one meaning, exactly two in this case); if there are at least two entries in
the same row then two word forms are synonyms relative to a context.

Given a word form F, its i-th meaning will be denoted by F�i. For example,
the word form course has 8 meanings in WordNet; the first one is course�1 =
"education imparted in a series of lessons or class meetings".

In the phase of a local source annotation, the integration designer has to
manually choose the appropriate WordNet meaning for each element of the con-
ceptual schema provided by the wrappers. The annotation phase is composed of
two different steps:

1. Word Form choice. In this step, the WordNet morphologic processor aids
the designer by suggesting a word form corresponding to the given term.
More precisely, the morphologic processor stems (i.e. converts to a common
root form) the term and checks if it exists as word form.

2. Meaning choice. The designer can choose to map an element on zero, one
or more senses. Notice that the user can only choose a sense among the
existing ones in WordNet, and that is he is not allowed to extend it with his
new meanings.

Notice that, for a compound descriptive term, our tool extracts the component
terms and all these terms are processed by the WordNet morphologic processor.
For example if the attribute name is shipment received date then the terms
shipment, received, and date are proposed to the designer. If a term is not
available as word form (this can happen, for example, for an abbreviation), if
there is an ambiguity, or the selected word form is not satisfactory, the designer
can choose another word form of WordNet or manually search for a meaning
of the term. A term that doesn’t find a meaning within WordNet is considered
as unknown term and no lexicon relationship will be derived for it (see next
section).

This phase assigns a name, LEN (this name can be the original one or a word
form chosen from the designer), and a set (that might be empty) of meanings,
LEMi (a class or attribute meaning is given by the disjunction of its set of
meanings), to each local element (class or attribute) LE of the local schema:

LE = 〈LEN, {LEM1, . . . , LEMk}〉, k ≥ 0

For example:
CS.Course = < course, {course�1} >

UNI.Professor = < professor, {professor�1} >

UNI.School Member = < student, {student�1} >

UNI.School Member.name = < name, {name�1} >

where
course�1 = ’education imparted in a series of lessons or class meetings’
professor�1 = ’someone who is a member of the faculty at a college or university’
student�1 = ’a learner who is enrolled in an educational institution’
name�1 = ’a language unit by which a person or thing is known’

2.5 Common Thesaurus Generation

The Ontology Builder constructs a Common Thesaurus describing intra and
inter-schema knowledge in the form of relationships SYN, BT, NT, and RT.

The Common Thesaurus is constructed through an incremental process in
which relationships are added in the following order:

1. schema-derived relationships: relationships holding at intra-schema level ex-
tracted by analyzing each schema separately;

2. lexicon-derived relationships: These originate from the annotation of the
schemas respect the lexical ontology. WordNet defines a large variety of se-
mantic relations between its meanings. A lexicon relationship between terms
for the common thesaurus is derived from a semantic relation in WordNet
between the annotated meanings of the terms according to the following
correspondences:

Synonymy: corresponds to a SYN relation
Hypernymy: corresponds to a BT relation
Hyponymy: corresponds to a NT relation
Holonomy: corresponds to a RT relation
Meronymy: corresponds to a RT relation
Correlation: corresponds to a RT relation

3. designer-supplied relationships: new relationships can be supplied directly
by the designer, to capture specific domain knowledge. This is a crucial
operation, because the new relationships are forced to belong to the Common
Thesaurus. This means that, if a nonsense or wrong relationship is inserted,
the subsequent integration process can produce a wrong global schema;

4. inferred relationships: Description Logics techniques of ODB-Tools [5] are
exploited to infer new relationships, by means of subsumption computation
applied to a “virtual schema” obtained by interpreting BT/NT as subclass
relationships and RT as domain attibutes.

In our running example, some of the relationships automatically obtained and
proposed at the integration designer are the following:

schema derived: CS.Professor NT CS.Person
schema derived: CS.Student NT CS.Person
lexicon derived: UNI.School Member NT CS.Person
lexicon derived: UNI.Article NT CS.Publication
designer-supplied: UNI.Research Staff SYN CS.Professor
inferred: UNI.Research Staff NT CS.Person
inferred: UNI.Research Staff RT UNI.Article

If the designer accepts and confirms the above relationships, they are included
in the Common Thesaurus.

2.6 Global Virtual View generation

The proposed methodology allows us to identify similar ODLI3 classes, that
is, classes that describe the same or semantically related concept in different
sources. To this end, affinity coefficients (i.e., numerical values in the range
[0, 1]) are evaluated for all possible pairs of ODLI3 classes, based on the rela-
tionships in the Common Thesaurus properly strengthened. Affinity coefficients
determine the degree of matching of two classes based on their names (Name

Affinity coefficient) and their attributes (Structural Affinity coefficient) and are
fused into the Global Affinity coefficient, calculated by means of the linear combi-
nation of the two coefficients. For a detailed description of the affinity coefficient
evaluation, the reader can refer to [7]. Global affinity coefficients are then used
by a hierarchical clustering algorithm [9], to classify ODLI3 classes according to
their degree of affinity. The output of the clustering procedure is an affinity tree,
where ODLI3 classes are the leaves and intermediate nodes have an associated
affinity value, holding for the classes in the corresponding cluster. Clusters for
integration (candidate clusters) are interactively selected from the affinity tree
using a threshold based mechanism whose parameter are set by the designer.
Regarding the quality of our clustering results the reader can refer to [6] where
a deep discussion of the experimentations results of the use of the strengthened
terminological relationships and affinity-based clustering is reported.

The generation of Global Classes out of selected clusters is a synthesis ac-
tivity performed interactively with the designer: a Global Class GCi definition
is built for each cluster Cli. The GVV generation consists of two phases. First,
the system automatically associates a set of global attributes with GCi, corre-
sponding to the union of local attributes of the classes belonging to Cli. Then,
the system proposes to the designer the restriction of the global attributes set
by exploiting the Common Thesaurus lattice that contains SYN relationships
and BT/NT relationships among local attributes.
For each global class, a persistent Mapping Table MT storing all the mappings
is generated; it is a table whose columns represent the set of local classes which
belong to the cluster and whose rows represent the global attributes. An element
MT [GA][LC] represents the set of attributes of the local class LC which are
mapped into the global attribute GA: the value of the GA attribute is a function
of the values assumed by the set of attributes MT [GA][LC]. Some simple and
frequent cases of such function are the following:

– identity : the GA value is equal to the LA value; we denote this case as
MT [GA][LC] = LA

– conjunction: the GA value is obtained as a conjunction of the values assumed
by a set of local attributes LAi of the local class LC; we denote this case as
MT [GA][LC] = LA1 and . . . and LAn

– constant : GA assumes into the local class LC a constant value set by the
designer; we denote this case by MT [GA][L] = const

– undefined : GA is a set undefined into the local class LC; we denote this case
as MT [GA][L] = null.

In our running example the integration process gives rise to three global classes:
Global1: (UNI.Section, CS.Course)

Global2: (UNI.Article, CS.Publication)

Global3: (UNI.Research Staff, UNI.School Member, CS.Professor, CS.Student)

For each global class a Mapping Table is generated. For example the Mapping
Table for Global2 is:

UNI.Article CS.Publication

Title Title Title

Year Year Year

Journal Journal Journal

Conference Conference null

Editor null Editor

Table 4. Mapping Table of the global class Global2 (Publication)

3 Global Virtual View Annotation

In this section, we propose a semi-automatic methodology to annotate a GVV,
i.e. to assign a name, GEN , and a set (that might be empty) of meanings, GEMi

(a class or attribute meaning is given by the disjunction of its set of meanings)
to each global element (class or attribute) GE:

GE = 〈GEN, {GEM1, . . . , GEMp}〉, p ≥ 0

3.1 Global Class Annotation

In order to semi-automatically associate an annotation to each global class, we
consider the set of all its “broadest” local classes, w.r.t. the relationships included
in the Common Thesaurus, denoted by GCB :

GCB = {LC ∈ GC|¬∃y ∈ GC, (LC NT y) ∨ (y BT LC)}
In our example:

GC GCB

GC1 CS.Course, UNI.Section CS.Course, UNI.Section

GC2 CS.Publication, UNI.Article CS.Publication

GC3 CS.Professor,

CS.Person,UNI.School Member,

UNI.Research Staff, CS.Student

CS.Person

On the basis of GCB , the designer will annotate the global class GC as
follows:

– name choice: the integration designer is responsible for the choice of the
GC name: the system only suggests a list of possible names. The designer
may select a name within the proposed list or select another name not inside
the list. In particular, concerning the name and according to the role of the
global class name (to allow the designer to identify the Global Class and
its contents), we consider the name as a label. Therefore, a name might
not be a word form of WordNet. For example, regarding Global Class GC1
(see Table 5), the designer selected the name course between the suggested
Course and Section. Regarding GC3 the designer chose a more significative
name (University Member) instead of the proposed generic person.

– meaning choice: the union of the meanings of the local class names in GCB
are proposed to the designer as meanings of the Global Class. The designer
may change this set, by removing some meanings or by adding other ones.

With respect to our example, the proposed annotations are the following:

GC Names Meanings

GC1 course or section course�1

GC2 publication publication�1

GC3 University Member person�1
Table 5. University GVV annotation

3.2 Global Attributes Annotation

We extend the previously used approach for names and meanings of the at-
tributes. Given a global attribute GA of the global class GC, we consider the
set LGA of local attributes, which are mapped into GA:

LGA = {LA|∃LC ∈ GC,LA ∈ LC ∧ MT [GA][LA] �= null}
and the set of all its “broadest” local attributes, denoted by LGAB :

LGAB = {LA ∈ LGA|¬∃y ∈ LGA, (LA NT y) ∨ (y BT LA)}
On the basis of LGAB , the designer will annotate the global attribute as de-
scribed for global classes. Moreover, according to mapping function, we may
develop some specific policy to automatically select meanings.

4 Adding a new source

Supporting the evolution of an ontology represents a challenging issue (to be
faced). Many interesting solutions have been developed with regard to this
topic [13, 14] and an oustanding idea is to exploit multiple variants of the same
ontology to cope with changes. This approach, called Ontology Versioning, is
different from our proposal where a single ontology is kept consistent with the
sources which refer to.

Within Ontology Builder if new sources are added/deleted, or if some changes
occur in the sources, the corresponding GVV has to change. The integration
process is expensive both for the designer and for the system. For this reason, we
propose a methodology for integrating a new source, which exploits the previous
integration work, i.e., a built-up GVV, without restarting the integration process
from scratch.

In the GVV building approach all the sources to be integrated contribute
with the same weight to the process. Therefore, if we consider an already built
GVV and we have to insert a new source which refers to the same ontology, we
can assume that this source brings less semantics than the GVV itself. For this
reason, we devise an integration process of a new source that starts from the
obtained GVV and tries to integrate a new source in the GVV.

In the following, we show how the evolution of a GVV caused by the insertion
of a new source can be strongly simplified by having available the lexicon-based
knowledge of the GVV annotation.

4.1 Integration of a new source in a GVV

The insertion of a new source is managed as an integration process between
two schemata: the GVV and the new source schema; in other words, the global
classes of GVV are considered as local classes and are integrated with the local
classes of the new source.
We show the approach analyzing all the integration phases of the GVV with the
new source. We introduce the following notation:

gcNew the global class of the new integrated schema has a name,
gcNewName and a set of global attributes gcNewAtti,

gcOld the global class of the old integrated schema has a name,
gcOldName and a set of global attributes gcOldAttj ,

lcNew the local class of the new source has a name,
lcNewName and a set of local attributes lcNewAttk.

According to the integration methodology, we have to create a Common The-
saurus of the involved sources. In this case, the Common Thesaurus will contain
schema-derived relationships extracted from the analysis of the new source and
intra-schema lexicon-derived relationships obtained by the annotation of the new
source. Further, the GVV global classes have to be semantically enriched accord-
ing to the semi-automatic annotation method shown in section 3. The interesting
point is that the annotation of GVV allows us to discover inter-schema lexical
relationships which enrich the Common Thesaurus.

The next step is the cluster generation followed by Global Classes and map-
ping tables generation. This phase has to provide mapping rules among Global
Classes and new or old local classes. In order to achieve this result, we substi-
tute here old Global Classes with the respective Local Classes. In this way, new
Global Classes that represent old Local Classes and new Local Classes as are
built. Thus we have:

gcNew = {gcOld1,...,gcOldp,lcNew1,...,lcNewn}
the resulting rewriter step is:

gcNew = {lcOld11,...,lcOld1z,...,lcOldp1,...,
lcOldpn,lcNew1,...,lcNewn}

With Global Class generation, we observe that, using the same clustering
parameters, an old Global Class lc1,...,lci,...,lcn changes only if the in-
tegration process inserts one or more new local classes (lcNewi) into the Global
Class. Therefore, we observe that the following cases are possible:

a) A new global class gcNew is composed of only one old global class (gcOld)
and one or more new local classes (lcNewi):

gcNew = {gcOld,lcNew1,...,lcNewi,...,lcNewn}
The new global class (gcNew) may have new global attributes generated from

the semantic contribution of new local classes. New mapping rules are defined
among a global attribute and its corresponding local attribute(s). In this case,
global attributes belonging to the gcOld (gcOldAtti) may map both local classes
of the old Global Class and new local classes (see the columns associated to
lcNewt, for example). New global attributes can only map new local Classes
(null mappings in the following table).

So we can say that meanings associated to each global attribute are:

– The meaning of old global attributes have to be enriched with the meanings
of the new local classes mapped by these attributes;

– The meaning of new global attributes have to be set according to the rules
defined before (see 3.2).

lcOld1 . . . lcOldk lcNew1 lcNewt lcNewn

gcOldAtt1
. . . the same mappings as in gcOld

gcOldAttm new mappings
gcNewAtt1

. . . null mappings
gcNewAttp

Table 6. New mapping table example.

b) A global class of the new integrated schema is composed of only new local
classes:

gcNew = {lcNew1,...,lcNewi,...,lcNewn}
This situation describes the case in which the GVV is extended without

interfering with the previous one.
The new global class (gcNew) has a name (gcNewName) and a set of new

global attributes (gcNewAtti), where each new global attribute maps only new
local attributes. The names and meanings of the global attributes are defined
following the rules stated before (see 3.2).

c) A global class of the new integrated schema is composed of more than one
global class of the GVV and at least one local class of the new source we are
integrating.

gcNew = {gcOld1,...,gcOldp,lcNew1,...,lcNewi,...,lcNewn}

In this case the previous GVV is modified; side effects can influence the
applications based on the previous schema. The new global class (gcNew) has a
name (gcNewName) and a set of new global attributes (gcNewAtti).

5 Concluding remarks

In this paper, we presented a methodology for supporting the semi-automatic
building, annotation and extension of a domain ontology obtained by integrating
web documents with the Ontology Builder component of the SEWASIE System.
Talking about the evolution issue and, in particular, the addition of a new source,
we had to face two different problems: the system overload to maintain the built
ontology corresponding to the involved sources, and, the insertion of a new source
that may modify the existing ontology, with a side effect to each application
based on the ontology.

We tried to solve both problems and the most relevant advantages of our
methodology of integrating a new source into a GVV is that the process is less
expensive than starting from scratch and it is done starting from semantically
annotated results of previous integration processes. Possible limitations are:

– mistakes of the previous integration process might propagate to the new
GVV;

– the new GVV is based on the previous one, and so it might not perfectly
represent all the sources.

Acknowledgements

This work is supported in part by the 5th Framework IST program of the Eu-
ropean Community through project SEWASIE within the Semantic Web Action
Line. The SEWASIE consortium comprises in addition to the authors’ organi-
zation (Sonia Bergamaschi is the coordinator of the project), the Universities
of Aachen RWTH (M. Jarke), Roma La Sapienza (M. Lenzerini, T. Catarci),
Bolzano (E. Franconi), as well as IBM Italia, Thinking Networks AG and CNA
(Association of SMEs) as user organizations.

References

1. D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti, G. Malvezzi,
M. Melchiori, and M. Vincini. Information integration: The momis project demon-
stration. In VLDB 2000, Proc. of 26th International Conference on Very Large
Data Bases, 2000, Egypt, 2000.

2. D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The MOMIS ap-
proach to information integration. In AAAI International Conference on Enter-
prise Information Systems (ICEIS 2001), 2001.

3. D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Consistency checking in
complex object database schemata with integrity constraints. IEEE Transactions
on Knowledge and Data Engineering, 10:576–598, July/August 1998.

4. D. Beneventano, S. Bergamaschi, and C. Sartori. Description logics for semantic
query optimization in object-oriented database systems. ACM Transaction on
Database Systems, 28:1–50, 2003.

5. D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. ODB-Tools: A de-
scription logics based tool for schema validation and semantic query optimization
in object oriented databases. In Proc. of Int. Conf. on Data Engineering, ICDE’97,
Birmingham, UK, April 1997.

6. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration
of heterogenous information sources. Data and Knowledge Engineering, 36(3):215–
249, 2001.

7. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing
of heterogeneous data sources. IEEE Transactions on Data and Knowledge Engi-
neering, 13(2), 2001.

8. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: auto-
matic data extraction from data-intensive web sites. In SIGMOD Conference,
2002.

9. B. Everitt. Cluster analysis. Heinemann Educational Books Ltd, 1974.
10. R. Baumgartner S. Flesca and G. Gottlob. Visual web information extraction with

lixto. In the 27th International Conference on Very Large Data Bases (VLDB
2001). Roma, Italy, September, 2001.

11. T. R. Gruber. A translation approach to portable ontology specifications., volume 5.
1993.

12. N. Guarino. Formal ontologies and information systems. In Proceedings of the
International Conference on Formal Ontology in Information Systems (FOIS’98),
Trento, Italy, june 1998.

13. J. Heflin and J. Hendler. Dynamic Ontologies on the Web. In In Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages
443–449. AAAI/MIT Press, 2000.

14. M. Klein and D. Fensel. Ontology Versioning on the Semantic Web. In First Intl’
Semantic Web Working Symposium. 2001, 2001.

15. M.Lenzerini. Data integration: A theoretical perspective. In Lucian Popa, edi-
tor, Proc. of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 233–246, Madison, Wisconsin, USA, 2002.
ACM.

16. Jussi Myllymaki. Effective web data extraction with standard xml technologies.
In WWW, pages 689–696, 2001.

Ontologies : A contribution to the DL/DB
debate.

Nadine Cullot1, Christine Parent3, Stefano Spaccapietra2, and Christelle
Vangenot2

1 LE2I Laboratory, University of Burgundy,
BP 47870, 21078 Dijon Cedex, France
nadine.cullot@u-bourgogne.fr,

2 Database Laboratory, Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland

stefano.spaccapietra@epfl.ch,christelle.vangenot@epfl.ch
3 University of Lausanne, CH-1015 Lausanne, Switzerland

christine.parent@unil.ch

Abstract. The move to global economy has emphasized the need for
intelligent information sharing, and turned ontologies into a kernel is-
sue for the next generation of semantic information services. The push
towards an effective use of ontologies as a means to achieve semantic in-
teroperability is, in our opinion, shifting the focus from purely taxonomic
ontologies to more descriptive ontologies. These would namely provide
agreed descriptions of the data structures representing the complex or-
ganization of objects and links of interest within the targeted domain.
This paper analyzes the requirements for such descriptive ontologies,
and contrasts the requirements to the functionality provided by some
current representative approaches that have been proposed for ontology
management. Selected approaches originate from research in artificial in-
telligence, knowledge representation and database conceptual modeling.
The paper concludes that extending rich semantic data models with sup-
port for reasoning is an interesting alternative to extending description
logics with data management functionality.

1 Introduction

Information sharing, rather than information processing, is what characterizes
information technology in the 21st century. Consequently, ontologies gain in-
creasing attention, as they appear as the most promising solution to enable
information sharing both at a semantic level and in a machine-processable way.
Ontologies by definition provide an encoded representation of a shared under-
standing of terms and concepts in a given domain, as agreed by a community of
people. But ontologies are not all alike. At least three orthogonal criteria may
be used to differentiate among them.

Ontology Focus. Wordnet (http://www.cogsci.princeton.edu/ wn/) is the most
well-known representative of first-generation ontologies that basically provide

2

definitions of terms and are intended to be used as sophisticated thesauri. Their
structure shows terms organized into a subsumption hierarchy (each term con-
veying the definition of a more specialized concept than its parent term), and
linked by other relationships to express synonymy, composition, etc.... This kind
of ontology, usually referred to as taxonomic ontologies, is useful in information-
sharing infrastructures to provide a reference vocabulary for aligning names
denoting data in different data sets. Other ontologies reach beyond terminol-
ogy, defining conceptualizations that include the representation of properties
of concepts and their interrelationships. These ”descriptive” ontologies resem-
ble database schemas, showing concepts interconnected by a variety of semantic
associations to achieve a semantically rich representation of the intended do-
main. An example (out of the many existing ones) is ImMunoGeneTics, an in-
ternational medical ontology (http://imgt.cines.fr). These ontologies are useful
in information sharing to align existing data structures (not just terms) into
an integrated description of the corresponding domain, or, in a top-down per-
spective, to provide patterns for the definition of new, specialized ontologies or
database schemas.

Ontology Scope. The term scope here refers to the intended use of the on-
tology. Ontologies may be designed and used for purely explanatory purposes,
i.e., as a service to enable the understanding of some domain. Such ontologies
usually come without associated instances, as these are at a level of detail whose
representation is most often not relevant. Ontologies may also serve as a means
to actually support some data management services. Such ontologies have as-
sociated instances, stored in either a database or a semi-structured data set in
e.g. a web server. In the latter case, the ontology plays the role of a database
schema in guiding access to the data in the web server. In the former case, the
ontology may either be used just to assist in the design of the database schema
by providing background semantic information, or as an operational component
in the information management architecture, providing access functionality that
is additional to those typically provided by a DBMS. A characteristic exam-
ple of additional functionality is the management of incomplete data. The split
between explanation (non instantiated) and management (instantiated) ontolo-
gies is orthogonal to the split between taxonomic and descriptive ontologies. A
taxonomic ontology serves a data management goal if it contains, for instance,
references to databases where the user may find data corresponding to a given
term or concept, thus facilitating information retrieval. Descriptive ontologies
defined by some standardization body for a given application domain are ex-
planatory. They hold generic abstractions of a domain, not aiming at managing
a specific database. However, descriptive ontologies, looking very much alike a
database schema, are natural candidates for being used for data management.

Ontology Context. Ontologies traditionally convey a single, monolithic con-
ceptualization, supposedly stating the truth, i.e., how the described domain
should be understood. But many different conceptualizations may exist for the
same real word, each one defining a view shared by some user community. Con-
textual ontologies have been proposed to support alternative views of the world.

3

They provide definitions and descriptions that are context-dependent, thus sup-
porting use from inhomogeneous user communities. The advantage of a con-
textual ontology, versus the alternative to have independent ontologies (or a
hierarchy of ontologies), is that in a contextual ontology it is very easy to sup-
port navigation among contexts, i.e. dynamically moving from one context to
another. Another advantage is to have a multi-context vision of the world avail-
able as a single consistent whole. This is particularly important when updating
ontologies is considered and update propagation from one context to another is
desirable.

While the traditional use of ontologies is more on the taxonomic and ex-
planatory side, there is a tangible push to move towards descriptive, and even
management-oriented ontologies, in order to use them as a key component in
data integration frameworks. In such frameworks ontologies do not refer any-
more to arbitrary, abstract perceptions of the real world. They describe some
defined subset of the real world that is actually represented in the stored data.
The increase in similarity between ontologies and database schemas [1] arises
a legitimate question about the appropriateness and effectiveness of using a
conceptual modeling approach (that has proven to be the best to elaborate a
semantically rich description of the data in a database) to describe the conceptu-
alization that is the subject of an ontology. In other terms, could the conceptual
modeling know-how provide an interesting alternative to traditional description
logic (DL) based approaches? This debate is still open. Some strong propos-
als from the database [2] and knowledge representation communities [3] already
challenge the corpus of work more directly framed in the context of description
logic and its reasoning capabilities (DAML+OIL [4]). The purpose of this paper
is to contribute to the debate a detailed analysis of requirements for the descrip-
tion and use of what we believe will become the leading ontology framework,
i.e. descriptive and, in the longer term, management ontologies. The paper also
analyzes differences and complementarities between proposed approaches to on-
tology description and use. We conclude that enhancing conceptual models with
reasoning support may be the best way to make ontologies operational in data
integration frameworks.

The next section briefly introduces selected related work and representative
proposals for ontology management. It also introduces the conceptual model we
propose. Its facilities are illustrated using a simplified example (borrowed from
[2]) of a scientific conference ontology. The same example is used throughout
the paper. Section 3 discusses ontology requirements, focusing on differences
with traditional database requirements. The highlighted issues are detailed in
the sequel of the paper. Section 4 focuses on the comparison of the data models.
Section 5 deals with how instances are handled. Section 6 analyzes constraint
specification and consistency checking. Query languages are discussed in section
7. Some additional features for ontologies are described in section 8, before the
concluding remarks.

4

2 Related work

Interactions between the ontology and conceptual modeling domains is a topic
of rapidly growing interest for both communities, as witnessed by looking, for
instance, at the number of ontology-oriented contributions at the last ER con-
ference on Conceptual Modeling. The present workshop on Semantic Web and
Databases is another clear sign of interest into these interrelationships.

A well-worth-reading starting point when targeting a comparison of models
for ontologies is the paper by D. McGuinness [5], which provides interesting
insights into a historical perspective of description logic developments, explaining
how emerging applications such as those on the web have motivated the use of
description logics.

A. Borgida and R.J. Brachman [6] adopt a conceptual modeling perspective
to discuss ontology modeling issues, looking in particular at object-based as-
pects and DL. They highlight some weaknesses of DL in representing structured
values, some kinds of constraints, and some forms of ”inheritance” (for material-
ization) and meta-information for conceptual modeling. Conversely, they identify
strengths of DL as its specific features to specify primitive and defined concepts,
necessary and sufficient conditions, and its reasoning tools. We pursue the same
comparative analysis by addressing more specifically ontology requirements and
complementing the comparison of the database conceptual models and descrip-
tion logic approaches for modeling with two other issues: Instances handling and
querying.

The comparative analysis of Entity Relationship (ER) models and DL pro-
posed in [7] develops the transformation of ER schemas into knowledge bases.
The chosen description logic, DLR [8], is a generalization of description logic
for n-ary relations. The authors argue that the semantics of ER models can be
captured by DLR. They also address querying issues, showing that DL queries
can only return subsets of existing objects, while database queries may also cre-
ate new objects. Desirable extensions of standard DL queries are discussed. Our
work also focuses on the comparison of conceptual models and DL. We comple-
ment their analysis by adopting the reverse viewpoint: We aim at identifying
desirable extensions of conceptual models to better address ontological issues.
We actually follow the path lead by R. Meersman [1], who argues that methods
and techniques originally developed for database conceptual modeling and large
databases management could be relevant for ontologies.

His DOGMA project is one of those we explicitly discuss in this paper. Indeed,
to substantiate our analysis on trends in ontology management, we have looked
in detail at proposals that we felt were good representatives of the alternative
approaches from the research communities in artificial intelligence, knowledge
representation, and databases.

Artificial Intelligence Approach and Reasoning. Description logics and their
associated inference techniques have been extensively used as formal theories on
which several ontology languages have been defined. We have chosen RACER
[9] to represent this research area, because it has a wide range of applicability
as it includes instance management facilities. RACER is a description logic rea-

5

soning system based on the SHIQ logic [10], [11]. RACER separates the formal
description of the ontology schema (denoted as the TBox) from the description
of individuals (in the ABox). RACER modeling constructs include:

– Concepts. They are atomic types defined by their names. Logical expressions
may be attached to them, thus allowing designers to define 4: a) subsump-
tion hierarchies, e.g. (implies Author Person), b) constraints associated to a
concept, e.g. (implies Author (at-least 1 Writes)), c) stand-alone constraints,
e.g. (disjoint Person Committee Review Paper Topic), and d) a new concept,
using a logical assertion, e.g. (equivalent PCAuthor (and Author Reviewer)).
Concepts defined by a logical assertion are called ”defined concepts”, as op-
posed to the other ones called ”primitive concepts”.

– Roles. They define binary relationships between a domain concept and a
range concept, e.g., roles (Writes: domain Author :range Paper). Roles played
by a concept can be qualified using quantified restrictions (some, all) and
numeric restrictions (at-most, at-least, exactly). Roles may be transitive,
symmetric, and functional. They can have an inverse as well as super-roles.

– Domain of values. Integer and real named domains of values can be defined.
But attributes, i.e. binary links from a concept to a domain of values, cannot
be defined within the schema. Attribute values are dynamically defined and
associated to instances of concepts. Lastly, RACER allows users to define in
an intentional way, i.e. by a logical expression, characteristics of instances.
For example, one can state that paper p100 has been written by exactly one
author: (instance p100 (and Paper (exactly 1 WrittenBy))).

Artificial Intelligence Approach and Knowledge Representation. We chose
KAON [3] as a representative proposal transferring a knowledge representation
know-how into the ontology domain. KAON is an ontology and semantic web
framework allowing the design and management of ontologies. It includes an
ontology modeling language based on RDF(S) with some proprietary extension
and a conceptual query language. KAON supports modularization through the
recursive definition of sub-models. Each sub-model has (similarly to RACER)
two components:

– An ontology structure, holding definitions of concepts, oriented binary re-
lationships between concepts, and attributes. Relationships may be sym-
metric, transitive and have an inverse. Minimum and maximum cardinality
constraints for relationships and attributes may be specified. Concepts and
relationships can be arranged in two distinct generalization hierarchies.

– An instance pool, holding concepts and relationship instances and attribute
values. Specific to KAON is the possibility to have spanning objects, i.e. a
real world entity being represented both as a concept and as an instance.

Database Approach. DOGMA [2] is an ontology engineering framework based
on the ORM (Object-Role-Modeling) conceptual model[12]. ORM is a binary
relationship data model. DOGMA splits the ontology into two parts:
4 Examples refer to the Conference ontology illustrated in Figures 2 and 3 in RACER

(and in Figure 1 in MADS).

6

– The ontology base, holding the data structure. Its definitions may be con-
textualized using a context name.

– A set of ontological commitments. A commitment is a set of integrity con-
straints (e.g., definition of identifiers, cardinalities) that govern the ontology
for its use in a specific application. The idea is that the ontology base holds
generic knowledge about a domain, while its association to a commitment
set specializes the ontology for a given application within the domain.

Our approach to ontology modeling also belongs to the database inspired
track. While DOGMA (as description logics and KAON) organizes the world
as a collection of object tokens associated to properties and interrelated by bi-
nary relationships, we favor a more synthetic view, as supported by complex
object data models (e.g., UML, extended ER models, semantic models). MADS
[13] is such a data modeling framework. MADS is a spatio-temporal conceptual
model that handles complex objects (i.e., objects with a multi-level attribute
structure, where an attribute can be composed of other attributes), n-ary rela-
tionships with attributes, generalization hierarchies, multi-instantiation, as well
as spatial, temporal and contextual features (context is materialized by stamping
definitions, values and instances to express for which context they are relevant
[14]. Both object and relationship types are first class constructs. MADS has as-
sociated data manipulation languages. The MADS framework includes a visual
schema editor, a visual query editor and the associated mappings onto existing
DBMS. It provides users with an integrated environment where they can work
at the conceptual level for both designing and querying the database. Figure 1
uses traditional ER diagrammatic techniques to show a MADS data structure
(without space, time, and contextual features) for our running example about
activities and contributors of a scientific conference.

3 Ontology Requirements

This section holds introductory discussions of the four major components of an
ontology management approach: How the conceptualization is described, how
associated instances are managed, how reasoning is performed, and how data is
queried. The discussion points at similarities and differences between ontology
requirements and requirements for traditional databases. Sections 4 to 7 look in
more detail into each issue.

Data Modeling. As we believe future ontologies will be descriptive rather than
purely taxononmic, we assume the conceptualization includes the definition of
relevant data structures. For instance, Figure 1 can be interpreted as illustrating
an ontology data structure for management of conference reviews. Representing
the knowledge that ”papers are assigned to reviewers” as a data structure show-
ing a relationship type linking the two complex object types defining papers
and reviewers, is semantically richer than embedding the same semantics in the
separate definition of three terms (paper, reviewer, assignment) in a taxonomic
ontology. On the contrary, binary data models à la DOGMA, KAON, and de-
scription logics may provide a good solution for taxonomic ontologies: Concepts

7

Committee

Review

Topic

Paper

Person

Chairs

HasTopic

WritesAssigmentHasReviewed

Member

AuthorReviewer

name

firstnames 1: n list

address

email

firstline
city
zipcode
country

role

Cname

title

SubTopic

Reviewer
name

item score

marks comment
date received

1:3

1:n

0:n

0:n

1:1

0:5
0:n

0:n
HasSubTopic

0:n

IsSubTopic
0:n

0:n list

1:n0:100:10

0:5 1:n list

p#
title

date_received

Tname

cover

Object type Relationship type Generalisation /
Specialization

Attribute
CName

Fig. 1. MADS schema for the scientific conference ontology.

may represent terms and binary links may represent the classic taxonomic re-
lationships, e.g., synonym, homonym, hyponym, holonym. Defining a semantic
data structure is also an extremely efficient support for visualizing in an intel-
ligent and intuitive way how the domain of interest is articulated into its many
concepts. The capability to visualize the structure of a domain has always been
one of the best selling arguments for conceptual models and their acceptance
by users. It also has been concerns of knowledge representation systems [15]. Of
course, this argument is irrelevant if the ontology is automatically built using
some emergent semantic technique, or if the ontology is explored by agents only.

Aiming at expressiveness of concepts for the representation and definition of
data structures, powerful conceptual data models naturally appear as the best
candidate. They have been purposely and carefully developed to enable building
representations that are as rich and as close as possible to human perception.
They have proven to be quite successful with users. The same benefits can be
expected in using them to build ontologies. A number of researchers [16], [17],
[1] have already argued in favor of ”highly intuitive” ontology models with a
”frame-like look and feel” or ”database schema” alike. We support this view-
point. Nevertheless, ontologies may require even higher expressiveness than con-
ceptual models, as, beyond modeling, they aim at supporting reasoning on the
description of the domain of interest. As will be shown hereinafter, this requires
extending current conceptual data models with some additional features.

Instance Handling. Instances always exist in a database (except during the
design phase), the main purpose of a DBMS being to provide efficient services
for storing and handling the instances. As seen in section 1, instances do not

8

necessarily exist in an ontology. While in a database framework there is a clear
separation between the schema (metadata) and the instances (data), and the
schema definition is completed before instances are created, this separation is
not always enforced in ontological frameworks, where instances may be created
anytime. The database approach is normative, in the sense that the database
schema defines how the world is, and instances are accepted only if they fully
comply with the definitions and constraints stated in the schema. The ontology
approach is only partly normative, as it accepts instances as long as they do not
explicitly contradict the knowledge already in the ontology, without requiring
that all expected data being present. When an inference mechanism finds that
an instance should hold a characteristic that is not present, the ontology assumes
that the instance does hold it. In other words, databases work with a closed-world
assumption, while ontology systems apply an open-world assumption.

Reasoning. The ontology world seems to follow a collaborative approach,
where the conceptualization at hand may continuously evolve through updates
from a community of users, without a normative policy or sequence ruling the
process. For example, the specification of a concept (e.g., the Paper object type
in the conference example) may be changed anytime, irrespectively of the fact
that the ontology holds instances of the concept. In the ontology approach, the
specification of a concept defines the condition that its instances must verify. At
any time instances are classified in concepts according to these specifications. If
the specification of the concept or the characteristics of the instance are modified
the classification of the instance is automatically updated. This flexibility is
enabled by the existence of powerful reasoning mechanisms. An even higher
flexibility is provided in ontology approaches that support so-called spanning
objects [18] i.e. objects that are both at the instance and at the type level (these
objects are both source and target of instance-of links). For example in [18], an
Ape may be an instance of the Species type and a type for ape objects. Although
theoretically possible by introducing a meta-schema level, spanning objects are
not supported by database technology, which for pragmatic reasons limits its
interest to the two basic levels, schema and data.

Queries. Querying in databases is used to retrieve data. Queries are expressed
on the schema, which is supposed to be known to users that want to formulate a
query. Ontology users are more prone to start their search for data by wondering
about what information is actually held by the system. These users (or agents)
will first query the ontology schema, to identify what relevant information exists,
and then proceed to query the data to extract the desired information from the
underlying databases.

4 Data Modeling

In the previous section, we have argued that, due to strong similarity between
descriptive ontologies and database schemas, conceptual data models are good
candidates for ontology modeling. In this section we analyze differences between
constructs in conceptual models and in current ontology proposals.

9

Object Structure. Ontology models, as we have seen, adopt a binary (also
termed functional) approach. Objects are mere tokens (i.e., objects with only
an identity and no value) that gain their semantics through binary relationships
with other objects or value domains. The known disadvantage of the approach is
that a real world entity is scattered into its most elementary pieces and the vision
of the thing as a whole is lost. Conceptual models, like MADS, that support
complex (NF2like) object structures can represent each real world entity as a
single object. This greatly reduces the complexity of the schema. Figures 1, 2 and
3 show that, even for an over-simplified example, the difference in readability
is important. The MADS diagram in Figure 1 only needs 7 object types, while
the equivalent DL diagram needs 27 objects types. The latter also doubles the
number of relationship types if its inverse roles have to be represented. The gain
in semantic expressiveness induced by complex objects is worth the additional
challenge in implementation.

Object Identity. There is a general agreement that object instances should
have a unique object identity. Originally, object identity is system defined and
not visible to users. Some ontology approaches (including KAON and RACER)
leave it up to users to define the identity of each object. In our opinion, this
policy hardly scales up to the very large sets of instances that may be expected
in future ontologies.

Generalization Hierarchy. Is-a links, with population inclusion semantics and
property inheritance, and generalization hierarchies (or lattices) are standard
constructs in both ontology languages (where the term subsumption is often
preferred to the term is-a) and conceptual models. Notice that rules for gener-
alization hierarchies in conceptual models may differ significantly from object-
oriented models rules. MADS, for instance, allows an object instance to dynami-
cally gain (or loose) membership in (or from) other classes. MADS also supports
multi-instantiation, i.e. a real world entity can be represented by several instances
belonging to different classes. For example, a person can be both an author and
a reviewer. A generalization hierarchy may similarly be defined on relationship
types. DL models follow a similar approach. However, they have different de-
fault assumptions. In KAON and DL models (e.g. RACER), by default any two
concepts may contain common instances. In conceptual models, like MADS, by
default two object (or relationship) classes with no common ancestor in the gen-
eralization hierarchy (but the root) are disjoint. With the permissive approach
of DL, non-careful users may unwillingly create unwanted multi-instantiations
that are automatically deduced by the inference engine from their assertions.

Defined constructs, views and derivations. The main goal of ontologies, sup-
porting precise definitions of concepts in relation to other concepts, is fulfilled
by the possibility to define concepts using an intentional formula. For example,
based on the Conference ontology, one may want to define new concepts such as
PCPaper (to represent papers submitted by at least one member of a commit-
tee), ChairPerson (persons chairing a committee), and SwissAuthor (authors
from Switzerland). In DL these defined concepts are managed exactly in the

10

Reviewer

Review

Topic

HasTopic 0: n

Writes 1: n

Assigns 0:10
HasReviewed 0: 10

Committee

Person IsChairedb y 1:3

Member

IsMember 0: n

Chairs 0: n

IsPerson 1: 1
IsMemberCommittee 1:1

HasMembers 1: n

Role

HasMemberRole
1:1

IsMemberRoleof
1:1

IsReviewedBy 1:1

IsAssignedTo 0:5

IsWrittenBy 1: n

Concerns 1:1

IsConcernedBy 0:5

IsTopicOf 0: n

IsSubTopic 0: n HasSubTopic 0: n

CommitteeName

HasCommitteeName 1:1

IsCommitteeNameof 1:1

ReviewDate

IsReviewDateof 1:1

HasReviewDate 1: 1

HasTopicName 1:1

IsTopicNameof 1:1

TopicName

Paper

Author

1

2

IsAddressCountryOf 1:1

Address

1

Person

HasPersonName 1:1

IsPersonNameo1 :1

PersonName

IsLocatedAt 1:1Locates1 :1

HasPersonFName 1: n

IsPersonFNameof
1:1

PersonFName Number

HasAddressFLine 1:1

IsAddressFLineOf 1:1 AddressFLine

HasAddressCity 1:1

IsAddressCityOf1 :1

AddressCity

HasAddressZipCode
1:1

IsAddressZipCodeOf 1:1

AddressZipCode

HasAddressCountry 1:1

AddressCountry

3

4

Concept Role Attribute (Concrete Domain Concepts)

AttributeName

Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 2. Scientific Conference Ontology Snapshot with DL formalism (Part1)

11

same way as the other concepts (the primitive ones), which means, among other
things, that they belong to the same generalization hierarchy.

Databases, interested in redundancy-free schemas and data, are not prone
to support defined constructs. Nevertheless, some DBMS provide a somehow
similar functionality through views and derived constructs. Views are relations
(or object classes) defined by a query. Their goal is to provide users with an-
other presentation of a subset of the database in order to make user querying
easier. Views do not belong to the database schema. They form an external
level that acts as an interface for the users. In terms of supporting derivation
mechanisms, some conceptual models allow designers to associate to an object
class (or relationship class or attribute) an expression that automatically gen-
erates the instances of the class (or the values of the attribute). The designer
also explicitly defines the structure of the derived class and its position in the
generalization hierarchy. Only the identities of the instances (the values, in case
of an attribute) are automatically inferred. An example of a derived construct is
a cluster of is-a links defined by a classifying attribute whose value determines
which sub-class each instance belongs to. Another example is MADS support of
derived topological relationships. For instance, a derived inclusion relationship
On may be defined to link two spatial objects classes Parcel and House: Each
time the geometry of a house is inside the geometry of a parcel, the system
automatically generates an instance of the On relationship that links the house
and the parcel.

Let us compare these three mechanisms using the following criteria:

– Which modeling constructs can be defined, derived or can be a view? Descrip-
tion logics support defined concepts and roles. Both relational and object-
oriented DBMS support views for their main construct only: tables or object
classes. MADS supports derived spatial and temporal relationships and de-
rived attributes. Defined object classes could be implemented by queries
whose resulting type would be added to the database schema. Description
logics, RACER, and KAON also support some kind of derived relationships:
Instances of transitive, symmetric, and inverse roles are automatically in-
ferred. DOGMA supports symmetric cyclic relationships.

– What is the status of the defined, derived construct, or view? In DL there is
no difference between defined and primitive concepts except their definition.
In databases the specificity of a derived construct is that it cannot be in-
stantiated directly by users. View is a special construct that does not belong
to the set of constructs of the data model.

– How powerful is the defining formula, derivation expression, or the query
defining a view? As the data model of DL is based upon token objects,
DL formulas have to define identities only, while in databases derivation ex-
pressions and queries for views have to define identities with the associated
structured values. Another difference is that DL formulas define only sets
of existing instances, while queries can be either object preserving (defin-
ing new representations for existing objects) or object generating (creating
new objects with new oids). Examples of such queries for the Conference

12

ontology are, respectively: PCPaper, the set of papers written by at least
a member of a committee, and the new relationship class ReviewerAuthor
that links each author to each of his/her reviewers. Borgida [19] showed that
DL formulas have a limited power compared to databases query languages.
They are equivalent to first order logic with 3 variables. For instance, it is
easy to write a query that finds the papers that have been assigned to one of
their authors (an error of assignment), while in DL it is impossible to write
the equivalent formula. As for derivation expressions, they vary according
to the data model. Often they are predefined and therefore are expressions
with limited power.

In conclusion, one could roughly say that conceptual models are better at de-
signing primitive concepts because they can describe more complex structures,
closer to the real world, and because they support appealing visual diagrams
and design tools. 5 They also support derived constructs whose instances can
be automatically inferred. But, contrarily to models based on DL, they do not
support defined constructs that designers can define by a logical formula without
knowing where they will fit in the generalization hierarchy or even knowing the
generalization hierarchy.

5 Instance Handling

Ontologies may include instances, as databases routinely do, as part of their
domain of interest. To realistically manage large sets of instances, storage and
transaction management mechanisms that support security, concurrency, relia-
bility, query optimization, and scalability are needed. As this is exactly what
a DBMS provides, DOGMA, KAON, and MADS delegate such services to an
underlying DBMS. KAON, for example, stores ontology instances in a relational
database [18]. DOGMA, KAON, and MADS are built as a layer in between
users and the DBMS, providing an ontological or conceptual modeling perspec-
tive on the data. RACER, instead, uses a proprietary file system, which limits
portability and does not provide all of the above services. Instance manage-
ment includes manipulation facilities such as insertion, deletion and updating.
They should be accessible both via some user-oriented assertional language (à
la SQL, for example) and via some API providing one instance at a time access.
Both types of DML are fully supported by a DBMS. RACER provides only el-
ementary facilities. Attribute values as treated as objects, which requires three
operations to define a value for a simple attribute of an instance: (1) creation
of an object-value, (2) assigning the value to the object-value, and (3) linking
this object-value to the instance. DOGMA, KAON, and MADS offer (or plan to
offer) a conceptual DML that corresponds to the data modeling paradigm they
5 In order to achieve readibility and understandability by users, visual diagrams pur-

posely limit their expressive power to a subset of the concepts in the conceptual
model. They are complemented with textual specifications that complete the de-
scription of the schema.

13

use. Users can, as in RACER, load and manipulate instances that obey the rules
of the ontology, without having to consider the representation format used to
store instances.

Ontologies, however, need additional manipulation facilities. DBMS users
are expected to know the schema and issue manipulation requests that conform
to the schema and the associated constraints. For example, to insert a new
instance users have to explicitly specify its type and to provide its value and links.
Moreover the value and links have to obey the format and constraints defined for
this type. Description logics assume users (humans or agents) may be only partly
(if at all) aware of the schema (concepts and role definitions). A DL schema hence
acts like a set of sufficient conditions that define the membership of the instances
to concepts (or roles). Therefore, DL systems allow users to insert a new instance
giving only an intensional definition (i.e., a logical formula) characterizing the
target concept. The reasoner then computes the concepts the instance belongs to.
Finding the most specific concepts an individual belongs to is called realization.
For example, RACER supports the definition of an instance by specifying its
properties instance Mary (some Writes Paper) and realization allows finding its
most specific concepts. The system will deduce that the instance Mary is an
instance of Author. Realization may be much more complex than in this very
simple example.

Database systems are not meant to provide such looseness in instance ma-
nipulation. As already stated, they are normative. They follow the closed world
assumption, stating that only information that is present in the database (or
derivable by explicitly defined derivation rules) is valid. Consequently, they do
not need sophisticated reasoners to infer additional information. DL systems nat-
urally adhere to the open world assumption, which assumes that present data
is just the explicitly known subset of the valid data, and more valid data may
be inferred by sophisticated reasoning. Thus, if an assertion implies a deduced
fact that is consistent with all known assertions and instances, then the fact is
assumed to be true even if it is not present in the instance set. Otherwise stated,
an insertion in DL is always treated as the insertion of incomplete information.
For example, a database will accept the insertion of the above instance Mary in
Author only if it comes with the insertion of (at least) one instance of the Writes
relationship involving Mary. RACER accepts the insertion of the single Mary
instance, deducing that the paper written by Mary is presently unknown (see
[20], for more on this discussion). In addition, Recognition is performed when an
already existing instance of a concept acquires (or loses) a characteristics and
therefore gets (or loses) a new instantiation in another concept. For example,
on the insertion of a new role instance linking a Person instance p to a Paper
instance, RACER infers that p is also an instance of Author.

6 Constraints

In the database world, constraints significantly enrich data description. They
state rules that apply in the real world of interest (e.g., one paper has at least

14

one author) and rules that define the conditions for real world phenomena to
be or not to be of interest for the intended application (e.g., a committee is not
registered in the database before at least one of its members is registered in the
database). Constraints, as other schema definition statements, are understood
in the DB world as normative specifications. They entail consistency-checking
mechanisms, to verify that instances in the database satisfy all constraints. DL
languages are also able to express rules similar to database constraints (e.g.,
min-max cardinalities). However, only some of them actually constrain the in-
stances in the A-Box. For example, a maximum cardinality specification acts as
a constraint as an attempt to create more instances than allowed would result in
an inconsistency that is detected and rejected. On the other hand, a minimum
cardinality specification only acts as a descriptive feature, as a DL system would
accept, e.g., the creation of a paper without an author, simply assuming that the
information in the instance base (the A-Box) is temporarily incomplete. We be-
lieve that the possibility to define normative constraints, as in the DB approach,
is a desirable feature also for ontologies.

There are such a variety of constraints that data models almost necessarily
only include part of them in their constructs. Implicit model constraints rule the
use of modeling constructs and are built-in in the data model, i.e. they act as
syntactic constraints that are automatically enforced by the data management
interface. For instance, in RACER a role definition has to specify a domain and
a range; in conceptual data models a relationship type is only allowed to link
object types, and a relationship instance is not allowed to have pending roles; in
both DL and DB models cycles of is-a links are forbidden. Explicit definition of
constraints is used to describe the semantics of the domain/ontology. According
to the approach, they come in two different ways. 1) Embedded constraints are
expressed using dedicated constructs in the data model. Examples include car-
dinality and identifier specifications (e.g., the NOT NULL and PRIMARY KEY
clauses in relational DBMS), set constraints on groups of roles or is-a links (e.g.,
disjunction, inclusion, cover, partition), and simple integrity constraints (e.g.,
using the CHECK clause in relational DBMS). 2) Integrity constraints are those
that are not directly supported by clauses in the model itself, and thus have
to be explicitly expressed using a complementary technique, such as a generic
declarative language (e.g., first order logic), a generic programming language
(e.g. stored procedures or methods), or triggers. As DL axioms can define a
large range of embedded constraints, DL approaches do not resort to additional
mechanisms for integrity constraints definition. On the contrary, DB approaches
rely on such mechanisms. DL also differs from DB approaches in that DL al-
lows associating a constraint to an instance, while DB considers constraints as
meta-information and always associates them to types (thus constraining un-
der the same rule all instances of the type). In terms of expressiveness of the
language to define constraints, first order logic (FOL) is the closest to full expres-
sive power using a declarative approach. DL languages usually support a more
limited expressive power. For instance, RACER cannot express key constraint
involving multiple attributes and ad hoc constraints such as ”an author cannot

15

review his/her papers”. More expressive DL such as DLR supports this kind of
constraints.

A meta-question about constraints and ontologies is whether constraints
should be included in ontologies at all. Most frequently, constraints are inter-
twined in the T-Box with the data description statements. Meersman and his
group [2] take the opposite view that all constraints should be separated from
data description and defined in a commitment layer. The supporting argument
is that constraints are application specific, while the ontology should be applica-
tion independent. We agree that having a commitment layer is the appropriate
way to handle application-specific semantics. Nevertheless, there are in our opin-
ion constraints that belong to the ontological world, i.e. that form an essential
component in the description of the semantics of things. For instance, the fact
that in a conference management ontology a review of a paper should never be
assigned to one of the authors of the paper is a constraint that is unanimously
agreed upon. It is a constraint that is tightly linked to the semantics of a re-
view (defined as a critical appreciation of a work by a person not involved in
the work). On the contrary, whether a conference committee has one or more
chairpersons varies from one conference to the other. The ontology could state
a 1:N cardinality (to make sure a committee has at least a chair), leaving to the
commitment layer to refine the cardinality to 1:2 or 1:3 or whatever else fits the
conference specific requirements.

Checking the consistency of the set of constraints and checking the consis-
tency between the constraints and the schema are tasks that can be performed
automatically by the reasoners available in description logics. Constraints are
expressed in the same formalism as the other description clauses; hence they
are naturally involved in the inferring. The same functionality is not provided
by current database technology, where applicable reasoning techniques cannot
grasp the semantics hidden in the external language expressions used to define
integrity constraints.

Checking the consistency of schema specifications is also an issue where DL
and databases take different approaches. In databases, it is not possible to val-
idate a schema that does not obey model constraints. As there is no defined
construct, there is no need for sophisticated reasoning in checking the consis-
tency of the schema. Reasoners are necessary in DL to check the consistency
of primitive, defined concepts, and other axioms. They define a valid schema
as a schema such that it is possible to find one instance of the ontology that
has at least one instance in each one of its concepts. While database users can
never actually use an invalid schema, in RACER, for example, users can request
a consistency check anytime and they can continue working on an inconsistent
schema.

7 Ontology Querying

Like databases, ontologies are queried by different categories of users, with dif-
ferent needs:

16

– Ontology administrators, whose role (like DBAs, database administrators)
is to design and maintain the ontology schema and monitor its evolution.
While a DBA is seen as a central authority, ontology creation and evolution
is often seen as a more cooperative activity, distributing the task among
many people. Hence schema querying is likely to be a more intensively used
functionality, with the schema continuously and incrementally growing with
many defined concepts.

– End-users, who will face a large and complex schema that they may not know
well. They also will query the schema to know what is in the ontology. They
may also write mixed queries to access both the schema and the instances.
For example, a user of a geographic ontology describing the various states of
a country may ask for all information (list of properties with their description
and value) about rivers and synonyms of rivers. Therefore, both the schema
and the instance base should be accessible through the same query language,
possibly within the same query.

– Application developers, who need to gain access to the ontology and its
services via an API.

Requirements for instantiated descriptive ontologies include the usual ser-
vices supported by DBMS, namely a generic assertional query language with
associated tools for automatic query optimization. The expressive power, and
its optimization possibilities, of the language are bound to the characteristics of
the associated ontology model. For instance, queries in a language for a binary
model, like those of KAON and RACER, will return types or instances of the
elementary constructs of the model: concepts and binary relationships. On the
other hand, queries on semantic models with structured objects, like MADS, will
return structured instances, i.e. more informative and more condensed results.
Therefore, for descriptive ontologies frameworks, where understanding the data
structure may be a challenge, semantic query languages returning structured
objects are likely to perform better than languages for binary models.

Another requirement is that the same query language should support query-
ing both the schema and the instances in the same way. Models that host the
description and the instances of the ontology within the same structure automat-
ically fulfill this requirement as it is possible in RACER or KAON. For models
that clearly separate the schema from the instances, like database models do, a
solution is to store the schema as instances of a meta-schema described with the
same model as the ontology. Such a solution is currently provided by relational
DBMS that support a data dictionary made up of a set of predefined tables that
describe the tables of the application schema.

Several functionalities should be provided for schema querying. Exploration
of the schema is the first one. When the schema contains concepts defined by
logical formulas, reasoning comes as the second one.

Schema exploration. The query language should allow getting all information
existing in the schema. Examples of such queries could be:

Give the characteristics of a relationship (transitive, symmetric, inverse)
Give the relationships going from (or to) a concept.

17

Queries of this type can be formulated in the RACER language using the
elementary predefined functions that are provided for navigation inside the
schema: describe-concept, describe-role, reflexive?, symmetric?, transitive?, fea-
ture?, role-inverse, role-domain, role-range. KAON also provides similar func-
tions, such as Properties From, Properties To, Domain Concept, Range Concept,
SubConcepts, SuperConcepts.

In MADS, this can be done by defining the schema of the meta-model of
MADS, and querying this meta-base with one of the generic languages of MADS
(visual or textual algebraic). However, for humans a much simpler way to explore
the schema is to visualize and browse it using the MADS schema editor.

Reasoning on the schema. Users of ontologies that contain non-primitive con-
cepts defined by logical formulas need a schema query language with new func-
tions for helping them in their understanding of the defined concepts. Typical
functions of this type are (here by concept we mean any kind of concept, be it
primitive or defined):

Are two concepts equivalent or disjoint? Does a concept (or relationship)
subsume another one? Classify the whole set of concepts. What are the super-
or sub-concepts (at any level) of a concept?

These functions require an inference engine for their evaluation. This justifies
the choice of formal models, such as DL, that have powerful tools to classify
concepts using the subsumption mechanism.

Instances querying. Databases and DL offer complementary functionality
for instance querying. Databases systems usually provide powerful assertional
query languages complemented with efficient query optimization tools. These
languages, like the ones of MADS, support object preserving as well as object
generating queries. They also allow users to define new structures for existing
objects by pruning existing properties or computing new, derived properties.
On the other hand, DL systems support a set of simple functions for accessing
instances and derived facts computed by their inference engines, like the closure
(resp. inverse, symmetry) of the transitive (resp. inverse, symmetric) relation-
ships. Moreover DL systems, like RACER, that allow users to associate logical
formulas to instances, provide a new reasoning function: ”To which most specific
concepts does this instance belong?”

8 Additional Requirements

Up to now we have only discussed traditional requirements as addressed by cur-
rent ontology frameworks. This section highlights some additional features that
we believe will in the short term gain importance for the full development of
ontologies. The first and most evident additional feature is the possibility to
associate temporal specifications to the concepts and roles of an ontology. The
semantics of terms and concepts evolves in time, new terms and new concepts
appear while other become obsolete. It is therefore important that each item
in an ontology be qualified using a temporal specification that says when the
definition of this item is valid. How to define and implement such lifecycle spec-

18

ifications for concepts and roles, as well as time-varying attributes, has been
thoroughly investigated by the temporal database community. Results should
simply be taken over to ontologies. Similar considerations may apply to spa-
tial specifications, well-known in the world of geographical information systems
(GIS). They may describe, for instance, the geographical coverage of a given
term (e.g. ”char” to denote a car holds in Quebec but not in Paris). Moreover,
research in data visualization has shown that ontologies may be displayed as a
concept space, where spatial concepts such as distance, neighborhood, inclusion,
or orientation may fully apply. Spatial information supports storing the position
and topology of concepts in such abstract spaces. Spatial information will also
play an important role for ontologies where geographical aspects are part of the
domain of discourse. To support its description, concepts and techniques may be
borrowed from GIS research. Finally, as we have importance as the actual use
of ontologies becomes practically relevant. The need for context information is
recognized in the ontology literature, but the current status shows limited results
and significant advances may still be foreseen in this domain. How to define a
context, how to analyze interrelationships between contexts, how to character-
ize constraints on contexts, are examples of open research issues. RACER and
KAON currently support none of these additional features. Some extensions of
DL have been proposed for spatial and temporal modeling [21],[22]. DOGMA in-
cludes context information. MADS supports space, time, and context description
and manipulation.

9 Conclusion

Ontologies are promised to a brilliant future. As a consequence, usability criteria
will assess their success. In our opinion, this means that focus will be on more
informative ontologies, showing, in addition to terms and concepts of a domain,
how domain data are semantically structured and interrelated. We termed these
ontologies descriptive, as opposed to first-generation taxonomic ontologies. The
paper investigated requirements for the design and management of descriptive
ontologies, and contrasted the requirements with the functionality currently pro-
vided by database conceptual models. Proper identification of the requirements
has been supported by an analysis of some recent representative proposals for
ontology systems (namely, RACER, KAON, and DOGMA). The rationale for
this work is the close resemblance between requirements for database design
and those for ontology design. We attempted to highlight similarities as well as
significant differences in the approaches. Most differences appear to be linked
to the current state of art in both domains. These ones may disappear thanks
to further research. However, important differences (such as closed versus open
world assumptions) are inherently due to the different goals of ontology and
database services. Ontologies are meant to describe and explain the world, while
databases are meant to describe that part of the world whose representation
has to be managed for some application purpose. Overcoming differences is a
meaningful way to benefit one domain with results from the other domain. Pre-

19

vious work has investigated how to extend description logics to provide more
data semantic services, or how to map description logic specifications into con-
ceptual model specification, and vice versa. Our aim has been to identify the
enhancement that conceptual models would need to make them fit the require-
ments of ontologies. Briefly stated, the necessary enhancements have obviously
to do with supporting reasoning. A major addition is the support of intentionally
defined concepts à la DL. This somehow resembles view definition and queries
in databases, but views are not part of the database schema and queries raise
a number of open issues (e.g., how to place the query object type in the gen-
eralization hierarchy in order to explicit the semantic relationship between the
new type and the existing types). A minor addition is the explicit definition of
the specialization criterion in is-a clusters, so that the system can compute the
appropriate sub-class for an object whose value changes or is first created. More
additions that we feel important to match coming requirements are provision
for spatio-temporal data modeling and context management. We have currently
defined and implemented a conceptual data model, MADS, that supports ad-
vanced data structure, time, space, and context modeling requirements, as well
as query placement to some extent. As a further step towards ontologies, we are
extending the model to support imprecise information, where incompleteness is
seen as a form of imprecision. This is intended to allow building ontology ser-
vices above the conceptual services currently provided by prototypes developed
within the MurMur IST project [23].

References

1. Meersman, R.: Ontologies and Databases: More than a Fleeting Resemblance. In:
OES/SEO Workshop Rome. (2001)

2. Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Ap-
proach. In Meersman, R., Tari, Z., et al., eds.: CooPIS/DOA/ODBASE, Springer-
Verlag, LNCS 2519 (2002) 1238–1254

3. KAON: KAON - The Karlsruhe Ontology and Semantic Web Tool Suite (2003)
http://kaon.semanticweb.org/.

4. Horrocks, I.: DAML+OIL: A reason-able Web Ontology Language. In Jensen, C.,
et al., eds.: EDBT 2002, Springer-Verlag, LNCS 2287 (2002) 2–13

5. McGuinness, D.: Description Logics Emerge from Ivory Towers. In: Proceedings
of the International Workshop on Description Logics, Stanford, CA (2001)

6. Borgida, A., Brachman, R.J.: Conceptual Modelling with Description Logics. In
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
Description Logic Handbook, Cambridge University Press (2002) 349–372

7. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Databases. In Baader,
F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description
Logic Handbook, Cambridge University Press (2002) 462–484

8. Calvanese, D., Giacomo, G.: Expressive Description Logics. In Baader, F., Cal-
vanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic
Handbook, Cambridge University Press (2002) 178–218

9. Haarslev, V., Möller, R.: RACER System Description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: Proceedings of International Joint Conference on Automated
Reasoning (IJCAR’2001), Springer-Verlag (2001) 701–705

20

2

Review

HasReviewMark 1: n

IsReviewMarkOf 1:1

ReviewMarks

HasReviewComment 0: n
IsReviewCommentOf 1:1

 IsMarkItemO f 1: 1

HasMarkItem 1: 1

MarkItem ItemScore
ReviewCommentsNumber

Author AuthorTitle

HasAuthorTitle 1:1

IsAuthorTitleOf 1:1

3

Paper

4

 Number

PaperTitle
HasPaperTitle 1:1

IsPaperTitleOf 1:1

PaperReferenceHasPaperRef 1:1

IsPaperRefOf 1:1

PaperDate

HasPaperDate 1:1

IsPaperDateOf 1:1

Concept Role Attribute (Concrete Domain Concepts)

AttributeName

Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 3. Scientific Conference Ontology Snapshot with DL formalism (Part2)

21

10. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with Individuals for the Description
Logic SHIQ. In MacAllester, D., ed.: Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17). LNAI 1831, Springer-Verlag (2000) 482–496

11. Horrocks, I., Sattler, U.: Optimised Reasoning for SHIQ. In: Proc. of the 15th
European Conference on Artificial Intelligence (ECAI’2002). (2002) 277–281

12. Halpin, T.: Information Modelling and Relational Database Design. (2001)
13. Spaccapietra, S., Parent, C., Zimanyi, E.: Spatio-Temporal Conceptual Models:

Data Structures + Space + Time. In: 7th ACM Symposium on Advances in
Geographic Information Systems (ACM GIS’99). (1999) 26–33

14. Spaccapietra, S., Parent, C., Vangenot, C.: From Multiscale to Multirepresenta-
tion. In Choueiry, B., Walsh, T., eds.: Proceedings 4th International Symposium,
SARA-2000, Horseshoes Bay, Texas, USA, Springer-Verlag, LNAI 1864 (2000)

15. OKBC: OKBC - Generic Knowledge Base Editor (1998)
http://www.ai.sri.com/ gkb/.

16. Fensel, D., Hendler, J., Liebermann, H., Wahlster, W.: Spinning the semantic web,
The MIT Press, Cambridge, Massachusetts (2003)

17. Klein, M., Broekstra, J., Fensel, D., van Harmelen, F., Horrocks, I.: Ontologies and
schema languages on the Web. In D. Fensel, J. Hendler, H.L., Wahlster, W., eds.:
Spinning the Semantic Web, The MIT Press, Cambridge, Massachusetts (2003)

18. Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for
Semantic-Driven Enterprise Applications. In Meersman, R., Tari, Z., et al., eds.:
CooPIS/DOA/ODBASE, Springer-Verlag, LNCS 2519 (2002) 1082–1099

19. Borgida, A.: On the relative expressive power of Description Logics and Predicate
Calculus. In: Artificial Intelligence 82. (1996) 353–367

20. Baader, F., Nutt., W.: Basic Description Logics. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic Handbook,
Cambridge University Press (2002) 43–95

21. Haarslev, V., Lutz, C., Möller, R.: Foundations of Spatioterminological Reason-
ing with Description Logics. In A.G. Cohn, L.K. Schubert, S., ed.: Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR’98). (1998) 112–123

22. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
In: Annals of Mathematics and Artificial Intelligence (AMAI), Vol. 30 No. 1-4,
Kluwer Academic (2001)

23. MurMur: MurMur Consortium - MurMur Project: Multi-representations
and Multiple resolution in geographic databases (2002) Final Report.
http://lbdwww.epfl.ch/e/MurMur.

Efficient RDF Storage and Retrieval in Jena2

Kevin Wilkinson1, Craig Sayers1, Harumi Kuno1, Dave Reynolds2

HP Laboratories
1 1501 Page Mill Road

Palo Alto, CA, 94304 USA
2 Filton Road, Stoke Gifford

Bristol BS34 8QZ United Kingdom
firstName.lastName@hp.com

Abstract. RDF and related Semantic Web technologies have been the recent
focus of much research activity. This work has led to new specifications for RDF
and OWL. However, efficient implementations of these standards are needed to
realize the vision of a world-wide semantic Web. In particular, implementations
that scale to large, enterprise-class data sets are required. Jena2 is the second
generation of Jena, a leading semantic web programmers’ toolkit. This paper
describes the persistence subsystem of Jena2 which is intended to support large
datasets. This paper describes its features, the changes from Jena1, relevant
details of the implementation and performance tuning issues. Query optimization
for RDF is identified as a promising area for future research.

1.0 Introduction

Jena is a leading Semantic Web programmers’ toolkit[1]. It is an open-source
project, implemented in Java, and available for download from SourceForge. Jena
offers a simple abstraction of the RDF graph as its central internal interface. This is
used uniformly for graph implementations, including in-memory, database-backed,
and inferred graphs.

Jena2 is the second generation of the Jena toolkit. It conforms to the revised
RDF specification, has new capabilities and a new internal architecture. A design
principle for Jena2 was to minimize changes to the API. This simplifies migration
from Jena1 to Jena2. This paper describes Jena2 persistent storage; details on other
aspects of Jena2 are available in [2].

The Jena database subsystem implements persistence for RDF graphs using an
SQL database through a JDBC connection. The Jena1 implementation supported a
number of database engines (e.g., Postgresql, MySQL, Oracle) and had a flexible
architecture that facilitated porting to new SQL database engines and experimenta-
tion with different database layouts. Some options included the use of value-based
identifiers (e.g., SHA-1) for inter-table references, use of database procedures, etc.
Jena1 also worked with Berkeley DB.

Among the lessons learned from Jena1 was that database portability was valu-

able to the open source community and this was retained as a goal for Jena2. How-
ever, Jena1 users did little experimentation with schema flexibility. In general, the
default layouts were used. The design focus for Jena2 was performance and scaling.
Although Jena1 performance was quite good, there is room for improvement. It was
felt that performance issues will become more important with the renewed interest
in applying semantic web technology to real-world applications [6]. Jena2
addresses the following performance issues.

Too many joins. The use of a normalized schema requires a three-way join for find
operations.

Single statement table. A single statement table doesn’t scale for large data sets and
cannot take advantage of locality among subjects and predicates.

Reification storage bloat. A naive implementation of the RDF specification stores
four statements for each reification. A more efficient technique is required,
especially since some applications reify every statement. Jena1 provided opti-
mized storage for reified statements but a statement could only be reified once.
Revisions of the RDF specification removed this restriction. The goal for Jena2
was to implement the revised specification with similar or better optimization.

Query optimization. In Jena1, joins for RDQL queries were not pushed-down to the
database engine and were instead performed within the Java layer of Jena.
This paper describes how these performance issues were addressed. The next

section provides an overview of Jena and RDF for readers unfamiliar with those
technologies. More details on RDF are available in [3]. Section 3.0 describes the
Jena database schema. Section 4.0 is a high-level overview of the database sub-
system of Jena2. Section 5.0 addresses query processing. The final sections cover
miscellaneous topics, the status of the implementation and related work.

2.0 Overview of Jena and RDF

2.1 Jena Overview

Jena offers a simple abstraction of the RDF graph as its central internal interface.
This is used uniformly for graph implementations, including in-memory, database-
backed, and inferred graphs. The main contribution of Jena is a rich API for manip-
ulating RDF graphs. Around this, Jena provides various tools, e.g., an RDF/XML
parser, a query language, I/O modules for N3, N-triple and RDF/XML output.
Underneath the API the user can choose to store RDF graphs in memory or in data-
bases. Jena provides additional functionality to support RDFS and OWL.

The two key architectural goals of Jena2 are:
• Multiple, flexible presentations of RDF graphs to the application programmer.

This allows easy access to, and manipulation of, data in graphs enabling the
application programmer to navigate the triple structure.

• A simple minimalist view of the RDF graph to the system programmer wishing
to expose data as triples.
The first is layered on top of the second, so that essentially any triple source

can back any presentation API. Triple sources may be materialized, for example
database or in-memory triple stores, or virtual, for example resulting from inference
processes applied to other triple sources.

An simplified overview of the Jena 2 architecture is shown in Figure 1. Appli-
cations typically interact with an abstract Model which translates higher-level oper-
ations into low-level operations on triples stored in an RDF Graph. There are
several different graph implementations, but in this paper we focus on those which
provide persistent storage.

At an abstract level, the Jena2 storage subsystem need only implement three
operations: add statement, to store an RDF statement in a database; delete state-
ment, to remove an RDF statement from the database; and the find operation. The
find operation retrieves all statements that match a pattern of the form <S,P,O>
where each S, P, O is either a constant or a don’t-care. Jena’s query language,

FIGURE 1. Jena2 Architectural Overview

Application

Model

Other Graphs
(e.g. in-memory)Database Graphs

Graph interface

Model interface

Specialized Graphs

Specialized Graph interface

Property Tables

Database-specific Drivers

RDQL, is converted to a set of find operations in which variables are permitted in
the find patterns. The variables enable joins across the patterns.

A widely used implementation technique [4,5] is to store RDF statements in a
relational database using a single statement table, often called a “triple-store.” This
is a table that stores each RDF statement as a row and has columns for the subject,
predicate and object. Jena1 used this approach but normalized the statement table
so that literals and resources are only stored once. This is described below.

2.2 RDF Overview

The Resource Description Framework (RDF) has rapidly gained popularity a
means of expressing and exchanging semantic metadata, i.e., data that specifies
semantic information about data. RDF was originally designed for the representa-
tion and processing of metadata about remote information sources (referred to as
resources or Web resources), and defines a model for describing relationships
among resources in terms of uniquely identified properties (attributes) and values.
RDF provides a simple tuple model, <S,P,O>, to express all knowledge. The inter-
pretation of this statement is that subject S has property P with value O, where S
and P are resource URIs and O is either a URI or a literal value. RDF and its related
specifications, RDF Schema and OWL, provide some predefined basic properties
such as type, class, subclass, etc.

RDF is characterized by a property-centric, extremely flexible and dynamic
data model. Resources can acquire properties and types at any time, regardless of
the type of the resource or property. This flexibility makes RDF an attractive tech-
nology for the specification and exchange of arbitrary metadata because resource
descriptions are ``grounded'' without necessarily being bound by fixed schemas.

In object-oriented (OO) terms, we might consider RDF resources to be analo-
gous to objects, RDF properties to represent attributes, and RDF statements to
express the attribute values of objects. A key difference between the two communi-
ties is that unlike OO systems which use the concept of a type hierarchy to con-
strain the properties that an object may possess, RDF permits resources to be
associated with arbitrary properties; statements associating a resource with new
properties and values may be added to an RDF fact base at any time.

The challenge is thus how to provide persistent storage for the new RDF data
model in an efficient and flexible manner. A naïve approach might be to map the
RDF data to XML and simply leverage prior work on the efficient storage of XML.
However, the standard RDF/XML mapping is unsuitable for this since multiple
XML serializations are possible for the same RDF graph, making retrieval com-
plex. Non-standard RDF-to-XML mappings are possible, and have been used in
some implementations. However the simpler mappings are unable to support
advanced features of RDF, such as the ability of RDF to treat both properties and
statements as resources, which allows metadata describing these elements to be
incorporated seamlessly into the data model and queried in an integrated fashion.

Many RDF systems have used relational or object databases for persistent stor-
age and retrieval. However, this is not always a good fit and the mapping can be
challenging because the semantics of the underlying database model clash with the
openness and flexibility of RDF. For example, SQL requires fixed, known column
data types; object systems often have restrictions on class inheritance and type
membership (changes).

3.0 Storage Schema

In this section we compare the storage of arbitrary RDF statements between Jena1
and Jena2. We then look at optimizations for common patterns of statements.

3.1 Storing Arbitrary RDF Statements
Jena1. The first version of Jena used two different database schemas. One for rela-
tional databases, and a special one for Berkeley DB. For relational databases, the
schema consisted of a statement table, a literals table and a resources table
(Figure 2). The statement table contained all asserted and reified statements and
referenced the resources and literals tables for subjects, predicates and objects. To
distinguish literal objects from resource URIs, two columns were used. The literals
table contained all literal values and the resources table contained all resource URIs
in the graph. There was no reference counting to reduce overhead. This schema was
very efficient in space as multiple occurrences of the same resource URI or literal
value were only stored once. However, every find operation required multiple joins
between the statement table and the literals table or the resources table.

The Jena1 schema for BerkeleyDB was quite different. It stored all parts of a

Statement Table

Subject Predicate ObjectURI ObjectLiteral
201 202 null 101

201 203 204 null

201 205 101 null

Literals Table

Id Value
101 Jena2

101 The description - a very
long literal that might be
stored as a blob.

Resources Table

Id URI
201 mylib:doc

202 dc:title

203 dc:creator

204 hp:JenaTeam

205 dc:description

FIGURE 2. Jena1 Schema (Normalized)

statement in a single row and each statement was stored three times: once indexed
by subject, once by predicate and once by object.

Comparing the two approaches, it was observed that Jena graphs stored using
Berkeley DB were often accessed significantly faster than graphs stored in rela-
tional databases [8]. While part of this could be attributed to the absence of transac-
tional overheads in BerkeleyDB, our intuition was that most of the speed difference
was because the Berkeley DB schema used a single access method to store state-
ments and that use of a denormalized relational schema might reduce response
times.
Jena2. The Jena2 schema trades-off space for time. Drawing on experience with
Jena1, it uses a denormalized schema in which resource URIs and simple literal
values are stored directly in the statement table (Figure 3).

In order to distinguish database references from literals and URIs, column val-
ues are encoded with a prefix that indicates which the kind of value (codes are not
shown). A separate literals table is only used to store literal values whose length
exceeds a threshold, such as blobs. Similarly, a separate resources table is used to
store long URIs. By storing values directly in the statement table it is possible to
perform many find operations without a join. However, a denormalized schema
uses more database space because the same value (literal or URI) is stored repeat-
edly.

The increase in database space consumption is addressed in several ways.
First, common prefixes in URIs, such as namespaces, are compressed. They are
stored in a separate table (not shown) and the prefix in the URI is replaced by a
database reference. It is expected that the number of common prefixes will be small

Literals Table

Id Value
101 The description - a very

long literal that might be
stored as a blob.

Resources Table

Id URI
201 hp:aResource-

WithAnExtreme-
lyLongURI

FIGURE 3. Jena2 Schema (Denormalized)

Statement Table

Subject Predicate Object
mylib:doc1 dc:title Jena2

mylib:doc1 dc:creator HP Labs - Bristol

mylib:doc1 dc:creator Hewlett-Packard

mylib:doc1 dc:description 101

201 dc:title Jena2 Persistence

201 dc:publisher com.hp/HPLaboratories

and cacheable in memory. Expanding the prefixes will be done in memory and will
not require a database join.

Second, as mentioned earlier, long values are stored only once. The length
threshold for determining when to store a value in the literals or resources table is
configurable. Applications may trade-off time for space by lowering the threshold.
Third, Jena2 supports property tables as described below. Property tables offer a
modest reduction in space consumption in that the property URI is not stored.

Both Jena1 and Jena2 permit multiple graphs to be stored in a single database

instance. In Jena1, all graphs were stored in a single statement table1. However,
Jena2 supports the use of multiple statement tables in a single database so that
applications can flexibly map graphs to different tables. In this way, graphs that are
often accessed together may be stored together while graphs that are never accessed
together may be stored separately (Figure 6). For example, as described below, the
system metadata is stored as RDF statements in its own statement table separate
from user tables. The use of multiple statement tables may improve performance
through better locality and caching. It may also simplify database administration
since the separate tables can be separately managed and tuned.

3.2 Optimizing for Common Statement Patterns

An RDF graph will typically have a number of common statement patterns. One
source of those patterns is the RDF specification itself which defines some types
and properties for modeling higher-level constructs such as bags, sequences and
reification. For example, if object x is a sequence, it will have a type property with
value rdf:Seq and one or more element properties, _1, _2, _3, etc. that specify ele-
ments of the sequence. A reified statement (i.e., a statement about some other state-
ment) has a type property with value rdf:Statement and three properties, rdf:subject,
rdf:predicate, rdf:object for values of the statement’s subject, predicate and object.

The other source of common patterns is the user data. Applications typically
have access patterns in which certain subjects and/or properties are accessed
together. For example, a graph of data about persons might have many occurrences
of objects with properties name, address, phone, gender that are referenced
together. Using knowledge of these access patterns to influence the underlying
database storage structures can provide a performance benefit. Techniques for
detecting patterns in user data and in RDF query logs are reported in [16].

Jena1. In Jena1, the commonly-occurring case of reified statements was handled as
a special-case. Rather than storing four separate triples for each reified statement, it
stored the reified subject, predicate and object in the regular statements table, with
two additional columns to indicate its reified state and to store a statement identi-
fier. Since a statement had only one identifier, it could only be reified once. For

1. In Jena1 and Jena2, tables include a column for the graph identifier; this is not shown.

Jena2, changes were required to conform with the revised RDF specification that
allows multiple reified instances of any statement.
Jena2 Property Tables. Jena2 will provide a general facility for clustering proper-
ties that are commonly accessed together. A Jena2 property table is a separate table
that stores the subject-value pairs related by a particular property. A property table
stores all instances of the property in the graph, i.e., that property does not appear in
any other table used for the graph. For properties that have a maximum cardinality
of one, it is possible to efficiently cluster multiple properties together in a single
table. A single row of the table would store those property values for a common
subject. For example, in Dublin Core, it may be beneficial to create a property table
for the three properties dc:title, dc:publisher, dc:description if these properties are
frequently accessed together. The use of such a property table for the data in
Figure 3 is presented in Figure 4.

Multi-valued properties may be clustered or may be stored in a separate table.
For example, dc:creator might be stored in a multi-valued property table containing
two columns, one for the subject and one for dc:creator. Alternatively, it might be
stored with the same property table as title, publisher and description although this
may be less efficient if it results in many null-valued columns for a row. At first
glance, it may seem that multi-valued property tables offer little benefit. However,
there may be benefits to clustering values if they are frequently accessed together,
e.g. a set of values that is searched as a lookup table. Note that property tables offer
a small storage savings because the property URI is not stored in the table, and for
clustered property tables, the subject is only stored once.

For some properties, the datatype of the object value will be fixed and known.
It may be specified as a property range constraint. Property tables can leverage this
knowledge by, when possible, making the underlying database column for the prop-

erty value match the property type1. This may enable the database to better opti-
mize the storage and searching of the column.

Jena 2 Property-Class Tables. A property-class table is a special kind of property

FIGURE 4. Dublin Core Property Table

Statement Table

Subject Predicate Object
mylib:doc1 dc:creator HP Labs - Bristol

mylib:doc1 dc:creator Hewlett-Packard

DC Properties Table

Subject Title Publisher Description
mylib:doc1 Jena2 - 101

201 Jena2 Persistence com.hp/HPLaboratories -

table that serves two purposes. It records all instances of a specified class, i.e.,
resources that have that class. It also stores properties of that class, i.e., each prop-
erty in the table must have the class as its domain. Thus, a property-class table has
two or more columns: one for the subject resource, a second boolean column indi-
cating if the subject has been explicitly asserted as a class member (as opposed to
inferred as a member), and zero or more columns for property values.

It is worth noting that Jena2 implements reification as a property-class table
(Figure 5). The properties are rdf:subject, rdf:predicate, rdf:object and the class is
constrained to be rdf:Statement. The subject of the property-class table is the URI
that reifies the statement. Storing a reification this way saves space compared to the
alternative of explicitly storing the four statements of a reification. Note that par-
tially reified statements are easily supported.

Applications specify the schema for a graph, i.e., the property, property-class
and statement tables at graph creation time through the configuration meta-graph.
To simplify the implementation, once defined, the table configuration cannot be
altered. However indexes may be added or removed. In the future, some limited
changes to the table configuration may be enabled.

4.0 Jena2 Persistence Architecture

An overview of the Jena2 persistence architecture was presented in Figure 1. In this
section, we describe the implementation of that architecture, including the special-
ized graph interface that implements RDF sub-graphs and the database drivers that
access the database on their behalf.

4.1 Specialized Graph interface

The Jena2 persistence layer presents a Graph interface to the higher levels of Jena,
supporting the usual Graph operations of add, delete and find (Figure 6). Each logi-
cal graph is implemented using an ordered list of specialized graphs; each of which
is optimized for storing a particular style of statement. For example, in the figure
the first logical graph is implemented using three specialized graphs: one optimized
for reified statements, another optimized for ontology triples and a third which han-

1. Not all XSD types correspond to an SQL datatype.

FIGURE 5. Reification as a Property-Class Table

Reified Statement Table

StmtURI Subject Predicate Object Type
mydir:alice mylib:doc1 dc:title Jena2 rdf:Statement

mydir:bob mylib:doc2 - Jena2 -

dles any remaining triples.
An operation on the entire logical graph, such as add statement, delete state-

ment or find, is processed by invoking add, delete, find on each specialized graph,
in turn. The results of the individual operations are combined and returned as the

FIGURE 6. Graphs Comprise Specialized Graphs Over Tables

Logical Graph 2

Specialized Graph 1

Optimized for
ontology triples

Specialized Graph n

Handles any triple

Database tables

Property Table 1 (Optimized for reification
triples)

Property Table 2 (Optimized for ontology
triples)

Standard Triple Table 1

Property Table M

Standard Triple Table 2

Standard Triple Table N

Logical Graph 1

Specialized Graph 1

Optimized for
reification triples

Specialized Graph 2

Optimized for
ontology triples

Specialized Graph n

Handles any triple

result for the entire graph.
Note that this process can be optimized because, in certain cases, an operation

can be completely processed for the entire graph by one specialized graph. Thus,
the operation need not be invoked on the remaining specialized graphs. For exam-
ple, a specialized graph that stores every statement with a property of dc:title can
process all add and delete operations that reference dc:title and can fully satisfy any
request to find all such properties. To support this optimization, each specialized
graph operation returns a completion flag to indicate if the operation has been com-
pletely processed and the ordering of the specialized graphs is kept constant.

In the case of a find operation, an additional optimization, which the special-
ized graphs permit, is to evaluate the find on each graph in a lazy fashion; using
resources from later specialized graphs only if the application is still hungry after
consuming results from earlier graphs.

Each specialized graph maps the graph operations onto appropriate tables in
the database. In the present implementation, there is a many-to-one mapping
between specialized graphs and database tables. In some cases, this allows the over-
head of each database table to be amortized across several graphs.

4.2 Database Driver

The database driver provides an abstract storage interface that insulates the special-
ized graphs from differences in how database engines support blobs, nulls, expres-
sions, table and index creation, etc. There is a generic driver implementation for
SQL databases and engine-specific drivers for Postgresql, MySQL, Oracle, etc. The
engine-specific drivers override the generic methods as necessary, e.g., for different
quoting conventions or treatment of blobs.

The driver is responsible for data definition operations such as database initial-
ization, table creation and deletion, allocating database identifiers. It is also respon-
sible for mapping graph objects between their Java representation and their
database encoding. For data manipulation, the drivers use a combination of static
and dynamically generated SQL. The static SQL is used for fixed, predefined oper-
ations such as inserting a triple in a graph or the various forms of the find operation.
For access to property-class tables and for RDQL queries, the drivers dynamically
generate SQL select statements. To reduce the overhead of query compilation, the
driver layer maintains a cache of prepared SQL statements.

The driver uses a storage abstraction that is designed to be mapped to other
persistent stores. Non-SQL drivers are also possible. In the future, we plan to sup-
port a Berkeley DB driver and a native-Java persistent store.

4.3 Configuration and Meta-graphs

In Jena1, database configuration parameters and options were specified in a config-
uration file of property-value pairs that was read when initially connecting to the
database. In Jena2, the files are not used. Instead, configuration parameters are

specified as RDF statements. This is analogous to storing metadata for relational
databases in tables. A graph containing configuration parameters may be passed as
an argument when creating a new persistent graph. Jena2 provides default graphs
containing the default configuration parameters for all supported databases.

Associated with each Jena2 persistent store is a meta-graph, a separate, auxil-
iary RDF graph containing metadata about each logical graph. This auxiliary graph
includes the configuration parameters and options mentioned above as well as other
metadata such as the date the database was formatted, the version of the driver, a
list of graphs stored in the database, the mapping of graphs to tables, etc. The meta-
graph may be queried just as any other Jena graph but, unlike other graphs, it may
not be modified and it does not support reification.

The default schema for a graph is a statement table and a reified statement
table, implemented as a property-class table. The user-provided meta-graph may
specify that graphs share tables. The meta-graph may also specify additional prop-
erty, property-class tables and indexes. Parameters such as the threshold size for
long literals and resources are also specified as statements within the meta-graph.

5.0 Jena2 Query Processing

There are two forms of Jena querying. The find operation returns all statements sat-
isfying a pattern. A find pattern has the form (S,P,O) where each element is either a
constant or a don’t-care. An RDQL query [17] is compiled into a conjunction of
find patterns that may include variables to specify joins. It returns all possible valid

bindings of the variables over statements in the graph1.
The addition of property tables significantly complicates query processing.

Consider iterators. Unlike a statement table where each row corresponds to a single
RDF statement, an iterator over a property table may need to expand a row into
multiple statements and add URIs for properties that are not explicitly stored. In
addition, columns in a property table can be null.

However, the major complexity occurs when a query references an unknown
property, i.e., where the property is a don’t-care or a variable that will be bound
when the query is processed. These cases are discussed below.

5.1 Find Processing

In Jena1, a find pattern was evaluated with a single SQL select query over the state-
ment table. In Jena2, this has to be generalized because there can be multiple state-
ment tables for a graph. To evaluate a pattern in Jena2, the pattern is passed, in turn,
to each specialized graph handler for evaluation, stopping when the completion flag
is set. The results are concatenated and returned to the application. This handles the

1. Querying over inferred graphs is not addressed here.

case when the pattern contains an unspecified property, i.e., a don’t-care (note that
find operations do not have variables).

Currently, each specialized graph issues a separate database query for the pat-
tern. We plan to investigate if a single database query over all specialized graphs
would be more efficient. For example, suppose the pattern is (*,*,*), which
retrieves all statements, and suppose the graph has two tables, a statement table and
a reified statement table. Rather than two separate queries, the following single
SQL query could be used to process the pattern.

Select t.subject, t.predicate, t.object from stmt_table t
Union
Select r.URI, “rdf:subject”, r.subject from reif_table r

where r.subject is not null
Union
Select r.URI, “rdf:predicate”, r.predicate from reif_table

r where r.predicate is not null
Union
Select r.URI, “rdf:object”, r.object from reif_table r

where r.object is not null
Union
Select r.URI, “rdf:type”, r.type from reif_table r where

r.type is not null

Such queries can quickly become unwieldy for complicated patterns and sev-
eral statement tables and may cause challenges for query optimizers. In addition, it
is not clear that a single, large union query is more efficient that the alternative of
issuing two separate queries. With the single, union query, rows in the reification
table are read four times.

5.2 RDQL Processing

In Jena1, an RDQL query is converted into a pipeline of find patterns connected by
join variables. The query is then be evaluated in a nested-loops fashion in Jena by
using the result of a find operation over one pattern to bind values to variables and
then generating patterns for new find operations. It would be more efficient if the
join could be pushed into the database engine for evaluation.

This is a goal of Jena2 query processing, i.e. converting multiple triple patterns
into a single query to be evaluated by the database engine. A full discussion of
query processing is beyond the scope of the paper. In this section, we discuss two
simple cases and mention the difficulties for the general case.

