Proceedings of

SWDB’ 03

The first International Workshop on
Semantic Web and Databases

Co-located with VLDB 2003
Humboldt-Universitat
Berlin, Germany
September 7-8, 2003

We appreciate the contributions from our sponsors:

=

BOEING

NIST

Natienal Institute of
Standards and Technology

OntoWeb Network

Organizers

Program Committee Chairs
Isabel F. Cruz

U. Illinois at Chicago, USA
(ifc@cs.uic.edu)

Vipul Kashyap

National Library of Medicine, NIH, USA

kashyap@nlm.nih.gov)

Proceedings and Publicity Chair
Stefan Decker

USC Information Sciences Institute, USA

stefan@isi.edu

Organization Chair
Rainer Eckstein
Humboldt University, Germany

Rainer. Eckstein@informatik.hu-berlin.de

PC Members

Karl Aberer, EPFL, Switzerland

Sibel Adali, Rensselaer Polytechnic 1., USA
Paolo Atzeni, U. Rome Tre, Italy

Alex Borgida, Rutgers U., USA

Olivier Bodenreider, NLM-NIH, USA
Stéphane Bressan, National U. of Singapore
Christoph Bussler, Oracle, USA

Isabel Cruz, U. of Illinois at Chicago, USA
Umesh Dayal, HP Labs, USA

Stefan Decker, USC-ISI, USA

Max Egenhofer, U. Maine, USA

Rainer Eckstein, Humboldt U., Germany
Dieter Fensel, Institut fiir Informatik, Austria
Mary Fernandez, AT&T Labs - Research, USA
Susan Gauch, U. Kansas

Carole Goble, U. Manchester, UK

Rick Hull, Lucent Technology, USA

Vipul Kashyap, NLM-NIH, USA

Maurizio Lenzerini, U. Rome "La Sapienza", Italy
Ling Liu, Georgia Tech, USA

Robert Meersman, Vrije U., Belgium

John Mylopoulos, U. Toronto, Canada

Aris Ouksel, U. Illinois at Chicago, USA
Dimitris Plexousakis, U. Crete, Greece
Steve Ray, NIST, USA

Amit Sheth, U. Georgia and Semagix, USA
Surya Sripada, Boeing, USA

Munindar Singh, N. Carolina U., USA

V.S. Subrahmanian, U. Maryland, USA
Rudi Studer, U. Karlsruhe, Germany

Ram Sriram, NIST, USA

Clement Yu, U. Illinois at Chicago, USA

Semantic Web and Databases

September 7, 2003 (Sunday)
8:45-9:00 Welcome

9:00-10:10 Keynote Talk

Can we do better than Google? Using semantics to explore
large heterogeneous knowledge sources

Anatole Gershman, Accenture Technology Labs

10:10-10:40 Semantic Web at Work

Spatially Navigating the Semantic Web for User Adapted
Presentations of Cultural Heritage Information in Mobile
Environments

Marco Neumann, Dublin Institute of Technology, Ireland.

Text-Based Gene Profiling with Domain-Specific Views. Patrick
Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau
and Bart De Moor, Katholieke Universiteit Leuven, Belgium.

10:40-11:10 Coffee Break

11:10-12:30 Context-Aware Systems

Context-Aware Semantic Association Ranking

Boanerges Aleman-Meza, Chris Halaschek, I. Budak Arpinar,
and Amit Sheth, University of Georgia, USA.

| know what you mean: semantic issues in Internet-scale
publish/subscribe systems

loana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen,
University of Toronto, Canada.

A Context-Oriented RDF Database
Mohammad-Reza Tazari, Computer Graphics Center,
Dept. Mobile Information Visualization, Darmstadt, Germany.

An Adaptable Service Connector Model: Gang Li, Yanbo Han,
Zhuofeng Zhao, Jianwu Wang, Roland Wagner, Chinese
Academy of Science, PRC, Fraunhofer, Germany

12:30-2:00 Lunch (on your own)

2:00-3:10 Keynote Talk

Generic Model Management: A Database Infrastructure for
Schema Manipulation Phil Bernstein, Microsoft Research,
USA

3:10-3:40 Modeling Issues

Building an integrated Ontology within SEWASIE system,
D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini,
Universita di Modena e Reggio Emilia, Italy and IEIIT-CNR, ltaly.

Ontologies : A contribution to the DL/DB debate

Nadine Cullot, Christine Parent, Stefano Spaccapietra, and
Christelle Vangenot, University of Burgundy, France, Swiss
Federal Institute of Technology, Lausanne, Switzerland,
University of Lausanne, Switzerland.

3:40-4:10 Coffee Break

4:10-5:30 RDF Storage and Implementation Issues
Efficient RDF Storage and Retrieval in Jena2

Kevin Wilkinson, Craig Sayers, and Harumi Kuno, HP Labs,
USA.

An Indexing Scheme for RDF and RDF Schema based on Suffix
Arrays. Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi
Yoshikawa, and Shunsuke Uemura, Nara Institute of Science
and Technology, Japan, and Nagoya University, Japan.

RDF Core: A component for effective management of RDF
Models. Floriana Esposito, Luigi lannone, Ignazio Palmisano,
and Giovanni Semeraro, Universita degli Studi di Bari, Italy.

Implementation of a Semantic Network Service (SNS) in the
context of the German Environmental Information Network
(gein®)

Thomas Bandholtz, Germany.

September 8, 2003 (Monday)

9:00-10:10 Keynote Talk
From Semantic Search to Analytics and Discovery on Heterogeneous
Content: Changing Focus from Documents and Entities to

Relationships
Amit Sheth, University of Georgia and Semagix, Inc.

10:10-10:40 Web Services

ODE-SWS: A Semantic Web Service Development Environment

Oscar Corcho, Asuncién Gomez-Pérez, Mariano Fernandez-Lépez, and
Manuel Lama, Universidad Politécnica de Madrid, Spain, and Universidad de
Santiago de Compostela, Spain.

Applications of PSL to Semantic Web Services
Michael Gruninger, University of Maryland, College Park, USA.

10:40-11:10 Coffee Break

11:10-12:30 Data Mining and Peer-to-Peer Systems

H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based
Systems. S. Castano, A. Ferrara, S. Montanelli, Universita degli Studi di
Milano, ltaly.

A Collaborative Approach for Query Propagation in
Peer-to-Peer Systems
Anne Doucet, Nicolas Lumineau, University of Paris 6, France.

OntoMiner: Bootstrapping and Populating Ontologies from

Domain Specific Web Sites

Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan, Arizona
State University, USA.

Can Data Mining Techniques Ease The Semantic Tagging Burden?
Fabio Forno, Laura Farinetti1, Sean Mehan, Politecnico di Torino, ltaly,
University of the Highlands and Islands, UK.

12:30-2:00 Lunch (on your own)

2:00-3:30 Formal Querying and Reasoning

Formal aspects of querying RDF databases

Claudio Gutierrez, Carlos Hurtado, and Alberto Mendelzon, Universidad de
Chile, Chile, and University of Toronto, Canada.

Event-Condition-Action Rule Languages for the Semantic Web. George
Papamarkos, Alexandra Poulovassilis, Peter T. Wood, Birkbeck College, UK.

Storing and Querying Ontologies in Logic Databases. Timo Weithoener,
Thorsten Liebig, and Guenther Specht, University of Uim, Germany.

Design Repositories for the Semantic Web with Description-Logic Enabled
Services. Joseph B. Kopena and William C. Regli, Drexel University, USA.

Mediation of XML Data through Entity Relationship Models. Irini Fundulaki
and Maarten Marx, Bell Laboratories, USA, and University of Amsterdam,
The Netherlands.

3:30-4:00 Coffee Break

4:00-5:20 Integration and Interaction)

The ICS-FORTH SWIM: A Powerful Semantic Web Integration Middleware
V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A.
Magkanaraki, D. Plexousakis, G. Serfiotis,and V. Tannen, University of
Pennsylvania, USA, and Institute of Computer Science, FORTH, Greece.

Semantic Representation of Contract Knowledge using Multi Tier Ontology
Vandana Kabilan, Paul Johannesson, Stockholm University and Royal
Institute of Technology, Sweden.

The Visual Semantic Web: Unifying Human and Machine Semantic Web
Representations with Object-Process Methodology
Dov Dori, Technion, Israel and MIT, USA.

Interaction and navigation for a document database: a concrete case study
Isabelle Berrien, Frangois Laburthe, and Jean-David Ruvini, e-lab
BOUYGUES SA, France.

5:20-5:30 Closing

http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-as.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-ag.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-ag.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-pb.html
http://www.cs.uic.edu/~ifc/SWDB/keynote-pb.html

Table of Contents

Foreword
Invited Talks

Ontology and Ontology Maintenance

Spatially Navigating the Semantic Web for User Adapted Presentations of Cultural Heritage
Information in Mobile Environments
Marco Neumann, Dublin Institute of Technology, Ireland.

Text-Based Gene Profiling with Domain-Specific Views
Patrick Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau and Bart De Moor,
Katholieke Universiteit Leuven, Belgium.

Context-Aware Systems

Context-Aware Semantic Association Ranking
Boanerges Aleman-Meza, Chris Halaschek, 1. Budak Arpinar, and Amit Sheth,
University of Georgia, USA.

1 know what you mean: semantic issues in Internet-scale publish/subscribe systems
Ioana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen, University of Toronto, Canada.

A Context-Oriented RDF Database
Mohammad-Reza Tazari, Computer Graphics Center, Dept. Mobile Information Visualization,
Darmstadt, Germany.

An Adaptable Service Connector Model
Gang Li, Yanbo Han, Zhuofeng Zhao, Jianwu Wang, Roland M. Wagner:
Chinese Academy of Science, PRC., Fraunhofer Germany

Modeling Issues

Building an integrated Ontology within SEWASIE system
D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, Universita di Modena e Reggio Emilia,
Italy and IEIIT-CNR, Italy.

Ontologies : A contribution to the DL/DB debate

Nadine Cullot, Christine Parent, Stefano Spaccapietra, and Christelle Vangenot,

University of Burgundy, France, Swiss Federal Institute of Technology, Lausanne, Switzerland,
University of Lausanne, Switzerland.

RDF Storage and Implementation Issues

Efficient RDF Storage and Retrieval in Jena2
Kevin Wilkinson, Craig Sayers, and Harumi Kuno, Dave Reynolds, HP Labs

An Indexing Scheme for RDF and RDF Schema based on Suffix Arrays
Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura,
Nara Institute of Science and Technology, Japan, and Nagoya University, Japan.

RDF Core: A component for effective management of RDF Models
Floriana Esposito, Luigi Iannone, Ignazio Palmisano, and Giovanni Semeraro,
Universita degli Studi di Bari, Italy.

Implementation of a Semantic Network Service (SNS) in the context of the German Environmental

Information Network (gein®)
Thomas Bandholtz, Germany.

15

33

51

63

79

91

109

131

151

169

189

Web Services

ODE-SWS.: A Semantic Web Service Development Environment
Oscar Corcho, Asuncion Gomez-Pérez, Mariano Fernandez-Lopez, and Manuel Lama,

Universidad Politécnica de Madrid, Spain, and Universidad de Santiago de Compostela, Spain.

Applications of PSL to Semantic Web Services
Michael Gruninger, University of Maryland, College Park, USA.

Web Services

H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based Systems
S. Castano, A. Ferrara, S. Montanelli, Universita degli Studi di Milano, Italy.

A Collaborative Approach for Query Propagation in Peer-to-Peer Systems
Anne Doucet, Nicolas Lumineau, University of Paris 6, France.

OntoMiner: Bootstrapping and Populating Ontologies from Domain Specific Web Sites

203

217

231

251

Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan, Arizona State University, USA.259

Can Data Mining Techniques Ease The Semantic Tagging Burden?
Fabio Forno, Laura Farinettil, Sean Mehan, Politecnico di Torino, Italy,
University of the Highlands and Islands, UK.

Formal Querying and Reasoning

Formal aspects of querying RDF databases
Claudio Gutierrez, Carlos Hurtado, and Alberto Mendelzon, Universidad de Chile, Chile, and
University of Toronto, Canada.

Event-Condition-Action Rule Languages for the Semantic Web
George Papamarkos, Alexandra Poulovassilis, Peter T. Wood, Birkbeck College, UK.

Storing and Querying Ontologies in Logic Databases
Timo Weithoener, Thorsten Liebig, and Guenther Specht, University of Ulm, Germany.

Design Repositories for the Semantic Web with Description-Logic Enabled Services.
Joseph B. Kopena and William C. Regli, Drexel University, USA.

Mediation of XML Data through Entity Relationship Models
Irini Fundulaki and Maarten Marx, Bell Laboratories, USA, and University of Amsterdam,
The Netherlands.

Integration and Interaction

The ICS-FORTH SWIM: A Powerful Semantic Web Integration Middleware

V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A. Magkanaraki,
D. Plexousakis, G. Serfiotis, and V. Tannen, University of Pennsylvania, USA,
and Institute of Computer Science, FORTH, Greece.

Semantic Representation of Contract Knowledge using Multi Tier Ontology
Vandana Kabilan, Paul Johannesson, Stockholm University and
Royal Institute of Technology, Sweden.

The Visual Semantic Web: Unifying Human and Machine Semantic Web
Representations with Object-Process Methodology
Dov Dori, Technion, Israel and MIT, USA.

Interaction and navigation for a document database: a concrete case study
Isabelle Berrien, Frangois Laburthe, and Jean-David Ruvini, e-lab BOUYGUES SA, France.

277

293

309

329

349

357

381

395

415

435

Foreword

The Semantic Web is a key initiative being promoted by the World Wide Web Consortium (W3C) as
the next generation of the current web. Machine-understandable metadata is emerging as a new
foundation for component-based approaches to application development. Within the context of reusable
distributed components, Web services represent the latest architectural advancement. Such concepts
can be synthesized providing powerful new mechanisms for quickly modeling, creating and deploying
complex applications that readily adapt to real world need.

The objective of this workshop is to present database and information system research as they relate to
the Semantic Web and more broadly, to gain insight into the Semantic Web technology as it relates to
databases and information systems.

Isabel F. Cruz Vipul Kashyap Stefan Decker Rainer Eckstein
U. Illinois at Chicago National Library of USC Information Humboldt University,
USA Medicine, NIH, USA Sciences Institute, USA Germany

Invited Talks

Can we do better than Google? Using semantics to explore large
heterogeneous knowledge sources

Anatole Gershman
Accenture Technology Labs
USA

Abstract

Researchers in many fields use dozens of different rapidly growing on-line
knowledge sources, each with its own structure and access methods.
Successful research often depends on a researcher's ability to discover
connections among many different sources of information. The popularity of
Google suggests that high-quality indexing would provide a uniform method of
access, although it still leaves researchers with vast, undifferentiated lists of
results. Hence, the research challenge for semantic web designers: can a
knowledge-based approach provide a better way for researchers to explore
knowledge and discover useful insights for their research?

In this talk, | will use the example of bio-medical knowledge discovery to
explore the key issues in semantic indexing of large amounts of
heterogeneous information. | will propose a method and architecture for the
creation of practical tools for semantic indexing and exploration.

The example I'll be using is the Knowledge Discovery Tool, or KDT, which
contains a knowledge model of a large number of bio-medical concepts and
their relationships: from genes, proteins, biological targets and diseases to
articles, researchers and research organizations. Based on this model, the
KDT index identifies over 2.5 million bio-medical entities with two billion
relationships among those entities spanning 15 different knowledge sources.
Clearly, the creation and maintenance of such an index cannot be done
manually. KDT utilizes an extensive set of rules that cleanse, analyze and
integrate data to create a uniform index.

Using its index, KDT presents the user with a uniform graphical browsing
space integrating all underlying knowledge sources. This space is "warped"
and filtered based on domain-specific rules customized for the needs of
various groups of users, such as pharmaceutical researchers, clinicians, etc.
Another customized set of rules discovers and graphically highlights potential
indirect relationships among various entities that might be worth exploring
(e.g., relationships between genes or between diseases). Finally, the tool
enables several modes of collaboration among its users from annotations to
activities tracking.

Currently, KDT is undergoing testing in two pilot settings: an early stage of the
drug discovery process in a pharmaceutical company and a bio-medial
academic research group.

About The Speaker

Anatole Gershman joined Accenture Technology Labs in 1989 and in 1997
became its overall Director of Research. Under his leadership, research at the
laboratories is focusing on early identification of potential business
opportunities and the design of innovative applications for the home,
commerce and work place of the future. These include electronic commerce,
high-performance virtual enterprise, knowledge management, and human
performance support. To achieve these goals, the laboratories are conducting
research in the areas of ubiquitous computing, human-computer interaction,
interactive multimedia, information access and visualization, intelligent agents,
and simulation and modeling.

Prior to joining Accenture, Anatole spent over 15 years conducting research
and building commercial systems based on Artificial Intelligence and Natural
Language processing technology. He held R&D positions at Coopers &
Lybrand, Cognitive Systems, Inc., Schlumberger, and Bell Laboratories. In
1997, Anatole was named among the top 100 technologists in the Chicago
area by Crain's Chicago Business. In 2000, Industry Week named Anatole
one of the "R&D stars to watch."

Anatole studied Mathematics and Computer Science at Moscow State
Pedagogical University and received his Ph.D. in Computer Science from
Yale University in 1979.

Generic Model Management: A Database Infrastructure for Schema
Manipulation

Philip A. Bernstein
Microsoft Research
USA

Abstract
Meta data management problems are pervasive in the development and
maintenance of semantic web applications. Although solutions to these
problems are similar to each other, today they are solved in an application-
specific way and usually require much object-at-a-time
programming. To make solutions more generic and easier to program, we
propose a higher level interface, called Model Management. The main
abstractions are models and mappings between models. It treats these
abstractions as bulk objects and offers such operators as Match, Merge, Diff,
Compose, Extract, and ModelGen. We will present an overview of Model
Management and recent results about some of the operators.

About The Speaker

Phil Bernstein is a researcher at Microsoft Corporation. Over the past 25
years, he has been a product architect at Microsoft and at Digital Equipment
Corp., a professor at Harvard University and Wang Institute of Graduate
Studies, and a VP Software at Sequoia Systems. During that time, he has
published over 100 articles on the theory and implementation of database
systems, and coauthored three books, the latest of which is "Principles of
Transaction Processing for the System Professional" (Morgan Kaufmann,
1997). He holds a B.S. from Cornell University and a Ph.D. from University of
Toronto. A summary of his current research on meta data management can
be found at http://www.research.microsoft.com/~philbe.

From Semantic Search to Analytics and Discovery on Heterogeneous Content:
Changing Focus from Documents and Entities to Relationships

Amit Sheth
LSDIS Lab,
The University of Georgia and Semagix, Inc.
USA

Abstract

Research in search techniques was a critical component of the first
generation of the Web, and has gone from academe to mainstream. Research
and products supporting Semantic Search also look promising.

A second generation "Semantic Web” is being realized in one form of a
scalable ontology-driven information system, where semantic metadata allow
software to associate meaning with heterogeneous content. This is enabling a
fundamental shift in focus from documents and entities within documents to
discovering and reasoning about relationships. And it will transform the hunt
for documents that humans can examine or analyze into a more automated
content analysis, resulting in actionable information and insights into
heterogeneous content. In this talk, we juxtapose the following shifts, to paint
the exciting new possibilities:

e From documents and entities to relationships
e From techniques that focus on either unstructured data (text) or
structured content to both types and semi-structured data
e From directly analyzing data to ontology based processes of creating
high quality metadata and analyzing metadata
e From search and browsing for delivering relevant documents and
locating entities within contents to discovering complex relationships
and delivering actionable information with insights; from semantic
search to analytics and discovery-based semantic applications
This talk will interleave academic research with state-of-the-art commercial
uses, including tools and real-world applications and experiences. The critical
challenge in dealing with the Web scale of ontologies (with huge description
base/assertion set), metadata (very large RDF graphs), and their analysis in
discovering relationship will be discussed.

About The Speakers

Amit Sheth is a Professor at the University of Georgia and CTO of Semagix,
Inc. He started the LSDIS lab at Georgia in 1994. Earlier he served in R&D
groups at Bellcore, Unisys, and Honeywell. He founded his second company,
Taalee, in 1999 based on technology developed at the LSDIS lab, and
managed it as CEO until June 2001. Following Taalee's acquisition/merger,
he currently serves as CTO and a co-founder of Semagix, Inc. His research
has led to three significant commercial products, several deployed
applications and over 150 publications. More: http://Isdis.cs.uga.ed/~amit

Spatially Navigating the Semantic Web for User
Adapted Presentations of Cultural Heritage | nformation
in Mobile Environments

Marco Neumann

Digital Media Centre, Dublin Institute of Technology

Dublin 2, Ireland
mar co. neumann@i t.i e

Abstract. The integration of local and global information is an essential re-
quirement for future location-based services. The development of two tech-
nologies for mobile devices, namely positioning devices like GPS and wireless
communication networks, is encouraging the development of new kinds of spa-
tial- and context-aware applications. The CHI project investigates the applica
bility of these technologies for context-aware mobile computing applications
that take advantage of new metadata-standards to enable semantic, user and de-
vice adapted servicesin the field of Tourism and Cultural Heritage management
and presentation.

1 Introduction

The ability to query hyper-linked cultura heritage data sets, based on the user’s con-
text is a crucia functionality of future location-based services. The local information
here is information about a place with a unique spatial and tempora relationship,
which can be used to distinguish between places or information that only exist with
regard to an explicit reference to a place and time. Global information is information
that exists as conceptual knowledge but does not bear spatial reference e.g. structure
of organisations, abstract knowledge about something applicable to recognise similari-
ties or analogies in other contexts. As emphasised by Dey [1], context is any informa-
tion that can be used to characterize the situation of an entity. An entity is a person,
place or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves. The primary context in the
CHI (Cultural Heritage Interfaces) [2] system is the position of the user in a virtual
environment and a specific mobile device, which are integrated together with the
user’s preferences. The rational of the CHI project is to retrieve automatically relevant
data from a cultura heritage database based on the user’s context, namely the current
GPS coordinates, the display device limitations, the user preference and profile stored
in a Vector data type. Furthermore, the system takes advantage of the available meta-
data information, encoded into the resource to extract the semantic value of existing
documents for a selected area.

2 CHI System

The CHI project technology demonstrator (Figure 1) is implemented in a J2EE
three-tier architecture, consisting of client layer, application server layer and database
layer. The complete system communication between client and database layer is con-
ducted through the application server layer. The Client VRML/JAVA sends the cur-
rent location information in the form of Irish National Grid or Lat/Long coordinates
via HTTP networking protocol to the Oracle application server along with the device
characteristics and user profile and preferences. On the application server the query
building and query result set formatting is executed against a spatially enabled Oracle
database layer.

When the result of the query indicates the existence of content information, the system
notifies the client about available documents with their respective Uniform Resource
Identifiers (URI). The client then requests these documents automatically from the
application server, which generates a XML JDOM document in memory and subse-
quently applies a specific XSLT style conversion to the resulting in a device-formatted
document. The formatted document is then sent via HTTP protocol to the client de-
vice.

< & 2 BE SAOOL KK &

I —
o[8 BT O |[[Ewiichwanc] | oMW nis

Figure 1 Oracle Spatial Index Advisor and CHI Technology Demonstr ator

3 Semantic adaptation

After successful implementation of the spatial database components and visualiza-
tion strategies and contextual information tailoring for mobile devices, the CHI pro-
ject proposes the introduction of semantic layers to improve search query results. The
concept of semantics has to be defined in the context of the CHI implementation. The
use of the term “semantics’ in regard to information systems is ambiguous and has led
occasionally to false assumptions. Semantics in general describe the relations between

10

things and their varying significance for the receiver. This rather wide interpretation is
not addressed in current research. However, one prominent and focused attempt at a
pragmatic approach is the Semantic Web representation of data on the World Wide
Web based on the Resource Description Framework (RDF). [3]

RDF integrates applications using XML for syntax and URI for naming. The Semantic
Web therefore extents the current web where information is given well-defined mean-
ing to better enable computers and people to work in cooperation. [4]

The accumulation of vast data resources on the World Wide Web has reached the
limitations of conventional search approaches and new search strategies are needed.
Current search procedures only account for simple string matching and boolean com-
binations of keywords. How much relevant information from unstructured data
sources can be gained is up to the specification and capacity of the interpreter. To
search for particular information in the current web architectures, the user is restricted
to keyword matching or category browsing. The documents bear no explicit semantic
information about themselves. To query documents on the web, search engines have to
index available documents and this happens to be in most cases by parsing the com-
plete document for keywords and Boolean combinations. Advanced search engines
introduce new techniques like Latent Semantic Indexing where patterns in the text are
recognized to assist in categorizing the document.

The semantics of documents and their respective knowledge domain relevance for the
searching system remains untouched in most cases. Adopted approaches from artifi-
cia intelligence and knowledge management research promise to assist in exploiting
the semantic value of online documents. For the most part the application of ontolo-
gies dominate present research where an ontology is used for the construction of com-
plex models of relationships between data features and specialized domain area con-
straints to enhance query results.

The Semantic Web efforts by the World Wide Web Consortium [5] represent the
attempt to extend the current web to give information well-defined meaning, therefore
allowing machine processing and human evaluation.

3.1 CHI Semantic Query Scenario

While the user navigates the CHI system the client layer dispatches a query to the EJB
middleware. The documents in a selected area are passed on to the semantic inter-
preter to determine the conceptual environment. The user's agent (i.e. the client)
evaluates the semantic property and compares the conceptual environment of the
document(s). The result is compared to the agent’s conceptual definition to satisfy the
initial search context. However, in order for ontologies to be shared, they must be
congruent with other shared ontologies, otherwise they have to be compared and inte-
grated, which is an active ontology research topic. [6]

11

The Semantic Web goes beyond these limitations and introduces a predefined seman-
tic markup for web resources. The semantics are encoded in RDF (Resource Descrip-
tions Framework) statements triples, consisting of Resource, Property and Value
sometimes termed 'subject’, 'predicate’ and 'object’ to describe a particular relationship.
Semantics encoded into RDF triples can not only be used by human readers but also
processed by machines. RDF therefore is mainly a mechanism to represent resources
and their description in a direct-labeled graph (Figure 2).

http://chi/JamesConolly member-of » hitp://chi/ICA

Figure 2 RDF direct-labeled graph

3.2 Ontology description and RDF Schema

To improve the information retrieval process and provide the user of the CHI system
with more relevant information about available data resources the RDF metadata has
to be related to the CHI domain ontology, which isimplemented into a RDF Schema.

The query process (see figure 2) for semantic evaluation of RDF descriptions imple-
mented on the Application Server session EJB and utilizes the Jena Java API for RDF
[7] to generate the model graph depicted in Figure 3. For the purpose of the initial
implementation of semantic exploitation, the CHI ontology only defines relationships
between content documents stored in the Oracle database. Each content document can
be accessed with a unique URL, which automatically adapts the database documents
into a XML device independent tree structure and finally applies XSLT style sheet
conversion to suit mobile device requirements for display.

Actors
Organisation Individual
A

A
Location — D Event
- lat/long -Date
- Buffer -Name
- Geometry - Description <+

Figure 3 Relationship model of CHI entities

12

The introduction of RDF metadata allows the CHI System to locate, through querying
RDF statements with RDQL query language, conceptua similar documents and se-
lects only the spatially nearest related document for immediate display transformation.
Additionally the user can take tangents and traverse the graph manually with the help
of embedded hyperlinks in the cultural heritage document. The curator of cultura
heritage content as well has the option to annotate data with time properties for allow-
ing the introduction of narrative structuring of possible presentations resulting in pre-
defined walk paths. The spatial database guides the user from one cultural heritage
location to another with naive geographic directions: e.g. “go NE 300m” iteratively
refined until the user has reached the next point of interest.

Primary Spatial Filter

v

Retrieve RDF

v

Associate
Domain Ontology

e L S R G TR e

Figure 4 CHI semantic web information retrieval

4 Conclusion

In this paper we have presented the applicability of Semantic Web approaches to
enhance query results within the CHI spatial database environments. The CHI project
develops tools to respond to queries without the user of the system having to know
about the conceptual structure. As noted in [8], given the lack of current approachesto
exploit any form of semantics to assist users to accomplish their tasks, the introduction
of metadata information capable of expressing the basic semantic relationships of
resources and furthermore the integration into ontology-driven information systems is
adesirable step to embrace decentralised web resources for information search. [9]
Future location-based services have to take advantage of intelligent information re-
trieval strategies to exploit the potential of augmented information systems in mobile
environments. [10] The exploitation of metadata and their integration into domain
conceptualisations is one necessary condition.

13

5 Acknowledgement

Support for this research from Enterprise Ireland through the Informatics Programme
2001 on Digital Mediais gratefully acknowledged.

References

10.

11.

12.

13.

Dey, Anind K.: Providing Architectural Support for Building Context-Aware Appli-
cations. PhD thesis, Georgia Institute of Technology, 2000.

Carswell, J.; Eustace, A.; Gardiner, K.; Kilfeather, E.; Neumann, M.: An Environ-
ment for Mobile Context-Based Hypermedia Retrieval. in Proceedings of 13th
International Conference on Database and Expert Systems Applications
(DEXA2002), |IEEE CS Press, Aix en Provence, France. 2002. 532-536

Resource Description Framework (RDF) Model and Syntax Specification. 1999.
URL http://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222/

Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web. Scientific American
184(5): 2001. 34-43

Semantic Web. W3C. URL: http://www.w3.0rg/2001/sw/

WacheH.;Vogele, T.;Visser,U.; Stuckenschmidt, H.; Schuster,G.; Neumann, H.;
Hubner S.: Ontology-Based Information Integration: A Survey. The BUSTER Pro-
ject, Intelligent Systems Group. Center for Computing Technologies. University of
Bremen. 200I.

McBride, B.: Jena: A Semantic Web Toolkit. Hewlett-Packard Laboratories, Bristol,
UK. IEEE INTERNET COMPUTING, November/December 2002. 55-59

Egenhofer, M. J.: Toward the Semantic Geospatial Web. National Center for Geo-
graphic Information and Analysis. Department of Spatial Information Science and
Engineering. Department of Computer Science. Main. 2002.

Martin, Philippe: Knowledge Representation, Sharing, and Retrieval on the Web. In:
Web Intelligence. Eds. Zhong, Ning; Liu, Jiming; Y ao, Yiyu. 2003 pp. 243-276

Zipf, A. and Aras, H.: Proactive Exploitation of the Spatial Context in LBS - through
Interoperable Integration of GIS-Services with a Multi Agent System (MAS). AGILE
2002. Int. Conf. on Geographic Information Science of the Association of Geo-
graphic Information Laboratoriesin Europe (AGILE). 04.2002. Palma. Spain.
Pradhan, S.. Semantic Location. Hewlett-Packard Laboraties, Pao Alto, CA,
USA .Springer-Verlag London. 2000.

Farrugia, J.; Egenhofer, M. J.: Presentations and Bearers of Semantics on the Web ,
in Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society Conference (FLAIRS 2002). 2002. 408-412.

Fensel, Dieter; van Harmelen, Frank; Horrocks, lan: OIL and DAML+OIL: Ontology
Languages for the Semantic Web. In: Davies, John; Fensel, Dieter; van Harmelen ,
Frank: editors, Towards the Semantic Web — Ontology-based Knowledge Manage-
ment. Wiley. London, UK. 2002.

14

Text-Based Gene Profiling
with Domain-Specific Views

Patrick Glenisson, Bert Coessens, Steven Van Vooren, Yves Moreau, and Bart
De Moor

Departement Elektrotechniek, Katholieke Universiteit Leuven, Kasteelpark Arenberg
10, 3001 Leuven (Heverlee)
{pgleniss, bcoessen}@esat.kuleuven.ac.be

Abstract. The current tendency in the life sciences to spawn ever grow-
ing amounts of high-throughput assays has led to the situation were the
interpretation of data and the formulation of hypotheses lag the pace
with which information is produced. Although the first generation of
statistical algorithms scrutinizing single, large-scale data sets found their
way into the biological community, the great challenge to connect their
results to the existing knowledge still remains. Despite the fairly large
number of biological databases that is currently available, we find a lot
of relevant information presented in free-text format (such as textual an-
notations, scientific abstracts, and full publications). Moreover, many of
the public interfaces do not allow queries with a broader scope than a
single biological entity (gene or protein). We implemented a methodology
that covers various public biological resources in a flexible text-mining
system designed towards the analysis of groups of genes. We discuss and
exemplify how structured term- and concept-centric views complement
each other in presenting gene summaries.

1 Introduction

The availability of the complete sequence of the human genome, along with
those of several other model organisms, sparked a novel research paradigm in
the life sciences. In ‘post-genome’ biology the focus is shifting from a single
gene to the behavior of groups of genes interacting in a complex, orchestrated
manner within the cellular environment. Recent advances in high-throughput
methods enable a more systematic testing of the function of multiple genes, their
interrelatedness, and the controlled circumstances in which these observations
hold. Microarrays, for example, measure the simultaneous activity of thousands
of genes in a particular condition at a given time. They enable researchers to
identify potential genes involved in a great variety of biological processes or
disease-related phenomena. As a result, scientific discoveries and hypotheses are
stacking up, all primarily reported in the form of free text. A recent query with
PUBMED! (the key bibliographic database in the life sciences) for the keyword

! http://www.ncbinlm.nih.giv/PubMed/

15

microarray showed that almost a third (i.e., about 1000) of the publications
related to this technology is dated after January 2003. However, since the data
and information, and ultimately the extracted knowledge itself, lack usability
when offered in a raw state, various specialized database systems are designed to
provide a complementary resource in designing, performing, or analyzing large-
scale experiments. To date, we essentially distinguish two types of databases: the
first type holds essential information, such as genomic sequence data, expression
data, etc. without any extras (e.g., Genbank?, ArrayExpress®); the second type
offers curated annotations, cross-links to other repositories and multiple views
on the same problem (e.g., LocusLink?, SGD®). Although meticulous upkeep
of such databases is still struggling for due credit within the community, it is
indispensable for the advancement of the field [1].

The process of successfully gaining insight into complex genetic mechanisms
will increasingly depend on a complementary use of a variety of resources, in-
cluding the aforementioned biological databases and specialized literature on the
one hand, and the expert’s knowledge on the other. We therefore consider the
knowledge discovery process as cyclic, (i.e., requiring several iterations between
heterogeneous information sources to extract a reliable hypothesis). For exam-
ple, to date, linking up analyzed microarray data to the existing databases and
published literature still requires numerous queries and extensive user interven-
tion. This process of drilling down into the entries of hundreds of genes is notably
inefficient and requires higher-level views that can more easily be captured by
a (non-)expert’s mind. Figure 1 depicts how this cyclic nature applies to the
analysis of gene expression data.

Moreover, until now, it has been largely overlooked that there is little differ-
ence between retrieving an abstract from MEDLINE and downloading an entry
from a biological database [2]. Fading boundaries between text from a scien-
tific article and a curated annotation of a gene entry in a database is readily
illustrated by the GeneRIF feature in LocusLink, where snippets of a relevant
article pertaining to the gene’s function are manually extracted and directly
pasted as an attribute in the database. Conversely, we witness the emergence
of richly documented web supplements accompanying a scientific publication
that allow a virtual navigation through the results presented (see for example
http://www.esat.kuleuven.ac.be/neurdiff/ [3]). Additionally, through the use of
hypertext, electronic publications will be able to offer more structured views.
Hence, we should not expect the growing amount of free text to be halted by
the advent of specialized repositories.