For the first simple case, assume that the find patterns for a query reference
only the statement table, i.e., it can be determined a priori that statements in the
property tables match none of the patterns. As mentioned above, a single pattern
can be completely evaluated by a single SQL query over the statement table. To
evaluate multiple patterns, it is sufficient to associate a table alias with each pattern
and perform a join across the aliases for linking variables in the find patterns. For

example, consider an RDQL query to get the authors of a paper. It requires two pat-
terns, each of which has an associated SQL evaluation expression.

Pattern 1: (Var1, dc:title, “Jena2”)
Pattern 2: (Var1, dc:creator, Var2)

Select p1.subject, p2.object
from stmt_table p1, stmt_table p2
where p1.predicate = “dc:title” and p1.object=“Jena2” and

p2.predicate=”dc.creator” and p1.subject = p2.subject

The second simple case occurs when all patterns can be completely evaluated
by a single property table. The interesting thing about this case is that it is possible
to eliminate joins if the patterns reference single-valued properties clustered
together. For example, suppose there is a clustered property table for dc:title and
dc:creator (assume creator is single-valued here). Then, the two patterns in the pre-
vious example require only a single table alias and can be evaluated without a join.

Select p1.subject, p1.creator from dcPropertyTable p1
where p1.title=“Jena”

When the find patterns for a query apply to multiple tables, it is more difficult
to construct a single SQL query to satisfy all patterns. This presents the same issues
as generating a single SQL query for a find operation. The current approach in
Jena2 is to partition the patterns into groups, where each group contains patterns
that can be completely evaluated by a single table, plus one additional group con-
taining patterns that span tables. A SQL query is then generated for the former
groups and the latter group is processed using the nested loops approach as in
Jena1.

In Jena2, there are three cases in which a pattern may span tables. First, the
property may be a don’t-care in which case all tables must be searched. Second, the
property may refer to an unspecified class, i.e., the property is rdf:type but the
object value (the class) is not specified. In this case, it is impossible to know which
property table may contain values for the pattern. Third, the property may be a vari-
able. This is the most interesting case as it corresponds to table variables in rela-
tional database querying processing, i.e., the table name is unknown until the query
is processed. This is a difficult query processing problem.

Finally, a feature of Jena2 is that queries may span graphs. This is done by
specifying the graph to which a pattern applies. If the graphs reside in the same
database instance, it is possible to optimize those query patterns as if they were all
part of the same graph. If the graphs reside in different instances or different data-
base engines, no attempt is made to optimize the query and the basic nested-loop
approach is applied.

6.0 Miscellaneous Topics

Jena2 Performance Toolkit. To explore various layout options and understand

performance trade-offs, a set of Jena utility programs are under development. The
first is an RDF synthetic data generator that generates statements for a specified
number of classes and instances. Uniform and skewed data distributions can be
generated as well as predefined reference patterns for properties, such as trees (for
taxonomies, ancestor relations, etc.).

The second tool is a benchmark suite to measure the effectiveness of Jena2
enhancements and to compare different database layouts. It is designed as a general
framework that can be used to make comparative runs of an arbitrary set of Jena
programs. The third tool is an RDF data analysis tool that, when applied to a set of
RDF statements, suggests potentially beneficial property and property-class tables
to store the statements [16].

Jena Transaction Management. In Jena1, the underlying database may or may
not support transactions. Consequently, all Jena API methods were atomic to ensure
database consistency. In addition, transaction begin, commit and abort methods
were available to declare explicit transactions when desired. Jena2 provides the
same capabilities. However, there is an interesting case in which Jena cannot ensure
database consistency. The Jena2 query handler supports queries across graphs. If
the graphs are stored in separate databases, then a consistent read-set for the query
cannot be guaranteed because a Jena2 transaction applies to a single database con-
nection.

In principle, it should be possible to open an XOpen/XA distributed transaction
connection to the other data source to ensure consistency. However, in the open
world of the semantic web, the common case is that data sources do not support
transactions, let alone the XA protocol. This suggests that a richer transaction inter-
face for Jena2 is needed and it remains future work.

Bulk Load. A goal of Jena2 was to significantly reduce the time to load persistent
graphs compared to Jena1. This is a critical issue if RDF is to be applied to very
large datasets. The use of a denormalized schema helps address this problem since a
typical Jena2 add operation updates fewer tables than Jena1. Jena2 also includes
support for JDBC2 batch operations which enable multiple JDBC statements to be
passed in one call to the database engine. The value of batching depends on the
level of optimization within the database engine but in any event it reduces the
number of database calls significantly.

7.0 Status and Future Work

Performance Notes. Preliminary performance measurements indicate that the
denormalized schema of Jena2 is faster than the normalized schema of Jena1, twice
as fast for many operations. The results of one simple retrieval experiment are pre-
sented in Table 1. The test retrieved a single, 200-byte property value for 1000 ran-
domly selected objects. The test was run under two configurations. The
denormalized configuration stored the property value directly in the statement

table. The normalized configuration reduced the long literal threshold (see Section
3.1) to 100 bytes which caused the property value to be stored in the literals table.

Thus, retrieving the property value in the denormalized configuration requires
two retrievals, one for the statement table and a second for the literals table while
the denormalized case requires only one. Each configuration was run multiple
times with different random seeds and the result of the first and final run are pre-
sented. The times are in milliseconds and the tests were run using MySQL under
WinXP on a recent generation PC workstation with 1.5GB RAM.

The large reduction in run time for the initial run compared to the final run we
attribute to hardware cache effects. For the warm run, as expected, the denormal-
ized retrieval is twice as fast as the normalized retrieval. If the schema were com-
pletely normalized so that the subject and predicate were also stored in separate
tables as was done in Jena1, we would see an even greater speed-up for the denor-
malized schema. A more systematic study will be done upon completion of a Jena

performance toolkit. Similarly, the database size increase due to the denormalized
schema has not been studied pending impletion of URI prefix compression.

Next we provide some preliminary results that show the value of property-
class tables for reification. A synthetic database of 10,000 reified RDF statements
was generated and stored in two different formats. In the first case, the reified state-
ment was stored in an optimized form as a property-class table. In the second case,
the reified statement was stored unoptimized as RDF triples, i.e., each reified state-
ment was stored as four RDF statements. Consequently, the first table contained
10,000 rows while the second table contained 40,000 rows.

Then a simple test program randomly selected a reified statement and retrieved
the four reification triples for that statement (recall that on retrieval, the property-
class table converts each table row to a set of triples). Each test was run four times
with different random number seeds and three different test sizes were run of 200,
1000, 5000 retrievals. The results are presented in Table 2. As before, the times are
in milliseconds and the tests were run using MySQL under WinXP on a recent gen-
eration PC workstation with 1.5GB RAM.

Our expectation was that the optimized format would perform anywhere
between one and four times faster than the unoptimized form since it only needs to
invoke the database engine once to get all four triples whereas the unoptimized for-
mat makes four calls. For a small number of retrievals, the optimized format shows
a large improvement between the first and fourth run. We attribute this to caching
effects that decrease with larger numbers of retrievals. It is interesting to see that
the speed-up for large numbers of retrievals exceeds our expectations. This may be

TABLE 1. Retrieval Times for Normalized vs. Denormalized Literal

Number of Retrievals Normalized Denormalized Speed-up

1000 (initial run) 3270 2850 1.2

1000 (final run) 840 420 2.0

due to database caching effects. Since the optimized table is smaller, it is possible to
cache a larger percentage of the entire table which reduces the number of relatively
slow disk seek operations.

A comprehensive study of RDQL query processing has not been done. Some
preliminary analysis indicates that the Jena2 algorithm is a modest improvement
over the Jena1 nested-loops approach. The Jena1 algorithm works quite well for
queries with high selectivity since such queries require few nested find operations.
For such queries, Jena1 and Jena2 perform about the same. Jena2 performs better
than Jena1 on queries which join a large number of tuples.

Future Work. Currently, Jena2 stores all literals as strings. An important enhance-
ment for typed literals will be to store them as native SQL types. This will enable
inequality comparisons and range queries to be processed within the database
engine. This is future work.

A major goal of Jena2 is support for OWL and reasoning. Now that this is
available, it will be interesting to explore how the persistence layer can better sup-
port these capabilities, e.g. performing transitive closure within the database.

We are presently investigating caching strategies to improve performance. One
approach is to implement the caching inside the persistence layer using the special-
ized graph interface. An alternative is to implement caching for arbitrary logical
graphs. The latter provides a convenient general-purpose solution, while the former
may make use of intimate knowledge of the database to improve performance. Our
initial caching algorithm is to implement a write-through cache which holds state-
ments with commonly-used subjects. If the cache holds one statement with sub-
ject=X then it has every statement with subject=X. Currently, the cache assumes
exclusive access to that subject to avoid cache consistency issues due to conflicting
updates from other Jena applications. However, such exclusive access appears to be
a common case. This style of cache has previously been suggested by others with
experience in using RDF with Jena1 [11] and we hope will prove to be a good
match for common application usage patterns. Testing and analysis is underway.

8.0 Related Work

A good introduction to RDF storage subsystems and a comparative review of

TABLE 2. Retrieval Times for Four Triples of a Reified Statement

Number of Retrievals Optimized Unoptimized Speed-up

 200 (initial run) 1000 1860 1.8

 200 (final run) 270 1470 5.4

1000 (initial run) 1330 7380 5.5

1000 (final run) 700 6970 10.0

5000 (initial run) 4220 34380 8.1

5000 (final run) 3470 34270 9.9

implementation is available in [4,5]. We do not attempt to duplicate such a survey
here. However, if we compare the Jena2 persistent store to some of these systems
along the dimensions of database schemas, architecture, and system functionality,
then we can better characterize the strengths and limitations of our approach.

The Jena2 schema design is unique in that it supports two basic schema types:
both a denormalized schema used for storing generic triple statements as well as
property tables to store subject-value pairs related by arbitrarily specified proper-
ties. To the best of our knowledge, no other system supports the generation of prop-
erty tables based on arbitrary properties; other systems are strictly schema-specific.
Jena2 uses the arbitrary property tables to implement a novel architecture where the
statements associated with a given graph are stored in multiple specialized sub-
graphs. This architecture enables the Jena2 query processor to effectively treat the
subgraphs as data partitions and provides an efficient implementation for reifica-
tion.

Most systems (including KAON [9,], Parka Database[13], and rdfDB[14]),
support only a fixed set of underlying tables that implement a (non-schema-spe-
cific) generic store. This means that the storage mechanism cannot adapt to the data
characteristics, impacting scalability.

ICS-FORTH’s RDF Suite [10] supports both generic stores as well as automat-
ically-generated schema-specific Object-Relational (SQL3) schema definitions.
However, unlike Jena2, RDF Suite relies on schema specifications to create the
specialized tables; it doesn’t support arbitrary property tables. Similarly, the Ses-
ame [15] system creates one specialized table per class. Tightly coupling the table
layout to schema structure can facilitate inferencing by allowing the systems to
exploit the explicit schema relationships, but it also means that the tables must be
rebuilt whenever the schema structure changes. This forces the storage system to
forfeit RDF’s unique support for flexible dynamic schema restructuring; Jena2 is
not subject to this limitation.

Insofar as the schema-specific tables partition the stored data, such schema-
specific storage resembles the Jena2 notion of specialized subgraphs. However,
because these systems tightly couple the subgraphs with the schemas, they can only
partition data according to its syntactic structure; they cannot create subgraphs
based on other factors. The Storage and Inference Layer (SAIL) [15] provides lay-
ered interfaces to Sesame modules that stack and allow actions to be passed
between them until handled. However, because it based upon Sesame, the SAIL
database schema is class-specific, and thus subject to the limitations listed above.

To the best of our knowledge, no other RDF system optimizes storage for reifi-
cation in the style of Jena2. The notion of property-class tables appears to be new in
RDF stores although it is commonly used in object and functional database sys-
tems.

9.0 Conclusions

The Jena2 persistence layer supports application-specific schema while retaining
the flexibility to store arbitrary graphs. The notion of property-class tables appears
to be new and should be beneficial for query languages that expose higher-level
abstractions to applications. However, the mixing of property tables and statement
tables in a graph database complicates query processing and optimization. More
work is needed on efficient algorithms for this case.

Acknowledgements

The first three authors are new to the Jena effort and wish to thank the rest of the
Jena team, which includes the forth author, for their help and for allowing us to par-
ticipate in its development. The rest of the Jena team includes Jeremy Carroll, Ian
Dickinson, Chris Dollin, Brian McBride and Andy Seaborne. For the work in this
paper, we particularly thank Chris Dollin and Andy Seaborne for being so generous
with their time.

References
1. B. McBride Jena IEEE Internet Computing, July/August, 2002.

2. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, The Jena
Semantic Web Platform: Architecture and Design, HP Laboratories Technical Report
HPL-2003-146.

3. T. Berners-Lee et al. Primer: Getting into RDF & Semantic Web using N3, http://
www.w3.org/2000/10/swap/Primer.html

4. D. Beckett, SWAD-Europe: Scalability and Storage: Survey of Free Software / Open
Source RDF storage systems, http://www.w3.org/2001/sw/Europe/reports/
rdf_scalable_storage_report/

5. D. Beckett, J. Grant, SWAD-Europe: Mapping Semantic Web Data with RDBMSes,
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/

6. T. Berners-Lee, Web Services and Semantic Web, keynote speech at World Wide Web
Conference, 2003, http://www.w3.org/2003/Talks/0521-www-keynote-tbl/

7. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle, The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases, 2nd Intl Workshop
on the Semantic Web (SemWeb’01, with WWW10), pp. 1-13, Hongkong, May 1, 2001.

8. D. Reynolds, Jena Relational Database Interface – Performance Notes, in Jena 1.6.1
download: http://www.hpl.hp.com/semweb/download.htm

9. KAON - The Karlsruhe Ontology and Semantic Web Tool Suite, http://kaon.seman-
ticweb.org/

10. J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A Generic Architecture for Stor-
ing and Querying RDF and RDF Schema PDF, First International Semantic Web Confer-
ence (ISWC’02), Sardinia, Italy, June 9-12, 2002.

11. D. Banks, personal communication.

12. The ICS-FORTH RDFSuite: High-level Scalable Tools for the Semantic Web. http://
139.91.183.30:9090/RDF/

13. PARKA-DB - A Scalable Knowledge Representation System.

14. http://www.guha.com/rdfdb/internals.html

15. Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. http:/
/sesame.aidministrator.nl/publications/del10.pdf

16. L. Ding, K. Wilkinson, C. Sayers, H. Kuno, Application-Specific Schema Design for
Large RDF Datasets, HP Laboratories Technical Report HPL-2003-170.

17. A. Seaborne, An RDF NetAPI, , HP Laboratories Technical Report HPL-2002-109.

An Indexing Scheme for RDF and RDF Schema
based on Suffix Arrays

Akiyoshi MATONO1, Toshiyuki AMAGASA1, Masatoshi YOSHIKAWA2, and
Shunsuke UEMURA1

1 Graduate School of Information Science, Nara Institute of Science and Technology
8916–5 Takayama-cho, Ikoma-shi, Nara 630–0192, Japan
{akiyo-ma,amagasa,uemura}@is.aist-nara.ac.jp

2 Information Technology Center, Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi 464–8601, Japan

yosikawa@itc.nagoya-u.ac.jp

Abstract. The Semantic Web is a candidate for the next generation of the World
Wide Web. It is anticipated that the number of metadata written in RDF (Resource
Description Framework) and RDF Schema will increase as the Semantic Web be-
comes popular. In such a situation, demand for querying metadata described with
RDF and RDF Schema will also increase, and therefore effective query retrieval
of RDF data is important. To this end, we propose an indexing scheme for RDF
and RDF Schema. In our (proposed) scheme, we first extract four kinds of DAGs
(Directed Acyclic Graphs) from an RDF data, and extract all path expressions
from the DAGs. Then, we generate four kinds of suffix arrays based on the path
expressions. Using the indices, we can achieve efficient processing of query re-
trievals on RDF data including schematic information defined by RDF Schema
(for example, classes and/or properties).

1 Introduction

The Semantic Web [1, 2] has emerged as the next generation of the World Wide Web.
In the Semantic Web, human-to-machine and machine-to-machine interactions are ex-
pected to become more intelligent from the wealth of metadata associations between
resources on the Internet. The key difference between the current Web and the Semantic
Web is the quality and quantity of metadata. Currently available metadata are insuffi-
cient, in terms of quality and quantity, for the purposes of advanced processings. The
Semantic Web, on the other hand, makes it possible to perform high-level processes,
such as reasoning, deduction, and semantic searches, to make the best use of metadata
associated with web resources.

In the Semantic Web, RDF (Resource Description Framework) [3] and RDF Schema
[4] are commonly used to describe metadata. RDF is a framework to describe data
and their semantics, and is composed of the RDF model and RDF syntax. In the RDF
model, statements are used to describe relationships between pairs of terms. A state-
ment is called a triple, because a statement is comprised of three elements: a resource, a
property and a value. The value can be either literal or resource, and thus complex infor-
mation can be represented as a set of statements, such as a form of directed graphs. RDF

2 A. Matono et al.

syntax is a specification to serialize RDF statements as XML (Extensible Markup Lan-
guage) data. RDF Schema is the schema language for RDF used to specify schematic
information, such as definitions of resources, properties and classes.

In the near future, the quantity of metadata represented by RDF is expected to in-
crease significantly as the Semantic Web comes into wide use. We expect that RDF
databases will become important as an efficient means of access to massive meta-
data bases written in RDF and RDF Schema. One naive approach to constructing RDF
databases is to use XML databases to store and retrieve RDF data simply because any
RDF data can be represented in XML. However, this approach is not practical because
the structure of RDF data is different from the structure of XML data, and there are
many ways to serialize RDF data in XML form. Thus, queries to retrieve RDF data
cannot be implemented as queries of their XML representations.

Another way to implement RDF databases is to utilize relational databases. In this
approach, a piece of RDF data is decomposed and stored into relational tables. Several
methods have been proposed already [5]. RDFSuite [6] is an implementation of RQL
(RDF Query Language) [7], a query language for RDF. To store RDF data, RDFSuite
uses tailor-made relational schema specially designed for the RDF Schema that we
would like to explore. Jena [8] is an RDF database that implements RDQL (RDF Data
Query Language) [9] using MySQL. However, a few of the previously mentioned works
has investigated the performance of RDF databases.

We propose an indexing scheme for RDF and RDF Schema to achieve efficient
query retrieval. Specifically, we focus on path expressions extracted from RDF and
RDF Schema. Our first step is to extract four types of partial graphs from RDF and
RDF Schema, because RDF and RDF Schema data have four distinct relationships.
The graphs represent relationships among instances, classes and properties. Then, we
extract all possible path expressions from the graphs, and construct suffix arrays on
the path expressions. As a result, for a given query as partial path expression, we can
efficiently detect the result.

The basic concept underlying our proposal is similar to that of Yamamoto et al. [10].
The main difference is that this approach is used for XML data, whereas we propose
applying it to RDF and RDF Schema. Since XML data is a tree structure, enumeration
of all possible path expressions in XML is an easy task. However, path expression
cannot be as straightforward with RDF and RDF Schema, because they may contain
multiple paths and/or cycles. For this reason, we will limit our first targets to cases
where RDF and RDF Schema do not contain cycles.

However, even if we limit our target to DAGs, we should claim that our scheme can
be applicable to many applications due to the fact that a large majority of RDF data in
real applications is expressible as DAGs. For instance, WordNet [11], a famous on-line
lexical database written in RDF, does not contain cycles based on our investigation.
Following this step we will introduce a method to cope with cycles.

We have implemented our approach and evaluated its performance in a series of
experiments. We used four kinds of RDF documents with different sizes using Wordnet
[11], and stored each of the four RDF documents in RDFSuite. Eight queries were
executed against the RDF database to compare the processing time using our index and

An Indexing Scheme for RDF Data 3

������� �����	��
��
�
���� ���������
� � ����� ����������� ��!#"%$&"'�
��(��)����� ��*

Fig. 1. An RDF data model statement.

those of non-index (or original indices of RDFSuite). Our index was more efficient than
the non-index, and our approach has shown scalability.

The rest of this paper starts with an outline of RDF and RDF Schema using exam-
ples in Section 2. In Section 3, we describe our approach for efficient RDF retrieval. In
particular, we defined a suffix array for DAG, explained about extracting the four DAGs
from the RDF data, and described path expressions for each DAG. In addition, we de-
scribe our experimental setup and evaluate the performance using our index in Section
4. In Section 5, we describe an idea to cope with cycles. We discuss related work in
Section 6, and conclude the paper in Section 7.

2 An Overview of RDF

RDF (Resource Description Framework) [3] is a foundation for representing and manip-
ulating metadata on Web resources. RDF enables us to implement various applications,
such as resource discovery, interoperation of metadata and description of machine-
understandable information.

In RDF specification, the data model and its syntax are defined. In addition, RDF
Schema [4] is used to describe schematic information of RDF data.

RDF can be used to describe the metadata of any resource in the Net as long as
its location is identifiable using a URI (Uniform Resource Identifier) [12]. In RDF,
“statements” are used to represent binary relationships between two distinct (or maybe
identical) resources. Complex information can be represented by a set of statements.
Thus, an RDF document is modeled as a directed graph (DG), where a resource corre-
sponds to a vertex and a relation corresponds to an arc. For example, let us take a look
at the statement “this paper is authored by Akiyoshi MATONO.” The statement consists
of three parts, namely, a subject (“This paper”), a predicate (“is authored by”) and an
object (“Akiyoshi MATONO”). For this reason, the statement is also called a triple. We
call the relation represented by a statement the “predicate relation” (Figure 1).

For the purpose of exchanging metadata written in RDF, RDF syntax, by which we
can serialize RDF data into XML data, is defined. Figure 2 shows an RDF document
corresponding to the above example.

RDF Schema is used to give semantic information to RDF data. Specifically, RDF
Schema makes it possible to specify the properties of a resource, data type of a property,
class memberships of properties, and class hierarchies.

Using RDF and RDF Schema, we can represent complex information (Figure 3).
Classes and properties defined by RDF Schema are shown in the upper part. For exam-
ple, the property “creates” takes an “Artist” and an “Artifact” as its domain and range,
respectively. “Sculptor” is a subclass of “Artist”, and so on. Resource descriptions can

4 A. Matono et al.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:s="http://www-db.aist-nara.ac.jp/˜akiyo-ma/test.rdfs#">

<rdf:Description about="www.matono.net/paper">

<s:authored>Akiyoshi MATONO</s:authored>

</rdf:Description>

</rdf:RDF>

Fig. 2. An RDF document.

Artist Artifact

Pablo

Picasso

Title(String)
titlelast

first

S
chem

as
R

esource D
escriptions

Les demoiselles d' Avignonlast

first

title
paints

Rodin

Auguste
The Thinker

last

first
title

sculpts

Sculptor Sculpture

Painter Painting

creates

sculpts

paints

Last(String)

First(String)

Guernica Tapestrytitle
paints

predicate
subClassOf(isA)
subPropertyOf(isA)
typeOf(instance)

r1

r2

r3

r4 r5

Fig. 3. A complex example using RDF and RDF Schema.

be found in the lower part. Resources, such as “r1” and “r2”, are defined as instances
of classes. Consequently, resource “r1”, for example, has three properties, “last”, “first”
and “paints”, which are inherited from the “Artist” class. Resources as character strings,
such as “Pablo” and “Picasso”, are instances of the Literal class in RDF Schema.

3 Efficient RDF Data Retrieval using Suffix Array for DAGs

3.1 Problem description

Basically, queries on RDF data can be expressed as combinations of some path expres-
sions based on graph structures of RDF data. For example, the query “find all resources
that are created by artists” can be constructed as follows: 1) find all artists, and 2) for
each artist, find all resources that are reachable by following “create” property. As we
can see, both steps, 1) and 2), can be processed on the basis of path expressions of RDF

An Indexing Scheme for RDF Data 5

graphs. We can therefore say that efficient processing of path expressions is crucial to
achieve efficient RDF data retrieval.

In fact, this is similar to XML data retrieval, and many researchers are devoted to
efficient XML query processing based on path expressions [13, 10, 14]. Both XRel [13]
and XParent [14] propose a relational schema based on path expressions for efficient
storage and retrieval of XML data into a relational database. In Yamamoto et al. [10],
an indexing scheme based on path expressions is proposed. In this approach, all path
expressions are extracted from XML data first. Then, a suffix array is constructed on
the extracted path expressions where the occurrences of element (or attribute) names
are alphabets. As a consequence, we can efficiently find any (partial) path expression
using the full-text search functionality provided by the suffix array.

However, we cannot apply the above technique to RDF data, because of the dif-
ferences between RDF and XML data. The differences can be summarized as follows;
1) RDF data may contain cycles, whereas XML data does not. This comes from the
topology of RDF graphs, that is, an RDF data forms a directed graph and an XML data
forms a tree. Extracting all possible path expressions from an RDF data is not trivial,
consequently. 2) In RDF data, not only vertexes but also arcs have labels, whereas arcs
are not labeled in XML data. Thus, we need to take care in path expressions. 3) We need
to take schematic information provided by the RDF Schema, because we think that the
query which involves schematic information is general on the Semantic Web.

3.2 Proposed method

In this paper, we propose a novel indexing technique based on suffix arrays for effi-
cient retrieval of RDF data. The basic idea behind our approach is similar to that of
Yamamoto et al. [10]. In order to cope with the above problems, we made the following
modifications.

1. To cope with problem 1), we first limit out target to RDF data of DAGs (Directed
Acyclic Graphs), that is, we assume that RDF graphs do not contain cycles. Thus,
we can extract all possible path expressions from a DAG. Then, we construct suffix
arrays on the path expressions. To this end, we newly introduce a suffix array for
DAGs, which is an extension of suffix arrays for character strings. In fact, the pro-
posed scheme can be adapted to the cases of general directed graphs. The algorithm
will be shown later in Section 5.

2. To cope with problem 2), we define a path expression as an alternation of labels
of vertexes and labels of arcs. In addition, we introduce special symbols to make a
distinction among classes, properties and literals.

3. To cope with problem 3), we extract four kinds of subgraphs, namely, predicates
in schema, predicates in resource descriptions, class inheritance and property in-
heritance graphs, from an original RDF graph. Then, we construct four kinds of
suffix arrays for each subgraph. As a consequence, queries including schematic in-
formation can be processed by a collaboration of these suffix arrays. To answer
such queries that include both schema and instance (e.g. find the titles of Paintings
painted by the instances of Painter class), we first get the instances of the “Painter”
class using class inheritance graph. We then get the titles of “Paintings” painted

6 A. Matono et al.

by the instances of “Painters” using predicates in resource descriptions. Finally, we
merge the answers and obtain the final result. In this way, complicated queries can
be processed using our proposed indexing scheme.

3.3 Extracting DAGs from RDF data

Given an RDF data with RDF Schema, we extract four kinds of DAGs by taking vertex
types, arc types and their semantics into account.

Predicates in schema This graph is obtained by extracting classes and their properties
from the schema part of an RDF graph. This graph may contain cycles.

Predicates in resource descriptions This graph is obtained by extracting resources
and their properties from the resource description part of an RDF graph. This graph
may contain cycles.

Class inheritance This graph is obtained by extracting classes and “subClassOf” arcs
connected to the classes. Note that “subClassOf” arcs do not have labels, and this
graph does not contain cycles.

Property inheritance This graph is obtained by extracting properties and “subProper-
tyOf” arcs in the schema part of an RDF graph, and thus we let properties, which
are arcs in the original graph, be vertexes in this subgraph. Note that “subProper-
tyOf” arcs do not have labels, and this graph does not contain cycles.

These subgraphs, except for predicates in the resource descriptions graph, cannot
be obtained if RDF Schema is not provided. In those cases, we just use predicates in the
resource descriptions graph. Otherwise, we can make full use of schematic information
to query RDF data.

3.4 Path expressions

Figure 4 shows the syntax, represented in EBNF (Extended Backus-Naur Form), for
path expressions. In the figure, schemaPath, instancePath, classPath and propertyPath
correspond to path expressions extracted from predicates in schema, predicates in re-
source descriptions, class inheritance and property inheritance subgraphs, respectively.
In the path expressions, ‘>’ is used as a separator. Additionally, some special prefixes,
‘#’, ‘+’ and ‘$’, are used to distinguish classes, properties and resources. If these spe-
cial symbols are used in labels, we replace their occurrence with an entity reference of
XML for encapsulation. For example, the RDF data in Figure 1 can be represented as

#www.matono.net/paper > +authored > ”AkiyoshiMATONO”

based on the definition.
For a given DAG, we can extract all possible path expressions using the algorithm

shown in Figure 5. This algorithm starts with the vertexes whose in-degree are zero (0),
and search for traversable paths in a depth first manner.

An Indexing Scheme for RDF Data 7

paths ::= schemaPath* | instancePath* |

classPath* | propertyPath*

schemaPath ::= (classVertex ’>’ propertyVertex ’>’)*

classVertex

instancePath ::= (resourceVertex ’>’ propertyVertex ’>’)*

literalVertex

classPath ::= (classVertex ’>’)* instanceVertex

propertyPath ::= (propertyVertex ’>’)* propertyVertex

classVertex ::= ’#’ typeName

propertyVertex ::= ’+’ propName

instanceVertex ::= resourceVertex | literalVertex

resourceVertex ::= ’$’ URI-reference

literalVertex ::= ’"’ literal ’"’

typeName ::= see [3]

propName ::= see [3]

literal ::= see [3]

URI-reference ::= see [3]

Fig. 4. Path expression syntax (EBNF).

3.5 Suffix array for DAGs

An ordinary suffix array is a data structure for full-text search on documents constructed
on one-dimensional character strings. Given a text data, all suffixes are extracted and
sorted in lexicographical order. Any substring can then be detected by performing a
binary search on the array of suffixes. In addition, because any suffix can be represented
by an integer (an indexing point), the array of suffixes can be implemented as an array
of integers whose size is equal to the length of the original document.

When applying a suffix array on path expressions, we need an extension that allows
a suffix array to accommodate multiple path expressions. For this reason, we use a pair
of integers as an indexing point; The first number is for representing an identifier of
a path expression, and the other is for representing an indexing point within the path
expression. It is defined as follows:

Definition 1 (Suffix array for DAGs) Let G be a directed acyclic graph (DAG), V(G)
be the set of vertexes in G, and E(G) be the set of arcs in G. Arc e = (u, v) in E(G)
is represented by a pair of vertexes u, v ∈ V(G), and u and v are called the “source”
and “destination,” respectively. In addition, let R ⊂ V(G) be a set of vertexes whose
in-degree is equal to zero (0), and L ⊂ V(G) be a set of vertexes whose out-degree is
equal to zero (0). We call R and L the “roots” and “leaves,” respectively.

Given a path on G from a root st,1 ∈ R to a leaf st,2kt−1 ∈ L, it can be represented as
pt = st,1.st,2. · · · .st,2kt−2.st,2kt−1, where:

– t is the identifier of the path,
– kt is the length of the path,
– st,2h−1 ∈ V(G) (1 ≤ h ≤ kt), and
– st,2h = (st,2h−1, st,2h+1) ∈ E(G) (1 ≤ h ≤ kt − 1) .

8 A. Matono et al.

var roots := a set of vertexes whose in-degree is 0
var stack : Stack
foreach start (roots) begin

createPath (start)
end
function createPath (start : vertex) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of (vertex, arc, vertex)
begin

arcs := a set of arcs connected from start vertex
foreach arc (arcs) begin

end := a vertex connected from arc
triple := (start, arc, end)
stack.push (triple)
createPath (end)
stack.pop()

end
Creating a path expression based on stack

end

Fig. 5. An algorithm for extracting path expressions from DAGs.

+ ,
-

. /
0

1
2 3

4

5 6

Fig. 6. A simple DAG.

A suffix of p j = s j,1.s j,2. · · · .s j,2k j−1 is defined as S j,i = s j,i.s j,i+1. · · · .s j,2k j−1(i = 1, 2, · · · , 2k j−

1), whose indexing point is a j,i = [j, i].
The suffix array S (p j) of the path p j is then defined as an array of indexing points

that is sorted in lexicographical order.
The suffix array of a directed acyclic graph G is an array of indexing points, using

all paths from roots {u|u ∈ R} to leaves {v|v ∈ L}, that is sorted in lexicographical order,
and duplicated occurrences of the suffixes are eliminated. �

We will demonstrate how a suffix array is constructed on a DAG using a simple ex-
ample (Figure 6). From the DAG, we can extract two paths, namely, “A.a.B.b.C.d.E.f.F”
and “A.a.B.c.D.e.E.f.F.” Then, we assign indexing points to them (Figure 7), sort them
in lexicographical order, and eliminate duplicates of identical suffixes (Figure 8). As a
result, we obtain the suffix array of [1,1] [2,1] [1,3] [2,3] [1,5] [2,5] [1,7] [1,9] [1,2]
[2,2] [1,4] [2,4] [1,6] [2,6] [1,8].

When processing queries, we perform binary searches on the suffix array. For this
reason, O(log2(n + 1)) of computational complexity is required.

An Indexing Scheme for RDF Data 9

1 2 3 4 5 6 7 8 9
1 A . a . B . b . C . d . E . f . F
2 A . a . B . c . D . e . E . f . F

Fig. 7. Suffixes of paths.

A.a.B.b.C.d.E.f.F : (1, 1)
a.B.b.C.d.E.f.F : (1, 2)
B.b.C.d.E.f.F : (1, 3)
b.C.d.E.f.F : (1, 4)
C.d.E.f.F : (1, 5)
d.E.f.F : (1, 6)
E.f.F : (1, 7)
f.F : (1, 8)
F : (1, 9)

A.a.B.c.D.e.E.f.F : (2, 1)
a.B.c.D.e.E.f.F : (2, 2)
B.c.D.e.E.f.F : (2, 3)
c.D.e.E.f.F : (2, 4)
D.e.E.f.F : (2, 5)
e.E.f.F : (2, 6)
E.f.F : (2, 7)
f.F : (2, 8)
F : (2, 9)

⇒

(1, 1) : A.a.B.b.C.d.E.f.F
(2, 1) : A.a.B.c.D.e.E.f.F
(1, 3) : B.b.C.d.E.f.F
(2, 3) : B.c.D.e.E.f.F
(1, 5) : C.d.E.f.F
(2, 5) : D.e.E.f.F
(1, 7) : E.f.F
(

(
(

((h
h

h
hh

(2, 7) : E.f.F
(1, 9) : F
�

�
��X

X
XX

(2, 9) : F
(1, 2) : a.B.b.C.d.E.f.F
(2, 2) : a.B.c.D.e.E.f.F
(1, 4) : b.C.d.E.f.F
(2, 4) : c.D.e.E.f.F
(1, 6) : d.E.f.F
(2, 6) : e.E.f.F
(1, 8) : f.F

�
�

�
��X

X
X

XX
(2, 8) : f.F

Fig. 8. Sorting and deletion of suffixes.

4 Performance Evaluation

This section evaluates the performance of the proposed scheme in a series of experi-
ments.

4.1 Experimental setup

Datasets We used RDF and RDF Schema documents of Wordnet [11] as the experi-
mental data. Wordnet is an online lexical reference system whose design is inspired by
current psycholinguistic theories of human lexical memory. English nouns, verbs, ad-
jectives and adverbs are organized into synonym sets, each representing one underlying
lexical concept.

As far as we have investigated, the RDF data of Wordnet does not contain any
cycles, and thus we can apply our scheme directly to the datasets. We created sub-
documents of them with different sizes 500 KB (Type A), 1 MB (Type B), 2 MB (Type
C) and 4 MB (Type D). Table 1 shows the details of the datasets.

10 A. Matono et al.

Table 1. Details of RDF documents of Wordnet

Type A B C D
Number of RDF Schema documents 1 1 1 1
Number of RDF documents 4 4 4 4
Total size of RDF Schema documents (KB) 4 4 4 4
Total size of RDF documents (KB) 513 999 2,073 3,982
Number of elements and attributes 15,089 29,542 62,565 119,368
Number of classes in RDF Schema documents 6 6 6 6
Number of properties in RDF Schema documents 5 5 5 5
Number of resources in RDF documents 1,555 3,100 6,571 12,380
Number of properties in RDF documents 5,647 10,851 22,773 42,878
Number of literals in RDF documents 4,553 8,645 18,107 33,473

Table 2. Performance evaluation queries

Queries for predicates in schema
#1 +glossaryEntry># Retrieval of classes for a given property
#2 #LexicalConcept>+ Retrieval of properties
#3 #LexicalConcept>+antonymOf>#LexicalConcept>+hyponymOf>#LexicalConcept>+

A long path expression
Queries for predicates in resource descriptions

#4 +hyponymOf># Retrieval of objects for a statement
#5 #&wn;400062583>+wordForm># Retrieval of statements
#6 #&wn;100033830>+similarTo>#&wn;100033153>+wordForm>#

A long path expression
Queries for class inheritance

#7 #Adjective>$ Retrieval of instances
#8 #Resource#LexicalConcept>#Adjective>#AdjectiveSatellite>$

A long path expression

Query sets The query expressions used in the experiments are shown in Table 2. In the
table, “ &wn;” is a character entity reference for representing the namespace of Word-
net. Using these queries, we intend to evaluate the following aspects: queries for pred-
icate relations in schematic information (#1-#3); queries for predicate relations among
instances (#4-#6); and queries for inheritance relations among classes (#7 and #8).

Methodology We used an RDF database, RDFSuite [6], as a basis for implement-
ing our (proposed) scheme. RDFSuite is implemented on top of PostgreSQL, an open
source relational database management system. Specifically, RDFSuite supports two
kinds of relational schemas, GenRepr and SpecRepr, for storing RDF data. GenRepr
has two relational tables; Resources is for storing resources and their identifiers, and
Triples is for storing triples extracted from statements. On the other hand, SpecRepr’s
relational schema is designed according to the RDF Schema of the RDF data being
stored. In our experiments, we used SpecRepr because it is more efficient than GenRepr
from the view point of performance.

An Indexing Scheme for RDF Data 11

Table 3. The number of path expressions and arrays of index-points

Description A B C D
paths (total) 9,709 19,480 43,008 90,058
suffixes (total) 25,977 51,060 111,108 217,549
paths (preds in schema) 10 10 10 10
suffixes (preds in schema) 21 21 21 21
paths (preds in resource descs) 8,144 16,370 36,427 77,668
suffixes (preds in resource descs) 19,409 37,999 83,459 165,512
paths (class inheritance) 1,555 3,100 6,571 12,380
suffixes (class inheritance) 6,547 13,040 27,628 52,016
paths (property inheritance) 5 5 5 5
suffixes (property inheritance) 10 10 10 10

We compared the query processing time between RDFSuite and RDFSuite powered
by our indexing scheme as follows:

1. We store each dataset in RDFSuite based on SpecRepr schema. Then, we construct
suffix arrays on the relational tables of RDFSuite. Specifically, a table for storing all
path expressions extracted from Wordnet data, and four tables for storing indexing
points are created in the relational database.

2. We then measure the query processing time of the queries in Table 2 for the two
cases, pure RDFSuite and RDFSuite powered by suffix arrays.

We used a PC with an Athlon 1.1 GHz CPU and 768 MB memory running RedHat
Linux 8.0, and used Java 1.4.1 for the implementation.

4.2 Experimental results

Table 3 shows the statistical data of the generated suffix arrays. From the table, we can
observe that the number of path expressions and suffixes increase in proportion to the
sizes of the datasets for the cases of “predicates in resource descriptions” and “class
inheritance.” However, this is not the case for “predicates in schema” and “property in-
heritance,” because this information solely depends on RDF Schema, and RDF Schema
is fixed for the experiments in this paper.

Figure 9 shows ratios (N/I) of the processing time of RDFSuite (N) to our scheme
(I). That is, our approach is about four times faster than RDFSuite with respect to query
#2 for dataset A. It is clear that our scheme outperforms RDFSuite.

Table 4 shows the details of the processing times. Note that for the case of #1 – #3,
because the dataset is small, the absolute processing times are too short, and the results
may not be reliable compared to other results.

Our scheme can process #4 – #6 in almost the same time, whereas RDFSuite does
not. In particular, #4 is slower than others (#5 and #6). This is because #4 searches
objects for a given predicate, while #5 and #6 search objects for a given pair of subject
and predicate. For this reason, RDFSuite can make use of built-in indices to process the
queries.

12 A. Matono et al.

Table 4. Processing time

Type A B C D
Suffix array Yes No Yes No Yes No Yes No

#1 30.7 30.0 25.6 27.0 25.9 28.2 28.4 28.2
#2 27.6 109.0 26.0 97.3 26.0 96.0 28.0 92.0
#3 23.2 164.7 24.3 162.6 24.8 180.4 25.1 158.0
#4 99.5 396.5 130.6 707.3 205.9 1274.9 337.9 2325.8
#5 82.8 166.6 113.6 217.4 182.7 357.5 312.3 541.9
#6 84.7 182.1 108.0 231.6 178.0 385.9 300.7 646.4
#7 71.4 237.6 80.3 334.2 114.1 702.7 142.3 1238.7
#8 77.0 263.0 91.3 447.7 122.0 579.6 160.7 816.9

When processing queries for inheritance between class and instance (#7 and #8),
as the data size is large, the ratios of the processing time between our scheme and
RDFSuite are larger. In other words, our scheme achieved scalability.

5 Coping with Cycles

In this paper, we limited our targets within directed acyclic graphs. We think that we can
find many other RDF data without cycles, because even a large scale data like Wordnet
does not contain cycles. Consequently, our scheme can be used for many applications.
However, some RDF data with directed graph structures with cycles also exist. Thus,
it is important to be able to cope with cycles in order to widen the applications of our
scheme.

5.1 Path expressions extraction and index construction

When applying indices based on suffix arrays for querying graphs, we need to extract
all possible path expressions beforehand. However, the previous algorithm for extract-
ing path expressions cannot cope with graphs that include cycles, because it may not
terminate due to dissatisfaction of terminal conditions. For this reason, we made some
improvements on the algorithm so that it can extract all the vertexes and arcs thoroughly.

The algorithm in Figure 12 has two features as follows: 1) if a path expression
contains two (or more) identical vertexes, a loop-stamp(s) is put on their second (and
later) occurrence; and 2) we change our strategy to decide the starting positions of the
path expressions. Actually, we make a list of vertexes whose in-degrees are equal to
zero (0), followed by vertexes ordered by the differences between the out-degrees and
in-degrees in ascending order. Starting from these vertexes, we try to enumerate path
expressions until all the vertexes and arcs are included.

Let us take a look at such an example. Figure 10 illustrates a graph including a cycle,
and Figure 11 shows two path expressions extracted from the graph using the algorithm
in Figure 12. Note that ‘ˆ’ is the loop-stamp.

We then create suffixes with respect to those path expressions and sort them in
lexicographic order. Finally, we get the following suffix array: [2,1] [1,1] [2,3] [1,3]

An Indexing Scheme for RDF Data 13

0.1

1

10

1 2 3 4 5 6 7 8

Query

Ra
tio

 (R
DF

Su
ite

/o
ur

 in
de

x)

Type A (500KB)

Type B (1MB)

Type C (2MB)

Type D (4MB)

Fig. 9. Processing time (RDFSuite / Suffix array)

DE

FCBA
a b

c

d

e

f

Fig. 10. Directed graph including a cycle

[2,5] [1,5] [2,7] [2,9] [1,7] [2,11] [2,2] [1,2] [2,4] [1,4] [2,6] [2,8] [2,10] [1,6], whose
length is 18.

5.2 Query processing

When processing queries based on path expressions against a graph with cycles, han-
dling unintended termination of the path expressions is crucial. That is, path expressions
listed in a suffix array are not powerful enough to express cycles because of the limi-
tation of their expressiveness. As a consequence, we may come to the end of such a
termination when we are matching a query key and a path expression in the index, and
may thus miss correct answers.

If a query #E>+e>#B>+b>#C>+c>#D is given, we cannot find the same occur-
rence in the suffix array, although it is a correct answer. When processing this query, we

14 A. Matono et al.

1 2 3 4 5 6 7 8 9 10 11
1 #A>+a>#B>+b>#C>+f>#F

2 #A>+a>#B>+b>#C>+c>#D>+d>#E>+e>#ˆB

Fig. 11. Path expressions and indexing points of the suffixes

start from the starting element (#E) and proceed as much as possible as usual. Then, we
get the indexing point [2,9] (#E>+e>#ˆB). This intermediate result partially patches
until #E>+e>#B. Eventually, we come to the loop-stamp. Then, we decompose the
query path expression here, let the following path expression (#B>+b>#C>+c>#D) be
a new query, and initiate it. As a result of the brand-new query, we get a suffix [2,3]
(#B>+b>#C>+c>#D>+d>#E>+e>#ˆB). Now, the initial query key is fulfilled, and we
get a result of the query.

We expect that we can achieve efficient retrieval for a directed graph with cycles
using the indexing scheme. However, we may have to improve the scheme, because the
number of path expressions and suffixes are increasing in the case of the target data that
contains many cycles.

6 Related Work

Indexing techniques for structured documents are classified into a position-based index
and path-based index according to Sacks-Davis et al.w [15].

The indices proposed by Kanemoto et al. [16] and Shin et al. [17] are position-
based indices. Kanemotno et al. [16] proposed an approach in which four indices are
combined to achieve efficient document retrieval. The indices were a content index for
maintaining positions of elements and contents, local structure index for maintaining
the tree structure of document instances, global structure index for maintaining the
tree structure of document schema, and structure meta index for maintaining the meta
information of the other indices. Although this approach was efficient, the performance
did not scale with respect to data size, because four kinds of indices must be joind. In
the study by Shin et al. [17], an indexing scheme called BUS (Bottom Up Scheme) was
proposed. In this approach, document features were maintained in a bottom-up manner.

Path-based indices were proposed by Yamamoto et al. [10], Kaushik et al. [18] and
Cooper et al. [19]. The study by Yamamoto et al. [10] is a basis of our proposal. In this
paper, given an XML document, all possible path expressions were extracted, and suffix
arrays were constructed on path expressions and reverse path expressions, and hence
efficient processing of path expressions (and reverse path expressions) was achieved. In
the study by Kaushik et al. [18], they created compact models from document trees by
grouping similar vertexes into one vertex. Query processing was performed using path
expressions on the compact models. That is, they achieved space efficient indexing by
giving up accuracy. An indexing scheme called Index Fabric, as an extension of Patricia
trie [20], was proposed by Cooper et al. [19]. Patricia trie was an efficient and compact
indexing scheme that could deal with large-size text. Index Fabric is an extension of
Patricia trie, and is a height-balanced indexing structure for semi-structured data,

An Indexing Scheme for RDF Data 15

In addition, combinations of position- and path-based indices were proposed by
Sacks-Davis et al. [15] and McHugh et al. [21]. In Sacks-Davis et al.’s study [15], a
position-based index was constructed as inverted lists consisting of all words and ele-
ments, and a path-based index represented the list of element names and their positions
for each path. In McHugh et al.’s study [21], four indices were proposed, namely, the
Value Index, Text Index, Link Index and Path Index. Value Index has pairs of values and
element names. Text Index is implemented as an inverted list of text. Link Index main-
tains information on a list of children for each element. Finally, Path Index has path
information for all elements.

Path-based indices were also used in object databases [22–24]. Similar to our ap-
proach, these approaches maintain the relationships of class hierarchies and/or object
composition hierarchies. The key difference between our scheme and their approaches
is that we treat path expressions as character strings, whereas the others do not.

Christophides et al. [25] have proposed a labeling scheme for efficient retrieval of
RDF Schema. The study relevant to our research. They applied previously proposed
labeling schemes for tree structures to RDF schema. Concretely, there approach em-
ployed the study by Agrawal et al. [26], in which an optimal spanning tree is generated
from a DAG based on the number of ancestors per node, so that it can handle DAGs.
The labeling schemes investigated in [25] are classified into bit vector, prefix and in-
terval scheme. Bit vector [27] is a labeling scheme in that a node is represented by a
n bits vector. Prefix scheme directly encodes the label of a node in an XML tree, in
that the prefix is inherited by the parent’s label followed by the order of the node in its
siblings. Dewey scheme [28] is one of prefix scheme. Interval scheme [29, 26, 30] en-
codes the interval label (start, end) such that it is contained in its parent’s interval label.
Christophides et al. [25] limited the target data as RDF Schema for efficient retrieval.
Making a comparison between their scheme and ours is an interesting topic. We plan to
do it in the near future.

7 Conclusions

In this paper, we proposed an indexing scheme to enable RDF and RDF Schema to
achieve efficient query retrievals on path expressions. To this end, we first proposed four
types of partial graphs that can be obtained from RDF and RDF Schema. In addition, we
proposed suffix arrays on DAGs. By applying this scheme to path expressions extracted
from the above graphs, we achieve efficient RDF query processing. Because most of
the RDF and RDF Schema in real applications are expected to be modeled as DAGs,
we can make use of our proposed scheme. We conducted a performance study and the
results showed that our approach outperformed an existing RDF database, RDFSuite.

In the future, we will try to deal with RDF data that include cycles and investigate
query optimization techniques for RDF queries. Since our indexing scheme needs to
precompute all paths as statical indexing data, we must consider an update of RDF data
and schema.

References
1. World Wide Web Consortium: Semantic Web. http://www.w3c.org/2001/sw/ (2001)

16 A. Matono et al.

2. Berners-Lee, T.: What the Semantic Web can represent.
http://www.w3.org/DesignIssues/RDFnot.html (1998)

3. World Wide Web Consortium: Resource Description Framework(RDF) Model and Syntax
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (1999) W3C Rec-
ommendation 22 February 1999.

4. World Wide Web Consortium: Resource Description Framework(RDF) Schema Specifi-
cation 1.0. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/ (2000) W3C Candidate
Recommendation 27 March 2000.

5. World Wide Web Consortium: Survey of RDF/Triple Data Stores.
http://www.w3.org/2001/05/rdf-ds/DataStore (2001)

6. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The RDFSuite:
Managing Voluminous RDF Description Bases (2000)

7. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: Proceedings of the eleventh international confer-
ence on World Wide Web, ACM Press (2002) 592–603

8. McBride, B.: Jena: Implementing the RDF Model and Syntax Specification. In: Proceedings
of the Second International Workshop on the Semantic Web - SemWeb’2001. (2001)

9. Hewlett-Packard Company: RDQL – RDF Data Query Language.
(http://www.hpl.hp.com/semweb/rdql.htm)

10. Yamamoto, Y., Yoshikawa, M., Umeura, S.: On Indices for XML Documents with Names-
paces. In: Conference Proceedings of Markup Technologies ’99, GCA, Philadelphia, U.S.A.
(1999)

11. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet:
An On-Line Lexical Database. http://www.cogsci.princeton.edu/ wn/ (1993)

12. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifiers (URI): Generic
Syntax. http://www.isi.edu/in-notes/rfc2396.txt (1998) RFC2396.

13. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach to
storage and retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology (TOIT) 1 (2001) 110–141

14. Jiang, H., Lu, H., Wang, W., Yu, J.X.: Path Materialization Revisited: An Efficient Stor-
age Model for XML Data. In Zhou, X., ed.: Thirteenth Australasian Database Conference
(ADC2002), Melbourne, Australia, ACS (2002)

15. Sacks-Davis, R., Dao, T., Thom, J.A., Zobel, J.: Indexing Documents for Queries on Struc-
ture, Content and Attributes. In: Proceedings of the International Symposium on Digital
Media Information Base, Nara, Japan. (1997) 236–245

16. Kanemoto, H., Kato, H., Kinutani, H., Yoshikawa, M.: An Efficiently Updatable Index
Scheme for Structured Documents. In: Proceedings of 9th International Workshop on
Database and Expert Systems Applications (DEXA’98), IEEE Computer Society. (1998)
991–996

17. Shin, D., Jang, H., Jin, H.: BUS: An Effective Indexing and Retrieval Scheme in Structured
Documents. In: Proceedings of the Third ACM Conference on Digital Libraries. (1998)
235–243

18. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local Similarity for Efficient
Indexing of Paths in Graph Structured Data. In: ICDE. (2002)

19. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for
Semistructured Data. In: The VLDB Conference. (2001) 341–350

20. Knuth, D.E.: The Art of Computer Programming Volume 3 Sorting and Searching, Second
Edition. Addison-Wesley (1998)

21. McHugh, J., Widom, J., Abiteboul, S., Luo, Q., Rajamaran, A.: Indexing Semistructured
Data. Technical report, Stanford University, Computer Science Department. (1998)

An Indexing Scheme for RDF Data 17

22. Bertino, E.: Index Configuration in Object-Oriented Databases. VLDB Journal 3 (1994)
355–399

23. Lee, W., Lee, D.: Path Dictionary: A New Approach to Query Processing in Object-Oriented
Databases (1995)

24. Xie, Z., Han, J.: Join Index Hierarchies for Supporting Efficient Navigations in Object-
Oriented Databases. In Bocca, J.B., Jarke, M., Zaniolo, C., eds.: VLDB’94, Proceedings of
20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, Morgan Kaufmann (1994) 522–533

25. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
semantic web. In: Proceedings of the twelfth international conference on World Wide Web,
ACM Press (2003) 544–555

26. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient Management of Transitive Relationships
in Large Data and Knowledge Bases. In Clifford, J., Lindsay, B.G., Maier, D., eds.: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management of Data,
Portland, Oregon, May 31 - June 2, 1989, ACM Press (1989) 253–262

27. Wirth, N.: Type Extensions. ACM Transactions on Programming Languages and Systems
10 (1988) 204–214

28. Online Computer Library Center: Dewey Decimal Classification.
(http://www.oclc.org/dewey/)

29. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proceedings of the
nineteenth annual ACM conference on Theory of computing, ACM Press (1987) 365–372

30. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In: The
VLDB Journal. (2001) 361–370

18 A. Matono et al.

var stack : stack /* for storing triple */
var roots1 : list of vertexes /* whose in-degree = 0 */
var roots2 : list of vertexes /* sorted by values of (in-degree − out-degree)

into descending order − roots1 */
var roots := append (roots1, root2)
foreach start (roots) begin

createPath (start)
end
function searchGraph (start : vertex) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of (vertex, arc, vertex)
begin

roots.remove (start)
arcs := a set of arcs connected from start
foreach arc (arcs) begin

end := a vertex connected from arc
roots.remove (end)
triple := (start, arc, end)
/* a path expression does not include same statements. */
if (stack = nil or triple < stack.items) then

stack.push (triple)
searchGraph (end)
stack.pop ()

end
end
var path : path expression
var loop stamp : loop-stamp /* for representing a path expression containing cycles */
path := concat (path, stack[0].start)
for (var i := 0; i < stack.length; i := i + 1) then

var vertex := stack[i].end
/* When a path expression has same vertexes */
if (vertex ∈ path.items) then

vertex := vertex + loop stamp
end
path := concat(path, stack[i].arc, vertex)

end
end

Fig. 12. An algorithm of creating path expressions for DG

1

RDF Core: A component for effective

management of RDF Models

FLORIANA ESPOSITO, LUIGI IANNONE, IGNAZIO PALMISANO AND

GIOVANNI SEMERARO

Dipartimento di Informatica

Università degli Studi di Bari

Via Orabona, 4

Bari, 70125, ITALY

+39 080 544 2299

{esposito,iannone,semeraro}@di.uniba.it, ignazio_io@yahoo.it

Abstract.

In order to make Semantic Web effective, the first step was the development of

languages that could support data portability, namely XML, metadata

descriptions, namely RDF, and ontology management and inference, such as

DAML+OIL, OWL etc. Those languages have to be manipulated by

applications and many Application Programming Interfaces (APIs) have been

developed in order to accomplish this task. Obviously, they differ in

implementation details. Moreover, developers often would like to exploit more

than an API at a time. Another issue is that a developer would be very

advantaged if he could have a uniform support for some services across these

frameworks (such as query languages), despite the lack of standards. In this

paper, we present a component, called RDFCore, developed in order to

overcome these problems. We will also illustrate the added value that our

framework provides to RDF in order to exploit the full potentiality of the

language and to employ it in research as well as in real world applications.

Consequently we will provide some test results on the performances of the

presented framework.

2

Introduction

World Wide Web Consortium (W3C), that is the main promoting committee involved

in the evolution towards the Semantic Web[1], has been recently working on the

development of technologies that could support this process. While some of these

technologies are still in early phases, part of them can already be exploited in real

world applications. This is the case of Resource Description Framework (RDF). It

represents the basic support to write metadata on Web resources and to grant

interoperability among heterogeneous applications when exchanging these metadata.

RDF describes resources in terms of primitives (classes, properties, resources, etc.)

without taking into account the description structure itself. In fact, the description can

be encoded in XML (but also in other different formats, see for instance [2]). This

ensures its portability across the Web.

Moreover, RDF represents a suitable solution to implement the Semantic Web vision

also because it presents three key features:

• Extensibility. Each user can add its own description extending pre-existing

ones without any limit.

• Interoperability. RDF descriptions can rely on XML serialization every

time they need to be exchanged among heterogeneous platforms

• Scalability. RDF descriptions can be viewed as sets of three field records

(triples) (Subject, Predicate and Object). This makes them easy to fetch and

manage even when a single description holds many triples in it.

Many Application Programming Interfaces (APIs) have been developed in order to

support RDF-based applications. They offer a lot of useful features, ranging from

efficient persistence and powerful query languages [8] to simple and well designed

object models [4]. That is why we felt the need for a uniform framework (RDFCore)

that will be presented in the following sections. The main aim of RDFCore is granting

the widest compatibility with existing RDF APIs, exploiting their advantages in a

transparent way for users and, where possible, enhancing traditional approaches to

RDF-based development.

3

RDF Core

Overview

In the following section we will describe a framework named RDFCore and, besides

its features, we will also point out how the problems related to RDF have been

tackled.

RDFCore main components: Managers

The architecture sketched below (Figure 1) shows the main components of the

RDFCore Framework.

Figure 1 RDFCore Architecture

RDF Descriptions can be seen as sets of statements (typically called Models). Each

statement is a triple compound by a subject, a predicate and an object. Therefore,

users access RDF resources at two different levels of granularity – Models and

Statements. That is why we developed two different entities, called Description

Manager and Triple Manager, that deal with all the possible operations on

4

Descriptions and on Triples, respectively. Therefore, as far as Descriptions are

concerned, users can:

• Add/Delete, Retrieve a Description to/from their own repository

• Update an entire Description with a new one

• Query a Description or a bunch of them.

while Triple Manager offers all the typical operations on single statements or on sets

of statements (as subsets of a Description) like:

• Add

• Delete

• Update

All these operations would seem quite obvious. Indeed, all the most famous APIs

currently available offer similar support to RDF users (see for instance Jena RDF

Toolkit [3] or Stanford RDF APIs [4]). However, all these operations within our

framework bring with themselves a slight advantage.

First of all, RDFCore has been devised as a multi-user environment. In fact, each user

owns its own repository of RDF resources. Furthermore, users can be arranged in

groups, can share resources with other members and there is the possibility of

establishing policy rights on operations involving shared resources, such as

granting/removing read/write access for a particular user or group of users. Other

APIs do not offer a well-constructed persistence model like this one. The usefulness

of such user management is strictly related to resource authoring. As a matter of fact,

if the scenario is the WWW we could easily foresee communities of Web resource

authors that generate, along with the actual web-resource, its description in RDF (no

matter whether this generation will be automatic or not). Therefore, the need of

having such an organisation of the RDF resources would soon arise.

RDF Engine and RDF Persistence

Description Manager and Triple Manager make up the sole user interface of

RDFCore and they both rely on the RDF Engine module (see Figure 1).

In the RDFCore architecture, RDF Engine represents a specification rather than a

concrete piece of software. In fact, it enumerates all the necessary operations for the

5

upper modules to properly carry out their functionalities. Actually, each call to the

business functions of the proper Manager is translated into a combination of RDF

Engine operations.

In the previous sections, we mentioned that there are many existing APIs to manage

RDF and we also pointed out that it is strongly desirable that users can have the

possibility to exploit features of any of them without switching architecture. That is

why RDF Engine specifies which operations are required and nothing else. The

responsibility of actual implementation of the services specified by RDF Engine is

delegated to RDF Persistence level components.

In this way, a well-known best practice in Object-Oriented design, that is the

implementation of abstract interfaces, can be exploited. In practice, RDF Engine is an

interface whose implementation can vary depending on the requirements developers

want to meet.

Therefore, many RDF Engine implementations can co-exist in a single instance of

RDFCore. A typical scenario would be one in which different kinds of users have

different implementations of the underlying RDF Engine. The advantage is that some

users could need some requirements that are provided (for instance) within some

specific persistence. The only effort in order to meet those requirements is to build up

an implementation of the RDF Engine that acts as a bridge between that persistence

and the upper level components (Managers). A more concrete example will be

provided below in the description of the applications of our framework.

Actually, two implementations of RDF Engine have been produced, based on two

different solutions for RDF Description storage/retrieval:

• An implementation based on RDF/XML serialization

• An implementation based on triple storage, built on Jena Toolkit API [3]

Both of them, as well as the upper components, comply to the well-known Stanford

RDF API [4] as a standard for RDF object model, since it is the most widespread

basic API for RDF Description management. This is accomplished by means of

establishing that the input/output parameters in the modules interface have types taken

from the RDF API object model (such as Model, Statement, Resource etc.)

6

Exploitation of RDFCore: COLLATE

One of the most complete exploitation case studies for our framework takes place in

the EU research project COLLATE (IST-1999-20882) [5]. It belongs to the Fifth

Framework Programme in scientific European Community research programme,

under the Information Society Technology category, Key Action III: “Multimedia

Content and Tools”. The focus of this project is the development of a collaborative

system for scientists involved in the study of the film production in Austria, Germany

and Czech republics in the 30s. Three film archives have to be made electronically

available (in order, above all, to preserve very fragile and intangible material) and

scientists have to be allowed to index, catalogue and annotate such assets in order to

build scientific discourses on their work among the scientific community endorsed

with COLLATE [6], [7]).

This could be easily assimilated to the wider scenario foreseen by Semantic Web: a

huge quantity of resources (documents, assets) with many relationships among them.

COLLATE requirements are:

• A uniform way of identifying resources (films, film related documents,

cataloguing and indexing information, scientist annotations, scientific

discourses)

• Distribution of information; in fact, archives still keep their resources in a

decentralized architecture in order to avoid the moving of huge amount of

data, both physically and electronically (for obvious reasons)

• Intelligent navigation through data and metadata, including navigation across

scientific discourses on resources

For all these reasons RDF is a straightforward solution since it holds in itself the

features we underlined in the introductory sections.

We go on examining which added value our framework provides to COLLATE. It is

quite obvious that a huge collection of documents and metadata such as COLLATE

heritage needs a careful devising of a scalable component in order to manage storage

and retrieval of both resources and relationships among them. While the solution for

the former problem is delegated to efficient RDBMS, as far as the latter we developed

a suitable RDF Persistence for granting scalability to RDFCore framework. This

module relies on Jena Toolkit storage model for RDF. It consists in exploiting a

7

relational representation of the RDF triples (subject, predicate, object) stored in a

database. This approach takes advantage of the outstanding performance rates of the

most famous RDBMS (such as Oracle, MySQL and PostgreSQL). One of the most

immediate benefits is the fact that applications need not to load in-memory RDF

Models (Descriptions) in order to deal with small portions of them (typically small

sets of Statements), saving lots of memory and time for each operation.

Moreover, Jena Toolkit offers RDF Description Query Language (RDQL [8]) as

language for querying RDF Descriptions. This support has been extended for

querying multiple Models, that together with multi-user environment and scalability,

proved to be a suitable solution for COLLATE requirement.

The query language, however, remains a weakness point of all RDF APIs available,

including Jena. At the time of writing, still no standard query language specifications

are available. This hampers the interoperability between components and, therefore,

between different systems; in other words, two systems using different APIs to

manage RDF can exchange data, but cannot easily exchange queries on these data.

To address this issue, RDFCore embeds a subcomponent, called Enhanced Query

Engine, able to deal with different query languages. The design of this component

exploits the Strategy pattern [10] (like other components in RDFCore architecture),

enabling the use of a dynamic set of query languages. In order to add the support for a

new query language, only the classes implementing the interfaces to wrap the parser

of the language and the query engine are needed, allowing for easy update. This

update, obviously, can be the standard query language the W3C (together with other

organizations) is working on, as soon as it is available 1.

Empirical evaluation of performances

In this section we present some results from a preliminary empirical evaluation we

carried out on the RDFCore software components. We mainly tried to investigate one

of the key features that a framework devoted to Web (and Semantic Web)

development should have: scalability. The notion of scalability is very well known in

IT environment and it can be measured with respect to many variables. Being

1 http://www.daml.org/dql/

8

basically a knowledge storage system, RDFCore needs to be scalable, firstly with

respect to the amount of data that it has to manage. Therefore, tests that have been

carried out had the purpose of investigating how smoothly RDFCore performances

decreased as the data size increased. Particularly, our aim was to have a component

showing linear scalability with data size, i.e. time doubles as data size doubles.

In the previous sections, while describing the design of RDF persistence architecture,

we pointed out that our framework could provide simultaneously different strategies

for the actual data storage thanks to the persistence architectural layer of abstraction.

Indeed, as we mentioned in the previous section, we developed two different

persistence mechanisms, respectively:

• Based on file system binary storage of RDF/XML resources, relying on a

compressed XML storage format (namely PDOM 2)

• Based on RDBMS storage of RDF resources, relying on Jena API for RDF.

We prepared two different test sets, both devised in order to progressively scale up in

data size but with slightly different strategies. The first one increases data in size but

not in content, by simply repeating the basic RDF description n times in the same

document. The second one has been created by adding new statements to the starting

description without repeating any object, subject or properties. In this way all triples

in the descriptions from the second test set are different from each other, while there

is a lot of redundancy in the first test set. The reason for doing that is that in both RDF

persistence implementations some mechanism to take advantage from redundancy has

been devised (e.g.: indexing of URI). Therefore an RDF description with many

repetitions should be processed in lesser time than a variegated description.

In all our tests, the descriptions named NNNx_rdf are redundant descriptions, where

NNN is the number of times a particular triple is replicated in the description; on the

other hand, the descriptions named OutputNNNNN_rdf are descriptions with no

redundancy, and NNNNN is the number of triples in the particular model.

2 http://www.infonyte.com/en/prod_pdom.html

9

Obtained results

In Table 1 and Table 2, divided for the sake of readability, we show the results of

processing the first test set (highly redundant) with an RDFCore exploiting the file

system-based persistence that we mentioned before, and with the JENA-based

persistence, relying on the MySQL RDBMS. In Figure 2 and Figure 3 (for PDOM),

and subsequently Figure 4 and Figure 5 (for JENA), we show the growth of required

time to store descriptions compared with a theoretical linear function on data size

(used as baseline). In these figures, as well as in the subsequently ones, the scale on

the Y axis is logarithmic. Where not specified, the measuring unit for time is the

millisecond. Table 3 reports the results obtained on the redundancy-free test set, while

Figure 6 and Figure 7 provide a graphical representation of them. Notice that missing

values (- in tables) were omitted because they have been considered irrelevant.

PDOM Persistence JENA Persistence

File

File size

(Kbytes)

Elapsed time

(milliseconds)

Theoretical

elapsed time

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

2x.rdf 173 3886 4000 - 203 9777 10000

3x.rdf 259 4016 6000 - 250 14772 15000

4x.rdf 342 4226 8000 - 313 19779 20000

5x.rdf 432 4446 10000 - 453 24767 25000

6x.rdf 518 4827 12000 - 485 29787 30000

7x.rdf 605 4547 14000 - 563 34787 35000

8x.rdf 691 5178 16000 - 640 39766 40000

9x.rdf 777 4757 18000 - 734 44822 45000

10x.rdf 864 5417 20000 - 875 49822 50000

11x.rdf 950 5117 22000 - 953 54762 55000

12x.rdf 1036 5168 24000 - 1125 59783 60000

13x.rdf 1122 5007 26000 - 1062 64747 65000

14x.rdf 1209 5488 28000 - 1250 69827 70000

15x.rdf 1295 5427 30000 - 1234 74727 75000

16x.rdf 1381 5948 32000 - 1312 79837 80000

17x.rdf 1468 5728 34000 - 1422 84737 85000

18x.rdf 1554 5808 36000 - 1547 89737 90000

19x.rdf 1640 5879 38000 - 1547 94687 95000

20x.rdf 1727 5929 40000 - 1656 99682 100000

Table 1 High redundancy test (a)

10

PDOM Persistence JENA Persistence

File

File size

(Kbytes)

Elapsed time

(milliseconds)

Theoretical

elapsed time

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

20x.rdf 1727 5929 40000 - 1656 99682 100000

30x.rdf 2590 7411 60000 261 2390 149573 150000

40x.rdf 3453 9043 80000 314 3250 199394 200000

50x.rdf 4316 10104 100000 370 4015 249230 250000

60x.rdf 5179 10905 120000 427 4781 299171 300000

70x.rdf 6042 11636 140000 482 5578 348987 350000

80x.rdf 6905 13930 160000 532 6453 398823 400000

90x.rdf 7768 13450 180000 584 7203 448658 450000

100x.rdf 8631 14130 200000 638 9437 498494 500000

110x.rdf 9494 15292 220000 691 9406 548403 550000

120x.rdf 10357 15793 240000 744 10343 598239 600000

130x.rdf 11220 18807 260000 797 11032 648011 650000

140x.rdf 12083 13450 280000 848 11688 697917 700000

150x.rdf 12946 22272 300000 900 12594 747847 750000

160x.rdf 13809 21802 320000 952 13469 797643 800000

170x.rdf 14672 23384 340000 1003 14469 847636 850000

180x.rdf 15535 24105 360000 1055 15469 897452 900000

190x.rdf 16398 25317 380000 1106 17438 947425 950000

200x.rdf 17261 26201 400000 1157 16891 997201 1000000

Table 2 High redundancy test (b)

2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

100

1000

10000

100000

File size Elapsed time Theoretical elapsed time

Figure 2 High redundancy test (PDOM) (a)

11

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

100

1000

10000

100000

1000000

File size Elapsed time Theoretical elapsed time PDOM file size

Figure 3 High redundancy test (PDOM) (b)

2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

100

1000

10000

100000

File size Reading time Storing time Theoretical storing time

Figure 4 High redundancy test (JENA) (a)

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

1000

10000

100000

1000000

File size Reading time Storing time Theoretical storing time

Figure 5 High redundancy test (JENA) (b)

12

PDOM Persistence JENA Persistence

File

File

size

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

Reading

time

Storing

time

Theoretical

storing time

Output10000 1480 1210 6990 15382 15000 2219 83612 80000

Output20000 2990 2470 10404 26689 30000 3140 167201 160000

Output30000 4490 3700 15682 36823 45000 4797 250750 240000

Output40000 6000 4970 19999 48139 60000 6125 334200 320000

Output50000 7510 6210 26178 59776 75000 7828 418035 400000

Output60000 9000 7450 29893 76700 90000 9422 501715 480000

Output70000 10500 8700 34089 99152 105000 13281 585204 560000

Output80000 12000 9920 38305 145219 120000 15328 667835 640000

Output90000 13500 11100 45174 208650 135000 16531 752483 720000

Output100000 15000 12400 49812 308293 150000 18438 836212 800000

Table 3 No redundancy test

The X axis in Figure 6 and Figure 7 reports the number of triples in the files used for

the test.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1000

10000

100000

1000000

File size PDOM file size Reading time Storing time Theoretical storing time

Figure 6 No redundancy test (PDOM)

13

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1000

10000

100000

1000000

File size Reading time Storing time Theoretical storing time

Figure 7 No redundancy test (JENA)

Table 4 reports RDFCore performances in adding a statement to very huge

descriptions that have been already stored in the repository. Figure 8 and Figure 9

show the graphic trend of required time.

PDOM Persistence JENA Persistence

File

Elapsed

time Theoretical elapsed time

File File size Elapsed time

160x.rdf 9333 9333 Output10000 1480 358

170x.rdf 9564 9916 Output20000 2990 12

180x.rdf 10826 10500 Output30000 4490 25

190x.rdf 10756 11082 Output40000 6000 70

- - - Output50000 7510 36

- - - Output60000 9000 10

- - - Output70000 10500 17

- - - Output80000 12000 21

- - - Output90000 13500 20

- - - Output100000 15000 20

Table 4 Add triple test

14

160x 170x 180x 190x

1000

10000

100000

Elapsed time Theoretical elapsed time

Figure 8 Add triple test (PDOM)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

10

100

1000

10000

100000

File size Elapsed time

Figure 9 Add triple test (JENA)

Furthermore, we measured the time spent by RDFCore to retrieve a description from

the repository and make it ready for manipulation by user (Table 5 and Figure 10 and

Figure 11) and in querying a model for every triple it contains (Table 6 and Figure 12

and Figure 13).

15

PDOM Persistence JENA Persistence

Resource Elapsed time Theoretical elapsed time Elapsed time

Output10000 13570 13000 484

Output20000 23804 26000 5

Output30000 34420 39000 15

Output40000 43573 52000 63

Output50000 59285 65000 31

Output60000 - - 5

Output70000 - - 7

Output80000 - - 15

Output90000 - - 16

Output100000 - - 16

Table 5 Retrieve description test

As for Figure 6 and Figure 7, in Figure 8 and Figure 9 the X axis reports the number of

triples in the files used for the test.

10000 20000 30000 40000 50000

10000

100000

Elapsed time Theoretical elapsed time

Figure 10 Retrieve description test (PDOM)

16

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1

10

100

1000

10000

100000

File size Elapsed time

Figure 11 Retrieve Description(JENA)

PDOM Persistence JENA Persistence

Resource Triple number Elapsed time Elapsed time

Output10000_rdf 10000 10505 453

Output20000_rdf 20000 15502 31

Output30000_rdf 30000 24075 16

Output40000_rdf 40000 32497 15

Output50000_rdf 50000 49361 16

Table 6 Querying persistence

output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

1

10

100

1000

10000

100000

Triple number Elapsed time

Figure 12 Querying persistence (PDOM)

17

output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

10

100

1000

10000

100000

Triple number Querying time

Figure 13 Query test (JENA)

Queries

The query test involves the use of the Enhanced Query Engine component of our

architecture; specifically, the query used to stress the system (taking into account the

size of the dataset and the size of results) was a very simple one: we asked the system

to return every statement, describing a matching statement as a statement with a

variable value for subject, predicate and object. This is done, in our system, creating a

Pattern (a list of conditions on statements) and translating it into a query expressed in

one of the query languages that are supported by the Enhanced Query Engine. In our

test, we used RDQL as a query language; the translated query is

SELECT ?s, ?p, ?o WHERE (?s,?p,?o)
that returns every statement in the given model.

Result analysis

The obtained results show that the whole system does scale in a linear way with both

persistence layers. It is noteworthy that JENA persistence absolute times, when

adding a new model, are higher than those of the PDOM implementation. This

depends on a JENA weakness due to the complexity of the internal database structure.

The next version of JENA (JENA 2.0) promises substantial performance

improvements, and this should tackle the resulting weakness of our system. On the

18

other hand, when doing retrieving and querying tests, where PDOM is still linear,

JENA is very close to constant complexity, independently from the size of managed

data. This result was expected because of the different approaches used by the two

distinct layers: PDOM loads its data into in-memory representations, while Jena relies

on its RDBMS persistence, obviously faster in these operations.

Conclusions

In this paper, we briefly described motivations and requirements for the brand new

vision emerging on the Web: the Semantic Web. We pointed out, among others, the

need of exploiting suitable technology for dealing with metadata, such as RDF. This

technology has many benefits and, as we stated in the first sections of this paper, has

to be integrated in frameworks that offer both scalability and standard support. Then,

we presented our solution to tackle RDF related issues and we mentioned one specific

application of RDFCore in a current ongoing EU research project (COLLATE).

Finally, we presented an empirical evaluation from which we noticed that our

designed architecture resulted in a scalable system (as shown by early tests on the

prototype presented in this paper). Forthcoming research will have three main

directions:

• Integration with RDF Schema Technology

• Moving to a standard RDF Query Language (when issued by responsible

committee)

• Embedding Semantic Web upper level languages, such as DAML+OIL[9], in

order to deal with ontologies and reasoning.

References

[1] T. Berners-Lee, J. Hendlers and O. Lassilla, The Semantic Web Scientific American,

May 2001 http://www.scientificamerican.com/article.cfm?articleID=00048144-

10D2-1C70-84A9809EC588EF21&catID=2

[2] D. Beckett N-Triples EBNF Grammar definition

http://mail.ilrt.bris.ac.uk/~cmdjb/2001/06/ntriples/

19

[3] B. McBride, Jena: A Semantic Web Toolkit, IEEE Internet Computing, Vol. 6, N. 6,

55-59, Nov/Dec 2002.

[4] S. Melnik: "RDF API Draft", working document, Stanford University, 1999

[5] COLLATE – COLLATE - Collaboratory for Annotation, Indexing and Retrieval of

Digitized Historical Archive Material http://www.collate.de/

[6] S. Ferilli, Management of Cultural Heritage Material: The COLLATE project. In: L.

Bordoni, G. Semeraro (Eds.), Proceedings of the Workshop on Artificial Intelligence

for Cultural Heritage and Digital Libraries, 7th Congress of the Italian Association

for Artificial Intelligence (AI*IA '01), Bari, 25 September 2001, pp. 29-33.

[7] H. Brocks, U. Thiel, A. Stein & A. Dirsch-Weigand, Customizable Retrieval

Functions Based on User Tasks in the Cultural Heritage Domain. In:

Constantopoulos, P. & Sølvberg, I.T. (Eds.). Research and Advanced Technology for

Digital Libraries. Proceedings of the 5th European Conference, ECDL 2001. Berlin:

Springer, 2001, pp. 37-48.

[8] Jena RDF Query Language http://www.hpl.hp.com/semweb/rdql-grammar.html

[9] Horrocks, DAML+OIL: a Reason-able Web Ontology Language, in Jensen, C. S.;

Jeffery, K. G.; Pokorny, J.; Saltenis, S.; Bertino, E.; Böhm, K.; Jarke, M. (Eds.),

(2002) Advances in Database Technology - EDBT 2002, Lecture Notes in Computer

Science 2287, 2-13, Springer:Berlin, 2002.

[10] E.Gamma, R.Helm, R.Johnson, J.Vlissides, Design Patterns Addison-Wesley Pub

Co; 1st edition (1995) ISBN 0201633612, pp. 315-324

Sharing Ontology by Web Services:

Implementation of a Semantic Network Service (SNS)
in the context of the German Environmental Information

Network (gein®)

Thomas Bandholtz

Consultant, Karl-F.-Schinkelstr. 2, 53127 Bonn, Germany
(formerly: Solutions Manager Knowledge Technologies, SchlumbergerSema)

thomas@bandholtz.info

Abstract. A thesaurus, a gazetteer and a chronology have been integrated in a
consolidated ontology on the basis of the Topic Map pattern. The result has
been made accessible to a working information community of 89 environmental
authorities in Germany by Web Services technology. A semantically shared
ontology can be shared physically in the Web.

1 Introduction

Way back in 1998, the Federal Environmental Agency in Germany launched the
German Environmental Information Network [1] (gein®, www.gein.de), an R&D
project which resulted in the implementation of a first version of an Internet
Information Broker in 2000. In most aspects, this was what today is called an agent in
the Semantic Web. gein® was a loose coupling of – initially - 50 information
providers with about 50,000 Web pages and nine Web-interfaced databases,
integrated by the agent (broker) with the help of a - hopefully - shared ontology,
common Internet technology, and XML. Thus gein® is part of the "database and
information system research as they relate to the Semantic Web and more broadly, to
gain insight into the Semantic Web technology as it relates to databases and
information systems" (http://swdb.semanticweb.org), as it is focused by the current
workshop.

gein® successfully applied a common content classification system as a first step to
any further content-related integration (or even "harmonization") of the different
Internet information sources in its domain. The semantics had been formalized by a
Thesaurus, a Gazetteer, and a Chronology. Bases on these, gein® was practicing
automatic indexing of unstructured documents as well as a distributed query using
XML metadata in HTTP requests. With this rather "avantgardistic" approach in 2000,
gein® proved as the public information portal ("The Portal to German Environmental
Information") of the German environmental authorities on the federal and states level
anyway.

2 Thomas Bandholtz

Following this encouraging experience, a follow-up project named “Semantic
Network Service (SNS)” [2] has been launched in 2001 to overcome some restrictions
of the initial version of ontology management and automatic indexing by
improvements such as:

 Semantic integration of thesaurus, gazetteer, and chronology;
 Resolving of homonym ambiguities by context analysis
 Elaborated criteria for keyword ranking according to their significance in one

document.
 Sharing ontology by Web Services
 Accessing semantic methods by Web Services

In this paper, I will concentrate on issues of Semantics and Application, as these
have proved to be the more crucial aspects. The Infrastructure (gein® and SNS are
built on J2EE, with open source as far as possible) sometimes has raised problems in
reliability, interoperability, or performance, but these never have been critical for the
project. In the following, I will discuss:

 Topic Maps, in their ability to integrate the gein® legacy and expose it to the
Semantic Web,

 Web Services as an interfacing method that allows to share an ontology not
only semantically, but as well physically.

2 Semantic Integration of a Thesaurus, a Gazetteer, and a
Chronology in a Topic Map

The SNS project has been started in 2001, and there has been an early decision to use
Topic Maps to model the ontology. While there is a – sometimes controversial -
discussion about Topic Maps and the Semantic Web [3,45], I recommend considering
Topic Maps as a pattern to be applied to Web Ontology. This may include using the
Web Ontology Language (OWL) [6] to serialize Topic Maps.

There had been an early RDF discussion [7] in the design phase of gein® in 1999
which resulted in the decision not to use RDF as the productive XML format in the
network. We implemented a community metadata profile in XML instead, with the
option to be converted into RDF later.

In early 2001, we experienced a kind of déjà vu discussing the XML Topic Maps
(XTM) [8] interchange format. Again, there was a format which was designed on an
extremely abstract level, while we were looking for something which was optimized
for fast and simple processing. That is why we developed a different XML structure
for Topic Maps [9] first, defined in an XML Schema. After XTM became an Annex to
ISO13250 as a recommended interchange format, we also implemented an XTM
interface. From today’s perspective one would consider to implement an OWL
interface as well, but this had been out of scope in 2002.

Sharing Ontology by Web Services: 3

Anyway - none of these formats can embarrass the architecture of SNS, they just
add another interchange format. The physical storage structure is encapsulated,
following the requirements of a smooth performance. What had attracted us to apply
the Topic Map model was not an interchange format, but the semantic pattern of
Topic Maps itself, as described in the core ISO 13250 document [10].

Having worked with a thesaurus, a gazetteer, and a chronology, each of them in an
individual (XML-) structure, we understood the need for an integrated model. Topic
Maps promised a generic pattern to integrate the given diversity without loss.

2.1 Building on Linguistic Inheritance

The gein® vocabulary has been developed since 1999 integrating and extending the
major semantic sources of the environmental domain in Germany.

The starting point was in the initial requirement to implement a thesaurus-based
search with dimensions of subject, location, and time. Following this, gein®
combined three semantic structures:

1. a thesaurus of currently 39,143 environmental terms (UmThes®),

2. a gazetteer including the intersections between 48,213 geographical objects
of all kinds,

3. a chronology – the synopsis of historical and contemporary events that
affected the environment.

Term
Component

preferred

broader

composite

related

Synonym

Descriptor

Morphology

Term
Component

preferred

broader

composite

related

Synonym

Descriptor

Morphology

Term
Component

preferred

broader

composite

related

Synonym

Descriptor

Morphology

Fig. 1. Thesaurus Model of UmThes®

UmThes® [11] is a full-blown thesaurus supporting all the relations required by
ISO 2788/5964 (Broader/Narrower; Synonym; Related; Component), and it contains
most of the word morphology, as shown in Fig.1. It is also used by several German-
speaking authorities such as the German and Austrian Environmental Data Catalogue,
and it is the German source of the GEneral Multilingual Environmental Thesaurus
(GEMET) [12,13].

4 Thomas Bandholtz

The gein® Gazetteer is based on the GN250 (by Federal Agency for Cartography
and Geodesy), but it adds several layers relevant for the environment, and it contains
all the spatial intersections as explicit relations in the data, ready-to-use in a rapid
query.

GeoObject

intersects

Names Morphology

part of

Types / Layers

Coordinates

GeoObject

intersects

Names Morphology

part of

Types / Layers

Coordinates

GeoObject

intersects

Names Morphology

part of

Types / Layers

Coordinates

Fig. 2. Gazetteer Model of the "Geo-Thesaurus"

Today there is no established standard about gazetteers as it is for thesauri. There
was an early approach of the Alexandria Digital Library in 1999 [14], and now we
have the Open GIS Consortium's proposal of a "Gazetteer Service Specification", and
the ISO Draft 19112 "Geographic information - Spatial referencing by geographic
identifiers" [15]. Fig. 2 shows a generic model which is more or less implemented (or
extended) by most of the existing gazetteers.

Event

sequence

Names Morphology

related

Types

Temporal Extent

Event

sequence

Names Morphology

related

Types

Temporal Extent

Fig. 3. Chronology Model of gein®

After having harvested a rich ontological legacy for the dimensions subject and
location, we were inspired to find something comparable for the temporal aspect. We
discovered that there are several symbolic names for events that do not contain any
temporal notation, but an implicit reference to a date, such as "before (or after)
Christ". While most people in the Christian culture can associate this with year "0",
this cannot be postulated globally. Each domain knows its specific major events "by
name", and most people cannot tell the exact date that they are talking about when the

Sharing Ontology by Web Services: 5

use phrases like "since the Chernobyl disaster" (1986-04-26). This raised the idea to
set up a mapping of symbolic names for events to their dates. The gein® Chronology
has been started from scratch. Fig. 3 shows the structure.

2.2 Topic Maps

Topic Maps have originated in the neighborhood of SGML, more closely: in the
ISO/IEC JTC 1/ SubCommittee (SC) 34 "Information Technology -- Document
Description and Processing Languages" [16] which had worked with SGML, DSSSL,
HyTime before. Unsurprisingly, the first interchange format has been written in
HyTime, two years before an additional XML format (XTM) has been released by
TopicMap.org.

But the standardization has not been based on interchange formats ("transfer
serializations", which has been stressed by Jim Mason, Chairman of ISO/IEC
JTC1/SC34:

“We need to keep clear that the transfer serializations are not the definition of
Topic Maps: The standard is the definition. SC34 intends that the supplementary
standards will clarify the meaning of Topic Maps without changing their essential
nature. (We also recognize that other transfer serializations are possible, outside the
standard.)” [17]

Topic Maps have often been described as the "GPS of the Information Space".
They can be represented by graphs ("nodes and arcs"), but they are restricted to a
more specific pattern of Topics, Associations, and Occurrences. Topics have
Occurrences (in information objects), and there are certain Associations between
these Topics.

This exactly corresponded to the view of the gein® information broker: a Topic
may be a thesaurus descriptor or synonym, a geographic object in a gazetteer, an
event, (or a person, an organization), whatsoever. Distinct kinds of Topics are defined
as Topic Types in a Topic Map instance.

Associations may interconnect Topics in some kind of semantic relation. Distinct
kinds of Associations, bound to certain Topic Types as their members, are defined as
Association Templates in a Topic Map instance (though this is not sufficiently
standardized yet).

An Occurrence may be seen as any kind of existing information about a Topic, but,
as Occurrences are “groupings of addressable information objects around topics” [10],
this should not be misunderstood to be the general index of a “corpora” like gein®. In
SNS, the document index is separated from the Topic Map. Topics are used as
classification properties in document metadata, which rather means: “groupings of
topics around addressable information objects” [9].

The current work of SC34 [16] is dedicated to the creation of two related
standards:

 ISO 18048: Topic Maps Query Language (TMQL)
 ISO 19756: Topic Maps Constraint Language (TMCL)

It is planned to create a Standard Application Model (SAM), a "formal data model
for topic maps", flanked by a Reference Model, and a Canonicalization.

6 Thomas Bandholtz

Not only to my opinion, these activities closely relate to the Semantic Web. In
particular, couldn't the Web Ontology Language (OWL) [6], which had just advanced
to a W3C Candidate Recommendation, function as a "Topic Maps Constraint
Language"? I think, definitely yes, although OWL may not satisfy every TMCL
requirement [18] currently in discussion. This has been explored by Lars Marius
Garshol, SC34 member and editor, with the result that "semantic annotations in OWL
can be translated directly into a topic map representation of the same information" [5].
While he states anyway that "merging the two technologies does not appear desirable
or possible" (ibid.), I see relevant benefits in applying the Topic Map pattern to the
modeling of Web ontologies, and in using OWL to serialize Topic Maps and their
constraints.

Besides SC34, there is a vivid Topic Map community at OASIS with three technical
committees [19] working on "Published Subjects". This work wants to extend the
concept of subjects as given in the original ISO13250:

"In the most generic sense, a subject is anything whatsoever, regardless of whether
it exists or has any other specific characteristics, about which anything whatsoever
may be asserted by any means whatsoever.” [10]

In this concept, each Topic "reifies" a subject by referencing a "subject indicator".
"Any information resource can be considered a subject indicator simply by being

referred to as such by an application, whether or not that resource was intended by its
publisher to be a subject indicator, and whether or not the publisher is aware of (or
even cares about) its use as a subject indicator." [20]

The OASIS TCs are proposing the use of more explicit published subjects,
published subject indicators (PSIs) and published subject identifiers (PSIDs). To me
this sounds reasonable (and I am personally contributing), but this idea is not
necessarily dedicated to solely Topic Maps.