The broadening of the biologist’s scope, along with the swelling amount of
information, results in a growing need to move from single gene or keyword-
based queries to more refined schemes that allow a deeper interaction between
the user- and context-specific views of text-oriented databases.

2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
3 http://www.ebi.ac.uk/arrayexpress,/

4 http://www.ncbi.nlm.nih.gov/LocusLink/

% http://www.yeastgenome.org/

16

Data World Text World

Gene ‘ List of

Expression - Gene Related Articles

Clusters ‘* - Gene Summaries
J |

Modified
Gene
Clusters

Fig. 1. Cyclic nature of the knowledge discovery process. It shows a high-level view of
how it is embodied in microarray cluster analysis: starting from a cluster of genes re-
sulting from a gene expression analysis (the ‘Data World’), the corresponding literature
profiles are queried and analyzed (the ‘Text World’), resulting in either the addition
of extra genes of interest or the omission of irrelevant genes. This updated cluster can
subsequently be reanalyzed in expression space, which concludes a first cycle.

To facilitate such integrated views, controlled vocabularies that describe all
properties of the underlying concepts are of great value when constructing inter-
operable and computer-parsable systems. A number of structured vocabularies
have already arisen (most notably the Gene Ontology®) and, slowly but surely,
certain standards are being adopted to store and represent biological data.

We can conclude that there is a certain urge towards a semantic biology web
and although far from mature, some semantic web ideas have found their way
into the bioinformatics community as means to knowledge representation and
extraction.

Our general goal is to develop a methodology that can exploit and summa-
rize vast amounts of textual information available in scientific publications and
curated biological databases to support the analysis of groups of genes (e.g.,
resulting from gene expression analysis). As discussed above, the complexity of
the domain at hand requires such a system to provide flexible views on the prob-
lem, as well as to extensively cross-link to other systems. As a result, we created
a pilot text mining system, named TextGate, on top of a prevalent biological
resource (LocusLink [4]) that aims, in the end, at implementing the interactive
(or cyclic) nature of the knowledge discovery process.

A conceptual overview of the system is shown in Figure 2. We essentially
indexed two sources of textual information. Firstly, we downloaded the entire

5 http://www.geneontology.org

17

LocusLink database” and identified those fields that contain useful free-text in-
formation. Secondly, we collected all MEDLINE abstracts that were linked to
by LocusLink. We indexed both information sources with two different domain
vocabularies (one based upon Gene Ontology and one based upon the unique
gene names found in the HUGO nomenclature database®). The resulting indices
are used as basis for literature profiling and further query building on the set of
genes of interest.

b2]
Cluster
Set of LOCUSI__I__

Genes

from

- GO related fields

- GeneRIF & Summary fields
- Curated Refs to PubMed

Alstat | | ™.

L)

fartEE) 2 -.I"

Pubiﬂed 3 -
fy... & *a

New or Refined Text Profiles, Distance Document
Queries to Functional Matrix Scoring
External DBs Coherence Cluster and Ranking

Statistics Qverview

Fig. 2. Conceptual overview of the methodology behind the TextGate application.
Indexing of textual gene information from the LocusLink database and abstracts from
MEDLINE resulted in indices for respectively genes and documents. Starting from a
gene or group of genes, the most relevant documents can be retrieved by comparing
indices. Afterwards, statistical analysis and further queries can be performed.

Our work is related to several other reported and available systems. Pub-
Gene? [5] is a database containing cooccurrence and cocitation networks of hu-
man genes derived from the full MEDLINE database. For a given set of genes
it reports the literature network they reside in together with their high scor-

" as of April 8 2003
8 http://www.gene.ucl.ac.uk/hugo/
9 htpp://www.pubgene.org

18

ing MESH headings!'®. MedMiner [6] retrieves relevant abstracts by formulating
expanded queries to PUBMED. They use entries from the GeneCard database
[7] to fish up additional relevant keywords to compose their query. The result-
ing filtered abstracts are comprehensively summarized and feedback loops are
provided. GEISHA is a tool to profile gene clusters, again using the PUBMED
engine, with an emphasis put on comprehensive summarization within a statis-
tical framework [8]. This list of systems is not exhaustive and certainly does not
encompass the spectrum of text-mining methods in genomics. Nevertheless, we
believe that they well represent the first-generation systems oriented towards the
considerations presented above.

The rest of this paper is organized as follows. In Section 2, we describe Lo-
cusLink and MEDLINE as our information sources and how the indexed informa-
tion is used to query the information space we work in. In Section 3, we discuss
the construction of our two domain vocabularies and their rationale. Section 4
describes the web-based application built upon the described methodology. In
Section 5 the possibilities for query expansion and cross-linking to external data
sources are explored. Finally, in Section 6, we provide two illustrative biological
examples of a term-based summarization and a co-linkage analysis.

2 Information Selection

2.1 LocusLink as Gene Information Source

LocusLink [4] was used as the source of textual information about genes. Lo-
cusLink is a database that organizes information from collaborating public data-
bases and from other groups within the National Center for Biotechnology Infor-
mation'! to provide a locus-centric'? view of genomic information from human,
mouse, rat, zebrafish, Drosophila melanogaster, and HIV-1.

Each LocusLink entry (one for each locus and 225,614 in total) has a unique
LocusID and consists of a number of fields with information about a gene. Exam-
ples of fields include the originating organism, summary information about the
gene, official and preferred gene symbols and names, OMIM '3 [9] and PUBMED
identifiers, and Gene Ontology annotations.

Although indexing these LocusLink entries can be done on all fields at once,
we identified the subset that was most informative in a text-mining context.
From this subset of fields we identified (possibly overlapping) groups of fields
that constitute either a more specific or a more general view on the database.
The basic aim of this design choice is that, although we wish to create a free-text
index of each entry, we still want to preserve some of LocusLink’s logical field
structure.

10 MESH headings are a set of keywords attached by a manual indexer to each MED-
LINE abstract.

1 http://www.ncbi.nlm.nih.gov/

12° A locus is a specific position on the chromosome.

13 OMIM is a catalog of human genes and genetic disorders.

19

2.2 MEDLINE as Document Information Source

As introduced before, MEDLINE is the largest bibliographic database containing
over 12,000,000 citations in the biomedical literature from 1960 to present. Its
great value arises from the fact that most citations have an abstract in English
included.

We downscaled the MEDLINE collection to the subset of 73,172 documents
found in the LocusLink entries. We assume this set to be reasonably trusted
and gene-specific, and therefore it constitutes a good resource for conducting
our experiments.

2.3 Textual Information in the Vector Space Model

In the vector space model [10], a text body is represented by a vector (or text
profile) of which each component corresponds to a single (multi-word) term from
the entire set of terms taken into account (i.e., the vocabulary, see Section 3).
For every component a value denotes the presence or importance of a given term,
represented by a weight. Indexing is the calculation of these weights:

d; = (wi1,Wi2,...,W;N). (1)

Each w; ; in the vector of document 7 is a weight for term j from the vocab-
ulary of size N. This representation is often referred to as bag-of-words. In this
paper we confine the discussion to the IDF weighting scheme, as it turned out to
be a reasonable choice for modeling pieces of text comprising about 500 terms.
The underlying assumption is that term importance is inversely proportional to
frequency of occurrence. Let D be the number of documents in the collection
and D; be the number of documents containing term ¢, IDF is defined as:

D
idf = 1 1+—). 2
at=1tog (14))

Since, in principle, we can index the textual information from both LocusLink
and MEDLINE abstracts with the same vocabulary, we can represent both genes
and documents as vectors of term weights [11]. We distinguish two cases:

Combining multiple documents into a single gene profile
Since each gene can have one or more curated MEDLINE references asso-
ciated to it in LocusLink, we combine these abstracts by taking the mean
profile. This is illustrated in Figure 3.

Combining multiple gene profiles into a group profile
To summarize a cluster of genes and explore the most interesting terms
they share, we compute the mean and variance of the terms over the group.
Although simple, these statistics already reveal information on interesting
terms characterizing the gene group.

20

LocusLink ix_ml_...

LocusID [PMID's PMID | Vector

1 1,3 1 <L

2 2,3 2 <.> I_
3 1 3 <>

4 : I 4 <. >

5 2 5 <>

6 2, 6 <.>

, =
P

Medlined
LocusLink

LocuslID | Vector <.> __|
1 <.> +<.>

2 <> <>

3 <. > |

4 <.>

5 <. >

6 <>

Fig. 3. Generating profiles for LocusID’s via MEDLINE abstract text profiles. As de-
scribed in Section 2, some indices are generated using the linked abstracts as sole source
of information.

The vector representation of a gene or gene group can be used as a query to
retrieve documents and vice versa. The similarity of one document to another,
or of a document d; to a query ¢, can be calculated using the cosine distance:

Z Wi, jWq,j

oo (3)

3 A Domain Vocabulary as Canvas to the Literature

Slmcos dz) q

Depending on the vocabulary chosen, the derived vector space model will be
useful only within a given scope. Both the scale and diversity of the information
contained in the MEDLINE database form a barrier to a fast, functional inter-
pretation of groups of genes. A well-selected corpus, together with a domain- or
problem-oriented vocabulary, already alleviates this problem in a first approxi-
mation. As explained above, the MEDLINE abstracts referred to in LocusLink
constitute an acceptable, noise-free, and domain-specific collection. However, the
information covered in this subset is still immensely vast. Although a corpus-
derived vocabulary might be the first logical choice in a vector-based text mining

approach, we constructed a tailored vocabulary in the light of the following is-
sues:

Phrases

Are additional (statistical or Natural Language Processing) algorithms nee-
ded to extract multi-word terms or are external lists available?

21

Synonyms
Do we need synonym detection algorithms or can we resort to external lists?

Concept nomenclature
Genes, proteins, diseases, chemical substances, and so on are all possible con-
cepts of interest to the user. Hence, concept-centric views or representations
might be required instead of term-centric ones. Again the question comes up
whether such lists are available or need to be generated.

Database integration
Can the choice of the vocabulary enhance interoperability with other data-
bases or systems?

Structured representation
In which way can we ultimately model dependencies between the vector
components?

These issues gave rise to the construction of two vocabulary types. The first
type is term-centric. It was derived from Gene Ontology (GO) [12] and com-
prises 17,965 terms. GO is a dynamic controlled hierarchy of (multi-word) terms
with a wide coverage in life science literature, and in genetics in particular.
We considered it as an ideal source to extract a highly relevant and relatively
noise-free domain vocabulary. Moreover, since GO is increasingly used to an-
notate databases, we envision an improved interoperability with other systems.
We note that, at this time, we chose to neglect the structure defining the rela-
tions between the objects, as well as the limited amount of synonym information.
Genes, however, are not only referred to by their symbols (e.g., TP53), but often
also by their full name, typically constituting a phrase (e.g., tumor protein p53,
Li-Fraumeni syndrome) that can bear an indication of its function. We extracted
this information and merged it with the terms from GO.

A second vocabulary type is rather concept-centric (here, gene-centric) and
was constructed with the screening of cooccurrence and colinkage in mind. In
our setup cooccurrence denotes simultaneous presence of gene names within a
single abstract, as in [5]. Colinkage is a weaker form of cooccurrence and screens
for simultaneous presence in the pool of abstracts that are linked to a given
group of genes. To this end, we derived from the HUGO database [9] (although
LocusLink could equally have served as a resource) a vocabulary of all uniquely
defined human gene symbols and their synonyms. Since these official gene sym-
bols are frequently requested and used by scientists, journals and databases, we
assume they will occur in scientific literature with high specificity. In total this
vocabulary consists of 26,511 gene symbols.

4 The TextGate Application

As many combinations of restricted views and weighting schemes (Section 2), as
well as representations (Section 3) are possible, we created a database of various
literature indices. Within the scope of this paper this serves the goal of offering

22

a comprehensive interface to various views on the LocusLink database and the
textual information captured inside. In a broader sense, this literature index
database is part of an experimental platform to test and evaluate (combinations
of) settings on a variety of biological annotation databases.

Different combinations of indexing schemes (by taking different fields of the
LocusLink entries into consideration) and vocabularies show interesting possi-
bilities towards analysis of genes and gene groups (as shown in Section 6 where
three biological analysis cases are discussed).

Figure 4 shows the server architecture of the TextGate application. The dif-
ferent functionalities can be accessed via a browser or more directly by invoking
the appropriate SOAP web service.

Database
Se Number
runcher
C unche Web
Application
' S.Bf_%fler Internet

v, Usei
4

Fig. 4. Architectural overview of the TextGate knowledge discovery tool.

The user can perform a lookup of a single gene or a set of genes. In the
case of profiling multiple genes, mean and variance statistics over the terms
are displayed. Also, the application offers the possibility to output a distance
matrix for a cluster of genes, which visualizes the distances (as calculated with
Formula 3) between the text vectors of all genes in a cluster.

As said before, the functionalities of the application are also available via
calls to a SOAP web service. The web service can be invoked by sending
the appropriate SOAP request to the TextGate web service router. The SOAP
message is interpreted by an Apache Tomcat server and specific requests are sent
to a number cruncher that executes the necessary calculations (as can be seen
in Figure 4).

This web service architecture allows for an easy integration of the function-
alities of our tool with third-party applications. SOAP clients that invoke the
service can be written in the programming language of choice. Currently, in our
group, we already established an integrated web environment and web service

14 SOAP (Simple Object Access Protocol) is an XML-based W3C Proposed Recom-
mendation for exchanging structured information in a decentralized, distributed en-
vironment.

23

architecture for microarray analysis, called INCLUSive [13], in which TextGate
fits naturally.

5 Query Expansion and Hyperlinking

Essentially, TextGate adopts a ‘small world’ view by scrutinizing only a restricted
set of textual information extracted by specific canvases on the literature (deter-
mined by the choice of the various representations discussed in Sections 2 and 3).
In practice, relevant keywords, phrases, or gene names are only useful to a re-
searcher if they can be linked (back) to existing biological resources.

In a first attempt to strengthen this desired connection, we implemented
a query composer for a variety of other databases, among which PUBMED,
GeneCards, and the Gene Ontology database are the most prominent, but also
OMIM, UniGene, and 15 other sources belong to the list of possible destinations.
Figure 5 visualizes this functionality.

]
File Edt Mew Favoites Took Help
B Back ~ @D [A Qseach GaFavortes @iMeda B | BN S He=
Address [&]

L Ilg

I -
| Further Queries
L]
Neel

ICBI, the Marional Center for BioTechnolagy Informagfh; provides publicly addresssble dacs <his form

o searchtheiv datshases, Clicking the S-icon near 5 term in your result
profile will appand it to your NCET quary, Use the pulffdown bos to chaose your database (Pubbad, GMINE nk v

W bar
© alpha_2_macroglabulind. 537

Search | PubMed jgw|a\pha”‘ 2*macroglobulin® ﬂ

pregnanc 0.212
alpha 0211
12 0,155
GeneCards™ stap 0,145
GeneCards™ is a database of human genes, their products and their invalvement in diseases, It offers concise infarmation #M2 0 - clystar 0,109

symbul, 45 well a5 selecrad others,

SearchiDizplay GeneCargh™ by | keyword(s) ¥

atabases, You can append words from the result ol i

* chromazom 0.102
= codon 0102
< relat 0,101

01
pregnanc® low* densit* ipoproteil Go 0,098
0,096

Genentology

& Tarms

" Gene Praducts

Start Over

|
@1 bone

(28 Local intranet

Fig. 5. The cyclic approach to knowledge mining by composing refined queries to a set
of public databases.

24

6 Example Biological Cases

In this section, we wish to provide two illustrative examples of a term-based
summarization and a colinkage analysis.

6.1 Gene Ontology and Transcriptional Up- and Downregulation

In this experiment, we generated two gene clusters based upon Gene Ontology
(GO) annotations of human genes. To construct the first cluster, we retrieved
all human genes that are annotated with the concept transcription activation.
The second cluster are all human genes annotated with the concept transcription
repression. Both concepts apply to the process of transcriptional regulation in the
cell (see Figure 6). Whether a protein complex promotes or inhibits transcription
of a gene, depends upon its constitution and environmental conditions. This
makes the distinction between both concepts not a trivial task, since a protein
can be active in a complex as inhibitor and as activator. The genes in both
groups are enlisted in Table 1.

Fig. 6. The activation (a) and repression (b) of the transcription of a gene by DNA-
binding protein complexes. The squares represent genes on the DNA. The circles rep-
resent protein complexes. In case (a), binding of an activator protein (produced by
its corresponding gene) to the complex initiates, and subsequently activates transcrip-
tion of a given gene while in case (b), binding of a repressor protein (produced by its
corresponding gene) inhibits expression of that gene.

In the first place this indicates that our text-mining approach is reasonably
trustable. As our confidence in these kind of methods will grow, one could invert
the reasoning and consider this case to give an indication of whether or not the
GO curators have made a good choice of splitting the concept of transcriptional

25

Table 1. Gene symbols and LocusLink identifiers for the two clusters of human genes
that are annotated with respectively the Gene Ontology terms transcription activation
and transcription repression.

Activation cluster Repression cluster

Gene Symbol LocusID ||Gene Symbol LocusID
BRCA1 672 BTF 9774
BRCA2 675 DMAP1 55929
CGBP 30827 || DNMT3L 29947
COPEB 1316 EED 8726
EDF1 8721 EPC1 80314
ELF1 1997 HDACH4 9759
ELF2 1998 HDACG6 10013
EPC1 80314 ||IFTI16 3428
ETV4 2118 LRRFIP1 9208
FOXC1 2296 MBD1 4152
FOXD3 27022 ||MBD2 8932
HNRPD 3184 NAB1 4664
HOXA9 3205 NRF 55922
HOXC9 3225 NSEP1 4904
HOXD9 3235 PIASY 51588
KLF2 51713 ||[RBAK 57786
MADHI1 4086 REST 5978
MADH5 4090 RING1 6015
MITF 4286 THG-1 81628
MYB 4602 UBP1 7342
NSBP1 79366 ||ZFHX1B 9839
ONECUT1 3175 ZNF24 7572
RREB1 6239 ZNF253 56242
SEC14L.2 23541 ZNF33A 7581
SUPT3H 8464 ZNFN1A4 64375
TITF1 7080

TP53BP1 7158

TRIP4 9325

UBE2V1 7335

ZNF38 7589

ZNF148 7707

ZNF398 57541

requlation in transcription activation and transcription repression: if for those
two different clusters TextGate shows that in essence the same terms occur
this would mean that there is not really a significant difference between the
genes GO associated to transcription activation and transcription repression. If,
however, specific terms linked to activation and repression respectively occur for
the activation cluster and the repression cluster, then making two taxons under
transcriptional regulation was a good choice.

In Table 2, the term ranking and variance are shown for the activation cluster
(top of the table) and the repression cluster (bottom). We see an obvious dif-
ference in term occurrence. For the activation cluster, transcript_activ ranks
third place, and for the repression cluster, repressor and repress rank first and
second, respectively. Note that dna_bind scores high for both clusters because
DNA-binding is a general aspect of transcriptional regulation.

6.2 Colinkage of Colon Cancer Genes

In Section 3 we discussed how changing the way domain vocabularies and index
tables are constructed provides us with a different view on the information. Using
only the gene names from the HUGO database [9] as domain vocabulary, we can
take a specific stance towards investigating colinkage of genes.

For this test case, we constructed a set of genes by consulting a textbook
on molecular biology [14] and choosing genes that are related to colon cancer
manually. This set was then provided to TextGate using the colinkage index.
The set of genes is shown in Table 3. The results are shown in Table 4.

To validate this result, we verified that these gene names indeed turn up in
the literature in relation to colon cancer.

The highest scoring gene is the CD44 antigen. This gene is indeed related to
colon cancer, as shown in a paper by Barshishat et al. [15].

The second ranking gene name is UBE3A (ubiquitin protein ligase E3A). At
first sight, it is not directly related to colon cancer, but after closer investigation
of the available literature, we found that this gene is involved in degradation of
TP53, which plays a crucial role in the regulation of cell division (mitosis) [16].
This explains the detection of frequent co-citation.

7 Conclusion and Future Work

As contemporary biology is evolving towards an information science, integrative
views on biological problems will be of increasing importance. Integration is a
broad term and is understood differently in the database community than for
instance in the field of machine learning. Our perspective on integration was
adopted with both the (presumed) cyclic nature of the knowledge discovery pro-
cess and of a text-mining application in mind. We created various indices on
two text-oriented databases (the annotation database LocusLink and the litera-
ture repository MEDLINE) that enabled text summarization of multiple genes
at once. Supported by grateful realizations in the development of annotation

27

Table 2. For the transcription activation and transcription repression clusters we show
the ranking of the 20 terms with the highest mean (left side) and the ranking of the 20
with the highest variance (right side). We note the presence of some noise due to the

nature of the term extraction process.

Activation cluster

Term Mean || Term Variance
transcript_factor 0.205 ||ovarian 0.011
dna_bind 0.188 ||thyroid 0.007
transcript_activ 0.139 ||site_select 0.005
nuclear 0.129 [|h3 0.005
transcript 0.125 ||zinc 0.005
promot 0.117 ||p53 0.004
bind 0.113 |ley 0.004
tumor 0.113 ||hepatocyt 0.004
domain 0.112 ||melanocyt 0.004
famili 0.11 ||cluster 0.004
chromosom 0.106 ||prime 0.004
site 0.098 ||bridg 0.004
pair 0.096 |[transcript_factor 0.003
involv 0.095 ||transform_growth factor_beta|0.003
region 0.093 ||retino_acid_metabol 0.003
yeast 0.092 ||tumor_suppressor 0.003
two 0.09 ||ubiquitin_conjug_enzym 0.003
zinc 0.088 |{leukemia 0.003
contain 0.088 |7 0.003
map 0.087 ||pigment 0.003
Repression cluster

Term Mean || Term Variance
repressor 0.238 |imethyl_cpg_bind 0.019
repress 0.205 ||deacetylas 0.013
dna_bind 0.172 ||cytosin_5 0.009
zinc 0.164 ||repressor 0.009
transcript_repressor |0.158 ||histon 0.008
deacetylas 0.157 ||polycomb_group 0.008
transcript_factor 0.151 ||dna_methyl 0.006
domain 0.147 ||ring 0.006
histon 0.127 ||zinc 0.006
transcript 0.123 ||transcript_repressor 0.005
yeast 0.116 |methyltransferas 0.005
famili 0.109 |[silenc 0.005
gene_express 0.109 ||hi 0.005
methyl_cpg_bind 0.105 ||interferon_gamma 0.005
region 0.104 ||stat2 0.004
nucleu 0.104 ||cell_structur 0.004
interact 0.103 |{leucin_metabol 0.004
protein_metabol 0.1 polycomb 0.004
bind 0.1 Irr 0.004
line 0.095 ||methyl 0.004

28

Table 3. A set of seven genes involved in colon cancer.

HUGO Name|LocusID

k-RAS2 3845
NEU1 4758
MYC 4609
APC 324

DCC 1630

P53 7157

MSH2 4436

Table 4. For the colon cancer cluster we show the ranking of the 20 colinkage concepts
with the highest mean (left side) and the ranking of the 20 colinkage concepts with the
highest variance (right side). We note the presence of some noise due to the nature of
the concept extraction process.

Gene |Mean ||Gene|Variance
cd44 0.446 |jmyc |0.013
ube3a [0.429 |(|[pten [0.012
i 0.344 |{lapc]0.01
wwox |0.28 tpb3]0.01
sparc |0.27 dcc |0.009
pax6 |0.234 |jmsh2 [0.005
wa 0.232 ||pax6 |0.004
rieg2 |0.223 ||ra 0.003
at 0.162 ||[wwox [0.003
nrd4a2 |0.156 |jmap |0.003
ha 0.136 ||pms2 |0.003
gstzl (0.125 ||rieg2 [0.003
msh2 [0.081 [{mlh1 |0.003

1 0.081 |12 0.003
3 0.078 ||ha 0.002
all 0.077 |lwa |0.002
5 0.075 |/hla]0.002

kptn |0.066 |all 0.002
tpb3 |0.065 ||nr4a2 |0.002
nup214|0.064 ||gstzl |0.001

standards, nomenclature conventions, and ontologies, TextGate is able to for-
mulate sensible queries to a variety of other resources (including back the GO).
However, the system is far from complete, and represents only a first step in
the construction of a knowledge discovery platform. Our mid-term challenges
include:

Extension to an IR engine
At this point TextGate uses the index tables in a gene-centric way to sum-
marize and link information. As biological experiments are always carried
out in a particular context, allowing term-centric queries (see e.g., the re-
cently established TREC!® track) would further enhance the usability of the
system. This would fully close the cycle between terms, genes, documents,
and database annotations.

Extension of the conceptual representations
Up to now we neglected the structure of GO. Embedding its structure as well
as adding additional ontologies for functional genomics'®, or biomedicine!'”
would provide more structured views on information. A second improvement
involves the incorporation of improved semantics (e.g., negations) in our
system.

Finally, since the core functionality of the TextGate system is also provided
as a SOAP service, it can seamlessly be integrated with other systems, primarily
the expression analysis pipeline currently present in our lab'8.

Acknowledgments

P.G. and B.C. are research assistants of the K.U.Leuven. S.V.V is an intern in
fulfillment of the Master in Bioinformatics Program at the K.U.Leuven. Y.M.
is a post-doctoral researcher of FWO-VIaanderen and assistant professor at the
K.U.Leuven. B.D.M. is a full professor at the K.U.Leuven. Research supported
by Research Council K.U.Leuven: [GOA-Mefisto 666, IDO (IOTA Oncology,
Genetic networks), several PhD/postdoc and fellow grants]; Flemish Govern-
ment: [FWO: PhD/postdoc grants, projects G.0115.01 (microarrays/oncology),
(.0240.99 (multilinear algebra), G.0407.02 (support vector machines), G.0413.03
(inference in bioi), G.0388.03 (microarrays for clinical use), G.0229.03 (ontolo-
gies in bioi), research communities (ICCoS, ANMMM)]; AWTI: [Bil. Int. Collab-
oration Hungary/Poland]; IWT: [PhD Grants, STWW-Genprom (gene promo-
tor prediction), GBOU-McKnow (Knowledge management algorithms), GBOU-
SQUAD (quorum sensing), GBOU-ANA (biosensors)|; Belgian Federal Govern-
ment: [DWTC (IUAP IV-02 (1996-2001) and IUAP V-22 (2002-2006)]; EU:
[CAGE]; ERNSI; Contract Research/agreements: [Datads, Electrabel, Elia,
LMS, IPCOS, VIB]. We acknowledge Peter Antal for starting up this research
direction.

15 http://trec.nist.gov/

16 for example: http://www.sofg.org/index.html

7 for example: http://www.nlm.nih.gov /research/umls/umlsmain.html

'8 http://www.esat.kuleuven.ac.be/inclusive/

30

References

10.

11.

12.

13.

14.

15.

16.

Navarro, D., Niranjan, V., Peri, S., Jonnalagadda, C., Pandey, A.: From biological
databases to platforms for biomedical discovery. Trends Biotechnol. 21 (2003)
263-268

Gerstein, M., Junker, J.: Blurring the boundaries between scientific papers and
biological databases. Nature Online, http://www.nature.com/nature/debates/e-
access/Articles/gernstein.html (web debate, on-line 7 May 2001)

Dabrowski, M., Aerts, S., Hummelen, P.V., Craessaerts, K., De Moor, B., Annaert,
W., Moreau, Y., De Strooper, B.: Gene profiling of hippocampal neuronal culture.
J. Neurochem. 85 (2003) 1279-1288

Pruitt, K., Maglott, D.: RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Res. 29 (2001) 137-140

Jenssen, T., Laegreid, A., Komorowski, J., Hovig, E.: A literature network of
human genes for high-throughput analysis of gene expression. Nature Genet. 28
(2001) 2128

Tanabe, L., Scherf, U., Smith, L., Lee, J., Hunter, L., Weinstein, J.: MedMiner:
An internet text-mining tool for biomedical information, with application to gene
expression profiling. BioTechniques 27 (1999) 1210-1217

Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.: GeneCards: A novel func-
tional genomics compendium with automated data mining and query reformulation
support. Bioinformatics 14 (1998) 656-664

Blaschke, C., Oliveros, J., Valencia, A.: Mining functional information associated
with expression arrays. Funct. Integr. Genomics 1 (2001) 256-268

McKusick, V.: Mendelian Inheritance in Man. A Catalog of Human Genes and
Genetic Disorders. Twelfth edn. Johns Hopkins University Press (1998)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

Glenisson, P., Antal, P., Mathys, J., Moreau, Y., Moor, B.D.: Evaluation of the
vector space representation in text-based gene clustering. In: Proceedings of the
Pacific Symposium on Biocomputing. Volume 8. (2003) 391-402

The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology.
Nature Genet. 25 (2000) 25-29

Coessens, B., Thijs, G., Aerts, S., Marchal, K., Smet, F.D., Engelen, K., Glenisson,
P., Moreau, Y., Mathys, J., Moor, B.D.: INCLUSive - a web portal and service
registry for microarray and regulatory sequence analysis. Nucleic Acids Res. 31
(2003) 3468-3470

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell. Fourth edn. Garland Science Publishing (2002)

Barshishat, M., Levi, 1., Benharroch, D., Schwartz, B.: Butyrate down-regulates
CD44 transcription and liver colonisation in a highly metastatic human colon car-
cinoma cell line. Br. J. Cancer 87 (2002) 1314-1320

Levine, A.: p5b3, the cellular gatekeeper for growth and division. Cell 88 (1997)
323-331

31

32

Context-Aware Semantic Association Ranking!

Boanerges Aleman-Meza, Chris Halaschek, 1. Budak Arpinar, and Amit Sheth

Large Scale Distributed Information Systems (LSDIS) Lab
Computer Science Department, University of Georgia, Athens, GA 30602-7404
{boanerg, ch, budak, anmit}@s. uga.edu

Abstract. Discovering complex and meaningful relationships, which we call
Semantic Associations, is an important challenge. Just as ranking of documents
is a critical component of today’s search engines, ranking of relationships will
be essential in tomorrow’s semantic search engines that would support discov-
ery and mining of the Semantic Web. Building upon our recent work on speci-
fying types of Semantic Associations in RDF graphs, which are possible to cre-
ate through semantic metadata extraction and annotation, we discuss a frame-
work where ranking techniques can be used to identify more interesting and
more relevant Semantic Associations. Our techniques utilize alternative ways
of specifying the context using ontology. This enables capturing users’ interests
more precisely and better quality results in relevance ranking.

1 Introduction

The focus of contemporary data and information retrieval systems has been to pro-
vide efficient support for the querying and retrieval of data. Search engines have
made good progress in the ability to locate one of the relevant pieces of information
from among huge information on the Web. There has also been noteworthy progress
in metadata extraction, which involves recognition of entities such as names of per-
sons, locations, and in some cases, domain specific attributes of entities. Semantic
metadata are metadata elements that describe in context, domain specific information
offering additional insight about a document or other content items. For example,
relevant semantic metadata relating to a content item about a terrorist organization
could be countries the organization is active in, known terrorist activities, key organ-
izational members, number of members on watch lists, etc. The progress in informa-
tion retrieval or search does not extend to support effective decision-making and
knowledge discovery.

Due to the increasing move from data to knowledge, and the increasing popular-
ity of the vision of the Semantic Web [3], there is significant interest and ongoing
work, in automatically extracting and representing the metadata as semantic annota-
tions to documents and services on the Web [18,8,7]. Several communities such as
the Gene Ontology Consortium, Federal Aviation Administration (Aviation Ontol-

! This work is funded by NSF-ITR-IDM Award # 0219649 titled “Semantic Association Identification and
Knowledge Discovery for National Security Applications.”

33

http://lsdis.cs.uga.edu/~aleman/
http://lsdis.cs.uga.edu/~ch/
http://www.cs.uga.edu/~budak/
http://lsdis.cs.uga.edu/~amit/
http://lsdis.cs.uga.edu/

ogy), Molecular Biology Ontology Working Group, Stanford University’s Knowl-
edge Systems Lab (Enterprise Ontology), are also coming together, to effectively
conceptualize the domain knowledge, and enable standards for exchanging, managing
and integrating data more efficiently. Research in the Semantic Web has also
spawned several commercially viable products through companies such as Semagix
[17,14] and Ontoprise [15] to name a few.

Given these developments, the stage is now set for the next generation of tech-
nologies, which will facilitate getting actionable knowledge and information from
massive data sources thereby assisting in information analysis. Many users try to
analyze information by either browsing the information space, or using a search en-
gine. Search engine based systems only locate documents based on keywords or key
phrases. These approaches are not very representative of what the user actually wants.
Therefore, most of the retrieved documents are either irrelevant, or contain the infor-
mation buried deep within other data. The onus is then on the user, who must decide,
which of the retrieved documents are relevant, and then use their mental model, of the
information they are looking for, in order to obtain the relevant information.

The main goal of this work is to ease the process of analyzing across different
sources of data and enable users to uncover previously unknown and potentially in-
teresting relations (or associations) [2,19]. In the quest for finding associations, it is
also possible to find too many of them between the entities. Therefore, it is also im-
portant to locate interesting and meaningful relations and to rank them before present-
ing to the user.

1.1 Semantic Associations

The associations lend meaning to information, making it understandable and action-
able, and provide new and possibly unexpected insights. When we consider data on
the Web, different entities can be related in multiple ways that cannot be pre-defined.
For example, a “professor” can be related to a “university”, “students”, “courses”,
and “publications”; but s/he can also be related to other entities by different relations
like hobbies, religion, politics, etc. In the semantic Web vision, the Resource Descrip-
tion Framework (RDF) data model [11] provides a framework to capture the meaning
of an entity (or resource) by specifying how it relates to other entities (or classes of
resources). Each of these relationships between entities is what we call a “semantic
association” and users can formulate queries to find the semantic association(s). For
example, semantic association queries in flight security domain may include the fol-
lowing:
1. Is the passenger known to be associated with an organization on the watch
list?
2. Does the passenger work for an organization that is known to sponsor an or-
ganization on a watch-list?
3. Is there a connection between the passenger and one or more passengers on
the same flight or different flights?
Most of useful semantic associations involve some intermediate entities and associa-
tions. Relationships that span several entities may be very important in domains such

34

http://www.semagix.com/

as national security, because this may enable analysts to see the connections between
disparate people, places and events.

Semantic associations are based on intuitive notions such as connectivity and se-
mantic similarity. In [2], we have presented a formalization of semantic associations
over metadata represented in RDF. Concepts are linked together by properties de-
noted by arcs and labeled with the property name. Different types of semantic asso-
ciations in an RDF graph are formally defined in the following:

Definition 1 (Semantic Connectivity): Two entities e; and e, are semantically con-
nected if there exists a sequence e, Py, €, Py, €3, ... €n.1, Pu1, €, in an RDF graph
where e;, 1 <i<n, are entities and P;, 1 <j <n, are properties.

Definition 2 (Semantic Similarity): Two entities e; and f; are semantically similar if
there exist two semantic paths e, Py, €5, Py, €3, ... ey, Poy, €, and £, Qp, £, Qo f3,

.y Tu1, Qu1, fo semantically connecting e; with e, and f; with f,, respectively, and
that for every pair of properties P; and Q;, 1 <i <n, either of the following conditions
holds: P; = Q; or P; < Q; or Q; < P; (< means rdf:subPropertyOf). We say that the
two paths originating at e; and fj, respectively, are semantically similar.

Definition 3 (Semantic Association): Two entities e, and e, are Semantically Associ-
ated if e, and e, are semantically connected or semantically similar.

We use the following operators for expressing queries about semantic associations.

Definition 4 (p-Query) A p-Query, expressed as p(x, y), where x and y are entities,
results in the set of all semantic paths that connect x and y.