While SC34 still behaves quite reserved about OWL, there is a first draft of
expressing Topic Maps in OWL by Bernard Vatant, chair of the TC Published
Subjects, providing

"… a reasonable platform for interoperability at a pragmatic level, covering quite a
range of moderately complex use cases and applications, without need of any
extension of current specifications beyond declaration of a minimal OWL vocabulary"
[21].

2.3 Modeling the gein® Ontology in a Topic Map

SNS has defined its own Topic types and Association templates to model the three
components of the gein® ontology. The Thesaurus type and its sub-types reproduce
the classical thesaurus structure as defined in ISO 2788/5964. The Location type is the
abstract parent of all the spatial types such as cities, catchment areas, or national
parks. Likewise, the Event type is parent of conferences, disasters, and so on.
The given relations (such as broader/narrower terms, or intersection of locations) can
be easily typed as Associations. So far, the three different structures can be formally
integrated into a single Topic Map without any significant semantic loss or
modification.

Sharing Ontology by Web Services: 7

Beyond this, the three components have been interlinked by two new association
types labeled where, and what. Both of them are using Event as the integration point.
The Where-association links between Event and Location, pointing out where an event
has happened. The What-association links between Event and Descriptor to describe
which subjects have been affected by the event.

what?

Event

Conference, ...

broader

preferred

Thesaurus

Descriptor

Synonym

Component

related

composite

Location

Administrative, ...

where?

relatedintersects

Stopword

what?

Event

Conference, ...

broader

preferred

Thesaurus

Descriptor

Synonym

Component

related

composite

Location

Administrative, ...

where?

relatedintersects

Stopword

what?

Event

Conference, ...

broader

preferred

Thesaurus

Descriptor

Synonym

Component

related

composite

Location

Administrative, ...

where?

relatedintersects

Stopword

Fig. 4. The SNS Topic Map Typology

This modeling remains implicit, as the Topic Map community still owns no modeling
or "constraint" language. There is kind of a "good practice" of describing the types in
form of Topics themselves. But there the semantic expressivity of this style is only
rudimentary, and there is no well-defined validation as it exists with XML Schema. In
2001, we experimented with using XML Schema to describe our Topic Map model
and have the XML serialization validated against it, but this resulted in a rather
proprietary solution which finally cannot be recommended. These issues have been
discussed more closely in [9].

What I experienced as the most restricting issue is the missing support of extending
Topic characteristics in an object-oriented manner. E.g., we need a temporal extent
attribute for the Event types, and a bounding box attribute for the Location types.
XML Topic Maps allow to (miss?-) use Occurrences to add properties, but you cannot
use data types and explicit modeling to do so. This has been solved by OWL.

3 Sharing Ontology by Web Services

The gein® Broker has been hosting all the domain ontology since 1999. It has been
used for the classification of currently 200,000 static Web pages published by 89
information providers, and in the distributed query to include nine cooperating
databases in a distributed query.

There have been several requests by the information providers to be enabled to
apply the same ontology and auto-classification methods for their own purposes.
Thinking about the effort to prepare a compact module to be distributed for
implementation in 89 possibly different technical environments, we preferred to
consider a centralized service that can be accessed online by any of them.

8 Thomas Bandholtz

gein® looks back to very positive experiences with distributed queries using XML
embedded in HTTP requests. We had implemented this communication in the
distributed query in 1999, even before the Simple Object Access Protocol (SOAP)
had been submitted to the W3C (2000), which initiated the XML Protocol Working
Group, and later expanded to the Web Service Activity.

In the recent months, Web Services have been discussed in the context of the
Semantic Web quite frequently. In most cases the discussion is about using Web
Services to process the Semantic Web, as by Tim Berners-Lee (“A story of program
and data as old as computing" [22,23]), or using the Semantic Web for an approved
Web Service description, as in Semantic Web Enabled Web Services (SWWS) [24].
Also the W3C Web Service Architecture [25] and the W3C Web Service
Choreography [26,27] are recognizing the importance of explicit semantics and
ontology to clarify the semantics of services. Similar for UDDI [28], or ebXML [29].
There is an elaborated approach of an "ontology of services" by DAML-S [30].

What we had in mind, was sharing ontology by Web Services physically.

3.1 Semantics of SNS Web Services

Based on the application experience in gein®, we designed three services [31]:

 Single Topic access by a unique ID (getPSI)
 Search for Topics by a single character string (findTopics)
 Auto-classification of a natural language document (autoClassify)

For "Single Topic access by a unique ID", the notation getPSI was taken from the
Published Subject paradigm already introduced above and is short for: "get Published
Subject Indicator (PSI)". We wanted to support Published Subject Identifiers (PSID)
for each Topic.

Like in most Web Service applications, we bind this service to the SOAP protocol.
However, SOAP does not satisfy the requirement that a PSID must have the form of a
single URL, while SOAP needs a more complex protocol (HTTP Post).

Single URLs can have the form of a HTTP Get request, and indeed Web Services
can be bound to the HTTP Get protocol. Doing so (additionally to the SOAP binding),
a URL like:

http://www.semantic-network.de/.../getPSI?id=uba_thes_24027

will result in a representation of the referenced Topic, in this case the "Technical
Instructions on Air Quality Control".

The idea of this service simply is to provide the Topic's characteristics (names,
description, etc.) once a client (agent) has taken the ID from a reference. A typical use
case may be finding this reference in some metadata, and trying to resolve it.

There has been lots of discussion in the committee about the kind of representation
of a PSI. Should it be readable for humans or machines? In the Semantic Web, there
must be a machine readable presentation, so that it may be processed by an agent.
Likewise, Web Services are not directly invoked by humans, and an XML format is

Sharing Ontology by Web Services: 9

expected in the response. So this PSI response is definitely machine-readable –
(leaving out the argument that XML may be human-readable as well).

 A human readable version is also provided by the URL:
http://www.semantic-network.de/displayTopic.html?lang=en&tid=uba_thes_24027,
but, while this may be called a kind of display service in the Web, it is not a Web
Service, as it responds with only semi-structured, display-oriented HTML code.

"Search for Topics by a single character string" (findTopics) is provided as a classical
free text query against the textual properties of Topics. There are several parameters
controlling the search tolerance, such as restricting the search to names only or
including textual parts of occurrences as well. The basic idea of this service is that the
client is looking for Topics that possibly match a given keyword (character string).
This is used by gein® to assist a human user who wants to proceed from a colloquial
term to a Topic. In most cases, more than one Topic is returned, and the list may
become quite long when the parameters are set to gain the most search tolerance.

"Auto-classification of a natural language document" (autoClassify) invokes a
linguistic analysis of the passed text. It is the same analysis that gein® is using to
generate the document index of the corpora automatically, but it may be applied in
different cases as well, e.g. using a paragraph of a known document as an initial search
condition. In this case, autoClassify returns a list of Topics which are significant for
the given text paragraph and should be used as search terms.

3.2 Responses are Topic Map Fragments

In the design phase of the service responses we came across the problem that a single
Topic with its full characteristics cannot be isolated from the Topic Map it appears in.
The reason is Associations. ISO 13250 clearly sees Associations as part of the
characteristics of a Topic, but each Association is referring to at least a second Topic.
Surely an Association cannot by understood without an understanding of the
associated Topic – which has more Associations …

Practice has to find a solution. We have chosen to omit Associations in the results
of findTopics and autoClassify which return lists of Topics, and to leave it to the
requester of getPSI if he wants Associations to be included in the representation of a
single Topic – together with the associated Topics, even recursively. getPSI has a
parameter named distance to control the appearance of associated Topics.

But still, a fragment remains a fragment. Each thinkable subset of a Topic Map is
loosing semantics by being isolated from the original context. That is why we decided
to let the fragment be explicit, which means adding a notation that expresses the
origin, method of filtering (i.e. the request and its parameters), and date of filtering.

10 Thomas Bandholtz

Fig. 5. Interactive SVG graphic displaying a Topic Map fragment

3.3 Formal Web Service Description

In Web Services, the XML structure and syntax of the communication have to be well
defined using an XML Schema embedded in the <types> section of a Web Service
Description Language [32] document.

More precisely, WSDL does not necessarily require XML Schema, but at least
some document type definition written in XML itself (and what would this be else
than XML Schema today?). That is why one cannot use a DTD type document
structure definition with Web Services (DTD are not written in XML).

As discussed above, XTM provides a well defined XML interchange format for
Topic Maps. However, there is no normative XML Schema for XTM. This has been
discussed in the public Topic Map mailing lists in February, 2003. In this context
there has been a first draft by Max Voskob, which later has been “slightly modified”
by Lars Marius Garshol.

SNS uses this version, with one further modification: Neither of the two had
declared an explicit XML namespace (xs:targetNamespace) for XTM. This is required
so that XML serializations of Topic Maps are able to reference the XTM schema.

Still something was missing: a Web Service provider also needs to describe the
requests (getPSI, findTopics, autoClassify) and responses (topicMapFragment) in an
XML Schema. So we had to provide a SNS.XSD doing so. As topicMapFragment
includes the <topicMap> defined in XTM, the final structure looks like:

SNS.WSDL embeds SNS.XSD embeds XTM.XSD
(not to mention that XTM imports XLINK).

Sharing Ontology by Web Services: 11

Given the not too mature state of current implementations of WSDL processors,
this structure had its odds and ends to be settled before everything worked on today's
major platforms of WSDL processing (Apache Axis and Microsoft dotNet).

4 State of Realization

The SNS R&D project has been finalized end of 2002, with some additional minor
enhancements in 2003. The 2003 version of gein® replaces the previous semantic
methods completely by interfacing SNS Web Services, which will enter the
production phase in September.

But SNS has not been intended to be a gein®–only service. Its semantic model and
functional services are provided for the integration in any kind of information system
dealing with environmental issues in Germany, and, as SNS is bi-lingual,
internationally.

In the near future there are several integration options, targeted to different users in
different application areas, such as

1. UDK (German Catalog of Environmental Data Sources): An administrative
agreement [33] of the Federal and Länder authorities in Germany has become
effective, in which SNS is intended as the common basis of both systems in the
next year.

2. gein® Information Providers: the (currently 89) contributing organizations
[34] are invited to integrate SNS by Web Services for any kind of information
activities. Some of them intend to implement a local version of SNS
themselves. Finally, there may be a network of cascading Topic Maps
depending on the spatial or thematic focus of an application.

3. GeoMIS.Bund: the “Metainformation-System for geodata of the Federation” of
(IMAGI) [35], part of the German “national Geo data infrastructure is
incorporating SNS to support thesaurus-based search and geographic names.

4. Europe: The eEIONET community discusses “environmental web services e.g.
Reportnet, country networks, and metadata, as well as terminology/ontology
issues” on a European level [36]. As the relation between GEMET and
UmThes® is very close, and as SNS already is working bi-lingual
(German/English), it is a candidate to be extended to a European Scope
(gazetteer) and to the full multilingual context of currently 19 GEMET
languages. This has been proposed in an Expression of Interest [37] within the
6th Framework Program of the European Commission.

5 Conclusions

SNS has successfully integrated the gein® thesaurus, gazetteer and chronology legacy
into a service-oriented, integrated ontology system that serves a large information
community.

Topic Maps have proved as a generic modeling pattern, but there are deficits in a
formal modeling language.

12 Thomas Bandholtz

Web Services have proved as a working communication protocol in order to access
a domain ontology physically.

There are several issues to be solved, among which I regard the most crucial:

 Apply the Web Ontology Language with the Topic Maps pattern.
 Advance the interoperability of the Web Service Description features and

XML Schema details to improve rapid implementations on different
platforms.

References

1. Umweltinformationsnetz Deutschland. German Environmental Information Network -
GEIN Research project UFOPLAN-Ref. No. 298 116 03/0.
http://www.gein.de/docs.html.

2. “Implementation of a Semantic Network Service (SNS) in the context of the German
Environmental Information Network (gein®)”. Research project UFOPLAN-Ref. No.
20111612, promoted by BMU/UBA, Germany. http://www.sematic-network.de.

3. Martin S. Lacher and Stefan Decker: On the Integration of Topic Maps and RDF Data.
International Semantic Web Working Symposium, Stanford 2001.
http://www.semanticweb.org/SWWS/program/full/paper53.pdf

4. Marc de Graauw: Business Maps: Topic Maps Go B2B. August 21, 2002.
http://www.xml.com/lpt/a/2002/08/21/topicmapb2b.html

5. Lars Marius Garshol: Living with topic maps and RDF.
http://www.ontopia.net/topicmaps/materials/tmrdf.html

6. Web Ontology Language (OWL). Overview. W3C Candidate Recommendation 18 August
2003. http://www.w3.org/TR/2003/CR-owl-features-20030818/

7. Thomas Bandholtz: GEIN 2000 and beyond: Environmental Information in the “Semantic
Web”. 1. Workshop "Environmental Markup Language (EML)". Berlin, Humboldt
University, 1999. http://www.bandholtz.info/publications/1999/gein-eml99-en.pdf

8. XML Topic Maps (XTM) 1.0. TopicMaps.Org Specification 1.16 2001/08/06.
http://www.topicmaps.org/xtm/index.html

9. Thomas Bandholtz: A Taxi in Knowledge Land. XMLeurope 2002, Barcelona.
http://62.231.133.220/idea-eks-nav/papers/03-05-03/03-05-03.html

10. ISO/IEC 13250 Topic Maps. Second Edition. 19 May 2002
http://www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-2nd-ed-v2.pdf

11. A short description (in German) of UmThes can be found at
http://www.umweltbundesamt.de/uba-datenbanken/thes1.htm. See also: the Thesaurus
Editorial Board, http://www.cedar.at/wgr_home/

12. The GEneral Multilingual Environmental Thesaurus (GEMET) was developed by the
European Environment Agency (EEA) and the ETC/CDS.
http://www.mu.niedersachsen.de/cds/etc-cds_neu/library/Gemet.pdf
HTML version at: http://www.mu.niedersachsen.de/cds/etc-cds_neu/library/select.html

13. UNEP.Net and the GEMET thesaurus. http://www.unep.net/help/about-gemet.cfm
14. Alexandria Digital Library: ADL Gazetteer Content Standard (version of 4/21/99).

http://adl.billzworld.com/projects/gazetteer/content_standard/
15. Jens Fitzke: Standard-based Gazetteer Services. Presentation at the NKOS Workshop,

JCDL 2002, on Digital gazetteers: integration into distributed digital library services, July
18, 2002. jens.fitzke@uni-bonn.de

Sharing Ontology by Web Services: 13

16. M. Biezunski, S. Newcomb, and M. Bryan (ISO SC34): Guide to the topic map standards.
2002-06-23. http://www.y12.doe.gov/sgml/sc34/document/0323.htm

17. Jim Mason, Chairman of ISO/IEC JTC1/SC34 in his posting from 2001-12-14.
http://lists.oasis-open.org/archives/topicmaps-comment/200112/msg00012.html

18. ISO/IEC JTC 1/SC34. Topic Map Constraint Language.
http://www.isotopicmaps.org/tmcl/.

19. OASIS Topic Maps Published Subjects TC
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tm-pubsubj
OASIS Topic Maps Published Subjects for Geography and Languages TC
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=geolang
OASIS Topic Maps Vocabulary for XML Standards and Technologies TC
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xmlvoc

20. Published Subjects: Introduction and Basic Requirements. OASIS Published Subjects
Technical Committee Recommendation, 2003-06-24
http://www.oasis-open.org/committees/download.php/3050/pubsubj-pt1-1.02-cs.pdf

21. Bernard Vatant: Cooking for the Semantic Web. OWL and Topic Map Pudding
http://www.mondeca.com/owl/lang.rdf

22. Tim Berners-Lee: (W3C Design Issues) Roadmap for Web Services. 2003/07/24.
http://www.w3.org/DesignIssues/WebServices.html

23. Tim Berners-Lee: Web Services - Semantic Web.
http://www.w3.org/2003/Talks/0521-www-keynote-tbl/

24. Christoph Bussler, Dieter Fensel, Alexander Maedche: A Conceptual Architecture for
Semantic Web Enabled Web Services. ACM Special Interest Group on Management of
Data: Volume 31, Number 4, Dec 2002. See also http://swws.semanticweb.org/swws

25. Web Services Architecture. W3C Working Draft 8 August 2003.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

26. Web Services Choreography Working Group Charter, W3C v 1.25 2003/01/14.
http://www.w3.org/2003/01/wscwg-charter

27. Web Services Choreography Requirements 1.0. W3C Working Draft 12 August 2003
http://www.w3.org/TR/2003/WD-ws-chor-reqs-20030812

28. UDDI tModels. Classification Schemes, Taxonomies, Identifier Systems, and
Relationships, Version 2.04 11 December 2002.
http://uddi.org/taxonomies/UDDI_Taxonomy_tModels.htm

29. ebXML Case Study: Exploiting Web Service Semantics through ebXML Registries and
Software Agents. February 19, 2003.
http://www.ebxml.org/case_studies/documents/metuebxmljmtcasestudy_060503.pdf

30. David Martin (The DAML Services Coalition): DAML-S: Semantic Markup for Web
Services. White Paper 2003-05-05. http://www.daml.org/services/daml-s/0.9/daml-s.html

31. For closer information see the Semantic Network Services online documentation.
http://www.semantic-network.de/doc_intro.html?lang=en

32. W3C Web Services Description Working Group. http://www.w3.org/2002/ws/desc/
33. Administrative Agreement and Coordination UDK/GEIN®. http://www.udk-gein.de/
34. gein® Information Providers. http://www.gein.de/provi_en.html
35. Inter-ministerial commission for geo-information (IMAGI), Germany,

http://www.imagi.de/
36. EIONET: European Environment Information and Observation Network. eEIONET Work

Conference from 26-28 September 2002 in Vienna. Released: 2002/07/03.
http://eea.eionet.eu.int/Best_Practice/eEIONET2002

37. EoI: European Environmental Topic Map Engine with Multilingual Auto-Classification
(EETM). Expression of Interest to the 6th Framework Programme of the European
Commission. June 2002. http://www.jiscmail.ac.uk/files/DC-
ENVIRONMENT/EoI_Bandholtz.doc

ODE-SWS: A Semantic Web Service
Development Environment

Óscar Corcho1, Asunción Gómez-Pérez1, and Mariano Fernández-López1

Manuel Lama2

1 Departamento de Inteligencia Artificial. Facultad de Informática.
Campus de Montegancedo, s/n. Universidad Politécnica de Madrid.

28660 Boadilla del Monte, Madrid, Spain.
{ocorcho,mfernandez,asun}@fi.upm.es

2 Departmento de Electrónica y Computación. Facultad de F́ısica.
Campus Sur, s/n. Universidad de Santiago de Compostela.

15782 Santiago de Compostela, A Coruna, Spain.
lama@dec.usc.es, davidal@usc.es

Abstract. Web Services (WS) are software modules that perform op-
erations that are network-accessible through XML messaging. Web Ser-
vices in the Semantic Web, that is, Semantic Web Services (SWS), should
describe semantically their structure and capabilities to enable its auto-
matic discovery, invocation and composition. In this work we present
a development environment to design SWS in a language-independent
manner. This environment is based on a framework that defines an ontol-
ogy set to characterize how a SWS should be specified. The core ontology
of this framework describes the SWS problem-solving behaviour and en-
ables the SWS design at a conceptual level. Considering this framework,
the SWS development environment is composed of (1) a graphical inter-
face, in which the conceptual design of SWSs is performed, and (2) a tool
set, which instantiates the framework ontologies according to the graph-
ical model created by the user, verifies the completeness and consistency
of the SWS through instance evaluation, and translates the SWS concep-
tual model description into SWS (and WS) languages, such as DAML-S,
WSDL or UDDI. This tool set is integrated in the WebODE ontology
engineering workbench in order to take advantage of its reasoning and
ontology translation capabilities.

1 Introduction

Web Services (WSs) are software modules that describe a collection of opera-
tions that can be network-accessible through standardized XML messaging [1].
WSs are distributed all over the Internet, and in order to enable this accessibility
and interactions between WSs, it becomes necessary an infrastructure offering
mechanisms to support the WS discovery and direct invocation from other ser-
vices or agents. Nowadays, there are a number of proposals (usually ecommerce-
oriented) that claim to enable partial or totally this required infrastructure, such

as ebXML [2], E-Speak [3], or BPEL4WS [4]. However, the approach that has
emerged as a de facto standard, due to its extended use and relative simplicity,
is the Web Service Conceptual Architecture [1]. This framework is composed
of a set of layers that, basically, enable: (1) WS publication, where the UDDI
specification [5] is used to define the WS capabilities and characterize its ser-
vice provider; (2) WS description, which use the WSDL language [6] to specify
how the service can be invoked (input-output messages), and SOAP [7] as the
communication protocol for accessing web services; and (3) WS composition,
which specifies how a complex service can be created combining simple ones.
The language used to describe this composition is WSFL [8].

In this context, the Semantic Web [9] has risen as a Web evolution where the
information is semantically expressed in a markup language (such as DAML+OIL
[10]) and, thus, both agents and services could access directly to it. This approach
considers that the Web Services in the Semantic Web, so called Semantic Web
Services (SWSs), should specify their capabilities and properties in a semantic
markup language [11], [10]. This markup would enable other services to reason
about the SWS, and, as a result, decide whether it matches their requirements.
Taking this into account, two frameworks, SWSA [13] and WSFM [14], have been
proposed to describe a semantic Web infrastructure for enabling the automatic
SWS discovery, invocation and composition. Both frameworks use the DAML-S
specification [15], which is a DAML+OIL ontology for SWS specification, and
emphasize the SWS integration with de facto standard WS, in order to take
advantage of its current infrastructure.

On the other hand, Problem-Solving Methods (PSMs) describe explicitly how
a task can be performed [16]. PSMs are intended to be reusable components
applicable to similar tasks but in different domains. A PSM description specifies
the tasks in which the PSM is decomposed (methods-tasks tree); the input-
output interactions between the tasks; the flow control that describes the task
execution; the conditions in which a PSM can be applied to a domain or task;
and, finally, the ontology used by the PSM (method ontology). The UPML
specification [17] provides containers in which these PSM views can be described,
and, also, it incorporates elements that enable the PSM reuse. UPML has been
developed in the context of the IBROW project [18] with the aim of enabling
the semi-automatic reuse of PSMs. This objective could be interpreted as a
composition of PSMs.

In this work we provide a SWS development environment, called ODE-SWS,
which would allow the user to design SWSs on the basis of PSM modelling, en-
abling its description and composition at a conceptual level. This environment
also performs verification about the consistency and completeness of the design
created by the user. Once the design is verified, the user will select the spe-
cific languages in which the SWS will be specified. Thus, the SWS development
process supported by this environment does not depend on a specific SWS spec-
ification language. On the other hand, ODE-SWS is integrated in WebODE [19],
an ontology development workbench that offers an infrastructure in which on-
tology services (such as merging, evaluating and reasoning with ontologies) can

be reused by other services or applications. In this way, ODE-SWS development
has been facilitated with its integration in WebODE.

The structure of the paper is as follows. In section 2, a PSM-based framework
that enables the SWSs (and WSs) development is presented. In section 3, the
software architecture of the environment that supports this framework and how
it has been integrated in WebODE is described. In section 4, the current capa-
bilities of its graphical interface are explained. Finally, in section 5, the main
contributions of the work are summarized and other proposals to develop SWS
are discussed.

2 Framework for SWS Development

Relationships between SWSs and PSMs have been emphasized by several authors
[20], [14]. When both SWSs and PSMs are applied, they execute an operation
(or equivalently a method) to perform a task in a domain. As a result of this
execution, either new domain information is obtained or an effect is provoked
in the real world. Taking this similarity into account, it seems to be reasonable
to use the PSM paradigm to define the SWS features related to their internal
structure (SWS description and composition). Thus, we propose a framework in
which the SWS development is based on PSM descriptions, which could be ex-
tended with knowledge about ecommerce features (to facilitate SWS discovery)
and communication protocols (to provide network-accessibility).

On the other hand, the design of the framework has been guided by a set
of requirements that establish the conditions to define an open and extensible
framework to develop SWSs. These requirements are as follows:

1. SWS conceptual modeling. SWS development must be carried out at a con-
ceptual level and, therefore, characterization and description of the SWS
capabilities and internal structure (for composition and description) can-
not depend on specific languages that could limit the expressiveness of the
SWS model. Our aim is to allow the users to develop SWSs in a language-
independent manner; the environment that supports the framework will be
responsible to translate the SWS design into the required SWS languages.

2. Integration of SWS with Web Service standards. SWS specifications should
be integrated with Web service de facto standards (both frameworks and
languages) to be able to use the current infrastructure that supports these
standards [13], [20]. This requirement is compatible with the need of enabling
a SWS conceptual design, because this integration is carried out once the
SWS conceptual model has been created.

3. Modular design. The framework must be composed of a set of independent,
but related, modules, which contain knowledge about different views of the
SWS development process. This criterion guarantees the extensibility of the
framework, because we could introduce new modules without have to modify
the others.

2.1 Layered-Based Framework

To cover these requirements we propose a framework with a layered design,
whose layers are identified following a generality criterion, from the data types
(lower layer) to the specific languages in which SWSs will be expressed (higher
layer). Each layer is defined by an ontology that describes its elements on the
basis of well-known standards. These ontologies (or layers) are the following (see
figure 1):

– Data Types (DT) Ontology. It contains the data types associated to the
concept attributes of the domain ontology. The data types included in the
DT ontology are the same as the ones defined in the XML Schema Data
Types specification [21].

– Knowledge Representation (KR) Ontology. It describes the representation
primitives used to specify the domain ontology managed by SWSs in its
operations. That is, the components of the domain ontology will be KR
instances. KR ontology is needed because higher framework ontologies (PSM
and SWS) could need to reason about the domain ontology. For example,
preconditions of a method could impose that the input-output data should
be attributes. Usually, the KR ontology is associated to the knowledge model
of the tool used to develop the domain ontology.

– PSM Description Ontology. This ontology describes the elements that com-
pose a PSM, which, as we have previously discussed, can be used to generate
SWS descriptions. The PSM ontology is constructed following the UPML
specification [17], that has been extended with (1) a programming structure

Fig. 1. Framework for SWS development. This framework is composed of a set of design
layers, each one defined by an ontology that is based on well-known specifications of
the components that it describes

ontology, which describes the primitives used to specify the PSM flow con-
trol (such as conditional and parallel loops, conditional statements, etc.); (2)
inferences, which are new PSM elements defined as in the CommonKADS
knowledge model [22], that is, as building blocks for reasoning processes; and
(3) relations between PSM elements to explicitly declare whether an element
may be executed independently of the others or not and whether they can
be invoked by an external agent (or service). In figure 2 an excerpt of the
PSM ontology is showed. On the other hand, the PSM ontology contains a
number of axioms that constrain how PSM element instances are created.
This guarantees the consistency of the PSM model. For example, there exists
an axiom establishing that the input method must be covered by the inputs
associated to the tasks that compose the method.

– SWS Ontology. This ontology is constructed on the basis of the PSM descrip-
tion ontology, which is extended with both knowledge related to ecommerce
interactions, which enable the publication and advertisement of services, and
communication protocols. These extensions are performed using the DAML-
S specification as reference [15], because it describes containers to include
these types of knowledge.

– Standard language ontologies for Web Services. They describe the elements
associated to the de facto Web standard languages for service publication
(UDDI), description (WSDL/SOAP), and composition (WSFL). These on-

Fig. 2. Excerpt of the PSM ontology and how it is related with the SWS ontology

tologies complete the SWS specification, because they facilitate its integra-
tion in the current infrastructure of the Web.

This framework verifies the design requirements: conceptual modeling of
SWSs is performed in the PSM layer, which is not constructed following a spe-
cific language, but modelled at knowledge level [23]; integration with Web service
standards is explicitly enabled in the higher framework layer, which, if required,
could be easily extended to include new standards; and, finally, modular design
is achieved through the layered approach itself.

3 SWS Development Environment

To provide support for the framework, we have designed a SWS development
environment, in which users can design the conceptual model of SWS through
a graphical interface. Once finished, the model must be checked to guarantee
its consistency and correctness. Then the SWS model can be converted into a
DAML+OIL specification (such as DAML+OIL), which will be complemented
with Web service standard languages. The software architecture of this envi-
ronment, which is called ODE-SWS, has been designed following the framework
requirements, that is, to develop an open and extensible environment, which, if
required, could be easily modified to support new SWS (and WS) specification
languages or frameworks.

3.1 Software Architecture

According to the proposed framework, the SWS development could be viewed
as the process of instancing an ontology set that contains the knowledge needed
to generate the SWS specifications. ODE-SWS software architecture is based on
this consideration and it is composed of: a graphical interface, which allows the
users to develop SWSs at a conceptual level (section 4); and a set of services (or
tools), called ODE-SWS services, which process the SWS graphical descriptions
(previously created by the users) to generate the instances of the framework
ontology at which each service is connected. That is, each framework layer is
associated to a ODE-SWS service which operates with the knowledge contained
into the ontology that describes that layer.

Figure 3 shows the general structure of a ODE-SWS service. Usually, a service
is activated by the ODE-SWS graphical interface to (1) verify the consistency
and completeness of the SWS conceptual model; or (2) translate this model from
its graphical description into a specific language. In both cases, however, it is
necessary to generate an instance set of the ontology connected to the service. In
the first case, the SWS conceptual model is verified applying the ontology axioms
to the instance set; the ODE-SWS service contains a module that will activate
the reasoning with the ontology axioms. In the second case, it is also necessary
to check the consistency and completeness of the SWS model to avoid errors
in the specification of the SWS. Once this verification has been carried out, an

Fig. 3. General structure of a ODE-SWS service, where the ontology with which the
service operates must be one of the ontologies identified in the SWS development
framework

ODE-SWS service module will export the ontology to the language selected by
the user.

On the other hand, ODE-SWS is completely integrated in WebODE [19],
which is a workbench for ontology development that provides additional services
for exporting ontologies to different languages (such as DAML+OIL, RDF, etc.),
merging and evaluating ontologies, and reasoning with ontologies using their
axioms. The WebODE software architecture is scalable and easily extensible, and
it is divided in three layers (figure 4). In the first layer, the ontology development
services are included. They verify the ontology consistency, enable the access to
the ontologies stored in a relational database, reason with ontology axioms, and
export/import the ontologies to/from different languages.

In the second layer the middleware services are located. They use the ontol-
ogy development services in their operations and provide additional capabilities
to WebODE, such as merging or evaluation. The ODE-SWS services are inte-
grated in this layer. Thus, they directly use: (1) the WebODE inference service
to evaluate the ontologies by means of their axioms; (2) the WebODE ontology
access service to manage the framework ontologies (which are stored in We-

Fig. 4. Integration of ODE-SWS services in the WebODE architecture

bODE); and (3) the export services to translate the SWS model into a specific
SWS language. In this layer the ODE-SWS graphical interface is also included
and uses the ODE-SWS services and the WebODE ontology access service.

Finally, in the third layer the applications that mainly use the middleware
services in their operations are constructed. For example, a theatre server ap-
plication that offers SWSs to allow the users to book tickets for a particular
film projected in the theatre, will probably use ODE-SWS because it provides
capabilities needed in the application definition. Therefore, WebODE platform
could be considered as an application development environment, in which new
services can be easily integrated and reused by other applications by means of
the infrastructure provided by the platform.

3.2 ODE-SWS services

ODE-SWS services are directly invoked from the ODE-SWS graphical interface
when the users, once they create the SWS conceptual model in a graphical
manner, require to export that model to well-known SWS languages or when
the graphical interface itself needs to verify whether an operation carried out
by the user has generated a SWS inconsistent model or not. Taking this into
account, we identify the following ODE-SWS services (figure 5):

– KR service. This service gets as input the ontology used in SWS operation
(usually the domain ontology) and establishes the instances associated to
the KR and Data Types ontologies. The domain ontology can be available in
WebODE or could be imported from an ontology language into the WebODE
specification. In both cases, this service will invoke the ODE service to access
the domain ontology components stored in a database.

– PSM service. It uses the graphical descriptions of the SWS model to generate
an instance set that describes completely the PSM model (internal structure
and flow control). Once the instance set is created, this service must invoke
the WebODE inference service [24] to verify the consistency and complete-
ness of the PSM model. In this verification, the axioms that constrain how
the PSM elements can be combined with each other are used. For example,
if we would define a general service that is decomposed in two sub-services,

Fig. 5. Input-output relations between ODE-SWS services in order to generate the
SWS model and its specification in a SWS language

it would be necessary to verify that the inputs of these sub-services would
be of the same (or subsumed) type as the general service inputs. In order
to perform this verification, the PSM service must operate with an explicit
description of the representation primitives in which the domain ontology
will be instanced.

– SWS service. Instances created by this service will enhance the knowledge
included in the PSM model by adding the information related to ecommerce
interactions. This information will be directly obtained from the ODE-SWS
graphical interface.

These three services constitute the ODE-SWS core, because they support the
generation of the SWS conceptual model (from the SWS graphical descriptions)
and their operation does not depend on the specific languages in which the
SWS will be described. Therefore, these services will be modified only if their
associated framework layers are also changed.

– WSLang service. It gets as inputs the SWS ontology instances and gen-
erates an instance set from which the SWS model is specified in UDDI,
WSDL/SOAP and WSFL de facto standard languages.

– DAML-S service. It provides the DAML-S specification of the SWS having
as inputs the instances of the SWS ontology. Nevertheless, this operation is
not straightforward because in the DAML-S ontology a service is modeled
as a process, whereas in our framework a service is considered to be a spe-
cialization of a PSM (or method). Once this operation is performed, this
service must invoke the WebODE service, which exports an ontology into
the DAML+OIL language.

– Java service. Using the PSM ontology instances as inputs, this service will
generate the skeleton of the programming code (Java beans) needed to exe-
cute the SWS and to perform its operations. Once this code has been gener-
ated by the service, the user must fill in the methods responsible of carrying
out the operations modelled in the PSM.

These three services represent ODE-SWS additional services, because they
have been specifically included in the environment to support the translation
from the SWS model into the languages in which the SWS will be expressed. This
means that these services would be changed (or substituted) if it was required
to use other languages or if the core services were also modified.

4 Graphical Interface

ODE-SWS graphical interface is based on the assumption that the design and
development of a service should be performed from different, but complementary,
points of view (such as in PSM modelling). These different views help the user
to understand the internal structure of a service and the interactions between
its components (sub-services); that is, these views facilitate the SWS description
and composition. Taking this into account, the graphical interface contains the
following views (see figure 6):

(a)

(b)

Fig. 6. ODE-SWS graphical interface

– Definition view. In this view the user defines a service by specifying its
name (mandatory) and, optionally, by introducing the information needed
to enable service discovery and advertisement, such as a description of the
provider that offers the service, the types of business for which the service
is oriented (industry classifications), etc.

– Decomposition view. This view allows the user to define (and also create) the
services (sub-services) that would be executed when a (composite) service is
activated. That is, a service hierarchy can be specified. This view, therefore,
enables service composition by creating a hierarchy in which the sub-services
of a composite service are activated if it verifies their execution conditions.
Figure 6.(a) shows how the service BuyMovieTicket is decomposed in its
sub-services. On the other hand, this view can be used to detect possible
inconsistencies between different views. For example, in the flow control of
a service cannot appear services that do not belong to its hierarchy.

– Interaction view. In this view the input-output interactions between the sub-
services of a composite service are specified. This operation requires that
the domain ontology would be previously loaded from WebODE database
to the graphical interface. Figure 6 shows the main window of the ODE-
SWS, where the specification of the interactions between the sub-services of
buyMovieTicket composite service can be seen. All these services have been
created in the decomposition view (or in the definition view), which will
generate the service tree shown in the right side of figure 6.(b).

– Flow control view. In this view the user specifies the flow control of a service,
where its sub-services are combined with programming structures to obtain a
description of the service execution. This view, which is not implemented yet,
will be used to model the service composition by means of several diagrams
that describe the different compositions of services. On the other hand, this
view and the decomposition view could be used to export to languages (as
WSFL) that specify the service composition.

The graphical interface guarantees the consistency and completeness of the
models that have been created in each one of its views. For example, if the user
specifies that a service is composed of three sub-services (decomposition view),
the graphical interface will invoke the PSM service to assure that the interaction
view contains exactly those three services (as in the example shown in figure 6).

5 Conclusions

ODE-SWS enables the users to develop SWSs following a PSM-oriented design,
which is based on a language-independent framework for SWS development.
Furthermore, ODE-SWS will assure the consistency and completeness of the
SWS designs. Once the SWS design correctness is verified, the user can select
the languages in which the SWS will be described. Thus, in ODE-SWS the user
does not need to know specific details about the languages used to specify the
SWSs.

On the other hand, the ODE-SWS integration in WebODE has simplified
its software architecture and implementation, because (1) it uses directly the
WebODE services, which offer support for ODE-SWS operations; and (2) it uses
the infrastructure itself that WebODE provides for including software modules
as services, which could be easily accessed form the graphical interface. Thus,
the integration in WebODE favors the ODE SWS modularity, which is a key
requirement to adapt the environment to new standard languages or frameworks.

Finally, there exists some development environments which offer capabilities
for SWS composition and consistency verification [26], [25]. Both environments
are based on the DAML-S ontology and they use the reasoning capabilities as-
sociated to the DAML+OIL language to verify the SWS model consistency.
These environments are language-dependent and the SWS conceptual modelling
depends on the DAML+OIL mark-up, which, therefore, highly difficult its trans-
lation to others languages or frameworks. On the other hand, none of these two
environments are supported by an infrastructure that could offer other useful
capabilities such as evaluation or reasoning about ontologies.

References

1. H. Kreger: Web Services Conceptual Architecture (WSCA 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, May
2001.

2. D Webber and A. Dutton: Understanding ebXML, UDDI and XML/edi.
http://www.xmlglobal.com/downloads/ebXML understanding.pdf, October 2000.

3. S. Graupner, W. Kim, D. Lenkov, and A. Sahai: E-Speak – An Enabling Infras-
tructure for Web-based E-Services. Proceedings of the International Conference on
Advances in Infrastructure for Electronic Business, Science, and Education on the
Internet, L’Aquila, Italy, July August 2000.

4. F. Curbera, Y. Golan, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.
Weerawarana: Business Process Execution Language for Web Services. Version
1. http://www.ibm.com/developerworks/library/ws-bpel, July 2002.

5. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen: UDDI
Version 3.0. Published Specification. http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm, July 2002.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana: Web Services
Description Language (WSDL) 1.1. http://www.w3c.org/TR/2001/ NOTE-wsdl-
20010315, March 2001.

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F.
Nielsen, S. Thatte, and D. Winer: Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, May 2000.

8. F. Leymann: Web Service Flow Language (WSFL 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSDL.pdf, May
2001.

9. T. Berners-Lee, J. Hendler, and O. Lassila: The Semantic Web. Scientific American,
284(5):34-43, 2001.

10. J. Hendler and D. McGuinness: The DARPA Agent Markup Language. IEEE In-
telligent Systems, 15(6):72-73, 2000.

11. S.A. McIlraith, T.C. Son, and H. Zeng: Semantic Web Services. IEEE Intelligent
Systems, 16(2):46-53, 2001.

12. J. Hendler: Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37,
2001.

13. T. Sollazzo, S. Handshuch, S. Staab, and M. Frank: Semantic Web Service Archi-
tecture – Evolving Web Service Standards toward the Semantic Web. Proceedings
of the Fifteenth International FLAIRS Conference, Pensacola, Florida, May 2002.

14. D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF. Proceed-
ings of the NSF-EU Workshop on Database and Information Systems Research for
Semantic Web and Enterprises, pages 15-20, Georgia, USA, April 2002.

15. A. Ankolenkar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, S.A. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng: DAML-S: Seman-
tic Markup for Web Services. Proceedings ot the First Semantic Web Working
Symposium, pages 411-430, July August 2001.

16. V.R. Benjamins and D. Fensel: Special Issue on Problem-Solving Methods. Inter-
national Journal of Human-Computer Studies (IJHCS), 49(4):305-313, 1998.

17. D. Fensel, E. Motta, F. van Harmelen, V.R. Benjamins, M. Crubezy, S. Decker,
M. Gaspari, R. Groenboom, W. Grosso, M. Musen, E. Plaza, G. Schreiber, R.
Studer, and B. Wielinga: The Unified Problem-Solving Method Development Lan-
guage UPML. Knowledge and Information Systems (KAIS): An International Jour-
nal, 2003. To appear.

18. V.R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel: Brokering Problem-
Solving Knowledge at the Internet. Proceedings of the European Knowledge Acqui-
sition Workshop (EKAW-99), Lecture Notes in Artificial Intelligence, LNAI 1621,
May 1999.

19. J.C. Arpirez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez: WebODE – A
Scalable Ontological Engineering Workbench. Proceedings of the First International
Conference on Knowledge Capture, Victoria, Canada, October 2001.

20. V.R. Benjamins: Web Service Solve Problems, and Problem-Solving Methods Pro-
vide Services. IEEE Intelligent Systems, 18(1):76-77, January/February 2003.

21. P.V. Biron and A. Malhotra: XML Schema Part 2: Datatypes.
http://www.w3c.org/TR/2001/REC-schema-2-20010502, May 2001.

22. G. Schreiber, H. Akkermans, A. Anjevierden, R. de Hoog, H. Shadbolt, W. van
de Welde, and B. Wielinga: Knowledge engineering and management. The Com-
monKADS Methodology. MIT Press, Cambridge, Massachusets.

23. A. Newell: The Knowledge Level. Artificial Intelligence, 18(1):87-127, 1982.
24. O. Corcho, M. Fernández-López, A. Gómez-Pérez, and O. Vicente: WebODE –

An Integrated Workbench for Ontology Representation, Reasoning and Exchange.
Proceedings of the Thirteenth International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02), LNAI 2473, pages 138-153, Sigenza,
Spain, October 2002.

25. E. Sirin, J. Hendler, and B. Parsia: Semi-automatic Composition of Web Services
using Semantic Descriptions. Proceedings of the Workshop on Web Services: Mod-
eling, Architecture and Infrastructure in conjunction with ICEIS2003. 2003. Ac-
cepted.

26. S. Narayanan and S.A. McIlraith: Simulation, Verification and Automated Com-
position of Web Services. Proceedings of the Eleventh International World Wide
Web Conference (WWW-2002), pages 77-88, Hawaii, USA, May 2002.

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES

MICHAEL GRÜNINGER

ABSTRACT. In this paper we will show how the ontology of the Process Specification
Language can be used as an upper-level process ontology that serves as the semantic foun-
dation for the DAML-S ontology for web services.

1. SEMANTICS FOR WEB SERVICES

To achieve the vision of the Semantic Web, software agents will need a computer-
interpretable description of the services they offer and the information that they access.
Such a description can be provided by an ontology, which explicitly represents the in-
tended meanings of the terms being used. Within the DARPA Agent Markup Language
programme, an ontology of services called DAML-S has been proposed to support the
discovery, invocation, and composition of the services offered by software agents on the
Semantic Web.

The Process Specification Language (PSL) ([2], [4], [5]) has been designed to facilitate
correct and complete exchange of process information among manufacturing systems 1.
Included in these applications are scheduling, process modeling, process planning, pro-
duction planning, simulation, project management, workflow, and business process reengi-
neering. In this paper we will show how PSL can be used as an upper-level process ontol-
ogy that serves as the semantic foundation for an ontology for web services that extends
DAML-S.

Any ontology that supports the representation of web services will consist of generic
classes to support service specification as well as classes of constraints in service specifi-
cations, such as ordering, temporal, occurrence, and duration.

The ontology must also support reasoning problems for web service specifications such
as determining the consistency of a service specification and the composability of services,
particularly with incomplete service specifications.

The approach taken in this paper will be to specify a first-order semantics for DAML-S
concepts through PSL translation definitions and then use the grammars associated with
PSL classes as an abstract syntax for service specifications.

2. THE ROLE OF FIRST-ORDER LOGIC

The PSL Ontology is a set of theories in the language of first-order logic. There are sev-
eral other approaches to semantics for web services, such as BPEL [1], for which Petri nets
and π-calculus have been proposed as the basis for their semantics. However, a first-order
semantics has several advantages. First, we can specify and implement inference tech-
niques that are sound and complete with respect to models of the theories. Also, a process

1PSL has been accepted as project ISO 18629 within the International Organisation of Standardisation, and
as of October 2002, part of the work is under review as a Draft International Standard.

1

2 MICHAEL GRÜNINGER

ontology with a first-order axiomatization can be more easily integrated with other ontolo-
gies (which are almost all first-order theories themselves). Finally, a first-order semantics
allows a simple characterization of incomplete service specifications.

The semantics of a first-order theory are based on the notion of an interpretation that
specifies a meaning for each symbol in a sentence of the language. In practice, interpreta-
tions are typically specified by identifying each symbol in the language with an element of
some algebraic or combinatorial structure, such as graphs, linear orderings, partial order-
ings, groups, fields, or vector spaces; the underlying theory of the structure then becomes
available as a basis for reasoning about the concepts and their relationships.

First-order logic is sound and complete – a theory is consistent if and only if there exists
a model that satisfies the axioms of the theory. This allows us to evaluate the adequacy of
the application’s ontology with respect to some class of structures that capture the intended
meanings of the ontology’s terms by proving that the ontology obeys the following two
fundamental theorems:

• Satisfiability: every structure in the class is a model of the ontology.
• Axiomatizability: every model of the ontology is isomorphic to some structure in

the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there do not exist
any unintended models of the theory, that is, any models that are not specified in the class
of structures. In general, this would require second-order logic, but the design of PSL
makes the following assumption (hereafter referred to as the Interoperability Hypothesis):
The ontology supports interoperability among first-order inference engines that exchange
first-order sentences. By this hypothesis, we do not need to restrict ourselves to elemen-
tary classes of structures when we are axiomatizing an ontology. Since the applications
are equivalent to first-order inference engines, they cannot distinguish between structures
that are elementarily equivalent. Thus, the unintended models are only those that are not
elementary equivalent to any model in the class of structures.

Classes of structures for theories within the PSL Ontology are therefore axiomatized up
to elementary equivalence – the theories are satisfied by any model in the class, and any
model of the core theories is elementarily equivalent to a model in the class. Further, each
class of structures is characterized up to isomorphism.

3. PSL ONTOLOGY

Within the PSL Ontology, there is a a further distinction between core theories and
definitional extensions. Core theories introduce new primitive concepts, while all terms
introduced in a definitional extension that are conservatively defined using the terminology
of the core theories 2.

3.1. Core Theories. All core theories within the ontology are consistent extensions of
PSL-Core (Tpsl core), although not all extensions need be mutually consistent. Also, the
core theories need not be conservative extensions of other core theories. The relationships
among the core theories in the PSL Ontology are depicted in Figure 1.

2The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix and defi-
nitional extensions are indicated by a .def suffix. As of June 2003, the ontology is in version 2.0.

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 3

�

�

�

�

........
.....

........
.....

........
.....

........
.....

........
.....

........
.....

........
.....

........
.....

........
.....

........
........

........
..

�

�
�

�
�

���

�
�

�
�

���

........
.....

........
........

........
..

�

Tpsl core

Tactocc

Tocctree
Tsubactivity

Tcomplex

Tduration

Tatomic Tdisc state

FIGURE 1. The core theories of the PSL Ontology. Solid lines indicate
conservative extension, while dashed lines indicate an extension that is
not conservative.

3.1.1. Occurrence Trees. The occurrence trees that are axiomatized in the core theory
Tocctree are partially ordered sets of activity occurrences, such that for a given set of activi-
ties, all discrete sequences of their occurrences are branches of the tree (see Figure 2). An
occurrence tree contains all occurrences of all activities; it is not simply the set of occur-
rences of a particular (possibly complex) activity. Because the tree is discrete, each activity
occurrence in the tree has a unique successor occurrence of each activity.

There are constraints on which activities can possibly occur in some domain. This intu-
ition is the cornerstone for characterizing the semantics of classes of activities and process
descriptions. Although occurrence trees characterize all sequences of activity occurrences,
not all of these sequences will intuitively be physically possible within the domain. We
will therefore want to consider the subtree of the occurrence tree that consists only of pos-
sible sequences of activity occurrences; this subtree is referred to as the legal occurrence
tree.

3.1.2. Discrete States. The core theory Tdisc state introduces the notion of state (fluents).
Fluents are changed only by the occurrence of activities, and fluents do not change during
the occurrence of primitive activities. In addition, activities have preconditions (fluents that
must hold before an occurrence) and effects (fluents that always hold after an occurrence).

3.1.3. Subactivities. The PSL Ontology uses the subactivity relation to capture the basic
intuitions for the composition of activities. This relation is a discrete partial ordering, in
which primitive activities are the minimal elements.

3.1.4. Atomic Activities. The core theory Tatomic axiomatizes intuitions about the concur-
rent aggregation of primitive activities. This concurrent aggregation is represented by the
occurrence of concurrent activities, rather than concurrent activity occurrences.

4 MICHAEL GRÜNINGER

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� �
�

�

o4
12

o4
19

o2
20

o4
28

o4
22

o4
4

o2
8

o2
5

o2
3

o4
7

o4
16

o1
17

o4
2

o1
1

o2
23

o3
31

o4
26

o2
18

o4
24. . .

. . .

o4
30 o3

34

o1
21 o3

27

o3
33

o1
29

o3
6

o3
11

o4
10 o3

15

o3
9

o4
14

o3
13

. . .o3
25

. . .o3
32

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .
. . .

. . .

FIGURE 2. Example of legal occurrence trees. The elements o 1
i denote

occurrences of the activity a1, o2
i denote occurrences of the activity a2,

o3
i denote occurrences of the activity a3, and o4

i denote occurrences of
the activity a4. The activity occurrences o1

1 and o4
16 are the initial occur-

rences in their respective occurrence trees.

3.1.5. Complex Activities. The core theory Tcomplex characterizes the relationship between
the occurrence of a complex activity and occurrences of its subactivities. Occurrences of
complex activities correspond to sets of occurrences of subactivities; in particular, these
sets are subtrees of the occurrence tree. An activity tree consists of all possible sequences
of atomic subactivity occurrences beginning from a root subactivity occurrence. In a sense,
activity trees are a microcosm of the occurrence tree, in which we consider all of the ways
in which the world unfolds in the context of an occurrence of the complex activity.

Different subactivities may occur on different branches of the activity tree i.e. different
occurrences of an activity may have different subactivity occurrences or different orderings
on the same subactivity occurrences. In this sense, branches of the activity tree characterize
the nondeterminism that arises from different ordering constraints or iteration.

An activity will in general have multiple activity trees within an occurrence tree, and
not all activity trees for an activity need be isomorphic. Different activity trees for the same
activity can have different subactivity occurrences. Following this intuition, the core theory
Tcomplex does not constrain which subactivities occur. For example, conditional activities
are characterized by cases in which the state that holds prior to the activity occurrence
determines which subactivities occur. In fact, an activity may have subactivities that do not
occur; the only constraint is that any subactivity occurrence must correspond to a subtree
of the activity tree that characterizes the occurrence of the activity.

3.2. Definitional Extensions. Many ontologies are specified as taxonomies or class hier-
archies, yet few ever give any justification for the classification. If we consider ontologies

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 5

of mathematical structures, we see that logicians classify models by using properties of
models, known as invariants, that are preserved by isomorphism. For some classes of
structures, such as vector spaces, invariants can be used to classify the structures up to
isomorphism; for example, vector spaces can be classified up to isomorphism by their di-
mension. For other classes of structures, such as graphs, it is not possible to formulate a
complete set of invariants. However, even without a complete set, invariants can still be
used to provide a classification of the models of a theory.

Following this methodology, the set of models for the core theories of PSL are parti-
tioned into equivalence classes defined with respect to the set of invariants of the models.
Each equivalence class in the classification of PSL models is axiomatized using a defi-
nitional extension of PSL. In particular, each definitional extension in the PSL Ontology
is associated with a unique invariant; the different classes of activities or objects that are
defined in an extension correspond to different properties of the invariant. In this way,
the terminology of the PSL Ontology arises from the classification of the models of the
core theories with respect to sets of invariants. The terminology within the definitional
extensions intuitively corresponds to classes of activities and objects.

4. TRANSLATION DEFINITIONS

Translation definitions specify the mappings between PSL and application ontologies.
Such definitions have a special syntactic form – they are biconditionals in which the an-
tecedent is a class in the application ontology and the consequent is a formula that uses
only the lexicon of the PSL Ontology.

Translation definitions are generated using the organization of the definitional exten-
sions. Each invariant from the classification of models corresponds to a different defini-
tional extension. Any particular activity, activity occurrence, or fluent will have a unique
value for the invariant. Each class of activity, activity occurrence, or fluent corresponds to
a different value for the invariant. The consequence of a translation definition is equivalent
to the list of invariant values for members of the application ontology class.

4.1. DAML-S Translation Definitions. In this section we will present the translation def-
initions 3 for concepts in the DAML-S Process Ontology. Such translation definitions pro-
vide a first-order axiomatization of the intended semantics for the DAML-S constructs.
Moreover, this axiomatization inherits the proofs of the Axiomatizability and Satisfiability
Theorems from the underlying PSL Ontology.

4.1.1. Atomic Activities. The composedOf property in DAML-S is equivalent to the sub-
activity relation in PSL:

(forall (?a1 ?a2)
(iff (composedOf ?a1 ?a2)

(subactivity ?a2 ?a1)))

Within DAML-S, an AtomicProcess has no subprocesses; consequently, this corre-
sponds to a primitive activity within PSL.

(forall (?a)
(iff (AtomicProcess ?a)

(and (primitive ?a)
(markov_precond ?a)
(or (markov_effects ?a)

3The translation definitions in this paper are written in the Knowledge Interchange Format. For more infor-
mation on this language, see http:cl.tamu.edu.

6 MICHAEL GRÜNINGER

�
��

�

�
��

�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�
��

��

�
��

��

o1 o2

o3 o4

. . .

. . .

FIGURE 3. Example of activity trees for trans f er, which is a Sequence
DAML-S activity. o1 and o3 are occurrences of the subactivity withdraw,
while o2 and o4 are occurrences of the subactivity deposit. Note that
the diagram depicts two separate activity trees within a stylized legal
occurrence tree.

(context_free ?a)))))

The most common cconstraint on the legal occurrences of an activity specify the ac-
tivity’s preconditions. Activities whose preconditions depend only on the state prior to
the occurrences The class of activities with markov preconditions is defined in the PSL
definitional extension state precond.de f .

Effects characterize the ways in which activity occurrences change the state of the
world. Such effects may be context-free, so that all occurrences of the activity change the
same states, or they may be constrained by other conditions. The most common constraints
are state-based effects that depend on the context; the class of activity associated with such
constraints are defined as markov effect activities in the PSL extension state e f f ects.de f .

A CompositeProcess in DAML-S is decomposable into other processes. Within PSL,
the corresponding activity cannot be primitive; it will either be atomic (in which case it is
a concurrent activity) or complex:

(forall (?a)
(iff (CompositeProcess ?a)

(and (activity ?a)
(not (primitive ?a)))))

4.1.2. Ordered Activities. The classification of models within the the PSL Ontology leads
to classes of activities, activity occurrences, and fluents. Classes of activity occurrences
correspond to invariants for activity trees. The translation definitions for remaining DAML-
S concepts are all related to invariants for activity trees.

Within DAML-S, a Sequence is a list of processes to be done in order (see Figure 3) 4.
The translation definition for Sequence has two parts; one says that there exists an activity

4All of the examples in this section refer to the activities whose process descriptions are found in the
Appendix.

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 7

��
��

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�

�

�
��

�
�	

�
��

�
�

��
�

�
��

�
�

��
�

��

� �

o1 o2

o7 o8

o3 o4

o5
o6

. . .

FIGURE 4. Example of an activity tree for buy product, which is a Split
DAML-S activity. For this purposes of this example, consider trans f er
to be a complex activity, with deposit and withdraw as subactivities.

tree for the activity which is ordered and which is simple and rigid (that is, there are no
nontrivial permutations of subactivity occurrences). The second part says that the activity
is uniform, that is, all activity trees for the activity are isomorphic: 5

(forall (?a)
(iff (Sequence ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(ordered ?occ)
(strong_poset ?occ))))))

In a DAML-S Split activity, sets of subactivities are performed in parallel (see Figure
4). Split activities differ from Sequence actvities in that there exist nontrivial permutations
of subactivity occurrences among the branches of the activity trees, so that the translation
definition becomes:

(forall (?a)
(iff (Split ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(not (simple ?occ))
(ordered ?occ)

5Two branches of an activity tree are isomorphic if there is a one-to-one mapping of subactivity occurrences
that preserves the activities, e.g. occurrences of activity a1 are mapped to occurrences of a1. Two activity trees
are isomorphic if all of their branches are isomorphic. In the visual convention adopted in this paper, occurrences
of different activities are depicted by different shapes; thus, a mapping that preserves activities will map a square
to a square, a circle to a circle, and so on.

8 MICHAEL GRÜNINGER

��
��

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�

�

�
��

�
�	

o1 o2

o4o3

. . .

FIGURE 5. Example of an activity tree for buy product, which is an
Unordered DAML-S activity. For this purposes of this example, con-
sider trans f er to be a primitive activity; o1 and o4 are occurrences of the
subactivity (transfer ?Fee ?Buyer ?Broker), o2 and o4 are occur-
rences of the subactivity (transfer ?Cost ?Buyer ?Seller).

(strong_poset ?occ))))))

For example, in Figure 4, the two branches of the activity tree consist of isomorphic
subactivity occurrences that occur in different orderings on each branch.

According to [3], the Unordered construct allows process components to be executed in
some unspecified ordered, although all components must be executed. This is equivalent
to the class of bag activity trees within the PSL Ontology:

(forall (?a)
(iff (Unordered ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(bag ?occ))))))

In Figure 5, we see an example of an activity tree that is the unordered activity with two
subactivities.

4.1.3. Nondeterminism. The simplest form of nondeterminism is captured by the class of
activities in which some subactivity occurs (see Figure 6). Given this intended semantics,
the translation definition to PSL would be:

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(unordered ?occ)

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 9

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�	

o1

o2

. . .

FIGURE 6. Example of an activity tree for a Choice DAML-S activity
that is equivalent to a choice poset in PSL. In this example, o1 is an
occurrence of a withdrawal from Account1 and o 2 is an occurrence of a
withdrawal from Account3.

��
��
��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�	

� �

o1

o3 o4

o2

. . .

FIGURE 7. Example of an activity tree for a Choice DAML-S activity
that is equivalent to a weak poset in PSL.

(choice_poset ?occ))))))

There are some indications in [3] that the intended semantics for Choice activities is
more general than this translation definition. For example, some possible applications
of this construct may be intended to capture intuitions such as “choose subactivities and
perform them in sequence” or “choose subactivities and perform them in parallel”. In
such cases, the corresponding PSL class would be based on the notion of weak posets (see
Figure 7), so that the translation definition would be:

10 MICHAEL GRÜNINGER

��
��

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

o2

o1

· · ·

· · ·

o3

· · ·

FIGURE 8. Example of activity trees for withdraw, which is an
IfThenElse DAML-S activity. o2 and o2 are occurrences of the subactiv-
ity change balance, and o1 is an occurrence of the subactivity noti f y.

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(weak_poset ?occ))))))

In addition, there are suggestions in [3] for extensions that construct new subclasses
such as “choose exactly n subactivities from m”. Such extensions do not correspond to any
classes within Version 2.0 of the PSL Ontology.

4.1.4. Conditional Activities. The class of IfThenElse activities within DAML-S are equiv-
alent to the conditional activities in PSL:

(forall (?a)
(iff (IfThenElse ?a)

(conditional ?a)))

Conditional activities are not uniform; however, if the same fluents hold prior to two
occurrences of a conditional activity, then the activity trees for the activity are isomorphic.
Figure 8 depicts three different activity trees, two of which are isomorphic.

4.1.5. Iterated Activities. The intended semantics of the Iterate process in DAML-S makes
no assumption about how many iterations are made, or when to terminate. Within PSL, this
corresponds to an activity in which there exist multiple isomorphic subtrees; for example,
the activity tree in Figure 9 contains three subtrees that are isomorphic to the activity tree
in Figure 6. Since different activity trees may have different numbers of iterations of
the subactivities, the activity is not uniform. These considerations lead to the following
translation definition:

(forall (?a)

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 11

��
��

��
��

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�
��

�
�	

�
�

�
��

�

�
�

�
�
�	

o1

o2

o3

o4

o5

o6

. . .

FIGURE 9. Example of an activity tree for an Iterate DAML-S activity.

��
��

��
��

��
��

��
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
��

�
��

�
�	

�
�

�
��

�

�
�

�
�
�	

�
��

�
�	

o1

o2

o3

o4

o5

o6

o7

o8

.

FIGURE 10. Example of activity trees for a RepeatUntil DAML-S activity.

(iff (Iterate ?a)
(forall (?occ)

(implies (occurrence_of ?occ ?a)
(and (repetitive ?occ)

(multiple_outcome ?occ)))))

A RepeatUntil process in DAML-S executes until some state condition becomes true
(see Figure 10). Because of this dependence on state, a RepeatUntil process is equivalent
to an Iterate process which is conditional:

12 MICHAEL GRÜNINGER

(forall (?a)
(iff (RepeatUntil ?a)

(and (conditional ?a)
(forall (?occ)

(implies (occurrence_of ?occ ?a)
(and (repetitive ?occ)

(multiple_outcome ?occ)))))

Thus, there will exist multiple nonisomorphic activity trees (corresponding to occur-
rences of the activity with different iterations) and activity trees that agree on state will be
isomorphic.

5. GRAMMARS FOR PROCESS DESCRIPTIONS

PSL makes a distinction between the ontology (which is the lexicon together with an
axiomatization of their intended meaning) and the process descriptions that are exchanged
between software applications. For each class in the ontology, PSL specifies a grammar
that is satisfied by process descriptions of the activities or activity occurrences in that class.

For example, if two software applications both used an ontology for algebraic fields,
they would not exchange new definitions, but rather they would exchange sentences that
expressed properties of elements in their models. For algebraic fields, such sentences are
equivalent to polynomials. Similarly, the software applications that use PSL do not ex-
change arbitrary sentences, such as new axioms or even conservative definitions, in the
language of their ontology. Instead, they exchange process descriptions, which are sen-
tences that are satisfied by particular activities, occurrences, states, or other objects.

DAML-S specifications are in fact grammars for service specifications. Using the trans-
lation definitions proposed in the previous section, we can use the grammars associated
with the classes in the PSL Ontology to characterize the correctness and completeness of
the DAML-S specification for the corresponding DAML-S constructs.

There are several classes within the DAML-S Ontology that are classes of sentences
rather than classes of activities, activity occurrences, or fluents. In particular, DAML-S has
two classes of conditions, ConditionalEffects and UnconditionalEffects. Within the PSL
Ontology, this distinction is captured by the classes of context f ree and markov e f f ects
activities. If one considers the PSL process description grammars for a context f ree ac-
tivity, conditions appear as a class of formulae, but they are not a class in the ontology.
Similarly comments apply to conditional activities. For example, in the process descrip-
tion for withdraw in the Appendix, the condition is the formula

(and (prior (balance ?account ?Balance) (root_occ ?occ))
(greaterEq ?Balance ?amount)))

6. SUMMARY

Within the increasingly complex environments of enterprise integration, electronic com-
merce, and the Semantic Web, where process models are maintained in different software
applications, standards for the exchange of this information must address not only the syn-
tax but also the semantics of process concepts.

DAML-S is an attempt to support semantic web services within the framework of the
DARPA Agent MArkup Language. However, the intended semantics of the concepts in
DAML-S cannot be axiomatized within the Ontology Web Language, and the DAML-S
ontology itself combines object level classes of concepts together with metalevel classes
of sentences.

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 13

The PSL Ontology draws upon well-known mathematical tools and techniques to pro-
vide a robust semantic foundation for the representation of process information. This foun-
dation includes first-order theories for concepts together with complete characterizations
of the satisfiability and axiomatizability of the models of these theories. The PSL Ontology
also provides a justification of the taxonomy of activities by classifying the models with
respect to invariants. Finally, process descriptions are formally characterized as syntactic
classes of sentences that are satisfied elements of the models.

The translation definitions presented in this paper are the first step towards laying firm
logical foundations for semantic web services specified in DAML-S. Through these defi-
nitions, DAML-S can be given a sound and complete axiomatization and ontological dis-
tinctions can be clarified.

REFERENCES

[1] Business Process Execution Language for Web Services, Version 1.0
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

[2] Gruninger, M. (2003) A Guide to the Ontology of the Process Specification Language”, in Handbook
on Ontologies in Information Systems, R. Studer and S. Staab (eds.). Springer-Verlag.

[3] McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services, IEEE Intelligent Systems,
Special Issue on the Semantic Web. 16:46–53, March/April, 2001.

[4] Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling, Second Interna-
tional Conference on Formal Ontologies in Information Systems, Welty and Smith (eds), 256-269.

[5] Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process Specification Lan-
guage, Transactions of the Society for Computer Simulation vol.16 no.4 (December 1999) pages
204-216.

APPENDIX: EXAMPLES OF PROCESS DESCRIPTIONS

To buy a product, pay a fee to the broker and the cost of the product to the seller,
performing these steps in parallel.

The PSL process description for buy product is:

(forall (?x ?y ?z) (subactivity (transfer ?x ?y ?z) (buy_product ?y)))
(forall (?x ?y ?z) (subactivity (withdraw ?x ?y) (transfer ?x ?y ?z)))
(forall (?x ?y ?z) (subactivity (deposit ?x ?z) (transfer ?x ?y ?z)))

(forall (?occ ?Buyer)
(implies (occurrence_of ?occ (buy_product ?Buyer))

(exists (?occ1 ?occ2 ?Fee ?Cost ?broker ?Seller)
(and (occurrence_of (transfer ?Fee ?Buyer ?Broker))

(occurrence_of (transfer ?Cost ?Buyer ?Seller))
(subactivity_occurrence ?occ1 ?occ)
(subactivity_occurrence ?occ2 ?occ)))))

To transfer money from Account1 to Account2, withdraw some amount from Account1
and deposit the amount in Account2.

The PSL process description for trans f er is:

(forall (?occ)
(implies (occurrence_of ?occ (transfer ?Amount ?Account1 ?Account2))

(exists (?occ1 ?occ2 ?occ3)
(and (occurrence_of ?occ1 (withdraw ?Amount ?Account1))

(occurrence_of ?occ2 (deposit ?Amount ?Account2))
(subactivity_occurrence ?occ1 ?occ)

14 MICHAEL GRÜNINGER

(subactivity_occurrence ?occ2 ?occ)
(leaf_occ ?occ3 ?occ1)
(min_precedes ?occ3 (root_occ ?occ2))))))

To withdraw money from an account, if the amount is greater than the balance, then
change the account balance, otherwise notify the account that there are insufficient funds
available.

Suppose

(forall (?x ?y ?z) (activity (change_balance ?x ?y ?z)))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(deposit ?Amount ?Account))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(withdraw ?Amount ?Account))

(subactivity (notify ?Account)
(withdraw ?Amount ?Account))

In this case, deposit and withdraw are conditional activities, with the following PSL
process descriptions:

(forall (?occ)
(and (implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))

(prior (balance ?account ?Balance) (root_occ ?occ))
(greaterEq ?Balance ?amount))

(exists (?occ1)
(and (occurrence_of ?occ1 (change_balance ?account ?Balance

(plus ?Balance ?Amount)))
(subactivity_occurrence ?occ1 ?occ))))

(implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))
(prior (balance ?account ?Balance) (root_occ ?occ))
(lesser ?Balance ?amount))

(exists (?occ2)
(and (occurrence_of ?occ2 (notify ?Account))

(subactivity_occurrence ?occ2 ?occ)))))

The effects of change balance are:

(forall (?occ)
(implies (and (occurrence_of ?occ (change_balance ?Account ?Amount1 ?Amount2))

(leaf_occ ?occ1 ?occ))
(and (holds (balance ?Account ?Amount2))

(not (holds (balance ?Account ?Amount1))))))

INSTITUTE FOR SYSTEMS RESEARCH, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742, gruning@cme.nist.gov

h-match: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems ?

S. Castano, A. Ferrara, and S. Montanelli

Università degli Studi di Milano
DICO - Via Comelico, 39, 20135 Milano - Italy

{castano,ferrara,montanelli}@dico.unimi.it

Abstract. In this paper, we present h-match, an algorithm for dynam-
ically matching distributed ontologies. By exploiting ontology knowledge
descriptions, h-match can be used to dynamically perform ontology
matching at different levels of depth, with different degrees of flexibility
and accuracy. h-match has been developed in the Helios framework,
conceived for supporting knowledge sharing and ontology-addressable
content retrieval in peer-based systems.

1 Introduction

Ontologies are generally recognized as an essential tool for allowing communica-
tion and knowledge sharing among distributed users and applications, by pro-
viding a common understanding of a domain of interest. Due to the vision of the
Semantic Web, a large body of research is being moving around ontologies, and
contributions have been produced regarding methods and tools for covering the
entire ontology life cycle, from design to deployment and reuse [8], and ontology
languages, such as OIL [9] or OWL [18]. As a matter of fact, when considering
distributed contexts, the knowledge of interest is generally provided by many dif-
ferent ontologies. For instance, the vision of the Semantic Web envisages the Web
enriched with several domain ontologies, which specify formal semantics of data,
for different intelligent services for information sharing, search, retrieval, and
transformation [3, 11]. As another example, the problem of distributed knowl-
edge sharing is eminent in the P2P area and is receiving a lot of attention in
the research community [10, 15]. Basically, peers need to perform content re-
trieval by interacting with other peers of the network, and queries have to be
routed and resolved based on knowledge descriptions available at the peers. To
enable information processing and content retrieval in distributed contexts with
a multitude of autonomous ontologies, appropriate matching techniques are re-
quired to determine semantic mappings between concepts of different ontologies
that are semantically related [2, 7, 17]. Some research work on this topic has re-
cently appeared. We review such work in the related work section of the paper.
? This paper has been partially funded by “Wide-scalE, Broadband, MIddleware for

Network Distributed Services (WEB-MINDS)” FIRB Project funded by the Italian
Ministry of Education, University, and Research.

An important requirement to be considered in developing ontology matching
techniques for distributed contexts, such as the P2P, is related to the inherent
dynamicity of the context, and to the need of matching techniques that are con-
ceived to operate in a dynamic fashion. In this paper, we present h-match, an
algorithm for dynamically matching distributed ontologies. h-match has been
developed in the framework of Helios, the infrastructure we have conceived
for supporting knowledge sharing and ontology-addressable content retrieval in
peer-based systems [5, 6]. After introducing the reference architecture of a He-
lios peer ontology, we show how the ontology knowledge description can be
exploited to perform dynamic ontology matching at different levels of depth,
with different degrees of flexibility and accuracy.
The paper is organized as follows. In Section 2, we provide the main motivations
of our work. In Section 3, we present the Helios ontology model for knowledge
representation. In Section 4, we describe the foundations of our approach for on-
tology matching. In Section 5, we present the h-match algorithm for semantic
affinity evaluation. In Sections 6 and 7, we compare our approach with other
recent approaches for distributed ontology matching, by showing the original
contribution of our work. Finally, in Section 8, we give our concluding remarks.

2 Motivating scenario

To address the requirements of knowledge sharing and ontology matching in dis-
tributed systems, we consider a typical P2P scenario, where a number of peers
can acquire or extend their knowledge by interacting with other peers of the
network. As shown in Figure 1, we suppose that the peer A wants to enlarge
its knowledge about the concept of Book by learning which nodes own concepts
with semantic affinity with it. This requires capability to describe the knowl-
edge owned by a peer and to match an incoming request against the knowledge
of a peer, to find semantically related information to be returned to the re-
questing peer. The Helios (Helios Evolving Interaction-based Ontology knowl-
edge Sharing) framework has been conceived to enable knowledge sharing and
evolution considering a P2P system where nodes are equipotential in terms of
functionalities and capabilities. The knowledge sharing and evolution processes
in Helios are based on peer ontologies, describing the knowledge of each peer,
and on interactions among peers, allowing information search and knowledge
acquisition/extension, according to pre-defined query models and semantic tech-
niques for ontology matching. Each peer has a different amount of knowledge,
that depends on the interactions it has performed in the network. Each peer
can acquire new knowledge and/or extend his knowledge only by querying peers
which have this information. Probe queries are sent by a peer interested in ex-
tending its knowledge of the network. Each peer having concepts matching the
target concept(s) of a probe query can answer to the requesting peer. When the
peer A asks for semantically related contents about the target Book concept,
peer B and peer C evaluate the semantic affinity between Book and the concepts
contained in their respective peer ontology. The semantic affinity evaluation pro-

Book
?

Book
?

Book
?Peer A

Peer C

Peer B

Request

Answer Answer

Answer

Peer ontology

Peer ontology

Peer ontology

Fig. 1. Example of request/answer in the Helios network

cedure is based on the execution of the h-match algorithm which determines
the level of affinity of each concept in the peer ontology of peer B and peer C and
the Book concept. Concepts having a high affinity value with Book are finally
returned by peer B and peer C to the requesting peer A.
In the remainder of the paper, we focus on the formalization of the peer ontology
knowledge model and on the h-match algorithm for ontology matching.

3 Peer ontology representation

In this section, we provide a description of the architecture of a peer ontology
and we formalize the peer ontology model adopted in Helios.

3.1 Ontology architecture

The ontology of a Helios peer is organized as a two-layer ontology, where the
upper layer represents the content knowledge and the lower layer represents the
network knowledge (See Figure 2).
The Content Knowledge Layer describes the knowledge of a peer, namely
the knowledge a peer brings to the network and the knowledge the peer has
of the network contents. We conceptualize the content knowledge layer as a
network of content concepts, where each content concept is characterized by a
set of properties and a set of semantic relations with other content concepts.
A generic peer P can increase its content knowledge by adding new content
concepts and/or by enriching existing content concept descriptions in terms of

Content
concept

Content Knowledge Layer

Network Knowledge Layer

Network
concept

Legenda

Network
concept

Network
concept

Content
concept

Content
concept

Content
concept

Content
concept

Semantic relations Location relations

Property

Property

Property
Property

Property
Property

Property

Property

Property

Property

Property

Fig. 2. Architecture of a peer ontology of a generic peer P

new properties and/or of new semantic relations, based on the answers acquired
by other peers.
The Network Knowledge Layer describes the knowledge that a generic peer
P has of other peers of the network it has interacted with. When a peer P receives
a content concept from another peer P1, it stores in the network knowledge layer
a description of the peer P1. Peer descriptions are given in form of network
concepts, characterized by a set of properties describing the network features of
a peer (e.g., IP-address).
An inter-layer relation, called location relation associates a content concept cc in
the content knowledge layer with all network concept(s) describing peers storing
concepts having semantic affinity with cc.

3.2 Peer ontology model

The peer ontology model organizes ontology knowledge in terms of concepts,
properties, semantic relations and location relations, and is formally defined as
follows.

Definition 1 (Peer Ontology). A peer ontology PO is a 4-tuple of the form
PO = (C,P, SR, LR), where:

– C = CC ∪ NC is a set of concepts of PO, where CC is a set of content
concepts of the content knowledge layer, and NC is a set of network concepts
of the network knowledge layer.

– P is a set of concept properties. A property p ∈ P is defined as a unary
relation of the form p(c), where c ∈ C is the concept associated to the property
p.

– SR = {same-as, kind-of, part-of, contains, associates} is a set of semantic
relations between content concepts. A semantic relation sr ∈ SR is defined
as a binary relation of the form sr(c, c′), where c and c′ ∈ CC are the content
concepts related through sr.

– LR is a set of location relations between content concepts and network con-
cepts. A location relation lr ∈ LR is defined as a binary relation of the
form lr(c, c′), where c ∈ CC is a content concept in the content knowledge
layer and c′ ∈ NC is a network concept in the network knowledge layer,
respectively.

To obtain a semantically rich and expressive representation of the knowledge in
a peer ontology, we introduce the following semantic relations 1:

Periodical

Magazine

same-as

Publication

Book

kind-of

Book

Chapter

part-of

Publication

Bookshop

contains

Book

Magazine

associates

(a) (b) (c) (d) (e)

Fig. 3. Examples of semantic relations in a Helios peer ontology

– Same-as. The same-as relation is defined between two concepts c and c′ which
are considered semantically equivalent, that is, which denote the same real
world entity or have the same meaning. As an example, we have Same-
as(Periodical, Magazine) shown in Figure 3(a), referring to a peer ontology
describing knowledge on publications.

– Kind-of. The kind-of relation defined between two concepts c and c′ states
that the concept c is a specialization of the concept c′. As an example,
consider the case of Kind-of(Book, Publication) in Figure 3(b).

– Part-of. The part-of relation defined between two concepts c and c′ states
that the concept c represents a component of the concept c′ as in the case
of Part-of(Chapter, Book) shown in Figure 3(c).

– Contains. The contains relation defined between two concepts c and c′ states
that the concept c contains the concept c′ as in the case of Contains(Bookshop,
Publication) shown in Figure 3(d).

1 The set SR of semantic relations has been defined according to relation classifications
in ontology modelling [14] and metadata management [16] literature.

– Associates. The associates relation defined between two concepts c and c′

states that a generic positive association is defined between c and c′ . We use
this relation when no other semantic relations hold between two concepts. As
an example, consider the case of Associates(Magazine, Book) in Figure 3(e).

4 Foundations of ontology matching in Helios

The general goal of ontology matching techniques is to find concepts that have
a semantic affinity with a target concept 2. In this section, we propose an al-
gorithm, called h-match, for evaluating semantic affinity between concepts of
different ontologies. In the context of Helios, we are interested in matching a
target concept described in a query against a peer ontology (knowledge sharing),
or in assimilating new concepts returned as the answer to probe queries into a
peer ontology (knowledge evolution). h-match grounds on the techniques devel-
oped in the Artemis tool environment [1, 4] for the integration of heterogeneous
data sources. In Artemis, the semantic affinity evaluation is performed in the
context of the schema matching process, in order to find mappings among ele-
ments of different source schemas that are semantically related for subsequent
unification. In Helios, we extend and enrich the Artemis techniques to address
the typical problems of the ontology matching. In particular, the h-match algo-
rithm is based on the idea of considering both the linguistic features of concepts
as well as the semantic relations among concepts in a peer ontology. Linguistic
features are constituted by the semantic content of terms used as names of con-
cepts and properties. The meaning of concepts is not established according to a
given definition, but depends on the network of relations holding among terms
(i.e., terminological relationships) and among concepts (i.e., semantic relations),
respectively. Based on these considerations, the evaluation of the linguistic fea-
tures is not based on a dictionary, where the meaning of each term depends on
its definition, but on a thesaurus, where the meaning of each term is represented
by the set of terminological relationships that it has with other terms in the the-
saurus. Following the same approach, we assume that the meaning of a concept
depends not only on its name, but also on its properties and on its semantic
relations with other concepts in the ontology. To this purpose, the h-match
algorithm explicitly considers the context of each concept given by the set of its
properties and of its adjacents (i.e., concepts which have a semantic relation with
the considered concept), allowing a deep evaluation of semantic affinity between
ontology concepts.

4.1 Linguistic interpretation

To capture the meaning of terms used as names of concepts and properties in a
peer ontology, we exploit the terminological relationships among terms. In He-
lios, the network of terminological relationships is represented by a thesaurus,
2 When speaking of concepts for matching, we refer to content concepts although not

explicitly specified.

which is built by exploiting WordNet [13] as a source of lexical information, which
can be possibly enriched by the ontology designer, if required. In particular, we
consider a subset of the relations provided by WordNet represented by the follow-
ing terminological relationships: {SYN (Synonym-of), BT/NT (Broader/Narrower
Terms), RT (Related Terms)}, where the SYN relationship corresponds to the
Synonym relation of WordNet, the BT/NT relationships correspond to the Hy-
pernym/Hyponym relations of WordNet, and the RT relationship corresponds to
the Meronym relation of WordNet, respectively. In the following, we denote by
TR the set of terminological relationships in the Helios thesaurus.

4.2 Context interpretation

The h-match algorithm evaluates the semantic affinity between two concepts by
taking into account the affinity between their contexts. Given a concept c ∈ CC,
we denote by P (c) = {pi | pi(c)} the set of properties of c, and by SR(c) = {cj |
srj(c, cj)} the set of adjacents of c, namely all concepts cj which have a semantic
relation srj with c. The context of a concept is defined as follows:

Definition 2 (Concept context). The context Ctx(c) of a concept c ∈ CC is
defined as the union of the properties and of the adjacents of c, that is, Ctx(c) =
P (c) ∪ SR(c).

An example of concept context for the Volume concept is shown in Figure 4,
where content concepts are represented as white ovals, properties are represented
as grey ovals, and relations as arrows, respectively.

Volume
Title

Author

Publisher

Library
Address

NumOfVolumes

Proceedings

Title

PublisherTopic
Year

associates

Journal
Title

Volume

Topic
Year

associates

contains

Conference

associates

Location

Date

Context of Volume

Fig. 4. Example of context for the Volume concept in a peer ontology

5 The h-match algorithm

The semantic affinity between two ontology concepts c and c′ is evaluated in
Helios by weighting both the terminological relationships in the thesaurus and
the semantic relations in the contexts of c and c′, respectively. In Table 1, we
report the weights associated which each kind of terminological relationship and
semantic relation, respectively. The weights associated with the terminological

Relation Weight

Linguistic interpretation
SYN 1.0
BT/NT 0.8
RT 0.5

Context interpretation

property 1.0
same-as 1.0
kind-of 0.8
part-of 0.7
contains 0.5
associates 0.3

Table 1. Weights associated with terminological and semantic relations

relationships are taken from Artemis, where they have been tested on several
real integration cases. The weights associated with semantic relations have been
defined in Helios to express a measure of the strength of the concept connec-
tion posed by each relation for semantic affinity evaluation purposes. The higher
is the weight associated with a semantic relation, the higher is the strength of
the semantic connection between concepts. Furthermore, we associate the weight
1.0 with properties since they are strongly related to a concept and provide its
structural description. The weight associated with the terminological relation-
ships are exploited for performing linguistic affinity evaluation, while the weights
associated with properties and semantic relations are exploited for performing
contextual affinity evaluation, respectively.

5.1 Linguistic affinity

The aim of the linguistic affinity is to evaluate the semantic affinity between two
concepts by considering the semantic contents of their names as terms in the the-
saurus. An affinity function LA(t, t′) is defined to evaluate the affinity between
two terms t and t′, as shown in Figure 5. The affinity LA(t, t′) of two terms t and
t′ is equal to the highest-strength path of terminological relationships between
them in the thesaurus, if at least one path exists, and is zero otherwise. Given t
and t′ and a path of terminological relationships between them, the strength of

function LA(t, t′)
input two terms t and t′

output linguistic affinity value between t and t′

begin function
def x = 0, y = 1;
if exists a path P of terminological relationships tri ∈ TR between t and t′

/* σtri
is the weight associated with each tri ∈ P */

for each P
y = 1;
for each tri ∈ P

y = y · σtri
;

if y ≥ x
x = y;

return x;
end function

Fig. 5. The LA() function for linguistic affinity evaluation

this path is computed by multiplying the weights of all terminological relation-
ships forming the path.

Example 1. As an example of linguistic affinity evaluation, we consider the por-
tion of thesaurus shown in Figure 6. Suppose we are interested in the linguistic
affinity of concepts Book and Publication. Two paths exist between Book and
Publication in the thesaurus. The first path P1 is {NT(Book,Publication)}. The
second path P2 is composed by {RT(Book,Heading), RT(Heading,Publication)}.
A graphical representation of the thesaurus graph and of the results of the lin-
guistic affinity evaluation are shown in Figure 6. The linguistic affinity of Book

Thesaurus LA(Book,Publication)

Book

PublicationVolume

HeadingPublisher

NTSYN

RTRT

RT

Path Path composition Path evaluation Result

P1 [NT] 0.8 0.8
P2 [RT, RT] 0.5 · 0.5 0.25

Fig. 6. Example of linguistic affinity evaluation between the Book and Publica-
tion

and Publication is 0.8, obtained by considering the path P1.

5.2 Contextual affinity

The aim of the contextual affinity is to calculate a measure of affinity between
concepts based on their contexts. To this purpose, we evaluate the linguistic
affinity of properties and adjacents, as well as the degree of closeness between
the semantic relations that are involved in concept contexts.

Relation affinity function. The aim of the relation affinity function is to calculate
a measure of closeness between two semantic relations or between a semantic
relation and a property, based on their associated weights (see Table 1). Function
RA(r, r′) is defined to evaluate the affinity between r and r′, where r and r′ are
either two semantic relations or a semantic relation and a property, respectively.
The relation affinity function RA(r, r′) is reported in Figure 7. The relation

function RA(r, r′)
input relations r and r′

output relational affinity value between r and r′

begin function
def σr, σr′ as the weights associated with r and r′, respectively
def x = 0;
x = 1− | σr − σr′ |;
return x;

end function

Fig. 7. The RA() function for relational affinity evaluation

affinity is a value in the range [0,1] and is proportional to the level of closeness
of the considered relations. The highest value (i.e., 1.0) is obtained when r and r′

have the same weight. The higher the difference between the weights associated
with the relations, the lower the relation affinity value.

Evaluation of the contextual affinity. The contextual affinity evaluation is per-
formed by exploiting a function CA(CV (c), CV (c′)) on the contexts of two con-
cepts c and c′. In this function, context Ctx(c) of a concept c is represented
through a context vector CV (c) = (cv1, ..., cvn), where ∀i ∈ (1, ..., n), cvi =
(fi, ri), where fi denotes either a property or an adjacent concept of c, and ri

denotes the semantic relation between c and fi. The contextual affinity function
is defined as shown in Figure 8.

Based on some experimental results, we noted that in the contextual affinity
evaluation the impact of the concepts with low affinity is stronger than the
impact of the concepts with a high affinity, thus originating biased measures.
For this reason, a control factor Fk has been introduced for refining the results
of the contextual affinity evaluation. In particular, in presence of very low affinity
values, Fk proportionally increases them, in order to better balance all affinity
values in the context and avoid too large gaps between affinity results.

function CA(CV (c), CV (c′))
input the context vectors CV (c) and CV (c′) representing the contexts of
the concepts c and c′, respectively
output contextual affinity value of c and c′

begin function
def x = 0, y = 0, z = 0;
foreach cv ∈ CV (c) | cv = (f, r);

foreach cv′ ∈ CV (c′) | cv′ = (f ′, r′);
y = LA(f, f ′) ·RA(r, r′);
z = z + y;

z = z ÷ (length(CV (c))·length(CV (c′))));
/* Fk = 1 + (1− z) is a control factor */
x = z · Fk;
return x;

end function

Fig. 8. The CA() function for contextual affinity evaluation

Example 2. As an example of the contextual affinity evaluation, we consider the
concepts Book and Volume shown in Figure 9, with their respective contexts:

Book context Volume context

Book

Heading
Author

Pages

Magazine

Publication

associates

kind-of
Bookshop contains

Chapter

part-of

Volume

Title

Author

Publisher

Library

Proceedings

associates
Journal

associates

contains

Fig. 9. The contexts of the Book and Volume concepts

CV (Book) = [(Heading, property), (Author, property), (Pages, property),
(Magazine, associates), (Chapter, part-of), (Bookshop, contains), (Publication,

kind-of)]

CV (Volume) = [(Title, property), (Author, property), (Publisher, property),
(Proceedings, associates), (Journal, associates), (Library, contains)]

The linguistic affinity and the relation affinity are evaluated as shown in Table 2.
The contextual affinity CA(CV (Book), CV (Volume)) is evaluated by exploiting

Linguistic affinity (CV (Book), CV (Volume))

LA() Heading Author Pages Magazine Chapter Bookshop Publication

Title 0.5 0.25 0.25 0.25 0.25 0.25 0.4
Author 0.25 1.0 0.25 0.25 0.25 0.25 0.4
Publisher 0.25 0.0 0.25 0.5 0.25 0.0 0.5
Proceedings 0.25 0.25 0.0 0.64 0.25 0.0 0.8
Journal 0.25 0.25 0.0 0.64 0.25 0.0 0.8
Library 0.25 0.25 0.0 0.5 0.25 0.5 0.5

Relation affinity (CV (Book), CV (Volume))

RA() property property property associates part-of contains kind-of

property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
associates 0.3 0.3 0.3 1.0 0.6 0.8 0.5
associates 0.3 0.3 0.3 1.0 0.6 0.8 0.5
contains 0.5 0.5 0.5 0.8 0.8 1.0 0.7

Table 2. Linguistic and relation affinity evaluation for the contexts of Book and
Volume

the LA() and RA() results, according to the function definition shown in Fig-
ure 8:

CA(CV (Book), CV (Volume)) = (9.4 / 42) · 1.78 = 0.40

5.3 The h-match algorithm

The h-match algorithm evaluates the semantic affinity between two concepts
by considering both their linguistic and contextual affinity. h-match can be
configured for differently evaluating concept semantic affinity, by setting the im-
pact of the linguistic and the contextual affinity, and by choosing dynamically
which part of concept context has to be considered in the matching process.
This flexibility of h-match has the aim of facing two different requirement of
the ontology matching process. The first requirement regards the balance be-
tween the linguistic and the contextual features of concepts in a peer ontology.
The meaning of the peer ontology concepts depends basically on the terms used
for their definition and on the relations they have with other concepts in the
ontology. In Helios, we are interested in addressing the fact that those features
can have a different impact in different ontology structures. A second require-
ment regards the context evaluation, in which we distinguish between properties
and concepts. The role of the properties in the concept definition might have a
different relevance in different peer ontologies. As an example, if a peer ontology

is defined describing high structured data sources (e.g., relational databases),
the properties which describe the structure of each concept have a high impact
on the concept meaning evaluation. Furthermore, the composition of the con-
text and its extension in terms of number of adjacents have an impact on the
matching quality and on its performance. The aim of h-match is to allow a
dynamic choice of the kind of features to be considered in the semantic affinity
evaluation.

Matching models. In order to address these requirements, three different match-
ing models are proposed in Helios to configure h-match.

– Shallow matching. The shallow matching is performed by considering only
the linguistic information provided by the concept names and by the refer-
ence thesaurus. The precision of the semantic affinity evaluation depends on
the choice of the concept names in the ontology definition. Meaningful and
precise names will guarantee more appropriate results. Being based only on
linguistic information, the shallow matching guarantees a high performance
since requires less computation than the other two models, and is recom-
mended when only concept names are specified in a query.

– Intermediate matching. The intermediate matching is performed by consid-
ering concept names and also concept properties. With this model, we want
a more accurate level of matching by taking into account the property part
of the concept context.

– Deep matching. The deep matching model considers concept names and the
whole context of concepts. The deep matching requires a complete descrip-
tion of target concept in the query and guarantees the highest level of pre-
cision in the semantic affinity evaluation. As such, it requires more compu-
tation than the other two, and is recommended when the accuracy is more
important than the response time.

Linguistic and contextual information balancing. The problem of dynamically
setting the balance between the linguistic and the contextual features of a peer
ontology in the matching process is addressed in Helios by setting a weight
WLA ∈ [0,1] which measures the degree of the impact of the linguistic affinity in
the semantic affinity evaluation process.

h-match algorithm. The input of the h-match algorithm is constituted by:
two concepts c and c′; the matching model; the value of the weight WLA. Deep
and 0.5 are the default values for the matching model and WLA, respectively.
WLA =0.5 ensures that the linguistic affinity and the contextual affinity have
the same impact in the semantic affinity evaluation. The output of h-match is
the semantic affinity value of c and c′, calculated as the weighted sum of their
linguistic affinity and contextual affinity. The h-match algorithm is shown in
Figure 10. The algorithm exploits the LA() and CA() functions for evaluating
the linguistic and the contextual affinity values, respectively. The choice of the
matching model determines the composition of the context vectors used for the

algorithm h-match(c, c′,model = “deep”,WLA = 0.5)
input the concepts c and c′, the matching model ∈ [shallow; intermediate; deep
], and the weight WLA ∈ [0,1]
output the semantic affinity value between c and c′

begin algorithm
def t, t′ as the names of c and c′, respectively;
def CV (c) = [], CV (c′) = [] as the context vectors for c and c′, respectively;
def context item = [] as a pair of the form (f, r), where f is a name asso-

ciated with a property or a concept, and r ∈ {property; same-as; kind-of;
part-of; contains; associates};

def x = 0, y = 0, semantic affinity = 0;
x = LA(t, t′);
switch model

case “shallow” :
WLA = 1;

case “intermediate” :
foreach property p(c) ∈ Ctx(c)

context item = [p(c),“property”];
append context item to CV (c);

foreach property p(c′) ∈ Ctx(c′)
context item = [p(c′),“property”];
append context item to CV (c′);

case “deep” :
foreach property p(c) ∈ Ctx(c)

context item = [p(c),“property”];
append context item to CV (c);

foreach concept ci ∈ Ctx(c)
/* sr(c, ci) is the semantic relation between c and ci */
context item = [ci, sr(c, ci)];
append context item to CV (c);

foreach property p(c′) ∈ Ctx(c′)
context item = [p(c′),“property”];
append context item to CV (c′);

foreach concept cj ∈ Ctx(c′)
/* sr(c′, cj) is the semantic relation between c′ and cj */
context item = [cj , sr(c′, cj)];
append context item to CV (c′);

y = CA(CV (c), CV (c′));
semantic affinity = WLA · x + (1−WLA) · y;
return semantic affinity;

end algorithm

Fig. 10. The h-match algorithm

contextual affinity evaluation. If the shallow model is chosen, WLA is set to 1, and
only the linguistic affinity is considered. Otherwise, WLA is exploited in order to
correctly combine the linguistic affinity value with the contextual affinity value.

Example 3. Consider the concepts of Book and Volume of Example 2. Below, we
report the semantic affinity of Book and Volume obtained by exploiting the h-
match algorithm according to the three different matching models, with WLA =
0.5.

– Shallow matching. The shallow matching returns a semantic affinity value
which coincides with the linguistic affinity value, that is:

h-match(Book,Volume,“shallow”,0.5) = 1

– Intermediate matching. The intermediate matching evaluates the linguistic
and the contextual affinity, by considering only the properties in the contexts
of Book and Volume, that is:

h-match(Book,Volume,“intermediate”,0.5) = 0.5 · 1 + 0.5 · 0.55 = 0.78

– Deep matching. The deep matching evaluates semantic affinity by considering
the whole contexts of Book and Volume, that is:

h-match(Book,Volume,“deep”,0.5) = 0.5 · 1 + 0.5 · 0.40 = 0.7

Considerations. We note that in our example the deeper is the matching model
used for semantic affinity evaluation, the lower is the semantic affinity returned
for Book and Volume. It depends on the fact that considering the context of the
concepts to be matched, h-match is able to capture more precisely the differ-
ences between them than considering only the linguistic affinity. In particular,
h-match is useful in order to address the fact that the same concept can have a
different meaning if used in different contexts. In our example, the Book and the
Volume concepts, which are synonyms from a linguistic point of view, are used
in a bookstore context and in a library context, respectively. The differences
between the kind of publications contained in the bookstore context and in the
library context are the reason of the decreasing value of semantic affinity when
applying the deep match.

6 Related work

In this section, we overview the main approaches for ontology matching in dis-
tributed systems.
Edamok [17] is a research project focused on semantic interoperability issues in
P2P systems. The project implements the KEx (Knowledge Exchange) P2P sys-
tem which aims to realize knowledge sharing among peer communities of interest
(called federations). The system is based on the concept of context of a peer, to
represent the interests of the peer. KEx implements specific tools (e.g., context

editors, context extractors) to extract the context of a peer from the peer knowl-
edge (e.g., file system, mail messages). In order to point out semantic mapping
between concepts stored in distinct peers, the system uses the Ctx-Match al-
gorithm. This algorithm compares the knowledge contained in different contexts
looking for semantic mappings denoting peers interested in similar concepts.
These mappings are stored in order to assist the query resolution components
to direct queries to peers which store relevant information. The Ctx-Match
is based on a semantic explicitation phase where concepts are associated with
the correct meaning with respect to their context and on a semantic comparison
phase where concepts are translated in logical axioms and matched. The algo-
rithm implements a description logic approach: mapping discovering is reduced
to the problem of checking a set of logical relations.
Chatty web [2] represents a novel approach for obtaining semantic interoper-
ability among data sources in a semi-automatic manner. This approach applies
to any system which provides a communication infrastructure (e.g., decentralized
systems, P2P systems) and offers the opportunity to study semantic interoper-
ability as a global phenomenon in a network of information sharing communities.
Each peer offers data which are organized according to some schema expressed
in a data model (e.g., relational, XML, RDF). Semantic interoperability is ac-
complished by assuming the existence of local agreements provided as mappings
between different schemas. Peers introduce their own schemas and exchanging
translations between them; then peers can incrementally come up with an im-
plicit “consensus schema” which gradually improves the global search capabil-
ities of the system. The paper identifies different methods that can be applied
to establish global forms of agreement starting from a graph of local mappings
among schemas and presents the gossiping algorithm which is used to identify
the sufficiently large set of peers capable of rendering meaningful results on a
specified query.
GLUE [7] is a system that employs machine learning techniques to find seman-
tic mappings between concepts stored in distinct and autonomous ontologies.
Given two distinct ontologies, the mapping discovery process between their con-
cepts is based on the measure of similarity which is defined through the joint
probability distribution. GLUE follows a probabilistic approach: the measure of
similarity between the concepts A and B is computed as the likelihood that an
instance belongs to both the concepts (P (A∩B)). According to these probabilis-
tic measurements, two base learning techniques are applied in order to build a
similarity matrix expressing the prediction of semantic affinity between concepts.
A relaxation labeling procedure is performed in order to improve the matching
accuracy of the affinity predictions. Domain-independent and domain-dependent
constraints are introduced to evaluate such kind of refinement process.
KAON [14] is an ontology and Semantic Web tool suite. In [14], the authors dis-
cuss the problem of ontology representation and querying for semantics-driven
applications, describing a prototype implementation within the KAON system.
In particular, the paper presents the mathematical definition of the KAON mod-
eling language, and the denotational semantics for it. The ontology structure is

presented as a view of a general model, called OI-model, which consists of enti-
ties and may include a set of other OI-models. The ontology structure contains
definitions specifying how instances should be constructed, and is composed by
concepts and properties. The properties can have domain concepts, and rela-
tional properties can have range concepts. Relational properties may be marked
as transitive and/or symmetric and it is possible to define inverse properties for
each relational property. The emphasis of this system is on ontology definition
and on formal properties for correctness and completeness.
The original contribution of our ontology matching techniques, with respect
to these approaches, is the use of combined semantic affinity evaluation strate-
gies to obtain a flexible and dynamic algorithm. The h-match algorithm is able
to discover the location of semantically related concepts to a target argument
without requiring a complete description and matching procedure between inde-
pendent ontologies. In the next section, we deeply compare h-match with the
approach adopted in Edamok, by discussing our contribution in more detail.

7 Applicability issues

We made a comparison of h-match and the matching techniques developed in
the Edamok [17] project, which are more strictly related to our approach. In
particular, the aim of the comparison is to verify which mappings are discov-
ered by the two techniques for a given concept, by considering as the reference
case study the Art domain concept hierarchies of Google3 and Yahoo4 shown in
Figure 11. In particular, we are interested in discovering which concepts of the
Yahoo hierarchy match the Art history concept of the Google hierarchy. In [17],
the following relations are discovered for the Art history concept:

Arts/Art history ≡ Arts & Humanities/Art History
Arts/Art history w Arts & Humanities/Design Art/Architecture/History

In Helios, the h-match algorithm is exploited to discover the semantic affinity
value between the Art history concept and each concept of the Yahoo hierar-
chy. In this example, we set h-match by choosing the deep matching model and
WLA = 0.5. In order to address the fact that the concept hierarchies are resource
directories in Google and Yahoo, in Helios, we represent the is-a relations by
means of the contains semantic relation. The linguistic and contextual affinity
are evaluated as described in Section 4. In particular, the h-match algorithm
is performed by considering the context of the concept Art history and the con-
texts of the concepts in the Yahoo hierarchy, as shown in Figure 12. The results
obtained with h-match are the following:

3 www.google.com
4 www.yahoo.com

Arts

Literature Art history Visual artsMusic

Galleries

Organizations

Baroque

History
Chat and

forum

Arizona

United
States

North
America

Photography

Arts & Humanities

Photography

Design Art

Visual Arts

Humanities

Architecture

Baroque

History

Chat and
forum

Art history

Organizations

www.google.com www.yahoo.com

Fig. 11. The Art domain concept hierarchies of Google and Yahoo

Arts

Art history

Organizations

Arts & Humanities

Photography

Design Art

Visual Arts

Humanities

Architecture

Baroque

History
Chat and

forum

Art history

Organizations

www.google.com www.yahoo.com

contains

contains

contains

contains

contains

contains

contains

contains

contains

contains

contains

contains

Target concept

Fig. 12. Concept contexts involved in the semantic affinity evaluation between
Art history of Google and the Yahoo concept hierarchy

h-match(Art history, Art history) = 1
h-match(Art history, History) = 0.72

h-match(Art history, Photography) = 0.57
h-match(Art history, Visual arts) = 0.57
h-match(Art history, Design art) = 0.55

h-match(Art history, Arts & humanities) = 0.54
h-match(Art history, Humanities) = 0.54

h-match(Art history, Architecture) = 0.5
h-match(Art history, Baroque) = 0.47

h-match(Art history, Organizations) = 0.22
h-match(Art history, Chat & Forum) = 0.21

A full comparison between our results an those discussed in [17] is not possi-
ble, because the h-match algorithm results cannot be interpreted as semantic
relations among the considered concepts. An interesting point about the com-
parison, is the fact that the concepts having the highest semantic affinity value
with Art history in the h-match results (i.e., Art history and History) are the
same concepts discovered by the Ctx-Match algorithm presented in [17]. In
conclusion, the h-match algorithm is a valid support for discovering, given a
concept ontology, a set of corresponding concepts in another ontology. The main
contribution of our techniques is the fact that h-match gives a measure of cor-
respondence in terms of semantic affinity among concepts. On these measures, a
set of different interpretations are possible in order to define mappings between
the considered concept ontologies. For instance, when using h-match for query
resolution a threshold is used in order to select the concepts which have the
highest semantic affinity with the target concept in the query.

8 Concluding remarks

In this paper, we have presented the h-match algorithm for dynamic distributed
ontology matching. Considering the linguistic affinity evaluation as an atomic
step, h-match has a complexity of O(N2), being N the number of elements
in the contexts of the concept to be matched. We are working in the direction
of testing the algorithm on real matching cases in the context of Helios, to
evaluate and experiment performance and scalability issues posed by ontology-
based query resolution considering large ontologies.
The accuracy of the matching results depends on the thesaurus (e.g., WordNet)
which may not be sufficient to precisely evaluate semantic similarity between
two terms in different vocabularies. Such vocabulary heterogeneity may cause a
loss of information. This problem has been discussed in [12], where measures and
metrics are used to select results having the desired quality of information. To
this end, future work will be devoted to the extension of our techniques taking
into account aspects related to the quality of information.

References

1. The ARTEMIS project web site. http://islab.dico.unimi.it/artemis/d2i/.

2. K. Aberer, P. Cudrè-Mauroux, and M. Hauswirth. The chatty web: Emergent
semantics through gossiping. In Proc. of the Twelfth International World Wide
Web Conference, (WWW2003), Budapest, Hungary, May 2003.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, May 2001.

4. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing
of heterogeneous data sources. IEEE Transactions on Data and Knowledge Engi-
neering, 13(2):277–297, 2001.

5. S. Castano, A. Ferrara, S. Montanelli, E. Pagani, and G.P. Rossi. Ontology-
addressable contents in P2P networks. In Proc. of WWW’03 1st SemPGRID Work-
shop, Budapest, May 2003. http://www.isi.edu/ stefan/SemPGRID/proceedings/proceedings.pdf.

6. S. Castano, A. Ferrara, S. Montanelli, and D. Zucchelli. HELIOS: a general frame-
work for ontology-based knowledge sharing and evolution in P2P systems. In Proc.
of DEXA’03 2nd Web Semantics Workshop, Prague, Czech Republic, September
2003.

7. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In Proc. of the Eleventh International World Wide
Web Conference, (WWW2002), Honolulu, Hawaii, USA, May 2002.

8. D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, Berlin, 2001.

9. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a nutshell. In In Knowledge Acquisition, Modeling, and Management, Pro-
ceedings of the European Knowledge Acquisition Conference (EKAW-2000), pages
1–16, Juan-les-Pins, France, October 2000. Springer-Verlag.

10. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. of ICDE’03, Bangalore, India, March 2003.

11. J.Heflin and J.Hendler. A portrait of the Semantic Web in action. IEEE Intelligent
System, 16:54–59, May 2001.

12. E. Mena, V. Kashyap, A. Illarramendi, and A. Sheth. Imprecise answers on highly
open and distributed environments: An approach based on information loss for
multi-ontology based query processing. International Journal of Cooperative In-
formation Systems (IJCIS), 9(4):403–425, December 2000.

13. A.G. Miller. WordNet: A lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

14. B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for semantics-
driven enterprise applications. In Proc. of the First International Conference on
Ontologies, Databases and Application of Semantics (ODBASE-2002), 2002.

15. Nejdl et al. EDUTELLA: a P2P networking infrastructure based on RDF. In Proc.
of the Eleventh International World Wide Web Conference, WWW2002, Honolulu,
Hawaii, USA, May 2002.

16. R.A. Pottinger and P.A. Bernstein. Merging models based on given correspon-
dences. Technical report, University of Washington, February 2003. Available at
ftp://ftp.cs.washington.edu/tr/2003/02/UW-CSE-03-02-03.pdf.

17. L. Serafini, P. Bouquet, B. Magnini, and S. Zanobini. An algorithm for matching
contextualized schemas via SAT. Technical report, DIT University of trento, Italy,
January 2003. Available at http://eprints.biblio.unitn.it/archive/00000348/.

18. F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-
Schneider, and L.A. Stein. OWL (march 2003) reference description.
http://www.w3.org/TR/2003/WD-owl-ref-20030331/.

A Collaborative Approach for Query Propagation
in Peer-to-Peer Systems1

Anne Doucet, Nicolas Lumineau

LIP6 Laboratory
University of Paris 6

8, Rue du Capitaine Scott, 75015 Paris, France
FirstName.LastName@lip6.fr

Abstract. Sharing resources on a world-wide scale is a current research topic. Nowadays, peer-
to-peer architecture is considered as a scalable solution to this issue. However, a lot of problems
to extend this architecture for data storage remain open. When information is not highly
replicated, localization of nodes storing relevant data becomes essential to avoid covering
completely the network. To this purpose, we try to propagate a query towards nodes potentially
storing relevant data. Information about nodes relevance is obtained by users’ experiences. In an
applicative context where “communities of interest” exist, we create logical and semantic links
not only to specify the nodes relevant for a community, but also to link communities with a
related interest. The proposed pattern has been created with respect to Peer-to-Peer philosophy
and so as to consider the evolution of communities.

1 Introduction

With the development of Internet, the amount of available resources has drastically
increased. This leads to revisit the notion of information access in this context. Techniques
used in federated or distributed databases, which were developed to manage data distributed
on a limited number of servers, have reached their limits in the context of Internet, and do
not support scalability. A new class of distributed architecture, peer-to-peer (P2P) systems
[1], is designed to support thousands of nodes, providing thus interesting solutions to
scalability. In such systems, nodes are indifferently client and server. A query on P2P
systems is based on the propagation from node to node until the number of rebounds
between nodes is considered sufficient. The node receiving a query solves it locally, and
propagates it to a set of neighbors.
Peer-to-peer systems offer many advantages [9], by allowing to access distributed
information without specifying the server containing it. However, the principle of
propagation has some drawbacks [6]. A first problem is that the definition of a neighbor of
a node is done randomly and does not rely on any particular semantics. Another problem is
that propagation generates an important number of messages through the network [10].
In this paper, we propose a solution to reduce the number of messages used during the
query propagation, as well as the response time [16]. We consider that a user looking for
specific data will first query metadata [11][3], which give the user a description of the
available resources. Thus, queries we consider here only concern metadata. They are used
as a first step to discover sites storing relevant data. The idea used in our approach is based
on using some knowledge to adjust the rebounds. Different knowledge levels can be used:
user knowledge (profile, experience, history of past queries, belonging to a community of
users having the same kinds of interests, etc.) as well as network knowledge (based on the
semantics of the node content [4][5]).
We focus in this paper on the user knowledge, and particularly on his/her belonging to a
community of users. We claim that a user interested by meteorology will find relevant data
on the servers already and successfully queried by users of the same community (for
instance meteorologists) or by users of related communities (for instance climatology). Our

1 This research is done in the context of the PADOUE project (http://www-poleia.lip6.fr/padoue) financed by ACI
GRID : http://www-sop.inria.fr/aci/grid/public

2 Anne Doucet, Nicolas Lumineau

purpose is to introduce this kind of knowledge into P2P systems, in order to direct as better
as possible the search, i.e. to propagate the query directly to a relevant node (i.e. containing
relevant data). As P2P systems are very evolutive, we insist in this paper on the dynamicity
of our approach.
This approach is inspired by works about collaborative filtering [14][2][15]. In our solution,
we do not filter on users, as it is generally the case in other related works, but rather on the
community, which makes our work original. Our goal is to discover related communities,
which will recommend sites containing relevant information. For this purpose, we label the
nodes in order to describe the domain of the data they store. This is similar to the notion of
semantic labeling used in Semantic Overlay Network [5] where nodes are logically linked
according to their contents. But this approach requires a global hierarchy of concepts to
classify all items (data, query, nodes, and connections), while our system only uses
information on membership of a community and users feedbacks, which can easily be
obtained.
The paper is organized as follows. After defining the notion of community in Section 2, we
explain in Section 3 how to model it in order to introduce it into P2P systems. We show
how to use the notion of links between communities (several communities have similarities,
and can share interests) for query propagation in Section 4. We conclude in Section 5, and
present some perspectives for this work.

2 Community

We suppose that users are clustered around the nodes of the network, according to their
physical localization. For example, a node gathers a set of users belonging to the same
organism, or the same department, etc. The notion of community we introduce here, allows
to cluster again users linked by the same node, according to more logical features. Users
belong to the same community if they are bound to the same node (as we previously
mentioned) and if they share the same field (or related fields) of interest. To build the links
between users, a community is defined by a small set of themes (ie: keywords) which
characterize a field of interest. Figure 1 shows examples of such themes concerning specific
domains of sciences such as oceanography, oceanology, hydrology, etc which define the
fields of interest of the communities.

climatologyoceanography

oceanology hydrology meteorology

paleoclimatology

oceanography hydrogeology

Communities
(local)

Keywords
(global)

Fig 1 : Definition of communities according to themes (keywords). In this example, the community
“climatology” is defined for a node by the two keywords “hydrology” and “meteorology”. We note
that the set {hydrology, oceanology} may define the community “oceanography” on another node.

We underline the difference between the communities which are local for each node and
the use of keywords to define communities. In fact, these themes, established by human
experts, are a global resource shared by all nodes and known by all users of the network.
This gives the node the autonomy to build its own community and avoids imposing a global
definition. We also note that all community definitions are built on a single space of topics,
allowing the system to compare them and to create links between them.

A Collaborative Approach for Query Propagation in Peer-to-Peer Systems 3

3 Source of community information

In order to better exploit community experiences, two different kinds of logical links
between nodes can be built. On the one hand, we consider relevance-based links pointing
out potentially interesting nodes for the query execution, and on the other hand, inter-
community links mapping two similar communities on two different nodes. We present
these two kinds of links in the following.

3.1 Pattern of relevance-based links

We first consider a set of users which membership of a community of interest is clearly
established and easy collectable to avoid discovering it by an elaborate process of users’
clustering [13]. For example, a set of researchers in environment may be clustered into
several communities: hydrogeologists, climatologists, ecologists, etc. Each user is free to
specify his/her community among the list of communities defined on the node (see Figure
2-a) (if there is no relevant community, a user can create a new community).

Fig 2.a: A user on node Ni
specifies his community among
the list of available communities

Fig 2.b: The user queries the network and
the system returns the metadata potentially
relevant for the query

Fig 2.c: The user gives his
feedback about the returned
metadata, and selects the
corresponding relevant
resources

Moreover, to simplify the process of resource retrieval, we use metadata [7] which describe
the resources (data or programs) shared in the network. These metadata allow the user to
straightly and quickly build his/her own opinion about the relevance of the resource. Thus,
the process of resource retrieval is now treated as a process of metadata localization as
shown on Fig 2.b. When resources are discovered, the user gives some feedback (1 if it is
relevant, -1 if it is not relevant) on these metadata and selects, among the set of metadata
he/she obtained, the relevant resources to load (see Fig 2.c).
For example, a resource as a “pluviometric reading”, which contains a set of statement, is
described by a metadata defined by a title, a date, an author, a localization, … In this way,
users can build structured queries by keywords (for example: “title: pluviometric reading,
date:2003, localization: France”) to filter relevant metadata.
In the following, we suppose that resources stored on a same node are related to same
topics2. We thus consider that a node is relevant, if relevant resources (i.e. metadata) have
been found on it.
Given Cij, the ith community defined locally on the node Nj, we can now define the
relevance-based links allowing to come out community knowledge. Such semantic link is
defined by the following triple (1), stored on node Nj to express that the members of the
community Cij, consider the node Nq is relevant, with a given aggregated feedback q

ijfa .

()q
ijq ij

fa,C,N (1)

2 This hypothesis is realist in our context where each node is a specific environmental organism which

shares its own resources on specific themes.

4 Anne Doucet, Nicolas Lumineau

where in (1), Nq is the IP address of the node Nq, Cij is the label of the community Cij. We
specify that ()q

u
q

u
q
ij n1

,...,fffa agg= is the feedback achieved by the function agg of

aggregation (average) based on individual feedbacks q
u

q
u n1

,...,ff awarded by some users of
the community Cij about node Nq. (see the right side of figure 3). A community can thus
maintain a list of relevant nodes, which are recommended to users belonging to this
community. In the same way, this knowledge can be used to avoid querying a node if the
community considers it as irrelevant (when the aggregated feedback is negative).

Fig 3 : Different links between nodes. The relevance-based link between Nj and Nq expresses that Nq
is relevant for the community Cij of Nj. The inter-community link expresses the similarity between
communities Cij and Cpk on nodes Nj and respectively Nk.

3.2 Pattern for inter-community links

Considering only the experiences of a local community is not satisfying. For this reason, we
propose to take advantage of experiences of other communities defined on other neighbor
nodes. Our idea is to build a link between two nodes on which similar communities exist.
Before explaining what similar communities means, we underline the fact that the purpose
of these links is not the straight localization of relevant nodes, but only the localization of
communities competent to recommend relevant nodes. Our approach of inter-community
links gets in two steps: the static creation and the dynamic evolution.
In a first step, we temporarily define the inter-community links between community Cij
defined on node Nj and community Cpk defined on node Nk, by a triple (2) stored on node
Nj:

()pkkij C,N,C (2)
where in (2) Cij and Cpk are the names of the communities (i.e. themes which specify them)
and Nk is the IP address of the node Nk. To create these links, we introduce a definition-
based similarity which allows to compare the themes defining the communities. In order to
define a similar community for the community C, we compare the themes defining C with
the sets of themes defining the other communities on a given node. The community having
the highest number of common themes with C is considered as similar to C.
Given D(C) which returns the set of themes defining the community C, we say that:

 Cij is def-similar to Cpk
 if : o D(Cij) ∩ D(Cpk) ≠ Ø and, (3)

 o Cpk =
{ }

() ()cDCDmaxarg ij ∩
∈ kNofcommuniiesc

 (4)

In other words, we search on Nk a community having at least one common keyword
(condition 3) and having the highest number of common themes (condition 4). For
example, let us consider the community “climatology” (considered as Cij) defined by
D(climatology)={hydrology, meteorology} on Nj. We consider only communities on Nk
having at least the keyword “hydrology” or “meteorology” in their definition. The

A Collaborative Approach for Query Propagation in Peer-to-Peer Systems 5

communities having these two keywords in their definition are considered as def-similar.
We underline that the def-similar definition depends on the original choice of themes.
Moreover, these links can be established at the creation of a community or when two nodes
become neighbors.
We have shown how to relate communities by two different kinds of links, the relevance-
based link and the inter-community link. Figure 3 points out the difference between these
two kinds of links. However, this mapping between communities is only static, and does
not reflect the evolution of communities. Indeed, we have shown that the knowledge of a
community comes out from user feedbacks, which is a dynamic knowledge. We explain in
the following section how to take into account the dynamic evolution of communities into
the handling of inter-community links.

3.3 Handling inter-community links

As experiences of each community evolve, the static inter-community links become
obsolete. Their relevance is called into question after being modified many times
(consideration of new individual feedbacks). Thus, the use of def-similar is not adapted to
this evolution. Therefore, we introduce a new definition of the similarity based on the
experiences of the community.
As we want to compare dynamically communities, we consider the Pearson correlation
coefficient [2]. Indeed, to establish the correlation between Cij and the communities of Nk,
node Nj sends to node Nk the experiences of the community Cij (i.e. the list of evaluated
nodes and their aggregated feedback) to compute all the correlations. The correlation
between Cij and a community Cxk of Nk is defined by the following formula:

()
()()

() ()∑∑

∑

∈∈

∈

−−

−−

=

NCNh
xk

h
xk

NCNh
ij

h
ij

NCNh
xk

h
xkij

h
ij

xkij

hh

h

fafafafa

fafafafa

CC

/

2

/

2

/,ω

 (6)
where NC is the set of common nodes evaluated by the two communities, and ijfa is the
average of all aggregated feedbacks provided by the community Cij.
Given Ne(C), which returns the set of nodes evaluated by the community C, the use of the
correlation between communities allows us to define the experience-based similarity as
follows :

 Cij is exp-similar to Cpk
 if : o | Ne(Cij) ∩ Ne(Cpk) | > δ , and (7)

o Cpk =
{ }

),(maxarg cCij
Nofscommunitiec k

ω
∈

 (8)

Condition (7) allows considering this similarity only if there are enough common evaluated
nodes between Cij and Cpk. If the comparison is well-founded, we update the inter-
community link with the community specified by (8). Thus, we keep the links created
according to the definition of the community until the set of common evaluated nodes is
under a threshold δ .
However, calculating exp-similarity again for each new feedback is not interesting, because
the number of computations used for this task is not justified to express the light evolution
of the community knowledge. We introduce in our definition of inter-community link a
parameter of freshness. An inter-community link between the community Cij on Nj and Cpk
on Nk with a freshness t, is defined by the quadruplet (9), stored on Nj :

()t,C,N,C pkkij (9)
where { }θ,...,1t∈ , with θ being a parameter used as initial value of freshness fixed in such a
way that the system does not continuously cast doubt on the relevance of the links.

6 Anne Doucet, Nicolas Lumineau

To sum up, as long as a community C does not have any experiences, the inter-community
similarity with C is based on def-similarity; otherwise, the system periodically establishes
the community the closest of C with the exp-similarity according to the evaluated nodes and
their aggregated feedback.

4 Query propagation and exploitation of community information

Now that the notions of static and dynamic links between communities are defined, we
focus on how to exploit all these information stemming from a community. In particular,
we will explain to which nodes a query is propagated and why. According to Figure 4 and
given the user U belonging to community Cij on the node Nj, the query Q is handled by
node Nj.

Fig 4: Illustration of query propagation

In a first step, the system returns the nodes Nj1, Nj2, etc, specified by some relevance-based
links of Cij i.e. nodes obtained by filtering the stored triplets (1) on Nj having a positive
aggregated feedback. Then, node Nj sends the query Q to these nodes supposed to store
relevant resources. Moreover, the inter-community links stored on Nj specify that there are
a community Cpk on Nk related to Cij. The query Q is sent on Nk and will not be executed on
it, but on the nodes that the community Cpk considers relevant (Nk1, Nk2, … obtained by
relevance-based link of the community Cpk). According to the principle of peer-to-peer, the
node Nk treats Q as its proper query. Therefore, Q will be straightly propagated towards
relevant nodes, in order to find relevant resources.

5 Conclusion and future work

Information retrieval in large distributed systems introduces new challenges for database
technology. Peer-to-peer architectures offer interesting solutions to support scalability.
However, they must be adapted to increase their functionalities and their performance. We
propose in this paper to improve the performance of peer-to-peer systems by introducing
knowledge in the process of query propagation. This knowledge is used to select the nodes
to which the query will be redirected. The kind of knowledge we introduce here is the
belonging of a user to a community, and the links which can be established between related
communities. This knowledge is both static and dynamic. We have shown how to define
and how to use these links to direct query propagation.
This work has been done in the framework of the PADOUE project [12], which aims at
building a complete system for sharing heterogeneous and distributed environmental
information and in which we exploit the experience of scientific communities. Further work
is still to be done. We are currently validating our proposition by integrating this knowledge
into the route tables of a peer-to-peer system. An important perspective is to consider other
kinds of knowledge. In this work, we focused on community knowledge, but we intend to
take into account other knowledge levels, such as user profile, or network knowledge. Our
purpose consists of exploiting complementary sources of semantic to smartly extract
information from a peer-to-peer system.

A Collaborative Approach for Query Propagation in Peer-to-Peer Systems 7

References:

1. Aberer, K., Hauswirth, M., Peer-to-Peer Information Systems: Concepts and Models, state-of-the-
art, and Future Systems, Tutorial IEEE ICDE, 2002.

2. Breese, J.S., Heckerman, D., Kadie, C., Empirical analysis of predictive algorithms for
collaborative filtering. In Proc. of the 14th conference on uncertainty in artificial intelligence, pp.
43-52, Madison, Wisconsi, July 1998.

3. Coulondre, S., Libourel, T., Spéry, L., Metadata and GIS : a classification of metadata for Gis, Gis
Planet’98, International Conference and Exhibition on Geographic Information, Lisbon, Portugal,
September 1998

4. Crespo, A., Garcia-Molina, H., Routing Indices for Peer-to-Peer Systems, In Proc. of the 22th
International Conference on Distributed Computing Systems (ICDCS) Vienna, Austria, 2002

5. Crespo, A., Garcia-Molina, H., Semantic Overlay Networks for P2P Systems, submitted for
publication, (http://www-db.stanford.edu/peers) 2003

6. Daswani, N., Garcia-Molina, B., Yang, B., Open Problems in Data-Sharing Peer-to-Peer Systems,
In Proc. of the 9th International Conference on Database Theory (ICDT), Siena, Italy, 2003

7. Galhardas, H., Simon, E., Tomasic, A., A framework for classifying scientific metadata, AAAI
Workshop on AI and Information integration, Madison, Wisconsin, August 1998.

8. Golberg, K., Roeder, T., Gupta, D., Perkins, C., Eigentaste: A Constant Time Collaborative
Filtering Algorithm, Technical report IOER and EECS Departments, University of California,
Berkley, August 2000.

9. Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D., What Can Peer-to-Peer Do for Databases,
and Vice Versa?,. In Proc. of the 4th International Workshop on the Web and Databases (WebDB
'2001), Santa Barbara, California, May 2001.

10. Jovanovic, M.A., and al, Scalability Issues in Large Peer-to-Peer Networks – A Case Study of
Gnutella, Research report, Univ. Cincinnati, 2001

11. Moura, A., Perez, H., Tanaka, A., Metadata model for supporting data extraction from
environmental information systems, In Proc of the International Conference On Geographic
Information Science, Savannah, Georgia, October 2000

12. PADOUE Project (http://www-poleia.lip6.fr/padoue) multifield project of ACI-GRID:
http://www-sop.inria.fe/aci/grid/public

13. Seng, S.H., Han, J., Wang, K., RecTree: An efficient collaborative filtering method, in Proc. The
conference on data Warehouse and Knowledge Discovery, (DaWaK), Munich, Germany, 2001

14. Resnick, P, Varian, H.R., Recommender Systems. In Communications of the ACM , Vol 40. N°3,
March 1997

15. Ungar, L., Foster, D., Clustering methods for collaborative filtering, In Workshop on
Recommender systems at the 15th National Conference on Artificial Intelligence, Madison,
Wisconsin, July 1998.

16. Yang, B., Garcia-Molina, H., Improving Search in Peer-to-Peer Systems, In Proc. of the 22th
International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July
2002

OntoMiner: Bootstrapping and Populating
Ontologies From Domain Specific Web Sites

Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Department of Computer Science and Engineering,
Arizona State University,
Tempe, AZ, 85287, USA

{hdavulcu, svadrevu, nrsaravana}@asu.edu

Abstract. RDF/XML has been widely recognized as the standard for
annotating online Web documents and for transforming the HTML Web
to the so called Semantic Web. In order to enable widespread usability
for the Semantic Web there is a need to bootstrap large, rich and up-
to-date domain ontologies that organize most relevant concepts, their
relationships and instances. In this paper, we present automated tech-
niques for bootstrapping and populating specialized domain ontologies
by organizing and mining a set of relevant Web sites provided by the
user. We develop algorithms that detect and utilize HTML regularities
in the Web documents to turn them into hierarchical semantic structures
encoded as XML. Next, we present tree-mining algorithms that identify
key domain concepts and their taxonomical relationships. We also extract
semi-structured concept instances annotated with their labels whenever
they are available. Experimental evaluation for the News and Hotels do-
main indicates that our algorithms can bootstrap and populate domain
specific ontologies with high precision and recall.

1 Introduction

RDF and XML has been widely recognized as the standard for annotating online
Web documents and for transforming the HTML Web to the so called Semantic
Web. Several researchers have recently questioned whether participation in the
Semantic Web is too difficult for “ordinary” people [1–3]. In order to enable
widespread usability for the Semantic Web there is a need to bootstrap large, rich
and up-to-date domain ontologies that organizes most relevant concepts, their
relationships and instances. In this paper, we present automated techniques for
bootstrapping and populating specialized domain ontologies by organizing and
mining a set of relevant taxonomy-directed Web sites provided by the user. A
Web site is said to be “taxonomy-directed” if it contains at least one taxonomy
for organizing its contents and it presents the instances belonging to a concept in
a regular fashion. Notice that, neither the presentation of the taxonomy among
different pages, nor the presentation of instances among for different concepts
need to be regular for a Web site to be classified as “taxonomy-directed”. Almost
all scientific, news, financial, travel, shopping and search/community portals that

2 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

we are aware of are indeed “taxonomy-directed”. As an example application, a
user of the OntoMiner can use the system to rapidly bootstrap and ontology
populated with instances and they can tidy-up the bootstrapped ontology to
create a rich set of labelled examples that can be utilized by supervised machine
learning systems such as the WebKB[4].

The user of the OntoMiner system only need to provide the system the URLs
of the Home Pages of 10 to 15 domain specific Web sites that characterizes her
domain of interest. Next, OntoMiner system detects and utilizes the HTML reg-
ularities in Web documents and turns them into hierarchical semantic structures
encoded as XML by utilizing a hierarchical partition algorithm. We present tree-
mining algorithms that identifies most important key domain concepts selected
from within the directories of the Home Pages. OntoMiner proceeds with ex-
panding the mined concept taxonomy with sub-concepts by selectively crawling
through the links corresponding to key concepts. OntoMiner also has algorithms
that can identify the logical regions within Web documents that contains links to
instance pages. OntoMiner can accurately separate the “human-oriented decora-
tion” such as navigational panels and advertisement bars from real data instances
and it utilizes the inferred hierarchical partition corresponding to instance pages
to accurately collect the semi-structured concept instances.

A key characteristic of OntoMiner is that, unlike the systems described in [5,
6] it does not make any assumptions about the usage patterns of the HTML tags
within the Web pages. Also, OntoMiner can separate the data instances from
the data labels within the vicinity of extracted data and attempts to accurately
annotate the extracted data by using the labels whenever they are available.
We do not provide algorithms for extracting and labelling data from within
HTML tables since there are existing solutions for detecting and wrapping these
structures [7, 8].

Other related work includes schema learning[9–11] for semi-structured
data and techniques for finding frequent substructures from hierarchical semi-
structured data[12, 13] which can be utilized to train structure based classifiers
to help merge and map between similar concepts of the bootstrapped ontologies
and better integrate their instances.

The rest of the paper is organized as follows. Section 2 outlines the hierarchi-
cal partitioning, Section 3 discusses taxonomy mining, and Section 4 describes
instance mining. Experimental evaluation for the News and Hotels domains indi-
cates that our algorithm can bootstrap and populate domain specific ontologies
with high precision and recall.

2 Semantic Partitioning

2.1 Flat Partitioner

Flat Partitioner detects various logical partitions of a Web page. For example, for
the home page of http://www.nytimes.com, the logical partitions are marked in
boxes B1 through B5 in Figure 1. The boxes in snapshot of Web page in Figure 1
correspond to the dotted lines shown in tree view of Web page in Figure 1..

OntoMiner 3

Fig. 1. Snapshot of New York Times Home Page and Parse Tree View of the Home
Page

The Flat Partitioner Algorithm takes an ordered DOM tree of the Web page
as input and finds the flat partitions in it. Intuitively, it groups contiguous similar
structures in the Web pages into partitions by detecting a high concentration
of neighboring repeated nodes, with similar root-to-leaf tag-paths. First, the
partition boundary is initialized to be the first leaf node in the DOM tree. Next,
any two leaf nodes in the tree are linked together with a ”similarity link” if they
share the same path from the root of the tree and all the leaf nodes in between
have different paths. Then the ratio of number of ”similarity links” that crosses
the current candidate boundary to the total number of ”similarity links” inside
the current partition is calculated. If this ratio is less than a threshold δ, the
current node is marked as the partition boundary. Otherwise, current node is
added to the current partition and the next node is considered as the partition
boundary. The above process terminates when the last element in the list of leaf
nodes is reached. A Path Index Tree (PIT) is built from the DOM tree of the
Web page, which helps to determine all the ”similarity links” between the leaf
nodes within a single traversal. The PIT is a tree based data structure which is
made up of all unique root to leaf tag-paths and, in its leaf nodes PIT stores the
”similarity links” between the leaf nodes of the DOM tree.

The tree view in Figure 1 illustrates the Flat Partitioning Algorithm. The
arrows in the tree view in Figure 1 denote the ”similarity links” between the
leaf nodes. Let’s assume the threshold δ is set to 60%. Then, when the current
node is ”Job Market” the total number of outgoing unique ”similarity links”
(out in line9) is 1 and total number of unique ”similarity links” (total in line
10) is 1. Hence the ratio of out to total is 100% which is greater than threshold.
Hence current in line 6 becomes the next leaf node. At node ”International”,
out becomes 1 and total is also 1. Hence the ratio is still greater than threshold.

4 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Algorithm 1 Flat Partition Algorithm
Flat Partitioner
Input: T: DOM Tree
Output: < b1, b2, ...bk >: Flat Boundaries

1: PIT := PathIndexTree(T)
2: current := first leaf node of T
3: Partition Nodes := φ
4: Partition Boudaries := φ
5: for each lNode in Leaf Nodes(T) do
6: current := lNode → next
7: if N = PIT.next similar(Current) exists then
8: Partition Nodes := Partition Nodes

⋃
N

9: end if
10: out = |{path(m)|m ∈ Partition Nodes and m > current}|
11: total = |{path(m)|m ∈ Partition Nodes}|
12: if out/total ¡ δ then
13: Partition Boundaries := Partition Boundaries

⋃
current

14: Partition Nodes := φ
15: end if
16: end for
17: Return Partition Boundaries

When current reaches ”Community Affairs”, out becomes 0 whereas total is 1
and hence the ratio is less than threshold δ. Now, ”Community Affairs” (B2
in Figure 1) is added to the set of partition boundaries in line 12 and all the
”similarity links” are removed from the partition nodes in line 13. The same
boundary detection condition is satisfied once again when the algorithm reaches
”6.22 PM ET” where out becomes 1 and total is 3. Hence ”6.22 PM ET” (B3 in
Figure 1) is added to the partition boundaries.

2.2 Hierarchical Partitioning

Hierarchical Partitioner infers the hierarchical relationships among the leaf nodes
of the HTML parse tree where all the page content is stored. The Hierarchical
Partitioner achieves this through sequence of three operations: Binary Semantic
Partitioning, Grouping and Promotion.

Binary Semantic Partitioning The Binary Semantic Partitioning of the Web
page relies on a dynamic programming algorithm which employs the following
cost function. The dynamic programming algorithm determines the nodes that
need to be grouped together, by finding the grouping with the minimal cost. The
cost for grouping any two nodes in the HTML parse tree is recursively defined
as follows.

OntoMiner 5

Cost(Li, Lj) =

{
0 if i=j
mini≤k<j{Cost(Li, Lk) + Cost(Lk+1, Lj)
+Grouping Cost(Li...k, Lk+1...j)} if i < j

where Li, Lj are two leaf nodes in the HTML parse tree.

The cost function calculates the measure of dissimilarity between two nodes
i.e. a high value of cost indicates that these two nodes are highly dissimilar.
Hence the dynamic programming algorithm finds the lowest cost among the
various possible binary groupings of nodes and parenthesizes them into a
binary-tree. The cost for grouping two consecutive sub trees is calculated as the
sum of four sub-cost factors. Let A, B be the least common ancestor of nodes
Li to Lk and Lk+1 to Lj respectively. Then,

Grouping Cost(A, B) =
Sum of distances of A and B to their LCA, CLCA(A,B) +
Similarity of the paths from A and B to their LCA, CPSIM (A,B) +
Similarity of the paths in the sub trees of A and B, CSTSIM (A,B) +
Order similarity of the paths in the sub trees of A and B, CORD(A,B)

The first cost factor CLCA(A,B) calculates how far the two nodes are apart
from their least common ancestor. The cost for similarity between paths to the
least common ancestor is determined by the second cost factor CPSIM (A,B).
The third CSTSIM (A,B) and fourth CORD(A,B) cost factors computes the cost
for similarity in the sub trees of the two nodes, former computes the similarity
in the paths whereas the later computes the ordering of paths in the sub tree.

Let S1 be the set of all paths in the sub tree of A, S2 be the set of all paths
in the sub tree of B, d1 be the number of tags on the path from LCA to A, d2 be
the number of tags on the path from LCA to B and max depth be the maximum
depth of the DOM tree.

CLCA(A,B) =

√
d1 + d2

2 ∗max depth

CPSIM (A,B) = 1− Similarity between Paths P1 and P2

max(d1, d2)

CSTSIM (A,B) = 1−max(Separation, Overlap),

where Separation =
|(S1−S2)

⋃
(S2−S1)|

|S1

⋃
S2| and Overap =

S1

⋂
S2

S1

⋃
S2

CORD(A,B) = 1− Sim(A, B),

where Sim(A,B) = Number of Paths similar in order in Sub Trees of A and B
Max of No of Paths in Sub Trees of A and B

For example, let a /b / c be the three tags on the path from LCA to A and
a / b / d be the tags on the path from LCA to B. Let P1, P2, P3 be the set of

6 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

paths in the sub tree of A and P1, P2, P4 be the set of paths in the sub tree of
B.

Fig. 2. Sample Tree

d1 = |a, b, c| = 3, d2 = |a, b, d| = 3

S1 = P1, P2, P3, S2 = P1, P2, P4

CLCA(A,B) =
√

3 + 3
2 ∗max depth

CPSIM (A,B) = 1− |{a, b, c}⋂{a, b, d}|
max(d1, d2)

=
1
3

Separation =
|{P3}

⋃{P4}|
|{P1, P2, P3, P4}| =

1
2

Overlap =
|{P1, P2}|

|{P1, P2, P3, P4}| =
1
2

CSTSIM (A,B) = 1−max(Separation,Overlap) =
1
2

Sim(A,B) =
|{P1, P2}|

max(|S1|, |S2|) =
1
2

CORD(A, B) = 1− Sim(A,B) =
1
3

These cost functions are adjusted to fit for different cases in the HTML Parse
Tree. The three different cases that may arise during the cost function evaluation
are shown in Figure 2.

OntoMiner 7

– Case 1: LCA of the two nodes which are to be grouped in one partition is
one of the nodes itself and the other node is not a leaf node.

– Case 2: LCA of the two nodes which are to be grouped in one partition is
one of the nodes itself and the other node is a leaf node.

– Case 3: the LCA nodes for the ranges are identical.

Fig. 3. Different Cases during Cost Function Evaluation

In all the three cases, the second and fourth cost factors are irrelevant and
hence they are ignored. For Case 3, first cost factor is also ignored. Accordingly,
the first and third cost factors are modified as follows. For Case 1,

CLCA =
d

maxdepth
CSTSIM = 1−max(Separation, Overlap)

For Case 2,

CLCA =
d

maxdepth
, CSTSIM = 1− |S1

⋂
S2|

S1

⋃
S2

where S2 is {P1}

For Case 3,
CST

SIM = 1−max(Separation, Overlap)

The total cost is divided by the number of applicable cost factors to normalize
the cost to a value between 0 and 1. The above dynamic programming algorithm
takes the DOM tree as input and produces semantic binary-tree partitions of its
leaf nodes. The Column 1 of the Figure 4 represents the DOM tree of the HTML
page and Column 2 represents the binary Partition Tree. For example the nodes
68 through 82 are grouped into one partition which has internal binary partitions
as shown in Figure 3.

Grouping The next step in the Hierarchical Partitioning is grouping of simi-
lar binary partitions into group nodes. Grouping Algorithm first finds pairs of

8 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Fig. 4. Dynamic Programming

partitions which are similar by post order traversal of semantic binary partition
tree. Intuitively the grouping step creates ”Group” nodes made up of ”Instance”
nodes as its children. The Instances are identified during the post order traversal
of the semantic binary partition tree whenever the ”similarity” between a right
sibling and its left sibling is above a certain threshold δ. The ”similarity” between
siblings is based on the Grouping Cost explained in Binary Semantic Partition
section. Then, the parent of the ”Instance” nodes is marked as ”Group” node.
During the rest of the post order traversal the similarity between an internal
node and a ”Group” node is calculated by evaluating the similarity between the
unmarked node and the first Instance of the ”Group” node.

The Grouping Algorithm first initializes the type of the leaf nodes in the bi-
nary partition tree as ”simple”. While traversing the tree, if it finds two ”simple”
sibling nodes and if the cost for grouping these two nodes is less than a threshold
δ, then it marks these nodes as ”Instances” and their parent as ”Group” node.
For example, in Figure 5, nodes ”Sports” and ”Health” are sibling nodes and
the cost for grouping these two nodes is also less than the threshold δ. Hence
both are marked as ”Instance” node and their parent is marked as ”Group”
node. Similarly, if it finds two sibling nodes that are marked as ”Group” and
if the cost for grouping their instances is less than threshold δ, then it marks
the parent of these sibling nodes as ”Group”. For example, the parent of nodes

OntoMiner 9

Fig. 5. Grouping

”Health” and ”Sports” is already marked as ”Group” node. Similarly, the parent
of ”Science” and ”Technology” is also marked as ”Group” nodes. Then, if the
cost for grouping all the instances ”Technology” through ”Sports” is also less
than threshold δ, then grand parent of these instances is marked as ”Group”
node and their instances are merged as seen in Column 3 of Figure 4. Next, if
one of the sibling nodes is ”simple” and the other node is ”Group” and the cost
for grouping the ”simple” node with the instances of the group node is also less
than threshold δ, then it changes the type of ”simple” node to ”Instance” and
marks their parent as ”Group” and merges the ”Instance” node with instances of
the ”Group” node. This operation is continued until the root of the binary Par-
tition tree is reached and all markings are done. Figure 4 shows the conversion
of binary partition tree to Group Tree. The Column 2 and Column 3 represent
the binary partition and Group trees.

Promotion After Grouping, the final step in Hierarchical Partitioning is promo-
tion. The promotion algorithm identifies the leaf nodes that should be promoted
above their siblings. A node is considered for promotion only if it applies to the
following rules.

10 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Fig. 6. Promotion

– Rule 1: A node can be marked as BOLD and it is the first child of its parent
and the parent is not marked as ”Group” node. A node is marked as BOLD,
if it satisfies any of the following conditions.
1. If there is a bold tag like , <bold> etc. on its path from the root

node
2. If any bold tag is defined for the ”class” attribute value of this node.
3. If the labelled text of the node is fully capitalized.

– Rule 2: A node can be promoted if it is the first child of its parent and
its parent is not marked as ”Group” node and the only other sibling to this
node is a ”Group” node.

The nodes which satisfy the bold conditions are marked as BOLD nodes (in-
dicated by letter (B) in column 3).The BOLD node replaces its parent ”Partition
Node”. If the promotion rules can be applied again, the BOLD node is promoted
once more. Figure 6 illustrates the Promotion Algorithm. Column 3 represents
the Group Tree and Column 4 represents the Hierarchical Partition Tree. The
Node ”News” is marked as BOLD and it is the first child of its parent as shown
in Column 3 of Figure 6. Hence it is promoted on top of all the nodes ”Interna-
tional” through ”Corrections”. Similarly the nodes ”Opinion”, ”Features” and
”Services” are also promoted.

OntoMiner 11

Experimental Results In order to calculate precision and recall for the gen-
erated Hierarchical Partitioning Trees, Ideal Hierarchical Semantic Partitioned
Trees are manually generated for every page. Next, transitive closure of all
parent-child relationships implied by each tree is generated. The Precision and
Recall are calculated as follows.

The algorithm is applied for home pages of the following 13 Websites and
the experimental results are shown in the Table 1.

3 Taxonomy Mining

The taxonomy mining involves several tasks including separating important con-
cepts (the categories that define the context) from instances (the content that
are members of each concept), identification of similar concepts, and mining
relationships among the concepts. Our goal is to automatically mine the taxon-
omy for a domain given relevant web pages from the domain. To demonstrate
the efficacy of our algorithms we implemented and tested our approach with two
separate domains; News Web pages and Hotel Web pages. The key ideas in tax-
onomy mining are illustrated in Figure 7. Various phases involved in taxonomy
mining are explained in the following subsections.

3.1 Frequency Based Mining

The inputs to our system are the Home Pages of the co-domain Websites. We
first preprocess the HTML documents using “Hierarchical Partitioning” (as de-
scribed in Section 2) to generate semi-structured XML documents. We use these
XML documents to mine the taxonomy. We exploit the observation that im-
portant concepts in a given domain are often frequent. Using this observation,

12 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Semi−structured Documents

(XML Trees)

by integrating

Taxonomy obtained

the semantic trees

Mine the taxonomy

from semantic trees

and expanding the taxonomy (depth−wise)

Following Links from all the nodes

(Raw HTML Documents)

Relevant Home Pages

Hierarchical Partitioning

The Taxonomy obtained

after following links

from one node

Expand the tree

Fig. 7. Main Idea of the algorithm

our system mines frequent labels in the input XML documents among Home
Pages of co-domain Websites. By using an experimentally determined threshold
for support (the minimum number of times a label should occur in order to
be frequent), we separate concepts from the rest of the document. For example
in News domain, our system identifies Business, Sports, Politics, Technology,
Health, Entertainment, etc. as important concepts as they are frequent across
various news home pages.

3.2 Candidate Label Extraction Phase

In our simple frequency based mining, our system may miss some labels that
are relevant but are not frequent (not present in many Home Pages pages
for the domain). For example in http://www.washtimes.com/, our system
identified “Entertainment” to be a frequent label but it missed “Civil War”,
“Culture, etc.”. To identify such relevant labels our system learns attributed
tag paths to the labels in the obtained from frequency based mining and
applies these paths on the corresponding regions of the Home Pages to retrieve
more labels. An attributed tag path of a label has XPath syntax and it is
made up of HTML tag names along its path from the root of the HTML
tree to the label itself with attributes and their values. For example the

OntoMiner 13

attribute tag path for “Entertainment” in http://www.washtimes.com/ is
//HTML//BODY[@bgColor]//TABLE[@cellpadding=0 and @cellspacing=0
and border=0 and @width=760]//TR//TD[@width=140 and @rowspan=8
and @valign=top]//TABLE[@cellpadding=0 and @cellspacing=0
and @border=0 and @width=140]//TR//TD[@height=20 and
@class=twt-menu1a]//A//SPAN[@class=twt-mentext1]//#TEXT.

3.3 Abridgment Phase

During the extraction phase, it is possible to identify some labels that are irrel-
evant to the domain (for example, “NYT Store” in http://nytimes.com/). To
eliminate these irrelevant labels, we adopt the following rules.

– Eliminate a label if it does not have a URL or if the URL goes out of the
domain.

– Eliminate a label if its URL does not have new frequent labels and valid
instances (as described in 4).

3.4 Grouping the Labels into Concepts

From the above phases, we collect the important labels (keywords) from the rele-
vant Home Pages. But the same label may appear different in various documents
and this introduces redundancy. To accommodate for this, we group them ac-
cording to their lexicographic similarity. First our system stems the labels using
Porter Stemming Algorithm [14] and then it applies Jaccard’s Coefficient [15]
(calculated as (|A ∩ B|

|A ∪ B| , where A and B are stemmed vectors of words in two la-
bels) on them to organize into groups of equivalent labels. We denote each such
group of corresponding labels as a concept. This simple similarity measure is
able to group the labels that are only lexicographically related (like “Sport” and
“Sports”) but does not identify labels that are semantically related (like “World”
and “International”). The issue of identifying and merging semantically related
labels is beyond the scope of this paper and we plan to investigate it later.

3.5 Mining Parent-Child Relationships From Hierarchically
Partitioned Web Pages

The concepts obtained from the grouping phase are flat (there are no is-a re-
lationships among them). In order to organize the concepts in a taxonomy, we
need ’is-a’ relationships among the concepts. These relationships are mined from
the hierarchically partitioned web pages generated from “Semantic Partitioning”
(Section 2 using the algorithm described in Algorithm 2. After this phase, we
have a taxonomy of concepts that represents the input home pages.

14 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Algorithm 2 Mine is-a Relationchips
is-aMiner
Input: C: Set of Concepts, S: Set of Semantically Partitioned Web Pages, Sup: Support
Output: Tree representing the hierarchy of concepts

1: Compute parent-child relationships R among set of concepts C along with their
frequencies: a − b is a direct parent-child relationship if a and b are concepts and
b is immediate child of a

2: Separate frequent relationships (those that satisfy the minimal support Sup), FR
from the non-frequent ones, NFR.

3: Identify the grand-parent relationships from NFR: for all non-frequent relationships
a− b and b− c, increment the count for a− c in R.

4: Populate frequent relationships FR from R again based on the support, Sup.
5: Construct a tree, T from the relationships FR
6: Return the tree T

3.6 Expanding the Taxonomy beyond Home Pages

The taxonomy obtained from the previous phase represents only the Home Pages
in the domain. In order to expand the domain taxonomy, we follow the links
corresponding to every concept c, find sub concepts and expand the taxonomy
depth-wise and repeat the above phases (from Section 3.1 to 3.5) to identify
sub concepts of c. For example, “Sports” is a concept in the taxonomy obtained
from the previous phase. If we follow these links corresponding to “Sports” and
repeat the above procedure we get taxonomy for “Sports”, that contains concepts
like “Baseball”, “Tennis”, and “Horse Racing”. After this phase, we will have
a complete taxonomy that represents the key concepts in the domain along
with their taxonomical relationships. The entire Taxonomy Mining algorithm is
detailed in Algorithm 3.

Experimental Results for Ontology Mining
The mined ontology is evaluated in the same way as explained in the experimen-
tal section for the semantic partitioning. An ideal ontology is manually created
and the parent/child relationships for both the ontologies are determined. The
precision for the mined ontology is 75% and the recall is 92%.

A fragment of the taxonomy that we mined from the news domain is shown
in Figure 8.

4 Instance Extraction

This section describes our approach to extract instances from Web pages. In-
stances correspond to members of concepts. Our system can extract flat instances
made up of list attribute name-value pairs as well as complex, semi-structured in-
stances. Our system is able to extract the labels whenever they are available. We
first present our approach to extract appropriate instance segments from HTML
documents. Later we describe our instance extraction algorithm and conclude
with discussion on experimental results.

OntoMiner 15

Algorithm 3 Algorithm to Mine Hierarchy of Concepts From Home Pages
TreeMiner
Inputs: N: The Root Node, H: Set of Pages, Sup: Support
Output: The Taxonomy of concepts

1: Semantically Partition the input Pages to obtain semi-structured XML documents
and add them to S

2: Collect all the labels along with their URLs and their base URLs from all the XML
documents (each label l has a text value, its URL and its base URL, the URL of
the web page that it is present in)

3: Frequency Based Mining: Separate frequent labels, L (frequent ones are those that
satisfy the support, Sup) from the non-frequent ones.

4: Label Extraction Phase: Learn the attribute paths to each label in L and apply
these paths to the document in which it is present and get the candidate labels
and add them to L

5: for each element l in L do
6: Remove l from L if it does not have a valid url
7: Get instances for l by invoking instance miner, l.Instances = InstanceMiner(l, S,

Sup)
8: if l.Instances = φ then
9: Remove l from L

10: end if
11: end for
12: Grouping: Group the frequent labels FL according to their lexicographic similarity

into concepts C.
13: Mine Relationships: Get the taxonomy of concepts in home pages by invoking

relationship miner with the set of concepts C, T = RelationshipMiner(C, S, Sup).
14: for each concept c in the taxonomy T do
15: Follow the links corresponding to the labels in this concept, fetch the Web pages

and add them to S′.
16: Invoke the taxonomy miner to get sub taxonomy for c, T’ = TaxonomyMiner(c,

S′, Sup)
17: Attach the sub taxonomy T ′ under the concept c in the taxonomy T.
18: end for
19: Return N

4.1 Instance Segments Extraction

The HTML documents usually contain many URLs and we describe an approach
to extract the appropriate URLs that point to the instances in this section. To
extract the correct instance URLs that point to instances, we adopt the following
algorithms. Our system first partitions the Web page using the flat partitioning
algorithm described in Section 2.1 and selects the segments of URLs that point
to instances. A collections of links from a segment point to instances if the target
pages contain similarly structured distinct instances. Our system first extracts
the dissimilar regions from each of the collections of urls. This is done by flat
partitioning each URL in the collection and aligning the segments based based
on the content similarity in the segments. Our system uses Levenstein Distance

16 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Business

World

Entertainment

Sports

Weather

Technology

Education

Health

Privacy Policy

Home Sports

Soccer

Golf

Tennis

Horse Racing

College Basketball

Hockey

Olympics

Olympic Sports

Pro Hockey

Tennis

TV Schedule

Women

Men

2003 Wimbledon

Fig. 8. A fragment of the taxonomy obtained using the approached described for the
News domain

Fig. 9. Finding the segment that contains collection of instance URLs. Each candidate
segment in the web page is examined. Each URL in the candidate segment is flat par-
titioned and the segments are aligned according to their content similarity. The green
segments in the URL pages indicate the similar segments and they will be eliminated.
The black segments which correspond to dissimilar segments are used to extract at-
tributed tag paths. If the path sets are similar (have more common paths) then the
candidate segment in the web page is chosen as the one with instances in it.

(aka edit distance) Measure to align the segments, by making use of Jaccard’s
Coefficient [15] (calculated as the ratio of the common words to the total number
of words in the two segments). After aligning the segments, our system finds the
dissimilar segments that are not aligned properly (the places where an insertion,
deletion or a replacement has occurred). Next it utilizes Hierarchical Partitioning
algorithm described in 2.2 to convert these dissimilar regions into semi-structured
XML documents. Later it extracts the attributed tag paths from the LCA (lowest
common ancestor) of the leaf nodes in the segment to leaf nodes themselves.

OntoMiner 17

Fig. 10. A Sample Hotel Page that we used in our experiments and the attributes that
we extracted from the page encoded as XML. The attribute name labels are capitalized
in the XML file to distinguish them from attribute value labels

These path sets extracted from dissimilar regions (instance segments) represent
the signature of the instances and our system chooses those instance segments
for which these path sets are similar. This process is illustrated in Figure 9 for
News Websites.

4.2 Instance Extraction for Labelled and Unlabelled Attributes

From the previous phase we have the hierarchically partitioned instance segments
of the instance URLs. To extract instances from these segments, we use the tree
miner algorithm described in Section 3. The tree miner algorithm provides us
with the hierarchy among the frequent concepts among the instance segments.
These frequent concepts correspond to the names of the attributes of the seg-
ments. For example, in hotels domain our system identified “Room Amenities”,
“Hotel Services”, “Local Attractions”, etc. as frequent labels. These labels cor-
respond to the attribute names and we extract the values for these attributes
by finding the children of these labels in the hierarchically partitioned instance
segments. We organize these labelled attributes along with their hierarchy in
XML documents. Figure 10 shows one of the hotel pages that we used in our
experiments and the attributes that we extracted from that hotel page.

But some of the labels may not have any frequent label above or below
them. For example in our experiments with News domain, we found that there
are no frequent labels across News instance segments. Therefore the labels in
these segments correspond to the values of attributes (such as the title of the
article, body of the article, author of the article, city, etc.) whose names are
not explicitly available in the instance segments. In this case we organize the
attributes according to their paths, i.e., we maintain a table of attributes where
columns correspond to the paths and rows correspond to each instance segment.
Here we the attribute names are unknown and we plan to investigate techniques
to mine the attributes by training classifiers for each path.

18 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Experimental Results for Instance Extraction
The precision and recall for the Instance mining for unlabelled attributes is 64%
and 97% respectively. Similarly, for the hotel pages the precision and recall values
are 80% and 91% respectively.

References

1. Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy, Henry Levy,
William Pentney, Deepak Verma, and Stani Vlasseva. Evolving the semantic web
with mangrove.

2. B. McBride. Four steps towards the widespread adoption of a semantic web. In
International Semantic Web Conference, 2002.

3. S. Haustein and J. Pleumann. Is participation in the semantic web too difficult?
In International Semantic Web Conference, 2002.

4. Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M.
Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract symbolic knowl-
edge from the World Wide Web. In Natl. Conf. on Artificial Intelligence, pages
509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

5. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In Proceedings of 27th International
Conference on Very Large Data Bases, pages 109–118, 2001.

6. A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In
ACM SIGMOD, 2003.

7. William Cohen, Matthew Hurst, and Lee Jensen. A flexible learning system for
wrapping tables and lists in html documents. In Intl. World Wide Web Conf.,
2002.

8. Y. Wang and J. Hu. A machine learning based approach for the table detection
on the web. In Intl. World Wide Web Conf., 2002.

9. Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Extracting schema
from semistructured data. In ACM SIGMOD, 1998.

10. Minos Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. Xtract: A
system for extracting document type descriptors from xml documents. In ACM
SIGMOD, 2000.

11. Yannis Papakonstantinou and Victor Vianu. Dtd inference for views of xml data.
In ACM PODS, 2000.

12. Gao Cong, Lan Yi, Bing Liu, and Ke Wang. Discovering frequent substructures
from hierarchical semi-structured data. In Proceedings of the Second SIAM Inter-
national Conference on Data Mining, 2002.

13. M. Zaki. Efficiently mining frequent trees in a forest, 2002.
14. M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
15. R.R. Korfhage. Information Storage and Retrieval. John Wiley Computer Publi-

cations, New York, 1999.

Can Data Mining Techniques Ease The Semantic
Tagging Burden?

Fabio Forno1, Laura Farinetti1, Sean Mehan2

1 Politecnico di Torino, Dipartimento di Automatica ed Informatica, Torino, Italy
fabio.forno@polito.it, laura.farinetti@polito.it

2 SMO, University of the Highlands and Islands, Sleat, Isle of Skye, UK
sean@smo.uhi.ac.uk

Abstract. The effective implementation of the Semantic Web vision is
highly dependent upon the widespread availability of large collections of
semantically rich resources which are trustworthy and meaningful. Since
semantic classification is dependent upon complex ontologies, a recog-
nised difficulty is the steep learning curve presented to human classifiers
when attempting to utilise such ontologies. One important method to
foster an increase in web accessible, semantically tagged resources is to
make available tools which allow users to explore and understand rele-
vant ontologies and to present relevant categories with which to tag new
data. In this paper we investigate how an important and powerful data
mining technique, Latent Semantic Indexing (LSI), might help in the
design and implementation of tools that guide users in semantic tagging
tasks. We applied LSI to a large portion of the Open Directory Project
(ODP) catalogue, one of the largest repositories of semantically tagged
resources available today. We computed statistical information concern-
ing category relationships in the ODP data set, and we incorporated
structural information by modifying the construction process of the LSI
space. Using this basis, we conducted a comparative experiment where a
machine generated classification of new documents was evaluated against
a classification created by a group of human users. This paper includes
an evaluation and discussion of the experimental results.

1 Introduction and goals

The power of the World Wide Web as a mechanism for sharing information in a
globally connected network has impacted on wide sectors of society, but methods
to increase the effectiveness of the Web are required which should combine ma-
chine understandable content and machine reasoning capabilities with the data.
To meet the need, researchers have called for the next generation of the web, the
Semantic Web (SW) (Berners Lee at al., 2001) , where web information objects
transform into web knowledge objects.
In this new web generation, web documents will not only be designed for human
reading, but also for machine processing. Additional knowledge will be available
to provide context and relationships about information objects. The SW will be

built on three components: structured collections of machine understandable in-
formation, inference rules with which to conduct machine reasoning, and software
agents able to process information and exchange results with other programs.

The most commonly envisioned SW implementation of these components re-
quires: a systematic, shareable, computer-oriented representation of the world
(often referred to as an ontology), semantic annotations of web resources, and
software agents to retrieve and manage knowledge instead of unstructured data.
Many languages for semantic tagging of resources can be found and this has
been an active research area (Gomez-Perez and Corcho, 2002), however, to date,
very few large-scale (semi)-structured collections of resources have used these
languages. Examples of such a large scale collection are the Open Directory
Project (ODP, 2003) and news and weblog syndications through RSS (Winer,
2002). We feel that this lack of large scale implementation is one of the reasons
why available search engines are far from being “semantic”, but rather still use
a “keyword” approach. ODP, in particular, is based on the efforts of a small
community of users which has produced and currently maintains a general on-
tological structure in which web resources are manually annotated in RDF. The
manual annotation of resources, as a constraint, results in only a few documents,
3 million at present, being semantically tagged compared to the the total web
document population; ODP currently holds some 3 million tagged resources out
of a conservative estimate of 4 billion documents on the web, meaning the ODP
collection is less than 0.075% of the total web population.
A trivial solution would be to enlarge the community of annotators, leading
to decentralised management, but this would lead to problems related to trust
and to the usage and maintenance of ontologies. The first problem concerns the
trust of annotations actually matching between document content and docu-
ment semantic tags; failure in this regard could lead to spamming, among other
problems. The proposed SW architecture addresses this problem, and proposes
the creation of a “network of trust”, but Tim Berners-Lee himself (2001) fore-
sees the stage of “trusted web resource” only being established after year 2010.
The second problem is a practical issue, concerning a common agreement and
understanding of ontologies in use by a large community of annotators, which of-
ten have very specific resources to deal with. Automatic or even semi-automatic
tagging of resources can be proposed to counteract these issues, yet large-scale
semi-automatic tagging of resources is still far from being a reality, mainly due
to a lack of user-friendly tagging tools that are effectively linked to ontologies.

In this paper we start with a description of the some of the observed problems
that human classifiers have when trying to catalogue a web resource, especially
when they are expert in the site domain but not generally expert in classification
tasks and are not familiar with the domain ontologies, which often are broader
than their direct knowledge of the subjects. This scenario fits well with a highly
likely future scenario of the SW, where people will catalogue their own web re-
sources using ontologies designed by others.
For this purpose, after a short introduction to the context of our research in
section 2 and a review of related works found in the literature in section 3, we

describe an experiment we conducted to empirically measure the difficulties in-
volved in manual semantic tagging, where the tagging is oriented to document
classification for information retrieval and not simply for adding annotations
useful to human readers planning to share information. This section includes
discussion of the experimental results and argues for the need for an automatic
tool capable of easing the semantic tagging burden. Such a tool would allow for
convenient browsing of the ontological elements and propose a list of suitable
categories from among which to select.
The paper then considers the potential of applying data mining techniques to
semantic tagging tasks, and in section 4 we propose preliminary results of an ap-
proach that applies a powerful and well assessed data mining technique, Latent
Semantic Indexing (Deerwester at al, 1990), to the ODP catalogue. This is done
in order to extract information concerning the match between document content
and selected ontology categories. The proposed tool can exploit this information
for extending the cataloguing to a much larger number of documents, through a
learn-by-example approach, proposing the best match ontology elements to hu-
man classifiers as part a semi-automatic tagging process. Finally, in this section,
a preliminary test of the designed tool is described and discussed.
We conclude the paper with a brief section summarizing our conclusions in sec-
tion 5.

2 Context of research

The literature has numerous reports of efforts and experiments which extract
information from unstructured data; this extracted information is then used to
subsequently build some semantically meaningful elements with which to tag the
indexed resources. These efforts in fact span over more than 20 years of efforts to
extract classification information from such unstructured data sets. Many mod-
ern methods use various machine learning techniques, including feature vector
representations similar to the approach used in our experiment. For example, in
one series of experiments (see Grobelnik et al., 1998), a naive Bayesian classi-
fier was used on text data derived from three domains in the Yahoo hierarchy;
from this an n-gram feature-vector document representation was constructed
and application of this lead to a high correlation between the human built clas-
sification and the classification predicted by the machine learning algorithm.
Another approach (Li et al., 2001) was to use a machine learning technique
which analysed natural language sentences in documents and annotated, using
RDF tags, each prime sentence in the document. This was based on seman-
tic analysis on these natural language sentences using Conceptual Graphs. The
major distinction between these kinds of approaches and our own is that these
approaches are targeted at automatic classification of existing and new resources
whereas our overall aim is to provide a supporting tool to allow human users
to use ontologies to semi-automatically tag existing and new resources. Vargas-
Vera et al. (see Vargas-Vera et al., 2001) describe a semantic annotation tool
for extraction of knowledge structures from web pages through the use of simple

user-defined knowledge extraction patterns. The semantic annotation tool they
built contains an ontology based mark up component which allows the user to
browse and to mark up relevant pieces of information. Also it contains a learning
component which learns rules from examples and an information extraction com-
ponent which extracts the objects and relations between these objects. Another
example is the CREAM framework (see Handschuh et al.,2001). CREAM (Cre-
ating RElational, Annotation-based Metadata) is a framework for an annotation
environment that allows construction of relational metadata, i.e. metadata that
comprises class instances and relationship instances. These instances were not
based on a fixed structure, but on a domain ontology. This approach, similar
to other similar annotation efforts which are being pursued, differ from the first
class of applications in that they are human centric. They do differ from our
own approach in that a major aim of these systems is to populate extendible
ontologies through the use of the information extraction component, whereas
our own is to use an ontology to guide user selection of semantic tags.

We decided to apply LSI to the ODP, since it is a well assessed technique
widely described in information retrieval literature. Since its potentials and limi-
tations are well known, it is, therefore, easy to understand the added value of its
application to already semantically structured data as opposed to flat corpora.
Among the several web directories available on the net, e.g. Yahoo!, we selected
the ODP catalog, since it is the only resource annotated with RDF and thus
suitable for automatic processing. ODP data is available for download in two
large RDF files containing respectively structure definitions and URL annota-
tions. Like the other web directories, ODP can be labelled as a taxonomy with
more accuracy than as an ontology, since it does not define strict semantic re-
lationships between nodes, but rather describes generic topic connections (e.g.
“Subtopic”, “Related”) as a graph. URLs are then annotated with one or more
topics and a textual description. Though this configuration does not allow agent
based reasoning yet, due to its weak semantic components, we believe it provides
a good example of the benefits that could derive from semantically structured
data in general.

3 Manual tagging

3.1 Experiment description

The goal of the experiment was to replicate and measure the difficulties that
humans have when trying to semantically classify web resources. We believe
that the real exploitation of the potential of the SW will only happen when
large numbers of web resources are semantically tagged, and that this requires
that many humans be involved in the tagging task. This is true because many
more people are creating web resources who do not have expertise and experi-
ence with classification and cataloguing documents than those who do have such
skills. Therefore, in our experiment, we purposefully involved people that have
a good general knowledge of a subject domain but have no previous experience
in cataloguing resources or using ontologies. This profile, in our opinion, fits one

of the largest user groups which will require support in the new SW.
Our subjects were graduate students in the fields of engineering, economics and
social sciences; 21 students participated in the experiment, and had to perform
four tasks as well as completing a questionnaire after each task. They each had
to complete and return the questionnaire after each task before going to the
following one, to prevent their results being used in the following task.

Task 1 The subjects had a list of web sites to visit, the topics of which were
wide ranging; They included sites for computer science, social science, as-
tronomy, science fiction, ethnographic studies and humor. The students had
to record the three keywords that, in their opinion, were the most appropri-
ate match to the subject of each site. No list of keywords was provided, so
they were completely free to choose any keyword. They also had to provide
a written explanation about the strategy they used in performing this task.

Task 2 For each of the 11 web sites previously considered, the subjects had to
find the best matching category among the ODP categories. In this task,
however, they could only browse the categories and sub-categories without
looking at the categories’ descriptions nor accessing already catalogued doc-
uments as examples. Therefore they could only use category name and the
path from the root to the category to determine semantic information about
a category. Again, they also had to provide a written explanation about the
strategy they used in performing this task.

Task 3 This task was similar to task 2; for each of the 11 web sites the subjects
had to find the best matching category among the ODP categories. This
time, however, they had access to all the ODP information about the cate-
gory meaning and could look at the documents catalogued in the categories
as examples. Yet again, they had to write a few words about the strategy
they used in performing this task.

Task 4 In this task, the students had to record the main difficulties they had
experienced while cataloguing the web resources in general, and in perform-
ing the previous three tasks in particular. We used this information together
with the other collected data to interpret the experimental results.

The following section reports the experimental results and attempts to inter-
pret them, providing an understanding of the difficulties that humans have in
cataloguing web resources when they are not classification experts, when they
are not familiar with ontologies and when they have no clear guidelines for per-
forming these kinds of tasks.

3.2 Results interpretation

Since we want to provide both a quantitative and a qualitative interpretation of
the experimental results, before proceeding with the analysis we try define some
numerical quantities in order to provide an objective data framework. However,
in general, numerical quantities relating to the process of manual tagging are not
used, therefore we first introduce the indices we have used, summarized in table
1. Each table row refers to a web site (11 in total) which has been classified by
the subjects that took part in the experiment, while the last row contains the
averaged data.

Total keyword number The first three columns represent the total number of
keywords used by the subjects in tasks 1, 2 and 3 respectively; they represent
a first measure of the dispersion introduced by manual tagging. In tasks 2
and 3, users had to specify one ODP category using the complete path from
the root of the ontology, i.e. /Science/Technology/Education/. In order to
be able to compare the dispersion of keywords with task 1, we split the full
path into its components, thus obtaining a set of keywords from each topic,
e.g. (Science, Technology and Education for the previous example).

Keyword intersection Columns labeled I12, I13, I23 contain the number of
keywords in common between the sets collected in the different tasks. For
example, row 1 states that the keyword set resulting from task 1 has only
7 keywords in common with task 2 and only 6 keywords in common with
task 3 respectively, while the latter tasks have an intersection of 19 keywords.

Entropy The last three columns, H1, H2, H3, represent the entropy of each
set of keywords in the three tasks. In order to calculate the entropy of a
set of keywords we have considered each keyword as a code symbol of a
language, and calculated its frequency pi = ni/N , where ni is the number
of occurrences of the keyword and N the total number of occurrences. Then
we have applied Shannon’s definition of entropy of a codebook (1963):

H = −
∑

i pilog2(pi)

Information Theory interprets H as the total amount of information a code-
book can carry. Physics interprets H, as in statistical mechanics, as the
measure of the disorder of a system; importantly, the two interpretations
are not in conflict (Ott, 1993). If we consider a set of symbols as growing
more ordered as any particular symbol’s frequency increases, then we may
also interpret this as less information overall contained in the set from an
information theoretic standpoint, with both of these perspectives being la-
belled as low entropy in the set. Hence we can use H as a measure of the
degree of agreement between tags selected: high levels of agreement between
selected keywords produces a smaller set of unique keywords, or a codebook
with low H; Alternatively, low agreement between keywords selected results
in a large set of unique keywords, or a codebook with high H. We choose to

use H, rather than ni, because it is a more meaningful measure. A codebook
with a large N , but a small number of them recurring with high frequency,
is more ordered than the same codebook with symbols recurring with equal
frequency.

Keyword distribution Continuing with the codebook analogy, in figure 1 we
plot the keyword recurrence frequency distribution obtained in each of the
three tasks of the experiment. For each web site we have sorted the set
of keywords in reverse order according to their frequency. The distribution
magnitude relates to the size of the core of a keyword set, i.e. the set of the
most commonly recurring keywords according to a parameterized metric.

Table 1. Keyword total number, intersection and entropy for each task of the experi-
ment.

Site T1 T2 T3 I12 I13 I23 H1 H2 H3

1 34 22 22 7 6 19 4.39 3.76 3.81
2 36 28 33 9 10 20 4.55 4.22 4.52
3 28 27 30 7 10 18 3.98 4.02 4.31
4 34 17 7 5 4 7 4.44 3.08 2.53
5 38 20 19 4 4 14 4.50 3.43 3.43
6 40 15 14 4 8 7 4.66 2.83 2.58
7 26 26 22 10 10 16 3.70 3.80 3.44
8 40 37 32 10 11 24 4.58 4.80 4.57
9 28 29 23 7 5 20 3.75 4.17 3.60

10 38 24 24 3 4 17 4.45 3.96 3.88
11 28 44 38 6 6 33 4.21 4.65 4.38

Avg 33.63 26.27 24.00 6.54 7.09 17.72 4.29 3.88 3.73

The first characteristic of the tagging process determined from the indices is
the high number of keywords used by the classifiers in the three tasks. In the
first task, where students freely selected three keywords describing the web sites,
there was an average of 33 unique keywords used to describe a site. This means
that the each student chose, on average, 1.5 unique keywords to describe the same
site. A high keyword dispersion level was foreseeable and our data supports the
hypothesis that classification is a highly subjective task. More interesting was
the relatively high dispersion of keywords in tasks 2 and 3. The total number of
selected keywords decreased, but each user still contributed more than one new
keyword to the set. This fact could be interpreted in the following ways:

– the use of ontologies is of little help for users who have little experience in
classification tasks;

– in certain situations ontologies may represent an obstacle for users (see, for
example, row 11 in table 1) in that when they start looking for a suitable
category, they have already mentally selected a classification, perhaps even

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40 45

fre
q

num keywords

Keyword Distribution

T1
T2
T3

Fig. 1. Keyword distribution according to usage

subconsciously. Subsequentially, they are influenced by their own predeter-
mined category and are unable to find a matching category;

– the ODP ontology is a wide and dispersive taxonomy, with the aim of classi-
fying almost everything present on the web: this may lead to incongruencies,
and also to classification areas with inappropriate granularity.

These results are not surprising, since ontologies have been designed by ex-
perts to facilitate automated reasoning, not to ease the human tagging burden.
We may even theorize that the more an ontology is specialized and finely grained,
the more human taggers will have difficulties in selecting the correct categories
from it. Therefore, there is an evident mismatch between the need of precision
and specialization of ontologies destined for machine reasoning, and the ability
of humans to utilize them.
Another indication of the mismatch between the human classifier’s mental pro-
cesses and the ontology they are forced to use may be derived from our inter-
section indices. In average only 6 keywords out of the 33 selected in task 1 have
been picked also in task 2, less than 20%. This percentage is similar but slightly
higher to the intersection between tasks 1 and 3. If confirmed with a larger num-
ber of test cases, this increase could be interpreted that when given more time
to explore the ontologies, human classifiers are inclined to look for categories
matching their first choice.
Comparing tasks 2 and 3 we note two more trends: the small decrease of keyword

dispersion and the higher intersection of chosen keywords. Possible interpreta-
tions include:

– the diminution of the dispersion may suggest that users, with adequate sup-
port to navigate the ontology, may choose the appropriate categories more
easily, with less frustration during the process;

– examples of classification, which are the only additional support that users
have when moving from task 2 to task 3, are not sufficient to improve signif-
icantly the similarity of classification outcomes; as confirmed by user com-
ments, support tools for ontology exploration could lead to more agreement
in tagging; lack of concordance, in fact, seems to be not due to low user
concept comprehension, but rather to user difficulty in acquiring a broad
understanding of the ontology.

– during tasks 2 and 3 users may have explored only a small part of the on-
tology, and in both cases they learn to not explore it further; this is another
indication that there is a need for tools assisting in the navigation of ontolo-
gies.

The analysis of the Hi supports the keyword scattering we have already
observed. The calculated entropy in all the tasks always remains high. If all the
human classifiers had selected the same three keywords, the H would equal 1.58;
with a completely random keyword selection, i.e. all keywords are unique, H
would equal 5.97. The average values in table 1, 4.29, 3.88 and 3.73, testify to
the high degree of dispersion in all the three tasks (since H is logarithmic, these
values are significantly different).

With respect to figure 1, we find that, even if the keyword dispersion is high
there is a very small set of keywords (one or two) that nearly half of the subjects
identify in all the tasks. This is reasonable for tasks 2 and 3, since the sets must
always contain the same root keywords. It is more interesting to remark that
also in task 1 there is a kernel of common keywords; as a consequence we may
imagine that tools suggesting categories of the ontology starting from keywords
expressed in free form by users may facilitate the tagging process and lead to
more concordant results.

The analysis of the last experimental task supports some hypotheses in our
model describing the difficulties involved in manual tagging, and offers a qual-
itative description of the problems from the point of view of human classifiers.
Here we summarize the main difficulties the subjects reported encountering:

– the deep structure and the presence of many internal links connecting dif-
ferent tree branches allows the user to become easily lost in the structure;

– many categories are too semantically similar and classifiers have difficulties
in selecting just one topic;

– category names and associated keywords sometimes do not provide enough
hints about the contents, thus hindering navigation;

– some classifiers complain that the ontology is not exhaustive, but we think
rather that the correct interpretation is given by other classifiers reporting
that the ontology does not cope with their own personal classification.

Several classifiers also described the strategy that they adopted in the pro-
cess:

– when exploring the ontology users start from the task 1 keywords;
– the exploration usually proceeds depth first;
– the presence of the related topics links also allows some exploration in breadth;
– some users autonomously followed an approach similar to our proposed

method, using the Google search engine with the keywords found in task
1 in order quickly find some matching categories; therefore, we think that
the support of tagging tools operating on user suggested keywords will be
intuitive to use.

In summary, classifiers often start from a set of keywords they choose inde-
pendently from the given ontology. This set derives from their own experience
with the web site topic and from their personal usage of the language, and thus is
very likely to not match with the terms present in the given ontology. Then they
explore the ontology in order to find the best match for their own keywords, but
they encounter many difficulties due to the ontology topics not matching well
with their own, preselected topics and also due to difficulties encountered while
exploring the ontology.

These last conclusions support our hypothesis that a tool is needed which is
able not only to facilitate users browsing ontologies (which, in itself, would pro-
vide a good level of support), but also able to automatically suggest a restricted
list of categories from which the human classifier can select the best one.

4 Automated support for manual tagging

4.1 Latent Semantic Indexing

We first give a brief introduction to LSI. In information retrieval a query is
usually expressed in a vector space (Salton, 1975), where vectors represent doc-
uments and the vectorial components formed from the document constituent
terms. Given a similarity measure, the document vectors best matching a query
vector can be selected. LSI operates in a similar fashion, except that a trans-
formation to the term × document space is achieved through the application
of a Singular Value Decomposition (SVD). A corpus of n documents with m
indexing terms is represented by the matrix A(m×n), where each element aij

represents the weight of ith term in document j. Several weighting schemes for
term weighting have been proposed in the literature1996 and LSI normally uses
a functional combination of local and global weights; thus aij = L(i, j) ∗ G(i),
where L(i, j) is the weight of the ith term in document j, usually its frequency,
and G(i) is a function of its global weight in the corpus, usually term entropy
dependent upon inverse document frequency. Subsequently the truncated SVD
is applied to the matrix A, yielding:

Ak = Uk ×Σk × V T
k

where Σk ≡ diag(σ1 · · ·σk) is a diagonal matrix, with the k largest singular
values of A, and Uk ≡ (u1 · · ·uk) and Vk ≡ (v1 · · · vk) are the associated left
and right singular vectors respectively. In (Berry, 1995 it is shown that Ak is
the best approximation in k dimensions of the original matrix A. The result
of this transformation is that the original vector space model is folded into a
much smaller subspace, which should better summarize word and document
relationships, capturing hidden semantic links in smaller feature vectors (Berry
et al., 1995, Hoffmann, 1999, and Papadimitriou et al., 1998).
In the LSI space, queries are expressed as in the original vector space, where,
given a vector q representing the set of query terms, each document score is given
by si = qT xi (xi is the feature vector of document i. In LSI the query vector is
simply projected into the k subspace, via: s = (qT Uk)(ΣkV T

k).

4.2 Application of Latent Semantic Indexing to the Open Directory

Our tagging tool is based on the application of LSI to a large portion of previously
tagged resources in the ODP; specifically, we selected all the Science, Computers,
Arts, Society and Recreation subtrees, resulting in a collection containing more
than 50,000 topics and 1,000,000 URLs. In this ontology we find two distinct
types of resource: (i) topics organized in a tree-like structure, all having a short
textual description of the content, and (ii) links tagged with one or more topics
and a brief description. LSI is normally applied to flat document corpora, without
any structure; since the associated vector space model does not take into account
existing semantic relations and not lose this critical information, we had to make
some changes to the process whereby the term×document matrix is constructed.
In our experiment we have built several vector spaces following different methods,
in order to evaluate the best ways to incorporate structural information.
In all matrices we have used the same scoring function for terms:

aij = fij ·G(log2(idf(i)), logMean)

where fij is the ith term frequency in the document j, and the second term
gives its global score, computed as ith term inverse document frequency (idf)
and weighted by the Gamma distribution centered in logMean. logMean is a
parameter dependent upon the size of the document collection. In this modified
weighting scheme, based on Salton (1975), our previous experiments outper-
formed entropy based measures, since the modified scheme penalizes terms re-
curring with a very high frequency (stopwords were already pruned in document
preprocessing).