Definition 5 (o-Query) A o-Query, expressed as o(x, y), where x and y are entities,
results in the set of all pairs of semantically similar paths originating at x and y.

We are currently working on a ranking technique for similarity associations, which is
not discussed in this paper. Furthermore, it is conceptually different than ranking
semantic connections because it involves ranking the set of all pairs of semantically
similar paths originating at entities x and y. Thus semantic associations and semantic
association queries are used to refer to only semantic connectivity and p-Queries
respectively in the rest of the paper.

1.2 Ranking Semantic Relations

A typical semantic query can result in many semantic paths semantically linking the
entities of interest. Because of the expected high number of paths, it is likely that
many of them would be regarded as irrelevant with respect to the user’s domain of
interest. Thus, the semantic associations need to be filtered according to their per-
ceived relevance. Also, a customizable criterion needs to be imposed upon the paths
representing semantic associations to focus only on relevant associations. Addition-
ally, the user should be presented with a ranked list of resulting paths to enable a
more efficient analysis. The issues of filtering and ranking raise some interesting and
challenging scientific problems.

35

To determine the relevance of semantic associations it is necessary to capture the
context within which they are going to be interpreted and used (or the domains of the
user interest). For example, consider a sub-graph of an RDF graph representing two
soccer players who belong to the same team and who also started a new restaurant
together. If the user is just interested in the sports domain the semantic associations
involving restaurant related information can be regarded as irrelevant (or ranked
lower). This can be accomplished by enabling a user to browse the ontology and
mark a region (sub-graph) of nodes and/or properties of interest. If the discovery
process finds some associations passing through these regions then they are consid-
ered relevant, while other associations are ranked lower or discarded. More formally,
ontological regions can represent context. In this paper we present a flexible method
for specifying context through an ontology-based context specification language.

Ranking of semantic associations effectively requires more than using the “onto-
logical context” for relevance determination. The ranking process needs to take into
consideration a number of criteria which can distinguish among associations which
are perceived as more and less meaningful, more and less distant, more and less
trusted etc. In this paper, the ranking score assigned to a particular semantic associa-
tion is defined as a function of these parameters. Furthermore different weights can
be given to different parameters according to users’ preferences (e.g., trust could be
given more weight than others). This is a new and different problem than ranking
documents using traditional search engines where documents are usually ranked ac-
cording to the number of (sometimes subject-specific) references to them.

Thus our contributions in this paper are two-folds:

e Capturing users’ interests semantically through an ontology-based context

specification language,

e Using a ranking function incorporating user-defined semantics (e.g., context)

and universal semantics (e.g., associations conveying more information).
The rest of the paper is organized as follows: Section 2 presents related work. Section
3 introduces context specification language and discusses ranking technique. Section
4 concludes the paper.

2 Related Work

Knowledge representation approaches tried to capture relationships based on logics,
or sets theory, etc. Our approach is to consider relations in the semantic Web, those
that are expressed semantically using the RDF model. Then from a set of semantic
associations we try to distinguish the relevant ones quantitatively. Research in the
area of ranking semantic relations includes [12], where the notion of “semantic rank-
ing” is presented to rank queries returned within semantic Web portals. Their tech-
nique reinterprets query results as “query knowledge-bases”, whose similarity to the
original knowledge-base provides the basis for ranking. The actual similarity between
a query result and the original knowledge-base is derived from the number of similar
super classes of the result and the original knowledge-base. In our approach, the rele-
vancy of results usually depends on a context defined by users.

36

Our earlier work [2] introduces using “context”, path length, and property rele-
vance as a basis for ranking. Basically, [2] defines a notion of context which includes
a set of ontologies and a set of relationship name pairs with a value. The value indi-
cates the precedence level, a degree of importance for a particular context. This ap-
proach considers context based on value assignments for different ontologies. In this
work instead, we provide context specification at a level (of classes and properties)
that allows precise definitions of areas of interest for the user.

While the issues of ranking semantic relations are fundamentally different from
those addressed in contemporary information retrieval ranking approaches, it is worth
discussing some of these techniques. [5] presents the page rank algorithm used by
Google. Page rank weights are assigned on the basis of page references, thus more
popular pages have a higher rank. [21] presents Teoma’s technique of subject specific
popularity, in which a page’s rank is based on the number of same-subject pages that
reference it, not just its general popularity. Earlier, Northern Light had introduced the
concept of folders and the documents resulting from keyword search results were
segregated by these folders representing relevant categories. While relevant, these
ranking algorithms lack the consideration of formal semantics (as captured through
ontology representation) and explicitly specified context when assigning ranks, both
of which are needed when ranking semantic associations. Although the current se-
mantic association ranking scheme differs from ranking Web pages through not in-
volving social contributors such as a voting mechanism, it is an interesting research
direction to involve similar techniques for assessing importance and value of seman-
tic associations.

Attempts to model context include [9], which proposed a context representation
mechanism to solve conflicts of semantic and schematic similarities between database
objects. [6] introduced an ontology that captures users’ context and situation by con-
sidering goals, tasks, actions and system’s context in order to observe and model
human activities. The approach is mainly focused to use context to reduce user’s
intervention in the system.

3 Ranking Semantic Associations

In this work, we provide semantic associations which are ranked for a given semantic
association query. Our approach for ranking semantic associations is primarily based
on capturing the interests of a user. Therefore, a context specification is the first step
towards measuring how relevant a semantic association is.

3.1 Context Specification

A context specification captures the users’ interest in order to provide her with the
relevant knowledge within numerous indirect relationships between the entities. We
consider data in an RDF model with an associated RDF Schema [4] that describes the
relationships between entities. Since the types of the entities are described in the RDF
Schema, we can use the associated class and relationship types to restrict our attention

37

to the entities and relations of interest. Thus, by defining regions (or sub-graphs) of
the RDF Schema (RDFS) we are capturing the areas of interest of the user. Particu-
larly important for us is the ability to define that the path of interest (semantic asso-
ciation) should include properties and/or classes of interest for the user. A region of
interest is a subset of classes (entities) and properties of a schema.

The detail to which a region of interest can be specified may vary for different ap-
plications. We have considered the following cases: (i) Class level: paths that include
instances of that class are relevant, and (if) Property level: paths including the speci-
fied properties are relevant.

Within the Class level, we may also restrict or allow subclasses to be considered
relevant as well as the classes higher in the class hierarchy. For example, an “Organi-
zation” class may be considered relevant together with subclasses “PoliticalOrgani-
zation”, “FinancialOrganization” and “TerroristOrganization”, but a class “Account”
that is parent of the class “CorporateAccount” may not be of importance.

At a Property level, we can specify restrictions similar to those of the Class level.
An interesting and powerful context restriction that can be specified in properties is
indication of which classes the property can be applied to (“domain” in RDFS) as
well as which classes a property points to (“range” in RDFS). An example is a prop-
erty “involvedIn” with a domain “Organization” and range “Event” (that is, Organi-
zation = involvedIn - Event). Our context specification allows restriction of the
type of classes for domain and/or range. For example, it is possible to indicate that the
property “involvedIn” is relevant when the entity that it is applied to is of class “Ter-
roristOrganization” (a subclass of “Organization”).

We specify in a flexible yet detailed manner which Classes and Properties are rele-
vant using XML. The following is an example of specifying Classes with restric-
tions:

<region id="Ri" weight=".65">
<classLevel name="TerroristAct" includesubclasses="all"/>
<classLevel name="Terroristorg" includeSubclasses="no"/>

<propertyLevel name="involvedIn" domainRestrictions="Terroristorg"
rangeRestrictions="TerroristAct, Kidnapping, SuicideAttack” />

</region>

A region has a weight defining its relative importance. The particular XML example
shown above captures the area of interest that is used as region A in Fig. 5 in Section
3.2.2. Note that a user can define several ontological regions with different weights to
specify the association types s/he is interested in.

3.2 Weight Assignments
Semantic associations represented as paths connecting two entities can span across

multiple domains (or regions) and involve any number of entities and properties. Our
ranking approach defines a path rank as a function of various intermediate weights.

38

As a path is traversed it will have many different intermediate weights which ulti-
mately contribute to its overall rank. We classify these weights into two categories,
Universal and User-Defined.

3.2.1 Universal Weights

Certain weights will influence a path rank regardless of the query or context of inter-
est. We call them Universal Weights. The following subsections identify and define
Universal Weights that contribute to the overall path rank.

Subsumption Weight. When considering entities in ontology, those that are lower in
the hierarchy can be considered to be more specialized instances of those further up
in the hierarchy [16]. Thus, lower entities have more specific meaning. Fig. 1 depicts
a class, “Organization”, as well as various subclasses of it. In the figure, “Organiza-
tion” is the highest class in the hierarchy, and thus is the most general. It is clear that
a “Political Organization” is a more defined “Organization”.

Similarly, a “Democratic Political Organi-

zation” conveys more meaning than both an
“Organization” and a “Political Organiza-

/’7 S~ o tion”. Hence, it is very apparent that as the

- hi hierarchy is traversed from the top down,
subclasses become more specialized than
rganization their super—claSSeS. The concept of class

! specialization in a path is captured by a
Universal Weight that we call a Subsump-
tion Weight. The intuition is assigning more
weights to more “specific” semantic asso-
ciations because they convey more meaning
then “general” associations.

Democratic
Political
Organization

Fig. 1. Class Hierarchy Example

We will now provide some brief definitions used to define the overall Subsumption
Weight of a path. First, we define a component, ¢, within a path P to be any entity or
property contained in P. Thus, ¢ = {entity}|{property}.

Next we define a component weight of the i” component c;, in a path P such that

O

Ci

Component Weight ; = —- .

]
where H _ is the position of the i" component in its hierarchy H (the class at the top

has value 1) and |H | is the total height of the classes/properties hierarchy. Hence,
Component Weight; > (0,1] . For example, given Fig. 1 above, the component weight
of the classes Democratic Political Organization, c;, and Political Organization, c,,
would be

39

H, 3 H, 2 (2)
P =—=landc;- —= =— =06.

IE |H

C3=

We can know define the overall Subsumption Weight of a path P such that

1l 3
SP = —X H Ci .
el

where |c| is the number of components in P (excluding the start and end entities be-
cause they will never change in a result set) and ¢; is the component weight of the i"
component in the path. Thus the Subsumption Weight of a path P, Sp, is the product of
all the component weights within P, normalized by the number of components in the
path (to avoid bias in path length). To illustrate this, we use the ontology that has
been developed for the national security domain in our lab (see Fig. 2).

mallglous

Notation
— — —-subClassOf — —

b = = =gilzen0f- — —
friendOf

canSpeak

Termorist
Organization

Video _
BroadCast
BroadCast
Audio
BroadCast

PhoneCallPerso™ — — — 17 7 7
ToPerson !

Fig. 2. Sample Ontology

Consider the following paths between entities e; and es depicted in Fig. 3. First, one
can see that all three paths are somewhat similar. The middle path seems to be a bit
more specific that the top path, in that the person is member of a “Terrorist Organiza-
tion,” not just any “Organization,” that is “involvedIn” a “Suicide Attack”. When

40

inspecting the bottom path we see that this person is actually a “/eaderOf’ some “Ter-
rorist Organization” that was “involvedIn” the same “Suicide Attack”. Thus we as-
sume that the third path conveys more meaning than the first two. When ranking
these three paths with respect to their total meaning conveyed, one would expect to
see that last path ranked higher than the others (in absence of additional user defined
context/weights).

e2:Organization

e3:Terrorist
Organization

e4:Terrorist
Organization

Fig. 3. Subsumption Weight Example

memberOf involvedIn

memberOf involvedin

el:Person

e5:Suicide
Attack

involvedin

Now we will determine the Subsumption Weight, S;, of the first path in Fig. 3, e; >
e; 2 es. The corresponding Subsumption Weight for this path would be given by

1 1 1 1
S, = =X (=x—=x-) =.083.
3 2 2 1
Similarly, the middle path e, = e; > es has a Subsumption Weight of .167 and a
higher value of .334 for the path e; 2 e, 2 es.

Hence as desired previously, with respect to only the meaning conveyed in the
path, the Subsumption Weight will assign higher weights to paths with a more defined
meaning. Thus, quality and completeness of the ontology become important to avoid
biased ranking ([16] addresses issues on explicitness and formalization of ontolo-
gies). Note that we are considering specificity of relations besides entities. This is
why the third semantic association is ranked higher than the second one. Furthermore,
statistical properties of ontology (e.g., connectivity of certain nodes, etc.) can con-
tribute to Universal Weight yet discussion of those metrics is out of scope of this
paper.

“4)

3.2.2 User-Defined Weights

In contrast to Universal Path Weights, some path weights will be query (or context)
specific. These will be referred to as User-Defined Weights. The following subsec-
tions identify and define User-Defined Weights that contribute to the overall path
rank.

41

Path Length Weight. In some queries, a user may be interested in the most direct
paths (i.e., the shortest path). This may infer a stronger relationship between two
entities. Yet in other cases a user may wish to find possibly hidden, indirect, or dis-
crete paths (i.e., longer paths). The latter may be more significant in domains where
there may be deliberate attempts to hide relationships; for example, potential terrorist
cells remain distant and avoid direct contact with one another in order to defer possi-
ble detection [10] or money laundering [1] involves deliberate innocuous looking
transactions. Hence, the user should determine which Path Length influence, if any,
should be used (largely domain dependent).
We will now define the Path Length Weight, L, of a path P, where Lp = [0, 1]

If a user wants to favor shorter paths, (5a) is used, where |c| is the number of compo-
nents in the path P (excluding the first and last nodes). In contrast, if a user wants to
favor longer paths (5b) is used.

1 1 ®)

Lp=——1(a); Lp=1- — (b).

lc] el

friendOf

friendOf @ friendOf,
e;:Person / 3 e4:Organization
O memberOf ” @

Fig. 4. Path Length Examples

e4:Person memberOf

To demonstrate the Path Length Weight, consider Fig. 4. This figure depicts two
possible paths between a person and an organization. Given this example, suppose a
user is interested in more direct path between entities. In this case, the longer of the
two paths (call it P;) should be ranked lower than the shorter one (P,), so (5a) should
be used.

Using (5a), the Path Length Weight of the two paths would be

6
LPI=—,WhereasLP2=l. (©)
1
Thus the shorter of the two paths has a higher rank value as initially expected. If a
user were alternatively interested in longer paths, (5b) would be used instead. In this
case

7
LPI=1—é=.889,WhereasLP2=1—%=0. @)

Thus, P, has a higher Path Length Weight than P,, again as desired.

42

Context Weight. As discussed in Section 3.1, it is possible to capture a user’s inter-
est through a Context Specification. Thus, using the context specified, it is possible to
rank a path according to its relevance with a user’s domain of interest.

With the Context Specification proposed in Section 3.1, a user can assign a weight
to particular regions of ontology. When considering how to use these weights many
issues arise. For example, paths can pass through numerous regions of interest. Large
and/or small portions of paths can pass through these regions as well. Another con-
sideration is whether all of the nodes in a path actually lie within a specified region.
While we could omit paths that contain some nodes outside of all regions, we have
decided to rank them lower because they are still considered relevant since they pass
through some region. Suppose a user specifies the following region 4 containing the
class “TerroristAct” and its subclasses and region B containing the class “Financia-
lOrganization” and its subclasses. The resulting regions, 4 and B, are within the ter-
rorist and financial domains respectively. Fig. 5 illustrates various paths which pass
through these regions.

locatedIn

eg:Location

memberQT

’
1
N involvedIn
N
S

Fig. 5. Context Related Paths

The topmost path (call it P;) passes through regions B and A4, the middle path (P5)
passes through region B, and the third path (P;) at the bottom passes through region
A. Next, let the (user-defined) weight associated with a region x be represented as ..
Also assume that r, = .75 and r3 = .50 .

The weight assignment illustrates the user is more interested in terrorism domain
but also wants to consider financial associations, albeit with lesser priority. If we take
into consideration the components of a path, excluding its start and end entities, the
expected ranking of these three paths would be P;, P;, P,. Path P; would have the
highest rank because all of its components (entities and properties) are included in
some context, which happens to be the context with the highest weight. P; would be
ranked next because it has a component in B, but (unlike P,) also has a component in
A. Given this background we will define the Context Weight of a path. First, let the "
region be represented by R;. Thus, we define the Context Weight of a given path P,
Cp, such that

43

#regionsPisIn (8)
G S x(TeeRx (- 2R

| c| i=1 | ¢

where 7; is the user defined weight of the region R;, ¢ is a component in the path P
(excluding the start and end entities), and |c| is number of components in the path
(again excluding the start and end entities). That is, for each context that P passes
through, sum the total number of components in P that are in the region R; and multi-
ply it by the weight attributed to that region, r;. In order to reward paths in which all
components are included in some region, the total number of components not in any
region is divided by the total number of components, which is then subtracted from 1.
This is then multiplied by the previous summation. Lastly, this total is normalized by
the total number of components in the path. Note that a property component is con-
sidered to be in some region if it is entirely included in that region or one of the enti-
ties it is involved with (at either end) is in that region. If the two entities in which
some property is involved are contained in two separate regions, the higher of the two
region weights will be the region weight for that property. Also note that due to the
subclass relationship of entities, properties which do not directly appear in a region
may actually be included in some situations. To illustrate this, we will assign a Con-
text Weight to the three paths presented Fig. 5.

P; passes through both regions 4 and B, which have a weight of .75 and .50 re-
spectively. In both of these regions, three components are involved. Thus the initial
summation is (0.75 x 3) + (0.5 x 3) = 3.75. There is one component (Organization) in
P; which is not included in a region, so we have

9
3.75><(1—%)=3.21. @

This is normalized by the number of components in P;, hence we have

10
C, =%x3.21=.458. 0

Next consider P,. This path only passes through region B, which has a weight .50. In
this region, three components are involved. Thus the initial summation is (0.50 x 3) =
1.5. There are two components (“friendOf” and “Person”) in P, which are not in-
cluded in a region, so we have

2 (11)
1.5x(1-2)=9 .
5
This is normalized by the number of components in P,, so
1 (12)

Cp=gx9=18.

Lastly, consider P;. This path only passes through region A, which has a weight .75.
In this region, five components are involved. Thus the initial summation is (0.75 x 5)

44

= 3.75. There are no components in P; which are not included in some region, so we
have

13
3.75x(l—%):3.75. 1%

This is normalized by the number of components in P;, so

14
C, =%><3.75=.75 . 4

Hence, as expected initially the ranking is P; (0.75), P; (0.458), and P; (0.18).

Trust Weight. Various relationships (properties) in a path originate from different
sources. Some of these sources may be trusted while others may not (e.g., Reuters
could be regarded as a more trusted source on international news than some of the
other news organizations). Thus, trust values need to be assigned to relationships
depending on the source. The process of automatically assigning trust to a specific
relationship is out of the scope of this paper; instead we assume that users or other
processes previously specified the trust value of relationships. Let the trust weight of

the i property p; of a path be t, . where 7, - [0,1]. We now define the Trust
Weight of an overall path P as
#pecp (15)

=[], -
i=1

where cp are all the property components within the path P. Thus, 7p is the product of
all property weights in the P.

3.3 Ranking Criterion

Section 3.2, defines various path weight influences. We will now define the overall
path rank, using these weights. As mentioned earlier, Universal Weights will always
affect the overall path weight, while the User-Defined Weights will only be used
when specified by the user. Let the Overall Path Weight of a path P denoting a se-
mantic association be a linear function such that

WP:kIXSP+k2XLP+k3XCP+k4XTP. (16)

where k; add up to 1.0 and are intended to allow fine-tuning of the different ranking
criteria (e.g., trust can be given more weight than path length).

45

3.4 Preliminary Results

As a test-bed for querying semantic associations we have implemented a prototype
named PISTA (see Fig. 6). In PISTA (Passenger Identification, Screening, and Threat
Analysis) we have designed an ontology for national security domain (see Fig. 2).
This ontology has names of organizations, countries, people, terrorists, terrorist acts
etc. that are all inter-related to each other with named relationships to reflect real-
world knowledge about the domain (e.g., “terrorist” “belongs to” “terrorist organiza-
tion”).

—— Application i

Query Processar

I |
I |
I |
I |
I |
I |
I |
I |
I |
'l Main-memory ——— !
1| representation Path and : : |
: Intersection | I :
| Discoverer 1 ! |
| ! @ ! |
= |
! ! | E
1 Isomorphic Path c | |
I [|
| Discoverer | : |
I Loader : | :
: Semantic Association : | |
: Identification (SAl) |, | :
I |
I |
I |
I |
I |
I |
I |
| © Ontology Colnllex? |
|] Specification |
I s ™+ mrpe | | 0A = |
| s RDF / i |
I |
o i
! 2 | I !
I = \ \ !
I <] \ \ |
1 c _ 1
I < I
S 1
oSS TTTTToToToooo oo oo oo e
I Metadata/Annotaions |
P S,
T e e T
I Extractors |

Fig. 6. PISTA Architecture

The sources from which metadata were extracted were selected to populate the ontol-
ogy with entities related to terrorism. The metadata is represented in RDF, on which
semantic association queries were performed. For information extraction we have
used Semagix’s suite which includes a set of tools for extraction of entities from
(semi)-structured information sources [17]. This toolkit allows extraction of entities
from Web pages and establishes relationships between them. This extraction is based
on our national security ontology thereby placing an extracted entity in its appropriate

46

place in the hierarchy of classes. Currently, there are over 6,000 entities and more
than 11,000 explicit relations among them.

For querying semantic associations, we have implemented search algorithms,
which use the schema information in conjunction with the RDF data that find seman-
tic associations (Definition 3) that represent the relationships between any two enti-
ties. We represent both the RDF Schema and the RDF data as main memory directed
graphs based on the Jena model [13]. Then, search for semantic similarity recursively
finds similar paths between two entities by relaying on the schema to find similar
entities/relationships (i.e., which belong to same parent class) (see Definition 2). We
also use a graph traversal algorithm (based on breadth-first search), which does not
consider the direction of the edges when searching for semantic connectivity associa-
tions (see Definition 1).

For example, consider following semantic association query pf“Nasir Ali”,
“AlQeada”). In PISTA this query results in 2234 associations. A small subset of
these associations is shown in the table below (not in a particular order).

Nasir Ali 2 friendWith 2 T. Smith 2 memberOf 2 AlQeada

Nasir Ali 2 friendWith - Cabbar Ali 2 visited 2 Afganistan = hosts 2 AlQeada

Nasir Ali 2 friendWith = T. Smith - hasAccount = J. Funds 2 fundsOrganization > AlQeada
Nasir Ali = friendWith > OsamaBinLaden = leaderOf - AlQeada

Nasir Ali 2 hasAccount = J. Funds = fundsOrganization 2 AlQeada

Nasir Ali = associatedWith > A. G. College > hasAccount - J. Funds > fundsOrganization -
AlQeada

Nasir Ali 2 memberOf 2 TRO € memberOf € OsamaBinLaden > leaderOf > AlQeada

Nasir Ali 2 associatedWith & TRO - doesBusinessWith > AlQeada

For illustration, we have a context defined by a region that captures ‘terrorism’ inter-
est with weight of 0.6 (lower region in Fig. 2) and another region capturing ‘finan-
cial’ interest with weight of 0.4 (upper region in Fig. 2). The following table shows
how the relationships are ranked when we apply our ranking formula. The ranking
criteria (constants &; in equation (16)) for this example assign values of 0.6 to context
weight, 0.2 to subsumption weight, 0.1 to path length weight (longer paths favored),
and 0.1 to trust weight (we assumed same trust for all entities/properties in this exam-

ple).

Ranked Results Rank
Nasir Ali memberOf 2 TRO € memberOf € OsamaBinLaden = leaderOf 2 AlQeada | 0.5560
Nasir Ali 2 associatedWith > TRO - doesBusinessWith > AlQeada 0.5488
Nasir Ali 2 has Account = J. Funds = fundsOrganization = AlQeada 0.5123

Nasir Ali > friendWith - T. Smith - has Account = J. Funds - fundsOrganization > | 0.3208
AlQeada
Nasir Ali = associatedWith > A. G. College = has Account 2 J. Funds - fundsOrgani- | 0.2941
zation > AlQeada

Nasir Ali 2 friendWith > OsamaBinLaden = leaderOf > AlQeada 0.2733
Nasir Ali 2 friendWith > T. Smith > memberOf > AlQeada 0.2511
Nasir Ali > friendWith > Cabbar Ali > visited > Afganistan - hosts > AlQeada 0.2344

The top ranked semantic association comes up first because its entities all belong to
the “terrorism” region (with higher relevance than “financial”) and it is one of the

a7

longer associations. The second ranked semantic association includes entities only
within the “terrorism” region as well, but it is a shorter path (longer paths are pre-
ferred in this example). The third association consists only of entities within the “fi-
nancial” region, which we would expect to be ranked lower that the first two because
we have weighted the “terrorism” region higher. The remaining paths contain some
nodes not within any region, thus they are ranked below the previous three associa-
tions as expected. The fourth and fifth semantic associations are ranked as such be-
cause they are both longer than the rest and contain more entities within the two re-
gions of interest. Note that the fourth association is ranked above the fifth because the
“friendWith” relationship is more specific than the “associatedWith” relationship.
When inspecting the last three associations, it is seen that they contain the least num-
ber of entities within a context. Thus, we would expect them to be ranked lower than
the rest (due to the context being weighted so heavily). When we look at the sixth and
seventh ranked associations, we see that the sixth is more specific in that entity
“OsamaBinLaden” is the “leaderOf” “AlQeada”, where the entity “T. Smith” is only
a “memberOf” the same Terrorist Organization. The path ranked lowest contains the
least number of entities in some region of interest, as expected.

4 Conclusions and Future Work

Semantic associations primarily capture information relating two entities. We are
interested in the path that relates two entities by a sequence of interconnected links.
Discovering of such relations (explained in [2]) gives results containing multiple
paths connecting two entities. These paths have different meaning depending on the
type of relation or the type of entities in each of components (either resource or prop-
erty) of the path. The number of semantic associations between entities will grow
much faster than the rate of the growth of a graph representing a knowledgebase and
corresponding ontology. Also, understanding the relevance of each of the semantic
association as a result of a query is arguably harder than determining a document’s
relevance and ranking in a result provided by a typical search engine. Hence deter-
mining a good ranking strategy is crucial.

In this paper, we defined a ranking formula that considers Subsumption Weight
(how much meaning a semantic association conveys depending on the places of its
components in the ontology), Path Length Weight (that allows preference of either
immediate or distant relationships), Context Weight (how relevant is the path to the
user interest — defined using our context specification framework), and Trust Weight
(determining how reliable a relationship is according to its provenance).

Currently we are working on ranking similarity associations (Definition 2). In fact
this involves discovering all semantic connections between two entities (Definition
1), and then measuring if and how these associations can be broken into semantically
symmetric associations (e.g., two terrorist attacks may be similar because they might
be symmetrically connected to same methods). A formal query language for semantic
associations is currently under development.

In order to assess the effectiveness of the ranking scheme outlined in this paper,
standard ranking metrics such as precision and recall can be employed. However, we

48

think metrics for context-aware ranking should be different than the traditional met-
rics only using precision and recall. Because we rank the results considering a context
specified by the user, and the evaluation criterion would be very subjective according
to user’s interests. Therefore, we believe a user-oriented assessment criterion is
needed.

The future work also includes improving the semantic association discovery algo-
rithms using the ranking scheme we have described in this paper for better scalability
in very large data sets. For example, some partial paths can be pruned on the fly if
their (partial) rank value drops under a predefined threshold.

Acknowledgements: We thank Semagix, Inc. for providing its Freedom product,
which is based on the SCORE technology and related research out at the LSDIS Lab
[20]. PISTA application has benefit from Semagix Inc.'s application in this area [14].
Brainstorming and discussions with members of our research project team, specifi-
cally Krys Kochut, John Miller, Kemafor Anyanwu, and Cartic Ramakrishnan, have
enriched this work.

References

[1] Anti Money Laundering, Application White Paper, Semagix, Inc.
http://www.semagix.com/pdf/anti money_laundering.pdf

[2] K. Anyanwu and A. Sheth, “r-Queries: Enabling Querying for Semantic Asso-
ciations on the Semantic Web”, The Twelfth International World Wide Web
Con-ference, Budapest, Hungary (2003)

[3] T. Berners-Lee, J. Hendler, and O.Lassila, “The Semantic Web: A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities”, Scientific American, May 2001

[4] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation. March 2000

[5] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search
Engine”, Proc. 7th International World Wide Web Conference (1998)

[6] J. L. Crowley, J. Coutaz, G. Rey and P. Reignier, "Perceptual Components for
Context Aware Computing", UBICOMP 2002, International Conference on
Ubiquitous Computing, Goteborg, Sweden, September 2002

[7] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S.
Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien, SemTag and Seeker:
Bootstrapping the semantic Web via automated semantic annotation, The
Twelfth International World Wide Web Conference Budapest, Hungary (2003)

[8] B. Hammond, A. Sheth, and K. Kochut, “Semantic Enhancement Engine: A
Modular Document Enhancement Platform for Semantic Applications over Het-
erogeneous Content”, in Real World Semantic Web Applications, V. Kashyap
and L. Shklar, Eds., IOS Press, pp. 29-49, December 2002

[9] V. Kashyap, A. Sheth. Semantic and schematic similarities between database
objects: a context-based approach. VLDB Journal (1996) 5: 276-304.

49

http://www.semagix.com/
http://lsdis.cs.uga.edu/proj/sai/
http://www.semagix.com/pdf/anti_money_laundering.pdf
http://lsdis.cs.uga.edu/lib/download/AS03-WWW.pdf
http://lsdis.cs.uga.edu/lib/download/AS03-WWW.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/HSK02-SEE.pdf
http://lsdis.cs.uga.edu/lib/download/KS95b.pdf
http://lsdis.cs.uga.edu/lib/download/KS95b.pdf

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

(21]

V. Krebs, “Mapping Networks of Terrorist Cells”. Connections, 24(3): 43-52.
(2002).

O. Lassila and R. R. Swick: "Resource Description Framework (RDF) Model
and Syntax Specification", W3C Recommendation, World Wide Web Consor-
tium, Cambridge (MA), February 1999

A. Maedche, S. Staab, N. Stojanovic, R. Studer, and Y. Sure. SE-mantic PortAL
— The SEAL approach. to appear: In Creating the Semantic Web. D. Fensel, J.
Hendler, H. Lieberman, W. Wahlster (eds.) MIT Press, MA, Cambridge (2001)
B. McBride “Jena: Implementing the RDF Model and Syntax Specification”, in:
Steffen Staab et al (eds.): “Proceedings of the Second International Workshop
on the Semantic Web - SemWeb2001”, May 2001.

National Security and Intelligence, A Semagix White Paper, 2003.
http://www.semagix.com/pdf/national_security.pdf

Ontoprise® GmbH, http://www.ontoprise.com

M. Rodriguez, and M. Egenhofer, “Determining Semantic Similarity among En-
tity Classes from Different Ontologies”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 15, No. 2, March/April 2003.

Semagix. http://www.semagix.com.

U. Shah, T. Finin, A. Joshi, R. S. Cost, and J. Mayfield, “Information Retrieval
on the Semantic Web”, 10th International Conference on Information and
Knowledge Management, November 2002.

A. Sheth, I. B. Arpinar, and V. Kashyap, “Relationships at the Heart of Seman-
tic Web: Modeling, Discovering, and Exploiting Complex Semantic Relation-
ships.” Enhanceing the Power of the Internet Studies in Fuzziness and Soft
Computing, M. Nikravesh, B. Azvin, R. Yager and L. Zadeh, Springer-Verlag,
2003 (in print).

A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, Y. Warke, Semantic
Content Management for Enterprises and the Web, IEEE Internet Computing,
July/August 2002, pp. 80-87.

Teoma: http://sp.teoma.com/docs/teoma/about/searchwithauthority.html

50

http://www.semagix.com/pdf/national_security.pdf
http://www.ontoprise.com
http://www.semagix.com
http://sp.teoma.com/docs/teoma/about/searchwithauthority.html
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SAK02-TM.pdf
http://lsdis.cs.uga.edu/lib/download/SCORE-IC-ToAppear.pdf
http://lsdis.cs.uga.edu/lib/download/SCORE-IC-ToAppear.pdf

I know what you mean: semantic issues in
Internet-scale publish/subscribe systems*

Toana Burcea, Milenko Petrovic, and Hans-Arno Jacobsen

Department of Electrical and Computer Engineering
Department of Computer Science
University of Toronto, Canada
{ioana,petrovi, jacobsen}@eecg.toronto.edu

Abstract. In recent years, the amount of information on the Internet
has increased exponentially developing great interest in selective informa-
tion dissemination systems. The publish/subscribe paradigm is particu-
larly suited for designing systems for routing information and requests
according to their content throughout wide-area network of brokers. Cur-
rent publish/subscribe systems use limited syntax content-based routing.
Since publishers and subscribers are anonymous and decoupled in time,
space and location, often over wide-area network boundaries, they do not
necessarily speak the same language of use the same data and language
format. Consequently, adding semantics to current publish/subscribe sys-
tems is important. In this paper we identify and examine the issues in
developing semantic-aware content-based routing for publish/subscribe
broker networks.

1 Introduction

The increase in the amount of data on the Internet has led to the development
of a new generation of applications based on selective information dissemination
where data is distributed only to interested clients. Such applications require a
new middleware architecture that can efficiently match user interests with avail-
able information. Middleware that can satisfy this requirement include event-
based architectures such as publish/subscribe systems.

In publish/subscribe systems (hereafter referred to as pub/sub systems),
clients are autonomous components that exchange information by publishing
events and by subscribing to events' they are interested in. In these systems,
publishers produce information, while subscribers consume it. A component usu-
ally generates a message when it wants the external world to know that a certain
event has occurred. All components that have previously expressed their interest
in receiving such events will be notified about it. The central component of this
architecture is the event dispatcher (also known as event broker). This compo-
nent records all subscriptions in the system. When a certain event is published,

* First International Workshop on Semantic Web and Databases, Berlin 2003
! We use the terms event and publication interchangeable.

51

the event dispatcher matches it against all subscriptions in the system. When the
incoming event verifies a subscription, the event dispatcher sends a notification
to the corresponding subscriber.

The earliest pub/sub systems were topic-based. In these systems, each mes-
sage (event) belongs to a certain topic. Thus, subscribers express their interest
in a particular subject and they receive all the events published within that par-
ticular subject. The most significant restriction of these systems is the limited
selectivity of subscriptions. The latest systems are called content-based systems.
In these systems, the subscriptions can contain complex queries on event content.

Pub/sub systems try to solve the problem of selective information dissemi-
nation. Recently, there has been a lot of research on solving the problem of effi-
ciently matching events against subscriptions. The proposed solutions are either
centralized, where a single broker stores all subscriptions and event matching
is done locally [1,7,8], or distributed, where many brokers need to collaborate
to match events with subscriptions because not all subscriptions are available
to every broker [3,5]. The latter approach is also referred to as content-based
routing because brokers form a network where events are routed to interested
subscribers based on their content.

The existing solutions are limited because the matching (routing) is based on
the syntax and not on the semantics of the information exchanged. For example,
someone interested in buying a car with a “value” of up to 10,000 will not
receive notifications about “vehicles,” “automobiles” or even “cars” with “price”
of 8,999 because the system has neither understanding of the “price”-“value”
relationship, nor of the “car”-“automobile”-“vehicle” relationship.

In this paper we examine the issues in extending distributed pub/sub sys-
tems to offer semantic capabilities. This is an important aspect to be studied as
components in a pub/sub systems are decoupled, apriori anonymus, often widely
distributed and do not necessary speak the same language.

2 Related work

We are not aware of any previous work addressing the semantic routing problem
in pub/sub systems. Most research on semantic has been done in the area of
heterogeneous database integration [4, 11, 16]. The issues addressed in this area
refer to enabling integration of heterogeneous information systems so that users
can access multiple data sources in an uniform manner. One way of solving this
problem is by using ontologies. Semantic information systems use an ontology to
represent domain-specific knowledge and allow users to use the ontology terms
to construct queries. The query execution engine accesses the ontology either
directly or via an inference engine in order to optimize the query and generate
an execution plan. Use of an ontology to generate an execution plan is central
in determining the right source database and method for retrieving the required
information. This allows uniform access to multiple heterogeneous information
sources. The problem of adding semantic capability to pub/sub systems can be
seen as an “inverse” problem to the heterogeneous database integration problem.

52

In semantic pub/sub systems, subscriptions are analogous to queries and events
correspond to data, so now the problem is how to match data to queries.

Some systems [4, 2] use inference engines to discover semantic relationships
between data from ontology representations. Inference engines usually have spe-
cialized languages for expressing queries different from the language used to
retrieve data, therefore user queries have to be either expressed in, or trans-
lated into the language of the inference engine. The ontology is either global
(i.e., domain independent) or domain-specific (i.e., only a single domain) on-
tology. Domain-specific ontologies are smaller and more commonly found than
global ontologies because they are easier to specify. Additionally, there are sys-
tems that use mapping functions exclusively and do not operate with inference
engines [11, 16]. In these systems, mapping functions serve the role of an inference
engine.

Web service discovery is a process of matching user needs to provided ser-
vices; user needs are analogous to events and provided services to subscriptions
in a pub/sub system. Web service discovery systems [13,17] are functionally
similar to a pub/sub system. During a discovery process, a web service adver-
tises its capabilities in terms of its inputs and outputs. An ontology provides an
association between related inputs or outputs of different web services. A user
looks for a particular web service by searching for appropriate inputs and out-
puts according to the user’s needs. Relevant services are determined by either
exact match of inputs and outputs, or a compatible match according to ontology
relationships.

The main push for using ontologies and semantic information as means of
creating a more sophisticated application collaboration mechanisms has been
from the Semantic Web community?. Recently their focus was on developing
DAML+OIL—a language for expressing, storing and exchange of ontologies and
query languages for DAML+OIL [9]. Our vision of a distributed semantic pub-
lish/subscribe system is similar to that of the semantic web. The issues of dis-
tributing ontological information and bridging of different ontologies are common
to both.

A system for distributed collaboration [6] creates a virtual network of prox-
ies (functionally similar to brokers) using IP multicast connecting both data
producers and consumers (users). Using a common ontology, sources provide
descriptions (metadata similar to subscriptions and events) of multimedia data
they are providing and users provide their capabilities. The metadata is dis-
tributed among proxies to create a semantic multicast graph along which data
is distributed to interested users.

To improve scalability, peer-to-peer systems are looking in the direction of
semantic routing. HyperCuP [15] uses a common ontology to dynamically cluster
peers based on the data they contain. A cluster is identified using a more general
concept then any of its members in the ontology. Ontology concepts map to
cluster addresses so a node can determine appropriate routes for a query by
looking up more general concepts of the query terms in the concept hierarchy.

2 www.semanticweb.org

53

Edutella [12] uses query hubs (functionally similar to brokers) to collect user
metadata and present the peer-to-peer network as a virtual database, which
users query. All queries are routed through a query hub, which forwards queries
to only those nodes that can answer them.

3 Local Matching and Content-based Routing

Due to space limitation, we will not provide an extensive background about
pub/sub systems and content-based routing. Instead, we briefly present the most
important concepts that help the reader understand the ideas conceived in this
paper.

The key point in pub/sub systems is that the information sent into the system
by the publisher does not contain the addresses of the receivers. The information
is forwarded to interested clients based on the content of the message and clients
subscriptions [5]. In a centralized approach, there is only one broker that stores
all subscriptions. Upon receiving an event, the broker uses a matching algorithm
to match the event against the subscriptions in order to decide which subscribers
want to receive notifications about the event [1, 8].

Usually, publications are expressed as lists of attribute-value pairs. The for-
mal representation of a publication is given by the following expression: { (a1,
valy), (ag, vals), ..., (an, valy,)}. Subscriptions are expressed as conjunctions of
simple predicates. In a formal description, a simple predicate is represented as
(attribute_name relational_operator value). A predicate (a rel_op val) is matched
by an attribute-value pair (a, val) if and only if the attribute names are identi-
cal (a = a) and the (a rel_op val) boolean relation is true. A subscription s is
matched by a publication p if and only if all its predicates are matched by some
pair in p. In this case we say that the subscription is matched at syntactic level.

The distributed approach involves a network of brokers that collaborate in or-
der to route the information in the system based on its content [3, 5]. In this case,
practically, each broker is aware of its neighbours interests. Upon receiving an
event, the broker matches it against its neighbours subscriptions and sends the
event only to the interested neighbours. Usually, the routing scheme presents
two distinct aspects: subscription forwarding and event forwarding. Subscrip-
tion forwarding is used to propagate clients interests in the system, while event
forwarding algorithms decide how to disseminate the events to the interested
clients. Two main optimizations were introduced in the literature in order to
increase the performance of these forwarding algorithms: subscription covering
and advertisements [3, 5].

Subscription covering

Given two subscriptions s; and sg, s1 covers so if and only if all the events
that match s, also match s;. In other words, if we denote with Fy and F5 the
set of events that match subscription s; and s,, respectively, then Es C Ej.

If we look at the predicate level, the covering relation can be expressed as fol-
lows: Given two subscriptions s1 = {p11,p2, ..., pnt} and so = {p12,p22, ..., P2},
s, covers sy if and only if Vp,' € sl,ﬂij € s2 (pi! and pjg refer to the same

54

Subscription s1 Subscription sz Covering Relation
(product = “computer”, brand|(product = “computer”, brand|s; covers sa

= “IBM”, price < 1600) = “IBM”, price < 1500)

(product = “computer”, brand|(product = “computer”, price|ss covers si

= “IBM”, price < 1600) < 1600)

(product = “computer”, brand|(product = “computer”, brand|s:1 does not cover sa,
= “IBM”, price < 1600) = “Dell”, price < 1500) so does not cover s;

Table 1. Examples of subscriptions and covering relations

attribute) such that if p;? is matched by some attribute-value pair (a, val), then
pi! is also matched by the same (a,val) attribute-value pair. In other words, s»
has potentially more predicates and the common ones are more restrictive than
those in s7 (i.e., the domain of values that satisfy them is potentially smaller).
Table 1 presents some examples of subscriptions and the corresponding covering
relations.

When a broker B receives a subscription s, it will send it to its neighbours if
and only if it has not previously sent them another subscription s’, that covers
s. Broker B is ensured to receive all events that match s, since it receives all
events that match s’ and the events that match s are included in the set of the
events that match s’.

Advertisements

Advertisements are used by publishers to announce the set of publications
they are going to publish [3]. Advertisements look exactly like subscriptions?,
but have a different role in the system: they are used to build the routing path
from the publishers to the interested subscribers.

An advertisement a determines an event e if and only if all attribute-value
pairs match some predicates in the advertisement. Formally, an advertisement
a={pi1*,p2t,...,pn'} determines an event e, if and only if V(a,v) € e, Ipx € a
such that (a,v) matches py.

An advertisement a intersects a subscription s if and only if the intersection of
the set of the events determined by the advertisement a and the set of the events
that match s is a non-empty set. Formally, at predicate level, an advertisement
a = {ay,as,...,a,} intersects a subscription s = {s1, s2,...,s,} if and only if
Vsi € s,3a; € a and some attribute-value pair (attr,val)* such that (attr,val)
matches both s; and a;. Table 2 presents some examples of subscriptions and
advertisements and the corresponding intersection relations.

When using advertisements, upon receiving a subscription, each broker for-
wards it only to the neighbours that previously sent advertisements that intersect

3 However, there is an important distinction between the predicates in an advertise-
ment and those in a subscription: the predicate in a subscription are considered to
be in a conjunctive form, while those in an advertisement are considered to be in
disjunctive form.

4 51, and a; refer to the same attribute attr

55

Subscription s Advertisement a Intersection Relation
(product = “computer”, brand|(product = “computer”, brand|a intersects s

= “IBM”, price < 1600) = “IBM”, price < 1500)

(product = “computer”, price <|(product = “computer”, brand|a intersects s

1600) = “IBM”, price < 1600)

(product = “computer”, brand|(product = “computer”, brand|a does not intersect s
= “IBM”, price < 1600) = “Dell”, price < 1500)

Table 2. Examples of subscriptions, advertisements and intersection relations

with the subscription. Thus, the subscriptions are forwarded only to the brokers
that have potentially interesting publishers.

4 Towards Semantic-based Routing

In order to add a semantic dimension to distributed pub/sub systems, we have
to understand how to adapt or map the core concepts and functionalities of
existing solutions for content-based routing to the new context that involves
semantic knowledge.

In this section we first introduce some extensions to the existing matching
algorithms in order to make them semantic-aware and then we discuss the im-
plications of using such a solution for semantic-based routing.

4.1 Semantic Matching

In this section we summarize our approach to make the existing centralized
matching algorithms semantic-aware [14]. Our goal is to minimize the changes to
the existing matching algorithms so that we can take advantage of their already
efficient techniques and to make the processing of semantic information fast. We
describe three approaches, each adding more extensive semantic capability to
the matching algorithms.

The first approach allows a matching algorithm to match events and sub-
scriptions that use semantically equivalent attributes or values—synonyms. The
second approach uses additional knowledge about the relationships (beyond syn-
onyms) between attributes and values to allow additional matches. More pre-
cisely, it uses a concept hierarchy that provides two kinds of relations: specializa-
tion and generalization. The third approach uses mapping functions which allow
definitions of arbitrary relationships between the schema and the attribute values
of the event.

The synonym step involves translating all strings with different names but
with the same meaning to a “root” term. For example, “car” and “automobile”
are synonyms for “vehicle” which then becomes the root term for the three
words. This translation is performed for both subscriptions and events and at

56

both attribute and value level. This allows syntactically different events and sub-
scriptions to match. This translation is simple and straightforward. The semantic
capability it adds to the system, although important, may not be sufficient in
some situations, as this approach does not consider the semantic relation between
attributes and values. Moreover, this approach is limited to synonym relations
only.

Taxonomies represent a way of organizing ontological knowledge using spe-
cialization and generalization relationships between different concepts. Intu-
itively, all the terms contained in such a taxonomy can be represented in a
hierarchical structure, where more general terms are higher up in the hierarchy
and are linked to more specialized terms situated lower in the hierarchy. This
structure is called a “concept hierarchy. Usually, a concept hierarchy contains
all terms within a specific domain, which includes both attributes and values.

Considering the observation that the subscriber should receive only informa-
tion that it has precisely requested, we come up with the following two rules for
matching based on a concept hierarchy: (1) the events that contain more spe-
cialized concepts have to match the subscriptions that contain more generalized
terms of the same kind and (2) the events that contain more generalized terms
than those used in the subscriptions do not match the subscriptions.

In order to better understand these rules, we look at the following examples.

Suppose that we have in the system a subscription:
S : (book = StoneAge) AN D(subject = reptiles).
When the event:
E : {(encyclopedia, StoneAge), (subject, crocodiles)}
is entering the system, it should match the subscription S, as the subscriber
asked for more general information that the event provides (in other words, an
encyclopedia is a special kind of book and crocodiles represent a special kind of
reptiles). On the other hand, considering the subscription:
S : (encyclopedia = StoneAge) AN D(subject = reptiles)
and the incoming event
E : {(book, StoneAge), (subject, crocodiles)},

the event E should not match the subscription S, as the book contained in the
event may be a dictionary or a fiction book (as well as an encyclopedia). Note
that, although the subscription S contains in its second predicate a value more
specialized than that in the event, the first predicate of the subscription is not
matched by the event, and therefore, the event does not match the subscription.
The last rule prevents an eventual spamming of the subscribers with useless
information.

Mapping functions can specify relationships that, otherwise, cannot be spec-
ified using a concept hierarchy or a synonym relationship. For example, they can
be used to create a mapping between different ontologies. A mapping function
is a many-to-many function that correlates one or more attribute-value pairs
to one or more semantically related attribute-value pairs. It is possible to have
many mapping functions for each attribute. We assume that mapping functions
are specified by domain experts. In the future, we are going to investigate using

57

a fully-fledged inference engine as a more compact representation of mapping
functions and the performance trade off this entails.

We illustrate the concept of mapping functions with an example. Let us say
that there is a university professor X, who is interested in advising new PhD
graduate students. In particular, he is only interested in students who have had
5 or more years of previous professional experience. Subsequently, he subscribes
to the following:

S : (university = Y)AN D(degree = PhD)AN D(professional experience > 4)
Specifically, the professor X is looking for students applying to university Y in
the PhD stream with 5 or more years of experience. For each new student apply-
ing to the university, a new event, which contains among others the information
about previous work experience, is published into our system. Thus, an event
for a student who had some work experience would look like

E : {(school,Y), (degree, PhD), (graduation date,1990)}.
In addition, the system has access to the following mapping function:

f1: (graduation date) — professional experience.

You can think of function f; implemented as a simple difference between to-
days date and the date of students graduation and returning that difference as
the value of professional experience. For the sake of the example, f; assumes
that the student has been working since graduation. Finally, the result of f; is
appended to event E and the matching algorithm matches F to professor Xs
subscription S.

In addition, we can think about events and subscriptions as points or regions
in a multidimensional space [10] where the distance between points determines
a match between an event and a subscription. This way it is possible that an
event matches a subscription even if some attribute/value pair of the event is
more general than the corresponding predicate in the subscription as long as the
distance between the event and the subscription, as determined by all their con-
stituent attribute-value pairs and predicates, respectively, is within the defined
matching range.

To summarize, the synonym stage translates the events and the subscriptions
to a normalized form using the root terms, while the hierarchy and the mapping
stages add new attribute-value pairs to the events. The new events are matched
using existing matching algorithms against the subscriptions in the system. In
conclusion, we say that e semantically matches s° if and only if the hierarchy
and the mapping stages can produce an event e = e U E® that matches s at
syntactic level.

4.2 Semantic-based Routing

At first glance, it is apparent that existing algorithms for subscription and event
forwarding can be used with a semantic-aware matching algorithm in order to

5 ¢ and s are in their normalized form

S F represents the set of attribute-value pairs that are added by the hierarchy and the
mapping stages. Note that £ can be an empty set.

58

achieve semantic-based routing. However, this approach is not straight forward.
In this section we discuss some open issues that arise from using a semantic-aware
matching algorithm in content-based routing.

Subscription covering

Although it is defined at syntax level, the covering relation, as presented in
Section 3, can be used directly with the semantic matching approach, discussed
above, without any loss of notifications. In other words, if s; covers s; and a
certain broker B will forward only subscription s; to its neighbours, it will still
receive both events that semantically match s; and so. This happens because
the relation between the set of events E; and FEs that semantically match s;
and sg, respectively, is preserved, i.e., Fo C Fy. Truly, if e semantically matches
s9, then the hierarchy and the mapping stages can produce an event e’ that
matches so at syntactic level. If ¢’ matches sy at syntactic level, then, according
to the definition of covering relation, e’ matches s; at syntactic level. Since e’
is produced by adding semantic knowledge to e, this means that e semantically
matches s1, i.e. F5 C FEj. Thus, broker B is ensured to receive all events that
semantically match so, since it receives all events that semantically match s
and the events that semantically match sy are included in the set of the events
that semantically match s;.

Although the syntactic covering relation can be used without loss of notifi-
cations, some redundant subscriptions may be forwarded into the network. This
happens because the set of events £ and E5 that semantically match s; and
so can be in the following relation Fy C FE; without necessarily s; covering
so at syntax level. In other words, although s; does not cover s, at syntactic
level, it may cover it semantically speaking. For example, consider the following
subscriptions: s1 = ((product = ”printed material”)AN D(topic = ” semantic
web”)) and so = ((product = "book”) AN D(topic = 7 semantic web”)). In this
case, all events that semantically match s, will also match s; as a book is a form
of printed material; thus Eo C FEj, but s; does not cover so (at syntax level).
Therefore, the covering relation needs to be extended to encapsulate semantic
knowledge. One simple way of transforming the covering relation to be semantic-
aware is to use the hierarchy approach. In this case, subscription s; will cover
so as the printed material term is a more general term than book.

Advertisements

While the covering relation can be directly used with the semantic matching
algorithms, this is not the case for advertisements. As explained earlier in this
paper, advertisements are used to establish the routing path from the publishers
to the interested subscribers. How the events are routed in the system depends on
the intersection relation between advertisements and subscription. Consider the
following example: advertisement a = ((product = “printedmaterial’), (price >
10)) and subscription s = ((product = “book’), (price < 20)). Advertisement
a does not intersect s at syntactic level because there is no predicate p in a
and not any attribute-value pair (attr,val) such that (attr,val) matches both p
and the following predicate (product = “book’) of subscription s. (v. Section 3.
Thus, the subscription will not be forwarded towards the publisher that emitted

59

to lower-level routers

Top-level routers

to hosts -
to hosts
Fig. 1. Conceptual illustration of a two-level distributed semantic pub/sub network.

Top-level routers have only high level descriptions of ontologies from the lower level
routers.

the advertisement. All publications that will be produced by this publisher will
not be forwarded to the subscriber, although some of them may matched its
subscriptions.

Distributed semantic knowledge

The discussion above about subscription covering and advertisements con-
sidered that each broker contains the same semantic knowledge (i.e., same syn-
onyms, hierarchies and mapping functions). However, the replication of the same
semantic knowledge to all brokers in the system may not be feasible and it may
be detrimental to scalability.

We envision a system where semantic knowledge is distributed between bro-
kers” in the same way that the Internet distributes link status information using
routing protocols. A semantic knowledge database is equivalent to routing tables
in terms of functionality.

The Internet is a hierarchical computer network. At the top of the hierarchy
are relatively few routers containing very general information in routing tables.
The tables do not contain information about every host on the Internet, but
only about a few network destinations. Thus, high level pre-defined ontological
information could be distributed in the same way among the top routers (Fig-
ure 1). It is difficult to envision what this higher level information will be at
this time, but we only need to take a look at Internet directories such as Google
and Yahoo to get an idea of top level semantic knowledge. Both of these direc-
tories provide a user with only a few key entries as starting point for exploring
the wast Internet information store. We see top level brokers exchanging only
covering and advertisement information.

" We use the term broker and router interchangeably.

60

Lower in the Internet hierarchy routers maintain routing tables with desti-
nations to specific hosts. Even though top level brokers use a common ontology,
lower level brokers do not have to. For example, consider two different pairs of
communicating applications: financial and medical. Financial applications are
exchanging stock quotes, while medical are exchanging news about new drugs.
These two application use different ontologies. The ontology information for each
application can be distributed between multiple routers. These low level brokers
will advertise more general descriptions of the ontologies they have to higher
level brokers. Using this information, any new application will be able to locate
the broker with specific ontologies. Any application wishing to integrate medical
and financial information can create a mapping ontology between the financial
and medical ontologies and provide a general description of the mapping on-
tology to higher level broker like in the previous case. We see that high level
concepts can be used to route information between brokers who do not have
access to specific ontologies. We can look at these general terms as very terse
summaries of ontologies.

Our vision of a large scale semantic-based routing raises many questions:

— top-level routing: How to bridge multiple distributed ontologies to en-
able content routing? How can we avoid or reduce duplication of ontological
information among brokers? What is an appropriate high level generaliza-
tion that can bring together different ontologies? How do semantic routing
protocols look like?

— lower-level routing: How to efficiently store ontological information at
routers? Large knowledge databases will probably require secondary storage
beyond what is available at routers. How does this affect routing? If routers
have to use covering at this level how can they dynamically control the
generality of covering to affect network performance?

5 Conclusions

In this paper we underline the limits of matching and content-based routing
at syntactic level in pub/sub systems. We propose a solution for achieving se-
mantic capabilities for local matching and look into the implications of using
such a solution for content-based routing. We also present our vision on next-
generation semantic-based routing. Our intent was to give rise to questions and
ideas in order to improve existing content-based routing approaches and make
them semantic-aware.

References

1. Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53—61, 1999.

61

10.

11.

12.

13.

14.

15.

16.

17.

Y. Arens and C. A. Knoblock. Planning and reformulating queries for semantically-
modeled multidatabase systems. In Proceedings of the 1st International Conference
on Information and Knowledge Management, pages 99—-101, 1992.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332-383, August 2001.

Christine Collet, Michael N. Hubris, and Wei-Min Sheri. Resource integration using
a large knowledge base in CARNOT. [EEE Computer, pages 55-62, December
1991.

G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEFE Transactions
on Software Engineering, 27(9), 2001.

Son Dao, Eddie Shek, Asha Vellaikal, Richard R. Muntz, Lixia Zhang, Miodrag
Potkonjak, and Ouri Wolfson. Semantic multicast: intelligently sharing collabora-
tive sessions. ACM Computing Surveys, 31(2es):Article No. 3, 1999.

Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of XML documents. In Proceedings of ICDE2002, 2002.
Francoise Fabret, Hans-Arno Jacobsen, Francoise Llirbat, Joao Pereira, Ken Ross,
and Dennis Shasha. Filtering algorithms and implementation for very fast pub-
lish /subscribe systems. In Proceedings of SIGMOD 2001, 2001.

Tan Horrocks and Sergio Tessaris. Querying the semantic web: A formal approach.
In Proceedings of the Semantic Web - ISWC 2002: First International Semantic
Web Conference, Sardinia, Italy, 2002.

Hubert Leung and H.-Arno Jacobsen. Subject spaces: A state-persistent model for
publish/subscribe systems. In Computer Science Research Group Technical Report
CRSG-459, University of Toronto, September 2002.

E. Mena, A. Illarramendi, V. Kashyap, and A. P. Sheth. OBSERVER: An ap-
proach for query processing in global information systems based on interoperation
across pre-existing ontologies. International Journal on Distributed and Parallel
Databases, 8(2):223-271, April 2000.

W. Nejdl, B. Wolf, Ch. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr,
and T. Risch. Edutella: A p2p networking infrastructure based on rdf. In 11 th
International World Wide Web Conference (WWWW2002), 2002.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In The Ist International Semantic
Web Conference, 2002.

Milenko Petrovic, Ioana Burcea, and H.-Arno Jacobsen. S-ToPSS - A Semantic
Publish/Subscribe System. In Very Large Databases (VLDB03), Berlin, Germany,
September 2003.

Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. A scalable
and ontology-based p2p infrastructure for semantic web service. In The Second
IEEE International Conference on Peer-to-Peer Computing, 2002.

Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic values to
facilitate interoperability among heterogeneous information systems. ACM Trans-
actions on Database Systems, 19(2):254-290, 1994.

David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillom. A semantic
web approach to service description for matchmaking of services. In International
Semantic Web Working Symposium, 2001.

62

A Context-Oriented RDF Database

Mohammad-Reza Tazari

Computer Graphics Center, Dept. Mobile Information Visualization
Fraunhoferstrafie 5, 64283 Darmstadt, Germany
Saied.Tazari@zgdv.de

Abstract. The importance of contextual knowledge in knowledge management
and organizational memory is shown in topical literature. Even in an initial
visionary scenario for the Semantic Web, one can immediately encounter the
contextual knowledge needed to realize the necessary services. Hence, it is not
inappropriate to claim that context management is an integral service of the
Semantic Web. After discussing the distributed nature of contextual
knowledge, we define some requirements for a context-oriented database
service and then introduce CORD as a service satisfying those requirements
based on the Semantic Web technologies. Selected features of CORD that
provide some contribution to the discussions within the Semantic Web research
community, like embedded resources, query language, and definition of rules,
are discussed in some detail.

1 Introduction

Most of the Semantic Web applications will be context-aware and personalized
services. A superficial look at the visionary scenario for explaining some of the
features of the Semantic Web in [2] shows the correctness of this claim. Already in
the first two sentences of this scenario’, the following contextual knowledge must be
available to realize the service:

— User location (here, Pete's location)

— Setup of the location (to identify devices near Pete and services offered there)

— States of the resources (which of the sound-making devices are “on”, the phone
“ringing”, the phone in “talk” state)

— Characteristics and capabilities of resources (which services can operate precisely
those sound-making devices near Pete that are on and loud)

Although the term context has a common meaning in the Semantic Web community —
see, for example, the definition by Tim Berners-Lee under http://www.w3.0rg/2000/
10/swap/doc/Glossary — we are purposing here a special user-centric view of context.
That is, by context we mean the user context in terms of personal, environmental, and

! “The entertainment system was belting out the Beatles' "We Can Work It Out" when the
phone rang. When Pete answered, his phone turned the sound down by sending a message to
all the other local devices that had a volume control.” [2]

63

http://www.w3.org/2000/ 10/swap/doc/Glossary
http://www.w3.org/2000/ 10/swap/doc/Glossary

2 Mohammad-Reza Tazari

temporal conditions surrounding him or her. This is the situational view to the
context as it is investigated in Mobile Computing and Ubiquitous/Pervasive
Computing, too. The whole imaginary scenario in [2] is full of assumptions about the
existence of such contextual knowledge.

As already stated in [5], knowledge about the user context is highly distributed.
Except for the “current time” that in fact belongs to the user context in diverse forms?,
but has nothing to do with the distribution aspect of the contextual knowledge, most
of the other parts of this knowledge can be classified as follows (see also figure 1):

Community Community
Context Application
Data Data

Community Space

_— f—
Private Private
Context Application

Data Data

Private Space

T

User

e = —

e
Public Public
Context Application
Data Data

Local Space

P e
Public Public
Context Data Application Data|

Public Context data
a ocument

Global Space {(WWW)

Fig. 1. Distribution of contextual knowledge. At any given time, the user finds himself at a
specific location and may be able to use resources there. Nevertheless, he may also be able to
use resources from his private space, community spaces to which he belongs, and public
resources available globally

— Knowledge directly bound to the user and captured in diverse logical units, such as
the user profile?, profiles of user's mobile and accompanying devices, application

2 E.g. the absolute time, hour of the day, am / pm, day of the week, etc.

3 We believe that most parts of the user context may be imparted in form of profiles and define
a profile as the storage unit for a coherent collection of key-value pairs describing a distinct
resource, location, or user. If the described resource exists in an electronic form, then its
profile provides the corresponding metadata; otherwise a profile may simultaneously serve as
the electronic representation of the resource itself.

64

A Context-Oriented RDF Database 3

data from the domain of personal information management (i.e. PIM data, such as
to-dos, appointments, contacts), application-specific user preferences?, etc.

— Knowledge bound to the user's location and captured as the location profile and
profiles of resources available there, where the location profile serves as an
integrating unit for all other info units.

— Knowledge bound to communities (to which the user belongs) and captured as
group-based defaults, profiles of shared resources, and shared application data.

— Public knowledge independent of the user, communities, and locations that will be
made available through the Web, such as profiles of public resources (e.g. services
that can be utilized by all, independent of the locations of the two ends®) and
profiles of classes of resources, which provide default values for a set of concrete
resources.

Obviously, the contextual knowledge includes many shared units, such as the user
profile, the location profile, and the profiles of several resources, of which different
context-aware applications may make use. Hence, a standardized service is needed
for managing profiles and offering shared mechanisms, relieving context-aware
applications from certain common overheads like monitoring the user context and
recognizing interesting situations. We call such a service the context management
service. In [5], we discussed the requirements for a context management service and
n [15], the aspect of modeling user context. Here, we focus on the data management
aspects of this service.

1.1 Requirements for a Context-Oriented Database Service

In the discussion above, we have emphasized three specific points having to do with
data management aspects of the context management service: data distribution,
organizing data in profiles, and support for default values (group-based or class-based
defaults). The first aspect leads us to the requirement that a context-oriented database
service (CODBS) must overcome the problem with the distribution of contextual
knowledge. Secondly, if profiles as a collection of key-value pairs are the storage
units of a CODBS, then it must support arbitrarily structured keys and values®.
Thirdly, support for default values would mean that there must be a mechanism for
profiles of more concrete resources to inherit data from profiles of related, albeit more
abstract, resources. All of the above actually reveal different aspects of data
organization, namely data organization within a profile, between profiles, and
between databases.

To specify further requirements, we must zoom in on the data organization within a
profile. The organization of data within a profile will primarily be reflected in its
keys. That is, a fundamental requirement is the possibility of expressing complex

4 Context-aware and personalized applications may have some personalization scheme that is
specific to them and hence must be managed separately from the user profile that is a shared
unit based on a shared ontology that models user profiles in general.

3 The locality of the resource may eventually play an important role in order for it to be selected
/ referenced / used from among all competing resources.

% This requirement is refined further in the next paragraph.

65

4 Mohammad-Reza Tazari

structures via keys. Another aspect, however, has to do with the values. Values may
be literal, which raises the question about support for data types, or references to other
resources. A key may be associated with a single value or with more than one value.
The latter case leads to the support for sequences, bags, and sets of alternative values.
Values may be valid only for a specific time period’ or independent of time. Last but
not least, they may be conditional/situational, meaning that a key may be associated
with different alternative values for different situations.

Assuming that for each profile type there is a schema defining its structure and
asserting some statements about its semantics, a CODBS must also use schemas in
order to be able to ensure data integrity by accepting data that is in accordance with
the structural and type-related assertions made in the schema. In addition, context-
aware applications will be able to ask for the underlying schemas if they are not able
to interpret some contextual knowledge.

Finally, a CODBS must provide a triggering mechanism for catching database
events, because changes in the state of the contextual knowledge may influence the
situation in which the user finds himself. The transition from one situation to another
is an important event for context-aware applications.

Hence, we can summarize the requirements for a CODBS, as follows:

1. Managing profiles in accordance with their underlying schemas and guaranteeing
data integrity based on the assertions made in the schemas

2. Providing a centralized view of the highly distributed contextual knowledge

3. Providing a triggering mechanism depending on complex situational DB events

4. Support for conditional values

5. Support for defining hierarchies of profiles that share the same schema to
facilitate the automatic inheritance of default values

6. Support for expressing complex structures via keys within profiles

7. Support for literal values with different data types

8. Support for sequences, bags, and sets of alternative values

9. Support for temporary values [13]

10. Support for using references to other resources as values

2 CORD: The Context-Oriented RDF Database

We have developed an RDF database called CORD that is the foundation for our
context management service. The context-manager itself is the wrapper agent that
provides an interface for agent communication [5]. CORD implements most of the
features enumerated as requirements for a CODBS in 1.1. After justifying the basic
approach, we discuss in the following subsections those aspects of our solution that
provide some contribution to the discussions within the Semantic Web research
community.

7 Especially sensory data may be of a temporary nature.

66

A Context-Oriented RDF Database 5

2.1 Choosing the Semantic Web Technology

Obviously, the exchange of contextual knowledge must be based on a knowledge
representation paradigm. On the other hand, profiles are nothing other than
descriptions about distinct resources. These two statements alone, along with the fact
that RDF provides solid concepts for not only describing resources, but also for
modeling them, justify the selection of RDF, RDF schema, and OWL. Besides, the
XML syntax of RDF fit perfectly into our multi-agent system, where XML was the
content language of choice in agent communication messages.

2.2 Why a New Database Service?

Many of the projects dealing with RDF data stores use a relational DBMS (see, for
example, the two surveys in [1] and [10] summarizing some of them). A general-
purpose mapping of the RDF data model onto the relational model, where no
assumptions about the type of resources being described are made, leads to the
definition of few tables with few columns (see, for example, proposed DB schemas at
[11]). Basically, if we consider the RDF data model as a set of triples, a three-column
table will come up with a huge number of rows storing the statements, each with a
subject, a predicate, and an object. Even if we consider the RDF data model as a
directed, labeled graph, the relational database design will come up with similar
results. With such a modeling, answering queries about complex resources may lead
to many self-joins on one big table — depending on the entry point given by the query
— where the consequences for the performance are not known.

Choosing an object-oriented database management system would not change the
above situation, either. The issue is: relational or object-oriented DBMSs may
meaningfully be used where a specific domain with concrete entity types is being
modeled. That is, if you know the types of resources being described in your RDF
data store, then you can provide a conventional database design with a meaningful
database schema. The database schema would then reflect at least parts of what you
state in the RDF/OWL schema for modeling the same resource types. A wrapper
could then provide the knowledge stored in the database in terms of RDF statements
to the world outside.

Due to the fact that the context management solution must be open for managing
profiles of resources having arbitrary types, choosing a relational or object-oriented
DBMS would confront us with the same dilemma as described in the previous
paragraphs. On the other hand, a glance at our requirements, especially the
requirements #3, #4, #5, and #9, shows that an existing database service may hardly
satisfy all of them. Although most of the DBMSs do provide a triggering mechanism,
even the utilization of stored procedures in the domain of relational databases or the
class methods in the domain of object-oriented databases is no solution for the
efficient recognition of interesting situations, that may be defined using complex
conditions®. The main reason is that the situations to be recognized are not definable
all at once, but their definitions will be added and removed dynamically. For the

8 Cp. also the discussion in section 2.5.

67

6 Mohammad-Reza Tazari

traditional database services, this would mean dynamism at the schema level. The
concept of conditional values, discussed in section 2.5, is new and no direct support
could be found in the domain of relational databases for storing them in arbitrary
columns of arbitrary rows of tables. The methods in Object-oriented databases do not
solve the problem, either, because they are defined within classes and are the same for
all instances. The automatic inheritance of default values requires hierarchical
relationship between rows of tables or instances of classes, which is not given, either.
Finally, support for temporary values presupposes a timeline management for each
column of each row or each field of each instance, which is not supported by
traditional DBMSs.

For the purpose of profile management, we tried to provide the OWL schemas for
user profiles, location profiles, terminal profiles, service profiles, and agent profiles
(as a special case for service-offering software components) [15, 16]. Not only the
term “profile management”, but also the complex structure of the above-enumerated
profile types, the requirement for inheriting default values from more abstract profile
instances in more concrete profile instances, and the concrete use cases in our projects
caused us to choose profiles as our storage units. Having to meet the requirements
listed in section 1.1, choosing profiles as the storage unit, having to manage profiles
of arbitrary types, and considering the fact that each instance of the context manager
deals with few instances of complex resources caused us to decide in favor of
developing CORD.

2.3 Profiles and Their XML-based RDF Representation

A profile is a reusable resource that can be identified via a URI. This URI, which
may be given as the value for xm/:base in the XML representation of the profile, has
the following structure:

cord://<host>: <port>/profil es/<profil e-name>

Internally, profiles are implemented as (hashed) trees quite similar to Idap or
Windows™ registry. The main difference with those solutions is the lack of a global
root binding all of the (sub-)trees in one big tree integrating them.

As stated before, profiles are containers of key-value pairs. We call each such pair
a context element, where the key serves both as the URI of the context element and as
the source of its semantics. In the tree representation of profiles, however, there is no
clear-cut distinction between keys and values. In addition to the leaves of the tree that
represent the literal values or URI references, any node in the tree can be seen as a
value associated with its path. Then, the path together with the base URI of the
profile serves as the key. Except for the root of the tree that represents the whole
profile resource (denoted as cor d: // <host >: <port >/ profiles/<profile
- name>#), all other branch nodes represent some embedded resource identified with
a URI of the form cord://<host>:<port>/profiles/<profile-
nane>#<pat h>. Paths are made of NDNames (XML-names’® minus °.")
concatenated by dots (“.”), e.g. a. b.c would be a valid path. Each NDName

9 See http://www.w3.0rg/TR/REC-xmI#NT-Name.

68

A Context-Oriented RDF Database 7

corresponds to a property of the concrete resource addressed thus far. The possibility
of using paths as part of keys meets the requirement for expressing complex structures
via keys within profiles.