In the following we describe the four different methods we used to attempt
to incorporate the structural information into the LSI spaces, and we shall refer
to these as A

(1)
k , A

(2)
k , A

(3)
k and A

(4)
k , respectively. In A

(1)
k we considered topic

descriptions as documents, enriched with the descriptions of contained URLs.
Since the quantity of associated text was not large, the matrix scaled well; in
fact, with this strategy it is conceivable to process the entire ODP with consumer
level hardware.

In A
(2)
k we inserted as documents both topic descriptions and text extracted

from indexed URLs. In this case, in order to scale to the dimension of our exper-
iment, we have applied a random selection of documents and terms, as normally
performed in LSI.
In A

(3)
k we used only topic descriptions again, similar to A

(1)
k , but we started

incorporating structural information. We made the assumption that, since the
ODP has a tree-like structure, a topic is qualified not just by its description, but
also by the description of its child nodes. Thus, in building A

(3)
k , we associated

to each topic also the text of its children (we ignored related topics and symbolic
links). The resulting matrix was less sparse, but since for our SVD implementa-
tion the occupied memory is given by k · min(m,n) + nnzeros, where k is the
LSI dimension and nnzero the number of non zero values in the matrix, and
also, since the first addend usually grows faster, this approach continued scaling
well.
In our last matrix, A

(4)
k , we used text from indexed documents, but we employed

a different method from random selection. Random selection, in fact, is based on
the assumption that we do not know if there is a structure in the indexed cor-
pus, thus a completely random choice of the documents and keywords is the best
guess we can make in order to obtain a representative subset. On the other hand,
ODP catalogued URLs are already grouped by topics, and they form a bunch
of small clusters of manually selected examples for each category. We exploited
this information, extracting the core of most frequent words for each topic, and
we then used this new lexicon as the associated text for the topics. We weighted
words with their frequency in each set, and we recomputed their global weight
according to the new lexicon. Using the codebook analogy described in section
3, and performing some tests, we have established a heuristic that keeping the
words contributing to the central 75% of the associated cumulative distribution
function is a good compromise between keyword set size and retained informa-
tion. Without a given structure, this selection would have been ineffective or even
counterproductive, since we would have retained only common usage words and
not topic representative keywords.

4.3 A preliminary experiment and discussion

In the experimental phase we have evaluated two distinct aspects of our LSI se-
mantic tagging tool, namely: (i) whether the incorporated structure information
improves LSI performance in terms of recall and precision (Raghavan, 1989, and
(ii) whether it can be exploited as a support for manual tagging.

Benchmarks on text retrieval performance, in terms of precision and recall,
are usually performed on a fixed set of queries on standard corpora. To assess
the capability of our LSI implementation in capturing deal with structural in-
formation, we defined a set of queries composed of few keywords and spanning
several ODP terms and we applied them to all the A

(i)
k . During the evaluation of

the results we had to consider that the ODP structure presents many overlaps,
and the same topic may be present in different branches (e.g. computational lin-
guistic resources are present both under /Computers/Artificial Intelligence/ and

/Science/Social Sciences/Languages and Linguistics/). Therefore, in contrast to
a simple count of returned pertaining topics (leaves) which would not have re-
sulted in significant understanding, we concentrated mostly on the relevance of
the returned major topics (internal nodes).
Evaluating query results, we found that both A

(3)
k and A

(4)
k , built using struc-

tural information, outperform the corresponding A
(1)
k and A

(2)
k , built with flat

corpora in both precision and recall. Specifically, A
(1)
k and A

(2)
k behaved well

for certain topics and completely missed others. The reason for their irregular
behavior must be investigated further, but we believe it may derive from the
lack of sufficient representative keywords for some topics; with random selec-
tion, the method results in topics with more catalogued resources being better
represented, since their elements have more chances to be selected. In A

(3)
k and

A
(4)
k , we improve the selection of meaningful keywords, since they are either in-

herited from child nodes (A(3)
k) or selected using topic aggregation of resources

(A(4)
k). Finally matrix 4, besides scaling very well in terms of memory occupa-

tion, since we can considerably reduce the lexicon size, scores a better relevance
then matrix 3. We think that the worse performance of matrix 3 might be found
in the heterogeneity of document lengths. Its building process, the inherintance
of describing text from child nodes, in fact, produces short documents for nodes
deep in the structure, and very long ones for nodes near to the root. Since the
behavior of LSI is not well understood when document length has a variance
of magnitude orders, we believe that the vector space represented by matrix 3
needs more investigation.

We then evaluated whether obtained results could be used in order to help
manual tagging. The main issues which emerged in the 3.2 related to user dif-
ficulties with their orientation in the ODP structure, as opposed to the need of
exploring it in depth or breadth. Thus, human taggers could exploit LSI derived
information, in order to obtain a few meaningful suggestions as starting points in
the ODP structure. There are two possible approaches: (i) using documents to be
tagged as queries in the LSI space, (ii) allowing user to express some keywords,
or a short document description and use these as queries. Returned results would
then be sent to users as possible starting points for ODP exploration.
We experimented with both methods on our A

(i)
k , obtaining promising results.

As an example, in table 2 we list the suggested categories using strategy (i) for
one of the documents we used in the experiment of paragraph 3. The document
is the homepage of L. M. Krauss, the author of books about science in science
fiction, where it can seen that the suggested categories are very relevant. In con-
trast, the same document gave several problems to manual taggers, since they
looked for Star Trek (the main topic of the books) under the ‘TV Shows’ area,
and they had difficulties in finding relevant topics (alternative science) under the
‘Science’ section.
Our experiments demonstrate that queries composed of a few keywords usually
matches to relevant categories more efficiently than using only documents them-
selves. This may be due to the fact that the few keywords should give a better

definition of a document in the LSI space rather than the entire document, since
many contained words may be considered noise. We observed also that inter-
mediate nodes of proposed topics are the best candidates to suggest to users as
starting points. Deep topic nodes, in fact, can suffer from some noise that LSI
has not been able to eliminate and their precision may be low; in contrast the
precision of intermediate nodes in the results in performed queries is very high.

Table 2. Some of the suggested categories for the homepage of L.M. Krauss.

/Science/Anomalies and Alternative Science/Astronomy, Alternative/Cosmology/
/Science/Social Sciences/Ethnic Studies/
/Science/Physics/Relativity/People/Hawking, Stephen/
/Science/Math/Applications/Mathematical Economics and Financial Mathematics/
/Science/Astronomy/Education/
/Science/Astronomy/History/People/Kepler, Johannes/
/Science/Physics/Alternative/Superluminal Physics/
/Science/Earth Sciences/Geology/Geochronology/Radiometric Dating/
/Society/Future/Predictions/Scientific/
/Society/History/By Topic/Science/

5 Conclusions

For the SW to become a reality, there needs to be an extensive and rich set of
web objects which have associated semantic information. It is generally accepted
that there will be common repositories of domain specific semantic information,
namely those collections which are generally referred to as ontologies within the
relevant communities. This paper has identified and analysed some of the prob-
lems that educated but non-expert users experience in trying to apply existing
ontology information when classifying and tagging data resources. Using the
ODP, we observed a number of users completing classification tasks with ODP
categories.

The results of our user experimentation indicate that, even with access to
structured ontological knowledge, the classifiers chose many different resource
descriptive tags from one another, resulting in a high level of dispersion amongst
the final tag set. It seems that ontologies are not immediately useful to experi-
enced users who do not have extensive experience with classification tasks. Most
normal users have a preconceived term in mind when tagging a resource and
when this preconception does not map to the ontology, conflict often occurs.

It is reasonable to speculate that the more detailed the ontology, the more se-
rious this conflict with normal users of the ontology can be. Complex ontologies
seem to lose users who are trying to navigate them, and this leads to demoti-
vation on the part of the manual classifier to explore the ontology fully. Users

often complain of lack of completeness in ontologies, and we interpret this as
a clash between the ontology conceptualization and the user’s predetermined
conceptualization in the classification task. Classifiers seem to start with a set
of terms from their own experience and language registers, independent of those
found within the ontology.

These difficulties support our hypothesis that a tool is needed which is able
to ease the manual semantic tagging burden by the widest population of content
creators when using standardized ontological resources. This tool should help
users to explore ontologies, but also should automatically suggest a restricted
set of tagging terms drawn from the ontology to help guide the user in their
classification tasks. We have experimented with a number of different applica-
tions of LSI to ODP tagged resources. Importantly, we have experimented with
new methods of incorporating semantic structural information from the initial
vector space into the transformed LSI space and we have tested whether the
incorporated information improves querying performance and whether in can be
exploited as a support mechanism for manual semantic tagging. We found that
through the incorporation of this structural information, we were able to im-
prove both query precision and recall. This results in more meaningful selection
of keywords from the ontology, which would result in more effective semanti-
cally tagged resources. In pursuit of this, we experimented with two different
approaches, namely to use documents which were to be tagged as query vectors
in the A

(i)
k space, or allowing classifiers to supply some of their own preconceived

terms as keywords or a short description and constructing query vectors from
these. LSI seems to bridge the gap between the ontology terms and terms pre-
conceived by human classifiers. LSI projects in the same space term×documents
relations which were learned already from tagged documents using the ontology
and those terms in the mind of the original ontology compilers.

References

Berners-Lee, T., Hendler, J.: Scientific Publishing on the “Semantic
Web”. Nature Webdebates, http://www.nature.com/nature/debates/e-
access/Articles/bernerslee.htm, April 2001.

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 5/01,
May 2001.

Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using Linear Algebra for Intelligent Infor-
mation Retrieval. SIAM Review 37(4):573–595, 1995.

Deerwester. S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing
by Latent Semantic Analysis. Journal of the American Society for Information
Science, 41(6), 391-407, 1990.

Gomez-Perez, A., Corcho, O.: Ontology languages for the Semantic Web. IEEE Intel-
ligent Systems, Volume 17(1):54-60, Jan/Feb 2002.

Grobelnik, M., Mladenic, D.: Efficient text categorization. Text Mining workshop on
the 10th European Conference on Machine Learning ECML98.

Handschuh, S., Staab S., and Maedche, S.: CREAM- Creating relational metadata
with a component-based, ontology-driven annotation framework. Proc. of ACM K-

CAP 2001 - First International Conference on Knowledge Capture, Victoria, BC,
Canada, October 21-23, 2001.

Hoffman, T.: Probabilistic Latent Semantic Indexing. Proceedings of the 22nd Annual
ACM Conference on Research and Development in Information Retrieval (1999)
pp. 50-57.

Li, J., Zhang, L., and Yu, Y.: Learning to Generate Semantic Annotation for Domain
Specific Sentences. K-CAP 2001 workshop on Knowledge markup and semantic
annotation, Victoria, BC, Canada, 21 October, 2001.

Ott, E. Entropies. 4.5 in Chaos in Dynamical Systems. New York: Cambridge University
Press, pp. 138-144, 1993.

Open Directory Project. http://www.dmoz.org. 2003.
Papadimitriou, C.H., Raghavan, P., Tamaki, H., and Vempala, S.: Latent Semantic In-

dexing: A Probabilistic Analysis. In Proceedings of the ACM Conference on Prin-
ciples of Database Systems (PODS), Seattle, 1998.

Raghavan, V. V., Jung, G. S, and Bollmann, P.: A Critical Investigation of Recall
and Precision as Measures of Retrieval System Performance. ACM Transactions on
Office Information Systems, pages 205–229, July 1989.

Salton G., Wong, A.and Yang, C. S: A Vector Space Model for Automatic Indexing.
CACM, Vol. 18, No. 11, 1975, 613-620.

Salton, G. and Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval.
Technical Report TR87-881, Department of Computer Science, Cornell University,
1987. Information Processing and Management Vol.32 (4), p. 431-443, 1996.

Shannon, C. E. and Weaver, W.: Mathematical Theory of Communication. Urbana,
IL: University of Illinois Press, 1963.

Vargas-Vera, M., Motta E., Domingue S., Buckingham Shum S., and Lanzoni M.:
Knowledge extraction by using an ontology-based annotation tool. K-CAP 2001
workshop on Knowledge markup and semantic annotation, Victoria, BC, Canada,
21 October, 2001.

Winer, D.: RSS 2.0. http://backend.userland.com/rss, Aug 2002.

Formal aspects of querying RDF databases

Claudio Gutierrez1, Carlos Hurtado1, and Alberto Mendelzon2

1 Department of Computer Science, Universidad de Chile
{cgutierr,churtado}@dcc.uchile.cl

2 Department of Computer Science, University of Toronto
mendel@cs.toronto.edu

Abstract. We study formal aspects of querying databases containing
RDF data. We present a formal definition of a query language for RDF
and compare it with other proposals. Our language is intended to make it
easy to formalize and prove results about its properties. We study novel
features of query languages derived from the presence of blank nodes and
reification. Finally we provide complexity results for query processing,
static optimization of queries, and redundancy elimination in answers.

1 Introduction

The Resource Description Framework (RDF) [10] is the proposal of the W3C
for a standard metadata model and language. RDF follows the W3C design
principles of interoperability, evolution and decentralization. The RDF model is
simple: the universe to be modeled is a set of resources (essentially anything that
can have a universal resource identifier, URI); the language to describe them is
a set of properties (technically binary predicates); descriptions are statements
very much in the subject-predicate-object structure, where predicate and object
are resources or strings. Both subject and object can be undetermined objects,
known as blank nodes. The subject or object of an RDF statement can be another
statement, a feature known as reification. A vocabulary of properties for this
language can be defined along the lines given in the RDF Schema language [12].

Languages for querying RDF have been developed in parallel with RDF itself.
We can mention rdfDB [3], an influential simple graph-matching query language
from which several other query languages evolved. Among them, SquishQL [5]
is a graph-navigation query language that was designed to test some of the
functionalities of an RDF query language. It adds constraints on the variables
and returns as results a table. SquishQL has several implementations like RDQL
and Inkling [5]. RQL [4] has a very different syntax based on OQL, but can
perform similar sorts of queries. It is a typed language following a functional
approach and supports generalized path expressions. Other languages are Triple
[9], a query and transformation language, QEL [7], a query-exchange language
designed to work across heterogeneous repositories, and DQL [15], a language
and protocol for querying DAML+OIL knowledge bases. Good surveys are [16,
17].

1.1 Problem Statement

There is very little research so far on foundational aspects of these languages,
such as query semantics and the complexity of query processing. Such research
is made necessary by the new features that arise in querying RDF graphs as
opposed to standard databases; in particular, two main differences that deserve
formal study are blank nodes and reification.

The presence of blank nodes in RDF graphs introduces redundancy. Further-
more, queries themselves, as we will show later, can create redundancy. Central
issues in RDF query processing are how to keep RDF graphs as concise as pos-
sible, and what is the computational cost of obtaining such representations.

In order to support reification, the language needs expressiveness beyond
what is encountered in classical databases. Another open issue is whether this
extra expressiveness boosts the complexity of query processing and size of an-
swers compared to classical databases.

1.2 Contributions

We study formal aspects of querying databases containing RDF data. We view
RDF specifications as data (although we keep its knowledge base semantics),
and study how to efficiently retrieve information from them.

This paper presents:

– A formal definition of a query language for RDF and comparison with other
proposals (such as DQL). We present the language in a streamlined form
that is not intended for practical use, but to make it easy to formalize and
prove results about its properties.

– A formal study of novel features of query languages derived from the presence
of blank nodes and reification, and the differences with standard languages
studied in the database community.

– Complexity results for query processing, static optimization of queries, and
redundancy elimination.

1.3 Related Work

One point of view has considered RDF metadata as a knowledge base and ap-
plied knowledge representation and reasoning techniques to RDF metadata. An
example of this approach is DQL, a query language for the Semantic Web pro-
posed in [15]. We discuss the database aspects of DQL in Section 3.4.

Another point of view follows the SQL/XQL approach, which views RDF
metadata as a relational or XML database. We already mentioned several pro-
posals and working implementation of such languages. They mainly concentrate
on expressiveness and implementation issues. Although very rich from these
points of view, none of them address formal issues. There are studies compar-
ing features of these languages, such as syntax (body, head and variables in the
query), serialization (XML, N3, ASCII), implementation aspects, etc. See for
example [16, 17].

2 Preliminaries

In this section we present the RDF model following the W3C documents [10–12]
and discuss different variants of some notions.

2.1 RDF graphs

Assume there is an infinite set U (RDF URI references); an infinite set B = {bj :
j ∈ N} (Blank nodes); and an infinite set L (RDF literals). A triple (v1, v2, v3) ∈
(U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple. We often denote by UBL
the union of the sets U , B and L.

Definition 1. An RDF graph (just graph from now on) is a set of RDF triples.
A subgraph is a subset of a graph.

A graph is ground if it has no blank nodes.
Two graphs G1, G2 are isomorphic3 if G2 is obtained from G1 by renaming its

blank nodes by blank nodes in a consistent manner (i.e. avoiding name clashes).
(Note that if G2 can be obtained from G1 in this way, then so can G1 from G2.)

The merge of two graphs G1, G2 is defined as the union of the set of triples
of G1 and G′

2, where G′
2 is an isomorphic copy of G2 whose set of blank nodes

is disjoint with that of G1. (Note that the merge is unique up to isomorphism).

2.2 RDF graphs and standard graphs

RDF graphs are not quite classical graphs. They resemble labelled graphs with
the particularity that edge labels are chosen from the set of nodes of the graph.

Definition 2. 1. A pseudograph is a triple (V,E, f) where V is a finite set of
nodes, E is a finite set of edge names, and f is a function from E to V ×V .
(That is, a directed graph that allows self-loops and multiple edges between
pairs of nodes).
An edge-labeled pseudograph (just pseudograph from now on) is a pseudo-
graph with an additional labeling function � : E → V .

2. Two pseudographs (Vi, Ei, �i) are isomorphic if (1) There is a (directed)
graph isomorphism φ : (V1, E1) → (V2, E2), and (2) φ ◦ �1 = �2 ◦ φ.

With the previous definition, an RDF graph is a pseudograph where V is
a disjoint union of three sets: the URI References, Blank nodes, and Literals,
respectively, that appear in any triple in the RDF graph, and with the following
restrictions: (1) source nodes cannot be literals; (2) The image of the labeling
function � is contained in the set of URI references. The next theorem follows
directly from the definitions.

Theorem 1. Two RDF graphs G1, G2 are isomorphic if and only if there is an
isomorphism φ : G1 → G2 of pseudo-graphs such that φ preserves URI references
and literals.
3 In the RDF Concepts document [13] this notion is called “equality” of graphs.

Note 1 (Encoding of Standard Graphs). Note that standard graphs can be en-
coded by RDF graphs as follows. Choose a distinguished URI reference e. For
a graph G = (V,E), choose a set S of distinct blank nodes of the same size
as V , and a bijection c : V → S. The graph G is encoded by the RDF graph
{(c(u), e, c(v)) : (u, v) ∈ E}.

2.3 Semantics of RDF graphs

In this section we deal with simple RDF Graphs, i.e. those that do not use a
pre-defined vocabulary (class, subject, object, etc.) defined in RDF Schemas; in
Section 3.3 we deal with a fragment of RDF(S) vocabulary. We implicitly use the
same model-theoretic semantics as the W3C RDF Semantics document [11], al-
though all we need for our purposes is to define entailment, which is characterized
by Theorem 2 below, and corresponds roughly to logical consequence between
the logical specifications defined by both graphs. The RDF Semantics document
[11] describes entailment as follows: “Entailment is the key idea which connects
model-theoretic semantics to real-world applications. If A entails B, then any
interpretation that makes A true also makes B true, so that an assertion of A
already contains the same ”meaning” as an assertion of B; we could say that the
meaning of B is somehow contained in, or subsumed by, that of A.”

A mapping is a function µ : UBL → UBL preserving URI references and
literals (i.e., µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L). Given a graph
G, we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A
mapping µ is consistent with G if µ(G) is an RDF graph (i.e., if s is a subject
of a triple, µ(s) ∈ UB). In this case, we say that the graph µ(G) is an instance
of the graph G. An instance of G is proper if µ(G) has fewer blank nodes than
G. (This means that either µ instantiates a blank node or identifies two blank
nodes of G.)4

The following theorem characterizes entailment among RDF graphs. For the
purposes of this paper, we can think of it as the definition of entailment.

Theorem 2 (cf. RDF Semantics [11], Interpolation Lemma). Let G1, G2

be RDF graphs. Then G1 entails G2 (denoted G1 |= G2) if and only if an instance
of G2 is a subgraph of G1.

We say that two graphs are equivalent (denoted G1 ≡ G2) if G1 |= G2 and
G2 |= G1.

Example 1. A graph G entails any of its subgraphs.

Example 2. Consider the RDF graphs G1 = {(a, b, c), (X, b, c), (a, b, Y)} and
G2 = {(U, b, V), (V, b, c)}, and G3 = {(a, b, c), (X, b, Y)}, where capital letters
indicate blank nodes. Then G1 |= G3 but G1 �|= G2.

4 In the RDF Semantics document [11] “proper instance” refers only to the case where
a blank node is instantiated.

Note 2. Yang and Kifer, in [14], present an F-logic version of RDF. They define
two notions of entailment: |= and |≈. The first corresponds to the standard notion
defined in the RDF Semantics document of the W3C as defined in Theorem 2.
The second corresponds to a notion obtained using the same characterization
of Theorem 2, but considering only non-proper mappings in the definition of
instance.

2.4 Minimal representations: lean graphs

Conciseness in RDF is bound to the notion of lean graphs. In this section we
study lean graphs.

Definition 3. A graph G is lean if no proper instance of G is a subgraph of G.
(That is, there is no mapping µ such that µ(G) is a proper subgraph of G.)

Note 3. There is a significant difference between this notion of “lean” and the
one stated in the RDF Semantics document [11]. The document reads: “a graph
is lean if none of its triples is an instance of any other.” Our definition captures
more precisely the notion of “no redundancy” in an RDF graph which is the
idea behind the concept of “lean”. While every graph that is lean in the sense of
that document is lean in our sense, the converse is not true. See for example the
graph G1 in Example 3, which under the RDF Semantics document definition
is not lean.

With our definition we can still prove Anonymity Lemmas 1 and 2 in [11]:
Anonymity Lemma 1: A lean graph does not entail any of its proper instances.
Anonymity Lemma 2: If E′ is obtained from a lean graph E by identifying
two distinct blank nodes, then E does not entail E′.

Our notion has other desirable properties, e.g. Theorem 3 below.

Example 3. Let G1 = {(X, b, d), (X, b, c), (Y, b, c), (Y, b, e)} and G2 = {(a, b, c),
(X, b, c), (Y, b, c)}. Then G1 is lean, but G2 is not lean.

Fundamental issues regarding lean graphs have not been yet studied. The
first fundamental question that arises is whether there is a unique lean graph
equivalent to a given one. The following theorem answers this question:

Theorem 3. Each RDF graph is equivalent to a unique (up to isomorphism)
lean graph.

Proof. Define in the set of RDF graphs, the relation G ⇒ µ(G), if µ is a mapping
and µ(G) is a proper subgraph of G. The relation ⇒ has the property: if B ⇐
A ⇒ C, then there is D such that B ⇒∗ D and C ⇒∗ D (where ⇒∗ is the
transitive closure of ⇒). The proof of this goes as follows: Let B = µ1(A) and
C = µ2(A), and consider the mapping µ2µ1. Then, because (µ2µ1)(µ2µ1)j(A)
is a subgraph of (µ2µ1)j(A), for some finite k ≥ 1 it holds that (µ2µ1)k(A) is
isomorphic to (µ2µ1)k+1(A).

From its definition, it follows that the relation ⇒ clearly cannot have infinite
chains A1 ⇒ A2 ⇒ · · · . From the above argument, it also follows that ⇒ is

confluent. (For rewriting concepts, see [2].) Hence for each G there is a unique
G∗ such that G ⇒∗ G∗ and G∗ is irreducible with respect to ⇒ (i.e. is lean).
This is the desired unique lean graph.

The following results show that it is hard to compute lean graphs.

Theorem 4. Deciding if a graph is lean is coNP-complete.

Proof. Recall that RDF graphs can encode standard graphs. Hence the proof is
an encoding of the problem CORE:

Instance: A graph G
Question: Is there a homomorphism of G to a proper subgraph?
This problem was shown to be NP-complete by Hell and Nesetril [6].

From the above theorem it follows that finding minimal representations for
graphs is hard.

3 Querying RDF databases

An RDF graph can be considered a standard relational database: a relation of
triples with the attributes Subject, Predicate, and Object. The difference with
standard relational databases is the presence of blank nodes, which stand for
anonymous elements.

Thus, for us, an RDF database will be simply an RDF graph.

3.1 Query language

Let V be a set of variables (disjoint from UBL).
As query language, we will use the notion of tableau borrowed from the

database literature (see for example [1]) but slightly extended to allow also a set
of tuples in the head. A tableau is a pair (H,B) where H,B are RDF graphs over
V ∪UBL and all variables of H occur also in B. We often write a tableau in the
form H ← B to indicate the similarity with logic programming and Datalog.

For example, a tableau such as

(?Dept,pays, ?Instr) ← (?Instr, lectures, ?Course), (?Dept, offers, ?Course),

where identifiers preceded by ? are variables, intuitively defines the instructors
paid by a department to be those who teach courses offered by the department.

Definition 4. A query is a tableau (H,B) plus a set of constraints C, which
is a subset of the variables occurring in H. In other words, a query is a triple
(H,B,C) such that:

1. H is an RDF graph over UBL ∪ V , with var(H) ⊆ var(B).
2. B is an RDF graph over UL ∪ V . (i.e. has no blank nodes).
3. C ⊆ var(H). (Constraints).

For example, the tableau above is a query with no constraints. We can add to
it the constraint {?Instr}; intuitively, as we will formalize in the next subsection,
this means that the ?Instr variable must be bound to a non-blank element in
each answer to the query.

Note 4. The condition var(H) ⊆ var(B) avoids the presence of free variables
in the head of the query. The presence of blank nodes in the body of the query
is unnecessary, because –as we will see– a variable plays exactly the same role
in this position. However, we do allow blank nodes in the head of the query to
support reification at the query level. (See Examples 7 and 8 in Section 3.3.)
Finally, as shown in the example above, C ⊆ var(H) will represent the set of
variables in the query that we are forcing to be instantiated by constants.

Note 5. Blank nodes in the head of the query are technically free terms of the
form f(x1, . . . , xn), where x1, . . . , xk are variables occurring in the query, and f
is a function symbol. Hence in our language, there is an arbitrary set of uninter-
preted function symbols of different arities. We follow here the same approach
as [8].

3.2 Answers to a query

Let D be a database, and V a set of variables.
A valuation is a function v : V → UBL. For a set C of variables, the valuation

v satisfies the constraint C (denoted v |= C) if for all x ∈ C, v(x) is not blank.5

A matching of the graph B in database D is a valuation v such that an
instance of v(B) is a subgraph of D, i.e. such that D |= v(B).

The matchings that interest us are those that satisfy the constraints C.

Definition 5. Let q = (H,B,C) be a query and D a database. A pre-answer to
q over D is the set

preans(q,D) = {v(H) : v(B) is a matching in D and v |= C}.
A graph v(H) is called a single answer of the query q over D.

We can combine single answers in two different ways to obtain the answers
to a query, leading to two main query semantics:

1. ans∪(q,D) is the set-theoretic union of all single answers. With this ap-
proach, queries properly capture the information carried by blank nodes
inside D (in particular when blank nodes play the role of bridges between
two single answers).

2. An alternative approach, ansm(q,D), is to merge all single answers, which
means to rename blank nodes if necessary to avoid name clashes.

Note that if there are no blank nodes in D, both approaches are the same
and we are in the realm of classical databases.
5 This constraint is called a must-bind variable in DQL [15].

Proposition 1. Let D,D′ be databases, and q a query. Then for both semantics,
if D |= D′ then ans(q,D) |= ans(q,D′).

Proof. By hypothesis, there is a mapping µ such that µ(D′) is a subgraph of
D. It is enough to prove that every graph G ∈ preans(q,D′) is a subgraph of
a graph in preans(q,D). Let H the head and B the body of the query. Then
G = v(H) for a valuation v, with v(B) a subgraph of D′. Then µ(v(B)) is a
subgraph of D, hence µ(G) = µ(v(H)) ∈ preans(q,D).

Proposition 2. For all queries q and databases D, ans∪(q,D) |= ansm(q,D).

Proof. The statement follows from the fact that G1 ∪ G2 |= (G1 merge G2). To
check this last fact just consider the mapping from (G1 merge G2) → G1 ∪ G2

that reverses the renaming of variables done in the merge.

Note 6. The converse of Proposition 2 does not hold. Consider the identity
query q and the database D = {(X, b, c), (X, b, d)}. Then ans∪(q,D) = D
and ansm(q,D) = {(X, b, c), (Y, b, d)}. Clearly there is no mapping from D to
ansm(q,D).

In the sequel, unless stated otherwise, we will assume the union-semantics.

Example 4. Consider a database D which has a blank node B with several prop-
erties, i.e., there are in D several triples (B, p1, z1), (B, p2, z3), If we follow
the merge-semantics, we cannot retrieve the properties of B with a data inde-
pendent query. On the other hand, if we follow the union-semantics, the query
H = (X, feature, Y), B = (X,Y,Z), C = ∅ will do it.

Example 5 (Identity query). With merge-semantics, there is no data-independent
query that retrieves the whole database for all D’s. With the union-semantics,
the query q defined by H = (X,Y,Z), B = (X,Y,Z) and C = ∅ returns all
triples in D, i.e. ans(q,D) = D.

Example 6. Consider an RDF database consisting of tuples of the following sort:

(Course, name, CourseName)
(Lecturer, lectures, Course)
(Lecturer, name, LecturerName)
(Department, offers, Course)
(Department, belongs, University)
(University, located, Country)

In this database name, lectures, offers, belongs, located are RDF predicates
defined in some ontology. Courses, Lecturers, Departments and Universities are
URLs. CourseName is of type literal.

The predicates belongs, worksAt and teachIn which appear in the answers
belong to another ontology.

1. Database courses in Canada. First consider the query defined by

H = (?Department,belongs, ?University)
B = (?Course,name, “Database”), (?Department, offers, ?Course),

(?Department,belongs, ?University), (?University, located, “Canada”)
C = {?Department, ?University}.

This query returns all triples (Department, belongs, University), where De-
partment belongs to University and offers a Database course, University is
located in Canada, and enforcing that Department and University are not
blank.

2. In what universities (and if known, what departments) does John Bassi lec-
ture?

H = (?Lecturer,worksAt, ?University), (?Lecturer, teachIn, ?Department)
B = (?Lecturer,name, “John Bassi”), (?Lecturer, lectures, ?Course),

(?Department, offers, ?Course), (?Department,belongs, ?University)
C = {?Lecturer, ?University}.

This query will return the name of all Universities at which John Bassi
teaches. If the database contains information about the particular Depart-
ment where Bassi teaches, it will be included. Otherwise, the Department
will appear as a blank node in the answer.

Note 7 (Redundancy). We give some observations on redundancies in queries,
databases and set of answers.

1. It is desirable to have queries with lean heads. Otherwise, the answer gener-
ated will have redundancies which could have been avoided.

2. It is not always possible to have lean graphs in body of queries. For example,
consider the query q = (H,B, ∅), where H = (?Course, related, “Database”)
and B = (?Department, offers, “Database”), (?Department, offers, ?Course).
Clearly B is not lean and is equivalent to the lean graph B′ = (?Department,
offers, “Database”). It turns out that the query q cannot be reduced to one
with body B′ (see Note 9).

3. Even having lean databases and queries with lean heads and bodies does not
avoid redundancies in the answer set. Consider the lean graph G1 in Exam-
ple 3, and the query (Z, b, c) ← (Z, b, c). The answer set is {(X, b, c), (Y, b, c)}
which is not lean.

3.3 Reification

Now we will explore the previous concepts when some constant vocabulary is
introduced. In this section we will restrict ourselves to a small subset of RDF’s
vocabulary description language, RDF Schema, which is an extension of RDF. It

provides mechanisms for describing groups of related resources and the relation-
ships among these resources. We will be particularly interested in the vocabulary
needed to do reification.

Consider the following statement:

A triple (a, b, c) is a statement. (1)

To state this inside RDF one can say: “There is an object B that is a statement,
whose subject is a, predicate is b, and object is c.” In order to write this down
as a set of RDF statements, we need a vocabulary. We will use the following
predicate constants:

rdf:statement
rdf:subject
rfd:predicate
rdf:object
rdf:type
They have a more or less self-explanatory semantics. For example, the triple

(a, rdf : type, c) means a is an instance of the class c. Using this vocabulary
(whose formal definitions can be found in [12]), the sentence in (1) can be ex-
pressed as the following set of triples (when not needed, we will avoid the use of
the namespace prefix rdf):

(B, type, statement), (B, subject, a), (B, predicate, b), (B, object, c)

This process is called reification of the statement. Our goal in this section
is to study our query language extended with the vocabulary of reification in
RDFSchema [12].

Note 8. In RDF semantics, statements are referred to by names, i.e. they are
not by themselves objects. An implication of this is that from the existence of
a triple (a, b, c) it does not follow that its reification also exists. Observe –using
Theorem 2– that a triple does not entail its reification and its reification does
not entail the triple. RDF follows the conservative approach that a statement
is referred to, and there can be several such references, all distinct. Another
alternative is to assume that the triple itself is an object of the universe. This is
the approach of [14], where the advantages of such an approach are argued. From
a database point of view, the current approach of RDF seems more adequate.
With the current RDF semantics, an RDF specification, i.e. an RDF graph
(database) is a finite set of objects, and answers to queries (as defined in this
paper) are finite set of objects. However, if the triple itself is an object i1, then
having (a, b, c) in a database D would imply that (i1, subject, a) is also a valid
statement (and hence an object i2), hence (i2, subject, i1) is a valid statement,
and so on.

Example 7. The query that reifies a triple (a, b, c) (and creates a blank node
f(a, b, c) to refer to it) is:

(f(a, b, c), type, statement), (f(a, b, c), subject, a),
(f(a, b, c), predicate, b), (f(a, b, c), object, c) ← (a, b, c).

The answer to this query applied to a database D is exactly a reification of the
triple (a, b, c) if it exists in the database D. Note that we need a Skolem function
f to give a different blank node to each triple.

Example 8. A generalization of the previous example: the reification of all triples
in the database D.

(f(X,Y,Z), type, statement), (f(X,Y,Z), subject,X),
(f(X,Y,Z), predicate, Y), (f(X,Y,Z), object, Z) ← (X,Y,Z).

Example 9. All properties of an object b (in the database to be queried):
(X, type, property) ← (b,X, Y)
It is interesting to note that now we can test Leibniz’s identity on a database

by just comparing the results of two queries. Recall Leibniz’s identity Law: a ≡ b
if and only if for all properties P (·), P (a) iff P (b).

Example 10. (Following an example in Yang and Kifer [14]). All statements
made by Encyclopedia Britannica are true. Note that we will need different
queries depending on the structure of the database containing the information.

1. If we assume that Encyclopedia Britannica is a database containing all its
statements (triples), the following query of would do the work:

(f(X,Y,Z), veracity, true), (f(X,Y,Z), type, statement),
(f(X,Y,Z), subject,X), (f(X,Y,Z), predicate, Y),

(f(X,Y,Z), object, Z) ← (X,Y,Z).

2. If we assume that the statements of Encyclopedia Britannica are mixed in
with several other statements from other sources (but already referred to as
belonging to the E. Britannica) we need a query like:
(X, veracity, true) ← (X, type, statement), (X, made, EncycB).

3.4 The language DQL

We will discuss here aspects of DQL that are relevant from a database perspective
and compare them with our approach.

1. DQL has a query pattern (our B), an answer pattern (our H) and a set of
constraints very similar to our set of constraints C.

2. DQL has three sets of variables, “must-bind”, “don’t-bind” and “may-bind”,
which are a partition of the set of variables occurring in the query. Must-bind
variables are those that must be bound in each answer. Don’t-bind variables
are those that must be not bound. In DQL this schema is oriented towards
the type of answers the user is asking.
In our setting, “must-bind” variables correspond to the set of constraints C,
“don’t-bind” correspond to the the set var(B) \ var(H) (they do not occur
in the answer), and “may-bind” correspond to var(H) \ C.

3. In DQL the answer set is defined as the largest set of single answers that are
entailed by the database such that no answer in the set is entailed by any
other answer in the set.
We do not enforce this condition, due to complexity issues shown in Theo-
rem 4. We think that redundancy cleaning should be an option, and in the
next section study the implications of avoiding such redundancies.

4 Complexity issues

In this section we focus on the complexity of query answering. This process
has three main components: computing matchings, minimization of queries, and
redundancy elimination in answers.

4.1 Computing matchings

In order to understand the complexity of computing the set of matchings for a
query over a database, we consider the simpler problem of testing emptiness of
the query answer set. Following the usual database theory practice, we distin-
guish between query complexity, that is, evaluation time as a function of query
size for a fixed database, and data complexity, evaluation time as a function of
database size for a fixed query.

1. Query complexity version: For a fixed database D, given a query q, is q(D)
non-empty?

2. Data complexity version: For a fixed query q, given a database D, is q(D)
non-empty?

Theorem 5. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the database complexity version.

Proof. Reduction of 3SAT to the problem of evaluating a conjunctive query over
a database. Membership in NP follows immediately.

Data complexity version: This follows from the fact that the number of po-
tential matchings of the body of q in D is bounded by the number of subgraphs
of D of size q.

From the proof it also follows that the size of the set of answers of a query
q issued against a database D is bounded by |D||q|, where |D| is the size of the
database (number of triples) and |q| is the number of symbols in the query.

Also note that reification does not play any relevant role in this, that is, even
with reification the query language preserves the tractability of answers.

4.2 Minimization of queries

Since Theorem 5 implies that query evaluation is likely to be exponential in
query size, static optimization of queries is an important goal. To perform this
analysis, we apply techniques similar to classical tableau analysis [1].

A homomorphism h : q′ → q is a substitution (of variables and blank nodes)
θ such that θ(B′) ⊆ B and θ(H ′) = H and C ′ ⊆ C. As usual, we define q ⊆ q′

if ans(q,D) ⊆ ans(q′,D) for all databases D.

Theorem 6. q ⊆ q′ if and only if there exists a homomorphism h : q′ → q.

Proof. Assume there exists a homomorphism h : q′ → q. Then C ′ ⊆ C and
using Theorem 2, for each valuation v, we have v(B) |= v(θ(B′)). Then, for each
database D, if D |= v(B), then D |= v(θ(B′)). Hence, each answer v(H) of q will
also be an answer v(H ′) of q′ (recall θ(H ′) = H and C ′ ⊆ C.)

Conversely, assume q ⊆ q′. Consider the database DB obtained from B by
replacing each variable x by a constant ax. Let v the valuation assigning x to
ax. Then v(H) ∈ ans(q,DB) ⊆ ans(q′,DB). So, there is a valuation v′ such that
D |= v′(B) and v′(H) = v(H). Clearly v = v′ on the variables of H. Consider
the substitution θ = v′ ◦ v−1. The condition C ′ ⊆ C follows from q ⊆ q′.

We say that a query q = (H,B,C) is minimal if there is no query q′ =
(H ′, B′, C ′) equivalent to q such that |B′| < |B| (where |X| means the size of
the set).

Theorem 7. For each query q = (H,B,C) there is a minimal query qm =
(H,Bm, Cm) equivalent to q and Bm ⊆ B and Cm ⊆ C.

Proof. Let q′ = (H ′, B′, C ′) be a minimal query equivalent to q. Then there are
homomorphisms θ1 : q → q′ and θ2 : q′ → q. Consider qm = θ2θ1(q).

Note 9. Observe that this minimization does not coincide exactly with the leaniza-
tion of the body of the query, because the homomorphism that reduces query
q to qm poses another condition besides a mapping from body to body, namely
that it must preserve heads. This is the rason why in Note 7, the query in item
2 cannot be further reduced.

Theorem 8. Let q, q′ be two queries. The following problems are NP-complete.

1. Is q ⊆ q′?
2. Is q ≡ q′?

Proof. NP-hardness: coding of classical tableau. (Note that one relation with 3
attributes suffices.)

Membership in NP follows from noting that a witness is the homomorphism.

4.3 Redundancy elimination

Answers to queries in RDF usually have redundancies. Ideally, the answer set
ans(q,D) should reduce these redundancies to the minimum, i.e. to an equivalent
lean graph.

Now we will apply these results to redundance elimination in queries.
The naive approach to eliminate redundancy in answers is (1) to compute

ans(q,D), and (2) to compute a lean equivalent to ans(q,D). Next theorem shows
that in the worst case there is no better approach.

Theorem 9. Given a lean database D and a query q, to decide whether ans∪(q,D)
is lean is coNP-complete (in the size of D).

The Theorem directly follows the fact that there is a query that computes
the identity and from Theorem 4.

For merge-semantics redundancy elimination can be done much more effi-
ciently:

Theorem 10. Given a lean database D and a query q, deciding whether ansm(q,D)
is lean can be done in polynomial time in the size of D.

Proof. Let A = ansm(q,D) and let us refer to mappings from single answers to
A as single mappings.

The key observation is that, because single answers do not share variables
in merge-semantics, mappings µ : A → A are exactly unions of single mappings
µj : Gj → A for each Gj single answer. (Note that in the case of union-semantics
the union of the µj would not be a function.)

Thus an algorithm for finding proper mapping µ : A → A only needs to
compute single mappings and check whether (1) at least a single mapping is
proper, or (2) two of them share a blank node in their range. This can be done
in time polynomial on the set of single mappings, which size is polynomial on
the size of D. Thus the complete test can be done in polytime.

5 Conclusions and Future Work

RDF databases pose new challenges to query languages, which arise due to
particularities of the RDF model, such as reification and blank nodes. This paper
intends to provide conceptual insight into the problem of dealing with these new
features in query languages. Our work also establishes theoretical foundations
for further research in this area.

Blank nodes play a crucial role in the semantics of query answering, although
they do not affect complexity bounds dramatically. In fact, the behaviour of
blank nodes is at the heart of different interpretations, both in query languages
and in the formal semantics of RDF itself. For examle, the notions of lean and
proper instance deserve further development.

The expressive power of reification in query languages needs further study.
In particular, the proper fragment of logic in which RDF query languages must
operate is still not well understood.

Our study brought forth the need to formalize richer properties and mech-
anisms of current working query languages for RDF. This formalization would
establish a solid base to compare functionalities, features and limitations of these
languages. For example, features like connectedness, reachability, paths, recur-
sion, extended constraints, aggregation and views.

Acknowledgements C. Gutiérrez was partially funded by FONDECYT No 1030810.
C. Hurtado was funded by Millenium Nucleus, Center for Web Research (P01-
029-F), Mideplan.

References

1. S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley Pub-
lishing Co., 1995.

2. F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge Univ. Press, 1998.
3. R. V. Guha, rdfDB Query Language, in http://www.guha.com/rdfdb/query.html

4. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, RQL: A
Declarative Query Language for RDF, Proceedings WWW2002, Hawaii, USA, 2002.

5. L. Miller, A. Seaborne, A. Reggiori, Three Implementations of SquishQL, a Sim-
ple RDF Query Language, Proc. 1st. International Semantic Web Conference
ISWC2002, Sardinia, Italy, 2002.

6. P. Hell, J. Nesetril, The core of a graph, Discrete Math. 109 (1992), 117-126.
7. RDF Query Exchange Language (QEL), Edit. M. Nilsson, W. Siberski,

http://edutella.jxta.org/spec/qel.html

8. Y. Papakonstantinou, V. Vassalos, Query Rewriting for Semistructured Data, Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
Philadelphia, Pennsylvania, June 1999

9. M. Sintek, S. Deker, TRIPLE—A Query, Inference, and Transformation Language
for the Semantic Web, Proc. International Semantic Web Conference (ISWC), Sar-
dinia, June 2002.

10. Resource description framework (RDF) model and syntax specification, Edit. O.
Lassila, R. Swick, Working draft, W3C, 1998.

11. RDF Semantics, W3C Working Draft, 23 January 2003 Edit. Patrick Hayes
12. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft 23

January 2003, Edit. Dan Brickley, R.V. Guha.
13. RDF Concepts and Abstract Syntax, Edit. G. Klyne, J. J. Carroll. W3C Working

Draft 23 January 2003.
14. G. Yang, M. Kifer, On the Semantics of Anonymous Identity and Reification
15. DAML Query Language (DQL), April 2003, Abstract Specification. DAML Joint

Committee, R. Fikes, P. Hayes, I. Horrocks, Ed.
16. E. Prud’hommeaux, B. Grosof, RDF Query and Rules: A Framework and Survey,

http://www.w3.org/2001/11/13-RDF-Query-Rules/

17. A. Magkanaraki et al. Ontology Storage and Querying, Technical Report No. 308,
April 2002, Foundation for Research and Technology Hellas, Institute of Computer
Science, Information System Laboratory.

Event-Condition-Action Rule Languages for the

Semantic Web

George Papamarkos, Alexandra Poulovassilis, Peter T. Wood

School of Computer Science and Information Systems, Birkbeck College, University
of London, London WC1E 7HX

email: {gpapa05,ap,ptw}@dcs.bbk.ac.uk

Abstract. The Semantic Web is based on XML and RDF as its funda-
mental standards for exchanging and storing information on the World
Wide Web. Event-condition-action (ECA) rules are a natural candidate
for supporting reactive functionality on XML or RDF repositories. In
this paper we describe a language for ECA rules on XML and a proto-
type implementation of this language. We also discuss some preliminary
ideas regarding a language for ECA rules operating on a graph/triple
representation of RDF, and we describe the architecture of a distributed
deployment of such RDF ECA rules.

1 Introduction

XML and RDF are becoming dominant standards for storing and exchanging
information on the World Wide Web. With their increasing use in dynamic ap-
plications such as e-commerce and e-learning [9, 10, 14, 15, 1, 19, 16, 22], there is
a need for the support of reactive functionality on XML and RDF repositories.
Event-condition-action (ECA) rules are a natural candidate for this. ECA rules
automatically perform actions in response to events provided that stated condi-
tions hold. They allow an application’s reactive functionality to be defined and
managed within a single rule base rather than being encoded in diverse pro-
grams, thus enhancing the modularity and maintainability of the application.
Also, ECA rules have a high-level, declarative syntax and so are amenable to
analysis and optimisation techniques which could not be applied if the same
functionality were expressed directly in programming language code.
ECA rules have been used in many settings, including active databases [25,

20], personalisation and publish/subscribe technology [4, 9, 10, 12, 21], and spec-
ifying and implementing business processes [3, 11, 15]. An ECA rule has the
general syntax

on event if condition do actions

The event part specifies when the rule should be triggered, the condition
part is a query which determines if the database is in particular state, and the
action part states the actions to be performed automatically if the condition
holds. Executing a rule’s actions may in turn trigger further ECA rules, and

the rule execution proceeds until no more rules are triggered. Non-termination
of rule execution is generally a possibility and thus much research has focussed
on the development of static rule analysis techniques for detecting possibly non-
terminating rule sets; a practical solution to this problem adopted by commercial
DBMS is to set a predefined upper limit on the number of recursive rule firings,
and to abort a transaction if this is exceeded. More details on the foundations
of ECA rules in active databases, and descriptions of a range of implemented
active database prototypes can be found in [25, 20].
We begin this paper with a brief review of related work on ECA rules for

XML. We then describe our language for specifying ECA rules on XML reposi-
tories, and present a prototype implementation of it. This language can be used
for RDF data which has been serialised as XML but we are also exploring ECA
rule languages for RDF that will operate on a graph/triple representation. We
present an archetypal such language and also an architecture for distributed
deployment of such RDF ECA rules. Along the way, we discuss directions of
further work for both languages.
The work reported here is part of the ongoing SeLeNe project, which is

investigating techniques for managing RDF repositories of educational metadata,
and providing syndication, personalisation and notification services over this
metadata (see http://www.dcs.bbk.ac.uk/selene).

2 ECA Rules for XML

In recent work [7, 6], we specified a language for defining ECA rules on XML
data, based on the XPath and XQuery standards. We also developed techniques
for analysing the triggering and activation relationships between such rules1 and
showed how these techniques can be used to detect possibly non-terminating
sets of ECA rules. A number of other ECA rule languages for XML have also
been proposed, although none of this other work has focussed on analysing the
behaviour of the ECA rules.
Reference [9] discusses extending XML repositories with ECA rules in order

to support e-services. Active extensions to the XSLT [27] and Lorel [2] languages
are proposed which handle insertion, deletion, and update events on XML doc-
uments. Reference [10] discusses a more specific application of the approach to
push technology where rule actions are methods that cannot update the reposi-
tory, and hence cannot trigger other rules.
Reference [8] also defines an ECA rule language for XML. The rule syntax

is similar to ours, but the rule execution model is different. In our case we treat
insertions or deletions of XML fragments as “atomic” updates and ECA rule
execution is invoked only after the completion of such an update, whereas in [8]
such updates are broken up into a sequence of finer granularity requests each

1 A rule ri may trigger a rule rj if execution of the action of ri may generate an event
which triggers rj . A rule ri may activate another rule rj if rj ’s condition may be
changed from False to True after the execution of ri’s action. A rule ri may activate
itself if its condition may be True after the execution of its action.

of which may invoke the ECA rule execution. In general, these semantics may
produce different results for the same initial update.
ARML [13] provides an XML-based rule description for rule sharing among

different heterogeneous ECA rule processing systems. In contrast to our lan-
guage, conditions and actions are defined abstractly as XML-RPC methods
which are later matched with system-specific methods.
GRML [24] is a multi-purpose rule markup language for defining integrity,

derivation and ECA rules. GRML uses an abstract syntax based on RuleML,
leaving the mapping to a real language for each underlying system implemen-
tation. GRML aims to provide semantics for defining access over distributed,
heterogeneous data sources for rule evaluation and allows the user to declare
most of the semantics necessary for processing a rule, and to evaluate events
and conditions coming from heterogeneous data sources.
Finally, [23] proposes extensions to the XQuery language [28] to incorporate

update operations. These are more expressive than the actions supported by
our ECA rule language since they also include renaming and replacement oper-
ations, and specification of updates at multiple levels of documents. Triggers are
discussed in [23] as an implementation mechanism for deletion operations on the
underlying relational store of the XML. However, provision of ECA rules at the
“logical” XML level is not considered.

2.1 Our XML ECA Rule Language

An XML repository consists of a set of XML documents. In our XML ECA rule
language, we use XPath [26] and XQuery [28] to specify the event, condition
and actions parts of rules. XPath is used for selecting and matching fragments
of XML documents within the event and condition parts while XQuery is used
within insertion actions, where there is a need to be able to construct new XML
fragments.
The event part of an XML ECA rule is an expression of one of the following

two forms:
INSERT e

DELETE e

where e is an XPath expression which evaluates to a set of nodes. The rule is
triggered if this set of nodes includes any node in a new XML fragment, in the
case of an insertion, or in a deleted fragment, in the case of a deletion.
The system-defined variable $delta is available for use within the condition

and actions parts of the rule, and its set of instantiations is the set of new or
deleted nodes returned by e.
The condition part of a rule is either the constant TRUE, or one or more XPath

expressions connected by the boolean connectives and, or, not. The rule fires if
it is triggered and its condition evaluates to true.
The actions part of a rule is a sequence of one or more actions:

action1; . . . ; actionn

where each actioni is an expression of one of the following three forms:
INSERT r BELOW e BEFORE q

INSERT r BELOW e AFTER q

DELETE e

Here, r is an XQuery expression, e is an XPath expression and q is either the
constant TRUE or an XPath qualifier.
In an INSERT action, the expression e specifies the set of nodes, N , imme-

diately below which new XML fragment(s) will be inserted. These fragments
are specified by the expression r. If e or r references the $delta variable, then
one XML fragment is constructed for each instantiation of $delta for which the
rule’s condition evaluates to True. If neither e nor r references $delta, then a
single fragment is constructed. The expression q is an XPath qualifier which is
evaluated on each child of each node n ∈ N . For insertions of the form AFTER q,
the new fragment(s) are inserted after the last sibling for which q is True, while
for insertions of the form BEFORE q, the new fragment(s) are inserted before the
first sibling for which q is True. The order in which new fragments are inserted
is non-deterministic.
In a DELETE action, the expression e specifies the set of nodes which will

be deleted (together with their descendant nodes). Again, e may reference the
$delta variable.

Example 1. Consider an XML repository containing metadata about learning
objects (LOs) available on the web, as well as personal metadata about users of
these LOs. The XML document los.xml contains information about the LOs,
and we show below some of the information held for a particular book, “Data
On the Web”. Under annotations, a new review is appended every time a user
submits a review of the book.

<LOs>

..

<LO type="book" title="Data On the Web">

<subject>Computer Science</subject>

<creator>S. Abiteboul</creator>

<creator>P. Buneman</creator>

<creator>D. Suciu</creator>

<description>From Relations to Semistructured data and XML

</description>

<publisher>Morgan Kaufmann</publisher>

<isbn>1-55860-621-Y</isbn>

<annotations>

<review>

<reviewer>Teacher Education Review Panel</reviewer>

<date>2002-10-20</date>

<rating>9</rating>

<description>

This book gives a comprehensive, state-of-the art

discussion of data models, query languages and ...

</description>

</review>

<review>

<reviewer>John Smith</reviewer>

<date>2002-12-20</date>

<rating>10</rating>

<description>

I found this a great book to learn about querying

semi-structured data, which I didn’t know much about.

</description>

</review>

</annotations>

</LO>

...

</LOs>

The XML document users.xml contains information about users, and we show
below some of the information held for a particular user “Johnny Mnemonic”.
Users can subscribe to be notified of the latest review submitted for books in
subjects that they are interested in, and this information is used to automatically
update their personal metadata:

<users>

...

<user id="217">

<name>Johnny Mnemonic</name>

<profession>student</profession>

<subjects>

<subject>Computer Science</subject>

<subject>Mathematics</subject>

<subject>Economics</subject>

</subjects>

<LOs>

<LO type="book" title="Data On the Web">

<isbn>1-55860-621-Y</isbn>

<latest-review>

<reviewer>John Smith</reviewer>

<date>2002-12-20</date>

<rating>10</rating>

<description>

I found this a great book to learn about querying

semi-structured data, which I didn’t know much about.

</description>

</latest-review>

</LO>

...

</LOs>

</user> ...

</users>

Johnny Mnemonic is interested in “Computer Science” and the following rule
replaces the current latest review (if there is one) of any Computer Science book
in his personal metadata by a new review of that book:

ON INSERT document(’los.xml’)/LOs/LO/annotations/review

IF $delta/../../subject[.=’Computer Science’]

DO DELETE document(’users.xml’)/users/user[@id="217"]/LOs/LO

[isbn=$delta/../../isbn]/latest-review;

INSERT <latest-review>{$delta/*}</latest-review>

BELOW document(’users.xml’)/users/user[@id="217"]/LOs/

LO[isbn=$delta/../../isbn]

AFTER isbn

Here, the system-defined $delta variable is bound to a newly inserted review

node detected by the event part of the rule. The rule’s condition checks that
the subject of the book in question is Computer Science. The rule’s action then
deletes the existing latest review for this book within Johnny Mnemonic’s meta-
data (if there is one) and inserts the new review.
Suppose now that the following update occurs, appending a new review for

the “Data On the Web” book:

INSERT <review>

<reviewer>Neo Anderson</reviewer>

<date>2003-04-29</date>

<rating>9</rating>

<description>

Very clearly written and very well-organised.

Describes in detail all the ...

</description>

</review>

BELOW document(’los.xml’)/LOs/

LO[isbn="1-55860-621-Y"]/annotations

AFTER TRUE

This update triggers the rule above, causing the replacement within Johnny
Mnemonic’s personal metadata of the previous review submitted by John Smith
by the new review submitted by Neo Anderson.
As another example rule, the following rule removes the current latest review

(if there is one) of a Computer Science book in Johnny Mnemonic’s personal
metadata if this review is removed from the list of reviews for this book (this
rule assumes that each reviewer reviews a book only once):

ON DELETE document(’los.xml’)/LOs/LO/annotations/review

IF $delta/../../subject[.=’Computer Science’]

DO DELETE document(’users.xml’)/users/user[@id="217"]/LOs/

LO[isbn=$delta/../../isbn]/

latest-review[reviewer=$delta/reviewer]

We refer the reader to [7, 6] for a more detailed discussion of the syntax and
semantics of our XML ECA rule language. Here, we next describe a prototype
implementation.

2.2 A Prototype Implementation

Due to the current immaturity of existing XML repository products in support-
ing a sufficiently expressive update language, for this first prototype implemen-
tation we have used flat files and have exploited the functionality provided by
the W3C DOM standard [29] for interacting with them. The architecture of our
system is illustrated in Figure 1.

PARSER
 for ECA

Language

EXECUTION ENGINE

Rule Base

R

u

l
e

B

a

s

e

I
n

t
e

r

f
a

c

e

Action Scheduler
 Condition Evaluator
 Event Dispatcher

WRAPPER

 Query & Update

 Manager

XML Documents

User Interface

Schedule Manager

Execution Schedule

XML translated rules

Prefix actions to

schedule

Send condition for eval’n

Receive Results

Send event query for eval’n

Receive changes set

Pop an action from the

head of the schedule

Rule Input

Connection

Driver

Establish connection.

Send updates and queries.

Receive Results.

Send action for

execution

Read from Rule Base

Registration

Unit

Fig. 1. ECA Engine Architecture

The Parser parses and checks the syntactic validity of a new rule. For con-
struction of the parser, we have used the JavaCC lexer-parser generator. Valid
rules are translated into an XML form and are added by the Registration Unit

to the Rule Base (which is an XML file). Details about each rule are stored here,
including its name, priority, and event, condition and action parts.

The Execution Engine encapsulates the rule processing functionality. In par-
ticular, the Event Dispatcher, Condition Evaluator and Action Scheduler imple-
ment these aspects of the rule processing, as we describe in more detail below.
All of these components interface with the Wrapper in order to send and receive
data to and from the underlying XML files.

The Execution Schedule contains a sequence of updates — these have the
same syntax as rule actions except that they do not contain any $delta expres-
sions within them. By “$delta expression” we mean an XPath expression (either
stand-alone or possibly nested within another XPath expression) that starts
with $delta. These portions of a rule’s action part are replaced by the result of
evaluating the expressions on the current document — see below.

The Wrapper interfaces with the XML files on disk. All update and query
requests from the upper levels of the system pass through this component, which
coordinates them. It undertakes to open files, submit queries and updates, and
receive back results from them. The Wrapper performs these services by using
the functionality of the Apache Xalan API. All queries are performed directly
by using XPath. For deletions, we identify the set of nodes that will be deleted
by using the XPath expression within the DELETE part of the request, and we
then remove all the subdocuments rooted at the nodes identified. For insertions,
we identify the set of nodes that will be affected by using the XPath expression
within the BELOW part of the request, and we then add the fragment specified
within the INSERT part as a new child of each of the nodes identified, placing it
relative to the existing children according to the AFTER or BEFORE qualifier.

Rule execution begins with a request from the Schedule Manager to the Query
& Update Manager to execute the update currently at the head of the schedule.
In case of an insertion, the Query & Update Manager executes the update and
annotates the newly inserted nodes, while in the case of a deletion it annotates
the nodes to be deleted without executing the deletion yet2.

Following the execution of the update, control then passes to the Event Dis-
patcher. This requests the Query & Update Manager to evaluate the XPath
query of the event part of each rule that may be triggered by the update that
was just executed. For each rule whose query result set contains annotated nodes
(either newly inserted or about-to-be deleted), the Event Dispatcher creates a
changes set containing these annotated nodes, and the rule is triggered.

The Condition Evaluator then requests the Query & Update Manager to
evaluate the condition part of each triggered rule on the affected document,
using as the evaluation context either the root node if there are no occurrences
of $delta within a query, or each instance of the changes set otherwise. The
rule’s delta set is thus created, consisting of those members of its changes set
for which the condition evaluates to true. If the delta set is non-empty, the rule
fires and control is passed to the Action Scheduler to further process the rule.
Otherwise, processing of this rule ends.

2 The annotation of nodes is performed using non-DOM methods provided by Apache
Xerces API that allow us to attach data to XML nodes without affecting the physical
representation of the file.

The Action Scheduler reformulates a given rule’s action(s) in order to elimi-
nate any instances of $delta expressions within them. The reformulation algo-
rithm performs the following steps for each node within the rule’s delta set:

– Replaces the $delta variable in each of the $delta expressions by the current
node of the delta set.

– Evaluates each of the modified $delta expressions with respect to the updated
document.

– Replaces each $delta expression within the rule’s action(s) by the corre-
sponding result of the previous step.

The outcome of this reformulation is that one instance of the rule’s action(s) is
created for each node in the rule’s delta set. These updates are now prefixed,
in an arbitrary order, to the front of the schedule — this is known as Immediate
scheduling, although other alternatives are also possible (see [20]). If multiple
rules have fired as a result of the last update executed, then the updates that
result from their actions are prefixed the schedule in order of the rules’ specified
priorities. Control then passes once more to the Schedule Manager and the cycle
repeats. If the last update executed by the Query & Update Manager was a
DELETE, then before control passes back to the Schedule Manager, the actual
deletion of the annotated nodes is first performed.

2.3 Future Work

There is as yet no accepted standard update language for XML. If ECA rules
are to be supported on XML repositories, then whatever standard eventually
emerges, there is also the parallel issue of designing the event language to match
up with this update language. Here we have seen how this was done in the
context of our particular update language for XML. Elsewhere [6] it is shown
how triggering and activation relationships can be detected for our particular
XML ECA rules. In general, the ability to analyse and optimise ECA rules
needs to be balanced against their complexity and expressiveness, and this issue
also needs to be borne in mind in future developments in ECA rule languages
for XML, and indeed for RDF.
It would be straightforward to extend our language to also support REPLACE

events and actions, where the former would have the syntax
REPLACE e

and the latter the syntax
REPLACE e BY r

meaning that the set of nodes identified by e (and their subdocuments, if any)
should be replaced by r. For example, the pair of actions in the first rule in
Example 1 could be replaced by the single action

REPLACE document(’users.xml’)/users/user[@id="217"]/LOs/LO

[isbn=$delta/../../isbn]/latest-review

BY <latest-review>{$delta/*}</latest-review>

In general, our INSERT actions may result in non-determinism in the order
in which a set of new fragments are inserted under a common parent, since
the BEFORE and AFTER constructs only specify the ordering of new fragments
with respect to the existing document content. It is an area of further work to
extend our XML ECA language to capture ordering relationships between new
fragments being inserted into a document.
At present we assume Immediate scheduling of rules that have fired, though it

would be straightforward to also allow rules with other scheduling modes. How-
ever, the practical applicability and performance implications of these extensions
is an area that requires further investigation.
Another important area is combining ECA rules with transactions and con-

sistency maintenance in XML repositories.

3 ECA rules for RDF

The above language can be used for RDF which has been serialised as XML.
However, we are also exploring ECA rule languages for RDF that will operate
directly on a graph/triple representation. In our archetypal RDF ECA rule lan-
guage, the event part of a rule is an expression of one of the following two forms:

INSERT e

DELETE e

where e is a path expression which again evaluates to a set of nodes.
The rule is triggered if this set includes any new node, in the case of an

insertion, or any deleted node, in the case of a deletion. The system-defined
variable $delta is again available for use within the condition and actions parts
of the rule, and its set of instantiations is the set of new or deleted nodes returned
by e.
The condition part of a rule is a query which may reference the $delta

variable. Analogously to our XML ECA rule language, condition queries consist
of conjunctions, disjunctions and negations of path expressions.
The actions part of a rule is a sequence of one or more actions, where each

action is of one of the following two forms:
[let− expressions IN] INSERT triples

[let− expressions IN] DELETE triples

Here, let−expressions is an optional set of local variable definitions of the form
let variable = e, where e is a path expression, and triples is a set of triples of
the form (subject, predicate, object).

Example 2. Consider the two RDF graphs illustrated in Figures 2 and 3. Based
on the application described in Example 1, the first shows the metadata relating
to the “Data on the Web” book, while the second shows the personal metadata
relating to user 128.
Suppose that user 128 wants to keep his set of reviews of Computer Science

books up-to-date. If a new review of a Computer Science book is inserted, then
the following ECA rule adds a new arc linking the new review into user 128’s
personal metadata:

http://www.dcs.bbk.ac.uk/LOs/BK187

Book

dc:type

Data On the

Web

dc:title

Computer

Science

dc:subject

rdf:Bag

http://www-rocq.inria.fr/

abiteboul/

http://www.cs.washington.edu/

homes/suciu/

http://www.cis.upenn.edu/

~peter/PeterHOME.html

rdf:type

rdf:_1

rdf:_2

rdf:_3

dc:creator

From Relations to

Semistructured Data

dc:description

bbk:annotation
 rdf:Seq

http://www.dcs.bbk.ac.uk/

books/AN1289

http://www.dcs.bbk.ac.uk/

books/AN1297

rdf:type

rdf:_1

rdf:_2

N.

Anderson

2001-12-01

Fantastic

book ...

bbk:reviewer

dc:date

bbk:details

J. Smith

2002-10-02

...

bbk:reviewer

dc:date

bbk:details

Review
dc:type

Review

dc:type

Fig. 2. Learning Object Metadata

http://www.dcs.bbk.ac.uk/users/

128

T.S. Eliot

rdf:Bag

rdf:Seq

http://www.dcs.bbk.ac.uk/

books/AN1289

http://www.dcs.bbk.ac.uk/

books/AN1297

vCard:FN

bbk:interest

bbk:review

rdf:type

rdf:_1

rdf:_2

rdf:type

rdf:_1

rdf:_2

Computer Science

Economics

Fig. 3. User Metadata

ON INSERT resource()[child(dc:type)=’Book’]/child(bbk:annotation)/

element()[child(dc:type)=’Review’]

IF $delta/parent()/parent()[child(dc:subject) = ’Computer Science’]

DO LET $reviews = resource(‘‘http://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:review) IN

INSERT ($reviews,seq++,$delta)

Here, the event part of the rule checks whether a new review has been added for
a book (expressed in the syntax of RDFPath [17]). The condition part checks if
the new review is for a Computer Science book. If so, the action part inserts the
new arc between user 128’s reviews collection and the new review (we use the
syntax seq++ to indicate an increment in the collection’s element count).
As another example, if user 128 removes one of his interests, then the fol-

lowing rule removes from his personal metadata all arcs to reviews of learning
objects on that subject:

ON DELETE resource(‘‘http:://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:interest)/element()

IF TRUE

DO LET $reviews = resource(‘‘http://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:review);

$review = $reviews/element()[parent()/parent(bbk:annotation)

[child(dc:subject) = $delta]] IN

DELETE ($reviews,seq?,$review)

Here, the event part checks if an interest of user 128 has been deleted. The
condition part always holds. The LET part of the rule’s action defines $reviews
to be user 128’s reviews collection and defines $review to be those reviews which
relate to learning objects whose subject is the same as the deleted interest.
Finally, the DELETE part will generate one triple to be deleted for each pair of
distinct values of $reviews and $review (we use the syntax seq? to match any
order of the review being deleted within the collection).

3.1 Future Work

There is as yet no standard query/update language for RDF and hence our RDF
ECA language is even more prototypical than our XML ECA language. Some of
the observations we made in Section 2.3 regarding the XML ECA language also
apply here, namely the need to match up the event sub-language with the update
sub-language, the need to balance expressiveness of ECA rules against the ability
to analyze and optimize them, the possibility of a variety of scheduling modes
beyond Immediate rule scheduling, and combining ECA rules with transactions
and consistency maintenance in RDF repositories.
For the immediate future, we plan to:

– define formally the event, condition and action sub-languages of our RDF
ECA rules;

– define the API requirements for the support of such rules over SeLeNe’s RDF
repository (likely to be FORTH’s RDFSuite [5]);

– implement and experiment with the language, using as a testbed SeLeNe’s
educational metadata.

4 ECA Rules in a Distributed Environment

Beyond the centralized version of our system, we plan to develop a distributed
version supporting ECA rules on distributed RDF repositories, as part of the
ongoing SeLeNe project (http://www.dcs.bbk.ac.uk/selene). This project is
investigating the technical requirements, and possible technical solutions, for ‘self
e-learning networks’, where a self e-learning network is a distributed repository
of metadata relating to learning objects (LOs) accessed by users wishing to
publish or use such LOs. A self e-learning network (SeLeNe) will have a peer-
to-peer topology, with facilities for peers to join or leave the network. Each peer
will manage a fragment of the overall distributed metadata. This metadata will
be expressed in RDF, and will contain information about learning objects and
about the users of the SeLeNe (see [16]). Support of such networks will require:

– techniques for reconciliation and integration of heterogeneous metadata;
– definition of personalised views over this distributed metadata resource;
– detection, notification and propagation of changes to the metadata descrip-
tions.

These requirements have a good fit with the functionality that could po-
tentially be provided by ECA rules, and the architecture that we envisage is
illustrated in Figure 4. Each ‘peer’ shown in that diagram is actually a ‘super-
peer’ (SP) which may be coordinating a group of further peers (not shown in
the figure).
At each SP there is installed one local ECA Engine, which has the same

features and components as the centralized architecture discussed in Section 2.2
above and illustrated in Figure 1. One possibility is that each local ECA Engine
will operate as a Web Service and that the communication between them can
be via XML messages (e.g. SOAP).

Local ECA Engine

LO Metadata

User Metadata

Peer 1

Event

Detector

Rule Base 1

Peer 2

Local ECA Engine

Event

Detector

Condition

Evaluator

Action

Scheduler
Rule Base 2

LO Metadata
User Metadata

LO Metadata

User Metadata

Peer 3

Local ECA Engine

Event

Detector

Condition

Evaluator

Action

Scheduler
Rule Base 3

Execution Schedule

Condition

Evaluator

Action

Scheduler

Execution Schedule
 Execution Schedule

Fig. 4. Distributed System Architecture

Whenever a new ECA rule r is registered at a peer P, it will be sent to P’s SP
for storage. As we will see below, from there r will also be sent to all other SPs,
and a replica of it will be stored at those SPs that are relevant to r i.e. where
an event may occur that may trigger r’s event part, or which may participate in
evaluating r’s condition part, or where r’s actions may have to be scheduled for
execution. At present, we assume that individual events and actions will occur
at a single peer (which is likely to be the case in SeLeNe) although condition
evaluation may be distributed.

Indexing at Peers and Super-Peers In order to determine whether an SP
is relevant for a rule, an index can be kept at each peer and super-peer. There
are a number of possibilities for doing this and we indicate here one solution:

As the RDF descriptions stored at each peer change over time, so each peer
maintains an annotated copy of its local RDF Schema, which shows for each
node in the schema whether or not there is RDF data of this type at this peer
(a ’0’ or ’1’ bit).

This information is also propagated to the peer’s coordinating SP. This SP
maintains a combined RDF Schema which is annotated so that each node shows
the set of peers in its own peer group that manage data of this type (a set of
peer IDs), and also the remote SPs whose peer group manages such data (a set
of SP IDs).

The latter information is gathered and maintained as follows: if a node in the
RDF Schema of an SP changes from not having any data in this peer group to
having data, or vice versa, this change is notified to all other SPs so that these
can update the relevant annotation in their RDF Schemas. Note that in general
the SPs may hold heterogeneous RDF Schemas, so there will need to be an RDF
Schema translation service between SPs (as is indeed envisaged for SeLeNe).

Finally, as well as this annotated RDF Schema, each SP also keeps for each
node annotated with a ’1’ in its RDF Schema a list of the RDF resources of this
type that each peer in its peer group references — we call these lists of RDF
resources resource indexes.

Comparison with related approaches: Querying and indexing data in a dis-
tributed RDF-based P2P network is more complex than for distributed struc-
tured databases. In the latter, the database servers and the database schema at
each of them is known and fixed whereas in the former peers may dynamically
join or leave the network and may manage data conforming to varying schema
fragments. Schema-based routing indexes have been proposed to address this
problem in Edutella [18]. Edutella uses two kinds of routing indexes: Super-
Peer/Peer (SP/P RI) and Super-Peer/Super-Peer (SP/SP RI).

An SP/P RI stores information about metadata usage in each peer in its
peer group. This includes information such as the schemas (e.g., dc or lom) or
properties (e.g., dc:subject) used, as well as possibly conventional indexes on
property values. When a peer registers with a SP, it provides the SP with its
metadata usage, a process called advertisement. The peer undertakes to keep this
advertisement up-to-date by informing its SP each time that a change affecting
the advertised metadata takes place. At each super-peer, query fragments are
matched against the SP/P RIs in order to determine peers that are relevant to
this query (although this gives no guarantee that the returned result set from a
peer is not empty). A similar approach is used in SP/SP RIs, but at a higher level
of granularity and possibly only representing approximations of the information
regarding their peers. A further difference to the SP/P RI is that an SP/SP
RI contains information only about its neighbouring SPs in the SP topology.
Update of SP/SP RIs is again based on broadcast messages sent between SPs.

For our purposes, we want to maintain more precise information about where
various forms of metadata reside in the network and, as far as possible, do not
want unnecessary routing of queries and updates to peers and super-peers that
are not relevant. Hence, we have adopted the approach of using annotations on
a full RDF schema and also resource indexes. The scalability of our proposal,
however, still needs to be investigated.

Registering an ECA rule When a new rule is generated at a peer, it is sent to
the peer’s own SP for storage in its local rule base. The SP annotates the event,
condition and action parts of the rule with the local peers that are relevant to
each part (a list of peer IDs).
This can be determined by matching each part of the rule against the SP’s

annotated RDF Schema and/or its resource indexes — the former is useful if no
resource is specified in this part of the rule and the latter is useful if a resource is
specified. As the annotated RDF Schema and resource indexes at the SP evolve,
so the annotations on the ECA rules can also be evolved to maintain consistency.
The rule is also sent to all other SPs that may be relevant to it — this is

determined from the SP ID annotations on the originating SP’s RDF Schema.
These SPs repeat the above process of matching each part of the rule against
their own annotated RDF Schema, and storing the resulting annotated rule in
their own rule base it if it is indeed relevant to any of their peer group. Note
that, due to schema heterogeneity, the rule may first have to be translated so
that its parts are expressed with respect to the local RDF Schema.
The final result is a replica of the rule at each SP which is relevant to the

rule, annotated with local information about which peers may be affected by
each part of the rule.
As the information at SPs changes with time, it may be that an ECA rule

is no longer relevant to that SP, in which case the rule can be deleted from the
SP’s local rule base. Conversely, an ECA rule stored somewhere else may become
relevant to an SP. This can be handled as follows:
Since all SPs know what kinds of data is stored at all other SPs, if any SP,

SP1, is notified of a change in status of another SP, SP2, from not having data
associated with a particular RDF Schema node to having such data, then SP1
will send SP2 a copy of any ECA rules that originated from SP1 and that may
now have become relevant to SP2.

Rule triggering and execution At run-time, whenever an event E occurs at
a peer P, it will notify its SP. This will determine whether E may trigger any
ECA rule annotated with P’s ID. If a rule r might have been triggered, the SP
will send P r’s event query to evaluate.
If r has indeed been triggered, its condition will need to be evaluated, after

generating an instantiation of it for each value of the $delta variable if this is
present in the condition. The annotations on r can be used to determine to which
local peers and other SPs sub-queries of the condition should be dispatched
for evaluation. If the $delta variable is present in the condition, it will have

been instantiated and so we also consult the SPs’ resource indexes for more
precise information about which local peers are relevant to sub-queries of the
instantiated condition.
If a condition evaluates to true, each corresponding rule action will be sent

to, and scheduled, by the SPs that will execute it. Again this can be determined
by the annotations on the rule action and consulting the SPs’ resource indexes.

4.1 Future Work

There are several open issues remaining in realising the P2P ECA architecture
we describe above:

– developing algorithms for matching rule event, condition and action parts
with the schema-based indexes;

– defining the syntax of messages that will be passed between peers for dis-
tributed processing of ECA rules;

– defining the coordination with SeLeNe’s distributed query processor for the
evaluation of rule conditions;

– defining the coordination with SeLeNe’s mediation functionality, for trans-
lating data and rules between heterogeneous schemas;

– more generally, mapping this distributed ECA functionality onto SeLeNe’s
service-based architecture;

– exploring distributed transactional aspects of the ECA rules (even though
we assume that individual events and actions will occur at a single peer,
the execution of an ECA rule may trigger another ECA rule and this whole
cascade of rule firings may need to have the semantics of a single transaction).

5 Conclusions

In this paper we have discussed the provision of ECA rules for XML and RDF
repositories, and have highlighted some of the new issues that arise in the context
of such data. We have described a language for ECA rules on XML, and some
preliminary ideas regarding a language for ECA rules on a graph/triple repre-
sentation of RDF. We have described a prototype centralised implementation of
the XML ECA rule language, and the architecture of a distributed implemen-
tation of the latter. For future work there are several directions to explore, as
highlighted in Sections 2.3, 3.1 and 4.1 above.
An important issue is to evaluate the applicability and scalability of our lan-

guages, their execution models, and implementation. For this, we plan to deploy
them for providing reactive functionality on distributed RDF repositories of edu-
cational metadata, as part of the ongoing SeLeNe project. This will also provide
an opportunity to assess the impact of moving from a centralised to a distributed
environment, with the additional challenges of network delay, network reliabil-
ity, synchronisation of rule execution, maintaining consistency of the distributed
metadata resource, tolerance of delays and failures etc.

References

1. S. Abiteboul, S. Cluet, G. Ferran, and M.-C. Rousset. The Xyleme project. Com-
puter Networks, 39:225–238, 2002.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel query
language for semistructured data. VLDB Journal, 1(1):68–88, 1997.

3. S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. JCSS, 61(2):236–269, 2000.

4. A. Adi, D. Botzer, O. Etzion, and T. Yatzkar-Haham. Push technology personal-
ization through event correlation. In Proc 26th Int. Conf. on Very Large Databases,
pages 643–645, 2000.

5. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc.
2nd. Int. Workshop on the Semantic Web (SemWeb 2001), 2001.

6. J. Bailey, A. Poulovassilis, and P.T. Wood. An Event-Condition-Action Language
for XML. In Proc. WWW’2002, Hawaii, 2002.

7. J. Bailey, A. Poulovassilis, and P.T. Wood. Analysis and optimisation for event-
condition-action rules on XML. Computer Networks, 39:239–259, 2002.

8. A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. of the
IEEE Conference on Data Engineering (ICDE), 2002.

9. A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for XML: A new paradigm
for e-services. VLDB Journal, 10(1):39–47, 2001.

10. A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services to XML reposi-
tories using active rules. In WWW’01, 2001.

11. S. Ceri and P. Fraternali. Designing Database Applications with Objects and Rules:
The IDEA Methodology. Addison-Wesley, 1997.

12. S. Ceri, P. Fraternali, and S. Paraboschi. Data-driven one-to-one web site gen-
eration for data-intensive applications. In Proc. 25th Int. Conf. on Very Large
Databases, pages 615–626, 1999.

13. E. Cho, I. Park, S. J. Hyum, and M. Kim. ARML: an active rule mark-up language
for heterogeneous active information systems. In Proc. RuleML 2002, Sardinia,
June 2002.

14. S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. In
Proc. 27th Int. Conf. on Very Large Databases, pages 271–280, 2001.

15. H. Ishikawa and M. Ohta. An active web-based distributed database sys-
tem for e-commerce. In Proc. Web Dynamics Workshop, London, 2001.
http://www.dcs.bbk.ac.uk/webDyn/.

16. K. Keenoy et al . Self e-Learning Networks — Function-
ality, User Requirements and Exploitation Scenarios. See
http://www.dcs.bbk.ac.uk/selene/reports/Del22.pdf, August 2003. Se-
LeNe Project Deliverable 2.2.

17. S. Kokkelink. Transforming RDF with RDFPath. See
zoe.mathematik.uni-osnabrueck.de/QAT/Transform/RDFTransform.pdf, March
2001.

18. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-peer-based routing and clustering strategies for RDF-based peer-
to-peer networks. In Proc. WWW2003, pages 536–543, 2003.

19. W. Nejdl et al. EDUTELLA: A P2P Networking Infrastructure Based on RDF.
In Proc. WWW’2002, 2002.

20. N. Paton, editor. Active Rules in Database Systems. Springer-Verlag, 1999.

21. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based
publish/subscribe systems. In Proc 7th Int. Conf. on Cooperative Information
Systems (CoopIS’2000), pages 162–173, 2000.

22. B. Simon et al. Smart space for learning: A mediation infrastructure for learning
services. In Proc. WWW’2003, 2003.

23. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 413–424, 2001.

24. G. Wagner. How to Design a General Rule Markup Language? In Invited talk
at the Workshop XML Technologien für das Semantic Web (XSW 2002), Berlin,
June 2002.

25. J. Widom and S. Ceri. Active Database Systems. Morgan-Kaufmann, San Mateo,
California, 1995.

26. World Wide Web Consortium. XML Path Language (XPath), Version 1.0. See
http://www.w3.org/TR/xpath, November 1999. W3C Recommendation.

27. World Wide Web Consortium. XSL Transformations (XSLT), Version 1.0. See
http://www.w3.org/TR/xslt, November 1999. W3C Recommendation.

28. World Wide Web Consortium. XQuery 1.0: An XML Query Language. See
http://www.w3.org/TR/xquery, November 2002. W3C Working Draft.

29. World Wide Web Consortium. Document Object Model (DOM) Level 3 Core Spec-
ification. See http://www.w3.org/TR/DOM-Level-3-Core/, February 2003. W3C
Working Draft.

Storing and Querying Ontologies in
Logic Databases

Timo Weithöner1, Thorsten Liebig2, and Günther Specht1

1 Dept. of Databases and Information Systems
University of Ulm

D-89069 Ulm
{timo.weithoener|specht}@informatik.uni-ulm.de

2 Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm
liebig@informatik.uni-ulm.de

Abstract. The intersection of Description Logic inspired ontology lan-
guages with Logic Programs has been recently analyzed in [GHVD03].
The resulting language, called Description Logic Programs, covers RDF
Schema and a notable portion of OWL Lite. However, the proposed map-
ping in [GHVD03] from the corresponding OWL fragment into Logic
Programs has shown scalability as well as representational deficits within
our experiments and analysis. In this paper we propose an alternative
mapping resulting in lower computational complexity and more repre-
sentational flexibility. We also present benchmarking results for both
mappings with ontologies of different size and complexity.

1 Introduction

Current research within the Semantic Web aims at combining knowledge repre-
sentation methods with techniques of the Web. Such a combination would enable
meaningful communication between people and heterogenous information pro-
cessing systems for inter- and intranet applications. Ontologies play a pivotal
role within such a framework by providing a shared and common understanding
of a domain of interest. Formally, an ontology is a logical theory accounting for
the intended meaning of a formal vocabulary, i. e. its ontological commitment to
a particular conceptualization of the world [Gua98].

Reasoning about logical theories requires logic-based inference systems which
has been well studied within the field of knowledge representation in the AI com-
munity over the last decades. Description Logics (DL’s) as a decidable fragment
of first-order logic turned out to be an adequate formalism for representing and
reasoning about expressive ontologies. As a consequence DL’s form the formal
foundation of W3C’s Web Ontology Language (OWL), a proposed standard for
a semantic markup language for publishing and sharing ontologies on the World
Wide Web.

One of the key design goals for OWL was highest possible expressiveness
[Hef03]. However, the more expressive a language is, the more difficult it will be
to learn or to use this language. OWL has been criticized because of its high lan-
guage complexity even by one of its language designers [vH02]. While analyzing
online accessible ontologies the same language designer also noticed, that even
experienced users exploit a very limited subset of the available language primi-
tives in general. Beyond that, reasoning about ontologies with an expressiveness
comparable to that of OWL requires sophisticated logical theorem provers, which
are currently only available as research prototypes. Such systems have proven to
be fast as well as reliable at least with most of the academic ontologies available
so far. However, they are designed to deal with ontologies completely processable
within a computers primary memory. In fact, we expect much larger ontologies
for real world applications in the near future which very likely will not solely
be loadable into (virtual) main memory. More concrete, realistic applications
scenarios within the vision of the Semantic Web refer to (currently non-existent)
ontologies with a limited set of language primitives but a very large set of in-
dividuals (flight schedules, phone books, etc.). Obviously, database technology
will be necessary in order to be able to deal with ontologies of this size.

In this sense, as an alternative to tableaux-based DL theorem provers Grosof
et. al. [GHVD03] recently suggested a mapping of a DL subset into Logic Pro-
grams (LP) suitable for evaluation with Prolog. This intersection of DL with LP
called DLP completely covers RDF Schema and a fraction of OWL (notably most
of OWL Lite extended with general concept inclusion). This approach is called
the “Direct Mapping” approach in the following. Logical database systems seem
most suitable to combine LP with efficient and persistent data storage. However,
applying the Direct Mapping approach for loading, storing and evaluating on-
tologies in logical database systems has shown some significant scalability deficits
as well as representational drawbacks. Therfore, we developed a new mapping
without this limitations which we call the “Meta Mapping” approach below. This
approach is meta in the sense that it maps the LP subset of OWL into a higher
representational level resulting in lower computational complexity and more rep-
resentational flexibility. For this reason the Meta Mapping approach is especially
suitable for storing and processing ontologies within logical databases. In this
paper we present our new Meta Approach together with some benchmarking
results for both approaches.

The remainder of this paper is organized as follows. In the next section we
will give an overview over logic based ontology languages currently proposed by
the W3C and their relationship to Logic Programs as used in logic databases.
Readers familiar with OWL and Logic Programs should skip Section 2. Section 3
explains the Direct Mapping approach from the DLP fragment of OWL to LP’s
proposed by Grosof and Horrocks et. al. [GHVD03]. In Section 4 we present our
Meta Mapping approach while making use of examples showing the conceptual
differences between the two approaches. Section 5 contains benchmarking results
for both mappings with ontologies of different size and complexity. We will end
with a discussion about the pros and cons of the different mappings.

2 Preliminaries

This section will shortly introduce OWL. In particular, we will give syntax ex-
amples and their semantics in terms of corresponding First Order Logic (FOL)
formulae. We then characterize the intersection of LP’s with OWL. Reader fa-
miliar with OWL and LP’s may skip this section.

2.1 Ontology Languages for the Web

The proposed mechanism for meaningful communication between people and / or
machines within the World Wide Web is to add semantic markup to Web re-
sources in order to explicitly describe their content. This semantic markup makes
use of terms for which ontologies provide a concrete specification of their mean-
ing.

The significant term structure of ontology languages currently under devel-
opment for the Web consists of at least two elements (see also [Hef03]): classes
and relationships (called properties) that can exist among classes.

RDF Schema. The two basic structuring elements from above are provided by
the Resource Description Framework Schema (RDFS), the lowermost ontology
language of the Semantic Web language layer architecture. As with the follow-
ing ontology languages, RDFS usually is serialized as XML document in order
to meet the syntactical requirements of todays Web communication protocols.
RDFS can be considered as a very simple ontology language allowing the defini-
tion of class hierarchies via subClassOf statements. Exemplarily, a dog can be
defined as some kind of mammal as follows:

<rdfs:Class rdf:ID="Dog">
<rdfs:subClassOf rdf:resource="#Mammal"/>

</rdfs:Class>

[Ex. 1]

Semantically this can be expressed in FOL as an implication between two unary
predicates: ∀x : Dog(x)⇒ Mammal(x) (DL abstract notation: Dog v Mammal).

The possible combinations of classes and properties can be restricted by
qualifying the domain and range of properties. An owner relationship for dogs,
called Dog-Owner, is narrowed in its domain to the class Human and in its range
to Dog in the following:

<rdf:Property rdf:ID="Dog-Owner">
<rdfs:domain rdf:resource="#Human"/>
<rdfs:range rdf:resource="#Dog"/>

</rdf:Property>

[Ex. 2]

The FOL correspondence to properties are binary predicates. According to that,
the semantics of the property definition in example 2 is as follows: ∀x, y :
Dog-Owner(x, y) ⇒ Human(x) and ∀x, y : Dog-Owner(x, y) ⇒ Dog(y) (DL: > v
∀Dog-Owner.Human, > v ∀Dog-Owner−.Dog).

Property hierarchies can also be defined analogous to class hierarchies using
subPropertyOf statements.

Web Ontology Language (OWL). OWL is developed as a vocabulary ex-
tension of RDF Schema1 and is derived from the DAML+OIL Web ontology
language. This extension covers class language constructs like conjunction, dis-
junction, negation, existential and universal qualified quantification and cardi-
nality constraints of properties (plus some others). OWL itself provides three
increasingly expressive sublanguages. The least expressive sublanguage is OWL
Lite. With focus on the intersection of OWL with Logic Programs we will give
a more detailed explanation for some of OWL Lite’s language constructs here.
For syntax and semantics of all constructs see [vHHH+03] resp. [PSHH03].

In OWL a class can be defined as conjunction of other classes or class descrip-
tions using the intersectionOf statement. For example, it might be rational to
define Puppy as the conjunction of the classes Dog and Young-Animal:2

<owl:Class rdf:ID="Puppy">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Dog"/>
<owl:Class rdf:about="#Young-Animal"/>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

[Ex. 3]

Semantically, this corresponds to logical conjunction in FOL: ∀x : Puppy(x) ⇒
Dog(x) ∧ Young-Animal(x) (DL: Puppy v Dog u Young-Animal).