An example will further illustrate the usage of paths in keys. Let’s assume that a
schema with the URL ht t p: // www. zgdv. de/ CORDY schemas/ User Profil e
defines, among others, the following concepts:

the classes UserProfile, Personallnfo, and PersonName.

the property personallnfo with domain UserProfile and range Personallnfo.

the property name having Personallnfo as its domain and PersonName as its range.
the properties first, middle, last, and nick having PersonName as their domain and
xsd:string as their range.

Then, the following RDF description represents my profile partially:

Sample 1. Partial RDF representation of a user profile

<?xm version="1.0"?>
<r df : RDF
xm ns="http://ww. zgdv. de/ CORD/ schenmas/ User Prof i | e#"
xm ns: rdf =" http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xm : base="cord://st.zgdv. de: 999/ profil es/ me">
<UserProfile rdf:about="#">
<per sonal I nf 0>
<Per sonal I nf o rdf: about ="#personal | nf 0" >
<name>
<Per sonNane rdf: about ="#per sonal | nf 0. name" >
<first>Mohammuad- Reza</first>
<l ast >Tazari </ | ast >
<ni ck>Sai ed</ ni ck>
</ Per sonNanme>
</ name>
</ Per sonal | nf 0>
</ per sonal | nf o>
</ UserProfil e>
</ r df : RDF>

This results in the tree representation shown in figure 2 and the set of context
elements shown in table 1.

Tablel. Set of context elements (key-value pairs) resulting from Sample 1

Key Value

cord://st.zgdv.de:999/profiles/met# The whole profile resource
cord://st.zgdv.de:999/profiles/met#rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#UserProfile
cord://st.zgdv.de:999/profiles/metfpersonallnfo The embedded resource rooted at ‘personallnfo’

cord://st.zgdv.de:999/profiles/me#personalInfo.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonalInfo
cord://st.zgdv.de:999/profiles/me#personallnfo.name ~ The embedded resource rooted at ‘name’
cord://st.zgdv.de:999/profiles/me#personallnfo.name.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonName
cord://st.zgdv.de:999/profiles/me#personallnfo.name.first Mohammad-Reza
cord://st.zgdv.de:999/profiles/me#personallnfo.name.last ~ Tazari
cord://st.zgdv.de:999/profiles/me#personallnfo.name.nick Saied

69

http://www.w3.org/1999/02/22-rdf-syntax-ns

8 Mohammad-Reza Tazari

Profile: cmege://stzgdv.de:999/profiles/me

rdfitype ersonalInfo

mege://wwwzgdy.de/CORD/schemasUserProfile# UserProfile #personallnfo

name

first

I Mohaml‘nad- Rcza|

|'I'azari| l Saied]

zmege:/fwwwzgdy.de/CORD/schemasUserProfile# PersonName

Fig. 2. Internal tree representation resulting from Sample 1 (leaf nodes have no background
color)

Embedded Resources. The above model leads to some issues that are not handled in
RDF or OWL standards. The most important issue concerns resources embedded in
the profile. Each non-leaf node within the tree representation of a profile actually
represents such an embedded resource as an identifiable resource.

The embedded resources result from either the part-of association — one of the
fundamental concepts in object-oriented modeling — or the theorem of weak entity
classes in database management. In UML, for example, associations having a
diamond on one side indicate that the class on that side represents composite objects
having instances of the class on the other side as their parts. They go even further and
say that if the diamond is darkened, then the instances of the class on the other side
may never exist independently from instances of the class on the side of the diamond
— quite similar to the concept of weak entity classes in database management.

However, there is currently no way to specify part-of associations as such in RDF
schema or OWL. CC/PP [8], as an RDF-based approach for articulation and
exchange of contextual knowledge in profiles, has proposed the concept of
components that can be seen as a solution for this problem. It was not consistent
enough, though. It seems that the understanding of profiles in CC/PP is something
like the “.ini”-files in Windows™; i.e. all attributes must appear in some component
and no attributes within components may have another component as value. None of
these restrictions matched our requirements. This approach ignores the evolution of
such config-files into tree structures like Windows™ registry'®. This is the main
reason why we decided to establish the following conventions to enforce our idea of
profiles:

1076], another research activity on context management, has similar criticisms on CC/PP.

70

A Context-Oriented RDF Database 9

— A schema modeling a profile type always defines a special class named after the
schema itself that serves as the “main class”. All other classes defined in the
schema are either super/sub-classes of the main class, appear in a (nested) part-of
association, or represent some weak entity class. The root of a profile instance
always represents an instance of this “main class” or its super/sub-classes.

— All resources contained in a profile instance other than the root of the profile have
a path as their ID that results from concatenating (via dots) properties binding them
to the root of the profile. Hence, property names may not contain dots.

— Many-valued properties refer to instances of rdf:Alt, rdf:Bag, or rdf:Seq as
embedded resources with an ID built up in the same way as stated in the previous
bullet. This has two implications: 1) the leaf nodes of a profile are always literal
values or URI references to other resources and 2) if the elements of the container
are some other embedded resources, then they have an ID resulting from
appending a ‘.rdf: n’ to the ID of the container, where n is a decimal integer
greater than zero with no leading zeros. This means that the requirement for
supporting “sequences, bags, and sets of alternative values” is combined with the
requirement for “expressing complex structures via keys within profiles”.

— In order to maintain profile boundary, all references to external resources are
stored as URI references.

— All arcs that transform the tree representation into a graph are automatically
redirected to point to a leaf having the equivalent local URI reference as its value.

2.4 The Query Language

CMVariahle

CMProfileProp CMOp er ator

Fig. 3. Concept for CORD queries

Queries submitted to a CORD instance must be RDF descriptions based on the
concept summarized in figure 3. Unlike the existing solutions that try to propose a
general-purpose RDF query language concentrating on the syntax (see, for example,
[7], [9], [12] and [14]), we have concentrated on the application of RDF in describing
profiles and our related concepts like paths. Although we are practically using only
the XML syntax of RDF to submit queries, deriving a compact SQL-like notation
from the same concept is straightforward. In the following subsections, each of the
main parts, from which CORD queries are formed, will be discussed in some detail.

71

10 Mohammad-Reza Tazari

Query References. A query must contain at least one query reference. Each query
reference will be expanded to a set of matched keys (compare table 1) and an RDF
description containing the context elements identified by those keys will be returned
as query result. A query reference is a CORD URI-reference with the following
wildcarding possibilities (most combinations of them are also legal):

— If the <host >: <port > slot is missing, then the CORD instance receiving the
query will consolidate all other known CORD instances in the ascertainment of the
query results.

— If the profile name is missing, then all profiles managed by the CORD instance
will match.

— If the query reference ends with the fragment separator (#), then the whole content
of the profile will match.

— If the <pat h> slot begins with a dot (.), then any context element having the
remainder of the <pat h> slot as the suffix of its own path will match.

— If the <path> slot ends with a dot (.), then the sub-tree rooted at the resource
matching the leading part of the <path> slot will match.

— If the <path> slot contains two subsequent dots (..), then any context element
within the sub-tree rooted at the resource matching the leading part of the <path>
slot and having the remainder of the <path> slot as the suffix of its path will match.

The special case of cord:// <host >: <port>/profil es/, where again the
<host >: <port > slot may be left empty, will cause a query result to contain only a
bag of URI references to the matching profiles without the descriptions of their
contents.

Variables. A query may have a sequence of initialized variables that store literal
values or URI references. A subsequent variable may use a previous variable storing
a URI reference to store a subordinate value (cp. last paragraph in this section about
the usage of variables). This facilitates, among other things, the switching to
referenced profiles and inter-profile joins.

Variables may be of type KeyVariable or ValueVariable. The sub-type influences
the interpretation of the value to be assigned to the variable. In the case of key
variables, it is expected that the value is a URI reference that must be resolved so that
its associated value is assigned to the variable. In the case of value variables,
however, the value given will be assigned to the variable as-is, be it a URI reference
or not.

There are some predefined variables that are set automatically, normally just before
CORD begins to process a new request:

— The current time is stored in variables like currentTime, amPM, dayOfMonth,
dayOfWeek, etc., quite similar to the constant fields defined in java.util.Calendar.

— The certificate of the agent that sent the request is stored in accessor. This is
interesting for the definition of conditional values (see section 2.5), when the
accessor plays a role in the decision about the applying value.

— As stated before, a query reference will be expanded to a set of matched keys.
Each time, after selecting one of the matched keys for further processing, two
variables are set automatically that keep their values until CORD leaves the context

72

A Context-Oriented RDF Database 11

of that matched key. These are currentProfile, which contains the URI reference
of the profile from which the matched context element originates, and
matchedComponent, which contains the URI reference of the lowest embedded
resource matched during the expansion of the query reference into the matched
key.

— Two other special variables are set automatically whenever a context element is
added, updated, or deleted. These variables are only interesting for the processing
of subscriptions (see section 2.5). They are triggerKey, which contains the URI
reference of the changed element, and triggerValue, which contains the new value
associated with the key of the context element, if applicable. The setting of
triggerKey causes the time variables and the currentProfile variable to be set
automatically in the context of processing the DB event.

In general, whether predefined or defined by the requestor, variables can be used to
build up new query or other URI references, can be used in query filters or conditions
of rules (see section 2.5), or wherever values are expected. Variable substitution
occurs whenever a special construct is found in a way similar to macro expansions in
the C programming language. For example, assuming that the standard variable
currentProfile contains a reference to a user profile in a special context, one can use it
in the following construct in place of a direct value:

<cord: Var Ref >
<cord:variable rdf:resource="&cord; currentProfile”/>
<cord: suf fi x>personal | nfo. nane. | ast </ cord: suffi x>
<cord: action rdf:resource="&cord; substituteAndEval "/ >
</ cor d: Var Ref >

If at runtime the variable has the value cord: // st. zgdv. de: 999/ profil es/

me#, then, due to the specified action, the above variable reference is first replaced
and expanded to cord: // st. zgdv. de: 999/ profi | es/ nme#personal I nfo
. hame. | ast which will then be evaluated to the literal value Tazari. Other
possible values for action are substitute and evalAndSubstitute. Another property of
the VarRef class not used in the above example is cord:prefix.

Query Filters. A container of query filters can be used to select only a subset of the
matched keys resulting from the expansion of query references. If the container is of
type rdf:Seq, then an implicit and-connector is assumed between the query filters
given in the sequence; in the case of rdf:Alt, an implicit or-connector is assumed.
Beside query filters, elements of such containers may also be a container of the other
type to switch between connector types!!.

A query filter says which criterion must be satisfied in order to keep a previously
matched context element in the set of those to be returned in the query result by
specifying what must be compared how with which value(s). To specify the how, one
must select an operator from the enumeration defined by CMOperator. Currently, the

' The point with the container type and its relation with the connector type and the possibility
of nesting them to switch from one connector type to another is not shown in figure 3 in
order to keep the model straightforward.

73

12 Mohammad-Reza Tazari

possible values are equal, greater, less, in, including, notEqual, notGreater, notLess,
notln, and excluding.

The criterion must be selected from the enumeration defined by CMProfileProp
and given as the value (in the form of a URI reference) for a property called onProp.
The possible values are basically:

— schema: to select context elements coming from a specific profile type. For
example, to filter context elements coming from user profiles, one may define a
query filter on schema property, choose the equal operator, and give
http://www.zgdv.de/CORD/schemas/UserProfile as a single URI reference for the
value property.

— parents/children: to select context elements from a profile that has the given
profiles as its parents/children.

— begin/end/importance/priority'?: to select context elements whose values are valid
during a certain time period (for temporary context values) or satisfy certain
weighting criteria (not to be discussed further).

— value: to select context elements whose values satisfy the given condition.

— currentProfile/matchedComponent: combined with a suffix for building up a new
query reference, they can be used to filter the matched context elements further.
The resulting query reference forms a sub-query with the possibility to check the
values returned by the sub-query in the same CMQueryFilter and to further filter
them based on the conditions provided by the optional where property.

2.5 Rules

CORD supports two forms of rules that are structured similarly: one for forming
conditional values and the other one for posting subscription requests. These are
discussed in the following subsections.

Conditional Values. Values (especially those given for preferences) can be rule-
based, in the sense that the value depends on some contextual state or situation.
When a rule-based value is queried, first the cases within the rule will be examined
using the current values of referenced context elements. If one of the alternative cases
applies, then the associated value is returned, otherwise rdf:nil. Figure 4 summarizes
the CORD concept for conditional values.

Basically a CORD rule is a “switch-case” construct. Each case has a condition part
and a value part. The cases are considered in the sequence of their specification. As
soon as a case is found whose condition part evaluates to true, the evaluation will
cease and the value associated with that case is used as the result of the evaluation. A
case without any conditions always evaluates to true. The condition part of each case
is a container (of type rdf:Seq or rdf:Alt quite similar to the containers of query filters
— see also footnote 9) of comparisons, where normally values of context elements are
compared with literal values or with values of other context elements.

12 Special properties introduced by CORD and applicable to all nodes within a profile.

74

A Context-Oriented RDF Database 13

Due to some complications in the implementation, conditional values are currently
a special case of literal values; this leads to two side effects: 1) the restriction for
cases to contain only one value (literal or URI-reference) and 2) the delay in parsing
until the conditional value is accessed.

conditions

Fig. 4. Concept for conditional values in CORD

From another perspective, we can say that conditional values equip CORD with
something like “passive inference”. With “passive inference” we mean that on the
one hand CORD does not have its own rules to infer the new state of the contextual
knowledge, but the logic of inferring comes from “producers”/”’providers” of the
contextual knowledge. On the other hand, the inferring process only leads to a
selection between suggested alternatives depending on the current situation (cp. [5]
for our concept of situations as contextual states).

The concept of variables and variable references is already discussed in section 2.4.
However, an interesting aspect of using variable references in comparisons is that the
corresponding variables don’t have to be defined in the variables part of the rule. If
they are defined in the rule, they will usually refer to some shared contextual facts
(facts known to the CORD instance at the time of rule interpretation). But, since such
rules are interpreted at query time, one may define the variables in his or her queries.
This way, the facts to be used in the evaluation of the rule may be the premises of the
requestor.

Last but not least, a special feature resulting from the inheritance of default values
is worth mentioning. Assuming that the profile p; is a parent of the profiles p, and p;
and a conditional value defined in p; is being inherited by both p, and p;, the use of
local URI references in the rule might cause the same rule to return a different value
in the context of p, compared to the value returned in the context of p;, even if the
two evaluations are performed “simultaneously”. An example may illustrate this nice
effect better: Assume that a travel planing agent stores a profile for each travel to be
planned in the user’s personal context-manager letting it inherit from the default
travel profile provided by the context-manager of the company where he works. If a

75

14 Mohammad-Reza Tazari

property transportMeans in the default profile has a conditional value in the following
simplified form

i f #distance.inKmgreater 500
return ny:pl ane

el se i f #nunber O Conpani ons greater 1
return ny:rent ACar

el se
return ny:train

then a query about the transport means for a concrete travel where the user must travel
alone to a city 225 km far from his residence would result in my: t r ai n.

Subscription Requests. Requestors may subscribe for notification or other actions to
be performed by CORD. There are two kinds of subscriptions: simple or conditional.

A simple subscription is formed from a bag of query references and causes CORD
to immediately inform the current context elements whose keys match the given
query references. Additionally, CORD will watch for changes of context elements
and will inform the subscriber about the new value whenever the key of the changed
context element matches one of the given query references. Changes of the value will
occur due to insert, update, and delete requests or due to the expiration of a time-
stamped value (which causes the use of the next alternative value as the current
value). This way, from the time of subscription, the subscriber will always know
about the state of all context elements known to CORD (or made known at any time
in the future) whose keys match the given query references.

The conditional version is based on Event-Condition-Action rules (ECA rules).
The only events supported are again changes of values in the sense of the previous
paragraph; hence, the “event” part of an ECA rule is nothing other than a bag of query
references wildcarding those context elements whose change of states should trigger
the evaluation of the condition-action part. This latter part of an ECA rule is quite
similar to the rules outlined in the previous subsection. That is, there are variables,
and conditions are structured exactly the same way as in the case of conditional
values, i.e. containers of comparisons of context and constant values in a switch-case
construct. Unlike those rules, instead of a value, a sequence of actions can be
specified for each case. Actions are operations that can be done by CORD, which
include:

— Sending the current values of some specified context elements to the subscriber or
other receivers.

— Sending a given literal message to the subscriber or other receivers.

— Inserting new context elements or updating existing ones; this triggers other events
and may lead to indirect notifications.

Usually, the subscribers specify the bag of query references in ECA rules in such a
way that the keys of all context elements that play a role in the condition part would
match those query references. Such rules are quasi “alive”: as soon as a case applies,
it will be recognized. Therefore, they are the cornerstones for situation recognition
for our context management service [5].

76

A Context-Oriented RDF Database 15

2.6 Insert, Update, and Delete

Insert and update requests must be submitted with the corresponding RDF
descriptions, such as the one given in Sample 1. Delete requests, however, must
contain a query description, which will lead to the deletion of matched context
elements.

3 Summary and Future Work

We showed that contextual knowledge plays an important role in the Semantic Web
and concluded that context management is the missing service in the Semantic Web.
Our work contributes to filling this gap through the development of CORD, the
context-oriented RDF database. CORD provides a solution based on the Semantic
Web technology mainly for managing profiles. The concrete contributions of this
paper are the introduction of: 1) a storage system for RDF-based profile data handling
embedded resources, 2) a query language suitable for querying data organized in
profiles, 3) a concept for storing rule-based values in profiles, and 4) a model for
subscribing to context management services via the so-called event-condition-action
rules.

We will continue this work by: 1) consolidating data from sources other than
instances of CORD to satisfy the requirement #2 from section 1.1 completely, 2)
equipping CORD with a special logic for reasoning about user location when sensory
data is missing, based on information provided by PIM applications and the history of
the location data, and 3) enhancing the existing privacy protection mechanism'? by
employing P3P and APPEL concepts when dealing with public service providers.

Acknowledgement. This work is partially sponsored by the Information Society DG
of the European Commission. It is part of the MUMMY project (IST-2001-37365,
Mobile Knowledge Management — using multimedia-rich portals for context-aware
information processing with pocket-sized computers in Facility Management and at
Construction Site) funded by the Information Society Technologies (IST) Programme.
See http://mummy.intranet.gr.

References

1. Barstow, A (2001). Survey of RDF/Triple Data Stores. World Wide Web Consortium.
Retrieved April 10, 2003 from http://www.w3.0rg/2001/05/rdf-ds/DataStore (last update
Feb. 26, 2003).

2. Berners-Lee, T. & Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific
American, May 17, 2001. Retrieved February 26, 2003 from http://www.sciam.com
/print_version.cfm?articlelD=00048144-10D2-1C70-84A9809ECS588EF21.

13 Currently, CORD provides access control mechanisms for the communication with context-
providing and -consuming components that belong either to the user or to the communities of
which the user is a member.

1

http://mummy.intranet.gr/
http://www.w3.org/2001/05/rdf-ds/DataStore
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

16

10.

11.

12.

13.

14.

15.

16.

Mohammad-Reza Tazari

deVos, A. (2002). An RDF Query Language Based on DAML. Langdale Consultant,
revision 1.0, Feb. 2002. Retrieved April 10, 2003 from http://www.langdale.com.au/RDF/
DAML-Query.html.

Fikes, R. & Hayes, P. & Horrocks, 1. (2002). DAML Query Language (DQL) — Abstract
Specification. The Joint United States / European Union ad hoc Agent Markup Language
Committee, August 2002. Retrieved April 10, 2003 from http://www.daml.org/2002/08/
dql/dgl.

Grimm, M. & Tazari, M.R. & Balfanz, D. (2002). Towards a Framework for Mobile
Knowledge Management. Proceedings of the 4th international conference on Practical
Aspects of Knowledge Management (PAKM?2002), Vienna, Austria, December 2002.
Indulska, J. & Robinson, R. & Rakotonirainy, A. & Henricksen, K. (2002). Experiences
in Using CC/PP in Context-Aware Systems. Proceedings of the 4" International
Conference on Mobile Data Management (MDM2003), Melbourne, Australia, January
2003. Lecture Notes in Computer Science. Springer Verlag, LNCS 2574. pp. 247-261.
Karvounarakis, G. & Alexaki, S. & Christophides, V. & Plexousakis, D. & Scholl, M.
(2002). RQL: A Declarative Query Language for RDF. ACM 1-58116-449-5/02/0005,
WWW2002, Honolulu, USA, May 2002.

Klyne, G. & Reynolds, F. & Woodrow, C. & Ohto, H. & Hjelm, J. & Butler, M.H. &
Tran, L. (2003). Composite Capability / Preference Profiles (CC/PP): Structure and
Vocabularies. http://www.w3.org/TR/CCPP-struct-vocab/, W3C Working Draft March
25,2003.

Kokkelin, S. (2001). Transforming RDF with RDFPath. Working draft, March 2001.
Retrieved April 10, 2003 from http://zoe.mathematik.uni-osnabrueck.de/QAT/Transform/
RDFTransform.pdf.

Magkanaraki, A. & Karvounarakis, G. & Anh, T.T. & Christophides, V. & Plexousakis,
D. (2002). Ontology Storage and Querying, Technical Report No. 308. Foundation for
Research and Technology Hellas, Institute of Computer Science, Information Systems
Laboratory. Crete, Greece, April 2002. Retrieved April 10, 2003 from ftp:/
ftp.ics.forth.gr/tech-reports/2002/2002.TR308.0Ontology Storage_and_Querying.pdf.gz.
Melnik, S (2001). Storing RDF in a Relational Database. Retrieved April 10, 2003 from
http://www-db.stanford.edu/~melnik/rdf/db.html (last update Dec. 3, 2001).

Miller, L. & Seaborne, A. & Reggiori, A. (2002). Three Implementations of SquishQL, a
Simple RDF Query Language. Proceedings of the 1% International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http://www.hpl.hp.com/techreports/2002/HPL-2002-110.pdf.

Schirmer, J. & Bach, H. (2000): Context-Management within an Agent-based Approach
for Service Assistance in the Domain of Consumer Electronics. In: Proceedings of
Intelligent Interactive Assistance, Mobile Multimedia Computing, Rostock, Germany,
November 2000.

Sintek, M. & Decker, S. (2002). TRIPLE — A Query, Inference, and Transformation
Language for the Semantic Web. Proceedings of the 1% International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http:/triple.semanticweb.org/iswc2002/TripleReport.pdf.

Tazari, M.R. & Grimm, M. & Finke, M. (2003). Modelling User Context. Proceedings of
the 10th International Conference on Human-Computer Interaction (HCII2003), Crete
(Greece), June 2003.

Tazari, M.R. & PloBer, K. (2003). User-Centric Service Brokerage in a Personal Multi-
Agent Environment. To be presented in the International Conference on Integration of
Knowledge Intensive Multi-Agent Systems (IEEE KIMAS'03), Cambridge MA (USA),
October 2003.

78

An Adaptable Service Connector Model

Gang Li', Yanbo Han', Zhuofeng Zhao', Jianwu Wang', and Roland M. Wagner”

'Software Division, ICT, Chinese Academy of Science, PRC
{ligang, yhan}@ict.ac.cn {zhaozf, wjw}@software.ict.ac.cn
2 Fraunhofer ISST, Dortmund, Germany

roland.wagner@isst.thg.de

Abstract. The volatility of network environments requires service connections to adapt to changes
of service resources and user requirements. In this paper, we treat service connections as individual
components called service connectors and present an adaptable service connector model that adopts
a role mechanism to adjust connections between services. A role is an abstraction of services with
common functionalities. It offers a changeable connector structure, enables reconfiguration of
service interaction and encapsulates changes in interacting participants, making service connections

more adaptable.

1 Introduction

Service oriented computing is gaining popularity. In a typical contemporary service-oriented
application, service connections are pragmatically implemented using protocols like SOAP. Through
this kind of connection, services can be composed into applications. Service composition is regarded as
a new approach for developing applications in network environments.

However, service composition still faces serious challenges due to the openness and dynamism of
network environment, such as grids [1][2]. Let us take service grids as an example. Firstly, services
freely join in or quit from a grid and most services in a grid continue evolving over time. Secondly, user
requirements are subject to dynamic changes in a virtual enterprise environment. All these require
service connections to be adaptable, so that service interactions can be easily reconfigured and involved
services can be changed dynamically, while changes of service resources and user requirements take
place. In this paper, we focus our research on how to make a service connection adapt to those changes.

Existing ways that are used to connect services includes control flow based connections [3], data flow
based connections [4][5] and hybrid forms of these two types, such as service connection mechanisms in
GSFL [6] and BPEL4WS [7]. After setting up an interaction channel between ports of different services
through protocols, the validity of control flow based service connection is determined by service states.
This type of connection is set up following interaction protocols inhering in services. For it is predefined
and fixed, changes of service interactions or requirements tend to invalidate the connection. A data flow
based connection links services through data dependencies. With shared data, this type of connection is
free from influences caused by service port changes to some extent. However, because of its implicit
definition, the structure of data flow based service connections is indistinct, which makes it difficult to

adjust the connection. Although in the hybrid from above the two types complement each other, it does

! This paper is supported by the Young Scientist Fund of ICT Chinese Academy of Science under Grant No. 20026180-22 and the

National Natural Science Foundation of China under Grant No. 60173018.

79

not contribute much to service connection adaptation. For example, BPLE4AWS provides partner link
types to describe service connections as partner links, but it does not offer methods for dynamically
changing these links.

To make the connection adaptable, the connection structure ought to be changeable. As a semantic
concept, role [8][9] provides an organizing mechanism through which the abstraction of services with
common functions is derived and marked by role features. With this mechanism, a role offers flexible
connection structure, enabling service connection adaptation by reconfiguration. Based on the above
rationale, we implement a service connection as an explicit component named service connector and
present a role-based service connector model. In this model, a role is used to fulfill the adaptation of a
service connection with a stable interaction interface and a changeable connection structure.

The remainder of this paper is divided into 3 sections. Section 2 addresses the role-based service
connector model in detail, including its connection structure and interaction protocol. With a case study,
section 3 demonstrates the support of the model to making service connection adaptable. Finally, the

contribution of our research is concisely summarized in section 4.

2 Role-based Service Connector Model

Requestor Service Service Providers
) Role Featur‘e’ -22——" Service B,
Service A |_‘ L % ¢ 7= Service B,
= ———
Role

Fig. 1. Sketch Map of Role-based Service Connector Model

Figure 1 illustrates the main idea of the role-based service connector model by an example that Service
A interacts with a role. Described by its features, the role is an abstraction of services such as Service Bl
and Service B2. As a stable interface for service interaction, role features present functions provided by
service providers that interact with the requestor services through the role. Marked by features, functions
that a role provides are implemented by service providers that are invisible to requestors. When
unanticipated changes cause a modification of a service interaction, the connector can adapt to changes
of service interactions or requirements by reconfiguring its role features or service providers. When a
service provider involved in an interaction is unavailable, another one with the same role feature can
replace it, enhancing the adaptability and reliability of the service connection. A role is a virtual service,
and it offers not only a changeable connector structure, but also a unified service interaction interface,
providing essential support to connection adaptation in dynamic service composition [14].

Details about the role-based service connector model follow, namely aspects of the connection

structure and the interaction protocol.

80

2.1 Connection Structure

In this section, to present the role-based service connector model precisely and concisely, we give its
definition, related semantic and interaction protocol in a formal way. Based on this formalism, we prove
that a role-based service connector is adaptable.

Definition 1 Role-based Service Connector

Given a three-tuple <Name,, Features,, Service,>, where Name, marks a role name; Features,is a set
of role features, Features,={f,|f,=<rn,fn,,va>}, where rn denotes the role that feature f, belongs to, fn, is
the name of f;, va, is the argument vector of f,. Role features are an interface with which a role interacts
with the environment; Service, is a set of service references, which are related to features.

The three-tuple defines a role-based service connector, if and only if it has the following properties:

o There is a function set, denoted as Map. Given Vf,€ Features, then 3meMap, S,,c Service,, m(f,)=S;,,

and services that belong to set S, have the same interaction interface marked by f,.

o There is another function set, denoted as Selectors, consider f,, sele Selectors, SereS;,, sel(S.)= Ser.

The function m is named as feature mapping function, and the function se/ is named as service
selection function.

Thus a service connector presents a configurable service called instead of a requested service. The

connector selects an appropriate provided service and maps its parameters to the request. Therefore it is
a configurable encapsulation of a service or a group of semantically similar services, abstracted as a role.
There are two interaction patterns involved in a role-based service connector model, namely the
service-role and role-role patterns. In the first pattern, service providers are packaged by the role, which
is depicted by figure 1. It fits the context where service providers are volatile. In the second pattern, both
providers and requestors are packaged by roles, which fits the context where both sides are volatile.
The main parts of the model are presented above. Now, we define its connection semantic using
category theory to deduce connector properties on adaptation. A category consists of object sets and sets
of morphisms between objects, which focuses on describing and analyzing relations among any type of
objects [10]. With category, relations among services and roles can be described formally, which offers
an approach for analyzing and deducing properties of a role-based service connector in a method
independent of implementation details. Hereby it presents the connection semantics in a role-based
service connector model with categories that takes structured sets as objects.

Let Service be the service involved in the interaction, Service=<Name,,Features,>, where Name; is
the service name, Features={f|f;=<sn,fn,vas>}, f; is the service feature that describes a service port.
Take Services as objects, and construct the category Serv.

Serv=<0bjCy, , MorCs,,, doms, cody, >>, where The set 0bjC, is the class of objects in Serv;
Given morphism ¢: 0bjC¢, — 0bjC, . E.FeobjC,, , o(E)=F, ¢ is specified by the following:
O;: Nameg — Namey

;. Featurep — Featurep

The set MorCs,,, is the class of morphisms in Serv, namely MorCs,,, is the set of connections between
Services. The morphisms in MorCs,,, is defined by .

The function dom, is defined as dom,: MorCs.,—>0bjC,,, where fe MorCs,,, then dom; (f) denotes
the domain of f.

The function cod; is defined as cod;: MorCs.,—0bjC;

ervy?

where fe MorCs,,, then cod; (f) denotes the
codomain of f.

The symbol ° denotes an operation, which is defined as °: MorCs,,xMorCs.,—> MorCs,,,.

81

Let Connector be the role-based service connector involved in the interaction,
Connector=<Name,,Features,,Service>. In a similar way, take Connectors as objects, and construct the
category Conn, Conn=<objR. , MorR . , dom., cod., *>, where morphism v is used to define
MorRc,,, and describes interactions between roles.

Let SereobjCy, , ConeobjR ., constructs function Fgg, Fsz: 0bjCg, — 0bjR Fsp(Ser)= Con, Fgs

Conn’
is specified by the following:
1. Nameg,, — Namec,,
n,: Features,,— Featurec,,
The connection fulfilled by a role-based service connector is marked as Connectiong.
Connectiong={<Ser, Fs (Ser)>} w{<Con, y(Con)>}.
After giving connection semantics, we can now prove the following results according to it:

Theorem 1
In interaction where roles are involved, a role-based service connector has the following properties:

¢ Changes in the service set that correspond to a role feature do not cause changes of the connection;

o When the service set that corresponds to a role feature do not satisfy some requirements of requestors,
the connection can adapt to these changes by reconfiguring the role feature and related services.
Proof:

(1) Let r/ be the role involved in an interaction. According to the definition of r/, we conclude:

Vf.€Feature,;, AmeMap,;,m(f,)=s;,SxSService,;,and Isel e Selectors,,, sel(s,)=Serx, Serxes;, .
When changes take place in s,,, a new function sel’ can be constructed, sel’ e Selectors,;, such that
sel'(sg)= Serx'.
Serx' and Serx have the same features, and the requestor service interacts with the service that
belongs to sy, through the role feature.
.". There are no changes in the connection.
Proposition (1) follows.

(2) When the service set that corresponds to a role feature does not satisfy some requirements of the
requestor services, the interaction interface or the service set has to be changed. If only the service
set is to be adjusted, the connection can adapt to those changes according to proposition (1). If the
interaction interface is to be changed, it results in a change of the role feature according to
Definition 1. Then proposition (2) can be proved as follows:

i) when changes take place in a service—role pattern,
let s, I be the service and role involved in the interaction, and f;€ Feature;. According to Fy,
we conclude:
3 <, 1>, fr1 € Feature,;. When <f;, f.;> changes into <f;, f',;>, according to the definition of
rl, Am' e Map,;, such that s,,'cService,;, m'(f',;)=ss;'. m'and s,;" keep the connection available.
ii) when changes take place in role-role pattern,
let 1, 2 be the roles involved in the interaction, and f,;€Feature,;. According to vy, we
conclude:
3 <fi1, f.2>, fr2 € Feature,,. When <f,,, f,,> changes into <f,;, f',,>, according to the definition of
r2, Am'" € Map,,, such that s,'cService,,, m''(f"',2)=ss;'. m'" and s,," keep the connection available.
According to i) and ii), proposition (2) follows.
The proof is now complete.
Theorem 1 says that a role-based service connector is adaptable. In Connectiony, there is a loose

coupling between interacting participants, which can be changed by adjusting the service selection

82

function such as sel(). Through role features, services expose a unified interaction interface to requestor
services, reducing the influences between services. When unanticipated changes occur, the connection
can be reconfigured through changing the involved role features and services. In addition, a role feature
can be implemented by several candidates of service providers like services in sy, which makes the

connection adaptable.

2.2 Interaction Protocol

When a role is introduced, changes occur in service interaction patterns to support connection
adaptation. As mentioned above, service-role and role-role patterns are the main interaction manners in
service compositions where roles are involved. In order to describe them clearly, the interaction
protocols are presented in a formal way.

While analyzing security protocols, I. Cervesato etc. used a multiset rewriting formalism, based on
linear logic. The existential quantification in it provides a succinct way of choosing new values. Besides
that, it has a bounded initialization phase, but allows unboundedly many instances of each protocol
participant, making it especially qualified to analyzing finite-length protocols [11]. In this section, we
present the interaction protocol of a role-based connector model with this method.

(1) Interaction in a service-role pattern

Ser’(), R()

Ser’()—>3x.Ser'(x), Con'(x)

R°(), Con'(x)— 3y.R'(x,), 3Ser'*(), Con*(x, y)
Ser'®(), Con*(x, y)— 3z. Ser''(y, z), Con’(x, y, z)
R'(x, y), Con’(x, y, z) = R*(x, y, z), Con*(x, z)
Ser'(x), Con*(x, z)—> Ser’(x, z)

In service-role pattern, service Ser is the requestor service, and Ser’() denotes that service Ser is in
initial state 0. Then it produces message x in state 0, sends x to role R transforming into state 1 that
keeps message x; Con'(x) denotes that the connection is in state 1 that keeps message x. After role R
receives x at state 0, it produces message y, then with the service selection function, role R chooses a
service Ser’ as server according to interaction state, and sends y to Ser’ transforming into state 1. After
processing message y, service Ser’ produces massage z that contains the results the client required and
sends z to role R. After role R receives z at state 1, it delivers message z to service Ser transforming into
state 2; service Ser receives z at state 1 transforming into state 2.

(2) Interaction in a role-role pattern
Ser’(), R0, R"°)
Ser’() »>3x.Ser' (x), Con'(x)
R°(), Con'(x) = 3y.R'(x, y), Con*(x, y)
R’° (), Con*(x,y) = 3z.R"" (x, y, z), 3Ser’*(), Con’(x, y, z)
Ser'®(), Con*(x, y, z) — Iw. Ser'(x, y, z, w), Con*(x, y, z, w)
R’ (x,y, z), Con*(x, y, z, w) = R"*(x, y, w), Con’(x, y, w)
R'(x, y), Con’(x, y, w) = R*(x, w), Con®(x, w)
Ser'(x), Con®(x, w) — Ser’(x, w)
A role-role pattern is a combination of two service-role patterns. In this pattern, request and return

values pass through two roles.

83

Above protocols describe how to configure the connector automatically. Besides that, they emphasize
especially on states of connections and interaction participants. On the one hand, a role supports the
dynamic selection of qualified services according to connection states and service states; on the other
hand, when the connection is to be reconfigured, these states determine whether the reconfiguration is
feasible. During connection reconfiguration, states of interacting participants are saved. After
reconfiguring, they are restored to enable service composition to be resumed. It shows that the
interaction protocol of a role-based service connector supports dynamic connection and adaptation.

After presenting the model and demonstrating its adaptability in a formal way, we now present a case

study in the following section.

3 Exploring the Model with a Case Study

A role-based service connector is more adaptable than others, when changes take place in service
resources and/or requirements. In order to strengthen this conclusion and illustrate how to use role-based
service connectors, we briefly present a case study of representing the model in XML and applying it in
project FLAME20082. Note that the case study focuses on the aspect of connection adaptabilities, other

details about the case are beyond this scope.

3.1 A Real Case from FLAME2008

The Olympic Travel Planning application, which is a part of FLAME2008, is to provide pertinent
information to those who watch match and tour in Beijing during Olympic Games 2008. Figure 2

presents a requirement segment of the application, which involves the following services.

% User: Mr. John

Order &Gym
Compositive Match- info Information
————————
Module
Match Query Request
%ch &Ticket
Match Quer) Information Gym Quer)
Service Service
A
Ticket Query Ticket Query Gym Query Gym Query
Request Result Request Result
A A
Match Ticket o Match Ticket
Query Service Ticket Order Request Service

Fig. 2. A Requirement Description Segment of Olympic Travel Planning Application

— Match Query Service: retrieving a match schedule, getting information about the match that one
wants to watch, and invoking Match Ticket Query Service.

— Match Ticket Query Service: retrieving match ticket information.

2 FLAME2008 (Project Flexible Semantic Service Management Environment) is to develop grid service based applications that provide
integrated, personalized information services to the public during the Olympic Games 2008. The project is supported by MOST PRC
and CAS under Grand No.20012019.

84

— Match Ticket Service: ordering match tickets after making sure that there are remains, and invoking
the Gym Query Service.

— Gym Query Service: retrieving information about traffic, gym location and so on.

— Compositive Match-info Module: coordinating above services to get information about match
schedules, match tickets, gym and ordering tickets.

In the initial stage of the project, we constructed a prototype by composing services. However, those
services and their connections were changing with service resources changing and requirements
evolving.
¢ Change I: In the prototype, the response time of Match Ticket Query Service was too long to endure,

so that the service had to be replaced by a new one.

o Change II: Previously, after ordering tickets, audiences wanted to know something about the gym
where the match was to be held. So, Match Ticket Service interacted with Gym Query Service. Now,
audiences want to retrieve order results after ordering. To meet the changed requirement, Match
Ticket Service is to interact with Order Result Query Service (This service is a service to be added when
requirements change, and it is not shown in figure 2). In this situation, both the interaction interface and

services are changed.

3.2 Representations and Applications of the Model

In the initial prototype of FLAME2008, services were connected by control flow based on SOAP
messages. To adapt to changes in service providers, the adaptors were modified. However, when the
above-mentioned changes occurred, it was very difficult to adjust the application, for the service
connections were almost unchangeable. In order to change them, we had to read through the source
codes, and modify the processing logic or rebuild the module. It involved many efforts of understanding
source code, coding and so on. The modified application was prone to throw exceptions yet.

Hence, we partially adopted and realized role-based service connector in the second prototype, and
constructed a supporting tool named CAFISE Framework. Compared with service connections in the
first prototype, role-based service connector can be adjusted smoothly with the framework that is

depicted in figure 3.

3.2.1 CAFISE Framework

The CAFISE Framework includes a set of essential components and tools assisting to construct and
adjust applications. From a business viewpoint, the Convergent Modeling Tool helps designers to
present their requirements, and then the requirements are transformed into an executable application
specification using XML, which is presented in figure 3 as Specification A. Those specifications
describe the coordination among all involved services. While the CAFISE Virtual Machine interprets the

specification, the required services of the Service Community are dynamically bound and invoked.

85

Application A | _____ i_(l_JHft_l?_g ______ > Application A’

Application

Convergent modeling

Modeling Tool | —— >

i Service 7

I Configuration Tool I

Specification A’

Specification A

»

>
monitoring and o

adjusting

binding

i Connector |

ﬁ interpreting

CAFISE Virtual Machine l

interpreting
invoking
<

Service

Community P ‘
ramewor

Fig. 3. CAFISE Framework

3.2.2 Reconfiguration of Connectors

The service coordination in an executable specification adopts role-based service connectors. When the
aforementioned changes take place, users can reconfigure the role-based connector with the
Configuration Tool. More details about the framework are presented in [12]. The following presents an
example of a connecter implementation and describe how to use this framework to adjust the connector.
Figure 4 illustrates a role named Ticket querist in XML, which is used to connect match query service
with match ticket query services according to the interaction protocol listed in section 2.2. Its feature
“searcher” describes the ports of the Match Ticket Query ServiceOl and Match Ticket Query Service 02
that are listed as feature implementations by <Services>. <Selector> specifies the algorithm for
selecting the right feature implementation. In figure 4, it uses another service “MT7QSel01” as service

selection function to select the right service involved in the interaction.

<Role Name="Ticket querist " >
<Feature Name="sezrcher">
<Argument Name="Match"

<Role Name="Ticket querist " >
<Feature Name="searcher">
<Argument Name="Match"
Type="NameString"

Type="NameString"
PassMode=""IN"/>"
<Argument Name="Time"
Type="Timet "
PassMode="I%h/>
gument Name="MatchTicket"
Type="TicketVector"
PassMode="0UT"/>
</Feature>
<Services>
<DefaultURL>
www . FLAMEQ8app . com/search/
tch Ticket Buery Service 01
</Defaul tURL>
<URL>

www . FLAMEQ8app . com/search/
/MU%tigh Ticket 811ery Service 02

<
</Services>
<Selector>
<SelectFunction>
www . FLAMEO8app . com/select/
MTQOSel01 ;
</SelectFunction>
</Selector>
</Role>

Fig. 4. The Role Specification of Ticket querist

PassMode="IN"/>"
<Argument Name="Time"
Type="Timetype"
PassMode="IN"/>)
<Argument Name="MatchTicket"
Type="TicketVector"
PassMode="0UT" />
</Feature>
<Services>
<DefaultURL>
www . FLAME08app . com/search/
Match Ticket 5ﬁery Service 01
</DefaultURL>
<URL>

www . FLAMEO8app . com/search/
)%atch Ticket 5ﬁery Service 02
</URL>

<URL>
www . FLAMEO8app . com/search/
Match Ticket %%ery Service New
</URL>

</Services>
<Selector>)
<SelectFunction>
www , FLAMEO8app . com/select
MTQSel02 |
</SelectFunction>
</Selector>
</Role>

Fig. 5. The Modified Specification of Ticket querist

To adapt to Change 1, a new service Match Ticket Query Service New was designed and registered in

the Service Community. The connection was to be changed. The CAFISE Virtual Machine, its86

8

Configuration Tool and role Ticket querist made it easier to reconfigure the service connection. The
CAFISE Virtual Machine interpreted the specification of role Ticket querist and collected meta-data of
interaction states and the connection structure, supporting the Configuration Tool to modify the
connection. The Configuration Tool monitored all interaction states through meta-data collected by the
virtual machine. While the number of service requests was reduced to zero, users applied the tool to
change the connection meta-data. By modifying meta-data, a new service
“www. FLAMEQOS8app.com/search/ Match Ticket Query Service New” was added, and <SelectFuction>
was set as a new one “www.FLAMEOSapp.com/select/MTQSel02”. Thus, the new service co-existed
with the old ones, and the connection was changed without effects to the Match Query Service in a
simple reconfiguration way. The modified specification of Ticket querist is shown in figure 5.

Figure 6 presents the role connected match ticket service and gym query services that are the service
providers in interaction. With Change I, Match Ticket Service changed to connect with Order Result
Query Service. Adaptation of this connection required adjusting the role’s <Feature>, <Services> and
<Selector> parts. Using CAFISE Framework, users smoothly changed the specification of Gym_querist

to a new one that is presented in figure 7.

<Role Name="Gym gquerist" >
<Feature Narme="searcher">
ent Name="Match"
Type="NameStr1ng"
PassMode="IN"/>
ent Name="Time"
Type="Time "
PassMode="1IN"/> .
<Argument Name—"Gym info"
Type="GymVector"™ —
PassMode—"OUT"/
</Feature>
<Services>
<Defaul tURI>
www FLAMEO8app. com/fearch/

Quer Serv1ce
</ D\‘g%ault

FLAMEOSapp com/search/
dgg}Query Service

</Serv1ces>
<Selector>

<SelectEUnctlon>

FLAMEOS app; .com/select
selector

< S ectFunctlon>

</Selector>
</Role>

<Role Narre—"Gym querist" >
<Feature Name="result searcher">
ent Name="Order Number"
Sorent NamelRe ult inf
ame="Res info"
Type="ResultVector -
PassMode="0UT" />
</Feature>
<Services>
<Defaul tURT>
www . FLAMEO8app . cam/search/
</Order Result%uery Service 01

<URL>
www . FLAMEO8app. com/search/
/Order Result%lery Service 02

<
</Services>
<Selector>
<SelectFUnctlon> lect
can/se
Order resul%ge
</SelectFunction>
</ Selector>
</Role>

Fig. 6. The Role Specification of Gym_querist Fig. 7. The Modified Specification of Gym_querist

The above case study demonstrates that a role-based service connector enables service connection
adaptation smoothly. Moreover it shows that <Feature> and <Services> separates services from features
and makes it feasible to modify the interaction interface and its implementation independantly. By
changing the <SelectFunction>, the relation between interaction interface and services can be adjusted.

Table 1 lists the comparison of service connection adaptations in those two prototypes of the case. It
says that these connections can be adjusted, and the adjustments all impact application behaviors with
effects to semantics. However, adaptations of control flow based service connections and service
adaptors involve more efforts of executants obviously. Role-based service connector can be
reconfigured at runtime. And changes of the connection are incremental, which means that a new service
3]. With the CAFISE

Framework, the adaptation process is semi-automatic, and change impacts can be controlled. The

can be incorporated into the service composition while old ones co-exist [1

comparison shows that the role-based service connector model provides more support to connection

adaptation.

87

Table 1. Properties of Service Connection Adaptations in the Case

Control flow based

service connections

Service adaptors

Role-based service

connectors

Adaptation executants

programmers

programmers

users

Adaptation way

by modifying source

codes

by modifying source

codes or customizing

by reconfiguring

Degree of automation

non-automation

non-automation

semi-automation

Adaptation time

at non-runtime

at non-runtime

at both runtime and

non-runtime

Incremental changes no no yes
Effects to semantics yes yes yes
Change impacts control no no yes

3.3 Evaluation Based on the Case Study

The case study demonstrates how to use a role-based service connector model to make service
connections adaptable. In addition, it also shows that a role-based service connector has advantages in
improving connection adaptability at the following aspects:
e Communication Stability

Communication is the essential function of a role-based service connector, which takes charge of data
exchange between services involved in an interaction. Through features, roles expose an interaction
interface, and allow requestors to invoke services. Role features offer a unified interface for service
interaction, improving communication stability from the view of connection structure.
e Structure Expansibility

A role-based service connector is extensible in structure aspect. Service resources and user
requirements are various and mutable. Unavoidably, service connections have to co-evolve with
changes. A role-based service connector provides an extensible cadre composed of <Feature>,
<Services> and <Selector>, which enables the connector to be extended and reconfigured according to
changes.
¢ Connection Adaptability

The role-based service connector model provides essential support to connection adaptation. With the
extensible cadre, it can be modified and reconfigured. Besides that, it can accommodate changes of
connection to some extent through encapsulating changes in service providers. And the connection can
be adapted at run time, for role-based service connector can dynamically switch service provider in the

way of modifying parameters to change connection structure at run time.

4 Conclusions

Service-oriented application development in network environments meets large challenges due to open
and dynamic features of the environments, which requires service connections to be adaptable.
In this paper, a role-based service connector model is presented to solve the problem. With role

features, a role-based service connector offers a changeable service connection structure, which makes

10

connections more adaptable: by modifying the feature and related service references, the connection can
be reconfigured. In addition, adjustments in a role-based connector are limited to some modifications;
changes of interaction partners do not influence each other. So that, the connector enhances the
flexibility of service coordination.

Through the case study of project FLAME2008, we conclude that the role-based service connector
model has advantages in adaptation of service connection. Besides that, the following work should be
done.

— To reduce side effects of adaptation, a run-time model of the connector should be offered to
monitoring status of service connection;
— The application of the model in Web service chaining, such as BPEL4WS, is to be considered in

further work.

Acknowledgements

When we wrote the paper, Dr. Agnes Voisard gave some good suggestions; Dipl.-Inf. Norbert
Weissenberg corrected the writings. And Dipl.-Inf. Rdiger Gartmann gave generous helps on paper

presentation. We are grateful to them for their helps.

References

1. L Foster, C. Kesselman, J. Nick, S. Tuecke: Grid Services For Distributed System Integration. Computer. vol.
35, no.6 (2002) 37-46

2. L Foster, C. Kesselman, S. Tuecke: The anatomy of the grid: Enabling scalable virtual organizations. The
International Journal of Supercomputer Applications. vol.15 n0.3(2001) 200-222

3. F. Casati, S. Ilnicki, J. LiJie, S. Ming-Chien: An Open, Flexible, and Configurable System for E-Service
Composition. The Second International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems, Milpitas, USA, June 2000

4. E. Kiciman, A. Fox: Using Dynamic Mediation to Integrate COTS Entities in a Ubiquitous Computing
Environment. The Second International Symposium on Handheld and Ubiquitous Computing, Bristol, UK,
September 2000

5. Emre Kiciman etc: Position Summary: Towards Zero-code Service Composition. The Eighth Workshop in
Hot Topics in Operating Systems, Oberbayern, Germany, May 2001

6. S. Krishnanl, P. Wagstroml, G. Laszewski: GSFL: A Workflow Framework for Grid Services.
http://www-unix.globus.org/cog/projects/workflow/, July 2002

7. T. Andrews, F. Curbera etc.: Business Process Execution Language for Web Services Version 1.1.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, May 2003

8. F. Steimann: On the Representation of Roles in Object-Oriented and Conceptual Modeling. Data &
Knowledge Engineering. vol. 35, n0.1(2000)83-106

9. B. Kristensen: Object-oriented Modeling with Roles. The 2nd International Conference on Object-Oriented
Information Systems, Dublin, Ireland, 1995

10. J. Goguen: A Categorical Manifesto. Mathematical Structures in Computer Science. vol. 1, no. 1(1991)49-67

11. Cervesato etc.: A Meta-notation for Protocol Analysis. The 12th IEEE Computer Security Foundations
Workshop, Mordano, Italy, June 1999

11

89

12.

13.

Y. Han, Z. Zhao, G. Li etc.: CAFISE: An Approach to Enabling Adaptive Service Configuration of Service
Grid Applications. Journal of Computer Science and Technology. vol. 18, n0.4(2003) 484-494
G. Li: Adaptive software architecture and Adaptive software architecture development. Ph.D. Dissertation,

Beijing University of Aeronautics and Astronautics. 2002

12

90

Building an integrated Ontology within
SEWASIE system*

Domenico Beneventano®2, Sonia Bergamaschil:2, Francesco Guerral, and
b bl b
Maurizio Vincini!

! Dipartimento di Ingegneria dell’Informazione
Universita di Modena e Reggio Emilia
Via Vignolese 905 - Modena
{lastname.firstname}@unimo.it
2 IEIIT-CNR Istituto di Elettronica e di Ingegneria
dell’Informazione e delle Telecomunicazioni
Viale Risorgimento 2 - Bologna

Abstract. The SEWASIE (SEmantic Webs and AgentS in Integrated
Economies) project (IST-2001-34825) is an European research project
that aims at designing and implementing an advanced search engine
enabling intelligent access to heterogeneous data sources on the web.

In this paper we focus on the Ontology Builder component of the SE-
WASIE system, that is a framework for information extraction and in-
tegration of heterogeneous structured and semi-structured information
sources, built upon the MOMIS (Mediator envirOnment for Multiple
Information Sources) system. The result of the integration process is a
Global Virtual View (in short GVV) which is a set of (global) classes
that represent the information contained in the sources being used. In
particular, we present the application of our integration concerning a
specific type of source (i.e. web documents), and show the extension of
a built-up GVV by the addition of another source.

Introduction

Nowadays the Web is a huge collection of data and its expansion rate is very
high. Web users need new ways to exploit all this available information and pos-
sibilities. The problem is that Web information is meaningless for a computer
and so it is very hard to find out what we are looking for. In this context, the
need of a new vision of the Web, the Semantic Web?, arises. Within the Se-
mantic Web, resources could be annotated with machine-processable metadata
providing them with background knowledge and meaning. This new scenario cre-
ates many expectations amongst the users and information providers but new
issues have to be solved before achieving optimum results. One of the main
components in this context is is the ontology; this “explicit specification of a

* This research has been partially supported by EU IST-SEWASIE
3 http://www.w3.0org/2001/sw/

91

conceptualization” [11] might allow information providers to give a shared mean-
ing to their documents. Many studies are defining languages and standards that
can help domain experts in the delicate task of expressing their knowledge in a
formal way*. Another fundamental issue is the “dynamics”. The web environ-
ment is very changeable, it is continuously updated, modified and the users need
to rely on the data they retrieve from the net. Ontologies evolve, and therefore
we have to address the problem of managing the dynamics with respect to the
ontologies [13, 14].

SEWASIE (SEmantic Webs and AgentS in Integrated Economies) (IST-2001-
34825) is a research project funded by EU on the action line ”Semantic Web”
(May 2002/April 2005 - http://www.sewasie.org/). The goal of the SEWASIE
project is to design and implement an advanced search engine enabling intelligent
access to heterogeneous data sources on the web via semantic enrichment to
provide the basis of structured secure web-based communication. A SEWASIE
user has at his disposal a search client with an easy-to-use query interface able
to extract the required information from the Internet and to show it in an easily
readable format.

In this paper we focus on the Ontology Builder component of the SEWASIE
system, that is a framework for information extraction and integration of het-
erogeneous structured and semi-structured information sources, built upon the
MOMIS (Mediator envirOnment for Multiple Information Sources) system [1,
2,6].

The Ontology Builder implements a semi-automatic methodology for data
integration that follows the Global as View (GAV) approach [15]. The result
of the integration process is a global schema which provides a reconciled, in-
tegrated and virtual view of the underlying sources, the GVV (Global Virtual
View). The GVV is composed of a set of (global) classes that represent the infor-
mation contained in the sources being used and the mappings establishing the
connection between the elements of the global schema and those of the source
schemata. A GVV, thus, may be thought of as a domain ontology [12] for the
integrated sources. We represent the ontology by means an object language,
called ODLys, which is an evolution of the OODBMS standard language ODL.
Moreover, ODLjs permits the definition of integrity constraints (in the form of
if then rules) that are translated, together with the schema properties, into a
description logics OLCD (Object Language with Complements allowing Descrip-
tive cycles) [4, 6]. In this way, inference tasks typical of Description Logics that
are useful for the GVV creation process can be exploited. The Ontology Builder
system relies on a logic layer, ODL;s is the language to represent the ontology
properties and OLCD to perform reasoning over the data, like other approaches
in the literature (DAML+OIL?).

The outline of the paper is the following: section 1 describes the SEWASIE
architecture, while in section 2 we depict the Ontology Builder and the approach

4 OntoWeb - Ontology-based information exchange for knowledge management and
electronic commerce, http://ontoweb.aifb.uni-karlsruhe.de/
® http://www.w3.org/TR/daml-+oil-reference

92

A— A—
——— Moniar|

r b o
£ Ysér Interage. Visualisation_|
5 H 4 et iNenltordg |
Comm. Interface | Query Interface [Metadata Interface| i Inteeface 3°3--

ommunication, —— -7 B et
Tool
3

cci H
Ontalagy :
N huilder |

Intereonnection
infrastructure

Tod documanie -

Fig. 1. The SEWASIE architecture

for creating a domain ontology from scratch and shows the result of the integra-
tion process (GVV). Section 3 describes the semi-automatic annotation process
of the GVV. Section 4 presents the methodology to support the GVV extensions
in the case of the addition of a new source. Finally, section 5 concludes the paper.

1 The SEWASIE Architecture

The first basic idea underlying the SEWASIE architecture is that semantic en-
richment of data sources is the next step towards building information systems
that are really useful. However, the addition of semantics to data sources is a
formidable task and it may be achieved only if info seekers and info providers
may reach each other across a middle ground. This requires a common language
and strategy, and the tools that actually flesh them both out.

The second idea is that we have to deal with two levels of knowledge. We
envision a multi-level architecture, composed of nodes (the SINodes) integrating
information coming from communities with strong ties, and at a wider level
the relationships among distinct SINodes are established by means of weaker
semantics mappings. The latter is maintained by an infrastructure of brokers,
which will provide the entry points to the system and some routing of the queries
towards the relevant information nodes.

A search system architecture satisfying the aforementioned ideas and desider-
ata is shown in figure 1.

93

The information nodes (SINodes) are mediator-based systems, each in-
cluding a Virtual Data Store, an Ontology Builder, and a Query Manager. A
Virtual Data Store represents a virtual view of the overall information managed
within any SINode and consists of the managed information sources, wrappers,
and a metadata repository. The managed Information Sources are heterogeneous
collections of structured, semi-structured, or unstructured data, e.g. relational
databases, XML or HTML documents. A Wrapper implements common commu-
nication protocols and translates to and from local access languages. According
to the metadata provided by the wrappers, the Ontology Builder performs se-
mantic enrichment processes in order to create and maintain the Ontology of
the SINode. The Metadata Repository holds the ontology and the knowledge
required to establish semantic inter-relationships between the SINode itself and
the neighboring ones. A Query Manager provides the functionalities for solving
a query within an SINode and constitutes the SINode interface to the network.

The brokering agents (BAs) are the peers responsible for maintaining a
view of the knowledge handled by the network, as well as the information on
the specific content of SINodes which are under direct control (of each brokering
agent). These agents are intermediaries which have direct control over a number
of SINodes, and provide the means to publish a manifesto within the network of
the locally held information with a semantic profile.

The query agents (QAs) are the carriers of the user query from the user
interface to the SINodes, and have the task of solving a query by interacting with
the brokering agent network. Starting from a user- or task- specified brokering
agent, they may access other BAs, connect with other information nodes, collect
partial answers, and integrate them.

The user interface is the group of modules which work together to offer an
integrated user interaction with the semantic search system. This interface needs
to be personalized and configured with the specific user profile and a reference
to the ontologies which are commonly used by this user.

2 The Ontology Builder

The process of semantic enrichment of the sources constituting a SINode is
a crucial step towards building the overall SEWASIE structure. The process
is human assisted and based on a tool, the Ontology Builder. The underlying
strategy and framework are based on ODLys, the ontology description language,
and basic lexical ontologies to bootstrap. The final result is a Global Virtual
View encompassing all the sources within the SINode.

In this section, we describe the information integration process for building
the GVV of set of web pages (see Figure2 for the whole process representation).

2.1 ODL;s 4+ OLCD

For a semantically rich representation of source schemas and object patterns, the
Ontology Builder uses an object-oriented language called ODL;3[6]. ODL;s is

94

COMMON THESAURUS G\ GENERATION
WRAPPING GENERATION

INFERRED
RELATIONSHIPS
0ODLI3

LOCAL SCHEMA 1 LEXICON DERIYED
RELATIONSHIPS

oDLIZ
E=——oA SsCHEMADIRIVED.
‘[RELATIONSHIPS., |1/

@ USER SUPPLIED

L e RELATIONSHIPS' '/

TABLES

MANUAL
ANNOTATION

SEMI-AUTOMATIC
ANNOTATION

Fig. 2. An overview of the ontology integration process

an extension of the ODL language® and can be used to describe heterogeneous
schemas of structured and semistructured data sources. In particular, ODL;s ex-
tends ODL with the following relationships expressing intra- and inter-schema
knowledge for the source schemas:

— SYN (synonym of) is a relationship defined between two terms ¢; and ¢; that
are synonyms in every involved source.

— BT (broader terms) is a relationship defined between two terms ¢; and ¢,
where ti has a broader, more general meaning than ¢;. BT relationships are
not symmetric. The opposite of BT is NT (narrower terms).

— RT (related terms) is a relationship defined between two terms ¢; and ¢; that
are generally used together in the same context in the considered sources.

Other main additions are the Integrity constraint rules, introduced in ODLs
in order to express, in a declarative way, if then constraint rules at both intra-
and inter-source level.

By means of ODLjs it is possible to describe both the sources (the input
of the synthesis process) and the GVV (the result of the process) by using the
same language.

5 http://www.service-architecture.com/database/articles/odmg_3_0.html

95

Due to the fact that the ontology is composed of concepts (represented in
ODL;s with Global Classes) and simple binary relationships, the translation
of ODL;s descriptions into one of the Semantic Web standards such as RDF,
DAML+4OIL, OWL is a straightforward process. In fact, from a general perspec-
tive an ODLjs concept corresponds to a Class of a the Semantic Web standard,
and ODL;s relationships are translated into properties (in particular the BT /NT
ODL;s relationships are subclassof in the Semantic Web standards). Analyzing
syntax and semantics of each standard, further specific correspondences may
be established. For example, there is the correspondence with the DAML+OIL
Class, the simple domain attributes correspond to DAML~+OIL Data TypeProp-
erty concept and complex domain attributes correspond to DAML~+OIL Ob-
jectProperty concept. Moreover, classes are wrapped in both the approches into
description logics. For a more detailed description of ODLs /OLCD translation
see [6]. For a description of the OLCD description logics see [4, 3]

2.2 Wrapping: extracting data structure for sources

The first step of the ontology development process is the construction of a se-
mantic representation of the information sources, i.e. the conceptual schema of
the sources, by means of the common data language ODLjs. To accomplish
this task, we encapsulate each source with a wrapper that logically converts the
underlying data structure into the ODL;s information model. Therefore, the
wrapper architecture and interfaces are crucial, because wrappers are the focal
point for managing the diversity of data sources.

For conventional structured information sources (e.g. relational databases,
object-oriented databases), a schema description is always available and can be
directly translated.

For semistructured information sources, a schema description is in general not
directly available at the sources. In fact, a basic characteristic of semistructured
data is that they are ”self-describing”, hence the information associated with
the schema is specified within data. Thus, in order to manage a semi-structured
source a specific wrapper has to implement a (semi-) automatic methodology
to extract and explicitly represent the conceptual schema of the source. We
developed a wrapper for XML/DTDs files.

Information is available on the Web mainly in HTML format that is human-
readable but cannot easily be automatically accessed and manipulated. In par-
ticular, HTML language does not separate data structure from layout. Thus,
in order to manage these kind of sources, we need a further preliminary step
of extraction: by means of a commercial tool we translate the content of a web
page (data and data structure) into a XML file, then we exploit the previously
developed wrapper XML/DTD to acquire the source descriptions.

We have tested many research and commercial tools, such as Lixto [10],
RoadRunner [8], Andes [16], and we select Lixto as the most suitable for our
approach. By providing a fully visual and interactive user interface, Lixto as-
sists the user to create a wrapper program in a semi-automatic way. Once the
wrapper is built, it can be applied automatically to continually extract relevant

96

information from a permanently changing web page and translate it into a XML
file to be exploited by the XML/DTD wrapper.

2.3 Running example

We consider the creation of an ontology of two web sources related to the Uni-
versity domain. By means of a Lixto generated wrapper, the source content is
translated into XML files according to the DTDs sketched in Table 1.

University Site (UNI) Computer Science Site (CS)
<!ELEMENT UNI(Peoplex)> <!ELEMENT CS(Person*)>
<!ELEMENT People(Research_Staffx*| e
School_Memberx*)> <IELEMENT Person(Professorx|
. Studentx*)>
<IELEMENT Research_Staff (name, <IELEMENT Professor(first_name,
e-mail, Section*, Articlex)> last_name, e-mail, Publication*)>
<!ELEMENT Section(name, year. <!ELEMENT Student(name, e-mail)>
period)> <!ELEMENT Course(denomination,
<VELEMENT Article(title, year, Professor)>
journal, conference)> <!ELEMENT Publication(title, year,
<!ELEMENT School_Member (name, journal, editor)>
e-mail)> <IELEMENT School_Member (name,
<!ELEMENT name (#pcdata)> ... e-mail)>

<!ELEMENT name (#pcdata)>...

Table 1. A fragment of the University (UNI) and Computer Science (CS) DTDs

By means of the XML/DTD wrapper, the obtained DTDs are translated into
ODL;s descriptions. An example of the classes obtained in this step is shown
in Table 2.

2.4 Annotation of a local source with WordNet

With reference to the Semantic Web area, where generally the annotation process
consists of providing a web page with semantic markups w.r.t. an ontology, in
our approach we markup the metadata descriptions extracted by the wrappers,
i.e. the ODL;s schemata, and the reference lexical ontology is WordNet.

The WordNet database contains 146,350 lemma organized in 111,223 syn-
onym sets. WordNet’s starting point for lexical semantics comes from a conven-
tional association between the forms of the words — that is, the way in which
words are pronounced or written — and the concept or meaning they express.
These associations give rise to several properties, including synonymy, polysemy,
and so forth. The correspondence between the words form and their meaning is

97

University Site (UNI) Computer Science Site (CS)

Interface Research_Staff Interface Professor

(Source Un_site.dtd) (Source Sc_site.dtd)

{ attribute string name; { attribute string first_ name;
attribute string email; attribute string last_name;
attribute set<Section> section; attribute string email;

attribute set<Article> article;} attribute set<Publication>
publication;}

Interface Article Interface Publication

(Source Un_site.dtd) (Source Sc_site.dtd)

{ attribute string title; { attribute string title;
attribute string journal; attribute string year;
attribute string conference; attribute string journal;}

attribute string year; }

Table 2. A piece of the University (UNI) and Computer Science (CS) sources in ODL;3

represented in the so-called Lexical Matrix M (see table 3), in which the words
meaning are reported in rows (hence each row represents a synset) and columns
represent the words form (form/base lemma).

|WF1 WF2 WF3 ... WFn

M1|E1,1 E1,2

M2 E2,2

M3 E3,3

Mm Em,n

Table 3. WordNet word form and meanings

Thus, entry E1,1 implies that word form F1 can be used to express word
meaning M1. If there are at least two entries in the same column then the
corresponding word form is polysemous (i.e. it can be used to represent more
than one meaning, exactly two in this case); if there are at least two entries in
the same row then two word forms are synonyms relative to a context.

Given a word form F, its i-th meaning will be denoted by Ffi. For example,
the word form course has 8 meanings in WordNet; the first one is coursefl =
"education imparted in a series of lessons or class meetings".

In the phase of a local source annotation, the integration designer has to
manually choose the appropriate WordNet meaning for each element of the con-
ceptual schema provided by the wrappers. The annotation phase is composed of
two different steps:

98

1. Word Form choice. In this step, the WordNet morphologic processor aids
the designer by suggesting a word form corresponding to the given term.
More precisely, the morphologic processor stems (i.e. converts to a common
root form) the term and checks if it exists as word form.

2. Meaning choice. The designer can choose to map an element on zero, one
or more senses. Notice that the user can only choose a sense among the
existing ones in WordNet, and that is he is not allowed to extend it with his
new meanings.

Notice that, for a compound descriptive term, our tool extracts the component
terms and all these terms are processed by the WordNet morphologic processor.
For example if the attribute name is shipment_received_date then the terms
shipment, received, and date are proposed to the designer. If a term is not
available as word form (this can happen, for example, for an abbreviation), if
there is an ambiguity, or the selected word form is not satisfactory, the designer
can choose another word form of WordNet or manually search for a meaning
of the term. A term that doesn’t find a meaning within WordNet is considered
as unknown term and no lexicon relationship will be derived for it (see next
section).

This phase assigns a name, LEN (this name can be the original one or a word
form chosen from the designer), and a set (that might be empty) of meanings,
LEM,; (a class or attribute meaning is given by the disjunction of its set of
meanings), to each local element (class or attribute) LE of the local schema:

LE = (LEN,{LEM,, ..., LEM}), k >0

For example:

CS.Course = < course, {coursefl} >
UNI.Professor = < professor, {professorfl} >
UNI.School_Member = < student, {studentfl} >

UNI.School Member.name = < name, {nameffl} >

where
courseffl = ’education imparted in a series of lessons or class meetings’
professorffl = ’someone who is a member of the faculty at a college or university’
studentfl = ’a learner who is enrolled in an educational institution’
namefil = ’a language unit by which a person or thing is known’

2.5 Common Thesaurus Generation

The Ontology Builder constructs a Common Thesaurus describing intra and
inter-schema knowledge in the form of relationships SYN, BT, NT, and RT.

The Common Thesaurus is constructed through an incremental process in
which relationships are added in the following order:

1. schema-derived relationships: relationships holding at intra-schema level ex-
tracted by analyzing each schema separately;

99

2. lexicon-derived relationships: These originate from the annotation of the
schemas respect the lexical ontology. WordNet defines a large variety of se-
mantic relations between its meanings. A lexicon relationship between terms
for the common thesaurus is derived from a semantic relation in WordNet
between the annotated meanings of the terms according to the following
correspondences:

Synonymy: corresponds to a SYN relation
Hypernymy: corresponds to a BT relation
Hyponymy: corresponds to a NT relation
Holonomy: corresponds to a RT relation
Meronymy: corresponds to a RT relation
Correlation: corresponds to a RT relation

3. designer-supplied relationships: new relationships can be supplied directly
by the designer, to capture specific domain knowledge. This is a crucial
operation, because the new relationships are forced to belong to the Common
Thesaurus. This means that, if a nonsense or wrong relationship is inserted,
the subsequent integration process can produce a wrong global schema;

4. inferred relationships: Description Logics techniques of ODB-Tools [5] are
exploited to infer new relationships, by means of subsumption computation
applied to a “virtual schema” obtained by interpreting BT/NT as subclass
relationships and RT as domain attibutes.

In our running example, some of the relationships automatically obtained and
proposed at the integration designer are the following:

schema derived: = CS.Professor NT CS.Person

schema derived: = CS.Student NT CS.Person

lexicon derived: UNI.School Member NT CS.Person

lexicon derived: UNI.Article NT CS.Publication
designer-supplied: ~ UNI.Research Staff SYN CS.Professor
inferred: UNI.Research_Staff NT CS.Person

inferred: UNI.Research Staff RT UNI.Article

If the designer accepts and confirms the above relationships, they are included
in the Common Thesaurus.