So far, all class definitions result in logical implication with respect to their
definition. They are therefore called necessary class definitions. In contrast, it
is possible to give a necessary as well as sufficient definition for a class. In the
following example it is a necessary as well as sufficient condition being a Dog and
a Rabit-Animal for being a Rabit-Dog:

<owl:Class rdf:ID="Rabit-Dog">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Dog"/>
<owl:Class rdf:about="#Rabit-Animal"/>

</owl:intersectionOf>
</owl:Class>

[Ex. 4]

Logically this corresponds to an equivalence between Rabit-Dog and its defining
conjunction: ∀x : Rabit-Dog(x)⇔ Dog(x)∧Rabit-Animal(x) (DL: Rabit-Dog ≡
Dog u Rabit-Animal).

Universal qualified quantification is a language construct for locally restrict-
ing the range of a given property within a class definition. E. g., a Doghouse is
a house for which all fillers of the property Occupants are of type Dog:
1 However, OWL does not include RDFS’s recursive meta model property.
2 Since OWL is layered on top of RDFS the examples from above are easily con-

verted into OWL by changing rdfs:Class into owl:Class and rdf:Property into
owl:ObjectProperty.

<owl:Class rdf:ID="Doghouse">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#House"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#Occupant"/>
<owl:allValuesFrom rdf:resource="#Dog"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

[Ex. 5]

The fragment from above has the following semantics in FOL: ∀x : Doghouse(x)⇒
House(x) ∧ (∀y : Occupants(x, y) ⇒ Dog(y)) (DL: Doghouse v House u
∀Occupants.Dog).

Additionally, OWL Lite extends RDFS for transitive, inverse, and symmetric
properties. A perfect example of a transitive property within our dogs world is
the descendants relationship Dog-Offspring:

<owl:TransitiveProperty rdf:ID="Dog-Offspring"/> [Ex. 6]

Semantically, a transitive property enforce that: ∀x, y, z : (Dog-Offspring(x, y)∧
Dog-Offspring(y, z)) ⇒ Dog-Offspring(x, z) (DL: Dog-Offspring+). An in-
verse property of a given property can be defined as follows:

<owl:ObjectProperty rdf:ID="Is-Dog-Of">
<owl:inverseOf rdf:resource="#Dog-Owner"/>

</owl:ObjectProperty>

[Ex. 7]

In FOL this means: ∀x, y : Is-Dog-Of(x, y) ⇒ Dog-Owner(y, x) and vice versa
(DL: Is-Dog-Of ≡ Dog-Owner−). A symmetric property can be introduced as
follows:

<owl:SymmetricProperty rdf:ID="Friend-Of"/> [Ex. 8]

This definition imposes the following FOL semantics: ∀x, y : Friend-Of(x, y)⇒
Friend-Of(y, x).

Until now, we have only defined a formal vocabulary. In DL terminology such
a vocabulary is called a TBox. In contrast, an ABox specifies concrete individuals
with respect to a given TBox vocabulary. For example, Fluffy as a concrete dog
can be defined by instantiating the class Dog:

<Dog rdf:ID="Fluffy"/> [Ex. 9]

Such a class instantiation corresponds to an unary predicate instantiation in FOL
(and abstract DL): Dog(Fluffy). Let us assume we also want to assert a particu-
lar doghouse (with name Fidos-Kennel) occupying Fido an animal with rabies.
FOL equivalent: Doghouse(Fidos-Kennel), Occupant(Fidos-Kennel, Fido) and
Rabit-Animal(Fido):

<Doghouse rdf:ID="Fidos-Kennel">
<Occupant>
<Rabit-Animal rdf:ID="Fido"/>

</Occupant>
</Doghouse>

[Ex. 10]

The underlying semantics of our definitions allows to infer logically entailed
knowledge implicitly encoded in our dogs world ontology. Usually, logical rea-
soning systems are used for making such knowledge explicitly available for users.

Concerning our example a simple inference chain could be the following. Since
all occupants of a doghouse necessarily have to be dogs (due to the definition of
Doghouse in Example 5) it follows, that Fido has to an instance of class Dog. As
a consequence Fido is also classified as a Rabit-Dog because being a dog and a
rabid animal is sufficient for being a Rabit-Dog.

2.2 Intersecting OWL with Logic Databases

Based on the analysis of the intersecting language of DL with LP in [GHVD03]
we will shortly characterize the resulting language of the intersection of DL
inspired OWL with LP in the following.

Logic Programs (LP) consist of a set of rules having the form:

A← B1 ∧ . . . ∧Bn with n ≥ 0

where A,Bi are atomic formula of predicates of arbitrary arity. A is called the
head of the rule and the conjunction of Bi’s is called the body. Atomic formula
are allowed to be “negated”. Note that this negation has to be interpreted as
negation-as-failure. Negation-as-failure as well as other LP features (like proce-
dural attachments) are not expressable in FOL and therefore also not expressable
in logic based ontology languages. On the other hand predicates in LP are not
restricted in their arity in contrast to DL. In addition DL restricts the usage
of (implicit) free variables in quantifying expressions with guarding property
predicates. As a result the intersection of DL with LP can be characterized as a
definite (without negation-as-failure) equality-free Horn fragment of FOL, called
Description Logic Programs (DLP) in [GHVD03].

Since OWL is a DL inspired language it covers DLP completely. More precise,
DLP covers most of OWL Lite (the least expressive sublanguage of the OWL
family) plus a portion of OWL DL, namely general concept inclusions (GCIs)
with disjunction and qualified existential qualification on the l.h.s. However,
GCIs are not very common in ontologies so far, we will focus on the intersection
of OWL Lite with LP, which we will call OWLP Lite for the rest of the paper.

3 The Direct Mapping Approach

In the following we will provide two approaches of converting ontologies into logic
programs. Starting with the previously published proposal in [GHVD03], the

direct mapping approach, we will suggest an alternative meta mapping approach
in Section 4. After that we will provide an evaluation and comparison of both
approaches, which makes it necessary to have a look at different aspects like the
number of facts and rules contained in the resulting logic programs.

A straight forward approach to convert ontologies into a logic program is de-
scribed in [GHVD03]. This approach maps every class or property definition con-
tained in the ontology into a rule and every class-instance or instance-property-
instance relationship into a fact. In the following we summarize this method of
mapping into a description logic program.

3.1 The Mapping

Every concept instantiation is mapped to a unary relation with the concept name
becoming the name of the relation and the individual name becoming the only
argument. For example the statement that Fluffy is an instance of concept Dog
(see Example 9) is mapped into the fact:

Dog("Fluffy"). [Ex. 11]

Every instance-property-instance relationship is mapped into a binary relation
with the property’s name becoming the name of the relation. The first argument
is the name of the individual, the second argument is the property’s value. Given
a property Occupant, let us assume Fidos-Kennel being occupied by Fido (as
defined in Example 10):

Occupant("Fidos-Kennel", "Fido"). [Ex. 12]

In addition, concept as well as property constructor statements are converted
into a set of rules. In this step it gets obvious, why we called this approach the
Direct Mapping approach. Every subclass relationship stated in the ontology is
directly mapped into a corresponding logic program rule. As a consequence the
OWL fragment defined in Example 1 is converted into:

Mammal(X) :- Dog(X). [Ex. 13]

For a mapping of the rest of the OWLP Lite language constructs see Table 1.
Note, that the EquivalentClasses relationship is just a mutual SubClassOf rela-
tionship. An EquivalentClasses relationship can be simulated by two SubClassOf
statements using both defintion directions.

3.2 Size of the Resulting Program

Let us now have a look at the resulting logic program of a given ontology with a
set C of classes and a set P of different properties. Let Rc with c ∈ C be the set
of rules required to express c. With I being the set of class instantiations (see
Example 11) and V the set of property instantiations (see Example 12) defined
within the ontology we get an total of

Table 1. Shows OWL statements and there representation in a logic program as sug-
gested [GHVD03]. See Section 3.2 for definition of Rc.

OWL Abstract Syntax [PSHH03]
Definition of class c

DLP Statements
Rule set Rc

|Rc|

SubClassOf(c b) b(X) :– c(X). 1
SubClassOf(unionOf(b1 ... bn) c) c(X) :– b1(X).

...
c(X) :– bn(X).

n

SubClassOf(c intersectionOf(b1 ... bn)) c(X) :– b1(X), ..., bn(X). 1
SubClassOf(intersectionOf(b1 ... bn) c) b1(X) :– c(X).

...
bn(X) :– c(X).

n

SubClassOf(c restriction(p
allValuesFrom(b)))

c(X) :– p(X, b), anonID(X). 1

SubClassOf(restriction(p
someValuesFrom(b)) c)

anonID(X) :– p(X, b), c(X). 1

∑
c∈C
|Rc| (1)

rules and

S = |I|+ |V| (2)

facts, while the number of different predicates is

K = |C|+ |P| (3)

To understand of the above we will establish two criteria to compare different
ontologies: Size and complexity of an ontology. Size means the number of concept
and property instantiations included (see S in Equation 2) while complexity
means the number of different concepts (see K in Equation 3). For example you
would expect that an ontology made from data contained within a phonebook,
would be of very limited complexity (containing only a very limited number
of concepts like name, address and phone number) but of huge size (listing all
inhabitants and thus having lots of individuals). Nevertheless the number of
rules in the resulting logic program is growing linear with the number of concept
and property definitions in the ontology.

3.3 A first assessment of the approach

Limitations. Looking at the logic program fragments as discussed above we
soon realize that this approach has some significant weaknesses:

– First, the concept names cannot be accessed from within the logic program.
For that reason it is virtually impossible to get an answer to the question
“give me all classes the individual I is instance of”.

Reconsider Example 10 out of our dogs ontology. We are aware of the fact
that Fido is a Rabit-Animal. However we are not able to retrieve all classes
Fido is an instance of unless we manually walk through every possible class
and ask whether Fido is instance of this class. Which is not very efficient
and would require to know all class names of the ontology.

– The transformation creates a limited number of facts. One for every class
instantiation and one for every property instantiation. The number of differ-
ent relations depends on the number of classes and properties defined in the
ontology. One can expect to get a very limited number of facts per relation.
While the number of facts remains manageable the number of different rules
grows linear with the complexity of the ontology (the knowledge included
within). See Table 1 for the number of rules needed to express a given OWL
statement.

– The names of the relations used and the structure of the rules involved vary
from ontology to ontology. Consequently precompilation or query optimiza-
tion become an real issue in this approach.

Possible Improvements. Two things have to be done to overcome the limi-
tations mentioned above.

1. The rules and facts have to be pushed to a meta level, where names of
concepts and properties become arguments of “meta predicates”. As a result
concept and property names can be reached from within the logic program
easily.

2. We should try to get a constant set of rules valid for all ontologies accom-
panied by a set of fact predicates with constant names. Like this queries
would look the same for every single ontology with the only difference in the
amount of facts that have to be processed to get an answer.

The following section will suggest an approach which will produce a logic pro-
gram following the above considerations.

4 The Meta Mapping Approach

This section will describe our approach of mapping an ontology into a logic
program suitable for a deductive database. We will show that even if an ontology
grows in complexity the resulting logic program will have a constant number of
rules and predicates. And we will show how ABox as well as TBox reasoning
become possible without the limitations from above.

4.1 The Basic Idea

Basically we convert the OWL statements contained in an ontology into a set
of facts reflecting the content of the ontology. Coming from the Direct Mapping
approach we basically push all facts defined there to a meta level comparable (at

least in parts) to the HiLog [CKW93] approach which has a higher-order syntax
and allows terms to appear in places where predicates and atomic formulas occur
in FOL. The meta mapping is realized by two new relations, which collect all
facts defined in the various relations of the Direct Mapping approach.

Class Instantiation. Asserting instance i to be of class C results in instanti-
ating the binary relation named type in the following way:

type("i", "C").

Property Instantiation. Likewise property instantiations are mapped into a
relation named propInst with three arguments and constant name propInst.
Arguments are the property name P, instance name i and property value v:

propInst("P", "i", "v").

Compared to the “Direct Mapping” Approach we avoid having one additional
relation per property definition, by pushing the relation names into predefined
“meta relations”. As a consequence concept and property names are now easily
accessible from within the logic program. Table 2 compares the resulting logic
program fragments from Examples 9 and 10 for both approaches.

Table 2. Individual and property definition in the different approaches

Direct Approach suggested
in [GHVD03]

Our Meta Approach

Fluffy is a Dog Dog("Fluffy"). type("Fluffy", "Dog").
Fido is the Occupant

of Fidos-Kennel
Occupant("Fidos-Kennel",
"Fido")

propInst("Occupant",
"Fidos-Kennel", "Fido").

Handling of Class Constructors. Let us once again have a look at the very
basic OWL fragment stating that concept Dog is a subclass of concept Mammal
as defined in Example 1. The Direct Mapping approach would create a rule
which would say that every individual of type Dog is also an individual of type
Mammal (See Example 13). Please note that the explicit knowledge of the subclass
relationship gets lost. All we still know is that every Dog is also a Mammal. In the
Meta Mapping approach subclass relationships or any other kind of constructors
are not converted into a rule covering the meaning of the statement but into a
fact which states, that the ontology defines such a relationship. Consequently
the number of rules is not increased if a new class is constructed and no new
relations are needed, as there is a fixed number of predefined relations, reflecting
the vocabulary of OWLP Lite. The above example would consequently look like
this in the Meta Mapping approach:

isSub("Dog", "Mammal"). [Ex. 14]

In order to reflect the underlying semantic of the introduced meta relations,
we will have to add some rules, which work on the given facts. The following
rule defines that if an individual I is instance of concept Y and Y is subclass of
concept X, I is also an individual of class X:

type(I, X) :- isSub(Y, X), type(I, Y).

As the rule can be used with any combination of bound and free variables,
every kind of class-instance query (ABox reasoning) is possible (in contrast to
the Direct Mapping approach). Additionally the transitivity of the subclass re-
lationship is covered by the following rule:

isSub(X, Y) :- isSub(X, Z), isSub(Z, Y).

As you can see the above rules are completely independent of any entities
defined in the ontology and can thus be used for every ontology. With the com-
bination of the ontology specific facts and the general rule we can now perform
all A- and TBox queries.

Table 3. Shows how A- and TBox reasoning is performed in the different approaches

Query Meta Approach Direct Approach

Is given individual i in-
stance of given class C?

?type("i", "C"). ?C("i").

List all instances of given
class C.

?type(I, "C"). ?C(I).

List all classes given in-
dividual i is instance of.

?type("i", C). Manually go through ev-
ery known class C and
check for ?C("i").

Check if given class C is
subclass of given class D.

?isSub("C", "D"). Create new instance iC
of class C and check
whether iC is also in-
stance of class D.

List subclasses of given
class C.

?isSub(X, "C"). Manually go through ev-
ery known class D cre-
ate new instance iD from
this class. Check whether
iD is also instance of C.

While the queries in our Meta Mapping approach only require basic knowl-
edge of the entities defined in the ontology, Direct Mapping approach requires
complete knowledge of all class names defined to be able to perform any class
hierarchy query. This constitutes a big disadvantage for the user, as he either
has to keep track of all class names and the results of his queries are always
questionable or he has to provide and use additional predicates providing class
(and property) names.

4.2 The Rule Set

In the above section we mentioned two rules which provide the logic behind the
meta level relations we defined to store the ontologies knowledge. Depending on
the number of different constructors used in the ontology this set of rules will vary
in size. But the size of this rule set is not depending on the size or complexity
of the ontology. E.g. if an ontology uses the intersectionOf statement the
corresponding rules have to be added to the logic program. Any further use of
the intersectionOf statement will not increase the rule set. Nevertheless for the
following considerations we assume the rule set to be constant. This is achieved
by working with the complete rule set, containing rules for every OWLP Lite
statement no matter if they are used in the ontology or not. Table 4 shows some
of the required facts for comparision with the Direct approach (see Table 1).
Table 5 gives a nearly complete summary of the required rules and facts of our
Meta Mapping approach.

Table 4. Shows OWL statements and there representation in a logic program

OWL Abstract Syntax
Definition of class c

DLP Statements
Fact set Fc

|Fc|

SubClassOf(c b) isSub(c, b). 1

SubClassOf(c unionOf(b1 ... bn)) rhsUnionOf(c, {b1,..., bn}). 1

SubClassOf(c intersectionOf(b1 ... bn)) rhsIntersectionOf(c, {b1,..., bn}). 1

SubClassOf(intersectionOf(b1 ... bn) c) lhsIntersectionOf(c, {b1, ..., bn}). 1

SubClassOf(c restriction(p
allValuesFrom(b)))

rhsAllValuesFrom(c, p, b). 1

SubClassOf(restriction(p
someValuesFrom(b)) c)

lhsSomeValuesFrom(c, p, b). 1

4.3 Influence of the Ontology’s Size

Again we have to consider the size of the resulting logic program in dependence of
the size and complexity of the given ontology. With I being the set of individuals,
P the set of properties defined in the ontology, V the property values defined,
C being set of concepts defined within the ontology and finally Fc with c ∈ C
being the set of facts required to express concept c we get an total of

|I|+ |V|+
∑
c∈C
|FC| (4)

facts while the number of different predicates as well as the number of dif-
ferent rules remains constant independent of the ontology. Depending on the
implementation – and the optimizations within – these numbers may vary but

Table 5. Shows a selection of the rules required in the Meta Mapping approach.

DL syntax “Meta Mapping” representation

i : C type("i", "C").

type(I, C) :- type(I, Z), isSub(Z, C).

If individual I is instance of Z and Z is subclass of class C, I
is also instance of class C.

(i, v) : P propInst("P", "i", "v").

propInst(P, I, V) :- propInst(Q, I, V),

subPropertyOf(Q, P).

If an instantiation I,V holds for property Q, it also holds for
any property P that Q is subproperty of.

C v D isSub("c", "d").

isSub(C, D) :- isSub(C, Z), isSub(Z, D).

The subclass relationship is transitive.

P v Q subPropertyOf("P", "Q").

subPropertyOf(P, Q) :- subPropertyOf(P, Z),

subPropertyOf(Z, Q).

The subproperty relationship is transitive.

> v ∀P.C domain("P", "C").

type(I, C) :- propInst(P, I, V), domain(P, C).

If instance I is in the domain of a relation P with a domain
restriction on class C, then I is an instance of C.

> v ∀P−.C range("P", "C").

type(V, C) :- propInst(P, I, V), range(P, C).

If instance V is in the range of a relation P with a range re-
striction on class C, then V is an instance of C.

C vM1u· · ·uMn rhsIntersectionOf("C", {"M1", ..., "Mn"}).

isSub(C, M) :- rhsIntersection(C, S), member(S, M).

Class C is subclass of any of the members of the intersection.

M1u· · ·uMn v C lhsIntersectionOf("C", {"M1", ..., "Mn"}).

oneOfOtherType(I,S) :- member(S,M), not type(I,M).

type(I, C) :- lhsIntersectionOf(C, S),

not oneOfOtherType(I, S).

An Individual I is an instance of C if there is no member of
the intersection of which I is not an instance of.

C v ∀P.D rhsAllValuesFrom("C", "P", "D").

type(I, D) :- rhsAllValuesFrom(C, P, D),

type(X, C), propInst(P, X, I).

If instance X of class C is related to an individual I via a
property P and the range of P is locally restricted to D in C,
then I must be of type D.

P+ v P transitiveProp("P").

propInst(P, I, V) :- transitiveProp(P),

propInst(P, I, Z), propInst(P, Z, V).

If P is a transitive property then for all property instantiations
I,Z and Z,V also the instantiation I,V holds.

either way, we are talking about a rule set, which should not exceed 20-40 rules
and about the same quantity of different predicates.

More precisely linear increase of ontology size and/or complexity leads to
a linear growth of facts but a constant set of relations and rules. In contrast
applying the Direct Mapping approach would result in linear growth of relations,
rules and facts. The following section provides a detailed performance analysis
with respect to the different approaches in a logical database.

5 Evaluation

In the preceding sections of this paper we discussed two different approaches
for mapping ontologies into description logic programs. While introducing the
approaches, we came across a number of conceptual issues, which in some cases
resulted in a loss of functionality. In other cases we presumed influence on the
preformance of the resulting logic program. Especially as ontologies are expected
to rise in size (and complexity), we will have to think about reasoning systems,
which are not entirely depend on main memory (like todays tableau reasoners
or prolog) but are able to work on data in secondary storage structures, which
immediately leads to database technology.

5.1 The Selected Database System

Deductive Database Systems. Due to the representation of the ontologies as
logic programs it is obvious to chose a logic database or – to be more specific – a
deductive database to store and query the knowledge contained in the ontologies.
In the years 1988-1992 a number of deductive database systems like LDL, NAIL,
LOLA and CORAL have been developed [Spe91]. Novel features of this systems
have been:

1. Logic programs similar to Prolog replaced SQL as database definition and
query language.

2. Arbitrary recursion (left/right hand side, quadratic) where introduced.
3. Deductive Databases abolished NF1 and allowed arbitrary (even recursiv)

term structures.

Basics of logic databases are a set at-a-time (not tuple at-a-time) bottom-up
(not top-down) evaluation. To do so logic programs are converted into a rela-
tional algebra program internally, where each predicate symbol is represented
by a relation, rules correspond to views and each fact can be understood as an
entry in a base relation. Additionally in the rule body joins are created from con-
junctions over predicates with equal variable names and instantiated terms are
converted into selections. Save negations become antisemijoins (a special kind
of set difference) and recursion is evaluated using delta iteration or seminaive
iteration respectively. Finally the transition from rule body to head becomes a
projection.

Some of these features, particularily recursion and abolishment of NF1, have
been re-adopted by the relational database technology. Consequently you will
find some of the above in SQL:99, but there are still limitations like quadratic
recursion (which is not used in either the Meta-3 nor the Direct Mapping ap-
proach).

Even though in the future a further mapping of the logic programs into
SQL:2003 might be desirable, we base the following considerations upon a de-
ductive database and thus stay with the logic programs as described in Sections 3
and 4. As both – relational and deductive – systems work with relational algebra
programs internally, we assume only minor influence on the following discussion.

The Deductive Database System Coral. For the implementation of our
test cases we have chosen the deductive database system CORAL [RSSS94], as
it is a stable, well tested and easily available system. Special technical features
of other deductive databases that would qualitatively lead to different results
will also be addressed in the following.

5.2 Measurements

When measuring the performance of a deductive database processing a logic
program two measures have to be considered. First we need to have a look at the
time needed to read the logic program into the database and second we have to
measure the time it takes to run the logic program (perform a given query). There
are certain optimization steps like magic set transformation, which are performed
at different times depending on the database system used. E.g. the deductive
database system LOLA [FSS91] is performing this optimization task after the
query is known, only considering those rules required for the specific query. In
contrast the CORAL system is performing the magic set transformation (and
other optimization like supplementary magic) when the logic program is initially
loaded into the database. Thus all binding combinations4 are precompiled in
CORAL. This gives us the opportunity to measure the time needed to perform
this optimization tasks independetly from the time needed to perform certain
queries.

5.3 Testcase

We used a set of different ontologies for our performance tests. Even though
these ontologies vary in size and complexity our main focus was the influence of
the ontologies size.

3 In fact you will find an example of a quadratic recursion in Section 4.1. This recur-
sion can easily be converted into a left/right hand side recursion in an optimized
implementation.

4 arguments in the query may be bound (without variables) or free (variables or terms
containing variables).

Testcase 1. The first set of ontologies, consisted of the a class hierarchy of 20
classes with a varying number of individuals. We used this test case to show the
influence of the ontology’s size. We measured the time needed for preprocessing
and time needed to process a class instance query.

Testcase 2. This test case consisted of a set of ontologies with a growing number
of classes and a constant number of one instance per class. It was used to show
the influence of the complexity of an ontology. We measured the time needed for
preprocessing and one class subsumption query.

5.4 Test Environment

All tests were performed on a Pentium II (350 MHz) Linux system (kernel
2.4.19) with 250MB main memory running CORAL Version 1.5.2. Time Mea-
surement was performed by the CORAL builtin commands reset timer(). and
display timer()., which where included in the logic programs. We present
“CPU Time” measurements in this paper.

5.5 Results

Loading and Preprocessing the Logic Program. Figures 2 and 1 show
that, our Meta Mapping approach outperformed the Direct Mapping approch
when preprocessing the logic program. In fact preprocessing time grows linear
with the number of instances and classes defined in the ontology. In contrast
to the Direct Mapping approach, showing exponential rise (see Figure 2) of
preprocessing time with a growing number of classes. In our test environment
we very easily reached a point where CORAL was not able to load such a logic
program within reasonable time5 while loading the same ontology converted into
a Meta Mapping approach logic program took only seconds. This also meant that
we were unable to perform a comparison of query time for really huge ontologies.
Only the Meta Mapping approach is able to handle this case.

Querying the Logic Program. When comparing query times you have to keep
in mind a number of issues which we will highlight in the following paragraphs.

Some queries can’t be performed in the Direct Mapping approach. For ex-
ample you can’t get a list of all concepts defined in an ontology. Thus there is
nothing to compare with the Meta Mapping approach.

Additionally there are a number of queries which cannot be performed in
the logic program itself when using the Direct Mapping approach. Some queries
would require some kind of manual interaction or scripting which – again – makes
it useless to compare the runtime of queries.

CORAL as well as other deductive database systems work as described in
Section 5.1 but in general do not use secondary storage structures, by now. It is
5 We aborted all tests after 30 minutes.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000

Seconds

Instances

Meta Approach

eee e e e e e e e e

e
Direct Approach

r rr r r
r r
r
r
r

rr

Fig. 1. Shows the time needed to preprocess the ontologies of Testcase 1 (see Section
5.3).

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

Seconds

Concepts

Meta Approach

eee e e e e e

e
Direct Approach

rr r r r r
r

rr

Fig. 2. Shows the time needed to preprocess the ontologies of Testcase 2 (see Section
5.3).

thus questionable whether efficient indexing mechanisms have been implemented.
With a rising number of facts (tuples) such indexing mechanisms would be highly
desirable. Indeed first tests indicate that CORAL lacks such mechanisms, which
especially slows down the Meta Mapping approach as it has to perform a larger
number of joins (because the average number of conjunctions per rule is higher)
in comparison to the Direct Mapping approach. The Meta Mapping approach
creates only few different relations with a comparatively large number of tuples.
This is a procedure as meant for classical relational systems, which use indexing
mechanisms like B-trees. In such systems we would thus expect only logarithmic
increase in response time for the Meta Mapping approach. In fact we currently
measure linear behavior for both approaches (as can be seen in Figure 3).

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 1000 2000 3000 4000 5000 6000

Seconds

Instances

Meta Approacheee e e e e e e e e
e

Direct Approach

rrr r r r r r r r r

r

Fig. 3. Shows the linearity of the query time in Testcase 1 (See Section 5.3). The
quotient of the number of instances and the query processing time is constant.

When having a look at current query time measurements we realize that the
Direct Mapping approach answers faster (wherever it is able to deliver an answer
at all) than the Meta Mapping approach. However we expect contrary results
with a growing number of instances (which we cannot load into the database
system using the Direct Mapping approach) and indexing performed on the
relations.

In addition, CORAL performs the magic set transformation and other op-
timizations during the initial loading of the logic program. Other systems like
the deductive database system LOLA perform these optimizations during query

processing. As you can see from the measurements performed this time is sig-
nificantly higher (Figures 1 and 2) and growing exponatially (Figures 2) with
the Direct Mapping approach. We can thus assume, that using the deductive
database system LOLA (or any system working the same way) the query time
would grow exponentially using the Direct Mapping approach but still remain
linear using the Meta Mapping apporach.

6 Summary

The Semantic Web aims at extending the current Web in a way such that content
of Web pages will not exclusively be meaningful for humans. Here, ontologies play
a key role by providing machine processable semantics. A recent W3C working
draft proposes OWL as ontology language for the Web. However, modeling in
OWL requires quite some formal logical skills as well as elaborated reasoners
which are not available of the shelf so far. In addition, reasoning systems very
likely have to cope with much larger ontologies consisting of a huge number
of individuals in the near future. However, most of todays knowledge processing
systems are not designed to use secondary storage mechanisms and will therefore
not meet upcoming scalability requirements. In a first step, it therefore seems
promising to focus on the intersection of OWL with Logic Programs suitable
to adopt logical database technology. Logical databases provide a declarative
representation and querying language as well as efficient and persistent data
storage. A mapping of OWL into Logic Programs has recently been proposed by
[GHVD03]. In this Direct Mapping every class or property definition maps into
a rule and every class or property instantiation into a fact of the resulting logic
program. However, this approach has some representational as well as practical
drawbacks. A conceptually disadvantage with far reaching consequences is the
fact, that classes as well as properties are not accessible unless their names are
explicitly known to the user

We therefore proposed a new approach using a mapping into a logical repre-
sentation on an appropriate abstract meta level similar to a subset of the HiLog
[CKW93] higher-order syntax. We showed that this Meta Mapping overcomes
this limitations. Classes as well as properties are accessible as first class entities
within this mapping allowing comfortable query formulation.

In our approach an ontology will be mapped into a logic program consisting
of a constant number of rules with a linear growing number of facts proportional
to the number of classes and properties. In the Direct Mapping the number of
relations in the resulting logic program grows linear with the number of class
and property definitions of the original ontology. When benchmarking both map-
pings it turned out that even a linear growth in relations of the Direct Mapping
results in fatal performance during preprocessing while loading the program into
the CORAL deductive database. Our experiments also observed a linear growth
of time for class instance and subclass querying with an increasing number of
individuals for both approaches. However, in case of the Meta Mapping approach

better results are expected for systems with secondary storage indexing mecha-
nisms used in commercial systems today.

In consideration of the above we favor the Meta Mapping approach because of
its significant conceptual advantages, higher expressivity and better performance
for storing and evaluation of large scale real world ontologies in logical databases.

References

[CKW93] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foun-
dation for higher-order logic programming. Journal of Logic Program-
ming, 15(3):187–230, 1993.

[FSS91] Burkhard Freitag, Heribert Schütz, and Günther Specht. LOLA - A Logic
Language for Deductive Databases and its Implementation. In Procc. 2nd

International Symposium on Database Systems for Advanced Applications
(DASFAA ’91), pages 216 – 225, Tokyo, Japan, April 1991.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description Logic Programms: Combining Logic Programms with De-
scription Logic. In Proceedings of the 12th International World Wide
Web Conference, Budapest, Hungary, May 2003.

[Gua98] Nicola Guarino. Formal Ontology and Information Systems. In Proceed-
ings of FOIS’98, pages 3 – 15, Trento, Italy, June 1998.

[Hef03] Jeff Heflin. Web Ontology Language (OWL) Use Cases and Require-
ments. W3C Working Draft, March 2003.

[PSHH03] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax. W3C Working
Draft, March 2003.

[RSSS94] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Se-
shadri. The CORAL Deductive System. VLDB Journal: Very Large Data
Bases, 3(2):161 – 210, 1994.

[Spe91] Günther Specht. LOLA, LDL, NAIL!, RDL, ADITI and STARDUST: A
Comparision of Deductive Database Systems. Technical report, Institut
für Informatik, TU München, 1991.

[vH02] Frank van Harmelen. The Complexity of the Web Ontology Language.
IEEE Intelligent Systems, 17(2):71 – 72, March/April 2002.

[vHHH+03] Frank von Harmelen, Jim Hender, Ian Horrocks, Deborah L. McGuiness,
Peter F. Patel-Schneider, and Lynn A. Stein. OWL Web Ontology Lan-
guage Reference. W3C Working Draft, March 2003.

DESIGN REPOSITORIES ON THE SEMANTIC WEB
WITH DESCRIPTION-LOGIC ENABLED SERVICES

Joseph B. Kopena? and William C. Regli??

Geometric and Intelligent Computing Laboratory
Department of Computer Science, College of Engineering

Drexel University
http://gicl.cs.drexel.edu/

Abstract. All engineering firms maintain archives of previously designed arti-
facts, often in the form of databases of computer aided design (CAD) data. Design
repositories are an evolution of such databases to include more heterogenous in-
formation and to provide enhanced capabilities through the application of knowl-
edge representation techniques. This paper introduces on-going work on applying
description logic and the Semantic Web to constructing such design repositories.

1 Introduction

Engineers spend large portions of their time searching through vast amounts of corpo-
rate legacy data and catalogs searching for existing solutions which can be modified to
solve new problems or to be assembled into a new device [1]. This requires utilizing
databases or online listings of text, images, and computer aided design (CAD) data.
Browsing and navigating such collections are based on manually-constructed catego-
rizations which are error prone, difficult to maintain, and often based on an insuffi-
ciently dense hierarchy. Search functionality is limited to inadequate keyword scanning
or matching on overly simplistic attributes.

Design repositories[2, 3] are an evolution of traditional design databases. They aim
to overcome existing limitations by applying knowledge representation techniques to
storing and working with artifacts in the collection. Function, behavior, rationale, and
other aspects of the designs are captured and reasoned on to enable search, categoriza-
tion, and other tasks in support the engineer, similar to case-based reasoning [4]. Fig-
ure 1 depicts this process. Design repositories typically also extend design databases
by including more heterogenous information, incorporating such items as CAD data,
documentation, simulations, animations, and analyses. Many also have the explicit goal
of providing support throughout the lifecycle of a design, as opposed to focusing solely
on detailed design geometry suitable for manufacturing.

This paper introduces and briefly overviews work on applying description logic and
the Semantic Web to constructing design repositories. An ontology of electromechan-
ical devices based on function and flow is used in representing, classifying, and com-
paring such devices. In particular, the application of least-common-subsumer and most-

? At the National Institute of Standards and Technology during preparation of this document.
?? Also of the Department of Mechanical Engineering; Email:regli@drexel.edu

Restriction:15a8767:f0c64c781d:-7ff9

minCardinalityQonProperty hasClassQ

List:15a8767:f0c64c781d:-7fd6

restfirst

List:15a8767:f0c64c781d:-7fda

firstrest

List:15a8767:f0c64c781d:-7fbb

first rest

List:15a8767:f0c64c781d:-7faa

rest

first

List:15a8767:f0c64c781d:-7fb3

firstrest

Class:Sensor

intersectionOf

Class:15a8767:f0c64c781d:-7fdf

intersectionOf

List:15a8767:f0c64c781d:-7feb

rest first

Class:Light

subClassOf

Class:15a8767:f0c64c781d:-7faf

intersectionOf

Restriction:15a8767:f0c64c781d:-7fc2

hasClassQ

minCardinalityQ onProperty

Restriction:15a8767:f0c64c781d:-7ff2

onProperty hasClassQ minCardinalityQ

Class:Measure

Class:AnalogElectricalValue

subClassOf

List:15a8767:f0c64c781d:-7fe3

restfirst

List:15a8767:f0c64c781d:-7fe7

rest first

Restriction:15a8767:f0c64c781d:-7fcf

hasClassQminCardinalityQ onProperty

Class:CDS-Cell

intersectionOf

Restriction:15a8767:f0c64c781d:-7fff

minCardinalityQ hasClassQonProperty

List:15a8767:f0c64c781d:-7fb7

rest first

Restriction:15a8767:f0c64c781d:-7fc9

hasClassQ

onPropertyminCardinalityQ

Class:Artifact

List:15a8767:f0c64c781d:-7fa6

firstrest

nil

MeasureSignalinput

Flow

output

1

value

node15a8767_f0c64c781d__7ff0

node15a8767_f0c64c781d__7ffd

value

node15a8767_f0c64c781d__7ff7

value

node15a8767_f0c64c781d__7fcd

value

node15a8767_f0c64c781d__7fc0

value

1

value

node15a8767_f0c64c781d__7fc7

function

1

1

1

1

LEGOGear TBrick

LEGOPiece

TechnicPiece

Piece4Holes

� � � � � � � � � � � 	 � �
 � �

 One of the mo� or educational robots are light

sensors. With even the simplest of use � � � m tasks such as� � ! � " � � � � " � � # � � � � � � � " � � � � � � � � " � � � � � k corners, following other robots, etc. More� � ! � � � � � � � � � � � � � � � � � � � # � � " � � � � � � � d detecting obstacles.

 The most comm � � � � � � � � � � � � � � � � � � � � � � # � � � � � " � � � � � $ � % & � � � � � �
particular type of the f � � � � � � � � � � � � � ' � � � � � � (� � � � � � � � � � %) � # % * � � � � � � �� � � � � � � � � ! � � � � � � � � � � + � � � � (� � � , � r from any electronic � � � � � � � � � � � � � � � � " � � � � � � � � � � � � � %

A CDS cell as commonly packaged. Function and flow dia" � � � � ' - (' � � � .' - (' � � � � � � � � � � � � � � � � � � � ! � � � " � � � � � sors. When no light is present their impedance is extremely high, and
conversely very low w � � � � � � � " � � � � � � � � � � � % . � s, these cells generally don’t seem
to have as large a r � � " � � ! � � � � � � � � # � � � � � � � # � � / � � � � � � � � � " � � � � � � � � , % These cells also have a much
slower reaction time � � � � � � � � � � � � � � � � " � � � � � � " � � � � � � � � � � ! � � � � � " � � � � � � � � � � � %
 These sensors are straightforward to wire. They’� " � � � � � � � � � � or
input pin and the � � � � � � � " � � � � � % 0 � � � ow this link for a discussion on connecting phototransistors to a1 � � � � 2 � � � � % * � � � � ' - (' � � � � � � � � � � � � n the same fashion except you don’t have to worry about which leg" � � � � � # � � � � � � � %
[Note: This page is a small demonstration of marking up pages about robots and their components. You3 4 5 3 6 7 3 8 9 5 : ; < = > ? @ A B 5 C 7 D < = 6 7 5 8 : 9 C < < : ; < E 4 F 8 G H I J ; 7 3 ; 3 9 F F < C H 9 5 D C : 9 : ; < K G 5 3 : 7 9 5 4 5 D K 6 9

w

diagram above. The diagram isn’t truly necessary as it currently has no bearing on the text. I note that theE 4 F 8 G H 7 C 7 5 4 J < 7 F D K 9 F E L L L 4 3 6 4 C C 9 F 7 < 5 : < D M 7 < J L L L J ; 7 3 ; B : ; 7 5 8 J 7 6 6
 be odd in practice. Instead, the

device will probably be modeled as an instance in any actual system we develop. The markup’s very

simple currently. Some of the interesting things to add is the additional information present in the text,

such as the note about its response time and not
< C 9 5 3 9 5 5 < 3 : 7 5 N 7 : : 9 9 : ; < F D < M 7 3 < C O P Click to open markup

tool or use "View

Source"

Q R S T U V W X V Y Z [T R \] Q ^ _] ` a Y b Y T] Y ` c
 - Joe Kopena

c [` R U Y ` W d d U e c a _ ` R f d g h i g h j k l i i] i g] k m

Categorize/BrowseBuild Knowledge BaseExtract SemanticsInput Artifacts

Mouse

Bottom Case Top Case Buttons Mechanism Screws (4) Cord

Ball Rollers (2) Ballhouse IC Card Cable Tensioner

Roller Arm Spring Dome Lid

nporqtsvuxwzy|{~}�y�uxw����

Electrical

Motor� � � � � � � � � � � � � � � � � �
y LEGOMotor

LEGO9VMotor

LEGOPiece

Artifact

LEGOGear

Gear24

CommonGear

TBrick

TBrick1x4

LEGOPiece

TechnicPiece

Piece4Holes

Search Results* � � � � � � # � � " � � � � � # � � � � � � � � � your search:

mailto:joe@plan.mcs.drexel.edu - Joe Kopena updated://thursday/9-19-02?11.19.28

LD3648LD3647

LD3649LD6630

(closest match)

Fig. 1.The design repository process.

specific-class induction to providing design repository inferences not possible with tra-
ditional database implementations is introduced. The role of the Semantic Web in cre-
ating a new kind of public, distributed, multi-source design repository is also discussed.

The organization of this paper is as follows: Section 2 compares this effort to re-
lated work in assembly representation and design repositories. Description logic-based
knowledge representation and reasoning for design repositories is described in Sec-
tion 3. Section 4 discusses design repositories on the Semantic Web. Finally, Section 5
presents some closing conclusions.

2 Related Work

This section analyses work on assembly representation and repository reasoning.
Most familiar to engineers are the representations of devices used in Computer

Aided Design (CAD) packages. At the core of these are the solid models of the de-
vice’s components. Upon these are placed constraints in the form of analytic geometry
equations describing the motions present in the mechanism [5–7]. However, such equa-
tions provide little basis for reasoning beyond simulation through constraint solving. In
addition, current CAD does not typically capture abstract information such as function
in any form suitable for automated reasoning or even efficient human use, nor informa-
tion across multiple domains (e.g. electrical and mechanical).

Also familiar to engineering design students are notations of function as in [8].
Many representations explicitly capture the functions present in an assembly [9–11].
These typically capture function information at variable levels of abstraction and across
multiple domains but lack the formal framework to support automated reasoning. Repos-
itories using such representations often rely on simple keyword and attribute matching.

Qualitative physics and logic-based representations [12–16] attempt to define the se-
mantics of assemblies in more abstract manners than the geometric equations employed
in CAD in order to provide for richer inferences. However, these systems typically do
not address many types of inference associated with design repositories, such as deter-

Fig. 2.Typical CDS Cell.

mining similarities between devices. In addition, the expressiveness of the languages
used often incurs significant cost in terms of computability and tractability.

3 Representation and Reasoning

Description logic has been chosen as the formal framework for this work because of
its favorable complexity results and inference capabilities. In order to promote efficient
reasoning, careful attention has been paid to the class expression constructs used. The
central ontology is simple enough to be expressed inALEN1. For simplicity, in this
paperEL is used in the examples while in practiceALEN is also used for these.

For reasons of space2, the ontology defining the representation is not given in this
paper but is instead shown through examples. The core of the ontology defines a simple
representation of artifacts based on function and flow [9–11]. Extensions to the core on-
tology define extensive taxonomies of functions and flows derived from those presented
in [9] and [10], which were developed from large surveys of engineers.

Figure 2 depicts a typical artifact, a cadmium sulfide cell. These cells are used as
light sensors. They are photoresistors; the presence of light decreases the resistance
encountered by electricity flowing across the cell. This information can be represented
as in Figure 3(a) by afunction and flow diagramsimilar to those presented in [9] but
not identical. By interpreting the diagrams as a set of objects and relations, they can be
represented in a description logic model as in Figure 3(b).

This representation does not rigorously and unambiguously capture the semantics
of mechanisms. Instead, it provides a language expressive enough to describe and dis-
tinguish devices while maintaining efficiency and computability. It is neither so formal
as to prevent practical computing, nor so informal as to prohibit automated reasoning.

Classificationof objects is a standard description logic inference. It can be used to
search for devices meeting specific criterion as well as to apply a manually developed
categorization scheme. For example, the class of electronic sensors could be defined as
those objects which measure some input and return an electrical signal:

Electronic-Sensor≡ Artifactu∃function.[Measureu∃input.Flowu
∃output.[ElectricaluSignal]].

1 A good reference for description logic expressivity notations is [17].
2 (and the lead author breaking an arm in five places shortly before the submission deadline...)

Assembly:CDS-Cell-Sensor

Measure

function

VisibleLight

input

Component:Pin1

achievedBy

Component:Cell

achievedBy

Component:Pin2

achievedBy

AnalogElectricalSignal

output

Import

function

DC5v

flow

Import

function

Regulate

function

Light

flow

Electrical

flow

Export

function

DC5v

flow

(a) Simplified function and flow diagram.

〈 〈 type CDS-Cell-Sensor Assembly〉

〈 function CDS-Cell-Sensor node7〉

〈 function Pin2 node8〉

〈 type node0 AnalogElectricalSignal〉

〈 flow node1 node2〉

〈 flow node3 node4〉

〈 function Cell node3〉

〈 type node2 DC5v〉

〈 type node5 Light〉

〈 type node6 VisibleLight〉

〈 achievedBy node7 Cell〉

〈 type node3 Regulate〉

〈 type node7 Measure〉

〈 type node1 Import〉

〈 input node7 node6〉

〈 type Pin1 Component〉

〈 type Cell Component〉

〈 achievedBy node7 Pin1〉

〈 type Pin2 Component〉

〈 type node9 Import〉

〈 type node4 Electrical〉

〈 function Cell node9〉

〈 achievedBy node7 Pin2〉

〈 flow node9 node5〉

〈 flow node8 node10〉

〈 type node8 Export〉

〈 output node7 node0〉

〈 function Pin1 node1〉

〈 type node10 DC5v〉

〉

(b) Figure 3(a) as model.

CDS-Cell-Sensor≡ Assemblyu∃function.[Measureu∃input.VisibleLightu
∃achievedBy.[Componentu∃function.[Importu∃flow.DC5v]]u
∃achievedBy.[Componentu∃function.[Importu∃flow.Light]u∃function.[Regulateu
∃flow.Electrical]]u∃achievedBy.[Componentu∃function.[Exportu∃flow.DC5v]]u

∃output.AnalogElectricalSignal].

(c) Function and flow diagram as class description.

Fig. 3.Function and flow modeling of a Cadmium Sulfide (CDS) Cell, a common photoresistor.

The representation in Figure 3 matches this definition, provided thatAssembly⊆
Artifact, VisibleLight⊆ Flow, andAnalogElectricalSignal⊆ ElectricaluSignal.

Determination ofsubsumptionrelations between classes, another standard descrip-
tion logic inference, can be used to organize the knowledge base for more efficient
classification. A related but less common inference is induction of theleast common
subsumerof sets of classes [18–20]. The least common subsumer is the class of which
each class in the given set is a subclass and for which there exists no subclass of which
each class in the given set is a subclass. This is often used in conjunction with the abil-
ity to develop themost specific classof an object. The most specific class defines the
necessary and sufficient conditions for membership in the class consisting of the given
object—it is a mapping of all the properties of the given object into a class definition.

Least common subsumer inference can be used in a design repository in several
ways. It can facilitate the construction of a categorization scheme in a bottom-up fash-
ion from very specific classes; these tend to be more intuitive for users not trained in
knowledge representation to create [21]. It can also be combined with most specific
class induction to derive a categorization from given devices, as opposed to develop-
ing onea priori. The novelty of this capability in this domain is the ability to provide
automatically generated, sophisticated categories for browsing/manual search, knowl-
edge discovery of similarities, and a form of searching where the query is placed into

the context of the hierarchy and the user can browse through relationships to existing
models, rather than being presented solely with items which match exactly.

Figure 4(c) shows the most specific class for the cadmium sulfide cell representa-
tion in EL, which consists of conjunctions and existential restrictions3. Figures 4(a)
through 4(d) depict other devices and their function and flow diagrams. Most specific
classes for these are shown in Figure 4(e). By inferring least common subsumers for
these classes, it is possible to automatically construct a hierarchy of induced class de-
scriptions. Classes in the hierarchy generated from these devices include at the top level
∃function.Measureand∃function.Produce, provided thatDetect⊂Measure, partition-
ing the devices into sensors and effectors. At the other end of the hierarchy, the most
specific classes ofCDS-Cell-SensorandPhototransistorwill have been inferred to be
subclasses of an induced class identical to the two classes, a result of their identical
models and denoting a great deal of similarity between the two devices.

4 The Role of the Semantic Web

Utilizing current Semantic Web technology, design representations can be embedded
inside Web resources. Figure 5(a) gives the source for Figure 3(a), encoded using
the Resource Description Framework (RDF) [22], DARPA Agent Markup Language
(DAML) [23], and the DAML version of the ontology described in the previous sec-
tion. In this form it can be cleanly incorporated into webpages such as in Figure 5(b).

One feature of this capability is that the data sources are readily available for con-
sumption by a wide variety of Web users. Existing search engines and directory services
may index and retrieve them using standard techniques. Human users may come upon
them through links from other webpages, with or without such markup. Importantly,
they will be accessible to many different kinds of repositories distributed across the In-
ternet. The information present in the markup can be easily read into a database-based
system, which may offer the best performance for classification and applyinga priori
categorizations, as well as into description logic-based repositories or other systems
with an enhanced set of services, such as automatically inducing categorizations.

Another feature is that the data sources can be easily published by any organization
or individual with an interest in making their designs available for human Web traf-
fic and multiple search engines, databases, and design repositories. This may enable:
improved communication and resource utilization between potentially geographically
distributed design groups on a company intranet; enhanced search and navigation ca-
pabilities of catalogs and listings for consumers looking for products, possibly through
third-party portal sites leveraging the semantic markup to achieve increased effective-
ness and coverage; design repository support for a wide range of individuals such as
hobbyists and students with an interest in maintaining a collection of their own designs
or those produced within an entire community of users.

3 In more expressive description logics it might not be.

Assembly:Phototransistor

Measure

function

VisibleLight

input

Component:Pin1

achievedBy

Component:Transistor

achievedBy

Component:Pin2

achievedBy

AnalogElectricalSignal

output

Import

function

DC5v

flow

Import

function

Regulate

function

Light

flow

Electrical

flow

Export

function

DC5v

flow

(a) Phototransistor.

Assembly:Encoder

Detect

function

Material

input

Component:IRPair

achievedBy

DigitalElectricalSignal

output

Detect

function

InfraredLight

flow

Component:Emitter

achievedBy

Component:Detector

achievedBy

Produce

function

InfraredLight

flow

Detect

function

InfraredLight

flow

(b) Break-Beam.

Assembly:Switch

Detect

function

Material

input

Component:Arm

achievedBy

DigitalElectricalSignal

output

Actuate

function

Electrical

flow

(c) Switch.

Assembly:9vMotor

Produce

function

Assembly

achievedBy

UnlimitedRotation

output

Convert

function

Electrical

input

Assembly:Pad

achievedBy

Assembly:Shaft

achievedBy

Rotation

output

Import

function

Export

function

Connect

function

Part

flow

AxleHole

feature

(d) 9V Motor.

Phototransistor≡ Assemblyu∃function.[Measureu∃input.VisibleLightu∃achievedBy.[Componentu∃function.[Importu∃flow.DC5v]]u

∃achievedBy.[Componentu∃function.[Importu∃flow.Light]u∃function.[Regulateu∃flow.Electrical]]u

∃achievedBy.[Componentu∃function.[Exportu∃flow.DC5v]u∃output.AnalogElectricalSignal]].

Encoder≡ Assemblyu∃function.[Detectu∃input.Materialu∃achievedBy.[Componentu∃function.[Detectu∃flow.InfraredLightu

∃achievedBy.[Componentu∃function.[Produceu∃flow.InfraredLight]u∃achievedBy.[Componentu∃function.[Detectu∃flow.InfraredLight]]u∃output.DigitalElectricalSignal].

Switch≡ Assemblyu∃function.[Detectu∃input.Materialu∃achievedBy.[Componentu∃function.[Actuateu∃flow.Electrical]]u∃output.DigitalElectricalSignal].

9vMotor≡ Assemblyu∃function.[Produceu∃achievedBy.[Assemblyu∃function.[Convertu∃input.Electricalu∃achievedBy.[Assemblyu∃function.[Import]

u∃achievedBy.[Assemblyu∃function.[Export]u∃function.[Connectu∃flow.[Partu∃feature.AxleHole]]u∃output.Rotationu∃output.UnlimitedRotation]].

(e) Function and flow diagrams as class descriptions.

Fig. 4.Function and flow diagrams for several other devices.

<rdf:RDF

xmlns:rdf = "&rdf;#" xmlns:rdfs = "&rdfs;#" xmlns:daml = "&daml;#"

xmlns:eng = "ŋ#" xmlns:func = "&func;#" xmlns:flow = "&flow;#"

xmlns =

"http://edge.mcs.drexel.edu/assemblies/tests/iaai03/cds-cell.daml#">

<daml:Ontology rdf:about="#" >

<daml:imports rdf:resource="ŋ" />

<daml:imports rdf:resource="&func;" />

<daml:imports rdf:resource="&flow;" />

</daml:Ontology>

<eng:Assembly rdf:about="#CDS-Cell-Sensor">

<eng:function><func:Measure>

<eng:input><flow:VisibleLight /></eng:input>

<eng:achievedBy><eng:Component rdf:about="#Pin1">

<eng:function><func:Import>

<eng:flow><flow:DC5v /></eng:flow>

</func:Import></eng:function>

</eng:Component></eng:achievedBy>

<eng:achievedBy><eng:Component rdf:about="#Cell">

<eng:function><func:Import>

<eng:flow><flow:Light /></eng:flow>

</func:Import></eng:function>

<eng:function><func:Regulate>

<eng:flow><flow:Electrical /></eng:flow>

</func:Regulate></eng:function>

</eng:Component></eng:achievedBy>

<eng:achievedBy><eng:Component rdf:about="#Pin2">

<eng:function><func:Export>

<eng:flow><flow:DC5v /></eng:flow>

</func:Export></eng:function>

</eng:Component></eng:achievedBy>

<eng:output><flow:AnalogElectricalSignal /></eng:output>

</func:Measure></eng:function>

</eng:Assembly>

</rdf:RDF>

(a) RDF/DAML source for diagram
in Figure 3(a).

CDS Cell Light Sensor

 One of the most common items used on small hobby or educational robots are light

sensors. With even the simplest of uses, they enable the robot to perform tasks such as

navigating towards a light, hiding in dark corners, following other robots, etc. More

advanced uses permit following lines and detecting obstacles.

 The most common of such sensors fall into two categories: photoresistors and phototransistors. One more

particular type of the former are made of Cadmium Sulfide cells. A picture is presented below. These are

commonly available from Radio Shack or from any electronic components catalog pretty cheaply.

A CDS cell as commonly packaged. Function and flow diagram of CDS Cell.

 CDS Cells are photoresistive light sensors. When no light is present their impedance is extremely high, and
conversely very low when no light is present. In contrast to phototransistors, these cells generally don’t seem
to have as large a range of values between the two extremes of light and dark. These cells also have a much
slower reaction time in response to changes in light as they have a large memory effect.

 These sensors are straightforward to wire. They’re bidirectional, so simply connect one leg to your sensor
input pin and the other to ground. Follow this link for a discussion on connecting phototransistors to a
HandyBoard. These CDS Cells connect in the same fashion except you don’t have to worry about which leg
goes to which pin.

[Note: This page is a small demonstration of marking up pages about robots and their components. You

can click on the "DAML Inside" link to see the markup, which corresponds to the function and flow

diagram above. The diagram isn’t truly necessary as it currently has no bearing on the text. I note that the

markup is in a weird form---a class oriented view---which I think will be odd in practice. Instead, the

device will probably be modeled as an instance in any actual system we develop. The markup’s very

simple currently. Some of the interesting things to add is the additional information present in the text,

such as the note about its response time and notes on connecting it to other devices.]

Click to open markup

tool or use "View

Source"

mailto:joe@plan.mcs.drexel.edu - Joe Kopena updated://thursday/9-19-02?11.19.28

(b) Webpage with Figure 5(a) em-
bedded in the source.

Fig. 5.Function and flow model incorporated into Web resource for cadmium sulfide cell.

5 Conclusions

This paper has briefly overviewed work on constructing design repositories for the Se-
mantic Web. Applications of description logic inferences to achieve novel repository
capabilites have been introduced. The motivations for placing such repositories on the
Semantic Web have also been described. A planned future testbed of these ideas is
implementation in support of a university course on small mobile robotics [24]. Cur-
rent work includes the addition of non-standard description logic inferences to DAML-
JessKB, a DAML-native description logic reasoner developed for this project [25], to
demonstrate the utility of such inferences as applied to design repositories.

Acknowledgements:This work supported in part by National Science Foundation (NSF) CA-
REER Award CISE/IIS-9733545 and Office of Naval Research (ONR) Grant N00014-01-1-0618.
Additional support by Honeywell FM&T, AT&T Labs, Bentley Systems and Lockheed Martin,
Naval Electronics and Surveillance Systems. All opinions, findings, and conclusions expressed in
this material are those of the author(s) and not necessarily those of the supporting organizations.

References

1. Ullman, D.G.: The Mechanical Design Process. McGraw-Hill, Inc. (1997)
2. Szykman, S., Bochenek, C., Racz, J.W., Senfaute, J., Sriram, R.D.: Design repositories:

Engineering design’s new knowledge base. IEEE Intelligent Systems15 (2000) 48–55

3. Szykman, S., Sriram, R.D., Regli, W.C.: The role of knowledge in next-generation product
development systems. Journal of Comp. and Inf. Science in Engineering1 (2001) 3–11

4. Fowler, J.E.: Variant design for mechanical artifacts: A state-of-the-art survey. Engineering
with Computers12 (1996) 1–15

5. Lee, K., Andrews, G.: Inference of the positions of components in an assembly: part 2.
Computer Aided Design (1985) 20–24

6. Hoffmann, C.M., Joan-Arinyo, R.: Symbolic constraints in constructive geometric constraint
solving. In: Journal of Symbolic Computation. (1997) 287–300

7. Anantha, R., Kramer, G.A., Crawford, R.H.: Assembly modelling by geometric constraint
satisfaction. Computer-Aided Design28 (1996) 707–722

8. Pahl, G., Beitz, W.: Eng. Design—A Systematic Approach. 2nd edn. Springer (1996)
9. Szykman, S., Racz, J.W., Sriram, R.D.: The representation of function in computer-based de-

sign. In: ASME Design Engineering Technical Conferences, 11th International Conference
on Design Theory and Methodology, New York, NY, USA, ASME, ASME Press (1999)

10. Hirtz, J., Stone, R., McAdams, D., S, S., Wood, K.: Evolving a functional basis for engi-
neering design. In: ASME Design Engineering Technical Conferences, 13th conference on
Design Theory and Methodology, New York, NY, USA, ASME, ASME Press (2001)

11. Kirschman, C., Fadel, G., Jara-Almonte, C.: Classifying functions for mechanical design.
In: ASME Design Engineering Technical Conferences, 8th conference on Design Theory
and Methodology, New York, NY, USA, ASME, ASME Press (1996)

12. Faltings, B.: Qualitative kinematics in mechanisms. A.I Journal44 (1990) 89—119
13. Kuipers, B.: Commonsense reasoning about causality: Deriving behavior from structure.

Artificial Intelligence Journal24 (1984) 169—204
14. Forbus, K.: Qualitative process theory. Artificial Intelligence Journal24 (1984) 85–168
15. Subramanian, D., Wang, C.: Kinematic synthesis with configuration spaces. In: Proceedings

of Qualitative Reasoning 93,. (1993) 228–239
16. Joskowicz, L., Neville, D.: A representation language for mechanical behavior. Artificial

Intelligence in Engineering (1996) 109—116
17. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-

scription Logic Handbook. Cambridge University Press (2002)
18. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description

logics. In Rosenbloom, P., Szolovits, P., eds.: Proceedings of the Tenth National Conference
on Artificial Intelligence, Menlo Park, California, AAAI Press (1993) 754–761

19. Baader, F., K̈usters, R., Molitor, R.: Computing least common subsumers in description
logics with existential restrictions. In Dean, T., ed.: Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI’99), Morgan Kaufmann (1999) 96–101

20. Küsters, R., Molitor, R.: Computing least common subsumers inALEN. In Nebel, B., ed.:
Seventeenth IJCAI, Morgan Kaufmann (2001) 219–224

21. Brandt, S., Turhan, A.Y.: Using non-standard inferences in description logics - what does it
buy me? In: KI Workshop on Applications of Description Logics. (2001)

22. W3C: Resource Description Framework (RDF) model and syntax specification.http:

//www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (1999)
23. DARPA: DAML march 2001 specifications (DAML+OIL).http://www.daml.org/

2001/03/daml+oil-index (2001)
24. Greenwald, L.G., Kopena, J.B.: On achieving educational and research goals with small,

low-cost mobile robot platforms. IEEE Robots and Automation, Special Issue on Robotics
in Education (To appear 2003)

25. Kopena, J.B., Regli, W.C.: DAMLJessKB: A tool for reasoning with the semantic web. In:
International Semantic Web Conference. (To appear 2003)

Mediation of XML Data through Entity

Relationship Models

Irini Fundulaki1? and Maarten Marx2??

1 Bell Laboratories, Lucent Technologies, USA and
INRIA-Rocquencourt, France.

fundulaki@research.bell-labs.com
2 Institute for Logic Language and Computation,

University of Amsterdam, The Netherlands.
marx@science.uva.nl

Abstract. This paper describes an approach for the querying of het-
erogeneous XML resources using an ontology-based mediator. Here an
ontology is an Entity-Relationship schema defined independently of the
schemas of the data sources. The sources are described to the mediator
by means of mapping rules as in the Local-As-View approach to data in-
tegration. User queries are conjunctive queries formulated in terms of the
ontology, and answers to these queries are obtained by rewriting them to
XQuery expressions and evaluating these on the data sources. A formal
semantics for queries is defined by interpreting XML sources into ER
models. As there can be many such interpretations, a certain answer to
a query is one which is true in all of them. We describe the rewriting
algorithm and we show its completeness and correctness with respect to
the given semantics. We also give an algorithm for producing a canonical
model of the ontology and the interpreted data sources. It is shown that
the certain answers can also be obtained by evaluating the query to just
this one model.

1 Introduction

XML [1] is becoming the de-facto standard for data representation and exchange
of Web data and plays an essential role in the deployment of the Semantic
Web whose goal is “to develop enabling technologies and standards to support
richer discovery, data integration, navigation and automation of tasks” [31]. In
such an environment where the sources are autonomous and heterogeneous, data
integration is a critical issue. The goal there is to enable users to query the data
of heterogeneous sources as if it resides in a single source, which is exactly what
a data integration system does. The fact that the sources concern a restricted
domain of interest is crucial for the successful deployment of data integration
systems. Their backbone is a global schema which describes the basic notions in

? This work is funded by a scholarship from the French National Institute for Research
in Computer Science and Control (INRIA).

?? Research funded by NWO grant 612.000.106.

the domain. Appropriate mappings between the global schema and the schemas
of the sources are defined to describe the latter to the former. User queries
are formulated in terms of the global schema and the answers are obtained by
accessing the source data.

There are several questions that need to be considered when one is con-
structing a data integration system: (i) is the global schema defined out of the
sources schemas (e.g. federated architecture [22]), or is independent thereof (e.g.
defined by an authority in the domain); (ii) is query answering done on the fly by
translating the user query into queries expressed in the sources’ schemas (query
mediation paradigm [34, 26]), or by evaluating it against the database which has
been constructed out of the source data (e.g. data warehouse paradigm [33]).
In an evolving environment like the Web, defining the global schema out of the
sources schemas may lead to significant overload of schema maintenance: ev-
ery insertion/deletion of a new source or modification of an already integrated
source’s schema, leads to modification(s) of the global schema. Besides that, the
global schema can become quite unintelligible, due to the idiosyncrasies present
in the different local schemas. An independently defined global schema (an on-
tology) seems most appropriate for the integration of web data, and this line is
followed in the paper. In an environment where data is changing rapidly, keep-
ing the data warehouse “up-to-date” is not the easiest of tasks, so we choose to
study mediation.

Another dimension of a data integration system is the approach used to define
the mappings between the global schema and the sources schemas. There are two
prevailing approaches: Global-As-View (GAV) and Local-As-View (LAV) [23].
In the former, the global schema relations are defined as views of the sources
relations. The mappings are conjunctive queries3 which specify how to obtain the
tuples for the former: their head involves one global schema relation, and their
body involves a conjunction of source relations. Queries are formulated in terms
of the global schema relations and their translation is done by substituting the
global schema relations by their definitions4. In the latter, a source is described
as a (materialized) view of the global schema relations [24]. The mappings (also
conjunctive queries) have the inverse direction of those in the GAV approach.
Query translation in this context is known as querying rewriting using views [24].
The drawback of the first approach is that the global schema depends on the
sources schemas, while in the second, it is defined independently of them. But,
query translation in LAV is more complicated than in GAV. In the simple case
of conjunctive queries, it has been proved NP-hard [24].

A number of algorithms have been proposed in the literature for the latter ap-
proach. Authors in [25, 29, 28, 15, 17, 21] consider query rewriting for conjunctive
queries and relational views. Algorithms in [25, 29] are characterized as bucket-
based where the idea is to match each query subgoal with the body of the view
definitions. Authors in [15, 17] follow a different approach where they produce

3 We use the term conjunctive query to refer to rule-based conjunctive query as defined
in [2].

4 This substitution is called query unfolding.

a set of rewriting rules out of the view definitions. Query rewriting is done by
matching the body of the rules with the body of the query. Rewriting in a dif-
ferent framework is done in [8, 20, 7] where regular path queries and views are
considered.

In this paper we consider query rewriting in the framework proposed in [4, 18].
A mediator-based architecture for the integration of XML resources is proposed
where the LAV approach is used to describe the sources to the global schema,
the latter defined independently of the schemas of the former. The global schema
is an ontology which incorporates the basic features of the Entity Relationship
(ER) model [9] (which can be easily represented as an object-oriented or as an
RDF schema [30]). The principal contributions of this work in the domain of
XML data integration are:

– the identification of a reasonable subset of the web data integration problem
in which mediation is a feasible alternative to data warehousing;

– the use of a rich conceptual schema which considers inverse roles and global
keys, instead of a relational one as the global schema of the mediator;

– an expressive mapping language to describe a source’s schema to the global
schema. All previous approaches consider that a source is described as a
conjunctive query over the global schema relations. In [4] mapping rules
which associate XML fragments (expressed by XPath [10] expressions) to
ontology paths are used.

This approach has several advantages. First ontologies are more expressive
than XML DTDs or Schemas due to the presence of (i) subsumption relations
and (ii) typed binary relationships between entities. In XML neither of them
exist, and the only type of relationships between nodes is the parent/child and
attribute relationships. The ID/IDREF attribute mechanism can be used to relate
two nodes but these relationships are untyped. Second, the use of XPath in
the mapping language allows one to describe arbitrary XML structures, and
in addition to associate specific semantics (expressed in the ontology) to the
relationships between XML nodes. We will not discuss here the benefits of using
an ER schema as the global schema. Detailed discussion on this issue can be
found in [3].
In this context, the result of the rewriting for a query q and for a set of sources S
is the union of all the rewritings of q for each source s. The idea behind rewriting
q for s is simply to match the query variable binding paths to the ontology paths
of the rules. The proposed framework along with the query rewriting algorithms
has been implemented in the STYX prototype [19].

A similar but simpler approach has been undertaken in [13]. The global
schema is a node-labeled tree (called abstract DTD) hence there is no notion
of subsumption relationship and parent/child is the only relationship between
nodes. XML sources are described by concrete DTDs (also node-labeled trees).
The mapping language is much simpler than in [4]: only the child axis of XPath
is used where absolute abstract paths are mapped to absolute concrete paths5.
5 Paths are called absolute since they are specified only from the root node of the
abstract/concrete DTDs.

Given a user query expressed in terms of the abstract DTD, their query rewriting
algorithm tries to find the concrete paths that match the abstract paths.

In this paper we examine the completeness and soundness of the rewriting
algorithm in [4] for a query q and a source s following a different approach
for the manipulation of ontology paths in the models of the ontology. In this
new setting we started by examining the proposed framework and in order to
achieve our goal we had to consider the following restrictions: (i) the ontology
contains no inverse roles, (ii) no global keys are considered and (iii) only the
child and attribute axis of XPath are used in the mapping rules. Hence, we
had to contemplate with a poorer mapping language than the original one to
prove completeness. The conclusion that we can draw is that if one wants to go
for expressive power, then one must pay the price of incompleteness.

The paper is organized as follows: in Section 2 we present the approach
followed in [4] using a cultural example. Section 3 gives the formal definitions
for the ontology, the mapping rules, queries and answers. In Section 4 we show
how a model for the ontology is built in which the XML sources are interpreted
using a Tableau System. We also show how this model can be used to yield
all certain answers to queries. Section 5 presents the query rewriting algorithm
and proves its completeness and correctness. Conclusions are given in Section 6.
Proofs of all statements are provided in the Appendix.

2 Overview of the approach through a cultural example

We give in this section an overview of the approach in [4] using an example
from the cultural domain. An XML resource is considered to contain a number
of XML documents which conform to a unique XML DTD6. The upper side of
Fig. 1 shows an XML DTD describing painters and their paintings for source
http://www.paintings.com. Each painter (element Painter, line 2) is associated
with one or more paintings (element Painting). A painter has a name (attribute
name, line 3). A painting has a title (attribute title, line 5). Fig. 1 presents an
XML document that conforms to the DTD.

The backbone of the mediator is an ontology which incorporates the basic
features of the Entity Relationship (ER) model [9]. The terms concept and role
are used to name entities and relationships respectively. Concepts are related to
each other with the isa subsumption relation. We use the same ontology as the
one used in [4] as a reference example, which is inspired from the ICOM/CIDOC
Reference Model [14]7.

The ontology is depicted in the graphical notation of ER schemas, with the
addition of isa arcs and is shown in Fig. 2. It describes concepts such as Actor,

6 Although this may look like a simplification from the setting with a number of
heterogeneous sources, on our level of description it is not: using appropriate re-
naming every subset of XML documents with their own DTD can be equivalently
transformed into one source with one DTD.

7 The ICOM/CIDOC model has been defined and used for the documentation of
cultural information. Several cultural authorities have participated in this effort
whose basic purpose was to provide a single schema to exchange their data.

1. <!ELEMENT Collection (Painter+)>

2. <!ELEMENT Painter (Painting+)>

3. <!ATTLIST Painter name CDATA #REQUIRED>

4. <!ELEMENT Painting EMPTY>

5. <!ATTLIST Painting title CDATA #REQUIRED>

<Collection>

<Painter name=’’Rembrandt’’>

<Painting title=’’de Nachtwacht’’/>

<Painting title=’’de Staalmeesters’’/>

</Painter>

<Painter name=’’Vermeer’’>

<Painting title=’’de Brief’’/>

<Painting title=’’het Melkmeisje’’/>

</Painter>

</Collection>

Fig. 1. XML DTD and document for source http://www.paintings.com.

String

String

String

String

String

(location_of)

(produced_by)

name :

(carried_out_by)

Man_Made_Object
carried_out

city :

located_at
museumName :

Museum

produced
has_title :

ActivityActor

Person

has_name :

Fig. 2. An Ontology for Cultural Artifacts.

R1: http : //www.paintings.com/Collection/Painter as u1 → Person
R2: u1/@name → has name
R3: u1/Painting as u3 → carried out/produced
R4: u3/@title → has title

Fig. 3. Set of Mapping Rules for source http://www.paintings.com.

its subconcept Person, Activity, Man Made Object, and Museum. The concepts
are connected using binary roles such as carried out, produced and located at.
The fact that an actor (instance of concept Actor) performs an activity (in-
stance of concept Activity) to produce a man made object (instance of concept
Man Made Object) is represented by roles carried out and produced. Concepts
may also have attributes: attribute has name is defined in concept Person and
takes its values in the atomic type String. In the ontology, each role has an inverse
depicted within parenthesis.

To describe an XML resource to the ontology a set ofmapping rules is defined.
Each rule associates an XPath location path [10] to concepts, attributes and
(composite) roles in the ontology (we use ’/’ to denote the composition of two
roles).

The set of rules illustrated in Fig. 3 map fragments of XML documents which
conform to the DTD of Fig. 1 into the ontology of Fig. 2. Each rule has a left

hand side and a right hand side. The right hand side is a concept, attribute or
(composite) ontology role (referred to as ontology paths in the sequel). The left
hand side is composed of (i) an XPath location path evaluated on some URL or
on some variable and (ii) an optional variable declaration.

The first rule states that all elements returned when evaluating the XPath
expression Collection/Painter on the root nodes of documents in URL http://-
www.paintings.com are instances of concept Person and this set of elements is
bound to variable u1. The statement ’as u1’ is a variable declaration. The second
rule states that values of the attribute has name of Person are obtained from
evaluating the XPath expression @name on instances of variable u1 (Painter
elements). The third rule states that x carried out/produced y holds whenever x
is a Painter element (element of the variable u1) and y is a Painting element,
child of x. The obtained Painting elements are bound to variable u3 which is
used in the last rule to obtain the values for attribute has title.

The mapping rules allow one to define the semantics of XML fragments
and their structural relationships in terms of the ontology. Thus, R1 defines a
subset of the extension of concept Person, while rule R3 relates elements in this
subset by the composite role carried out/produced to a subset of the extension of
Man Made Object.

Queries are conjunctive queries expressed in the vocabulary of the ontol-
ogy [2]. Such queries can be presented in several formats. In more theoretical
work, conjunctive queries are presented as Datalog rules. Commercial systems
often employ a select/from/where formulation (as in SQL).
The query “Which objects are created by Vermeer” is expressed in the OQL syn-
tax [11] and as a conjunctive query in Table 1. These two formulations differ only
with respect to their notion of an answer. An answer to the conjunctive query
is an instantiation of x3 which makes the body of the rule true. The answer to
the OQL query is the set of all these instantiations. In the sequel we use answer
in the former sense.
Each variable in the query is bound to some ontology path (called in the sequel
its binding path). For example, for the OQL query Q1, Person is the binding path
of x1, has name is the binding path of x2 and finally carried out/produced is x3’s
binding path.

Given a query, the rewriting algorithm proposed in [4] works as follows: given
that each variable in the query is bound to some ontology path, the algorithm
searches for mapping rules or concatenations thereof, that can be used to trans-
late these paths to XPath location paths. This is done by matching the binding
paths of the query variables against the ontology paths of the mapping rules.
For example for Q1 and for the set of mapping rules depicted in Fig. 3, we see
that instances for variable x1 are found by rule R1, for variable x2 by R2 and
for variable x3 by rule R3. By substituting the binding path of a query vari-
able with the location path of the corresponding rule, we obtain query Q1(a)
which can be easily translated into the XQuery [12] expression Q1(b) both shown
in Table 2. For the document of Fig. 1, there are two answers to this query:
<Painting title =′′ de Brief′′/> and <Painting title =′′ het Melkmeisje′′/>.

Q1: select x3

from Person x1, x1.has name x2,
x1.carried out/produced x3

where x2 = “Vermeer”

Q1(x3) :– Person(x1), has name(x1) = x2, carried out/produced(x1, x3), x2 = “V ermeer′′.

Table 1. Query Q1.

Q1(a): select x3

from http : //www.paintings.com/Collection/Painter x1,
x1./@name x2, x1./Painting x3,

where x2 = “Vermeer”

Q1(b): FOR $x1 IN document(′http : //www.paintings.com′)/Collection/Painter,
$x2 IN $x1/@name,
$x3 IN $x1/Painting

WHERE $x2 = “Vermeer”
RETURN $x3

Table 2. Queries Q1(a) and Q1(b).

3 Mapping XML resources to Ontologies

In the setting proposed in [4] several XML sources are integrated into one ER
model. Whence, it is not evident what constitutes a correct answer to a query.
In this section we develop a theory for interpreting XML sources into ER models
and use that to define the notion of a certain answer. This notion originated in
the context of incomplete databases and has been used for query answering in
data integration [23].

Ontologies As aforementioned, ontologies incorporate the basic features of the
Entity Relationship (ER) model [9]. The model considered in [4] differs from
standard ER models in three respects: (i) only binary relationships (called roles)
between entities are allowed, (ii) only two roles (called source and target assign-
ing the domain and range to each relationship) are used, and (iii) attributes are
partial rather than total functions.

Formally, an ontology is an 8-tuple O = (C,R, S,A, source, target, isa, key),
where: (i) C is a set of concept symbols, (ii) R is a set of role symbols, (iii) S is
the set of atomic types defined in the XML Schema Datatypes document [5], (iv)
A is a set of attribute symbols, (v) source is a function that assigns to roles and
attributes their domain in C, (vi) target is a function that assigns to roles their
range in C and to attributes their range in S, (vii) isa is a subsumption relation
between concepts in C, (viii) key(·) is a function from C to P(A), assigning to
every concept a (possibly empty) set of its attributes. key(·) is such that for each
pair of concepts c1, c2 with c1 isa c2 it holds that key(c1) ⊆ key(c2)

8. We use
isa∗ to denote the reflexive and transitive closure of the isa relation.

8 In contrast to [4] we only deal with single valued keys and with at most one key per
concept. In general, concepts may have several multivalued keys as in [6]. The general

ActorB = {p1, p2} PersonB = {p1, p2}
ActivityB = {a1, a2, a3} Man Made ObjectB = {o1, o2, o3, o4} MuseumB = ∅

carried outB = {(p1, a1), (p1, a2), (p2, a3)}
producedB = {(a1, o1), (a2, o2), (a3, o3), (a3, o4)} located atB = ∅

has title(o1) = “de Nachtwacht” has name(p1) = “Rembrandt”
has title(o2) = “de Staalmeesters” has name(p2) = “Vermeer”
has title(o3) = “de Brief”
has title(o4) = “het Melkmeisje”

Table 3. A model B for the ontology O .

The semantics of an ontology can be given by specifying which database
states are consistent with the information structure represented by the ontology.
Formally, a database state B for an ontology O consists of a nonempty finite
set D

B (which is disjoint from all basic domains) and a function (·)B which
interprets the symbols of the ontology: concepts c as subsets cB of D

B; roles r
as subsets rB of D

B×D
B; attributes a as partial functions aB from D

B to the
union of the basic domains; atomic types S as the corresponding basic domains
SB.
A database state B is a model for the ontology O , if (i) B interprets the concept,
role, attribute and atomic type symbols of the ontology, (ii) for each pair of
concepts c1, c2 with c1 isa c2 it holds that c1

B ⊆ c2
B, (iii) for each role r, the

domain and range9 of r are subsets of source(r)
B

and target(r)
B
, respectively,

(iv) for each attribute a, for each e ∈ D
B, if a(e) is defined then e ∈ source(a)

B

and a(e) ∈ target(a)
B

and (v) for all x, y ∈ D
B, whenever x, y ∈ cB, for some

concept c and {a1, . . . , an} is the key for c it holds that: x = y iff a1
B(x) =

a1
B(y) and . . . and an

B(x) = an
B(y) (i.e. B does not contain different objects

with the same value for a key).
A model B for the ICOM/CIDOC ontology is shown in Table 3. The domain

D
B of B consists of the following set of elements: {p1, p2, a1, a2, a3, o1, o2, o3, o4}.

There is only one basic domain of type String.
Mapping rule R3 in Fig. 3 uses the composite role carried out/produced. Com-

posite roles have proven to be very useful for mapping XML elements into the
ontology [3] and can be seen as describing paths in the ontology. A role path
(rolepath) is a composition of roles, a concept path (conceptpath) is a composition
of a concept and a role path and finally an ontology path (ontologypath) is either
a concept path, a role path, an attribute or a composition of a conceptpath and
an attribute (the latter called attribute path).

rolepath ::= r | rolepath/r for r ∈ R
conceptpath ::= c | c/rolepath for c ∈ C
ontologypath ::= conceptpath | rolepath | a | conceptpath/a for a ∈ A

case leads to no new conceptual difficulties; the only difference is that determining
identity of objects is a longer process.

9 The domain of a role r is the set {x | ∃y.(x, y) ∈ rB}. Its range is the set {x |
∃y.(y, x) ∈ rB}.

The source of a role path is the source of its first element; the target of a role
path is the target of its last element. A composition of two roles, or of a role and
an attribute r/s is safe if target(r) isa∗ source(s). The composition of a concept
and a role or attribute c/r is safe if c isa∗ source(r). An ontology path is safe if
all its compositions are safe.

Examples of (safe) role paths in the ICOM ontology are carried out and car-
ried out/produced. Person/carried out/produced is a safe concept path.

The interpretation of ontology paths in a model of an ontology is defined as
follows: For p = r1/ . . . /rn a role path, (r1/ . . . /rn)

B
= r1

B ◦ . . . ◦ rn
B.10 For

p = c/r a concept path, (c/r)
B

= {x | ∃y ∈ cB and (y, x) ∈ rB}. For p = c/a

with c a concept path and a an attribute, (c/a)
B

= {(x, v) | x ∈ cB and a(x) =
v}.

Mapping Rules As presented in Section 2, an XML resource is described to the
ontology by means of mapping rules which associate XPath location paths to
ontology paths. A mapping rule is an expression of the form R : u/q as v → p,
or R : u/q → p where: (i) R is the rule’s label, (ii) u is either a variable or
a URL, (iii) q is an XPath location path, (iv) p is an ontology path, restricted
as follows: p is an attribute only if q is of the form @q′ where q′ is an XML
attribute and u is a variable; p is a role path only if u is a variable, and a
concept path only if u is a url (iv) as v, is a variable declaration, present only if
p is a role path or a concept path. A set of mapping rules is called a mapping.
Rules are distinguished between relative and absolute: a rule R is called absolute
if it starts with a URL, relative otherwise. Concatenation of mapping rules is
defined as follows: for R1 : a/q1 as v1 → p1, R2 : v1/q2 as v2 → p2 two rules in a
mapping M , their concatenation is the new rule R1/R2 : a/q1/q2 as v2 → p1/p2.
Given a mapping M , its closure, denoted by M ∗, is the set of all rules that can
be obtained from M by repeated concatenation. Its expansion, denoted M̂ , is
the set of absolute rules in M∗.

Definition 1 (Well Presented Mapping). We call a mapping well presented
if it satisfies the following two conditions: (i) all ontology paths of rules in M̂
are safe, and (ii) if R1 : u/q as v1 → p1, R2 : u/q as v2 → p2 are both in M̂ ,
then v1 = v2.

It is straightforward to check that the mapping rules in Fig. 3 are well presented.
From this point on, and w.l.g. we assume that a source is an XML document

specified by a URL u and a mapping M in which u appears as the only URL.
As described in Section 2, a mappingM from an XML source s to an ontology

O populates the concepts, roles and attributes of O . This is done formally by an
interpretation function which maps the elements and values in an XML document
to a model B of the ontology.

Definition 2 (Interpretation Function). Let (u,M) be a source, d the XML
document specified by u and B a model for an ontology O. An interpretation of

10 r1
B ◦ r2

B is defined as follows: r1
B ◦ r2

B = {(x, y) | ∃ z.(x, z) ∈ r1
B and (z, y) ∈

r2
B}.

(u,M) in B is a function f which: (i) sends elements of d to D
B; (ii) sends

attribute values of d to the basic domains of B of the same type; and (iii) respects
all rules in the expansion of M in the following sense11: Let R1 : u/q as v → p
be an absolute and R2 : v/q′ as v′ → r a relative mapping rule. We say that f
respects R1 if {f(e) | e ∈ u/q} ⊆ pB. We say that f respects R1/R2 if f respects
R1 and for all e ∈ u/q, for all e′ ∈ e/q′, (f(e), f(e′)) ∈ rB.

In the sequel it will be convenient to assume that the database state in which a
source is interpreted has the set of elements of the XML document as constant
symbols. Then we can use the XML element e to refer to the database object
f(e). So given an interpretation f of a source (u,M) in a database state B, we
assume that B contains the set of elements of the XML document specified by
u as constant symbols and the interpretation is such that f(e) = eB. Often we
just equate e with eB.

Example 1. We will interpret the XML document of Fig. 1 into the model of the
ICOM ontology given in Table 3, in such a way that it respects the mapping
rules R1–R4. The function f is shown in Fig. 4. The XML document has two
painter elements, one for Rembrandt, and one for Vermeer. f maps the first to
p1, and the second to p2. The four painting elements are mapped to the four
objects o1–o4. The values of the XML attributes name and title are mapped to
the identical strings in the basic domain of String. It is not hard to check that f
is indeed an interpretation.

f(<Painter name=’’Rembrandt’’>

<Painting title=’’de Nachtwacht’’/>

<Painting title=’’de Staalmeesters’’/>

</Painter>)=p1

f(<Painter name=’’Vermeer’’>

<Painting title=’’de Brief’’/>

<Painting title=’’het Melkmeisje’’/>

</Painter>)=p2

f(<Painting title=’’de Nachtwacht’’/>)=o1

f(<Painting title=’’de Staalmeesters’’/>)=o2

f(<Painting title=’’de Brief’’/>)=o3

f(<Painting title=’’het Melkmeisje’’/>)=o4

Fig. 4. Interpreting the XML document of Fig. 1 into the ontology model of Table 3.

Queries and Answers Queries are conjunctive queries expressed in the vocab-
ulary of the ontology [2] extended with the ontology paths and some fixed set

11 In this paper we use the expression e′ ∈ e/q′ to denote that element e′ is obtained
when evaluating XPath location path q′ on element e. We use this expression instead
of e′ ∈ [[q′]](e) as defined in [32].

of comparison predicates defined over the basic domains. Formally, given an
ontology O , a conjunctive query is an expression of the form:

q(x̄) : −
∧

c(x),
∧

r(x, x′),
∧

a(x) = x′,
∧

xθn.

where x̄ is a sequence of variables all occurring in the body of the query, every
c is a concept path, every r a role path, every a an attribute, and every xθn a
comparison predicate where x is a variable, n is a value and θ is one of {=, <,>
,≤,≥}.

Conjunctive queries in which no composite concepts or roles occur, are called
atomic. Conjunctive queries can be easily transformed into queries in an OQL-
like syntax 12. We recall here the definition of an answer to a conjunctive query
to a model D

B [2]. Let q(x1, . . . , xn) be a conjunctive query with variables
x1, . . . , xn and y1, . . . , ym. Then a1, . . . , an is an answer to q(x1, . . . , xn) if D

B |=
∃y1 . . . ∃ymq(a1, . . . , an), where |= is the standard first order satisfaction relation.

Finally we come to the central definition in this paper. Let O be an ontol-
ogy, (u,M) a source mapping elements of the documents in u into O , and q(x̄)
a conjunctive query expressed in the vocabulary of the ontology. We want to
define an intuitively reasonable notion of a correct answer to q(x̄) given O and
(u,M). This notion then will determine whether an algorithm which produces
the answers is both correct and complete. The definition below captures the
idea that something is an answer to a query if there is no countermodel. In the
literature on data integration, these are called the certain answers [23]. More
formally, a list of XML elements and attribute values ā of u is an answer to the
query q(x̄) if there is no model B for O in which the source is interpreted and
where B 6|= q(ā). This is usually formulated positively as follows:

Definition 3 (Certain answer). Let (u,M) be a source, O an ontology and
q(x̄) a conjunctive query in the language of O.M maps the elements of u into O.
Let ā be a list of XML elements and attribute values coming from the source. We
say that ā is a certain answer to the query q(x̄) posed to (u,M), if for each model
B for O, for each interpretation f of (u,M) into B it holds that B |= q(f(ā)).

4 Data Warehousing

Given an ontology O and a source (u,M) which is mapped to O we can con-
struct a model of O using a tableau system. This model can be seen as a data
warehouse. In the previous section we have seen that there are many models of
O in which a source can be interpreted. A certain answer was an answer which is
true in all these interpretations. Rather surprisingly now, all certain answers to a

12 Let q(x̄) be a conjunctive query. Query q(x̄) can be transformed into query q′ in
an OQL-like syntax as follows: q′’s select clause contains the variables in x̄; q′’s
from clause contains

∧
c(x),

∧
r(x, y),

∧
a(x, y) (a(x, y) for the expression of the

form a(x) = y) and q′’s where clause contains the conjunction of the comparison
predicates.

conjunctive query can be obtained by evaluating the query to just this one con-
structed model (Theorem 3). In the context of data exchange [16] such a model
has been called the universal canonical solution. We use the same terminology.
To have a constructive way of producing all certain answers turns out very useful
in the next section: it will be straightforward to establish completeness of the
rewriting algorithm on the basis of the tableau system.

The tableau rules are given in Table 413. They can be grouped according to
their function. The mapping rule rules implement the meaning of the mapping
rules. The domain, target, isa and global key rules derive facts from the structure
of the ontology. The composition, inverse and equality rules specify the logic
behind these operations. The comparison rule just lists facts true of the basic
domains. Given that a source is finite, the tableau construction reaches a fixed
point in which application of each rule only duplicates lines already on the
tableau14. Thus

Theorem 1. Constructing a tableau with the tableau rules in Table 4 termi-
nates.

If we apply the tableau rules until no rule yields new information, we end up
with a complete description of a model of the ontology in which the source
is interpreted (Theorem 2). In the description of the model we use the XML
elements of the source and parameters to denote elements of the domain of the
model.

Theorem 2. Let T be a complete tableau expansion for the ontology O and the
source (u,M) mapped to O. Then there exists a model BT such that: (i) BT is a
model for O, (ii) (u,M) is interpreted in BT , (iii) the domain of BT consists of
the set of parameters and XML elements occurring in T factored by the relation
{(x, y) | x = y occurs in T}, (iv) for all concepts C, relations R and attributes
a,

BT |= C(ē1) iff C(e1) on the tableau (1)

BT |= ē1Rē2 iff e1Re2 on the tableau (2)

BT |= a(ē1) = n iff a(e1) = n on the tableau, (3)

where ē denotes the equivalence class of e.

Proofs of all results are provided in the Appendix. The tableau rules not only
give us a model, we can also use them as an algorithm to yield answers to queries.
Here we present a primitive way of doing that. A more efficient calculus following
the GAV query unfolding approach is described in the full version of this paper

13 When constructing this model, the order of XML elements in the actual XML doc-
ument is lost.

14 One has to restrict the application of the concept path and composition rules to
exactly one time for each occurrence of the enumerator. Because the parameter is
new, applying these rules more often yields no extra information.