2.6 Global Virtual View generation

The proposed methodology allows us to identify similar ODL;s classes, that
is, classes that describe the same or semantically related concept in different
sources. To this end, affinity coefficients (i.e., numerical values in the range
[0,1]) are evaluated for all possible pairs of ODLjs classes, based on the rela-
tionships in the Common Thesaurus properly strengthened. Affinity coefficients
determine the degree of matching of two classes based on their names (Name

100

Affinity coeflicient) and their attributes (Structural Affinity coefficient) and are
fused into the Global Affinity coefficient, calculated by means of the linear combi-
nation of the two coefficients. For a detailed description of the affinity coefficient
evaluation, the reader can refer to [7]. Global affinity coefficients are then used
by a hierarchical clustering algorithm [9], to classify ODL;s classes according to
their degree of affinity. The output of the clustering procedure is an affinity tree,
where ODLjs classes are the leaves and intermediate nodes have an associated
affinity value, holding for the classes in the corresponding cluster. Clusters for
integration (candidate clusters) are interactively selected from the affinity tree
using a threshold based mechanism whose parameter are set by the designer.
Regarding the quality of our clustering results the reader can refer to [6] where
a deep discussion of the experimentations results of the use of the strengthened
terminological relationships and affinity-based clustering is reported.

The generation of Global Classes out of selected clusters is a synthesis ac-

tivity performed interactively with the designer: a Global Class GC; definition
is built for each cluster C';. The GVV generation consists of two phases. First,
the system automatically associates a set of global attributes with GCj, corre-
sponding to the union of local attributes of the classes belonging to Cl;. Then,
the system proposes to the designer the restriction of the global attributes set
by exploiting the Common Thesaurus lattice that contains SYN relationships
and BT/NT relationships among local attributes.
For each global class, a persistent Mapping Table M T storing all the mappings
is generated; it is a table whose columns represent the set of local classes which
belong to the cluster and whose rows represent the global attributes. An element
MT[|GA][LC] represents the set of attributes of the local class LC' which are
mapped into the global attribute GA: the value of the GA attribute is a function
of the values assumed by the set of attributes MT[GA][LC]. Some simple and
frequent cases of such function are the following:

— iddentity: the GA value is equal to the LA value; we denote this case as
MT[GA]LC] =LA

— conjunction: the GA value is obtained as a conjunction of the values assumed
by a set of local attributes LA; of the local class LC’; we denote this case as
MT|GA|LC] = LA; and...and LA,

— constant: GA assumes into the local class LC' a constant value set by the
designer; we denote this case by MT[GA][L] = const

— undefined: GA is a set undefined into the local class LC'; we denote this case
as MT[GA][L] = null.

In our running example the integration process gives rise to three global classes:
Globall: (UNI.Section, CS.Course)
Global2: (UNI.Article, CS.Publication)

Global3: (UNI.Research_Staff, UNI.School_Member, CS.Professor, CS.Student)

For each global class a Mapping Table is generated. For example the Mapping
Table for Global2 is:

101

UNI.Article CS.Publication
Title Title Title
Year Year Year
Journal Journal Journal
Conference Conference null
Editor null Editor

Table 4. Mapping Table of the global class Global2 (Publication)

3 Global Virtual View Annotation

In this section, we propose a semi-automatic methodology to annotate a GVV,
i.e. to assign a name, GEN, and a set (that might be empty) of meanings, GEM;
(a class or attribute meaning is given by the disjunction of its set of meanings)
to each global element (class or attribute) GE:

GE = (GEN,{GEMj,...,GEM,}), p >0

3.1 Global Class Annotation

In order to semi-automatically associate an annotation to each global class, we
consider the set of all its “broadest” local classes, w.r.t. the relationships included
in the Common Thesaurus, denoted by GCp:

GCp = {LC € GC|-3y € GC, (LC NT y) V (y BT LO)}

In our example:

GC GCp

GC; |CS.Course, UNI.Section CS.Course, UNI.Section
GC2 |CS.Publication, UNI.Article CS.Publication

GCs |CS.Professor, CS.Person
CS.Person,UNI.School Member,
UNI.Research Staff, CS.Student

On the basis of GCp, the designer will annotate the global class GC as
follows:

— name choice: the integration designer is responsible for the choice of the
GC name: the system only suggests a list of possible names. The designer
may select a name within the proposed list or select another name not inside
the list. In particular, concerning the name and according to the role of the
global class name (to allow the designer to identify the Global Class and
its contents), we consider the name as a label. Therefore, a name might
not be a word form of WordNet. For example, regarding Global Class GC1
(see Table 5), the designer selected the name course between the suggested
Course and Section. Regarding GC3 the designer chose a more significative
name (University-Member) instead of the proposed generic person.

102

— meaning choice: the union of the meanings of the local class names in GCB
are proposed to the designer as meanings of the Global Class. The designer
may change this set, by removing some meanings or by adding other ones.

With respect to our example, the proposed annotations are the following:

GC Names Meanings
GC1 course or section|coursefl
GC2 publication publicationfl
GC3 University_Member |personfl

Table 5. University GVV annotation

3.2 Global Attributes Annotation

We extend the previously used approach for names and meanings of the at-
tributes. Given a global attribute GA of the global class GC, we consider the
set LG A of local attributes, which are mapped into GA:

LGA={LA|3LC € GC,LA € LC N MT|GA|[LA] # null}
and the set of all its “broadest” local attributes, denoted by LGAg:
LGAp ={LA € LGA|-3y € LGA, (LA NT y)V (y BT LA)}

On the basis of LGAg, the designer will annotate the global attribute as de-
scribed for global classes. Moreover, according to mapping function, we may
develop some specific policy to automatically select meanings.

4 Adding a new source

Supporting the evolution of an ontology represents a challenging issue (to be
faced). Many interesting solutions have been developed with regard to this
topic [13,14] and an oustanding idea is to exploit multiple variants of the same
ontology to cope with changes. This approach, called Ontology Versioning, is
different from our proposal where a single ontology is kept consistent with the
sources which refer to.

Within Ontology Builder if new sources are added/deleted, or if some changes
occur in the sources, the corresponding GVV has to change. The integration
process is expensive both for the designer and for the system. For this reason, we
propose a methodology for integrating a new source, which exploits the previous
integration work, i.e., a built-up GVV, without restarting the integration process
from scratch.

103

In the GVV building approach all the sources to be integrated contribute
with the same weight to the process. Therefore, if we consider an already built
GVV and we have to insert a new source which refers to the same ontology, we
can assume that this source brings less semantics than the GVV itself. For this
reason, we devise an integration process of a new source that starts from the
obtained GVV and tries to integrate a new source in the GVV.

In the following, we show how the evolution of a GVV caused by the insertion
of a new source can be strongly simplified by having available the lexicon-based
knowledge of the GVV annotation.

4.1 Integration of a new source in a GVV

The insertion of a new source is managed as an integration process between
two schemata: the GVV and the new source schema; in other words, the global
classes of GVV are considered as local classes and are integrated with the local
classes of the new source.
We show the approach analyzing all the integration phases of the GVV with the
new source. We introduce the following notation:

gcNew the global class of the new integrated schema has a name,
gcNewName and a set of global attributes gcNewAtt;,

gc01d the global class of the old integrated schema has a name,
gcOldName and a set of global attributes gcOldAtt;,

1cNew the local class of the new source has a name,
lcNewName and a set of local attributes 1cNewAtty.

According to the integration methodology, we have to create a Common The-
saurus of the involved sources. In this case, the Common Thesaurus will contain
schema-derived relationships extracted from the analysis of the new source and
intra-schema lexicon-derived relationships obtained by the annotation of the new
source. Further, the GVV global classes have to be semantically enriched accord-
ing to the semi-automatic annotation method shown in section 3. The interesting
point is that the annotation of GVV allows us to discover inter-schema lexical
relationships which enrich the Common Thesaurus.

The next step is the cluster generation followed by Global Classes and map-
ping tables generation. This phase has to provide mapping rules among Global
Classes and new or old local classes. In order to achieve this result, we substi-
tute here old Global Classes with the respective Local Classes. In this way, new
Global Classes that represent old Local Classes and new Local Classes as are
built. Thus we have:

gcNew = {gc0ldy,...,gc0ld,,lcNewy, ..., ,lcNew,}
the resulting rewriter step is:

gcNew = {lcOldu, ...,1c0ldy,,...,1c0ldpy,. ..,
1c01d,, ,lcNews, ... ,lcNew,}

104

With Global Class generation, we observe that, using the same clustering
parameters, an old Global Class 1cy,...,1c;,...,1lc, changes only if the in-
tegration process inserts one or more new local classes (1cNew;) into the Global
Class. Therefore, we observe that the following cases are possible:

a) A new global class gcNew is composed of only one old global class (gc01d)
and one or more new local classes (1cNew;):

gcNew = {gc0ld,1lcNewy,...,lcNew;,...,1cNew,}

The new global class (gcNew) may have new global attributes generated from
the semantic contribution of new local classes. New mapping rules are defined
among a global attribute and its corresponding local attribute(s). In this case,
global attributes belonging to the gc01d (gc01dAtt;) may map both local classes
of the old Global Class and new local classes (see the columns associated to
lcNew;, for example). New global attributes can only map new local Classes
(null mappings in the following table).

So we can say that meanings associated to each global attribute are:

— The meaning of old global attributes have to be enriched with the meanings
of the new local classes mapped by these attributes;

— The meaning of new global attributes have to be set according to the rules
defined before (see 3.2).

lcOld1| |lcOld;C lcNewlIlcNewt|lcNewn
gcOld Attty
e the same mappings as in gcOld
gcOld Att.m, new mappings
gcNewAtty

null mappings

gcNewAtt,

Table 6. New mapping table example.

b) A global class of the new integrated schema is composed of only new local
classes:

gcNew = {lcNew;,...,lcNew;,...,lcNew,}

This situation describes the case in which the GVV is extended without
interfering with the previous one.

The new global class (gcNew) has a name (gcNewName) and a set of new
global attributes (gcNewAtt;), where each new global attribute maps only new
local attributes. The names and meanings of the global attributes are defined
following the rules stated before (see 3.2).

105

c) A global class of the new integrated schema is composed of more than one
global class of the GVV and at least one local class of the new source we are
integrating.

gcNew = {gc0ldy,...,gc0ld,,1cNews, ... ,1cNew;, ... ,lcNew,}

In this case the previous GVV is modified; side effects can influence the
applications based on the previous schema. The new global class (gcNew) has a
name (gcNewName) and a set of new global attributes (gcNewAtt;).

5 Concluding remarks

In this paper, we presented a methodology for supporting the semi-automatic
building, annotation and extension of a domain ontology obtained by integrating
web documents with the Ontology Builder component of the SEWASIE System.
Talking about the evolution issue and, in particular, the addition of a new source,
we had to face two different problems: the system overload to maintain the built
ontology corresponding to the involved sources, and, the insertion of a new source
that may modify the existing ontology, with a side effect to each application
based on the ontology.

We tried to solve both problems and the most relevant advantages of our
methodology of integrating a new source into a GVV is that the process is less
expensive than starting from scratch and it is done starting from semantically
annotated results of previous integration processes. Possible limitations are:

— mistakes of the previous integration process might propagate to the new
GVV;

— the new GVV is based on the previous one, and so it might not perfectly
represent all the sources.

Acknowledgements

This work is supported in part by the 5th Framework IST program of the Eu-
ropean Community through project SEWASIE within the Semantic Web Action
Line. The SEWASIE consortium comprises in addition to the authors’ organi-
zation (Sonia Bergamaschi is the coordinator of the project), the Universities
of Aachen RWTH (M. Jarke), Roma La Sapienza (M. Lenzerini, T. Catarci),
Bolzano (E. Franconi), as well as IBM Italia, Thinking Networks AG and CNA
(Association of SMEs) as user organizations.

References

1. D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti, G. Malvezzi,
M. Melchiori, and M. Vincini. Information integration: The momis project demon-
stration. In VLDB 2000, Proc. of 26th International Conference on Very Large
Data Bases, 2000, Egypt, 2000.

106

11.

12.

13.

14.

15.

16.

. D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The MOMIS ap-

proach to information integration. In AAAI International Conference on Enter-
prise Information Systems (ICEILS 2001), 2001.

D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Consistency checking in
complex object database schemata with integrity constraints. IEFEE Transactions
on Knowledge and Data Engineering, 10:576-598, July/August 1998.

D. Beneventano, S. Bergamaschi, and C. Sartori. Description logics for semantic
query optimization in object-oriented database systems. ACM Transaction on
Database Systems, 28:1-50, 2003.

D. Beneventano, S. Bergamaschi, C. Sartori, and M. Vincini. ODB-Tools: A de-
scription logics based tool for schema validation and semantic query optimization
in object oriented databases. In Proc. of Int. Conf. on Data Engineering, ICDE’97,
Birmingham, UK, April 1997.

S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration
of heterogenous information sources. Data and Knowledge Engineering, 36(3):215—
249, 2001.

S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing
of heterogeneous data sources. IEEFE Transactions on Data and Knowledge Engi-
neering, 13(2), 2001.

Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: auto-
matic data extraction from data-intensive web sites. In SIGMOD Conference,
2002.

B. Everitt. Cluster analysis. Heinemann Educational Books Ltd, 1974.

. R. Baumgartner S. Flesca and G. Gottlob. Visual web information extraction with

lixto. In the 27th International Conference on Very Large Data Bases (VLDB
2001). Roma, Italy, September, 2001.

T. R. Gruber. A translation approach to portable ontology specifications., volume 5.
1993.

N. Guarino. Formal ontologies and information systems. In Proceedings of the
International Conference on Formal Ontology in Information Systems (FOIS’98),
Trento, Italy, june 1998.

J. Heflin and J. Hendler. Dynamic Ontologies on the Web. In In Proceedings of
the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages
443-449. AAAI/MIT Press, 2000.

M. Klein and D. Fensel. Ontology Versioning on the Semantic Web. In First Intl’
Semantic Web Working Symposium. 2001, 2001.

M.Lenzerini. Data integration: A theoretical perspective. In Lucian Popa, edi-
tor, Proc. of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 233-246, Madison, Wisconsin, USA, 2002.
ACM.

Jussi Myllymaki. Effective web data extraction with standard xml technologies.
In WWW, pages 689—696, 2001.

107

108

Ontologies : A contribution to the DL/DB
debate.

Nadine Cullot!, Christine Parent®, Stefano Spaccapietra?, and Christelle
Vangenot?

! LE2I Laboratory, University of Burgundy,
BP 47870, 21078 Dijon Cedex, France
nadine.cullot@u-bourgogne.fr,

2 Database Laboratory, Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland
stefano.spaccapietra@epfl.ch,christelle.vangenot@epfl.ch
3 University of Lausanne, CH-1015 Lausanne, Switzerland
christine.parent@unil.ch

Abstract. The move to global economy has emphasized the need for
intelligent information sharing, and turned ontologies into a kernel is-
sue for the next generation of semantic information services. The push
towards an effective use of ontologies as a means to achieve semantic in-
teroperability is, in our opinion, shifting the focus from purely taxonomic
ontologies to more descriptive ontologies. These would namely provide
agreed descriptions of the data structures representing the complex or-
ganization of objects and links of interest within the targeted domain.
This paper analyzes the requirements for such descriptive ontologies,
and contrasts the requirements to the functionality provided by some
current representative approaches that have been proposed for ontology
management. Selected approaches originate from research in artificial in-
telligence, knowledge representation and database conceptual modeling.
The paper concludes that extending rich semantic data models with sup-
port for reasoning is an interesting alternative to extending description
logics with data management functionality.

1 Introduction

Information sharing, rather than information processing, is what characterizes
information technology in the 21st century. Consequently, ontologies gain in-
creasing attention, as they appear as the most promising solution to enable
information sharing both at a semantic level and in a machine-processable way.
Ontologies by definition provide an encoded representation of a shared under-
standing of terms and concepts in a given domain, as agreed by a community of
people. But ontologies are not all alike. At least three orthogonal criteria may
be used to differentiate among them.

Ontology Focus. Wordnet (http://www.cogsci.princeton.edu/ wn/) is the most
well-known representative of first-generation ontologies that basically provide

109

definitions of terms and are intended to be used as sophisticated thesauri. Their
structure shows terms organized into a subsumption hierarchy (each term con-
veying the definition of a more specialized concept than its parent term), and
linked by other relationships to express synonymy, composition, etc.... This kind
of ontology, usually referred to as taxonomic ontologies, is useful in information-
sharing infrastructures to provide a reference vocabulary for aligning names
denoting data in different data sets. Other ontologies reach beyond terminol-
ogy, defining conceptualizations that include the representation of properties
of concepts and their interrelationships. These ”descriptive” ontologies resem-
ble database schemas, showing concepts interconnected by a variety of semantic
associations to achieve a semantically rich representation of the intended do-
main. An example (out of the many existing ones) is InMunoGeneTics, an in-
ternational medical ontology (http://imgt.cines.fr). These ontologies are useful
in information sharing to align existing data structures (not just terms) into
an integrated description of the corresponding domain, or, in a top-down per-
spective, to provide patterns for the definition of new, specialized ontologies or
database schemas.

Ontology Scope. The term scope here refers to the intended use of the on-
tology. Ontologies may be designed and used for purely explanatory purposes,
i.e., as a service to enable the understanding of some domain. Such ontologies
usually come without associated instances, as these are at a level of detail whose
representation is most often not relevant. Ontologies may also serve as a means
to actually support some data management services. Such ontologies have as-
sociated instances, stored in either a database or a semi-structured data set in
e.g. a web server. In the latter case, the ontology plays the role of a database
schema in guiding access to the data in the web server. In the former case, the
ontology may either be used just to assist in the design of the database schema
by providing background semantic information, or as an operational component
in the information management architecture, providing access functionality that
is additional to those typically provided by a DBMS. A characteristic exam-
ple of additional functionality is the management of incomplete data. The split
between explanation (non instantiated) and management (instantiated) ontolo-
gies is orthogonal to the split between taxonomic and descriptive ontologies. A
taxonomic ontology serves a data management goal if it contains, for instance,
references to databases where the user may find data corresponding to a given
term or concept, thus facilitating information retrieval. Descriptive ontologies
defined by some standardization body for a given application domain are ex-
planatory. They hold generic abstractions of a domain, not aiming at managing
a specific database. However, descriptive ontologies, looking very much alike a
database schema, are natural candidates for being used for data management.

Ontology Context. Ontologies traditionally convey a single, monolithic con-
ceptualization, supposedly stating the truth, i.e., how the described domain
should be understood. But many different conceptualizations may exist for the
same real word, each one defining a view shared by some user community. Con-
textual ontologies have been proposed to support alternative views of the world.

110

They provide definitions and descriptions that are context-dependent, thus sup-
porting use from inhomogeneous user communities. The advantage of a con-
textual ontology, versus the alternative to have independent ontologies (or a
hierarchy of ontologies), is that in a contextual ontology it is very easy to sup-
port navigation among contexts, i.e. dynamically moving from one context to
another. Another advantage is to have a multi-context vision of the world avail-
able as a single consistent whole. This is particularly important when updating
ontologies is considered and update propagation from one context to another is
desirable.

While the traditional use of ontologies is more on the taxonomic and ex-
planatory side, there is a tangible push to move towards descriptive, and even
management-oriented ontologies, in order to use them as a key component in
data integration frameworks. In such frameworks ontologies do not refer any-
more to arbitrary, abstract perceptions of the real world. They describe some
defined subset of the real world that is actually represented in the stored data.
The increase in similarity between ontologies and database schemas [1] arises
a legitimate question about the appropriateness and effectiveness of using a
conceptual modeling approach (that has proven to be the best to elaborate a
semantically rich description of the data in a database) to describe the conceptu-
alization that is the subject of an ontology. In other terms, could the conceptual
modeling know-how provide an interesting alternative to traditional description
logic (DL) based approaches? This debate is still open. Some strong propos-
als from the database [2] and knowledge representation communities [3] already
challenge the corpus of work more directly framed in the context of description
logic and its reasoning capabilities (DAML+OIL [4]). The purpose of this paper
is to contribute to the debate a detailed analysis of requirements for the descrip-
tion and use of what we believe will become the leading ontology framework,
i.e. descriptive and, in the longer term, management ontologies. The paper also
analyzes differences and complementarities between proposed approaches to on-
tology description and use. We conclude that enhancing conceptual models with
reasoning support may be the best way to make ontologies operational in data
integration frameworks.

The next section briefly introduces selected related work and representative
proposals for ontology management. It also introduces the conceptual model we
propose. Its facilities are illustrated using a simplified example (borrowed from
[2]) of a scientific conference ontology. The same example is used throughout
the paper. Section 3 discusses ontology requirements, focusing on differences
with traditional database requirements. The highlighted issues are detailed in
the sequel of the paper. Section 4 focuses on the comparison of the data models.
Section 5 deals with how instances are handled. Section 6 analyzes constraint
specification and consistency checking. Query languages are discussed in section
7. Some additional features for ontologies are described in section 8, before the
concluding remarks.

111

2 Related work

Interactions between the ontology and conceptual modeling domains is a topic
of rapidly growing interest for both communities, as witnessed by looking, for
instance, at the number of ontology-oriented contributions at the last ER con-
ference on Conceptual Modeling. The present workshop on Semantic Web and
Databases is another clear sign of interest into these interrelationships.

A well-worth-reading starting point when targeting a comparison of models
for ontologies is the paper by D. McGuinness [5], which provides interesting
insights into a historical perspective of description logic developments, explaining
how emerging applications such as those on the web have motivated the use of
description logics.

A. Borgida and R.J. Brachman [6] adopt a conceptual modeling perspective
to discuss ontology modeling issues, looking in particular at object-based as-
pects and DL. They highlight some weaknesses of DL in representing structured
values, some kinds of constraints, and some forms of ”inheritance” (for material-
ization) and meta-information for conceptual modeling. Conversely, they identify
strengths of DL as its specific features to specify primitive and defined concepts,
necessary and sufficient conditions, and its reasoning tools. We pursue the same
comparative analysis by addressing more specifically ontology requirements and
complementing the comparison of the database conceptual models and descrip-
tion logic approaches for modeling with two other issues: Instances handling and
querying.

The comparative analysis of Entity Relationship (ER) models and DL pro-
posed in [7] develops the transformation of ER schemas into knowledge bases.
The chosen description logic, DLR [8], is a generalization of description logic
for n-ary relations. The authors argue that the semantics of ER models can be
captured by DLR. They also address querying issues, showing that DL queries
can only return subsets of existing objects, while database queries may also cre-
ate new objects. Desirable extensions of standard DL queries are discussed. Our
work also focuses on the comparison of conceptual models and DL. We comple-
ment their analysis by adopting the reverse viewpoint: We aim at identifying
desirable extensions of conceptual models to better address ontological issues.
We actually follow the path lead by R. Meersman [1], who argues that methods
and techniques originally developed for database conceptual modeling and large
databases management could be relevant for ontologies.

His DOGMA project is one of those we explicitly discuss in this paper. Indeed,
to substantiate our analysis on trends in ontology management, we have looked
in detail at proposals that we felt were good representatives of the alternative
approaches from the research communities in artificial intelligence, knowledge
representation, and databases.

Artificial Intelligence Approach and Reasoning. Description logics and their
associated inference techniques have been extensively used as formal theories on
which several ontology languages have been defined. We have chosen RACER
[9] to represent this research area, because it has a wide range of applicability
as it includes instance management facilities. RACER is a description logic rea-

112

soning system based on the SHZQ logic [10], [11]. RACER separates the formal
description of the ontology schema (denoted as the TBox) from the description
of individuals (in the ABox). RACER modeling constructs include:

— Concepts. They are atomic types defined by their names. Logical expressions
may be attached to them, thus allowing designers to define *: a) subsump-
tion hierarchies, e.g. (implies Author Person), b) constraints associated to a
concept, e.g. (implies Author (at-least 1 Writes)), ¢) stand-alone constraints,
e.g. (disjoint Person Committee Review Paper Topic), and d) a new concept,
using a logical assertion, e.g. (equivalent PCAuthor (and Author Reviewer)).
Concepts defined by a logical assertion are called ”defined concepts”, as op-
posed to the other ones called ”primitive concepts”.

— Roles. They define binary relationships between a domain concept and a
range concept, e.g., roles (Writes: domain Author :range Paper). Roles played
by a concept can be qualified using quantified restrictions (some, all) and
numeric restrictions (at-most, at-least, exactly). Roles may be transitive,
symmetric, and functional. They can have an inverse as well as super-roles.

— Domain of values. Integer and real named domains of values can be defined.
But attributes, i.e. binary links from a concept to a domain of values, cannot
be defined within the schema. Attribute values are dynamically defined and
associated to instances of concepts. Lastly, RACER allows users to define in
an intentional way, i.e. by a logical expression, characteristics of instances.
For example, one can state that paper p100 has been written by exactly one
author: (instance p100 (and Paper (exactly 1 WrittenBy))).

Artificial Intelligence Approach and Knowledge Representation. We chose
KAON [3] as a representative proposal transferring a knowledge representation
know-how into the ontology domain. KAON is an ontology and semantic web
framework allowing the design and management of ontologies. It includes an
ontology modeling language based on RDF(S) with some proprietary extension
and a conceptual query language. KAON supports modularization through the
recursive definition of sub-models. Each sub-model has (similarly to RACER)
two components:

— An ontology structure, holding definitions of concepts, oriented binary re-
lationships between concepts, and attributes. Relationships may be sym-
metric, transitive and have an inverse. Minimum and maximum cardinality
constraints for relationships and attributes may be specified. Concepts and
relationships can be arranged in two distinct generalization hierarchies.

— An instance pool, holding concepts and relationship instances and attribute
values. Specific to KAON is the possibility to have spanning objects, i.e. a
real world entity being represented both as a concept and as an instance.

Database Approach. DOGMA [2] is an ontology engineering framework based
on the ORM (Object-Role-Modeling) conceptual model[12]. ORM is a binary
relationship data model. DOGMA splits the ontology into two parts:

4 Examples refer to the Conference ontology illustrated in Figures 2 and 3 in RACER
(and in Figure 1 in MADS).

113

— The ontology base, holding the data structure. Its definitions may be con-
textualized using a context name.

— A set of ontological commitments. A commitment is a set of integrity con-
straints (e.g., definition of identifiers, cardinalities) that govern the ontology
for its use in a specific application. The idea is that the ontology base holds
generic knowledge about a domain, while its association to a commitment
set specializes the ontology for a given application within the domain.

Our approach to ontology modeling also belongs to the database inspired
track. While DOGMA (as description logics and KAON) organizes the world
as a collection of object tokens associated to properties and interrelated by bi-
nary relationships, we favor a more synthetic view, as supported by complex
object data models (e.g., UML, extended ER models, semantic models). MADS
[13] is such a data modeling framework. MADS is a spatio-temporal conceptual
model that handles complex objects (i.e., objects with a multi-level attribute
structure, where an attribute can be composed of other attributes), n-ary rela-
tionships with attributes, generalization hierarchies, multi-instantiation, as well
as spatial, temporal and contextual features (context is materialized by stamping
definitions, values and instances to express for which context they are relevant
[14]. Both object and relationship types are first class constructs. MADS has as-
sociated data manipulation languages. The MADS framework includes a visual
schema editor, a visual query editor and the associated mappings onto existing
DBMS. It provides users with an integrated environment where they can work
at the conceptual level for both designing and querying the database. Figure 1
uses traditional ER diagrammatic techniques to show a MADS data structure
(without space, time, and contextual features) for our running example about
activities and contributors of a scientific conference.

3 Ontology Requirements

This section holds introductory discussions of the four major components of an
ontology management approach: How the conceptualization is described, how
associated instances are managed, how reasoning is performed, and how data is
queried. The discussion points at similarities and differences between ontology
requirements and requirements for traditional databases. Sections 4 to 7 look in
more detail into each issue.

Data Modeling. As we believe future ontologies will be descriptive rather than
purely taxononmic, we assume the conceptualization includes the definition of
relevant data structures. For instance, Figure 1 can be interpreted as illustrating
an ontology data structure for management of conference reviews. Representing
the knowledge that ” papers are assigned to reviewers” as a data structure show-
ing a relationship type linking the two complex object types defining papers
and reviewers, is semantically richer than embedding the same semantics in the
separate definition of three terms (paper, reviewer, assignment) in a taxonomic
ontology. On the contrary, binary data models a la DOGMA, KAON, and de-
scription logics may provide a good solution for taxonomic ontologies: Concepts

114

lame

irstnames 1: n list

!) dress irstline
Cname Committee [~ ity
: ipcode
untry
title
Reviewer
name
ks O:nlist
marks p#
. title
tem sore date_received
SubTopic
Objecttype Relationshiptype Generalisation / Attribute

Specialization

Fig. 1. MADS schema for the scientific conference ontology.

may represent terms and binary links may represent the classic taxonomic re-
lationships, e.g., synonym, homonym, hyponym, holonym. Defining a semantic
data structure is also an extremely efficient support for visualizing in an intel-
ligent and intuitive way how the domain of interest is articulated into its many
concepts. The capability to visualize the structure of a domain has always been
one of the best selling arguments for conceptual models and their acceptance
by users. It also has been concerns of knowledge representation systems [15]. Of
course, this argument is irrelevant if the ontology is automatically built using
some emergent semantic technique, or if the ontology is explored by agents only.
Aiming at expressiveness of concepts for the representation and definition of
data structures, powerful conceptual data models naturally appear as the best
candidate. They have been purposely and carefully developed to enable building
representations that are as rich and as close as possible to human perception.
They have proven to be quite successful with users. The same benefits can be
expected in using them to build ontologies. A number of researchers [16], [17],
[1] have already argued in favor of "highly intuitive” ontology models with a
”frame-like look and feel” or ”database schema” alike. We support this view-
point. Nevertheless, ontologies may require even higher expressiveness than con-
ceptual models, as, beyond modeling, they aim at supporting reasoning on the
description of the domain of interest. As will be shown hereinafter, this requires
extending current conceptual data models with some additional features.
Instance Handling. Instances always exist in a database (except during the
design phase), the main purpose of a DBMS being to provide efficient services
for storing and handling the instances. As seen in section 1, instances do not

115

necessarily exist in an ontology. While in a database framework there is a clear
separation between the schema (metadata) and the instances (data), and the
schema definition is completed before instances are created, this separation is
not always enforced in ontological frameworks, where instances may be created
anytime. The database approach is normative, in the sense that the database
schema defines how the world is, and instances are accepted only if they fully
comply with the definitions and constraints stated in the schema. The ontology
approach is only partly normative, as it accepts instances as long as they do not
explicitly contradict the knowledge already in the ontology, without requiring
that all expected data being present. When an inference mechanism finds that
an instance should hold a characteristic that is not present, the ontology assumes
that the instance does hold it. In other words, databases work with a closed-world
assumption, while ontology systems apply an open-world assumption.

Reasoning. The ontology world seems to follow a collaborative approach,
where the conceptualization at hand may continuously evolve through updates
from a community of users, without a normative policy or sequence ruling the
process. For example, the specification of a concept (e.g., the Paper object type
in the conference example) may be changed anytime, irrespectively of the fact
that the ontology holds instances of the concept. In the ontology approach, the
specification of a concept defines the condition that its instances must verify. At
any time instances are classified in concepts according to these specifications. If
the specification of the concept or the characteristics of the instance are modified
the classification of the instance is automatically updated. This flexibility is
enabled by the existence of powerful reasoning mechanisms. An even higher
flexibility is provided in ontology approaches that support so-called spanning
objects [18] i.e. objects that are both at the instance and at the type level (these
objects are both source and target of instance-of links). For example in [18], an
Ape may be an instance of the Species type and a type for ape objects. Although
theoretically possible by introducing a meta-schema level, spanning objects are
not supported by database technology, which for pragmatic reasons limits its
interest to the two basic levels, schema and data.

Queries. Querying in databases is used to retrieve data. Queries are expressed
on the schema, which is supposed to be known to users that want to formulate a
query. Ontology users are more prone to start their search for data by wondering
about what information is actually held by the system. These users (or agents)
will first query the ontology schema, to identify what relevant information exists,
and then proceed to query the data to extract the desired information from the
underlying databases.

4 Data Modeling

In the previous section, we have argued that, due to strong similarity between
descriptive ontologies and database schemas, conceptual data models are good
candidates for ontology modeling. In this section we analyze differences between
constructs in conceptual models and in current ontology proposals.

116

Object Structure. Ontology models, as we have seen, adopt a binary (also
termed functional) approach. Objects are mere tokens (i.e., objects with only
an identity and no value) that gain their semantics through binary relationships
with other objects or value domains. The known disadvantage of the approach is
that a real world entity is scattered into its most elementary pieces and the vision
of the thing as a whole is lost. Conceptual models, like MADS, that support
complex (NF2like) object structures can represent each real world entity as a
single object. This greatly reduces the complexity of the schema. Figures 1, 2 and
3 show that, even for an over-simplified example, the difference in readability
is important. The MADS diagram in Figure 1 only needs 7 object types, while
the equivalent DL diagram needs 27 objects types. The latter also doubles the
number of relationship types if its inverse roles have to be represented. The gain
in semantic expressiveness induced by complex objects is worth the additional
challenge in implementation.

Object Identity. There is a general agreement that object instances should
have a unique object identity. Originally, object identity is system defined and
not visible to users. Some ontology approaches (including KAON and RACER)
leave it up to users to define the identity of each object. In our opinion, this
policy hardly scales up to the very large sets of instances that may be expected
in future ontologies.

Generalization Hierarchy. Is-a links, with population inclusion semantics and
property inheritance, and generalization hierarchies (or lattices) are standard
constructs in both ontology languages (where the term subsumption is often
preferred to the term is-a) and conceptual models. Notice that rules for gener-
alization hierarchies in conceptual models may differ significantly from object-
oriented models rules. MADS, for instance, allows an object instance to dynami-
cally gain (or loose) membership in (or from) other classes. MADS also supports
multi-instantiation, i.e. a real world entity can be represented by several instances
belonging to different classes. For example, a person can be both an author and
a reviewer. A generalization hierarchy may similarly be defined on relationship
types. DL models follow a similar approach. However, they have different de-
fault assumptions. In KAON and DL models (e.g. RACER), by default any two
concepts may contain common instances. In conceptual models, like MADS, by
default two object (or relationship) classes with no common ancestor in the gen-
eralization hierarchy (but the root) are disjoint. With the permissive approach
of DL, non-careful users may unwillingly create unwanted multi-instantiations
that are automatically deduced by the inference engine from their assertions.

Defined constructs, views and derivations. The main goal of ontologies, sup-
porting precise definitions of concepts in relation to other concepts, is fulfilled
by the possibility to define concepts using an intentional formula. For example,
based on the Conference ontology, one may want to define new concepts such as
PCPaper (to represent papers submitted by at least one member of a commit-
tee), ChairPerson (persons chairing a committee), and SwissAuthor (authors
from Switzerland). In DL these defined concepts are managed exactly in the

117

10

I IsChairedb y 1:3 '

Committee 7
IsMemberCommittee 1:1
IsPerson 1.1
HasCommitteeName ~ 1:1 HasMembers Member
IsCommitteeNameof 11 :
IsMemberRoleof HasMemberRole
11 11
CommitteeName Revieer Author

@ Role

HasReviewed 0:10

IsWrittenBy 1. n

IsReviewDateof 1:1
HasReviewDate 1: 1

Assigns 0:10

IsReviewedBy 1.1

IsConcernedBy 0:5

HasTopic 0: n IsTopicOf 0:n

Topic <

IsSubTopic 0: n HasSubTopic 0: n

HasPersonName
PersonName

IsPersonNameol @1
i Person :
[; HasPersonFName 1 n

|sPersonFNameof
Locatesl :1 IsLocatedAt 1:1 11

AddressFLine

HasAddressCity ~ 1:1
IsAddressCityOf1 :1

ReviewDate Review

IsAssignedTo 05

Writes1: n

HasTopicName 1.1

TopicName

IsTopicNameof ~ 1:1

11

PersonFName ~ ——Number

Address

AddressCity

IsAddressCountryOf ~ 1:1 \
IsAddressZipCodeOf 1:1 \
HasAddressCountry 1.1 HasAddressZipCode
1

AddressCountry AddressZipCod
|:| 0 AttributeName

Attribute (Concrete Domain Concepts)

Concept Role
Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 2. Scientific Conference Ontology Snapshot with DL formalism (Partl)

118

11

same way as the other concepts (the primitive ones), which means, among other
things, that they belong to the same generalization hierarchy.