Absolute Mapping rule rule
Ri : u/q as vi → C is an absolute rule in M̂

C(e) for all e ∈ u/q

Relative Mapping rule rule I Ri : u/q as vi → C is an absolute rule in M̂
Rj : vi/p as vj → R is a relative rule in M∗

eRe′ for all e ∈ u/q and e′ ∈ e/p

Relative Mapping rule rule II Ri : u/q as vi → C is an absolute rule in M̂
Rj : vi/@n→ a (for a an attribute) is a relative rule in M

a(e) = e/@n for all e ∈ u/q

Isa rule
C(e) C isa D

D(e)

Domain rules
eRe′ source(R) = C

C(e)
a(e) is defined source(a) = C

C(e)

Target rules
eRe′ target(R) = C

C(e′)
a(e) is defined a(e) 6∈ target(a)
ABORT CONSTRUCTION

Concept path rule
C/R(e)

C(n)
nRe

n is a new parameter in the tableau expansion.

Composition rule

eR/Se′

eRn
nSe′

n is a new parameter in the tableau expansion.

Inverse rule
eR−1e′

e′Re

Global key rule key(C) = {a1, . . . , an}, C(e), C(e′),
a1(e) = a1(e

′), . . . , an(e) = an(e
′)

e = e′

Reflexivity rule
e = e

Replacement rule
φ(e) e = e′

φ(e′)

Comparison predicate rule
nθm

for every true statement nθm (n,m elements of some basic domain

occurring on the tableau.

Table 4. Tableau rules.

[27]. The following completeness theorem however is very convenient for proving
completeness results later on.

Let φ(x̄) be an atomic query. We say that the tableau system gives ē1 as an
answer to φ(x̄) asked to ontology O and source (u,M) if there exists parameters
and XML elements ē2 such that every conjunct φi(x̄, ȳ) occurs in the tableau
with ē1 and ē2 substituted for x̄ and ȳ, respectively.

Theorem 3 (Soundness and completeness of the tableau system). Given
an ontology O, source (u,M) and an atomic conjunctive query φ(x̄), the tableau
system gives ē as an answer to φ(x̄) if and only if ē is a certain answer to φ(x̄).

We end with two technical lemmas which will be used in the next section. The
first lemma can be seen as a reason for asking that the paths in the mapping rules
are safe. In that case the domain rule of the tableau system becomes redundant.

Lemma 1. Let T be a tableau for the ontology O and the source (u,M) mapped
to O. Let the paths in the mapping rules of M̂ be safe. Then every occurrence
C(e) in T can be obtained without an application of the domain rule.

The next lemma specifies a situation in which tableau proofs are particularly
simple, and in which the universal canonical solution has the convenient property
of being a tree.

Lemma 2. Let O be an ontology without inverse roles and without global keys.
Let (u,M) be a source in which the paths in the mapping rules of M̂ are safe.
Then

(i) for each conjunctive query q(x̄), ē is a certain answer to q(x̄) if and only
if there is a tableau proof for q(ē) which only uses the mapping rule rules, isa,
target, concept path and composition rules;

(ii) the universal canonical solution is a tree.

5 Lav Approach : Query Rewriting

In this section we discuss the completeness of the rewriting algorithm in [4] in
our context. As in [4], we consider the rewriting of tree queries without joins
between variables and we use an OQL-like syntax to express them15.

The algorithm in [4] needs only rewrite the conjuncts in the from clause of
the query. We demonstrate the idea using query Q1 shown in Table 1 and the
mapping rules of Fig. 3.

In short, the algorithm examines the query variables and finds the mapping
rules which provide answers for them. Query variables are arranged in preorder,
and the algorithm considers a variable, after it has examined its parent. The root
variable x1 is examined first. The algorithm looks for absolute mapping rules

15 A tree query is a conjunctive query q(x̄) : −c(x0),
∧
r(x, y),

∧
a(x) = y,

∧
xθn satis-

fying the following restrictions: (i) x0 is the root variable of the query, (ii) if r(x, y)
or a(x) = y occurs in the query, x is called the parent of y and the variables with
the parenthood relation form a tree with x0 as the root.

1. input: tree query
2. repeat until no further reduction is possible
3. do
4. for each x.R y with y a leaf and y not selected, replace x.R y by x.R/ ∗ y.
5. for each x.R y with x not selected and y the only child of x then
6. if x is the root variable of the query and C x appears in the query
7. replace C x, x.R y by C/R y (making y the new root).
8. else if z.S x is present in the query, then replace z.S x, x.R y by z.S/R y
9. od
10. output: tree query

Fig. 5. Query preprocessing algorithm

which return instances of concept Person. Such a rule is R1 which states that the
elements obtained by evaluating XPath expression Collection/Painter on the
documents in URL http://www.paintings.com are instances of concept Person.
These are bound in variable u1. We create the binding {(x1, u1)} which states
that instances of x1 are the instances of u1. In this case the expression Person x1

in Q1 is replaced by http : //www. paintings.com/ Collection/ Painter x1.
Then, variable x2 is examined. The algorithm looks for a rule which (i) can be
evaluated on instances of x1 (i.e. instances of u1) and (ii) whose ontology path
is has name (i.e. the binding path of x2). Such a rule is R2 since its root variable
is u1 and its ontology path is has name. The expression x1.has name x2 in Q1

is replaced by x1./@name x2. In a similar manner, expression x1.carried out/-
produced x3 is replaced by x1./Painting x3 using rule R3 and the binding is
extended to {(x1, u1), (x3, u3)}. When all the variables have been considered,
the obtained query is Q1(a) illustrated in Table 2. With a simple syntactical
transformation16, it is transformed into the XQuery expression Q1(b) shown in
Table 2.

There are cases where the algorithm briefly described above, does not return
a rewriting even if one exists. The reason is the presence of composite concepts
and roles in the query and the mapping rules.

To overcome this problem, we need to do a preprocessing of the query. This
step is necessary since the algorithm tries to match all the query variables with
some mapping rule. Here we distinguish between necessary and unnecessary vari-
ables. The latter appear neither in the select, nor in the where clause of the
query. The former must be always instantiated by instances from the sources,
the latter can be bound to objects in the model of the ontology which do not
exist in the sources. Such objects appear in models of the ontology because of

16 The transformation of query Q1(a) to the XQuery expression Q1(b) is done as fol-
lows: Q1(b)’s FOR clause is obtained by replacing each expression of the form
xi./q xj in the from clause of Q1(a) by (i) xj IN xi/q if xi is a variable and
(ii) xj IN document(“u”)/q if xi is of the form u/q where u is a URL. Q1(b)’s
WHERE clause contains all conditions in the where clause of Q1(a). Finally, the
RETURN clause of Q1(b) contains all variables in the select clause of Q1(a).

role paths and concept paths in the ontology paths of the mapping rules (this
is clearly visible from the tableau composition rules). The function of the query
preprocessing algorithm is to remove all unnecessary variables by rewriting the
initial query into an equivalent one. The query preprocessing algorithm is given
in Fig. 5. The special predicate x.R/ ∗ y is an abbreviation of the disjunction
x.R′ y for which there is a mapping rule vi/q as vj → R′ and R is a prefix of R′.

Lemma 3. (i) The algorithm in Fig. 5 yields an equivalent query.
(ii) Let O be an ontology without inverse roles. Let ∃ȳQ(x̄, ȳ) be the output

from the algorithm in Fig. 5. Then the following are equivalent:
• ā is a certain answer to ∃ȳQ(x̄, ȳ).
• āb̄ is a certain answer to Q(x̄, ȳ), for some b̄.

5.1 Query Rewriting Algorithm

Our aim is to create a simple, efficient and complete rewriting algorithm. For this,
we restrict the queries to tree queries and we do not allow inverse roles, attribute
paths in the mapping rules and the queries and global keys in the ontology. The
mapping rules must be well presented and obey that all XPath expressions A,B
in the mapping rules have the property that if there is a document on which A

and B have a non empty intersection, then A and B are syntactically the same.
This can be implemented by allowing only the child and attribute axes in the
XPath expressions of the mapping rules. An elaborate motivation (apart from
their use in the completeness proof) of these restrictions is provided in the full
version of the paper [27].

In this section we present the query rewriting algorithm oquery2xquery il-
lustrated in Fig. 6 which is a variation of the query rewriting algorithm in [4].
It accepts as input an OQL tree query (preprocessed by the algorithm shown in
Fig. 5) and a mapping M . As output it gives an OQL like “XQuery” expression
which has the same select and where clause as the tree query but whose from
part consists of the set XPool in the algorithm.

The algorithm uses the following three sets: OntPool which contains the
expressions in the query from clause, XPool which contains expressions of the
form xi./XExp xj and XExp x0 where XExp is an XPath expression, and the xi’s
are query variables and finally Bindings that contains pairs of the form (xi, Var)
where xi is a query variable and Var is a mapping rule variable. It makes use
of the (non-deterministic) DATALOG procedure concept2x shown in Fig. 7.
Given a concept c from the ontology and a mapping M , concept2x returns (i)
the XPath location path and (ii) the bound variable of an absolute mapping rule
R in M̂ which returns elements that are (according to the ontology path of R)
instances of c.

The algorithm examines first the query root variable x0. Let C0 x0 be the
expression in OntPool for x0, where C0 is the binding path of x0. Procedure
concept2x() is called with C0 and returns the location path XExp and the bound
variable Var of an absolute mapping rule which returns instances of C0 or of
subconcepts thereof. {XExp x0} is then added in XPool and (x0, Var) in the set

begin
OntPool := the from part of the ontology query;
let C0 x0 ∈ OntPool

if concept2x(C0, XExp, Var)
then XPool := {XExp x0}; Bindings := {(x0, Var)};
OntPool := OntPool \ {C0 x0};

else fail;
do OntPool 6= ∅ −→

let xi.Exp xj ∈ OntPool

if (xi, vi) ∈ Bindings and vi/XExp as Var → Exp ∈ M∗;
then XPool := XPool ∪ {xi./XExp xj}; OntPool := OntPool \ {xi.Exp xj};

Bindings := Bindings ∪ {(xj, Var)};
else fail;

let xi.Exp/ ∗ xj ∈ OntPool

if (xi, vi) ∈ Bindings and vi/XExp as Var → Exp′ ∈ M∗;
where Exp is a prefix of Exp′

then XPool := XPool ∪{xi./XExp xj}; OntPool := OntPool \ {xi.Exp/ ∗ xj};
Bindings := Bindings ∪ {(xj, Var)};

else fail;
let a(xi, xj) ∈ OntPool

if (xi, vi) ∈ Bindings and vi/@XExp → a ∈ M∗;
then XPool := XPool ∪{xi./@XExp xj}; OntPool := OntPool \ {a(xi, xj)};
else fail

od
end

Fig. 6. Query rewriting algorithm oquery2xquery.

/* for concepts C and C/Rolepath */
/* if Rolepath is the empty string, “/Rolepath” stands for the empty string */

concept2x(C/Rolepath, U/X, Var):-
P isa∗ C,
U/X as Var → P/Rolepath ∈ M̂.

concept2x(C/Rolepath, U/X, Var):-
target(Path) isa∗ C,
U/X as Var → Path/Rolepath ∈ M̂.

Fig. 7. Procedure concept2x.

Bindings. Expression C0 x0 is removed from OntPool. The algorithm then exam-
ines the query variables in preorder by considering a variable after its parent. Let
xj be the variable considered and let xi.Exp xj be an expression in OntPool. Let
xi be bound to variable vi (i.e. (xi, vi) ∈ Bindings). The algorithm will then
look for a relative mapping rule R starting with vi. As far as Exp is concerned,
we distinguish between two cases:

– If Exp is of the form S, R is selected if its ontology path is equal to S;
– if Exp is of the form S/∗ where S is a role path, then R is selected if S is a

prefix of R’s ontology path;

Let the relative rule R be of the form R : vi/XExp as Var → Exp. Then ex-
pression xi./XExp xj is added to XPool, xi.Exp xj is removed from OntPool

and (xj, Var) is added to Bindings. If the algorithm examines an expression
of the form a(xi, xj) where a is an attribute in the ontology, and xi is bound
to variable vi, then the algorithm looks for a relative mapping rule of the form
vi/@XExp → a. As previously, xi./@Xexp xj is added in XPool and a(xi, xj) is
removed from OntPool.

We arrived at the central result of the paper:

Theorem 4. The query rewriting algorithm presented in Fig. 6 is correct and
complete. That is, ā is a certain answer to the query q(x̄) posed to the source
(u,M) published in O if and only if there exists an “Xquery” p(x̄) such that
oquery2xquery(q(x̄), p(x̄)) is true and ā is an element of the answer set of p(x̄)
evaluated on source u.

6 Conclusions

In this paper we have shown completeness and correctness of the query rewrit-
ing algorithm proposed in [4] in a restricted setting. That work proposed a novel
framework for query mediation over a set of XML resources using an ontology-
based mediator. The ontology is an ER schema with subsumption relations be-
tween concepts. The sources are mapped to this ontology by means of mapping
rules which associate XPath location paths to ontology paths. The main problem
for a query rewriting algorithm in this setting is to map node labeled trees (XML
documents) to edge labeled graphs with inverse roles and global keys. Leaving
out these last two features from the ontology makes that the universal canonical
solution has the shape of a tree, a much simpler structure to work with. The
mapping language proposed in [4] is very rich: all XPath 1.0 location paths are
allowed. This introduces problems for the proposed algorithm which binds query
variables to mapping rule variables representing sets of XML elements. Such an
algorithm can only be complete if for each XML element there is a unique lo-
cation path leading to it in the mapping rules. This explains our restriction to
location paths using only the child and attribute XPath axes in the mapping
rules. The restrictions we had to pose seem huge but are still reasonable for
practical applications (cf [13] for an argument). Our main contribution thus is
that mediation in a setting with two very different data formats is feasible in

a simplified but non-trivial case. The main challenge for future work is to cope
with inverse roles and global keys in a computationally attractive way as well
as to raise the limitations of using only the previously mentioned XPath axes in
the mapping rules. Especially efficient algorithms which reason about equalities
between data from different XML documents will be needed. Moreover, another
axis of research is to introduce XML Schemas in the place of XML DTDs. The
other contributions of the paper are a side effect of our effort to prove complete-
ness of the algorithm. They are: (i) the definition of an interpretation function
which maps fragments of XML sources into models of the ontology (ii) the notion
of certain answer in this context, (iii) a tableau calculus for creating a canonical
model (a data warehouse) for the source data and (iv) using this tableau calculus
to design other algorithms for query answering.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data On the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, October 1999.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-based Integration of
XML Resources. In Proc. of the First Int’l Conf. on the Semantic Web (ISWC),
Sardinia, Italy, June 2002.

4. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying XML sources using an
Ontology-based Mediator. In Proc. of the Int’l Conf. on Cooperative Information
Systems (CoopIS), Irvine, California, USA, November 2002.

5. P. Biron and A. Malhotra (eds.). XML Schema Part 2: Datatypes. W3C Recom-
mendation, May 2001. http://www.w3.org/TR/xmlschema-2/.

6. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan. Keys for XML.
In Proc. of the Int’l Conf. on the World Wide Web (WWW), pages 201–210, 2001.

7. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. View Based Query
Answering and Query Containment over Semi-Structured Data . In Proc. of DBPL,
pages 40–61, Rome, Italy, September 2001.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of Regular
Expressions and Regular Path Queries. In Proc. of the ACM Symposium on Prin-
ciples of Database Systems (PODS), pages 194–204, Philadelphia, Pennsylvania,
USA, 1999.

9. P. P. Chen. The Entity Relationship model : Toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

10. J. Clark and S. DeRose (eds.). XML Path Language (XPath) Version 1.0. W3C
Recommendation, November 1999. http://www.w3c.org/TR/xpath.

11. S. Cluet. Designing OQL: Allowing Objects to be Queried. Information Systems,
23(5), 1998.

12. World-Wide Web Consortium. XQuery 1.0: A Query Language for XML .
http://www.w3.org/TR/xquery/.

13. C. Delobel and M-C. Rousset. A Uniform Approach for Querying Large Tree
Structured Data through a Mediated Schema. In Proc. of Foundations of Models
for Information Integration Workshop (FMII-2001), Rome, Italy, September 2001.

14. M. Doerr and N. Crofts. Electronic organization on diverse data - the role of
an object oriented reference model. In Proc. of 1998 CIDOC Conf., Melbourne,
Australia, October 1998.

15. O. M. Duschka and M. R. Genesereth. Answering Recursive queries using Views. In
Proc. of the ACM Symposium on Principles of Database Systems (PODS), Tuscon,
Arizona, USA, 1997.

16. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and
query answering. In Proc. 2003 Int’l Conf. on Database Theory (ICDT ’03), pages
207–224, 2003.

17. M. Friedman, A. Levy, and T. Millstein. Navigational Plans for Data Integration.
In Proc. AAAI/IAAI, 1999.

18. I. Fundulaki. Integration and Querying of XML resources for Web Communities.
PhD thesis, Conservatoire National des Arts et Métiers, Paris, France, January
2003.

19. I. Fundulaki, B. Amann, C. Beeri, M. Scholl, and A. Vercoustre. STYX : Connect-
ing the XML World to the World of Semantics. In Proc. of Conf. on Extending
Database Technology, Prague, Czech Republic, March 2002. Demo Presentation.

20. C. Grahne and A. Thomo. New Rewritings and Optimizations for Regular Path
Queries. In Proc. of the Int’l Conf. on Database Theory (ICDT), Siena, Italy,
January 2003.

21. G. Grahne and A. Mendelzon. Tableau Techniques for Querying Information
Sources through Global Schemas. In Proc. of the 7th Int’l Conf. on Database
Theory (ICDT), Jerusalem, Israel, January 1999.

22. D. Heimbigner and D. McLeod. A Federated Architecture for Information Man-
agement. ACM Transactions on Office Information Systems, 3(3):253–278, July
1985.

23. M. Lenzerini. Data Integration : A Theoretical Perspective. In Proc. of the ACM
Symposium on Principles of Database Systems (PODS), pages 233–246, Madison,
Winsconsin, USA, June 2002.

24. A. Levy. Answering queries using views: a survey. VLDB Journal, 2001.
25. A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information

sources using source descriptions. In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), September 3–6, 1996, Mumbai (Bombay), India, 1996.

26. W. Litwin, l. Mark, and N. Roussopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267–293, September 1990.

27. M. Marx and I. Fundulaki. XML Data Mediation. Technical report, University of
Amsterdam, 2003.

28. P. Mitra. An Algorithm for answering queries efficiently using views. In Proc.
of the 12th Australasian Conf. on Database Technologies, Queensland, Australia,
1999.

29. R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries using
Views. VLDB Journal, 2001.

30. W3C Technology and Society Domain : Resource Description Framework (RDF).
http://www.w3.org/RDF/.

31. World Wide Web Consortium. W3C Semantic Web Activity.
http://www.w3.org/2001/semweb-fin/w3c.

32. P. Wadler. A formal semantics of patterns in XSLT, 1999. URL: cite-
seer.nj.nec.com/wadler99formal.html.

33. J. Widom. Research Problems in Data Warehousing. In Proc. of the 4th Int’l Conf.
on Information and Knowledge Management (CIKM), pages 25–30, Baltimore,
Maryland, November 1995. ACM.

34. G. Wiederhold. Intelligent integration of information. Journal of Intelligent Infor-
mation Systems, 6(2):281–291, May 1996.

A Proofs

Proof (Theorem 2). Construct BT as specified in the theorem. By replacement, = is a
congruence, whence the valuation of the concepts, roles and attributes is well defined.
BT is a model for O by the isa, source, target and global key rules.

Now let f be the mapping from u to the domains of BT defined by f(e) = ē for
elements and f(n) = n for attribute values.

We now show that f respects the rules of M∗. This is immediate for atomic con-
cepts, roles and attributes by the tableau rules. For the paths, we need the following
result for all concept paths C and role paths R: (i) if C(e1) on the tableau, then
BT |= C(ē1); (ii) if e1Re2 on the tableau, then BT |= ē1Rē2, which is proved by a
simple induction, using the concept path and composition rules.
We note that the other direction only holds in the following sense: BT |= ē1R1 . . . Rnē2
only if there exists a1, . . . , an−1 such that all of e1R1a1, . . . ai−1Riai, an−1Rne2 are on
the tableau, and similarly for the concept paths.

Proof (Theorem 3). Suppose ē1 is a certain answer to φ(x̄). Then in any model B,
B |= φ(ē1). In particular, BT |= φ(ē1). By assumption, all conjuncts of φ are atomic.
But then by Theorem 2, all these conjuncts appear on the tableau. But then the tableau
procedure yields ē1 as an answer.

For the other direction, we need some more work. It is easy to see that all tableau
rules are sound: that is, if the condition of the rule is true for a model of O in which
(u,M) is interpreted, then the conclusion as well. To continue, we say that the tableau
system gives ē1 as an answer to φ(x̄) asked to ontology O and source (u,M) if the
tableau system with the additional following query rule closes: (here φ1 . . . φn are all
atomic conjuncts of φ)

φ(x̄) query rule
ē2 is any sequence of parameters and XML elements

¬φ1(ē1, ē2) | . . . | ¬φn(ē1, ē2)
,

The vertical bars in the tableau rule indicate a branching of the tableau. A branch
of a tableau closes if it contains a formula and its negation. A tableau closes if all its
branches are closed.

Clearly if the tableau yields ē1 as an answer without the new rule, ē1 is also an
answer with the added rule. Now suppose that ē1 is not a certain answer to φ(x̄, ȳ).
Then for any choice ē2 for ȳ, there is a model in which one of the conjuncts φi(ē1, ē2)
is false. So, applying the query rule yields a satisfiable situation. But since all rules,
preserve satisfiability, there must be an open branch, whence the tableau system does
not yield ē1 as an answer.

Proof (Lemma 1). Suppose T contains an application of the domain rule

eRe′ source(R) = C

C(e)
.

Then eRe′ must have come from an application of (a) the concept path rule, (b) the

relative mapping rule rule or (c) the composition rule. In case (a) we had
D/R(e′)
D(e), eRe′

for some concept D. But by assumption, the path D/R is safe, whence D isa source(R)
holds. But then an application of the isa rule yields the desired conclusion C(e).

In case (b) there are two rules Ri : u/q as vi → D and Rj : vi/q
′ as vj → R. As

the paths in M̂ are safe, it must be that D isa source(R). So to derive source(R)(e)
apply the absolute mapping rule with rule Ri to derive D(e) and then the isa rule to
derive source(R)(e).

In case (c) eRe′ came from an application of the composition rule. If the relation
R is always the first on a path eR/Pn then this path must have originated from the
concept path rule or the relative mapping rule rule, and we can reason as before.
Otherwise, we had the following application of the composition rule to get eRe′:

nP/Re′

nPe, eRe′

It is easy to show that all paths occurring in the tableau must be a subpath of a
path which occurs in the conclusion of some rule in M̂ . Whence by assumption then
target(P) isa source(R). But now we derive target(P)(e) from nPe by the target rule,
and from that the desired source(R)(e) with the isa rule.

Proof (Lemma 2). For (i), assume the hypothesis of the lemma. By the completeness
theorem q(ā) is an answer iff there exists a tableau proof for q(ā). By Lemma 1, the
domain rule is not needed in this proof. Obviously the inverse and the global key rules
are not needed in a tableau proof as their antecedent is never true. The two rules for
reasoning about equality are not needed because 1) in queries = cannot be used to
relate domain elements, and 2) without global keys no statement of the form e = e′ is
produced in a tableau.

(ii) is immediate by (i), the fact that the composition and concept path rules use
new parameters and Theorem 2.

Proof (Lemma 3). (i) Immediate by the meaning definition. (ii) By an inspection of
the tableau rules yielding the universal canonical solution and Lemma 1.

Proof (Theorem 4). For ease of reference we list once more the restrictions imposed:

– C1: Ontologies contain neither inverse roles nor global keys;
– C2: All mapping rules are well presented;
– C3: The location paths of the mapping rules use only the child and attribute

XPath axes.

Assume a source (u,M) and an ontology O are fixed. Throughout we assume that
(u,M) is published in O and that it satisfies conditions C1–C3.

First define a partial function b from the elements of u to the set of variables
occurring in M as follows:

b(e) = v iff there exists a X and C such that u/X as v → C ∈ M̂ and e ∈ X.

To see that b is a function assume that there are X,X ′, C, C′ such that u/X as v →
C, u/X ′ as v′ → C′ ∈ M̂ and e ∈ X ∩X ′. Then by the constraints mentioned above
X = X ′, whence by C2 v = v′. In the sequel, as usual, if b(e) occurs in a statement it
is assumed that b is defined on e.

The next lemma proves the theorem for the four different kinds of conjuncts oc-
curring in queries.

Lemma 4. 1. For any role path P , the following are equivalent
(i) ei, ej is a certain answer to xi.P xj ;
(ii) for some X, there is a rule b(ei)/X as b(ej) → P and ej ∈ ei/X.

2. For any role path P/∗, the following are equivalent

(i) ei, ej is a certain answer to xi.P/ ∗ xj ;

(ii) for some X and role path R′, there is a rule b(ei)/X as b(ej) → R′ and
ej ∈ ei/X and P is a prefix of R′.

3. For any concept path C/R (where R can be the empty path), the following are
equivalent

(i) e is a certain answer to C/R(x);

(ii) for some XPath expression u/X the procedure concept2x(C/R, u/X, b(e)) suc-
ceeds and e ∈ u/X.

4. For any attribute a, the following are equivalent:

(i) e is a certain answer to a(x) = n;

(ii) for some XML attribute X there exists a rule b(e)/@X → a ∈ M ∗ and
n ∈ e/@X.

Proof (Lemma 4). In all proofs we use the fact that the certain answers can be com-
puted by the tableau algorithm using only the mapping rule rules, isa, target, compo-
sition and concept path rules (Theorem 3 and Lemma 2).

1. The direction from (ii) to (i) is straightforward: since b(ei) is defined there exists an
absolute rule u/q as b(ei) → C. This together with the rule b(ei)/X as b(ej) → P
and the fact that ej ∈ ei/X yields eiPej by the relative mapping rule rule.

For the other direction we proceed by induction on the length of P . Let |P | = 1.
The relative mapping rule rule is the only rule which produces statements of the
form aRb for a, b elements in the source. Whence eiPej must have been produced
by an application of this rule. Then there are rules u/Y as v → C and ei ∈ u/Y
and v/X as w → P and ej ∈ ei/X. But then v = b(ei) and w = b(ej), by
definition of b.

For the induction step, let |P | = n + 1. If the tableau proves eiPej then it is
obtained by a direct application of the relative mapping rule. In this case we have
the desired result, as before. Otherwise the tableau proves eiP1n and nP2ej for n
an element and P1/P2 = P . By inductive hypothesis then the following two rules
are in M∗:

b(ei)/X1 as b(n) → P1

b(n)/X2 as b(ej) → P2,

and n ∈ ei/X1 and ej ∈ n/X2. But then also b(ei)/X1/X2 as b(ej) → P1/P2 ∈
M∗, and ej ∈ ei/X1/X2 as desired.

2. By the previous item and the fact that x.R/∗ y is an abbreviation of the disjunction
x.R′ y for which there is a mapping rule vi/q as vj → R′ and R is a prefix of R′.

3. It is easy to see that (ii) is equivalent to

(iii) for some XPath expression u/X, there exists an absolute rule u/X as b(e) →
C′/R in M̂ and C ′ isa∗C and e ∈ u/X, or there exists a concept path C ′ and an
absolute rule u/X as b(e) → /R in M̂ and target(C ′) isa∗C and e ∈ u/X.
We now prove that (iii) is equivalent to (i). The direction from (iii) to (i) is im-
mediate by an inspection of the tableau rules. The other direction is again by an
induction on the length of the role path R. For |R| = 0, the statement follows
directly from an inspection of the tableau rules and Lemma 2. The inductive case
is proved using the first item of this lemma by a similar argument as used in the
proof of that item.

4. The statement for attributes is immediate from the tableau rules.

Now we are ready to prove the theorem. By Lemma 3 we may assume without loss of
generality that there are no quantified variables in the query. First we prove correctness.
Let p(x̄) be the “XQuery” and s(x̄) the answer. We show that s(x̄) is an answer to
q(x̄) as well. Let B be the set of bindings produced by the algorithm. By construction
of the algorithm, for all (xi, vi) ∈ B, b ◦ s(xi) = vi. The query consists of four kinds of
conjuncts. Here we show for the relational expressions that s(x̄) is an answer to those.
The other expressions have a similar proof. Let xi./Xexp xj be a conjunct in p(x̄). Thus
s(xj) ∈ s(xi)/Xexp. This holds if xi.Exp xj in the ontology query q(x̄) and there is a
mapping rule vi/Xexp as vj → Exp inM∗. Whence b◦s(xi)/Xexp as b◦s(xj) → Exp
inM∗. Moreover s(xj) ∈ s(xi)/Xexp by assumption. Whence by the previous Lemma,
s(xi)Exps(xj) holds in the universal canonical solution.

Conversely, let s(x̄) be a certain answer to the ontology query q(x̄). We show that
the algorithm produces a rewriting which has s(x̄) in its answer set. Let the set of
bindings B be {(xi, vi) | b ◦ s(xi) = vi}. By Lemma 4, for every conjunct of q(x̄), there
exists a corresponding mapping rule. For instance, if xi.Exp xj is a conjunct, then there
is a mapping rule b ◦ s(xi)/Xexp as b ◦ s(xj) → Exp in M∗ and s(xj) ∈ s(xi)/Xexp.
Choose for each conjunct a mapping rule. With this choice the algorithm succeeds with
the defined bindings and produces an “XQuery” p(x̄) with s(x̄) in its answer set.

The ICS-FORTH SWIM: A Powerful Semantic
Web Integration Middleware�

V. Christophides1, G. Karvounarakis1, I. Koffina1, G. Kokkinidis1, A.
Magkanaraki1, D. Plexousakis1, G. Serfiotis1, and V. Tannen2��

1 Institute of Computer Science - FORTH
Vassilika Vouton, PO Box 1385, 71110, Heraklion, Greece
{christop, gregkar, koffina, kokkinid, aimilia, dp,

serfioti}@ics.forth.gr
2 Department of Computer and Information Science, University of Pennsylvania

200 South 33rd Street, Philadelphia, PA 19104-6389, USA
val@cis.upenn.edu

Abstract. Semantic Web (SW) technology aims to facilitate the inte-
gration of legacy data sources spread worldwide. Despite the plethora of
SW languages (e.g., RDF/S, DAML+OIL, OWL) recently proposed for
supporting large scale information interoperation, the vast majority of
legacy sources still rely on relational databases (RDB) published on the
Web or corporate intranets as virtual XML. In this paper, we advocate a
Datalog framework for mediating high-level queries to relational and/or
XML sources using community ontologies expressed in a SW language
such as RDF/S. We describe the architecture and the reasoning services
of our SW integration middleware, called SWIM, and we present the
main design choices and techniques for supporting powerful mappings
between different data models, as well as, reformulation and optimiza-
tion of queries expressed against mediation schemas and views.

1 Introduction

A cornerstone issue in the realization of the Semantic Web (SW) vision is
the achievement of semantic interoperability among legacy data sources spread
worldwide. In order to capture information semantics in a machine process-
able way, various ontology-based formalisms have been recently proposed (e.g.,
RDF/S [21, 5], DAML+OIL [29], OWL [10]). However, the vast majority of ex-
isting legacy data is not yet in RDF/S or any other SW language [24, 26]. As a
matter of fact, most of the data is physically stored in relational database (RDB)
systems and are actually published on the Web or corporate intranets as virtual
XML.

SW applications, however, require to view data as virtual RDF, valid instance
of a domain or application specific RDF/S schema, and to be able to manipulate
them with high-level query languages, such as RQL [18] or RVL [25]. Therefore,
� This work was partially supported by the EU project SeLeNe (IST-2001-39045).

�� Work performed during the visit of the author at ICS-FORTH.

Fig. 1. SWIM Architecture

we need middleware systems that can either republish XML as RDF, or publish
RDB data directly as RDF, or - even better - be capable of doing both. Some-
times the practical solution will be to rely just on the virtual XML schema and
XML query interface of an existing XML publishing system. At other times, the
SW publishing middleware will be built as an alternative to the XML publishing
system, taking advantage of direct access to the underlying RDB management
system (RDBMS). It is also possible that the SW middleware will have to inte-
grate data in some RDBMS with data in native XML storage.

We need to deal flexibly with all these situations in a uniform framework.
A decade of experience with information integration architectures based on me-
diators [9, 30, 28, 22] suggests that it is highly beneficial to (semi)automatically
generate such systems from succinct formal specifications, rather than program-
ming their semantics into low-level code. This greatly enhances the maintainabil-
ity and reliability of the systems in an environment of often revised and shifting
requirements.

This paper presents the fundamental ideas for devising a comprehensive
framework that allows user communities to

1. specify XML → RDF and RDB → RDF mappings;
2. verify that these mappings conform to the semantics of the employed SW

ontologies;
3. compose RQL queries with these mappings and produce XML or RDB

queries (a.k.a query reformulation);
4. specify further levels of abstraction as RDF → RDF views;
5. compose RQL queries with such views;
6. perform query optimizations.

The last requirement is extremely important in such systems. Queries writ-
ten by humans will rarely have blatant redundancies but queries resulting from
automated manipulation/generation are often very ”dumb”. Minimization tech-
niques, sometimes taking advantage of data semantics provided by ontologies
expressed in a SW language, can transform such queries into more efficient ones.

Figure 1 sketches the architecture of a SW integration middleware system
that we are building, called SWIM. The lower part of the figure depicts data
sources, that could be XML repositories or RDBMS. On top of these sources, we
have a domain or application ontology for a particular community, expressed,
for instance, in RDF/S. Mapping rules can then be used for the integration, i.e.,
to translate back and forth from RDF/S to the source data models. As a result,
through a SWIM server we can view the underlying sources as virtual RDF
repositories and use RQL to query these sources as RDF data or even define
personalized views on top using RVL. In this context, the main challenge is to
choose an expressive, but still tractable logical framework in which the above
functionality (1-6) can be effectively supported by appropriate SW (reasoning)
services.

This paper only presents our preliminary design for the SWIM framework. We
expect to report on many of the technical challenges and engineering decisions
in future publications.

Related Work : Previous projects sharing similar motivations are described in [2,
3], [27] and [16]. Our approach is closest to that of [2, 3], while using a more ex-
pressive language for the specification of mappings and a different ontology query
language. The papers [23, 6] present formal specifications of mappings from less
structured schemas such as XML and relational to more structured schemas of
the same level of complexity as RDF. Languages similar to our Datalog with
XPath atoms are also used, for example, in [8, 20]. Finally, compared to the
Datalog framework for RDF/S-based query mediation of [27], SWIM ensures
the compositionality of queries with views and mappings, as well as, supports
advanced optimization and verification services.

The remainder of the paper is organized as follows. Section 2 presents a mo-
tivating example for cultural data available in RDB or XML sources which can
be integrated through an appropriate RDF/S schema. Section 3 presents the
internal logical framework of SWIM and its use in the translation and composi-
tion of RQL queries. Section 4 touches upon the issue of query optimization by
minimization using dependencies while Section 5 addresses the issue of view re-
formulation. Section 6 examines mapping consistency issues and finally, Section 7
presents our conclusions and an outlook for further research.

2 Motivating Example and SWIM Mapping Rules

Let us assume an XML repository with cultural data, a sample of which appears
in the left part of Figure 2. This data could be queried using an XML query

Fig. 2. Example of XML/RDF sources and Mediation RDF/S schema

language, such as XQuery [7]. But now, suppose we add a SWIM server on top
of this XML data. For this purpose we design - or import from some community
standardization body - an RDF/S cultural schema, as the one depicted in the top
part of Figure 2. Now we can formulate queries using an RDF query language by
employing only few abstract classes and properties from our mediation RDF/S
schema. For example, the following RQL query returns the names of the artists
(sculptors or painters) whose work is exhibited in the “Reina Sofia” museum:

SELECT Z
FROM {X}creates.exhibited.denom{Y}, {X}name{Z}
WHERE Y = "Reina Sofia"

We can observe that the RDF/S layer is completely virtual. The actual data
can only be queried using an XML language. Hence, the RQL query we saw needs
to be reformulated by the middleware into an XML query. This reformulation
should be guided by a formal description of the relationship between the XML
and the RDF data, for example a mapping from XML to RDF. The question
that normally arises is: how do we express formally such mappings?

The rich theory developed in the relational case has identified classes of
queries and mappings (views) that can be manipulated formally such that various
problems like query containment, composing queries with views and rewriting
queries with views are algorithmically solvable [1, 15]. These problems can also

be solved in the presence of certain classes of relational constraints [1, 11, 14]. We
shall try to rely as much as possible on a well-known and robust formalism: con-
junctive queries and views, and embedded implicational dependencies [1]. The
results about queries and views are easily extended with union, therefore deal-
ing with the positive existential first-order queries also known as non-recursive
Datalog. The dependencies can easily be extended with disjunction [12].

To define XML→RDF mappings we will use an analog to the relational
queries just mentioned. We use the same logical shape as that of Datalog rules,
but instead of relational atoms, we use XPath atoms in the bodies (this is sim-
ilar to the XBind queries of [14]). For example, the XPath atom .//Painting
(X,Y) is satisfied by any valuation that maps X and Y to element nodes in the
XML document, such that Y has tag Painting and is a descendant of X. The
heads of the rules define RDF instances in the style of the VIEW clause employed
by the RDF/S view definition language RVL [25]. So, as part of the mapping we
can use rules, such as:

Painter(X) :- (//Painter) (X) Sculptor(X) :- (//Sculptor) (X)

to define the (direct) extent (i.e., the set of direct instances) of the classes
Painter and Sculptor in the virtual RDF layer. Property extents can be also
defined in the same style:

paints(X,Y) :- (//Painter) (X), (.//Painting) (X,Y)

Note that this mapping is not always straightforward, since there usually
exist schematic and semantic discrepancies between the source and the middle-
ware schema. For example, class inheritance is not expressed in the XML doc-
ument. Moreover, properties (let alone property inheritance) creates, paints
and sculpts are not used explicitly in the XML document.

We expect SWIM to be able to take the RQL query and the XML→RDF
mapping given above and produce an XML query (e.g., an XQuery). We will
discuss in Section 3 how this reformulation can be done.

In addition of being available in XML, the cultural data may be available
through an RDBMS, for instance in a table as illustrated in the right part of
Figure 2. As for XML, there is an RDB→RDF mapping which is also expressed
in a mixed language, where instead of XPath atoms we can use standard Datalog
atoms:

Painter(X) :- Artifacts(_, X, _, "Painting")
paints(X,Y):- Artifacts(Y, X, _, "Painting")
name(X,Y) :- Artifact(_, X, _, "Painting"), Y=X
name(X,Y) :- Artifact(_, X, _, "Sculpture"), Y=X

As in the case of XML, there may also be discrepancies in the RDB→RDF
mapping. For instance, in our example, the classification of an Artist to Painter
or Sculptor is determined by the value of the attribute kind, i.e., schema in-
formation is “encoded” inside data values.

Again, the SW middleware should be able to automatically reformulate the
RQL query, using this mapping, into a relational query, presumably SQL [17].

3 Query Mediation in SWIM

We need an internal logical framework that captures RDF/S semantics, as well
as queries, so that we can ”virtually populate” given RDF/S schemas. It should
also capture - to any needed extent - the XML and RDB semantics. As we
showed in the previous section, Datalog-like rules are very convenient for ex-
pressing mappings, even across data models, such as XML→ RDF. Based on the
experience of [13, 11] of performing XML query reformulation via translation in
a first-order, relational framework, we propose to follow the same approach for
RDF, in order to translate both queries and mappings into this framework.

3.1 SWIM Internal Logical Framework

The SWIM internal logic framework employs first-order relations together with
some first-order constraints to model RDF/S. It is convenient to use a signature
with three sorts: Resource,Property,Class3. The relations used have the following
meaning:

– C EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct
instance) of class c. In RDF class extents can overlap, due to multiple clas-
sification of resources.

– C SUB(c, d) iff c is a (not necessarily direct) subclass of d.
– PROP(c, p, d) iff class c is the domain and class d is the range of property p.
– P EXT(x, p, y) iff (x, y) is in the proper extent (i.e., it is a direct instance) of

property p. In our model instances of properties are represented as ordered
pairs of the resources they connect.

– P SUB(p, q) iff p is a (not necessarily direct) subproperty of q.

The relations must satisfy some built-in RDF/S constraints which are consid-
ered by RQL. In particular, the domain and range of a property must be unique,
while the subclass and subproperty relations must be reflexive, transitive and
satisfy the following subproperty/subclass compatibility constraint:

∀ a, p, b, c, q, d P SUB(q, p) ∧ PROP(a, p, b) ∧ PROP(c, q, d)
−→ C SUB(c, a) ∧ C SUB(d, b)

This means that if q is a subproperty of p, the domain and range of q are
subclasses of the domain and range of p, respectively.

Finally, we have the property-class extent compatibility constraint, i.e., any
instance of a property p connects a pair of instances of some subclasses of the
domain and range of p, respectively:

∀ a, p, b, x, y PROP(a, p, b) ∧ P EXT(x, p, y)
−→ ∃ c, d C SUB(c, a) ∧ C SUB(d, b) ∧ C EXT(c, x) ∧ C EXT(d, y)

Let ∆RDF be the set of dependencies (constraints) used to axiomatize the
internal RDF/S model.
3 For simplicity reasons, we ignore metaclasses and metaproperties in this discussion

but they can be handled easily in the same way.

Theorem 1. It is decidable whether ∆RDF |= d and whether ∆RDF |= Q1 � Q2,
where d is an embedded implicational dependency, Q1, Q2 are conjunctive queries
and � is query containment.

Translation of RDF/S schemas: It is straightforward to translate the informa-
tion of an RDF/S schema to the SWIM internal framework as a set of relational
facts (in Datalog parlance—an extensional database), involving the relations
C SUB,PROP,P SUB as well as the names of classes and properties in the schema
as constants. Some of the facts obtained from the schema in Figure 2:

C SUB(Painting, Artifact) PROP(Artist, name, String) P SUB(sculpts, creates)

Note that this set of facts will include all C SUB and P SUB reflexivity instances
and will be “closed” under transitivity and under subproperty/subclass compat-
ibility.

3.2 Translation of RQL Queries

RQL is a powerful language for querying smoothly both RDF/S schemas and
their instances. An RQL conjunctive query has the form ans(X̄) : − C1, . . . , Cn

where Ci’s are either RQL class or property patterns (as they appear in the RQL
FROM clause) or equalities involving variables and/or constants and X̄ is a tuple
of variables or constants (range restrictions [1] are also required). Many RQL
queries are in fact conjunctive queries, e.g., the query given in Section 2 can be
written:

ans(Z):- {X}creates{V}, {V}exhibited{W}, {W}denom{Y},
{X}name{Z}, Y="Reina Sofia"

Conjunctive RQL queries can then be translated into relational conjunctive
queries in the SWIM internal logical framework. Indeed, according to the declar-
ative semantics in [18], RQL patterns have the same meaning as conjunctions of
relational atoms. For example:

RQL Pattern Internal SWIM Translation

{X; $C}@P{Y ; $D} PROP(a, p, b), P SUB(q, p), P EXT(x, q, y),
C SUB(c, a), C SUB(d, b), C EXT(c, x), C EXT(d, y)

{X}@P{Y } P SUB(q, p), P EXT(x, q, y)

In the above RQL patterns, X,Y are resource variables, $C, $D are class
variables (and can be replaced with constant class names), and @P is a property
variable (that also can be replaced by a constant property name). Using these

patterns, the RQL conjunctive query above translates internally to the following
Datalog rule:

ans(z) : − P SUB(q1, creates), P EXT(x, q1, v),
P SUB(q2, exhibited), P EXT(v, q2, w),
P SUB(q3, denom), P EXT(w, q3, ”Reina Sofia”),
P SUB(q4, name), P EXT(x, q4, z)

3.3 Composing Queries with Mappings

Starting with the internal translation of the query, we perform an interesting
partial evaluation using the RDF schema information, i.e., we evaluate first the
schema-part of the query, namely the P SUB expressions. This is related to par-
tial evaluation of Datalog programs [4]. Because some atoms (e.g., P SUB(q1, creates))
match more than one fact in the schema, what was a single conjunctive query
now becomes a (non-recursive) Datalog program. Here is one of the rules in our
example (the other two feature sculpts and creates):

ans(z) : − P EXT(x, paints, v), P EXT(v, exhibited, w),
P EXT(w, denom, ”Reina Sofia”), P EXT(x, name, z)

The next step is to translate into the SWIM internal framework the heads
of the rules that define the mappings. For example, a rule defining the ex-
tent of the class Painter has the head Painter(X). We translate this into
C EXT(Painter, x). In the same style we can translate the rule defining the
extent of the property paints(X,Y) into P EXT(x, paints, y). Thus, the map-
ping becomes a (non-recursive) Datalog-like program with XPath atoms for the
XML→RDF case and a plain non-recursive Datalog program for the RDB→RDF
case. The composition of the query and the mapping is now simply the compo-
sition of two Datalog programs.

To finish the reformulation, we must still eliminate the intermediate predi-
cates C EXT,P EXT because they are not part of the data sources. This is done
with standard matching/substitution but it may increase (square, in fact) the
number of rules. In the examples we have looked at so far, however, the resulting
union of conjunctive queries can be minimized significantly because many of the
rules are unsatisfiable and hence can be discarded (see next section).

4 RQL Query Reformulation and Optimization

Continuing the example from Section 3.3, we compose the query with the map-
ping for the RDB→RDF case. After eliminating the intermediate predicates
C EXT and P EXT we obtain a Datalog program with eight rules. Six of these
rules, however, are unsatisfiable because their bodies equate distinct constants.
Moreover, standard conjunctive query minimization [1] applies to the remaining

two rules. The final reformulated query, after optimizations, for the RDB→RDF
case is the following union of conjunctive query (a non-recursive Datalog pro-
gram with two rules):

ans(z) :- Artifacts(x, z, "Reina Sofia", "Painting")
ans(z) :- Artifacts(x, z, "Reina Sofia", "Sculpture")

Similar transformations are performed in the case of the XML→RDF map-
ping. We also encounter six unsatisfiable rules: for example in a rule contain-
ing both (//Sculpture) (y) and (.//Painting) (x, y) there is no valuation for
y since an XML element cannot have two different tags (i.e., Sculpture and
Painting). The reformulated query for the XML→RDF case is given below:

ans(z) :- (//Painter)(x), (./@name)(x, z),
(//Painter)(x), (./Painting)(x, y),
(//Painting)(y), (./@exhibited)(y, "Reina Sofia")

ans(z) :- (//Sculptor)(x), (./@name)(x, z),
(//Sculptor)(x), (./Sculpture)(x, y),
(//Sculpture)(y), (./@exhibited)(y, "Reina Sofia")

However, the problem of deciding satisfiability of rules with XPath atoms
seems more complicated to cope with. We expect that the techniques developed
in [14] will help with this problem and more generally with the minimization of
such queries.

The optimizations we have seen so far do not take into account the specifics of
the RDF/S semantics considered by RQL. However, once we have encoded this
semantics into the relational dependencies ∆RDF (see Section 3.1) we can use
∆RDF in minimizing queries. For example, by translating into the internal model
and by using minimization under dependencies done with the Chase&Backchase
algorithm [11] it is possible to show that the conjunctive RQL queries of the
form

ans(X,@P,Y) :- {X;$C}@P{Y;$D}, rest(X,@P,Y)

minimize to (the internal translation of):

ans(X,@P,Y) :- {X}@P{Y}, rest(X,@P,Y)

thus eliminating several redundant scans over the class variables $C and $D
(rest(X,@P,Y) stands for a boolean predicate whose variables are X, @P and
Y only). It should be stressed that if we just translate these queries into SWIM
internal conjunctive queries, the results are not equivalent in the absence of
∆RDF. The examples we saw in this section serve as a guide for design deci-
sions regarding what kind of optimization facilities need to be incorporated into
SWIM.

Fig. 3. A Virtual RDF/S Schema on cultural data

5 Composing RQL Queries with RVL views

In order to favor personalization, virtual RDF/S schemas can be also specified on
top of the mediator schema, as for instance the RVL schema shown in Figure 3.
If we restrict our attention to ”conjunctive” RVL definitions, virtual classes’ and
properties’ extents can also be written as rules of the following form:

painting_exhibited(X,Y) :- {X;Painting}exhibited{Y}
name(Y,W) :- {X;Painting}exhibited{Y}, {Y}denom{W}
name(Y,W) :- {X;Sculpture}exhibited{Y}, {Y}denom{W}

Then, these rules can be employed by SWIM in order to translate RQL
queries expressed in terms of a virtual RDF/S schema into the mediator RDF/S
schema and back to the source schemas as well. Consider for example the fol-
lowing query, which retrieves the exhibits of the Reina Sofia museum:

ans(x) : − {X}painting exhibited{Y }, {Y }name{Z}, Z = ”Reina Sofia”

which translates to:

ans(x) : − P SUB V(q′, painting exhibited),P EXT V(x, q′, y),
P SUB V(q′′, name),P EXT V(y, q′′, ”Reina Sofia”)

The SWIM internal framework is equipped in this case with similar rela-
tions as those presented in Section 3.1 in order to capture virtual classes and
properties, as well as their virtual subsumption relationships as defined in RVL,
namely C EXT V,P EXT V,C SUB V,P SUB V, respectively. Since P SUB V(q′,
painting exhibited) matches only the reflexivity instance P SUB V(painting
exhibited, painting exhibited) (similarly for P SUB V(q′′, name)), we obtain

the following queries (called in order Q1 and Q2) against the mediator schema:

ans(x) : − PROP(a, exhibited, b),P SUB(q, exhibited),P EXT(x, q, y),
C SUB(Painting, a),C EXT(Painting, x),
P SUB(q2, denom),P EXT(y, q2, ”Reina Sofia”)

ans(x) : − PROP(a, exhibited, b),P SUB(q, exhibited),P EXT(x, q, y),
C SUB(Painting, a),C EXT(Painting, x),
C SUB(Sculpture, a),C EXT(Sculpture, x),
P SUB(q2, denom),P EXT(y, q2, ”Reina Sofia”)

As we can observe, Q1 is a subquery of Q2. Hence, the result of Q2 is sub-
sumed by the result of Q1 (Q2 � Q1) and the original query against the view is
reformulated to Q1.

6 Consistency of Mappings

When a mapping RDB→ RDF, XML→ RDF, or even RDF→ RDF (that is
an RVL view) is specified by a user, its output (if materialized) may not be a
valid RDF instance, that is, it may not satisfy the built-in constraints ∆RDF of
Section 3.1. For example, suppose, in the context of our example from Section 2,
that we define the extent of the property name in an RDB→RDF mapping by

name(X,V) :- Artifacts(Y,X,Z,U), V=X

(instead of the correct rules given in Section 2). With this, the mapped data will
not satisfy the property-class extent compatibility constraint (unless the relation
"Artifacts" contains only "Painting" or "Sculpture" as kinds.

Can such an error be detected automatically? That is, given an RDB→ RDF,
XML→RDF, or even RDF→RDF mapping, is it decidable if its virtual output
satisfies ∆RDF? Given the translations we gave earlier, in at least two cases
(RDB→ RDF and RDF→RDF) this question comes down to testing if a re-
lational dependency holds in a relational conjunctive (or union of conjunctive)
view. In [19] this was shown decidable for full dependencies (see [1]). Our de-
pendencies in ∆RDF are a little more general but we were able to show that the
result extends and we believe that we can extend it also for XML→RDF views
given suitable XPath restrictions.

7 Conclusions and Future Work

In this paper we presented the principles underlying the design of SWIM (Se-
mantic Web Integration Middleware) and described the components that achieve
semantic integration by mapping XML and relational data to RDF. The unify-
ing framework proposed relies on the use of Datalog-like rules for expressing the
mappings and reformulating RQL queries. Furthermore, this framework permits
the optimization of RQL queries as well as their composition with the specified
mappings in order to produce XML or relational database queries. Last, but
not least, we showed how these ideas carry over to querying across mediated or
personalized RDF schemas by expressing a class of RVL view definitions into
SWIM’s internal model.

Several issues require further investigation. Specifically, we have dealt so far
with the case of conjunctive RQL queries and conjunctive RVL view definitions.
In both these cases we obtain a translation into non-recursive Datalog programs
to which we can apply well-known optimization techniques and for which the
problem of determining the consistency of the mappings is decidable. We intend

to study the conditions under which similar results can be obtained for a broader
class of RQL queries and RVL view definitions. Another issue is the exploitation
of knowledge about the source schemas and data in order to perform further
optimizations during the reformulation process. SWIM’s internal model can also
accommodate constraints such as the ones expressible in OWL [10]. It will be
interesting to study the optimization potential that stems from the use of such
constraints (e.g., uniqueness or disjointness constraints) in query reformulation
/ minimization.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration
of XML Web Resources. In Proc. of the International Semantic Web Conference
(ISWC), Sardinia, Italy, June 2002.

3. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying XML Sources Using an
Ontology-Based Mediator. In Proceedings of International Conf. on Cooperative
Information Systems (CoopIS), pages 429–448, Irvine, California, USA, November
2002.

4. K. Benkerimi and J. Lloyd. A Partial Evaluation Procedure for Logic Programs.
In Proceedings of the North American Conference on Logic Programs, Austin, TX,
USA, 1990. MIT Press.

5. D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation, March 27, 2000.

6. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data in-
tegration systems through conceptual schemas. In Proc. of the 20th Int. Conf.
on Conceptual Modeling (ER 2001), pages 270–284, Yokohama, Japan, November
2001.

7. D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu.
XQuery: An XML Query Language. W3C Working Draft, May 2003. See
http://www.w3.org/TR/xquery/.

8. S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository.
In Proc. of International Conf. on Very Large Databases (VLDB), pages 271–280,
Roma, Italy, September 2001.

9. Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your Me-
diators Need Data Conversion! In Proc. of ACM SIGMOD Conf. on Management
of Data, pages 177–188, Seattle, WA, USA, June 1998.

10. M. Dean, D. Connolly, F. Van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L.A. Stein. OWL Web Ontology Language Reference
Version 1.0, W3C Working Draft. Technical report, W3C, December 12, 2002.

11. A. Deutsch, L. Popa, and V. Tannen. Physical Data Independence, Constraints,
and Optimization with Universal Plans. In Proc. of International Conf. on Very
Large Databases (VLDB), pages 459–470, Edinburgh, Scotland, UK, September
1999.

12. A. Deutsch and V. Tannen. Optimization Properties for Classes of Conjunctive
Regular Path Queries. In Proc. of International Workshop on Database Program-
ming Languages, pages 21–39, Frascati, Italy, 2001.

13. A. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In Proc. of International Conf. on Very Large Databases
(VLDB), Berlin, Germany, September 2003. To appear.

14. A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints. In
Proc. of International Conf. on Database Theory (ICDT), pages 255–241, Siena,
Italy, January 2003.

15. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

16. A.Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data management
infrastructure for semantic web applications. In Proc. of International World Wide
Web Conf., pages 556–567, Budapest, Hungary, 2003.

17. ISO/IEC 9075: Information technology – Database Languages – SQL, 1999.
18. G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,

M. Scholl, and K. Tolle. Querying the Semantic Web with RQL. Computer Net-
works, 42(5):617–640, August 2003.

19. A.C. Klug and R. Price. Determining View Dependencies Using Tableaux. ACM
Transactions on Database Systems, 7(3):361–380, 1982.

20. L.V.S. Lakshmanan and F. Sadri. XML Interoperability. In Proc. of the Inter-
national Workshop on the Web and Databases (WebDB), San Diego, California,
USA, June 2003.

21. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C Recommendation, February 1999. Available at
http://www.w3.org/TR/REC-rdf-syntax.

22. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In Proc. of International Conf. on Very Large
Databases (VLDB), pages 251–262, Bombay, India, September 1996.

23. B. Ludäscher, A. Gupta, and M. Martone. Model-Based Mediation with Domain
Maps. In Proc. of IEEE International Conf. on Data Engineering (ICDE), Hei-
delberg, Germany, April 2001.

24. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking
RDF Schemas for the Semantic Web. In Proc. of the International Semantic Web
Conference (ISWC), Sardinia, Italy, June 2002.

25. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
Semantic Web Through RVL Lenses. In Proc. of the International Semantic Web
Conference (ISWC), 2003. To appear.

26. L. Mignet, D. Barbosa, and P. Veltri. The XML web: a first study. In Proc. of
International World Wide Web Conf., pages 500–510, Budapest, Hungary, May
2003.

27. EDUTELLA: A P2P Networking Infrastructure Based on RDF. W. Nejdl and B.
Wolf and C. Qu and S. Decker and M. Sintek and A. Naeve and M. Nilsson and M.
Palmér and T. Risch. In Proc. of International World Wide Web Conf., Honolulu,
Hawaii, USA, May 2002.

28. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across
Heterogeneous Information Sources. In Proc. of IEEE International Conf. on Data
Engineering (ICDE), pages 251–260, Taipei, Taiwan, March 1995.

29. F. van Harmelen, P. Patel-Schneider, and I. Horrocks. Reference description
of the DAML+OIL ontology markup language. http://www.daml.org/2001/03/-
reference.html, March 2001.

30. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3):38–49, 1992.

Semantic Representation of Contract Knowledge using
Multi Tier Ontology

Vandana Kabilan

Paul Johannesson

Department of Computer and System Sciences,
Stockholm University and Royal Institute of Technology

FORUM 100 , SE 164 40,Kista, Sweden
{Vandana, Pajo}@dsv.su.se

Business contract knowledge exists dispersed in different domains. For success-
ful business process functioning, a precise, clear understanding and interpreta-
tion of contractual terms and conditions is required. A semantic interpretation of
contract obligations and their required performances to fulfill the obligations, is
aimed to bridge the existing gap between business process management and
contract management. The increasing impact of e-commerce also necessitates
the requirement for centralized, reusable knowledge bases. This paper presents
conceptual models and an ontological representation methodology for capturing
semantic interpretations of business contracts in a Multi Tier Contract Ontol-
ogy.

1.Introduction

Humanity started trading using simple barter systems, goods in exchange for
goods. Business trade relationships are now complex processes of building trust, un-
derstanding and mutual agreement. At the center of these processes are the business
legal contracts. It is essential that all parties concerned have a clear understanding of
the contents and implications of the agreed contractual terms and conditions. With the
adoption of legal regulations facilitating e-commerce, electronic contracting and e-
commerce should set new trends in the near future. Notable are e-commerce stan-
dardization efforts like that of ebXML[1], which enables partners across the globe to
participate in electronic trade relationships using the available Internet technology.
This means that business organizations can enter into contractual relationships with
partners, hereto unknown and unseen. The need for human understanding of the estab-
lished contract is thus obvious. Added to this, electronic contracting agents for draft-
ing, negotiation and enforcement are the focus of several contemporary research ef-
forts. Considering the current global perspective of contracting and business, the need
for a meaningful semantic web for modeling, representing and exchanging knowledge
is well established.

The semantic web[2] has a visionary goal and objective of making the World Wide
Web into one gigantic knowledge resource. The semantic web is visualized as a grad-

ual stepwise tower of semantic languages as put forward by Tim Berners-Lee[3] (See
figure 1). Our contribution to the semantic web movement is currently in the knowl-
edge resource development in the form of ontology. Ontology vocabularies are a vi-
able candidate for such global knowledge pools. The importance of ontology engi-
neering for the success of the net commerce has been discussed by Howard Smith [4].

Multi Tier
Contract On-
tology

Trust

Proof

Logic

D
igital Signature

Ontology Vocabulary

RDF + RDF Schema

XML + NS +XML Schema

URI Unicode

Figure 1: Semantic Web Architecture

 Contract Management has existed for some time as well as Business Process
Management. However, most available solutions like ERP, CRM or other database
applications for enterprise management or contract management, have not managed to
integrate the two disciplines seamlessly. A business contract is like a master plan for
expected business behavior of the parties involved. Generally, it covers most contin-
gencies and probable scenarios for planned execution of the commitments the parties
make to each other. Thus, non-compliance to the contract terms could lead to legal,
economic and business repercussions. A business contract should govern and estab-
lish the actual business process workflow of the parties. Efforts have been made to
build discretionary enforcement agents using subjective logic [5], or deontic logic [6].
Others have treated the contract as documents or processes [7,8]. Our focus has been
on the knowledge base representation and modeling methodology for capturing the
semantics of a contract. This paper adopts the framework as proposed by the same au-
thors in [9].

Business contracts are one specific application domain in the realm of enterprise
application management. This paper presents a layered ontology structure for repre-
senting contractual domain perspectives. The conceptual meanings and interpretations
of the contractual obligations inherent in a business contract are analyzed and repre-
sented in the multi tier contract ontology. The choice of knowledge representation
methodology depends to a large extent on the purpose as well as the intended audi-
ence for the knowledge base. As mentioned earlier, business contracts are testaments
to the commitments made by business entities to each other in the context of a busi-

ness trade relationships. Business contract management depends on several factors
that cannot all be automated. Human intervention cannot be sidelined. Thus, the first
targets for knowledge transfer are humans and thereafter, machines and software
agents. Hence, we present conceptual models using UML [10] as the first step. Next,
we propose a transformation of the same to machine understandable format using
RDFS [11] /DAML [12].

The main contributions of this paper are the conceptual models of contract knowl-
edge using UML in a multi tier ontology framework. Thereafter, the paper presents
validations of the proposed methodology in the form of proof of concept implementa-
tions of the conceptual models in RDFS and DAML ontology representation lan-
guages.

The rest of the paper is structured as follows. In Section 2 we present a short sum-
mary of related research work in the domain of contracting and ontology. In section 3,
we discuss our choice of UML as an ontology-modeling tool, followed by conceptual
models for our proposed Multi Tier Contract Ontology (section 4). The paper outlines
the overall structure of the Multi tier contract ontology and thereafter focuses on the
detailed analysis of a specific contract type. We present a proof of concept transfor-
mations to DAML and RDFS using Protégé 2000[13] as a tool in section 5. The proof
of concept illustrates that the transformation from conceptual model to machine un-
derstandable format is possible. In this process, we came across some practical hitches
while transforming from UML to DAML or UML to RDFS. We present some of our
observations in section 5.3. Thereafter we propose some applications for the Multi
Tier Contract Ontology in section 6, followed by concluding remarks in Section7.

2.Related Research

Contracting, especially electronic contracting has been the topic of interest for sev-
eral groups of researchers. Though most have the same ultimate objective, each has
adopted a different methodology to achieve the same. We see that a contract has been
viewed in different perspectives in general:

• Document Centric – a contract is considered as a physical document and
its contents are analyzed and modeled as entities. This has little or no se-
mantics involved with it [14]

• Process Centric – a contract is viewed as a statement of business processes
or workflows. In this aspect, though semantic interpretation has been
tried, most efforts tend to interpret the contract conditions as rules, poli-
cies requiring stringent enforcements.

• Legal Centric – a contract is a legal instrument. Efforts are on to establish
legal dictionaries [15].

Electronic contracting was pioneered by the efforts of Ronald Lee [16,17] who has
amongst other things proposed the use of Petri Nets to model contract procedures like
the Documentary Credits. Grosof in [18] has proposed Courteous Logic Programs as a
declarative approach to model the business rules and policies as expressed in con-
tracts. Grosof has further presented a XML based rule representation language
RuleML and has also used it with ontologies to produce SweetDeal [19], an approach
to aid automated creation, evaluation, negotiation and execution of contracts. He has

viewed contracts as specification for processes. There exist possibilities of integrating
other contract ontologies like our proposed multi tier contract ontology to the system
as proposed by Grosof.

Kimbrough, Moore [20] and others have worked on a Formal Language for Busi-
ness Communication (FLBC), used to model and structure the communication for ne-
gotiation of agreements. Daskalopulu [21,22] has used subjective logic to monitor
electronic contract performance.

Heuvel and Weigand [23] have presented integrated enterprise architecture to inte-
grate contracts with business workflow and business objects. They have visualized
contracts as the binding glue to cross-organizational business workflows. Contracts
are scenarios denoting sequences of transactions.

Yao-Hua Tan has used deontic logic to model directed obligations and permissions
in [24]. He has also used event semantics as proposed in FLBC to model the seman-
tics of a contract. He then uses Prolog to implement the modeled contract conditions.
His work gives this paper its foundation for the classification of obligation states.

Levine and Pomerol [25] have proposed a methodology called ABC (Approach
Based on Contract) to construct business models using contracts as a starting point.

Goodchild [26] has analyzed the fundamental concepts for a business contract and
has modeled the contract using UML and represented them in XML. However, he has
viewed the contract as a document and has placed emphasis on the physical charac-
terization of a contract contents.

From the above discussion we see that though semantic interpretation and auto-
mated contracting is not novel but little has been done to model the semantics of a
contract in the form of a knowledge base. A semantic knowledge pool would enhance
and complement the various methodologies proposed for automated contracting. At
the same time, contracts depend on human interaction. Thus human-to-human com-
munication is the first line of approach for our proposed methodology. The Multi Tier
Contract Ontology is the representation of contract knowledge for such a purpose.

We believe that one of the fundamental keys to the success of the semantic web is
the reuse and integration of other related approaches and methodologies. We have
been guided by the works of Noy and Mcguinness [27] and Gruber [28] for design
methodologies for the proposed Multi Tier Contract Ontology. McGuinness [29] has
supported the role of ontology engineering in the domain of business process engi-
neering. Howard Smith [4] advocates the importance of ontology for agents to rely on
and to communicate with other agents.

3.UML as Ontology Modeling Language

Contract knowledge existing in different domains has to be modeled and repre-
sented using standard, comprehensible notations. Knowledge Base resources form an
essential component of any information system, be it artificial intelligence agents,
software tools or enterprise application software. Such a knowledge base should use
a knowledge representation language that is independent of application domain. It
should be clear, easy to understand and portable. As stated earlier, the first objective
in this research is to facilitate human-to-human knowledge transfer. Later, we propose
to progress towards deductive logic and automated inference systems for contract

term interpretation and decision support. We chose the Object Management Group’s
Unified Modeling Language (UML) [10] as our conceptual model representation lan-
guage.

Advantages of UML as an ontology modeling language has been proposed by Cra-
nefield [30], Hart, Baklawski et al in [31] as:

• It has a growing user audience in the software domain for object modeling
languages and other information system design. In our case, those at-
tempting to integrate business contracts with existing business manage-
ment applications, are more likely to be familiar with UML than other
knowledge representation languages like KIF.

• The graphical notation for UML is easy to comprehend and use and is
suitable for human-to-human knowledge transfer.

• UML can be extended to suit the need of ontology definitions.
• Object Constraint Language allows expression of rules and constraints.

Moreover, UML conceptual models can be translated into other ontology languages
like RDFS or DAML or even in to object oriented database systems. Cranefield in
[32] has proposed mappings to transform UML ontology models in to RDF and to
generate Java classes from UML using XSLT.

Ongoing research and open source development in the field of semantic web and
ontologies have contributed to a rapidly increasing pool of reusable knowledge re-
sources, tools and guidelines. We have used Protégé 2000[13] as our ontology editor
tool. Open source plugins are available for automated generation of RDFS ontology
from UML conceptual models, DAML storage etc. Others like DUET (DAML UML
Enhanced Tool)[33] of the CODIP (Components for Ontology Driven Information
Push)[34] project provide DAML support to UML tools like Rational, Argo UML.
This paper adopts and uses such available technology and research methodologies in
the aim of contributing productively to the vision of semantic web.
Baklawski [31] has presented some mappings for translating in between DAML and
UML concepts and from UML to DAML, as illustrated in the figure (2) below, which
have been adopted in this paper.

DAML Concept Similar UML Concepts
Ontology Package
Class Class
As Sets (disjoint, union) Difficult to represent
Hierarchy Class Generalization Relations
Property Aspects of Attributes, Associations and

Classes
Hierarchy None for Attributes, limited Generaliza-

tion for Associations, Class Generaliza-
tion Relations

Restriction Constrain Association ends , including
multiplicity and roles. Implicitly as class
containing the attribute

Data Types Data Types
Instances and Values Object Instances and Attribute Values

Figure 2. High-Level Mapping of UML and DAML Concepts

4. Multi Tier Contract Ontology

4.1. Background

A business contract goes through different phases in its life cycle from the pre –
conception, drafting phase, through negotiation and signing till the execution.
Angelov has identified various phases and sub phases of the contracting process in
[35] and as depicted in figure (3) below.

Contract
Execution

Contract
Signing

Contract
Negotiation

Contract
Drafting

Contract
Conception

Figure 3: Contract Cycle

Business management, process, requirements and strategic knowledge contribute to
the pre conception contract phase. Legal counsel, recommended practices, contract
model law play important roles in the contract-drafting phase. Contracts are then pro-
posed to suitable partners by a proposer, counter offers and acceptances are then of-
fered. This process of understanding and coming to a mutually satisfying agreement is
the contract negotiation phase, followed by the actual signing and validating of the
contract document. Finally, the contract is to be carried out and fulfilled. In the con-
tract execution phase, the agreed conditions and promises are acted upon. Contract
execution depends on the actual business process workflow. It needs to be monitored
and commitments fulfilled within the contract execution phase. The contract execu-
tion is terminated once the contract period is over or it leads to a renewed or fresh
contract being negotiated. The proposed Multi Tier Contract Ontology would be a
central knowledge base for all the above-mentioned phases. But current work is fo-
cused on the contract execution phase, especially on deducing the business workflow
from contract terms as well as monitoring and fulfillment of commitments.

Contract knowledge has been modeled based on domain input from the legal
framework. Business process knowledge has been based on other ontologies and stan-
dards like REA ontology and ebXML. Finally, business workflow patterns as pro-
posed by Van der Aalst [36], Sivaraman [37] and others, have been adapted to model
contract workflow patterns.

4.2. Multi Tier Contract Ontology framework

Within the realm of business contracts alone, there exist many different types of
contracts [38] having different scopes and applicability. It is impractical to represent
all the different types by single contract ontology. Following the ontology design
principle as proposed by Guarino [39], a structured and layered framework for con-
tract ontology was envisioned. A layered structure provides the scope for defining an
individual ontology for specific types yet coherently integrating under one unified
framework. The multi tier contract ontology is envisioned to consist of the following
layers:

• Upper Level Contract Ontology
• Specific Domain Level Contract Ontology
• Template Level Contract Ontology

The Upper Level Core contract conceptual model defines all the required and nec-
essary components of a business contract in order to be legally valid. For electronic
contracts, we would have additional concepts like digital signatures, public key en-
cryption, security and archiving issues etc.

The second Specific Domain level contract ontology relates to specific contract
types. As an illustration, we propose a specific contract type ontology specification
for Buy-Sell of commercial goods. In this respect, we draw conclusions and guidance
from various internationally adopted legal directives like UNCSIG [40], UNIDROIT
[41] principles for commercial transactions, UNCITRAL model contract law [42] etc.
The research has been focused specially on the obligations and the expected fulfill-
ment through the execution of performance events. This has been done in order to fa-
cilitate easy integration and understanding of the required business process workflow
to comply with the contract terms.

The third, template level ontology is visualized as a group of pre defined contrac-
tual obligation and their fulfillment patterns. These incorporate standard recom-
mended contract forms like that of ICC’s [43] contract model form for International
Sale of Perishable Commercial Goods [44], or standard forms for sale of used vehi-
cles etc. Each pertains to the same contract type but yet differ in specific information
details contained within them.

 This framework allows the Contract Ontology to be flexible, extensible and coher-
ent. It can be easily extended horizontally and further layers are also possible. More-
over, users of the ontology can extract and use parts of the ontology as required for
their domain of applicability. Multi Tier Contract Ontology is a hierarchy of ontolo-
gies moving from the general to the specific and then down to precise Meta data defi-
nitions.

In this paper, we present detailed analysis of a specific contract type, the sale of
goods contract type. However, we present a brief overview of the basic concepts,
which comprise the Upper Level Core Ontology model.

4.3. Overview Of Upper Level Core Contract Ontology

Any legal contract between two business organizations must have information per-
taining to the parties concerned, that is the principal actors. Each actor has a certain
part to play in the whole process of contracting, followed by its business execution. In
the contract execution phase the actors may take on the roles of a seller or a buyer. A
contract agreement is drawn up to affect the transfer or performance of certain deeds
in exchange for some other deeds or money. This is known as consideration in legal
terms. Goods are a common example for consideration in case of business contracts.
Services or non-disclosure promises are could be other examples of considerations.
The actors involved in the contract make certain promises or commitments to each
other. These are known as obligations, which need to be honored or fulfilled. These
testify to the intention of the two parties to perform to satisfy the conditions agreed
for the same obligation.

Figure 4: Basic Concepts defined in Upper Level Core Contract Ontology

The legal terms and conditions define all the expected behavior and conditions for

satisfactory acceptance of the business behaviors. Like, if a party promises to deliver
a pizza made to order within half an hour from the time it is ordered, then the satisfac-
tory condition would be the actual delivery of the pizza that should be conformant to
the type of pizza ordered and should be delivered within the time promised. A legal
obligation is backed up by the possible consequences in case of failure or non-
performance. In case the delivered pizza did not match with the type of pizza ordered
or it was delivered later than promised, then the customer could reject the pizza or not
pay for it or may be demand a replacement of the pizza with another etc. Again these
remedial options are also agreed upon and specified in a business contract, to cover all
possible eventualities. Thus, along with the definition of the principal actors, their un-
dertaken roles, the object of consideration, the promised obligations, the expected per-
formance events, the fulfillment conditions and terms, the business contract would
also have certain rights, remedies, and prohibitions too. It is also customary to include
terms to limit or protect the liability of the parties involved. Thus the risks involved
are also defined and appropriately divided and transferred with respect to the execu-
tion of business activities.

We explain the above concepts in detail with help of a sale of goods contract type
model as discussed in the following section.

4.4 Sale of Goods Business Contract Model

The Upper Core Level ontology defines all the necessary and relevant concepts for
any legal business contract. As mentioned earlier, business contracts range over a
wide area of application and scopes. Each business contract type has their own spe-
cific peculiarities as well as commonly used terms and conditions. However, each of
them is a specialization of the same fundamental concepts as defined in the upper
level core ontology. Thus the approach methodology adopted for each of the business
contract type analyzed is that the upper level core ontology is taken as the point of
reference and all specializations and extensions to the basic concepts are modeled
based on the identified generic concepts. In other words, each of the shared specific
domain level contract ontology inherits from the global upper level core ontology and
extends the concepts according to its specific modalities.

 For example, in a typical sale and purchase of goods scenario, the principal actors
are known as buyer and seller. The consideration for business trade transactions are
usually exchange of objects in return for other objects or more commonly money.
More commonly the consideration are referred to as goods.

Goods are legally defined as commodities or items of all types, excepting services,
which are involved in trade or commerce. Goods are characterized by their descrip-
tion, technical specification, type of packaging required, type of cargo etc. We find
different international standard vocabularies existing for product categorization like
that of the UNSPSC [45], or the CPV [46], which can be readily re, used and adopted
within this ontology model. Similarly, UN Recommendation no 21[47] can also be
modeled as an integrated or a separate ontology describing codes for types of cargo,
packages and packaging materials.

Figure 5: Extract from Sale of Goods Contract Model

Figure 5 shown above is an extract from the conceptual models for a typical sale of
goods business contract type.

The buyer agrees to pay a certain price for the goods received. Price is usually
monetary payment and currency, mode of payment is recommended issues to be
discussed and settled between the contract parties. The sale of goods contract should
include payment terms, which have the details of the agreed payment method and
conditions.

Like if the buyer is to pay part of the payment amount at the time of ordering and
the rest on delivery or if he pays only after delivery. Also payment mode like bank
transfer or documentary credits is the preferred method is indicated. Under this con-
cept, we can merge a vocabulary for the Unified Customs and Practice for Documen-
tary Credits [48], which has been discussed and modeled by Lee [17].

Figure 6: Illustration for common Payment Terms and Methods

Similarly, Delivery Terms are also negotiated and expressed in a contract. The deliv-
ery terms include details regarding the time, venue and choice of place of delivery.
Standard delivery terms like International Chamber of Commerce’s INCOTERMS
[49], can be used to describe the delivery terms. We see that such terms and condi-
tions, either explicitly or implicitly defines some legal or business obligations on the
part of the parties concerned. These commitments that bind a role player, like the
buyer or the seller, to perform certain acts are called as obligations. The primary obli-
gations of a buyer are obligation to pay and an obligation to accept goods as inferred
from INCOTERMS. On the other hand, a seller is bound by the obligation to deliver
s his primary obligation. Obligations need to be fullfilledBy the execution of expected
performance. Say for example, a seller’s obligation to deliver could be accepted as
fulfilled, if and only if, he carries out the business activities that can be termed as a
delivery. (See Figure 7 for details)

The actual performance of delivery would probably be comprised of several other
business activities, which have been shown in figure. Such information, presented in
the conceptual models of the sale of goods specific domain ontology, form a useful
contribution towards generating the contract workflow models for the business enti-
ties. It also helps in business process integration by identifying and exposing shared
business activities as possible points of business interoperability and interfaces.

In the extract shown, we see that the seller’s obligation to deliver is fulfilled by de-
livery. In reality, it is quite possible that execution of a promised event is not always
successful. A contract generally provides alternatives for handling such exceptions
and unacceptable non-performances. For example, the obligation to deliver may be
UnfullfilledBy if the delivery is late or delivery is not affected or the delivery is made,
but the goods do not conform to the specification as described by the goods specifica-
tion. In such cases, the buyer gets the right to seek redress for the failed performance.
The buyer may be presented with one or more enforcement options, whereby he could
make a choice from the available options, like choosing to have the order cancelled or
simply imposing a penalty or opting for a re-delivery of the goods or even having the
contract itself terminated. The buyer’s choice then binds the defaulter, the seller to a
reconciliatory obligation to fulfill the chosen form of remedy. The seller has a secon-
dary obligation to package the goods he delivers.

Similar detailed analysis has been done for each kind of obligation, rights, or pro-
hibitions that can be included in a typical sale of goods contract. Thus a wide range of
possible scenarios involved in a commercial business transaction is covered. This
forms an essential knowledge base for the business decision, and strategic planning
also. Awareness of possible consequences of non-performance or non-compliance to a
contract terms could influence the business process management to a great extent.
Contract compliance and performance monitoring have been a crucial concern for
most business managements. Multi Tier Contract Ontology is visualized to contribute
towards business knowledge management, improving efficiency and performance. On
a wider horizon, the proposed ontology framework is visualized as a global network
of integrated knowledge resources, exploiting the vast potential of the semantic web
to its utmost.

In the following section, the paper presents illustrative proof of concepts for im-
plementing the conceptual models in to machine understandable and searchable for-
mats using semantic web ontology languages like RDFS and DAML.

Figure 7: Seller’s Obligation to Deliver (expanded view)

5.Proof of Concept for Multi Tier Contract Ontology

5.1. UML to RDFS Transformations

We present a simplified version of our conceptual model for the Upper Core Con-
tract ontology layer, which has most of the main concepts illustrated in figure (8) be-
low. As mentioned in section 2, we chose to represent our conceptual models in UML
for the reasons stated therein. We model the concepts as UML classes which could be
modeled as Resources in the Resource Description Framework [50]. UML class asso-
ciations are characteristics or Properties linking the resources to their values in the
RDF graphs. The UML association ends are used to depict the property roles or rela-
tion to the other resources or classes in this case.

Figure 8: Sample Upper Level Core conceptual model

For example, the concept of an actor playing a role in context of the contract has
been modeled as an association hasRole in the above figure.

Using RDF Schema specification, it can be represented as the following extract
from our proof of concept RDFS implementation for the Upper Level Core Contract
Ontology (Figure 9 below)

Figure 9: Extract from RDFS proof of concept implementation

Figure 10: Screenshot from protégé 2000: Using Plugin to transform to RDFS

Current developments in the field of ontology have provided us with several ontol-
ogy editor tools, including Protégé 2000. Protégé 2000 is a graphical knowledge base
editor, which has an increasing user community. The UML plug in [51] supports the
import of XMI files and generates the corresponding RDFS and can store in RDFS
too. This utility has been used for transforming our UML conceptual models in to
RDFS automatically (Figure 10).

5.2. UML to DAML Transformations

The DAML-UML Enhanced Tool (DUET) of the CODIP project provides a UML
based environment for the development and manipulation of DAML ontologies. It
supports UML to DAML generation for tools like Rational Rose, ArgoUML. Another
DAML+OIL plugin is also available from the Protégé community for design and stor-
age of ontology in DAML+OIL .We have used DAML+OIL plugin from SRI[52] for
the sample illustrated below. As mentioned in section (3), we have adopted the UML
to DAML mapping guidelines as supported by DUET [33,31].

Figure 11: Screenshot of Protégé 2000, using DAML+OIL plugin

The same conceptual model as shown in figure (8), is translated in to DAML+OIL.
For example, the concept of the role in the upper layer is reified to that of a buyer in
the context of a sale of goods contract model as shown below:

Figure 12: Extract from DAML proof of concept implementation

5.3. Observations

From the above discussion, we see that UML has wide usage as an ontology modeling
language. The conceptual models are graphical and easy to understand by human us-
ers. UML can be translated to other machine understandable forms like RDFS,
DAML or databases as mentioned earlier. In case of databases, the concepts would be
translated into objects, associations into, and object properties into data properties. It
seems a logical choice to represent knowledge in the simplest form and translate it
into the required complex language based on the requirement of the application. Our
contribution of conceptual models can be reused and extended by other users of the
community tailored to their needs and objectives.

DAML+OIL is built on RDFS and has more constructs for expressing more details.
It is also closer to natural language and is easy to follow for users not familiar with
language constructs like those of RDFS. We found that DAML gave us a greater
flexibility in our multi tier contract ontology since we could apply restriction to con-
cepts from the upper level easily. DAML also allows us to differentiate between ob-
ject type properties and data type properties. Concepts can be expressed in detail in-
cluding inverseOf relations and equivalentTo relations.

As the semantic web standardization efforts progress, more such libraries of ready
to use language constructs should be available. Structured and predefined common
object type properties and data type properties could be assembled in re usable vo-
cabularies or libraries, for rapid design and development of ontologies in general.

Mapping rules from UML to RDFS and UML to DAML would also need to be
standardized, so that everyone uses the same rules and notations. Also, methodologies
for transformation from one storage model to another are sorely needed in the seman-
tic web approach. For example RDFS to DAML interchangeability issues need to be
addressed. Such methodologies would help the migration from traditional database
storage approach towards the semantic web.

6. Applications Of Multi Tier Contract Ontology
Based on the proposed multi tier contract ontology, we are working on a method-

ology to deduce contract workflow models, which will aid the business entities to or-
ganize, restructure or design their business process workflow.

Another direct application of our Multi Tier Contract Ontology is a methodology to
monitor and track obligation fulfillment based on the obligation categorization and
their states. Detailed specification of obligation states is an ongoing research work.

Other possible application would be to use the proposed knowledge base for auto-
mated or semi automated wizard like tools to help monitor contracts or to interpret the
required actions for fulfilling obligations etc.

7. Conclusion
The semantic web is meant to establish a network of machine understandable data

for software agents and search engines. But, the semantic web can have a far wider

impact and use as a universal medium for commerce. It would be an advantage if all
pertinent business information, which so far is stored in traditional databases or other
knowledge bases, were also made accessible, machine understandable, and available
as a part of the semantic web.

In this paper, we have presented conceptual models for representing contract
knowledge in the form of multi tier contract ontology. We have identified the existing
gap between business processes and their governing contractual terms and conditions.
The proposed ontology is the central knowledge base for deducing the business proc-
ess workflow, to affect business process interoperability by identifying the shared
processes, to improve business performance. One future focus is on mapping to other
related ontologies and contract related vocabularies like the UNSPSC, CPV etc.

We have also validated the use of UML as an ontology-modeling tool through our
conceptual models and the subsequent proof of concept illustrations using RDFS and
DAML. We have presented some observations based on our practical experiences in
the implementation process in section 5.3. But we believe that these are minor issues
that would be resolved as the semantic web efforts evolve.

Contracting is a large area, and currently we have focused mainly on the contract
execution phase. In the approach adopted, there is no distinction between a traditional
paper contract and an electronic contract. The ongoing research work is focused on
gradual extensions to cover all the phases of the contract life cycle. The Multi Tier
Contract Ontology is visualized as a central role player in all the aspects of contract-
ing. In our approach methodology, we have aimed to reuse other related work and
methodologies, especially the design guidelines and principles of ontology design.

8. REFERENCES

1 .UNCEFACT and OASIS, ebXML, e commerce business standard, http://www.ebxml.org/
2 .World Wide Web Consortium, Semantic Web, http://www.w3.org/2001/sw/
3 .Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American, May, 2001
4 .Howard Smith, The role of ontological engineering in B2B Net Markets, published online at

www.ontology.org
5 .Zoran Milosevic, Audun Jøsang ,Mary Anne Patton, Theo dimitrakos ,Discretionary enforcement of

Electronic Contracts, EDOC 2002
6 .Yao-Hua Tan, Walter Thoen. Using Event Semantics for Modeling Contracts. Proceedings of 35th Ha-

waii International Conference on System Sciences –2002
7 .Griffel, M. Boger, H. Weinreich, W. Lamersdorf, M. Merz. Electronic Contracting with COSMOS -

How to Establish, Negotiate and Execute Electronic Contracts on the Internet. EDOC '98, 1998
8 .Kamalakar Karlapalem, Ajay R Dani and PP. Radha Krishna; A frame Work for Modeling Electronic

Contracts; ER 2001, LNCS 2224 pp 193 – 207
9 .V Kabilan, P Johannesson, D Rugaimukammu, An ontological approach to Unified Contract Manage-

ment, to be published in the proceedings of 13th European Japanese Conference on Information Model-
ing and Knowledge Bases, held on June 6-7th 2003,Kitakyushu, Japan

10.Unified Modeling Language, http://www.uml.org/, accessed on 5th June 2003
11.Resource Description Framework Schema,W3C candidate recommendation 27 march 2000,

http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
12.J. Hendler and D. L. McGuinness, The DARPA Agent Markup Language, IEEE Intelligent Systems

journal, November 2000
13.N Noy,M Sintek, R Ferguson etal , Creating Semantic Web Contents with Protege 2000,IEEE Intelligent

Systems , 2001 .
14.Metalex , XML standard for mark up of legal resources , http://www.metalex.nl/ ,last accessed on 18th

June2003
15.Legal RDF Dictionary, European Legal RDF Dictionary initiated by John Mc Clure,

http://www.lexml.de/rdf.htm

http://www.ontology.org/
http://www.uml.org/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.metalex.nl/
http://www.lexml.de/rdf.htm

16.Ronald M Lee, A logic Model for Electronic Contracting, 1988
17.Ronald M Lee, facilitating International Contracting: AI Extensions to EDI, published in International

Information Systems, January 1992
18.B N Grosof, Yannis Labrou, Hoi Y Chan. A Declarative Approach to Business Rules in Contracts:

Couteous Logic Programs in XML, Proceedings of 1st ACM Conference on Electronic Commerce
(EC99).

19.B N Grosof, T Poon , SweetDeal :Representing Agent Contracts with Exceptions using XML Rules, On-
tologies and Process Descriptions , Proc. Intl. Conf. on the World Wide Web 2003.

20.Steven O Kimbrough , Scott A Moore, On Automated Message Processing in E Commerce and Work
Support Systems: Speech Act Theory and Expressive Felicity, Transactions on Information Systems ,
October 1997

21.A Daskalopulu, Evidence Based Electronic Contract Performance Monitoring. The INFORMS Journal
of Group Decision and Negotiation. Special Issue on Formal Modeling in E-Commerce, 2002

22.A Daskalopulu & T S E Maibaum Towards Electronic Contract Performance. Legal Information Sys-
tems Applications, 12th International Conference and Workshop on Database and Expert Systems Ap-
plications, 2001 IEEE C. S. Press, pp. 771

23.W van den Heuvel, H Weigand , Cross Organizational Workflow Integration using Contracts, Buisness
Object Component workshop ,OOPSLA 2000.

24.Yao-Hua Tan, Modeling Directed Obligations and permission in Trade Contracts.31st Annual Hawaii In-
ternational Conference on System Sciences, vol 5, 1998.

25.P Levine , J Pomerol,From Business Modeling Based on the Semantics of Contracts to Knowledge
Modeling and Management,34th Annual Hawaii International Conference on System Sciences,2001

26.A Goodchild, Charles Herring, Z Milosevic. Business Contracts for B2B. Proceedings of the CAISE00
Workshop on Infrastructure for Dynamic Business-to-Business Service Outsourcing, 2000

27.N Noy , D McGuinness ,Ontology Development 101: A Guide to Creating Your First Ontology
28.T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. Presented at

the Padua workshop on Formal Ontology, March 1993.
29.D L McGuinness, Conceptual Modeling for Distributed Ontology Environments, , published online at

www.ontology.org also, in the proceedings of the Eight International Conference on Conceptual Struc-
tures Logical, Linguistic, and computational issues (ICCS 2000)

30.Cranefield, S., and Purvis, M. "UML as an Ontology Modeling Language," Proc. of the Workshop on In-
telligent Information Integration, 16th Int. Joint Conference on AI (IJCAI-99), Stockholm, 1999

31. Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Holmes, W., Letkowski, J., and Aronson M.,
"Extending UML to Support Ontology Engineering for the Semantic Web." Proc. of the Fourth Interna-
tional Conference on UML (UML2001), Toronto, October 2001

32.Cranefield, S. "UML and the Semantic Web," Proc. of the International Semantic Web Working Sympo-
sium, Palo Alto, 2001

33. DAML UML Enhanced Tool, available http://grcinet.grci.com/maria/www/CodipSite/Tools/Tools.html
last accessed on June 24th 2003

34. Components for Ontology Driven Integration Push Project, http://codip.grci.com/
35. S Angelov, P Grefen , B2B eContract Handling – a survey of projects, papers and standards CTIT

Technical Report,University of Twente , 2001
36. W.M.P. van der Aalst. The application of PetriNets to workflow management. The Journal of Circuits,

Systems and Computers, 8(1):21--66, 1998
37. E Sivaraman, K Kamath, On the use of Petri nets for business process modeling’, Proceeding of the

11th Annual Industrial Engineering Research Conference, Orlando, FL., May 2002
38. http://www.lectlaw.com/def/g012.htm, Duhaima, Lloyd, Duhaime’s law dictionary, www.duhaime.org
39.Guarino, N. 1992. Concepts, Attributes and Arbitrary Relations: Some Linguistic and Ontological Crite-

ria for Structuring Knowledge Bases. Data & KnowledgeEngineering, 8: 249-261.
40. United Nations Convention on Contracts for International Sale of Goods , 1980, http://www.cisg-

online.ch/cisg/conv/convuk.htm, last accessed on June 24th 2003
41. International Conventions on Unification of Private Law,Uniform law on international sale of goods ,

1964. http://www.unidroit.org/english/conventions/c-ulis.htm
42.UNCITRAL : United Nations Commission on International Trade And Law.

http://www.uncitral.org/english/texts/
43.International Chamber of Commerce, http://www.iccwbo.org
44.ICC International contract for sale of goods, published by ICC books, 2002
45.United Nations Standard Products and Service Codes (www.unspsc.org)
46.Common Procurement Vocabulary (CPV) http://simap.eu.int/EN/pub/src/main5.htm

http://www.ontology.org/

47.UN Recommnedation no 21 : Types of cargo, packages and packaging materials.
http://www.unece.org/cefact/rec/rec21e4a.htm

48. Unified Customs and Practice for Documentary Credits UCP 500, ICC publication,
http://www.iccwbo.org/home/banking/778rev9.asp

49. Jan Ramberg; ICC Guide to Incoterms 2000. Understanding and Practical Use; International Chamber
ofCommerce 2000

50. Resource Description Framework, www.w3.org
51. UML storage backend , Holger Knublauch, Stanford University, available online for download at

http://protege.stanford.edu/plugins.html
52. DAML +OIL backend , developed by SRI , Grit Denker, John Pacheco,Ouissem Ghorbel available on-

line at http://protege.stanford.edu/plugins.html , last accessed on June 24th 2003.

The Visual Semantic Web: Unifying Human and Machine
Semantic Web Representations with Object-Process

Methodology

Dov Dori
Technion, Israel Institute of Technology, Haifa 32000, Israel

dori@ie.technion.ac.il, and
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

dori@mit.edu

 Abstract
The Visual Semantic Web (ViSWeb) paradigm enhances human accessibility to the
current Semantic Web technology by enabling the visualization of knowledge. Arguing
against the claim that humans and machines need to look at different knowledge
representation formats, Object-Process Methodology (OPM) is shown to enable
modeling of systems in a single graphic and textual model. ViSWeb provides for
representation of knowledge over the Web in a unified way that caters to humans as well
as machines. ViSWeb is developed as an OPM-based layer on top of XML/RDF/OWL
to express knowledge visually and in natural language. Both the graphic and the textual
representations are strictly equivalent. Being intuitive yet formal, they are not only
understandable to humans, but are also amenable to computer processing. The
advantages of the ViSWeb approach include equivalent graphic-text knowledge
representation, visual navigability, semantic sentence interpretation, specification of
system dynamics, and complexity management. The ability to use such bimodal
knowledge representation that is both human understandable and machine processable is
a major step forward in the evolution of the Semantic Web.

1. The Human-Machine Language Orientation Dilemma

The development of the Semantic Web is driven by the assumption that humans and
machines must each use a different format of knowledge representation. For example,
the RDF [7] introduction reads: "The World Wide Web was originally built for human
consumption, and although everything on it is machine-readable, this data is not
machine-understandable" (emphasis in source). Berners-Lee, Hendler and Lassila [5]
have noted that "the Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling computers and
people to work in cooperation." Constructing a comprehensive Web-based knowledge
management system must reconcile this human-machine language orientation dilemma.
The bulk of knowledge that continues being gathered on the Web in an ever accelerating
rate is expressed in free natural language, which is currently indigestible to machines
(e.g. [11]). Still, current technologies for Web-based knowledge management are
developed based on the premise that while humans prefer natural language, machines
must use XML-like scripts, which humans have to invest great efforts to decipher: "…
instead of asking machines to understand people's language, the new technology, like
the old, involves asking people to make some extra effort, in repayment for which they
will get substantial new functionality." [4]. The ViSWeb approach provides this
functionality without requiring that effort. This is true not only for RDF [21, 38], but
also for OWL, the Web Ontology Language [32], which reads: "In order to map this (the

World Wide Web] terrain more precisely, computational agents require machine-
readable descriptions of the content and capabilities of web accessible resources. These
descriptions must be in addition to the human-readable versions of that information."

In contrast, the Visual Semantic Web (ViSWeb) approach is founded on the premise that
human and machine Web-based knowledge need not necessarily be represented by two
distinct formats. ViSWeb is based on Object-Process Methodology (OPM) [14]. Using a
bimodal representation of graphics and text, OPM models knowledge about systems of
various types and different complexity levels in a single model, which integrates
structure and behavior. OPM, described in more detail below, combines a subset of
natural language, called Object-Process Language (OPL), with a formal, yet intuitive
graphic model, a set of one or more Object-Process Diagrams (OPDs) of exactly the
same knowledge expressed in OPL. This dual graphic-textual representation constitutes
a solid foundation for generic knowledge representation over the Web.

2. Combining Graphic and Textual Knowledge Representations

A powerful knowledge modeling and communication modality, which is complementary
to language, is graphics. Diagrams are often invaluable for describing models of abstract
things, especially complex systems. The fact that people from the early caveman days to
date have been using some kind of sketching or diagramming technique to express their
knowledge or ideas is a testimony to the viability of the graphic representation.
However, such representation of our knowledge is valuable only if it is backed by a
comprehensive and consistent modeling methodology. Such methodology is essential if
we want to represent knowledge, understand complex systems in any domain, and
communicate our understanding to others. An accepted diagramming method has the
potential of becoming a powerful modeling tool if it constitutes an unambiguous
language. In such visual formalism, each symbol must bear defined semantics and the
links among the symbols must unambiguously convey some meaningful information that
is clearly understood by the diagram readers.

Knowledge Representation Approaches

A number of knowledge representation approaches have been designed with the goal of
graphically and/or textually representing knowledge aimed at facilitating human
understanding and communication of knowledge. These approaches include concept
maps [2, 18, 19, 26, 27], semantic networks [22, 6, 16, 25], XML Topic Map (XTM)
[31] conceptual graphs (CGs) [33, 34, 9, 13, 23], Knowledge Interchange Format (KIF)
[20], Cyc [11], the Common Logic (CL) standard initiative [35], Unified Modeling
Language (UML) [21, 16, 30], and Object-Process Methodology (OPM), which is the
basis for the Visual Semantic Web presented in the paper.

Object-Process Methodology

Most interesting and challenging systems are those in which structure and behavior are
highly intertwined and hard to separate. Motivated by this observation, Object-Process
Methodology (OPM) [14] is a holistic approach to the study and development of
systems, which integrates the object-oriented and process-oriented paradigms into a
single frame of reference. Structure and behavior, the two major aspects that each
system exhibits, co-exist in the same OPM model without highlighting one at the

expense of suppressing the other. Due to its structure-behavior integration, OPM
provides a solid basis for modeling complex systems in general and those documented
through the Semantic Web in particular. The elements of the OPM ontology are entities
and links. Entities, the basic building blocks of any system modeled in OPM, are of
three types: objects with states, and processes. Objects are (physical or informatical)
things that exist, while processes are things that transform objects. Links can be
structural or procedural. Structural links express static, time-independent relations
between pairs of entities. The four fundamental structural relations are Aggregation-
participation, generalization-specialization, exhibition-characterization, and
classification-instantiation. Procedural links connect entities (objects, processes, and
states) to describe the behavior of a system.

Behavior is manifested in three major ways: (1) processes can transform (generate,
consume, or change the state of) objects; (2) objects can enable processes without being
transformed by them; and (3) objects can trigger events that invoke processes if some
conditions are met. Accordingly, a procedural link can be a transformation link, an
enabling link, or an event link. A transformation link expresses object transformation,
i.e., object consumption, generation, or state change. An enabling link expresses the
need for a (possibly state-specified) object to be present, in order for the enabled process
to occur. The enabled process does not transform the enabling object. An event link
connects a triggering entity (object, process, or state) with a process that it invokes. The
event types that OPM supports include state entrance, state change, state timeout,
process termination, process timeout, reaction timeout, and external events. External
events include clock events and triggering by environmental entities such as a user or an
external device.

Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs),
showing portions of the system at various levels of detail, constitute the graphical, visual
OPM formalism. Each OPM element is denoted in an OPD by a symbol, and the OPD
syntax specifies correct and consistent ways by which entities can be connected via
structural and procedural links, each having its specific, unambiguous semantics. OPM
assigns special graphical symbols for a selected set of relations (similar to UML class
diagrams, only for a larger set of relations). OPCAT (Object-Process CASE Tool) [5] is
a Java-based software environment that supports OPM system modeling and evolution.
The Object-Process Language (OPL), defined by a context-free grammar, is the textual
counterpart modality of the graphical OPD set. OPL is a dual-purpose language, oriented
towards humans as well as machines. Catering to human needs, OPL is designed as a
constrained subset of English, which serves domain experts and system architects,
jointly engaged in analyzing and designing a system, such as an electronic commerce
system or a Web-based enterprise resource planning system. Every OPD construct is
expressed by a semantically equivalent OPL sentence or phrase. This dual representation
of OPM increases the processing capability of humans according to the cognitive theory
of multimodal learning proposed by Mayer [8, 1]. The knowledge that OPM can
represent is not restricted to just structural, as in CGs and most other knowledge
representation formats. It can also be procedural, showing temporal order and enabling
cause and effect analysis. Designed also for machine interpretation through a well-
defined set of production rules, OPL provides a solid basis for automating the generation
of the designed application. Indeed, OPCAT currently generates complete Java code
from OPL script and enables the generation of any other formal language.

Unlike the graphic representation in the Semantic Web, which is an auxiliary means to
illustrate the machine-oriented, XML-based content, OPDs constitute a complete and
consistent visual formalism that goes hand in hand with the OPL. A basic OPM principle
is the text-graphic equivalence principle: Anything that is expressed graphically by an
OPD is also expressed textually in the corresponding OPL paragraph, and vice versa.
Following this principle, our goal in developing ViSWeb, the Visual Semantic Web, as
in OPM in general, is to specify a system by a set of inter-related Object-Process
Diagrams and their completely equivalent corresponding OPL paragraphs. This
equivalence implies that both modalities, the graphic and the textual, contain exactly the
same information, albeit in two different ways of expression. Due to this complete
equivalence, each can be reconstructed from the other. As noted, in spite of the apparent
graphics-text redundancy, from a human factors engineering viewpoint, these two
modalities activate different cognitive processes and therefore reinforce the
understanding of each other and of the system as a whole.

A major problem with most graphic modeling approaches is their scalability: As the
system complexity increases, the graphic model becomes loaded with shapes and
cluttered with links that cross each other in all directions. The limited channel capacity
[24] is addressed by OPM and implemented in OPCAT with three
abstraction/refinement mechanisms. These enable complexity management by providing
for the creation of interrelated OPDs (along with their corresponding OPL paragraphs)
that are limited in size, thereby avoiding information overload and enabling comfortable
human processing.

3. Concept Graphs vs. Object-Process Diagrams
The dual graphic and equivalent natural language representation of the single OPM
model is both human understandable and machine processable. A modeling system that
comes closest to OPM in its dual graphic-textual representation is Conceptual Graphs
(CGs), based on [29, 33]. Table 1 compares both the graphic and the textual CG and
OPM model representations of the system represented by the natural language sentence
"John is going to Boston by bus." Graphically, the CG model has a compact set of
symbols: boxes for concepts, ovals for relations, and arrows for the directed links
between concepts and relations. OPM has a richer set of symbols, allowing it to be more
expressive. While OPDs use boxes and ovals, like CGs, their semantics is different,
denoting respectively objects and processes rather than CG concepts and relations. OPM
relations are expressed via the various link types. For example, the link from John to
Going, which ends with the black circle, is the agent link, denoting that the Person called
John is the agent of (the human who executes) the process Going. Similarly, the link
from Bus to Going, which ends with the white circle, is the instrument link, denoting
that the Bus is the instrument of the process Going. As noted earlier, these special
symbols save the need to annotate these links textually. Agent and instrument links are
procedural links: they connect an object and a process.

Other OPD procedural links are the result, consumption, and effect links. In addition to
procedural links, OPDs feature a family of structural links, each of which connects an
object with an object. An example of a structural link in the OPD in Table 1 is the
exhibition-characterization relation, denoted by the black-in-white triangle along the line
connecting the Person John to the City. The exhibition-characterization symbol from
Person to Location states that Location is an attribute of Person,

The CG makes no underlying semantic difference between "John", "Boston" and
"Bus" on one hand and "Go" on the other hand: all are concepts. In OPM there is a
principal difference between these two entity types: The OPM ontology stipulates that
objects are things that exist, while processes are things that transform objects by
changing their state or by generating/consuming them. The inability of CGs to
distinguish between objects and processes is a major hindrance to enhanced expressive
power with respect to system dynamics: CGs may be fine for declarative assertions, i.e.,
statements about what exists in the world and how what exists related to other things that
exist. However, when it comes to describing the dynamics of the system, namely its
time-dependent behavior, CGs lacks the basic concept of process and makes no
distinction between objects and processes, relating to all as concepts. A somewhat
similar difference exists between OPM and the OO paradigm, in which Object is the
only top-level concept, and processes can only be expressed as operations that objects
own.

Table 1. Comparison between the CG (left) and OPM (right) models of "John is going to Boston by bus."

[Go]-
(Agnt)->[Person: John]
(Dest)->[City: Boston]
(Inst)->[Bus].

The Person John exhibits the Location City.
City is Boston.
John handles Going.
Going requires Bus.
Going changes City to Boston.

Comparing the two textual representations in Table 1 reveals that while CGs may bear
direct mapping to language, they do not translate to any subset of natural language, but
rather to a symbolic representation. The OPL sentences, on the other hand, are
understandable and the OPL paragraph above can indeed be summarized by the original
sentence. Note that the OPL script unfolds a small five-sentence "story." In order to set
up the framework for this story, John was assigned the attribute City, which is an
instance of the class Location and is assigned the value Boston. OPL sentences are
written in plain English that is easily readable and understandable to humans with no
prior training whatsoever. The same cannot be said about the LF script of CGs, as
demonstrated in the bottom left of Table 1. Another quantum leap is still required to
convert this script to a natural language sentence like "John is going to Boston by bus."

Summarizing the main differences between CGs and OPM we note that:

(1) The symbol set of CGs is more compact than that of OPDs but expressing the
same complex semantics in CGs requires to use at least twice the number
symbols required in OPD, yet the semantics is more explicit in OPDs.

(2) The CG formalism is probably better than OPM with respect to support for
logic. While OPM does allow AND, OR, and XOR relations, as well as

Boolean objects, it currently does not have the notion of quantifiers and
cannot deduce new knowledge from existing knowledge. This is an issue that
is being considered for inclusion in the next OPM versions.

(3) The text generated by OPM, the OPL paragraph, is a subset of English,
enabling any English speaker to readily understand it, while the LF, the
textual form of CGs is still in symbolic form that is not legible to untrained
humans.

(4) CGs are purely declarative and have no notion of system dynamics, which is
a major feature of OPM.

(5) CGs are not scalable, while OPM has this capability via its scaling
mechanisms.

In view of the fundamental differences, the choice of OPM as a basis for the Visual
Semantic Web is quite obvious. We continue with a brief survey of RDF and the use of
graphics in the Semantic Web.

4. The Semantic Web and the RDF Syntax

RDF, the Resource Description Framework [21, 8] aims at making the knowledge
resources that are available on the Web amenable to machine interpretation, compilation,
or other types of processing, by imposing some structure on the pieces of knowledge.
RDF provides a basis for a number of emerging initiatives, such as the Dublin Core
Metadata Initiative [17], an open forum engaged in the development of interoperable
online metadata standards. The RDF Syntax document [21] introduces a model for
representing RDF metadata as well as a syntax for encoding and transporting this
metadata for interoperability of independently developed Web servers and clients. The
syntax it presents uses the eXtensible Markup Language (XML), because one of the
goals of RDF is to enable specifying semantics for data based on XML in a standardized
manner. RDF and XML are complementary in that RDF is a model of metadata and only
addresses encoding issues by reference. Such issues include internationalization and
character sets, required by transportation and file storage. More importantly, the XML
syntax of RDF is only one of the possibilities for encoding RDF and, as noted in [21],
alternate ways to represent the same RDF data model may emerge. Indeed, this paper
proposes an OPM-based alternative on top of the XML syntax that is human- and
machine-oriented at the same time. This syntax enables bimodal, dual graphic-textual
representation of the system model for human consumption, while possessing a level of
formality that makes it amenable to machine processing.

The Semantic Web makes only limited use of graphical models. In RDF these are
directed graphs, where subjects and objects are nodes, and predicates are labels along the
edges, directed from a subject to an object. However, since the Semantic Web in its
current form and philosophy is geared primarily to cater to needs of machines, and since
machines do not need to read diagrams, the visual aspect of the information and
knowledge modeling is not well developed. Semantic Web documents show few graphs
early on but then abandon them and focus on the XML-based syntactical aspects of the
machine-oriented language. RDF is a model for representing named properties and
property values [21]. RDF properties may be thought of as attributes of resources and, in
this sense, correspond to traditional attribute-value pairs. RDF properties represent
relationships between resources, and RDF Schemas, which are instances of RDF data
models, are Entity-Relationship (ER) diagrams. The basic RDF data model consists of

the following three object types: Resource – Anything described by an RDF expression;
Property – A specific aspect, characteristic, attribute, or relation used to describe a
resource; and Statement – A specific resource – the subject, together with a named
property – the predicate, plus the value of that property for that resource – the object.
Following [8], consider first the sentence "Ora Lassila is the creator of the resource
http://www.w3.org/Home/Lassila." Translated to RDF format, this sentence can be
interpreted as having the subject (resource) http://www.w3.org/Home/Lassila,
the predicate (property) creator, and the object (literal) "Ora Lassila". RDF uses directed
graphs to specify these notions graphically, where subjects and objects are nodes, and
predicates are labels along the edges, which are always directed from a subject to an
object, as in Figure 1. A resource node in the graph is drawn as an oval (ellipse), while a
literal node is drawn as a rectangle.

Figure 1. A simple RDF graph example from [21]

the graph in Figure 1 is to be interpreted as "http://www.w3.org/Home/Lassila has
creator Ora Lassila", and in general "<subject> HAS <predicate> <object>". Applying
the RDF/XML Validation Service [38] using the RDF/XML script in Table 2 yields the
graph in Figure 2.

Table 2. The RDF/XML script that generates the graph in Figure 2.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator>Ora Lassila</s:Creator>
 </rdf:Description>
</rdf:RDF>

Figure 2. The RDF graph of the data model listed in Table 2 generated automatically by the RDF/XML
Validation Service [37]

The Semantic Web is based on a principle similar to that of OPM, where relations
(called properties in the SW nomenclature) are edges of a graph rather than nodes, as in
CGs. The Visual Semantic Web [16] (ViSWeb) alternative to the RDF/XML knowledge
representation [13] takes advantage of the integrated graphic-text formal yet intuitive
infrastructure that OPM provides. Figure 3 is a ViSWeb spec (Visual Semantic Web
specification), which expresses the example in Figure 1 in a bimodal fashion, both as an
Object-Process Diagram (OPD) and an Object-Process Language (OPL) text. The OPD
contains two object instances: Ora Lasilla and WWW.w3.org/Home/Lassila. To conform to

OMG UML 1.4 [10, 15], object names (i.e., instances of object classes) in OPDs are
underlined, as in UML object diagrams.

A tagged structural link, depicted as an open arrow, such as the one pointing from
Person to URI in Figure 4, expresses the nature of the relation between these two objects.
The tag is the text recorded along the structural link. The value of this tag is 'is the
creator of'. The value is a phrase, such that when the name of the source object, Ora
Lasilla (an instance of the class Person) is concatenated with the tag value (i.e., the
phrase) 'is the creator of' followed by the name (value) of the URL, one automatically
gets the following OPL sentence, which is also generated automatically by OPCAT and
recorded at the bottom of the OPD in Figure 3.

Ora Lasilla is the creator of WWW.w3.org/Home/Lassila.

Figure 3. The example in Figure 1 expressed as a ViSWeb spec (Visual Semantic Web specification),
consisting of an Object-Process Diagram (OPD) at the top window and its corresponding, automatically-
generated Object-Process Language (OPL) one-sentence paragraph at the bottom window.

The automatic generation of the OPL sentence in this simple case was done by
concatenating the name of the object at the source of the tagged structural link, Ora
Lasilla, with the text string of the structural link's tag, is the creator of, with the name of
the destination object, WWW.w3.org/Home/Lassila.

In RDF terminology, this OPL sentence is a statement, in which a specific resource – the
subject, Ora Lasilla in our case, together with a named property – the predicate, 'is the
creator of' in our case, plus the value of that property for that resource – the object,
WWW.w3.org/Home/Lassila in our case. Each word in an object (and process) name is
capitalized, while in link names (tags) they are not. As Figure 5 shows, names of objects
and link names (tags) appear in different colors (which can be set by the user). Even
though there are spaces between the words, using the capitalization rule above it is
possible to mechanically parse the sentence even without the human-oriented color cues.
Table 3 compares RDF and OPM with respect to this example. For each method, the
three elements and the respective parts of the example are written first, and below them
are the graphical and textual representations of the RDF graph in Figure 1 and the OPD
in Figure 5.

Table 3. Comparison between RDF and OPM applied to the example in Figure 1 and Figure 5

Object (domain):
Http://www.w3.org/Home/Lassila

Predicate (property):
Creator

Subject (range):
Ora Lassila

R
D

F/
X

M
L

Graphics:

Text:
<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.w3.org/Home/Lassila">
 <s:Creator>Ora Lassila</s:Creator>
 </rdf:Description>
</rdf:RDF>

Source object:
Ora Lasilla

Structural link tag:
is the creator of

Destination object:
WWW.w3.org/Home/La
ssila

O
PM

/V
iS

W
eb

Graphics:

Text:
Ora Lasilla is the creator of WWW.w3.org/Home/Lassila.

While the OPM model still does not account for namespaces, which are treated in the
sequel, comparing this OPL/ViSWeb sentence to the RDF/XML script in Table 3, it is
not difficult to see the benefit of using a more human-readable version, which, while still
machine-readable, does not require the human reader to act like a mechanical XML
parser.

Figure 4. A ViSWeb schema showing the class OPD along with its corresponding OPL sentence, to
which the ViSWeb spec in Figure 3 conforms

5. The ViSWeb Schema: A Template for a ViSWeb Spec

The lines under the two objects in Figure 3 denote the fact that these are object
instances, not object classes. The class information is still missing in this OPD. Figure 4
shows a ViSWeb schema, an OPD-OPL template that contains class information. Note
that the ViSWeb schema follows the OPM text-graphic equivalence principle: the OPD
and the OPL paragraph are completely reconstructible from each other. Each ViSWeb
spec conforms to a ViSWeb schema. Thus, the ViSWeb schema in Figure 3 conforms to
the ViSWeb spec in Figure 4. This ViSWeb schema can be thought of as a template that
expresses a rule. In our example, the rule stipulates that the source (which in RDF
schema terminology is termed the domain) of the relation (the RDF predicate) 'is the
creator of' is an object that belongs to the class Person, and that the destination (range)
of that relation is an object that belongs to the class URI.

Having established the Person-URI ViSWeb schema, we can now use it to add the object
instance for each of the two classes. This is done in the instantiated schema shown in
Figure 5, where the ViSWeb schema of Figure 4 and the ViSWeb spec of Figure 3 are
combined. The combination uses the OPM classification-instantiation relation, which is
denoted as a bulleted triangle whose tip is linked to the class and whose base is linked to
the instance. Note that the instances Ora Lasilla and WWW.w3.org/Home/Lasilla need not be
underlined here to denote that they are instances. The underlining of the instance names
is only mandatory if the class information is not present in the OPD, but here this is
indicated by the classification-instantiation links from the classes to the respective
instances.

Figure 5. The instantiated ViSWeb schema generated by adding the instance specification of Figure 3
to the class information in the ViSWeb schema in Figure 4.

The OPL paragraph of the OPD in Figure 5 is shown in Figure 5 as well:

Person is the creator of URI.
WWW.w3.org/Home/Lassila is an instance of URI.
Ora Lasilla is an instance of Person.

Note that predicates (such as is the creator of) do not have explicit instance names that
are distinct from their class names. Thus, for example, we use the same predicate in The
tagged structural relation 'is the creator of' from the class Person to the class URI is

inherited to their respective instances, so there is an implicit tagged structural relation
with the same tag, 'is the creator of', from Ora Lasilla, an instance of the class Person, to
WWW.w3.org/Home/Lassila, an instance of the class URI. Applying template information
and using chaining rules one can establish that Ora Lasilla is the creator of
WWW.w3.org/Home/Lassila although this is not explicit in the OPM model in Figure 5.
However, the instantiated ViSWeb schema in Figure 5 is space-consuming and it
requires the reader to realize the existence of the implicit tagged structural relation.
These two problems are solved in the compact version of the instantiated ViSWeb
schema of Figure 5, shown in Figure 6.

Figure 6. A compact version of the instantiated ViSWeb schema in Figure 5

The OPL paragraph that corresponds to the OPD in Figure 6 is also more compact than
the three-sentence OPL paragraph of Figure 5, as it consists of just one sentence:

The Person Ora Lasilla is the creator of the URI WWW.w3.org/Home/Lassila.

This sentence combines the OPL schema sentence from Figure 3, which is "Person is
the creator of URI." with the OPL instance sentence Figure 4, which is "Ora Lasilla is the
creator of WWW.w3.org/Home/Lassila." In the new OPL sentence, which reflects both the
classes and the instances, we added the class information of both Ora Lasilla, which is
Person, and of WWW.w3.org/Home/Lassila, which is URI. Ora Lasilla is classified in the
OPL sentence as belonging to the class Person by preceding the name of the instance by
the reserved word "The" followed by the class name Person. Likewise, the string
WWW.w3.org/Home/Lassila was classified as belonging to the class URI by preceding the
value of the string by the reserved word the followed by the class name URI. The
corresponding quoted sentence is The 'Person' 'Ora Lasilla' 'is the creator
of' the 'URI' 'WWW.w3.org/Home/Lassila'.

6. OPM Namespace Specification

Namespaces [7] are definitions of terms and relations of some domain ontology. The
OPL sentence "The Person Ora Lasilla is the creator of the URI
WWW.w3.org/Home/Lassila." does not specify the namespaces which contain the
definitions of Person, URI, and the structural link tag (predicate) 'is the creator of'. In
contrast, the XML script in Table 3 does mention two namespaces, rdf and docs. The
namespaces, which are part of the XML tags, enable us to know that we are looking at a
Description in the sense defined in the rdf namespace definition, that the value of its
about attribute is "http://www.w3.org/Home/Lassila", and that the value of the
Creator entity, as defined in the docs namespace, is Ora Lassila. This information
is clearly richer than what can be extracted from the RDF graph in Figure 1, since that
graph does not specify any namespace information.

The RDF graph is only an auxiliary means to make it easier for humans to "get the
picture." It is not required to contain all the information expressed by the corresponding
XML script and therefore cannot replace it (although the RDF Validator [37] does so,

albeit in a manner that is not very user friendly). The OPM text-graphics equivalence
principle mandates that any piece of information contained in the OPL paragraph that
corresponds to an OPD be represented in the OPD, and vice versa, making the OPD and
its OPL paragraph fully equivalent in terms of information content. To keep up with the
text-graphics equivalence principle, we introduce the concept of namespace to both the
OPD and the OPL.

Let us assume that the subject Person and the object URI are both defined in the
namespace whose name is Semantic Web and whose URI is
WWW.SemanticWeb.org/definitions. We further assume that the predicate 'is the creator of'
is defined in the namespace whose name is Documents and whose URI is
WWW.Documents.org/definitions. The OPD in Figure 7 elaborates on that of Figure 6, as it
provides the complete namespace information. The ViSWeb convention is to stack all
the namespaces used in the OPD at its top left corner. Each namespace is recorded in an
object box, with the string "Namespace: <blank> <namespace_name>" appearing at the
top left corner of the box and the corresponding URI recorded at the bottom of the box.
Here, <namespace_name> is the name of the namespace. Two namespaces names appear
in Figure 7: Semantic Web and Documents. Using these two namespace specifications,
instances in an OPD can be annotated not just with the class specification, as in Figure 6,
but also with the namespace within which the class is specified, preceding the class
name, as in Figure 7. Thus, Semantic Web: Person is the complete namespace and class
specification of the Person instance Ora Lasilla, and Semantic Web: URI is the complete
namespace and class specification of the URI instance WWW.w3.org/Home/Lassila. Finally,
Documents: is the complete namespace specification of the predicate (tagged structural
link in OPM terminology) 'is the creator of'.

Figure 7. The OPD of Figure 5 with the namespace object boxes at the top left corner of the OPD.

The following two OPL namespace declaration sentences are the textual equivalents of
the two namespace boxes stacked at the top left of Figure 7.

The namespace Semantic Web is at URL WWW.SemanticWeb.org/definitions.
The namespace Documents is at URL WWW.Documents.org/definitions.

Just as namespace graphical specifications in an OPD are part of the graphical syntax of
ViSWeb, OPL namespace declaration sentences are part of the textual syntax of
ViSWeb. Based on the above two namespace declarations, the following class and
relation definition sentences are:

The namespace Semantic Web defines the class Person.

The namespace Semantic Web defines the class URL.
The namespace Documents defines the relation 'is the creator of'.

The Default Namespace Convention

Usually, most if not all the names in a single OPD are defined in the same namespace.
Thus, it is redundant and cumbersome to specify separately for each name that it is
defined within that namespace. A simplifying OPM default namespace convention is
that the namespace at the top of the namespace stack in the OPD is the default
namespace, so any class in the OPD which is defined within this default namespace does
not require that the namespace name precedes it. In our example, the default namespace
declaration sentence is:

The default namespace Semantic Web is at WWW.SemanticWeb.org/definitions.

Applying this default namespace convention, the OPL paragraph (collection of OPL
sentences) that corresponds to the OPD in Figure 7 is:

The default namespace Semantic Web is at WWW.SemanticWeb.org/definitions.
The namespace Documents is at WWW.Documents.org/definitions.
The namespace Documents defines the relation 'is the creator of'.
The Person Ora Lasilla is the creator of the URI WWW.w3.org/Home/Lassila.

The XML script that specifies the analogous semantics, where the Semantic Web
namespace is replaced by rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
and the Documents namespace is replaced by s="http://description.org/schema/"
is the one listed in Table 2.

Wrapping the ViSWeb specification with XML and the DRF Equivalent

Having finalized the ViSWeb specification, we now describe how it is all wrapped with
XML for being amenable to Web transfers and manipulations. We call this form
XML/ViSWeb. We also describe how this XML/ViSWeb is translated into the
XML/RDF standard. The following namespace declaration sentence, which is a constant
part of any XML/ViSWeb text, specifies the OPM namespace:

The namespace OPM is at WWW.ObjectProcess.org/definitions.

The entire ViSWeb OPL specification is incorporated into the XML syntax by simply
enclosing it within the <OPM:OPL> and </OPM:OPL> tags, as shown in Table 4. The
OPD is likewise enclosed within the <OPM:OPD> and </OPM:OPD> tags. For human
consumption, the actual graphic display of the OPD is presented in the XML/ViSWeb
specification, as shown in Table 4. For machines, the actual OPD is replaced in the
corresponding XML/RDF script by its XMI [11] representation. Comparing the human-
oriented XML/ViSWeb specification to its corresponding machine-oriented XML/RDF
translation in Table 4, the advantages for humans of the former over the latter are
evident:

• Graphically, the machine-oriented XMI [28] specification of the ViSWeb OPD is
rendered and displayed for humans as an intelligible diagram that contains the same
information as the corresponding ViSWeb OPL script below it.

• Textually, the ViSWeb OPL script contains only sentences in a subset of natural
English, which humans can read and understand with significantly less effort than
required for performing "mental compilation." Such mental compilation is what
humans are effectively required to execute when they encounter any XML/RDF
script that they wish to interpret.

Table 4. Comparison between the complete human-oriented XML/ViSWeb specification of our example
and its corresponding machine-oriented XML/RDF translation

H
um

an
-o

rie
nt

ed
 X

M
L/

V
iS

W
eb

<?xml version="1.0"?>
<OPM:OPD>

</OPM:OPD>

<OPM:OPL>
The namespace OPM is at WWW.ObjectProcess.org/definitions.
The default namespace rdf is at WWW.w3.org/1999/02/22-rdf-syntax-ns#.
The namespace Documents is at WWW.Documents.org/definitions.
The namespace Documents defines the relation 'is the creator of'.
The Person Ora Lasilla is the creator of the URI WWW.w3.org/Home/Lassila.
</OPM:OPL>

M
ac

hi
ne

-O
rie

nt
ed

 X
M

L/
R

D
F

<?xml version="1.0"?>
<OPM:OPD>
-- Here comes the XMI [28] specification of the OPD, which
enables its rendering shown above for human consumption. --
</OPM:OPD>
<OPM:OPL>
 xmlns:OPM="http://www.ObjectProcess.org/Definitions"
 <rdf:RDF>
 xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
 xmlns:Documents="http://documents.org/defintions">
 <rdf:Description about="http://www.w3.org/Home/Lassila">

<Documents:'is the creator of'>
 Ora Lassila
</Documents:'is the creator of'>

 </rdf:Description>
 </rdf:RDF>

</OPM:OPL>

The idea, then, is to show humans human-oriented XML/ViSWeb specification,
exemplified by the top part of Table 4, while the machine will still be able to process its
"pure" XML/RDF translation, shown at the bottom of Table 4. In order to do this, we
must have a utility for bi-directional translation between ViSWeb and RDF.

7. Adding Attributes

Continuing with the example from [21], for specifications that are more complex, a
compound resource can be created, as the following sentence and the corresponding
graph in Figure 8 demonstrate:

"The individual referred to by employee id 85740 is named Ora Lassila and has the
email address lassila@w3.org. The resource http://www.w3.org/Home/Lassila was
created by this individual."

Figure 8. An identified property with structured value [21]

Figure 9. The OPD that corresponds to the graph in Figure 8

The OPL paragraph that corresponds to the OPD in Figure 9 is:

The default namespace Semantic Web is at WWW.SemanticWeb.org/definitions.
The Employee ID WWW.w3.org/staffid/85740 is the creator of the Document
WWW.w3.org/Home/Lassila.
The Employee ID WWW.w3.org/staffid/85740 exhibits the Name Ora Lasilla and the Email
Lasilla@w3.org.

The OPL reserved word exhibits expresses the exhibition-characterization relation (the
relation between a class and its attributes, symbolized by a black-in-white triangle) from

The Employee ID Http://www.w3.org/staffid/85740 to the Name Ora Lasilla and to the Email
Lasilla@w3.org.

Figure 10. A better representation of the information presented in the OPD in Figure 9

A better representation of the information presented in the OPD in Figure 9 is shown in
the OPD of Figure 10. The Employee ID is now an attribute of the Person rather than
the other way around. That this is a better way of modeling is clearly seen when we
compare the OPL paragraph below, which corresponds to the OPD in Figure 10, to the
previous OPL paragraph, which corresponds to the OPD in Figure 9.

The default namespace Semantic Web is at WWW.SemanticWeb.org/definitions.
The Person Ora Lasilla is the creator of the Document WWW.w3.org/Home/Lassila.
The Person Ora Lasilla exhibits the Employee ID WWW.w3.org/staffid/85740 and the Email
Lasilla@w3.org.

8. Advantages of the Visual Semantic Web Paradigm
The ViSWeb paradigm has a number of important advantages over present
OWL/RDF/XML approaches, which are summarized in this section.
1. Graphic-text knowledge representation: The powerful graphic-text bimodal
representation of OPM is extended to the Visual Semantic Web paradigm. Rather than
having to mentally parse cryptic XML scripts, knowledge is presented to the user in a
subset of natural language as well as diagrammatically. The two modalities complement
each other, so if something is unclear in one representation, the other can be consulted
for clarification. Using ViSWeb, one can ask for a translation from XML/RDF to
XML/ViSWeb in order to get both visualization and a human-readable version of the
XML syntax. The graphic representation can then be manipulated, changed, or
augmented. Any such change would be reflected in the ViSWeb OPL script, and through
it transparently back to the XML/RDF machine-oriented syntax. This way, working in a
round-trip engineering mode, the human gets to think and develop ideas in a user-
friendly environment without compromising the technical soundness of her/his work.

2. Visual navigability: In addition to the advantages of putting to work the "two sides of
the human brain," the visual and the lingual, there are benefits that are unique to the
Semantic web. The formal robust, yet intuitive, diagrammatic display enables users to
surf and navigate the Web in a visual way in search for knowledge.

3. Semantic sentence interpretation: In spite of the aspiration of the Semantic Web,
the basis of the RDF framework is syntactic rather than semantic: it draws on the
concepts of subject, predicate and object, which are parts of speech used to analyze
natural language sentences from a syntactic viewpoint. The same semantics can be
expressed by inverse syntactic expressions. For example, without changing the
semantics, we could easily switch the roles of subject and object in the example of
Figure 1 by writing the sentence as "The resource http://www.w3.org/Home/Lassila was
created by Ora Lassila." Now the (syntactic) subject is
http://www.w3.org/Home/Lassila, the object is Ora Lassila, and the predicate is "was
created by". While the parts of speech are turned upside down and the predicate was
changed from active to passive, the meaning of the sentence is still the same. The
proposed OPM-based ViSWeb paradigm is based on a sound ontology of objects with
states and processes: Objects are things that (at least potentially, and possibly at some
state) exist, while processes are things that happen to objects and transform them (i.e.,
create or destroy them, or change their state). Based on this ontology, sentences can be
interpreted semantically rather than syntactically. In OPM, each structural relation pair
has a forward direction and a backward direction [14], so for example the forward
relation "is the creator of" is paired with "was created by." This helps overcome
syntactic differences and establish semantic equivalence.

4. Specification of system dynamics: Current work on the Semantic Web places
emphasis on declaratively specifying structural knowledge, which relates to the static
aspect of systems. Structural knowledge pertains to relations among objects that are not
related to the objective of the system or the way it operates. According to Berners-Lee
[3], "the RDF model is basically an opening of the ER model to work on the Web." A
typical ER model involves entity types, each with its set of relationships. "The RDF
model is the same, except that relationships are first class objects: they are identified by
a URI, and so anyone can make one." This is a purely static world view, where
everything can be expressed in terms of structural, time-independent relations. However,
a major part of the knowledge about a system is functional (what is its purpose) and
dynamic (how it operates). The current SW offers very little in this regard. Since OPM
combines function, structure, and behavior in the same bimodal model, it provides a
sound infrastructure for representing system dynamics and function in the ViSWeb
model. While the details are beyond the scope of this work, suffice it to mention that
knowledge about reactive and real-time systems requires treatment of events, conditions,
actions, state transitions, and time exceptions, to name but a few major issues. All those
and mode can be modeled in OPM.

5. Complexity management: A major problem in real-life systems is their complexity
due to the sheer amount of knowledge details. In addition to the OWL [32] set operators
that can be translated into OPM as demonstrated above, OPM has built in abstraction-
refinement mechanisms, including in-zooming and out-zooming, unfolding and folding,
and state expression and suppression. These provide for building hierarchies of
knowledge representation in general and over the Web in particular, enabling navigation
up and down abstraction-refinement hierarchies.

9. Summary and Future Work

The Visual Semantic Web (ViSWeb) paradigm proposes to unify human and machine
representations of knowledge. The foundation for this unification is Object-Process

Methodology (OPM), which advocates the integration of a system's structure and
behavior is a single, graphic and textual model. The paper has presented the principles
and outlined an implementation for the ViSWeb. Like OPM, the ViSWeb model enables
the representation of static and dynamic knowledge using a combination of Object-
Process Language (OPL), a subset of English, and Object-Process Diagrams (OPDs), an
equivalent visual formalism. The advantages of this approach include graphic-text
knowledge representation, visual navigability, semantic sentence interpretation,
specification of system dynamics, and complexity management. As noted in [21], "It is
also important to understand that this XML syntax is only one possible syntax for RDF
and that alternate ways to represent the same RDF data model may emerge." Indeed,
this work presents an OPM-based approach to representing the Semantic Web on top of
the RDF data model, which is expressed graphically, using OPDs, and textually in OPL,
a subset of natural English which is also "machine understandable," i.e., amenable to
parsing and converting back to the XML-based RDF syntax.

Future work will proceed in both the theoretical and practical paths. The theory will
focus on extending the idea behind the ViSWeb paradigm and its initial specification,
presented in this work, to cover other important knowledge and system representation
aspects. Based on OPM, ViSWeb will be able to handle not only the declarative static
structural aspects of knowledge, which is the focus of the current Semantic Web
initiative, but also procedural, dynamic behavioral aspects, as well as functional ones.
The practical work will augment the current capabilities of OPCAT so it will be suitable
for modeling the various ViSWeb requirements presented here, and provide the services
of bi-directional RDF-ViSWeb compilation. An even more ambitious goal is to design
and build a Web crawler which will automatically generate ViSWeb representations of
knowledge stored in Web pages. Accomplishing even some of these goals will greatly
benefit the huge World Wide Web user community by providing them with a friendly
semantic surfing tool and relieving them from the need to mentally compile XML
scripts.

References
[1] Anderson, J. R., Bower, G. H. Human associative memory. Winston and Sons, Washington,

D.C., 1973.
[2] Arnheim, R. Visual Thinking. University of California Press, Berkeley, California, 1969.
[3] Berners-Lee, T. What the Semantic Web can represent, 1998.

http://www.w3.org/DesignIssues/RDFnot.html
[4] Berners-Lee, T. and Hendler, J. Scientific publishing on the semantic web. Nature. 2001.

http://www.nature.com/nature/debates/e-access/Articles/bernerslee.htm
[5] Berners-Lee, T. Hendler J. and Lassila, O. The Semantic Web. Scientific American, May

2001.
[6] Brachman. R. On the epistemological status of semantic networks. In Associative Networks:

Representation and Use of Knowledge by Computer. N.V. Findlee, Ed. Academic Press.
New York, NY, pp. 3-50, 1979.

[7] Bray, T., Hollander, D. and Layman, A. Namespaces in XML, World Wide Web
Consortium Recommendation, 14 January, 1999. http://www.w3.org/TR/REC-xml-names

[8] Brickley, D. and Guha R.V. RDF Vocabulary Description Language 1.0: RDF Schema,
W3C work in progress draft, 30 April, 2002. http://www.w3.org/TR/rdf-schema

[9] Chein, M., M.L.Mugnier.Conceptual Graphs:Fundamental Notions.Revue d’Intelligence
Artificielle,vol.6,n.4,p.365-406,1992.

[10] Corby, O., Dieng, R., and Hebert C. A Conceptual Graph Model for W3C RDF
Proceedings of the Int. Conf. on Conceptual Structures (ICCS), 2000.
http://www.int.gu.edu.au/kvo/reading/oliviericcs2000.pdf

[11] Cyc. OpenCyc, org, 2002. http://www.opencyc.org/
[12] Delteil, A. Faron, C. A Graph-Based Knowledge Representation Language. Proc. 15th

European Conference on Artificial Intelligence (ECAI) 2002. http://www-
sop.inria.fr/acacia/personnel/Alexandre.Delteil/ecai.pdf

[13] Delugach, H. Conceptual Graphs Homepage, 2003. http://www.cs.uah.edu/~delugach/CG/
[14] Dori, D. Object-Process Methodology - A Holistic Systems Paradigm, Springer Verlag,

Berlin, Heidelberg, New York, 2002. www.ObjectProcess.org
[15] Dori, D. Why Significant Change in UML is Unlikely. Communications of the ACM, pp.

82-85, Nov. 2002.
[16] Dori, D. Reinhartz-Berger, I. and Sturm, A. OPCAT – A Bimodal CASE Tool for Object-

Process Based System Development. Proc. IEEE/ACM 5th International Conference on
Enterprise Information Systems (ICEIS 2003), Angers, France, pp. 286-291, 2003.
www.ObjectProcess.org

[17] Dublin Core Metadata Initiative. 2002. http://www.dublincore.org/
[18] Gaines, B.R. and Shaw, M.L.G. Concept maps as hypermedia components. International

Journal of Human Computer Studies, 43(3), pp. 323-361, 1995.
[19] Genesereth, M.R. Knowledge Interchange Format. Draft proposal American National

Standard (dpANS), NCITS.T2/98-004. 1998. http://logic.stanford.edu/kif/dpans.html
[20] Lassila, O. and Swick, R. Resource Description Framework (RDF) Model and Syntax

Specification. W3C Recommendation, 22 February, 1999. http://www.w3.org/TR/REC-rdf-
syntax

[21] Lehman, F. (Ed.) Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford,
UK, 1992.

[22] Martin, P. and Eklund, P. Embedding knowledge in web documents: CGs versus XML
metadata languages. Proc. 7th Int. Conf. on Conceptual Graphs (ICCS’99), Springer-Verlag,
1999.

[23] Mayer, R.E. Multimedia Learning. Cambridge University Press, NewYork, NY, 2001.
[24] McTear, M.F. (Ed.) Understanding Cognitive Science. Ellis Horwood, Chichester, UK,

1988.
[25] Novak, J.D. A Theory of Education. Cornell University Press, Ithaca, Illinois, 1977.
[26] Novak, J.D. and Gowin, D.B. Learning How to Learn. Cambridge University Press, New

York, NY, 1984.
[27] OMG UML1.4. Object Management Group, Unified Modeling Language Version 1.4,

September 2001. http://www.omg.org/technology/documents/formal/uml.htm
[28] OMG XMI. Object Management Group, XML Metadata Interchange (XMI) Specification

Version 1.2, January 2002. http://cgi.omg.org/docs/formal/02-01-01.pdf
[29] Peirce, C.S. Collected Papers of Charles Sanders Peirce. In Hartshorne, C. and Weiss, P.

(Eds.), Harvard University Press, Cambridge, MA, 1932.
[30] Peleg M. and Dori, D. The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Transaction on Software Engineering, 26, 8, pp. 742-759,
2000.

[31] Pepper, S. and Moore G. XML Topic Maps (XTM) 1.0. TopicMaps.Org Specification,
2001. http://www.topicmaps.org/xtm/1.0/

[32] Smith, M. K., McGuinness, D. Volz, R., and Welty, C. Web Ontology Language (OWL)
Guide Version 1.0. W3C Working Draft, 4 November, 2002.
http://www.w3.org/TR/2002/WD-owl-guide-20021104/

[33] Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley, Reading, MA, 1984.

[34] Sowa, J.F. Conceptual Graph Standard, 2000
http://users.bestweb.net/~sowa/cg/cgstandw.htm#Header_44

[35] Sowa, J.F. The Common Logic Standard initiative. 2002
http://suo.ieee.org/email/msg08241.html

[36] Sowa, J.F. (1999) Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.

[37] W3C RDF Validation Service, 2003. http://www.w3.org/RDF/Validator/

Interaction and navigation for a document database : a
concrete case study

Isabelle Berrien, François Laburthe and Jean-David Ruvini

e-lab BOUYGUES SA
1, avenue Eugène Freyssinet,

78061 Saint Quentin en Yvelines, FRANCE
Mail :iberrien@bouygues.com

Tél : +33 1 30 60 53 66 Fax : +33 1 30 60 22 15

Summary

In this article, we present the application Wishbone, an innovative search engine to

explore complex document database. Dedicated to the intranet document site of our
society, we present in this paper how we managed to improve the request process by
avoiding the “all or nothing” syndrome for a too fuzzy or too demanding request
respectively, offering also the maximum of smoothness in the way the user formulates
the query. We particularly focused our attention on the interaction between a web
database and its users, either during a consultation or an interrogation process. This
web context can be found in multiple environments like an intranet, a FAQs site, self-
assistance, sale catalogues or document data bases. First we analyse document
consultation sites in regard to quality criteria. In a second step, we describe our
approach to furnish a software response to the problematic of settling, management
and interaction of an online document database. All this work was accomplished
using as example an enterprise document database with various documents like
contracts, business notes and bug reports.

Keywords : document database, web mining, research

engine, knowledge management

2 Isabelle Berrien, François Laburthe and Jean-David Ruvini

I. Introduction

Surfing in a content site appears to be one of the major Internet’s problematics
encountered these days with search engines. Therefore it has become one of the
striking research axes about the World Wide Web, which not only has to face
increasing amounts of pages but also is supposed to render the information they
contain inside easy to read and understand. It is a huge problem since the multiple
factors which are linked to it seem quite complex: different information sources,
multiple publishers, site architecture, request systems… We therefore asked to
ourselves the following question:

How can we help an internaut these days while searching information or
investigating a data base using the internet?

Part of our research topics is concerned by this problem and this paper presented
here discloses our first results.

In order to both answer the question and propose a concrete solution, we chose to
investigate our research program in an enterprise intranet context. The data sources
we got in hand could be therefore better identified. We can as a consequence narrow
the field of our work to “Intranet Mining” (vs. “Web Mining”), which presents the
following advantages. :

- Intranet : the problematics encountered in an intranet are quite identical to
those of the world wide web but in a restricted context.

- Data are easy to access and smaller. It is a context well appropriate to
conceive, develop and validate components which should be in fine exploited in the
World Wide Web.

This article in made of three main parts. First we describe the problematic of
document site we got interested in. In the second part, we explain in detail the issue
we bring to it by studying the difficulties faced by the C2S enterprise about its
document database and the last part presents our future work.

Interaction and navigation for a document database : a concrete case study 3

II. Document database consultation problematics

In order to clearly understand the problems encountered with the management of a
document database and orientate our investigation properly, we first identify the main
difficulties the user has to face when she connects to such a site. We briefly point out
the main criteria which make a document site appealing, then we focus our attention
to the complexity of such sites.

2.1. Quality measurement of a site

Rating a site quality notion is quite fuzzy and quite complex (aesthetic aspect,
ergonomics content quality).

Nevertheless, our bad experience of frustrated internaut when not finding what we
want makes us feel that a web site reaches its goal1 when a user gets easily the advice
or the information she’s searching for.

This could be measured according to the following criteria:
 Objective :

- percentage of times a user gets an answer
- number of clicks required to access the answer
Subjective/qualitative :
- easiness for the user to understand the database logic (does she get lost pretty

early in the process or not ?)
- answer pertinence according to the user’s expectation

We have now in hands some quantifiers to estimate the quality of a documentary

database access. This will be our evaluation protocol for every site concerned.

2.2 Complexity factors

An information site must implement several different components like multiple
choice forms with depending on the context, preceding selections, surfing access to
side. This implies a continuous user interface during the process taking place between
the site and the user. This process successively switches from questions, choices,
fields of values presentation on one side and on the other side answers, selection,

1 http://www.auditweb.net/

4 Isabelle Berrien, François Laburthe and Jean-David Ruvini

criteria. This also requires having a good capability of managing the process logic
while the interface keeps on changing its content (apparition and disappearance of
criteria, values changes…).

Le Grand has identified in her PhD. thesis three major difficulties:
- Organization level of the documents: in the user mind, the desired

information takes usually part of a structured frame. Invoking a rich
document organization does not refer directly to the general descriptors of
the documents, but rather to the way the documents are related to each other.
We are talking about specific descriptors depending on the document type
which allow the information to be classified harmoniously in a hierarchy.
The purpose here is to offer an intuitive access to the information.

- The volume of information feed back: quantity does not guarantee quality.
A system that has plenty of data is not necessarily a good service. On the
contrary, it often procures the user an uncomfortable feeling because of
incapacity for her to get an overall view of the environment.

- Richness of the documents content: this time, we’re really talking about
the document itself. The more the document is annotated, classified, the
more the final interaction is pertinent and smooth. This allows, moreover it
implies, that the research data (e.g. documents descriptors) should be rich,
multidimensional, giving a user the possibility to navigate or express her
request with maximum of smoothness and comfort. Richness of content
concerns the data production phases.

From those three points, we deduce that the route between weakly structured,

heterogeneous data sources and its consultation on line can be long and complex. We
can qualify this as an “information cycle”, which equilibrium is fragile. Next we
detail our solutions.

Interaction and navigation for a document database : a concrete case study 5

III. WISHBONE : a tool for the publishing and the
consultation of documents.

The solution we propose, the Wishbone application [Berrien and Laburthe, 2003]
is cut in three parts :

- 1. A research and exploration service capable of displaying overall views

of solutions if there are too many, or re-direct the user in case of no response.
In summary, we prevent the user to fall into the “all-or-nothing” scenario
which often forces her to click back during the browsing process (e.g. each
time the request does not imply a small amount of responses).

- 2. A research model detached from the real data storing. To each real
document is associated a descriptor object. These objects are organized
following a rich model and detailed for numerous possible types of
documents. It has many advantages like a higher flexibility (for it allows data
to be stored in a business model different from the research model used for
the query process), and also enriched investigation techniques. The model
permits to define a service structured like a product configuration
component, completely disjoined from the document nature
(classes/types/options/containers/associated objects...).

- 3. A help to the data production. First of all, we must have in hand rich
and complete data, even after a lazy publication process. We also need to
prevent any storage of absurd information. Thinking about perfect automatic
data storage does more look like a utopia, but it still should be feasible to
narrow the amount of errors generated during the process. This could be
done with the help of assistance mechanisms for document publishing.

Wishbone has been settled in an intranet frame dedicated to the management

of documents published by a computer branch society of BOUYGUES Company
(C2S) which covers all problematics mentioned upside. The C2S company is a
hundred people staff society2, with a flux of thousands documents published per
year. These documents concern a large part of the company patrimony (checking
flow of contracts, product description documents, marketing papers, technical
points, internal procedures…).

In the following section, we describe each of the 3 preceding points.

2 http://www.c2s.fr/

6 Isabelle Berrien, François Laburthe and Jean-David Ruvini

3.1. Research and exploration service: using views or relaxations to browse

As it was upper mentioned, a important criterion for a successful document
database site is to be able to generate interrogation and response screens well adapted
to the user (external or professional). We must keep, whatever the degree of
advancement of the research process is, a friendly and clear interface whereas it could
easily turn into a deep complex one if the information volume gets too big. Our key
rule was to accompany the internaut by giving her views of documents groups instead
of a huge list.

3.1.1 Too many answers

When answers are too many to be decently displayed and easily understood by the
user, the Wishbone platform developed in our laboratory presents the solution set
grouped in several packages. As example, the picture below shows a typical interface
of our application (Figure 1).

The request in the case below is the following :
 “General documents, written by external authors, of text format and

published after april 4, 2002”.
We distinguish two parts, the form (up) and the responses (below):

Interaction and navigation for a document database : a concrete case study 7

- Figure 1 -

The query solution set contains 144 answers. Instead of forcing the user to refine

her request in order to reduce the number of solutions, or displaying all solutions, the
application returns an image of all answers classified into groups depending a chosen
criterion.

The engine grouped them in 2 packages chronologically classified (published
before and after September 11, 2002). We notice that each cluster has been enriched
with common values for fields like the author, the format and the theme). This is the
result of a segmentation performed by the engine upon all solutions (according to a
criterion, either chosen by the engine as the most performing one from a clusterisation
point of view (default behaviour), or either by the user if she wants another view).

Moreover, in each group, if all documents show one or more common
characteristics, (for instance here, all documents published before September the 11th
are xls or doc files), these are disclosed (Figure 1). This takes part of a enhanced
converging process: the user is informed of the most relevant characteristics of each
cluster, a sort of “one step in advance”, thus allowing her to choose the most
appropriate one in the less hazardous way.

8 Isabelle Berrien, François Laburthe and Jean-David Ruvini

If the current filter criterion doesn’t satisfy the user, she can switch to another one

as she wants (here below the solution set was switched to a format point of view)
(Figure 2):

- Figure 2 -

By clearly grouping the answers and attributing each group pertinent

characteristics, while allowing the user to see the answers from the desired point of
view, we obviously improve the user productivity in accelerating the converging
process. Even if use of different views for the same data is a well-known method in
databases, allowing access to numerous data using a monodimensional clustering
process has never been reported before. This therefore brings a solution to the second
problem mentioned in the beginning, that is to say how to manage a large amount of
information in the most ergonomic manner.

3.1.2. No answer

In case of there is no solution to the request, instead of falling into the usual
scenario of forcing the user to re-formulate her request, the engine proposes
alternatives by displaying the closest solution spaces corresponding to the initial
request. For instance, the request in the following example is “find documents
published by an external author and with a image format”. This present request
has an empty solution set, but still the user gets the following response (Figure 3):

Interaction and navigation for a document database : a concrete case study 9

- Figure 3 -

This example shows that the two criteria (e.g. external author and image format)

could not be both kept in order to get a response. The engine smoothly relaxed each of
them until it gets valid solution spaces [Laburthe, 2002]. The user is then proposed 2
alternatives: the first one retains the external author request and looks in the closest
values for the format field (Word file instead of image) and therefore can choose the
“137 solutions” set. The second proposition kept the format value request (image) but
had to extend the author field initial value (initially “external author”). We herein find
out that quite a large part of the image documents has its author field value not filled!

3.2 A research model

The application relies on a two level description (Figure 4).

The first level (the abstract one) concerns descriptive objects of documents. This

is the level in which the research application acts and is responsible for the user dialog
logic. We organize this level in concepts, classes and relations.

The second level (the concrete one) deals about the documents themselves, and is

taken as reference for all the classes’ instances which constitute the whole object
database.

10 Isabelle Berrien, François Laburthe and Jean-David Ruvini

ABSRACT LEVEL :

- Figure 4 -

The Figure 4 illustrates the organization abstract/concrete for a particular

document (here a sale contract). This sale contract document is linked in the abstract
level to an XML described instance (label on left part), of which certain elements take
their values in an appropriate ontology [Gruver, 1993] according to the object model.

In this example, we have an instance of the SPECIFIC_DOCUMENT class. The
SPECIFIC_DOCUMENT class in our model is a subclass of the DOCUMENT
class and represents documents containing specific information like the reference to
a client (a regular instance of the DOCUMENT does not). Here it refers to a client,
“Expert Entreprise”, the author is Isabel Neirreb, and it’s got a reference to a product
(PRODUCT class) which contains itself 2 slots: its name and its version.

At this point, this organization is similar to the one of Topic Maps3 [XTM
Authoring Group, 2001]. In effect, in both cases we have a 2 layers separation, one

3 The Topic Maps concepts relies on:

 Sale contract 31/01/02

Contrat n°125 (Sté Expert Entreprise)
Product Exp200
Version 1.1
Responsable Neirreb Isabelle
….

<SPECIFIC_DOCUMENT>
 <date>31/01/02</date>
 <author> Neirreb Isabelle
 </ author >
 <nature> sale contract </nature>
 <client> Expert Entreprise</client>
 <Product>
 <name>Exp200</name>
 <version>1.1.</version>
 </Product>
</ SPECIFIC_DOCUMENT >

Nature : any
 Nature = commercial document
 Nature =…
 Nature = sale contract
 Nature = …
 Nature = document juridique

….

author : any
 author = interne
 author =…
 author = Neirreb Isabelle
 author = …

author = externe

MODEL

 Instance XML

CONCRETE LEVEL :

Associated Taxonomies

Interaction and navigation for a document database : a concrete case study 11

being abstract and the other being concrete. The couple (“topic”, “association”) could
be completely identified to our research model, and the “occurrences” to the
document catalogues used by the application. Besides, as it is possible to type topics
and associations (associations being also topics)4 within a Topic Maps model, this
research model allows naming of the descriptive elements and link them to a type
hierarchy.

As similarities are quite many, our model proposes nevertheless a deeper
organization in the structure.

First of all, the model marks the objects, giving a quicker access to class instances.
For example, if the request points to a commercial document which is considered in
our model as a specific document, the application works directly on the instances of
the SPECIFIC_DOCUMENT class. Therefore, it allows a straight access to sub-
objects like the product. It also interacts with disjoined hierarchies of concepts: the
model lets us define class slots pointing to graphs (associated taxonomies in Figure 1)
which nodes are specific values of the given slot. In the upper example, we use
different hierarchies of defined values (author, type document…). This gives the
opportunity for each slot to be referenced in a specific domain of organized values.
From a semantic point of view, this lets the application describe each class slot in the
most real manner.

At last, in Topic Maps, whereas the links between occurrences require going
through the abstract level in order to navigate, our research model allows a direct
access within transversal pointers.

3.2.2. UML implementation

Even if our model has functionality similarities with Topic Maps, it mainly differs
by our model which follows a UML implementation.

In the application we present here, data are encapsulated in a class hierarchy and
are manipulated not as typed literals (cf. Topic Maps URI) but as objects. The user
can therefore express his request upon more complex components, like for instance
find all partners having dealt with a given contract.

- a graph of topics (computing representation of a subject) linked by
- associations (relation between 2 or more concepts, where each concept is an

actor of a predefined role defined by the association), each of this topic being
instantiated by

- on or more occurrences (a URI pointing to a resource (a Web page, a document
part, a picture..)).

4 Marking an association in Topic Maps corresponds to naming fields in our model.
Besides, occurrences in Topic Maps could be of different ranges. It could be pictures,
numbers, text… The Topic Maps standard handles these distinctions through
occurrence role concepts and types (being themselves topics). This is equivalent in
our application to the range specification of a slot class .

12 Isabelle Berrien, François Laburthe and Jean-David Ruvini

This has been made possible with a document modelisation containing a
DOCUMENT class which contains itself a complex type slot CONTRACT, which
contains itself a slot pointing to the name of the partner (Figure 6).

Exemple :

- Figure 6 -

Multidimensionnal annotation

The object model we refer to is issued from a class hierarchy, each class of it
having slots of different types :

Basic: Boolean, string, num and date
Extensible: symbol, from a set of predefined taxonomies, object (in a class

hierarchy).

Our goal is to improve the precision and the fastness in the information retrieval by

offering the user the opportunity to handle with coherence her own research process
depending on different criteria. For instance, the user can choose to retrieve a
document from a publishing date point of view, and, if she wants it, change filter and
go further in the exploration by choosing the author name criteria.

Slots with values in a hierarchy of concepts

A large effort is made today to organize data. It appears that a classification of
superior order should allow an easier retrieval of information. For instance, Yahoo5
performs classification by organizing links in sections. This engine, labelled as
directory, shows undoubtedly a semantic dimension since it can classify responses in
topics from the most general to the most specific ones. Another example is the search

5 http://www.yahoo.com/

DOCUMENT

Date : type DATE
Name : type string
Contract :type CONTRAT
…

CONTRAT

partner : type string
Signature : type boolean
…

Interaction and navigation for a document database : a concrete case study 13

engine Lycos6 which accomplishes research upon predefined categories like journeys
or computers7.

Nevertheless, even if these approaches are close to our, they can’t guarantee to
return the most pertinent pages. Moreover, it is sometimes impossible to express a
request giving a satisfying solution. For instance, taking Yahoo in order to find all
information about Paris (as keyword input) in an educational context (for this, we
click in the education area), we get answers like Paris airport, Paris-Match (a people
magazine). The Sorbonne University, which is as matter or fact, an interesting result,
only appears among a huge amount of inconsistent responses.

Semantic annotations

It is of course possible for a single object to be defined by numerous descriptive
systems. It can fit in different classifications, a classification being considered in our
case as a point of view referencing a domain of concepts. We propose here to define
hierarchies of concepts and transform the document data into instances having slots
with space values falling into these hierarchies.

In a related work, conceptual clustering approach has been studied [Chu et al,
1996], based on frequency and value distributions of data. But if this allows
discovering high level concepts of numerical attribute values, it does not apply to
semantic ones, and also is performed in a multidimensional approach.

The taxonomies files used by the application are references to hierarchies of
symbols (concepts). They are trees in which each node is an identifier linked to the
others by a specialisation relation. A taxonomy represents for a given slot the set of
all values taken by the database objects for this slot, still with a deeper organization
given by the graph. We distinguish several levels of details, which purpose is to allow
a better instances organization and also to permit parent concepts inheritance. As
matter of fact, performing a query about a construction site in Dunkerque (a French
northern city) implies that it could be done just by refining documents issued from a
request upon northern construction sites.

This hierarchical structure gives mainly during the request process an additional
dimension to the one simply given by atomic values slots (see example §2.3.4).

Request example

Let’s imagine a set of Topic Maps about distinct domains on which we would add
a supplementary organization, letting us manipulate the values in a different manner
than associations. A concrete request example is the retrieval of recent documents
written by external partners of the Expert Enterprise society. We present below a

6 http://www.lycos.com/
7 search engines like « dogpile » (http://www.dogpile.com/) are beginning to appear

(http://mc42.free.fr/moteurs.htm) which allow the user to express a query about
specific document types (picture, MP3 files..)

14 Isabelle Berrien, François Laburthe and Jean-David Ruvini

part of the reference taxonomy file (e.g. the concepts hierarchy) for the slot “author”
of the class DOCUMENT (Figure 7).

author = any
 author = external
 author = Society ZZ
 author = Dupont Albert
 author = Petit Roselyne
 author = Expert Enterprise
 author = UK Associates
 author = internal
 author = computer department
 author = Neirreb Isabelle
 author = Nent Arthur
 author = Uirvin JD
 …
 author = jurist department
 author = Nerry Julie
 author = Oujat Franck
 …

- Figure 7 -

All instances of the DOCUMENT class have an author slot with values pointing to
this graph of concepts. Values like Neirreb Isabel, Nent Arthur or Uirvin JD could
all be described by the concept computer department. This given hierarchy lets the
user know that these authors are a part of the external authors, also that there are 3
different partners’ enterprises (Society ZZ, Expert Enterprise, UK Associates).
This concepts organization let us also deduce that the topic computer department is
closer to one of the three mentioned authors than Roselyne Petit for instance. We
must assimilate the term “closer to” to “best approximation”.

All the solutions held inside the inheritance given by the tree, which are in our
example the different departments in which the authors work.

Criteria combination

The search engine Excite8 for instance, like other numerous engines, order the
solution sets depending on the combination of various criteria like the keywords
frequency, links pointing to the pages,…These engines first of all sort the results
according to a keywords filter (it is the only given field), the other criteria coming
after. In order to get an adequate answer, we get two choices: either we remain patient
and take a look of all the answers, or we give more than a single keyword in order the

8 http://www.excite.com/

Interaction and navigation for a document database : a concrete case study 15

precise the context. But this method drawback is that we can face a “no solution
situation” 9.

The model gives the possibility to handle rich data, and the opportunity to
formulate request with many criteria is therefore accessible.

In response to the first difficulty invoked in the beginning of the article about the
benefit of working with well described data, our model allows to handle a rich data
organization. It lets the user express her request in a manner close from her wish and
therefore get pertinent answers.

3.3. Production and consultation of data

From a new document publishing to the criteria required to capture it during the
query process, we distinguish several steps:

3.3.1. Assisted publishing of documents (Saisame)

Wishbone has integrated dynamic forms for publishing or querying based on
techniques analogous to those proposed by [Hermens et al, 1993].

The user, when publishing a new document, is proposed values for each field
gradually while filling the form, that he can validate or not. These values are the result
of prediction in extension of the most probable values for each slot. It is not only for
facilitating the work but also to prevent from wrong publishing. For instance, if an
author is in charge from its beginning of a contract coming made from the UK
Associates Enterprise about the product UKPro, while filling the field corresponding
to the name product, the service may propose the value “UKPro” (from statistically
results issued from the database). Besides, the database content evolutes in time and
this assisted process can be view as a preventive procedure against absurdity
[Sullivan, 2001]. For instance, we can mention the site Yahoo which hires at least 200
librarians only to ensure pertinence and quality of the exposed concepts [Russom,
2001].

3.3.2. Capture of request criteria

We describe below the help given to the user while searching for a document.

Model-assisted values capture
For fields pointing to a hierarchy of concepts, the application form only proposes

values of the corresponding taxonomy. For instance, the taxonomy of authors only

9 Search engines like Google (http://www.google.fr) improve enhance the pertinence

of hits by gathering the 2 approaches (directory + engine). For instance, Google
shifts its request to Yahoo if it doesn’t find a solution.

16 Isabelle Berrien, François Laburthe and Jean-David Ruvini

concerns the documents authors and the hierarchy of the document types only the
field of document nature. For this, we settled a workshop for interface production.
This workshop is used for generating periodically a synchronized interface in regard
to the model. This allows integrity and also source data conformity of the form fields
to be fully preserved. If a new document is published and its author (for instance Mrs
Roselyn Petit) does not yet appear in the corresponding form field (her first published
document then), an automatic refreshing process of the form taxonomies will induce
the display of Roselyn Petit in the list of selectable authors.

Light capture
The form presents an interesting feature in that all fields are optional. In return, the

query process seems smoother. The user can fill whatever she wants (from 0 to all
fields) while knowing that whatever her request is, she will get a response allowing
her to continue in the navigation process without having to go backwards.

Dynamic capture
Also, the form can display if wanted additional fields associated to the slots of a

sub-object (of the query object). For instance, when searching for commercial
documents (which instances are of class SPECIFIC_DOCUMENT), the form
displays a part dedicated to the contract (which is a sub-object of the
SPECIFIC_DOCUMENT class). This dynamic display renders the interface lighter
(not on the screen if not needed), plus, it gives the user an opportunity to understand
the base logic more quickly.

3.3.3. Integrity rules: model role

The model is very important in the sense that it fills several functions: the first and
principal one is that it acts as a validation component for data. For instance,
navigation using clusters is quite sensitive to isolated elements. If the database
contains a document which was published in year 1299, the application will point out
to this document by creating a set of clusters starting from the 13th century. Thus it is
important to have a precise model of the admissible values for each slot. We have
implemented a mechanism of constraint validation, similar to the XML Schemes
[WWW Consortium, 2001] according to the following criteria:

- definition of a values space for each class slot
- implementation a default values
- required slots, types slots
- key-referenced objects (“idref” in XML descriptors like XLINK [W3C,

2001].

The Wishbone engine loads the database and validates each object. The ones which
don’t verify constraints defined by the model are ignored and thrown. The use of
constraints for allowed data values is a regular data modeling approach allowing
complete data cleaning. Therefore, they are inaccessible by the research engine. This
is called the validation data phase.

Interaction and navigation for a document database : a concrete case study 17

All these mechanisms (assistance, validation) have been implemented in order to
make easier the maintenance and the publishing of coherent data. It gives a response
to the document database management.

3.3.4. Scalability and performances

The Wishbone engine has been tested over a 50000 objects database within an
average time response of less than a second per request.

Tests have been performed on a Pentium 4 Xeon (2.4 GHz), but charge could be
distributed through a client-transparent in-between component enabling load
balancing and queuing.

18 Isabelle Berrien, François Laburthe and Jean-David Ruvini

3. Conclusionn and future work

Our approach of navigation into content improve the user experience not only from
a qualitative point of view (quality tests in work), but also from a quantitative level
(good appreciation from the persons in charge of the protocol in study). The generated
interaction by the Wishbone application, being mostly inspired from human dialogs,
settles an atmosphere of confidence with the user.

“You want all documents treated by UK Associates since 1998? No problem!
We’ve got 7, the most recent ones, concerning the product UK200. Otherwise, we
have 10 documents published between 1999 and 2001 and they’re all commercial
contracts; and we’ve got 15 documents published before 1999 and all the authors are
internal to the enterprise.”

The user disposes of a friendly interface (dynamic capture of criteria values,
coherence field values, optional fields), which enhances the data accessibility through
a high pertinence of the response display (views, relaxation).

This could be done with a light and safe maintenance circuit we call information
cycle, with a major attention to apply an organized -intelligent like- frame to the data
according to an appropriate business model.

Still, part of our future work will focuse on
- The portability of the engine in regard of internet stored data. This means of

course previous meta-data extraction but this complex process is not the
purpose of the engine, rather takes place as second phase in the loop. Many
related works like annotating data have already focused on that subject [Shet
et al, 2002][Staab et al, 2001].

- Extension of clustering algorithms on semantic structures in order to
improve the pertinence of clustering

References

 [Le Grand, 2001] Le Grand, B. (2001). Extraction et visualisation de
systèmes complexes sémantiquement structurés, Thèse de doctorat
Université Paris 6.

[Sullivan, 2001] Sullivan, D (2001). Five Principles of Intelligent Content
Management Intelligent Enterprise Magazine, August 31, 2001 – pp1-5

[Chu et al, 1996] Chu, W. W. ;Chiang, K. ; Hsu, C.-H. ; Yau, H. (1996). An
Error-based Conceptual Clustering Method for Providing Approximate Query
Answers, Communications of the ACM, 39,12es, pp 216-230.

[Staab et al, 2001] S. Staab, A. Maedche, and S. Handschuh (2001). An
annotation framework for the semantic web, In Proceedings of the First
Workshop on Multimedia Annotation, Tokyo, Japan, January 30-31, 2001,.

[Shet et al, 2002] Shet, A. Relationships at the Heart of Semantic Web:
Modeling, Discovering, Validating and Exploiting Complex Semantic

Interaction and navigation for a document database : a concrete case study 19

Relationships, 29th Annual Conference on Current Trends in Theory and
Practice of Informatics Nov. 24 -- Nov. 29, 2002

[Russom, 2001] Russom, P. (2002). Managing Spaghetti Content
Intelligent Enterprise Magazine, May 28, 2002 – pp1-2

[Caseau and Laburthe, 2002] Caseau, Y. and Laburthe, F. Bouygues S.A.
(2002) Method for the data-driven adjustment of queries over a database and
system for implementing the method, European patent request 02290920.4
[XTM Authoring Group, 2001] TopicMaps.Org XTM Authoring Group (3 March

2001), XTM: XTM Topic Maps (XTM) 1.0 : Topic Maps.Org Specification.
[Gruber, 1993] Gruber, P.(1993) A translation approach to portable

ontologies. Knowledge Acquisition, 5(2):199-220, 1993
[Hermens et al, 1993] Hermens, L. A. and Schlimmer J. C. (1993). A
Machine-Learning Apprentice for the Completion of Repetitive Forms,
Proceedings of the 9th Conference on Artificial Intelligence for Applications
({CAIA}'93)" pp164-170, IEEE Computer Society Press.
[Berrien and Laburthe, 2003] Berrien I. and Laburthe F. (2003). Meilleures
Interfaces entre services et utilisateurs, JFT 2003 (accepted for publication).
[WWW Consortium, 2001] World Wide Web Consortium (2001), XML Scheme
Definition Language, W3C Recommendation, 3 May 2001.

[W3C, 2001] W3C (2001). XML Linking Language (XLink) Version 1.0 W3C
Recommendation, 27 June 2001.

	Wilkinson_etal.pdf
	Efficient RDF Storage and Retrieval in Jena2
	1.0 Introduction
	Too many joins
	Single statement table
	Reification storage bloat
	Query optimization

	2.0 Overview of Jena and RDF
	2.1 Jena Overview
	2.2 RDF Overview

	3.0 Storage Schema
	3.1 Storing Arbitrary RDF Statements
	3.2 Optimizing for Common Statement Patterns

	4.0 Jena2 Persistence Architecture
	4.1 Specialized Graph interface
	4.2 Database Driver
	4.3 Configuration and Meta-graphs

	5.0 Jena2 Query Processing
	5.1 Find Processing
	5.2 RDQL Processing

	6.0 Miscellaneous Topics
	7.0 Status and Future Work
	8.0 Related Work
	9.0 Conclusions

	proceedingspreface.pdf
	���
	Proceedings of�SWDB’ 03
	The first International Workshop on �Semantic We�
	We appreciate the contributions from our sponsors:
	�
	OntoWeb Network �Organizers
	PC Members
	Semantic Web and Databases
	Table of Contents
	Invited Talks
	
	
	
	Can we do better than Google? Using semantics to explore large heterogeneous knowledge sources

	Generic Model Management: A Database Infrastructure for Schema Manipulation
	Philip A. Bernstein�Microsoft Research�USA

	From Semantic Search to Analytics and Discovery on Heterogeneous Content: Changing Focus from Documents and Entities to Relationships
	Amit Sheth�LSDIS Lab, �The University of Georgia and Semagix, Inc.�USA

	proceedingspreface.pdf
	���
	Proceedings of�SWDB’ 03
	The first International Workshop on �Semantic We�
	We appreciate the contributions from our sponsors:
	�
	OntoWeb Network �Organizers
	PC Members
	Semantic Web and Databases
	Table of Contents
	Invited Talks
	
	
	
	Can we do better than Google? Using semantics to explore large heterogeneous knowledge sources

	Generic Model Management: A Database Infrastructure for Schema Manipulation
	Philip A. Bernstein�Microsoft Research�USA

	From Semantic Search to Analytics and Discovery on Heterogeneous Content: Changing Focus from Documents and Entities to Relationships
	Amit Sheth�LSDIS Lab, �The University of Georgia and Semagix, Inc.�USA

	proceedingspreface.pdf
	���
	Proceedings of�SWDB’ 03
	The first International Workshop on �Semantic We�
	We appreciate the contributions from our sponsors:
	�
	OntoWeb Network �Organizers
	PC Members
	Semantic Web and Databases
	Table of Contents
	Invited Talks
	
	
	
	Can we do better than Google? Using semantics to explore large heterogeneous knowledge sources

	Generic Model Management: A Database Infrastructure for Schema Manipulation
	Philip A. Bernstein�Microsoft Research�USA

	From Semantic Search to Analytics and Discovery on Heterogeneous Content: Changing Focus from Documents and Entities to Relationships
	Amit Sheth�LSDIS Lab, �The University of Georgia and Semagix, Inc.�USA

	pageNo6: 7
	pageNo7: 8
	pageNo8: 9
	pageNo9: 10
	pageNo10: 11
	pageNo11: 12
	pageNo12: 13
	pageNo13: 14
	pageNo14: 15
	pageNo15: 16
	pageNo16: 17
	pageNo17: 18
	pageNo18: 19
	pageNo19: 20
	pageNo20: 21
	pageNo21: 22
	pageNo22: 23
	pageNo23: 24
	pageNo24: 25
	pageNo25: 26
	pageNo26: 27
	pageNo27: 28
	pageNo28: 29
	pageNo29: 30
	pageNo30: 31
	pageNo31: 32
	pageNo32: 33
	pageNo33: 34
	pageNo34: 35
	pageNo35: 36
	pageNo36: 37
	pageNo37: 38
	pageNo38: 39
	pageNo39: 40
	pageNo40: 41
	pageNo41: 42
	pageNo42: 43
	pageNo43: 44
	pageNo44: 45
	pageNo45: 46
	pageNo46: 47
	pageNo47: 48
	pageNo48: 49
	pageNo49: 50
	pageNo50: 51
	pageNo51: 52
	pageNo52: 53
	pageNo53: 54
	pageNo54: 55
	pageNo55: 56
	pageNo56: 57
	pageNo57: 58
	pageNo58: 59
	pageNo59: 60
	pageNo60: 61
	pageNo61: 62
	pageNo62: 63
	pageNo63: 64
	pageNo64: 65
	pageNo65: 66
	pageNo66: 67
	pageNo67: 68
	pageNo68: 69
	pageNo69: 70
	pageNo70: 71
	pageNo71: 72
	pageNo72: 73
	pageNo73: 74
	pageNo74: 75
	pageNo75: 76
	pageNo76: 77
	pageNo77: 78
	pageNo78: 79
	pageNo79: 80
	pageNo80: 81
	pageNo81: 82
	pageNo82: 83
	pageNo83: 84
	pageNo84: 85
	pageNo85: 86
	pageNo86: 87
	pageNo87: 88
	pageNo88: 89
	pageNo89: 90
	pageNo90: 91
	pageNo91: 92
	pageNo92: 93
	pageNo93: 94
	pageNo94: 95
	pageNo95: 96
	pageNo96: 97
	pageNo97: 98
	pageNo98: 99
	pageNo99: 100
	pageNo100: 101
	pageNo101: 102
	pageNo102: 103
	pageNo103: 104
	pageNo104: 105
	pageNo105: 106
	pageNo106: 107
	pageNo107: 108
	pageNo108: 109
	pageNo109: 110
	pageNo110: 111
	pageNo111: 112
	pageNo112: 113
	pageNo113: 114
	pageNo114: 115
	pageNo115: 116
	pageNo116: 117
	pageNo117: 118
	pageNo118: 119
	pageNo119: 120
	pageNo120: 121
	pageNo121: 122
	pageNo122: 123
	pageNo123: 124
	pageNo124: 125
	pageNo125: 126
	pageNo126: 127
	pageNo127: 128
	pageNo128: 129
	pageNo129: 130
	pageNo130: 131
	pageNo131: 132
	pageNo132: 133
	pageNo133: 134
	pageNo134: 135
	pageNo135: 136
	pageNo136: 137
	pageNo137: 138
	pageNo138: 139
	pageNo139: 140
	pageNo140: 141
	pageNo141: 142
	pageNo142: 143
	pageNo143: 144
	pageNo144: 145
	pageNo145: 146
	pageNo146: 147
	pageNo147: 148
	pageNo148: 149
	pageNo149: 150
	pageNo150: 151
	pageNo151: 152
	pageNo152: 153
	pageNo153: 154
	pageNo154: 155
	pageNo155: 156
	pageNo156: 157
	pageNo157: 158
	pageNo158: 159
	pageNo159: 160
	pageNo160: 161
	pageNo161: 162
	pageNo162: 163
	pageNo163: 164
	pageNo164: 165
	pageNo165: 166
	pageNo166: 167
	pageNo167: 168
	pageNo168: 169
	pageNo169: 170
	pageNo170: 171
	pageNo171: 172
	pageNo172: 173
	pageNo173: 174
	pageNo174: 175
	pageNo175: 176
	pageNo176: 177
	pageNo177: 178
	pageNo178: 179
	pageNo179: 180
	pageNo180: 181
	pageNo181: 182
	pageNo182: 183
	pageNo183: 184
	pageNo184: 185
	pageNo185: 186
	pageNo186: 187
	pageNo187: 188
	pageNo188: 189
	pageNo189: 190
	pageNo190: 191
	pageNo191: 192
	pageNo192: 193
	pageNo193: 194
	pageNo194: 195
	pageNo195: 196
	pageNo196: 197
	pageNo197: 198
	pageNo198: 199
	pageNo199: 200
	pageNo200: 201
	pageNo201: 202
	pageNo202: 203
	pageNo203: 204
	pageNo204: 205
	pageNo205: 206
	pageNo206: 207
	pageNo207: 208
	pageNo208: 209
	pageNo209: 210
	pageNo210: 211
	pageNo211: 212
	pageNo212: 213
	pageNo213: 214
	pageNo214: 215
	pageNo215: 216
	pageNo216: 217
	pageNo217: 218
	pageNo218: 219
	pageNo219: 220
	pageNo220: 221
	pageNo221: 222
	pageNo222: 223
	pageNo223: 224
	pageNo224: 225
	pageNo225: 226
	pageNo226: 227
	pageNo227: 228
	pageNo228: 229
	pageNo229: 230
	pageNo230: 231
	pageNo231: 232
	pageNo232: 233
	pageNo233: 234
	pageNo234: 235
	pageNo235: 236
	pageNo236: 237
	pageNo237: 238
	pageNo238: 239
	pageNo239: 240
	pageNo240: 241
	pageNo241: 242
	pageNo242: 243
	pageNo243: 244
	pageNo244: 245
	pageNo245: 246
	pageNo246: 247
	pageNo247: 248
	pageNo248: 249
	pageNo249: 250
	pageNo250: 251
	pageNo251: 252
	pageNo252: 253
	pageNo253: 254
	pageNo254: 255
	pageNo255: 256
	pageNo256: 257
	pageNo257: 258
	pageNo258: 259
	pageNo259: 260
	pageNo260: 261
	pageNo261: 262
	pageNo262: 263
	pageNo263: 264
	pageNo264: 265
	pageNo265: 266
	pageNo266: 267
	pageNo267: 268
	pageNo268: 269
	pageNo269: 270
	pageNo270: 271
	pageNo271: 272
	pageNo272: 273
	pageNo273: 274
	pageNo274: 275
	pageNo275: 276
	pageNo276: 277
	pageNo277: 278
	pageNo278: 279
	pageNo279: 280
	pageNo280: 281
	pageNo281: 282
	pageNo282: 283
	pageNo283: 284
	pageNo284: 285
	pageNo285: 286
	pageNo286: 287
	pageNo287: 288
	pageNo288: 289
	pageNo289: 290
	pageNo290: 291
	pageNo291: 292
	pageNo292: 293
	pageNo293: 294
	pageNo294: 295
	pageNo295: 296
	pageNo296: 297
	pageNo297: 298
	pageNo298: 299
	pageNo299: 300
	pageNo300: 301
	pageNo301: 302
	pageNo302: 303
	pageNo303: 304
	pageNo304: 305
	pageNo305: 306
	pageNo306: 307
	pageNo307: 308
	pageNo308: 309
	pageNo309: 310
	pageNo310: 311
	pageNo311: 312
	pageNo312: 313
	pageNo313: 314
	pageNo314: 315
	pageNo315: 316
	pageNo316: 317
	pageNo317: 318
	pageNo318: 319
	pageNo319: 320
	pageNo320: 321
	pageNo321: 322
	pageNo322: 323
	pageNo323: 324
	pageNo324: 325
	pageNo325: 326
	pageNo326: 327
	pageNo327: 328
	pageNo328: 329
	pageNo329: 330
	pageNo330: 331
	pageNo331: 332
	pageNo332: 333
	pageNo333: 334
	pageNo334: 335
	pageNo335: 336
	pageNo336: 337
	pageNo337: 338
	pageNo338: 339
	pageNo339: 340
	pageNo340: 341
	pageNo341: 342
	pageNo342: 343
	pageNo343: 344
	pageNo344: 345
	pageNo345: 346
	pageNo346: 347
	pageNo347: 348
	pageNo348: 349
	pageNo349: 350
	pageNo350: 351
	pageNo351: 352
	pageNo352: 353
	pageNo353: 354
	pageNo354: 355
	pageNo355: 356
	pageNo356: 357
	pageNo357: 358
	pageNo358: 359
	pageNo359: 360
	pageNo360: 361
	pageNo361: 362
	pageNo362: 363
	pageNo363: 364
	pageNo364: 365
	pageNo365: 366
	pageNo366: 367
	pageNo367: 368
	pageNo368: 369
	pageNo369: 370
	pageNo370: 371
	pageNo371: 372
	pageNo372: 373
	pageNo373: 374
	pageNo374: 375
	pageNo375: 376
	pageNo376: 377
	pageNo377: 378
	pageNo378: 379
	pageNo379: 380
	pageNo380: 381
	pageNo381: 382
	pageNo382: 383
	pageNo383: 384
	pageNo384: 385
	pageNo385: 386
	pageNo386: 387
	pageNo387: 388
	pageNo388: 389
	pageNo389: 390
	pageNo390: 391
	pageNo391: 392
	pageNo392: 393
	pageNo393: 394
	pageNo394: 395
	pageNo395: 396
	pageNo396: 397
	pageNo397: 398
	pageNo398: 399
	pageNo399: 400
	pageNo400: 401
	pageNo401: 402
	pageNo402: 403
	pageNo403: 404
	pageNo404: 405
	pageNo405: 406
	pageNo406: 407
	pageNo407: 408
	pageNo408: 409
	pageNo409: 410
	pageNo410: 411
	pageNo411: 412
	pageNo412: 413
	pageNo413: 414
	pageNo414: 415
	pageNo415: 416
	pageNo416: 417
	pageNo417: 418
	pageNo418: 419
	pageNo419: 420
	pageNo420: 421
	pageNo421: 422
	pageNo422: 423
	pageNo423: 424
	pageNo424: 425
	pageNo425: 426
	pageNo426: 427
	pageNo427: 428
	pageNo428: 429
	pageNo429: 430
	pageNo430: 431
	pageNo431: 432
	pageNo432: 433
	pageNo433: 434
	pageNo434: 435
	pageNo435: 436
	pageNo436: 437
	pageNo437: 438
	pageNo438: 439
	pageNo439: 440
	pageNo440: 441
	pageNo441: 442
	pageNo442: 443
	pageNo443: 444
	pageNo444: 445
	pageNo445: 446
	pageNo446: 447
	pageNo447: 448
	pageNo448: 449
	pageNo449: 450
	pageNo450: 451
	pageNo451: 452
	pageNo452: 453
	pageNo0: 1
	pageNo1: 2
	pageNo2: 3
	pageNo3: 4
	pageNo4: 5
	pageNo5: 6