Databases, interested in redundancy-free schemas and data, are not prone
to support defined constructs. Nevertheless, some DBMS provide a somehow
similar functionality through views and derived constructs. Views are relations
(or object classes) defined by a query. Their goal is to provide users with an-
other presentation of a subset of the database in order to make user querying
easier. Views do not belong to the database schema. They form an external
level that acts as an interface for the users. In terms of supporting derivation
mechanisms, some conceptual models allow designers to associate to an object
class (or relationship class or attribute) an expression that automatically gen-
erates the instances of the class (or the values of the attribute). The designer
also explicitly defines the structure of the derived class and its position in the
generalization hierarchy. Only the identities of the instances (the values, in case
of an attribute) are automatically inferred. An example of a derived construct is
a cluster of is-a links defined by a classifying attribute whose value determines
which sub-class each instance belongs to. Another example is MADS support of
derived topological relationships. For instance, a derived inclusion relationship
On may be defined to link two spatial objects classes Parcel and House: Each
time the geometry of a house is inside the geometry of a parcel, the system
automatically generates an instance of the On relationship that links the house
and the parcel.

Let us compare these three mechanisms using the following criteria:

— Which modeling constructs can be defined, derived or can be a view? Descrip-
tion logics support defined concepts and roles. Both relational and object-
oriented DBMS support views for their main construct only: tables or object
classes. MADS supports derived spatial and temporal relationships and de-
rived attributes. Defined object classes could be implemented by queries
whose resulting type would be added to the database schema. Description
logics, RACER, and KAON also support some kind of derived relationships:
Instances of transitive, symmetric, and inverse roles are automatically in-
ferred. DOGMA supports symmetric cyclic relationships.

— What is the status of the defined, derived construct, or view? In DL there is
no difference between defined and primitive concepts except their definition.
In databases the specificity of a derived construct is that it cannot be in-
stantiated directly by users. View is a special construct that does not belong
to the set of constructs of the data model.

— How powerful is the defining formula, derivation expression, or the query
defining a view? As the data model of DL is based upon token objects,
DL formulas have to define identities only, while in databases derivation ex-
pressions and queries for views have to define identities with the associated
structured values. Another difference is that DL formulas define only sets
of existing instances, while queries can be either object preserving (defin-
ing new representations for existing objects) or object generating (creating
new objects with new oids). Examples of such queries for the Conference

119

12

ontology are, respectively: PCPaper, the set of papers written by at least
a member of a committee, and the new relationship class ReviewerAuthor
that links each author to each of his/her reviewers. Borgida [19] showed that
DL formulas have a limited power compared to databases query languages.
They are equivalent to first order logic with 3 variables. For instance, it is
easy to write a query that finds the papers that have been assigned to one of
their authors (an error of assignment), while in DL it is impossible to write
the equivalent formula. As for derivation expressions, they vary according
to the data model. Often they are predefined and therefore are expressions
with limited power.

In conclusion, one could roughly say that conceptual models are better at de-
signing primitive concepts because they can describe more complex structures,
closer to the real world, and because they support appealing visual diagrams
and design tools. ® They also support derived constructs whose instances can
be automatically inferred. But, contrarily to models based on DL, they do not
support defined constructs that designers can define by a logical formula without
knowing where they will fit in the generalization hierarchy or even knowing the
generalization hierarchy.

5 Instance Handling

Ontologies may include instances, as databases routinely do, as part of their
domain of interest. To realistically manage large sets of instances, storage and
transaction management mechanisms that support security, concurrency, relia-
bility, query optimization, and scalability are needed. As this is exactly what
a DBMS provides, DOGMA, KAON, and MADS delegate such services to an
underlying DBMS. KAON, for example, stores ontology instances in a relational
database [18]. DOGMA, KAON, and MADS are built as a layer in between
users and the DBMS, providing an ontological or conceptual modeling perspec-
tive on the data. RACER, instead, uses a proprietary file system, which limits
portability and does not provide all of the above services. Instance manage-
ment includes manipulation facilities such as insertion, deletion and updating.
They should be accessible both via some user-oriented assertional language (&
la SQL, for example) and via some API providing one instance at a time access.
Both types of DML are fully supported by a DBMS. RACER provides only el-
ementary facilities. Attribute values as treated as objects, which requires three
operations to define a value for a simple attribute of an instance: (1) creation
of an object-value, (2) assigning the value to the object-value, and (3) linking
this object-value to the instance. DOGMA, KAON, and MADS offer (or plan to
offer) a conceptual DML that corresponds to the data modeling paradigm they

5 In order to achieve readibility and understandability by users, visual diagrams pur-
posely limit their expressive power to a subset of the concepts in the conceptual
model. They are complemented with textual specifications that complete the de-
scription of the schema.

120

13

use. Users can, as in RACER, load and manipulate instances that obey the rules
of the ontology, without having to consider the representation format used to
store instances.

Ontologies, however, need additional manipulation facilities. DBMS users
are expected to know the schema and issue manipulation requests that conform
to the schema and the associated constraints. For example, to insert a new
instance users have to explicitly specify its type and to provide its value and links.
Moreover the value and links have to obey the format and constraints defined for
this type. Description logics assume users (humans or agents) may be only partly
(if at all) aware of the schema (concepts and role definitions). A DL schema hence
acts like a set of sufficient conditions that define the membership of the instances
to concepts (or roles). Therefore, DL systems allow users to insert a new instance
giving only an intensional definition (i.e., a logical formula) characterizing the
target concept. The reasoner then computes the concepts the instance belongs to.
Finding the most specific concepts an individual belongs to is called realization.
For example, RACER supports the definition of an instance by specifying its
properties instance Mary (some Writes Paper) and realization allows finding its
most specific concepts. The system will deduce that the instance Mary is an
instance of Author. Realization may be much more complex than in this very
simple example.

Database systems are not meant to provide such looseness in instance ma-
nipulation. As already stated, they are normative. They follow the closed world
assumption, stating that only information that is present in the database (or
derivable by explicitly defined derivation rules) is valid. Consequently, they do
not need sophisticated reasoners to infer additional information. DL systems nat-
urally adhere to the open world assumption, which assumes that present data
is just the explicitly known subset of the valid data, and more valid data may
be inferred by sophisticated reasoning. Thus, if an assertion implies a deduced
fact that is consistent with all known assertions and instances, then the fact is
assumed to be true even if it is not present in the instance set. Otherwise stated,
an insertion in DL is always treated as the insertion of incomplete information.
For example, a database will accept the insertion of the above instance Mary in
Author only if it comes with the insertion of (at least) one instance of the Writes
relationship involving Mary. RACER accepts the insertion of the single Mary
instance, deducing that the paper written by Mary is presently unknown (see
[20], for more on this discussion). In addition, Recognition is performed when an
already existing instance of a concept acquires (or loses) a characteristics and
therefore gets (or loses) a new instantiation in another concept. For example,
on the insertion of a new role instance linking a Person instance p to a Paper
instance, RACER infers that p is also an instance of Author.

6 Constraints

In the database world, constraints significantly enrich data description. They
state rules that apply in the real world of interest (e.g., one paper has at least

121

14

one author) and rules that define the conditions for real world phenomena to
be or not to be of interest for the intended application (e.g., a committee is not
registered in the database before at least one of its members is registered in the
database). Constraints, as other schema definition statements, are understood
in the DB world as normative specifications. They entail consistency-checking
mechanisms, to verify that instances in the database satisfy all constraints. DL
languages are also able to express rules similar to database constraints (e.g.,
min-max cardinalities). However, only some of them actually constrain the in-
stances in the A-Box. For example, a maximum cardinality specification acts as
a constraint as an attempt to create more instances than allowed would result in
an inconsistency that is detected and rejected. On the other hand, a minimum
cardinality specification only acts as a descriptive feature, as a DL system would
accept, e.g., the creation of a paper without an author, simply assuming that the
information in the instance base (the A-Box) is temporarily incomplete. We be-
lieve that the possibility to define normative constraints, as in the DB approach,
is a desirable feature also for ontologies.

There are such a variety of constraints that data models almost necessarily
only include part of them in their constructs. Implicit model constraints rule the
use of modeling constructs and are built-in in the data model, i.e. they act as
syntactic constraints that are automatically enforced by the data management
interface. For instance, in RACER a role definition has to specify a domain and
a range; in conceptual data models a relationship type is only allowed to link
object types, and a relationship instance is not allowed to have pending roles; in
both DL and DB models cycles of is-a links are forbidden. Explicit definition of
constraints is used to describe the semantics of the domain/ontology. According
to the approach, they come in two different ways. 1) Embedded constraints are
expressed using dedicated constructs in the data model. Examples include car-
dinality and identifier specifications (e.g., the NOT NULL and PRIMARY KEY
clauses in relational DBMS), set constraints on groups of roles or is-a links (e.g.,
disjunction, inclusion, cover, partition), and simple integrity constraints (e.g.,
using the CHECK clause in relational DBMS). 2) Integrity constraints are those
that are not directly supported by clauses in the model itself, and thus have
to be explicitly expressed using a complementary technique, such as a generic
declarative language (e.g., first order logic), a generic programming language
(e.g. stored procedures or methods), or triggers. As DL axioms can define a
large range of embedded constraints, DL approaches do not resort to additional
mechanisms for integrity constraints definition. On the contrary, DB approaches
rely on such mechanisms. DL also differs from DB approaches in that DL al-
lows associating a constraint to an instance, while DB considers constraints as
meta-information and always associates them to types (thus constraining un-
der the same rule all instances of the type). In terms of expressiveness of the
language to define constraints, first order logic (FOL) is the closest to full expres-
sive power using a declarative approach. DL languages usually support a more
limited expressive power. For instance, RACER cannot express key constraint
involving multiple attributes and ad hoc constraints such as ”an author cannot

122

15

review his/her papers”. More expressive DL such as DLR supports this kind of
constraints.

A meta-question about constraints and ontologies is whether constraints
should be included in ontologies at all. Most frequently, constraints are inter-
twined in the T-Box with the data description statements. Meersman and his
group [2] take the opposite view that all constraints should be separated from
data description and defined in a commitment layer. The supporting argument
is that constraints are application specific, while the ontology should be applica-
tion independent. We agree that having a commitment layer is the appropriate
way to handle application-specific semantics. Nevertheless, there are in our opin-
ion constraints that belong to the ontological world, i.e. that form an essential
component in the description of the semantics of things. For instance, the fact
that in a conference management ontology a review of a paper should never be
assigned to one of the authors of the paper is a constraint that is unanimously
agreed upon. It is a constraint that is tightly linked to the semantics of a re-
view (defined as a critical appreciation of a work by a person not involved in
the work). On the contrary, whether a conference committee has one or more
chairpersons varies from one conference to the other. The ontology could state
a 1:N cardinality (to make sure a committee has at least a chair), leaving to the
commitment layer to refine the cardinality to 1:2 or 1:3 or whatever else fits the
conference specific requirements.

Checking the consistency of the set of constraints and checking the consis-
tency between the constraints and the schema are tasks that can be performed
automatically by the reasoners available in description logics. Constraints are
expressed in the same formalism as the other description clauses; hence they
are naturally involved in the inferring. The same functionality is not provided
by current database technology, where applicable reasoning techniques cannot
grasp the semantics hidden in the external language expressions used to define
integrity constraints.

Checking the consistency of schema specifications is also an issue where DL
and databases take different approaches. In databases, it is not possible to val-
idate a schema that does not obey model constraints. As there is no defined
construct, there is no need for sophisticated reasoning in checking the consis-
tency of the schema. Reasoners are necessary in DL to check the consistency
of primitive, defined concepts, and other axioms. They define a valid schema
as a schema such that it is possible to find one instance of the ontology that
has at least one instance in each one of its concepts. While database users can
never actually use an invalid schema, in RACER, for example, users can request
a consistency check anytime and they can continue working on an inconsistent
schema.

7 Ontology Querying

Like databases, ontologies are queried by different categories of users, with dif-
ferent needs:

123

16

— Ontology administrators, whose role (like DBAs, database administrators)
is to design and maintain the ontology schema and monitor its evolution.
While a DBA is seen as a central authority, ontology creation and evolution
is often seen as a more cooperative activity, distributing the task among
many people. Hence schema querying is likely to be a more intensively used
functionality, with the schema continuously and incrementally growing with
many defined concepts.

— End-users, who will face a large and complex schema that they may not know
well. They also will query the schema to know what is in the ontology. They
may also write mixed queries to access both the schema and the instances.
For example, a user of a geographic ontology describing the various states of
a country may ask for all information (list of properties with their description
and value) about rivers and synonyms of rivers. Therefore, both the schema
and the instance base should be accessible through the same query language,
possibly within the same query.

— Application developers, who need to gain access to the ontology and its
services via an APL

Requirements for instantiated descriptive ontologies include the usual ser-
vices supported by DBMS, namely a generic assertional query language with
associated tools for automatic query optimization. The expressive power, and
its optimization possibilities, of the language are bound to the characteristics of
the associated ontology model. For instance, queries in a language for a binary
model, like those of KAON and RACER, will return types or instances of the
elementary constructs of the model: concepts and binary relationships. On the
other hand, queries on semantic models with structured objects, like MADS, will
return structured instances, i.e. more informative and more condensed results.
Therefore, for descriptive ontologies frameworks, where understanding the data
structure may be a challenge, semantic query languages returning structured
objects are likely to perform better than languages for binary models.

Another requirement is that the same query language should support query-
ing both the schema and the instances in the same way. Models that host the
description and the instances of the ontology within the same structure automat-
ically fulfill this requirement as it is possible in RACER or KAON. For models
that clearly separate the schema from the instances, like database models do, a
solution is to store the schema as instances of a meta-schema described with the
same model as the ontology. Such a solution is currently provided by relational
DBMS that support a data dictionary made up of a set of predefined tables that
describe the tables of the application schema.

Several functionalities should be provided for schema querying. Exploration
of the schema is the first one. When the schema contains concepts defined by
logical formulas, reasoning comes as the second one.

Schema exploration. The query language should allow getting all information
existing in the schema. Examples of such queries could be:

Give the characteristics of a relationship (transitive, symmetric, inverse)
Give the relationships going from (or to) a concept.

124

17

Queries of this type can be formulated in the RACER language using the
elementary predefined functions that are provided for navigation inside the
schema: describe-concept, describe-role, reflexive?, symmetric?, transitive?, fea-
ture?, role-inverse, role-domain, role-range. KAON also provides similar func-
tions, such as Properties_From, Properties_To, Domain_Concept, Range_Concept,
SubConcepts, SuperConcepts.

In MADS, this can be done by defining the schema of the meta-model of
MADS, and querying this meta-base with one of the generic languages of MADS
(visual or textual algebraic). However, for humans a much simpler way to explore
the schema is to visualize and browse it using the MADS schema editor.

Reasoning on the schema. Users of ontologies that contain non-primitive con-
cepts defined by logical formulas need a schema query language with new func-
tions for helping them in their understanding of the defined concepts. Typical
functions of this type are (here by concept we mean any kind of concept, be it
primitive or defined):

Are two concepts equivalent or disjoint? Does a concept (or relationship)
subsume another one? Classify the whole set of concepts. What are the super-
or sub-concepts (at any level) of a concept?

These functions require an inference engine for their evaluation. This justifies
the choice of formal models, such as DL, that have powerful tools to classify
concepts using the subsumption mechanism.

Instances querying. Databases and DL offer complementary functionality
for instance querying. Databases systems usually provide powerful assertional
query languages complemented with efficient query optimization tools. These
languages, like the ones of MADS, support object preserving as well as object
generating queries. They also allow users to define new structures for existing
objects by pruning existing properties or computing new, derived properties.
On the other hand, DL systems support a set of simple functions for accessing
instances and derived facts computed by their inference engines, like the closure
(resp. inverse, symmetry) of the transitive (resp. inverse, symmetric) relation-
ships. Moreover DL systems, like RACER, that allow users to associate logical
formulas to instances, provide a new reasoning function: ” To which most specific
concepts does this instance belong?”

8 Additional Requirements

Up to now we have only discussed traditional requirements as addressed by cur-
rent ontology frameworks. This section highlights some additional features that
we believe will in the short term gain importance for the full development of
ontologies. The first and most evident additional feature is the possibility to
associate temporal specifications to the concepts and roles of an ontology. The
semantics of terms and concepts evolves in time, new terms and new concepts
appear while other become obsolete. It is therefore important that each item
in an ontology be qualified using a temporal specification that says when the
definition of this item is valid. How to define and implement such lifecycle spec-

125

18

ifications for concepts and roles, as well as time-varying attributes, has been
thoroughly investigated by the temporal database community. Results should
simply be taken over to ontologies. Similar considerations may apply to spa-
tial specifications, well-known in the world of geographical information systems
(GIS). They may describe, for instance, the geographical coverage of a given
term (e.g. ”char” to denote a car holds in Quebec but not in Paris). Moreover,
research in data visualization has shown that ontologies may be displayed as a
concept space, where spatial concepts such as distance, neighborhood, inclusion,
or orientation may fully apply. Spatial information supports storing the position
and topology of concepts in such abstract spaces. Spatial information will also
play an important role for ontologies where geographical aspects are part of the
domain of discourse. To support its description, concepts and techniques may be
borrowed from GIS research. Finally, as we have importance as the actual use
of ontologies becomes practically relevant. The need for context information is
recognized in the ontology literature, but the current status shows limited results
and significant advances may still be foreseen in this domain. How to define a
context, how to analyze interrelationships between contexts, how to character-
ize constraints on contexts, are examples of open research issues. RACER and
KAON currently support none of these additional features. Some extensions of
DL have been proposed for spatial and temporal modeling [21],[22]. DOGMA in-
cludes context information. MADS supports space, time, and context description
and manipulation.

9 Conclusion

Ontologies are promised to a brilliant future. As a consequence, usability criteria
will assess their success. In our opinion, this means that focus will be on more
informative ontologies, showing, in addition to terms and concepts of a domain,
how domain data are semantically structured and interrelated. We termed these
ontologies descriptive, as opposed to first-generation taxonomic ontologies. The
paper investigated requirements for the design and management of descriptive
ontologies, and contrasted the requirements with the functionality currently pro-
vided by database conceptual models. Proper identification of the requirements
has been supported by an analysis of some recent representative proposals for
ontology systems (namely, RACER, KAON, and DOGMA). The rationale for
this work is the close resemblance between requirements for database design
and those for ontology design. We attempted to highlight similarities as well as
significant differences in the approaches. Most differences appear to be linked
to the current state of art in both domains. These ones may disappear thanks
to further research. However, important differences (such as closed versus open
world assumptions) are inherently due to the different goals of ontology and
database services. Ontologies are meant to describe and explain the world, while
databases are meant to describe that part of the world whose representation
has to be managed for some application purpose. Overcoming differences is a
meaningful way to benefit one domain with results from the other domain. Pre-

126

19

vious work has investigated how to extend description logics to provide more
data semantic services, or how to map description logic specifications into con-
ceptual model specification, and vice versa. Our aim has been to identify the
enhancement that conceptual models would need to make them fit the require-
ments of ontologies. Briefly stated, the necessary enhancements have obviously
to do with supporting reasoning. A major addition is the support of intentionally
defined concepts a la DL. This somehow resembles view definition and queries
in databases, but views are not part of the database schema and queries raise
a number of open issues (e.g., how to place the query object type in the gen-
eralization hierarchy in order to explicit the semantic relationship between the
new type and the existing types). A minor addition is the explicit definition of
the specialization criterion in is-a clusters, so that the system can compute the
appropriate sub-class for an object whose value changes or is first created. More
additions that we feel important to match coming requirements are provision
for spatio-temporal data modeling and context management. We have currently
defined and implemented a conceptual data model, MADS, that supports ad-
vanced data structure, time, space, and context modeling requirements, as well
as query placement to some extent. As a further step towards ontologies, we are
extending the model to support imprecise information, where incompleteness is
seen as a form of imprecision. This is intended to allow building ontology ser-
vices above the conceptual services currently provided by prototypes developed
within the MurMur IST project [23].

References

1. Meersman, R.: Ontologies and Databases: More than a Fleeting Resemblance. In:
OES/SEO Workshop Rome. (2001)

2. Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Ap-
proach. In Meersman, R., Tari, Z., et al., eds.: CooPIS/DOA/ODBASE, Springer-
Verlag, LNCS 2519 (2002) 1238-1254

3. KAON: KAON - The Karlsruhe Ontology and Semantic Web Tool Suite (2003)
http://kaon.semanticweb.org/.

4. Horrocks, I.: DAML+OIL: A reason-able Web Ontology Language. In Jensen, C.,
et al., eds.: EDBT 2002, Springer-Verlag, LNCS 2287 (2002) 2-13

5. McGuinness, D.: Description Logics Emerge from Ivory Towers. In: Proceedings
of the International Workshop on Description Logics, Stanford, CA (2001)

6. Borgida, A., Brachman, R.J.: Conceptual Modelling with Description Logics. In
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
Description Logic Handbook, Cambridge University Press (2002) 349-372

7. Borgida, A., Lenzerini, M., Rosati, R.: Description Logics for Databases. In Baader,
F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description
Logic Handbook, Cambridge University Press (2002) 462-484

8. Calvanese, D., Giacomo, G.: Expressive Description Logics. In Baader, F., Cal-
vanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic
Handbook, Cambridge University Press (2002) 178-218

9. Haarslev, V., Moller, R.: RACER System Description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: Proceedings of International Joint Conference on Automated
Reasoning (IJCAR’2001), Springer-Verlag (2001) 701-705

127

20

O
i ; ReviewMarks

Review | Nurmber
ffffffffffffffff |
HasReviewComment ~ 0:n
IsMarkitemO f1:1
Number —— ReviewComments
Makitem | Memsore
Author AuthorTitle
e
Papr PaperTitle
PaperReference
PaperDate
|:| D AttributeName
Concept Role Attribute (Concrete Domain Concepts)
Note that attributes are visualized on the schema for convenience even if in fact they are relied in the ABox

Fig. 3. Scientific Conference Ontology Snapshot with DL formalism (Part2)

128

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

21

Horrocks, 1., Sattler, U., Tobies, S.: Reasoning with Individuals for the Description
Logic SHIQ. In MacAllester, D., ed.: Proc. of the 17th Int. Conf. on Automated
Deduction (CADE-17). LNAI 1831, Springer-Verlag (2000) 482-496

Horrocks, 1., Sattler, U.: Optimised Reasoning for SHIQ. In: Proc. of the 15th
European Conference on Artificial Intelligence (ECAI’2002). (2002) 277281
Halpin, T.: Information Modelling and Relational Database Design. (2001)
Spaccapietra, S., Parent, C., Zimanyi, E.: Spatio-Temporal Conceptual Models:
Data Structures + Space + Time. In: 7th ACM Symposium on Advances in
Geographic Information Systems (ACM GIS’99). (1999) 26-33

Spaccapietra, S., Parent, C., Vangenot, C.: From Multiscale to Multirepresenta-
tion. In Choueiry, B., Walsh, T., eds.: Proceedings 4th International Symposium,
SARA-2000, Horseshoes Bay, Texas, USA, Springer-Verlag, LNAT 1864 (2000)
OKBC: OKBC - Generic Knowledge Base Editor (1998)
http://www.ai.sri.com/ gkb/.

Fensel, D., Hendler, J., Liebermann, H., Wahlster, W.: Spinning the semantic web,
The MIT Press, Cambridge, Massachusetts (2003)

Klein, M., Broekstra, J., Fensel, D., van Harmelen, F., Horrocks, I.: Ontologies and
schema languages on the Web. In D. Fensel, J. Hendler, H.L., Wahlster, W., eds.:
Spinning the Semantic Web, The MIT Press, Cambridge, Massachusetts (2003)
Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for
Semantic-Driven Enterprise Applications. In Meersman, R., Tari, Z., et al., eds.:
CooPIS/DOA/ODBASE, Springer-Verlag, LNCS 2519 (2002) 1082-1099
Borgida, A.: On the relative expressive power of Description Logics and Predicate
Calculus. In: Artificial Intelligence 82. (1996) 353-367

Baader, F., Nutt., W.: Basic Description Logics. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: Description Logic Handbook,
Cambridge University Press (2002) 43-95

Haarslev, V., Lutz, C., Méller, R.: Foundations of Spatioterminological Reason-
ing with Description Logics. In A.G. Cohn, L.K. Schubert, S., ed.: Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR’98). (1998) 112-123

Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
In: Annals of Mathematics and Artificial Intelligence (AMAI), Vol. 30 No. 1-4,
Kluwer Academic (2001)

MurMur: MurMur Consortium - MurMur Project: Multi-representations
and Multiple resolution in geographic databases (2002) Final Report.
http://Ibdwww.epfl.ch/e/MurMur.

129

130

Efficient RDF Storage and Retrieval in Jena2

Kevin Wilkinson?, Craig Sayersl, Harumi Kuno?, Dave Reynolds2
HP Laboratories

11501 Page Mill Road
Palo Alto, CA, 94304 USA

2 Filton Road, Stoke Gifford
Bristol BS34 8QZ United Kingdom
firstName.lastName@hp.com

Abstract. RDF and related Semantic Web technologies have been the recent
focus of much research activity. Thiswork has led to new specifications for RDF
and OWL. However, efficient implementations of these standards are needed to
realize the vision of a world-wide semantic Web. In particular, implementations
that scale to large, enterprise-class data sets are required. Jena2 is the second
generation of Jena, a leading semantic web programmers’ toolkit. This paper
describes the persistence subsystem of Jena2 which is intended to support large
datasets. This paper describes its features, the changes from Jenal, relevant
details of the implementation and performance tuning issues. Query optimization
for RDF isidentified as a promising area for future research.

1.0 Introduction

Jena is a leading Semantic Web programmers’ toolkit[1]. It is an open-source
project, implemented in Java, and available for download from SourceForge. Jena
offers asimple abstraction of the RDF graph asits central internal interface. Thisis
used uniformly for graph implementations, including in-memory, database-backed,
and inferred graphs.

Jena2 is the second generation of the Jena toolkit. It conforms to the revised
RDF specification, has new capabilities and a new internal architecture. A design
principle for Jena2 was to minimize changes to the API. This simplifies migration
from Jenal to Jena2. This paper describes Jena2 persistent storage; details on other
aspects of Jena2 are availablein[2].

The Jena database subsystem implements persistence for RDF graphs using an
SQL database through a JIDBC connection. The Jenal implementation supported a
number of database engines (e.g., Postgresgl, MySQL, Oracle) and had a flexible
architecture that facilitated porting to new SQL database engines and experimenta-
tion with different database layouts. Some options included the use of value-based
identifiers (e.g., SHA-1) for inter-table references, use of database procedures, etc.
Jenal also worked with Berkeley DB.

Among the lessons learned from Jenal was that database portability was valu-

131

able to the open source community and this was retained as a goal for Jena2. How-
ever, Jenal users did little experimentation with schema flexibility. In general, the
default layouts were used. The design focus for Jena2 was performance and scaling.
Although Jenal performance was quite good, thereis room for improvement. It was
felt that performance issues will become more important with the renewed interest
in applying semantic web technology to rea-world applications [6]. Jena2
addresses the following performance issues.

Too many joins. The use of a hormalized schema requires a three-way join for find
operations.

Sngle statement table. A single statement table doesn't scale for large data sets and
cannot take advantage of locality among subjects and predicates.

Reification storage bloat. A naive implementation of the RDF specification stores
four statements for each reification. A more efficient technique is required,
especially since some applications reify every statement. Jenal provided opti-
mized storage for reified statements but a statement could only be reified once.
Revisions of the RDF specification removed this restriction. The goal for Jena2
was to implement the revised specification with similar or better optimization.

Query optimization. In Jenal, joinsfor RDQL queries were not pushed-down to the
database engine and were instead performed within the Java layer of Jena.
This paper describes how these performance issues were addressed. The next

section provides an overview of Jena and RDF for readers unfamiliar with those

technologies. More details on RDF are available in [3]. Section 3.0 describes the

Jena database schema. Section 4.0 is a high-level overview of the database sub-

system of Jena2. Section 5.0 addresses query processing. The final sections cover

miscellaneous topics, the status of the implementation and related work.

2.0 Overview of Jena and RDF

2.1 Jena Overview

Jena offers a simple abstraction of the RDF graph as its central interna interface.
Thisis used uniformly for graph implementations, including in-memory, database-
backed, and inferred graphs. The main contribution of Jenaisarich API for manip-
ulating RDF graphs. Around this, Jena provides various tools, e.g., an RDF/ XML
parser, a query language, 1/0 modules for N3, N-triple and RDF/XML output.
Underneath the API the user can choose to store RDF graphsin memory or in data-
bases. Jena provides additional functionality to support RDFS and OWL.
The two key architectural goals of Jena2 are:
* Multiple, flexible presentations of RDF graphs to the application programmer.
This allows easy access to, and manipulation of, datain graphs enabling the
application programmer to navigate the triple structure.

132

* A simple minimalist view of the RDF graph to the system programmer wishing
to expose data as triples.

The first is layered on top of the second, so that essentially any triple source
can back any presentation API. Triple sources may be materialized, for example
database or in-memory triple stores, or virtual, for example resulting from inference
processes applied to other triple sources.

An simplified overview of the Jena 2 architecture is shown in Figure 1. Appli-
cationstypically interact with an abstract Model which translates higher-level oper-
ations into low-level operations on triples stored in an RDF Graph. There are
severa different graph implementations, but in this paper we focus on those which
provide persistent storage.

At an abstract level, the Jena2 storage subsystem need only implement three
operations: add statement, to store an RDF statement in a database; delete state-
ment, to remove an RDF statement from the database; and the find operation. The
find operation retrieves all statements that match a pattern of the form <S,P,0O>
where each S, P, O is either a constant or a don’t-care. Jena's query language,

(Application]

Model interface

()

Graph interface

Other Graphs
Database Graphs] ((e.g.in- memory))

Specialized Graph interface

Specialized Graphs J

(
(
(

Database-specific Drlvera

FIGURE 1. Jena2 Architectural Overview

133

RDQL, is converted to a set of find operations in which variables are permitted in
the find patterns. The variables enable joins across the patterns.

A widely used implementation technique [4,5] is to store RDF statementsin a
relational database using a single statement table, often called a “triple-store.” This
is atable that stores each RDF statement as a row and has columns for the subject,
predicate and object. Jenal used this approach but normalized the statement table
so that literals and resources are only stored once. This is described bel ow.

2.2 RDF Overview

The Resource Description Framework (RDF) has rapidly gained popularity a
means of expressing and exchanging semantic metadata, i.e., data that specifies
semantic information about data. RDF was originally designed for the representa-
tion and processing of metadata about remote information sources (referred to as
resources or Web resources), and defines a model for describing relationships
among resources in terms of uniquely identified properties (attributes) and values.
RDF provides a simple tuple model, <S,P,O>, to express al knowledge. The inter-
pretation of this statement is that subject S has property P with value O, where S
and P areresource URIsand O is either aURI or aliteral value. RDF and itsrelated
specifications, RDF Schema and OWL, provide some predefined basic properties
such astype, class, subclass, etc.

RDF is characterized by a property-centric, extremely flexible and dynamic
data model. Resources can acquire properties and types at any time, regardless of
the type of the resource or property. This flexibility makes RDF an attractive tech-
nology for the specification and exchange of arbitrary metadata because resource
descriptions are * grounded" without necessarily being bound by fixed schemas.

In object-oriented (OO) terms, we might consider RDF resources to be analo-
gous to objects, RDF properties to represent attributes, and RDF statements to
express the attribute values of objects. A key difference between the two communi-
ties is that unlike OO systems which use the concept of a type hierarchy to con-
strain the properties that an object may possess, RDF permits resources to be
associated with arbitrary properties; statements associating a resource with new
properties and values may be added to an RDF fact base at any time.

The challenge is thus how to provide persistent storage for the new RDF data
model in an efficient and flexible manner. A naive approach might be to map the
RDF datato XML and simply leverage prior work on the efficient storage of XML.
However, the standard RDF/ XML mapping is unsuitable for this since multiple
XML serializations are possible for the same RDF graph, making retrieval com-
plex. Non-standard RDF-to-XML mappings are possible, and have been used in
some implementations. However the simpler mappings are unable to support
advanced features of RDF, such as the ability of RDF to treat both properties and
statements as resources, which allows metadata describing these elements to be
incorporated seamlesdly into the data model and queried in an integrated fashion.

134

Statement Table

Subject Predicate ObjectURI ObjectLiteral

201 202 null 101

201 203 204 null

201 205 101 null

LiteralsTable Resour ces Table

Id Value Id URI

101 Jena2 201 mylib:doc

101 The description - avery 202 dc:title
long literal that might be 203 dc:creator
stored as a blob. 204 hp:JenaTeam

205 dc:description

FIGURE 2. Jenal Schema (Normalized)

Many RDF systems have used relational or object databases for persistent stor-
age and retrieval. However, this is not always a good fit and the mapping can be
challenging because the semantics of the underlying database model clash with the
openness and flexibility of RDF. For example, SQL requires fixed, known column
data types,; object systems often have restrictions on class inheritance and type
membership (changes).

3.0 Sorage Schema

In this section we compare the storage of arbitrary RDF statements between Jenal
and Jena2. We then look at optimizations for common patterns of statements.

3.1 Soring Arbitrary RDF Statements
Jenal. Thefirst version of Jena used two different database schemas. One for rela-
tional databases, and a special one for Berkeley DB. For relationa databases, the
schema consisted of a statement table, a literals table and a resources table
(Figure 2). The statement table contained all asserted and reified statements and
referenced the resources and literals tables for subjects, predicates and objects. To
distinguish literal objects from resource URIs, two columns were used. The literals
table contained all literal values and the resources table contained all resource URIs
in the graph. There was no reference counting to reduce overhead. This schemawas
very efficient in space as multiple occurrences of the same resource URI or literal
value were only stored once. However, every find operation required multiple joins
between the statement table and the literals table or the resources table.

The Jenal schema for BerkeleyDB was quite different. It stored all parts of a

135

statement in a single row and each statement was stored three times: once indexed
by subject, once by predicate and once by object.

Comparing the two approaches, it was observed that Jena graphs stored using
Berkeley DB were often accessed significantly faster than graphs stored in rela
tional databases[8]. While part of this could be attributed to the absence of transac-
tional overheadsin BerkeleyDB, our intuition was that most of the speed difference
was because the Berkeley DB schema used a single access method to store state-
ments and that use of a denormalized relational schema might reduce response
times.

Jena2. The Jena2 schema trades-off space for time. Drawing on experience with
Jenal, it uses a denormalized schema in which resource URIs and simple literal
values are stored directly in the statement table (Figure 3).

In order to distinguish database references from literals and URIs, column val-
ues are encoded with a prefix that indicates which the kind of value (codes are not
shown). A separate literals table is only used to store literal values whose length
exceeds a threshold, such as blobs. Similarly, a separate resources table is used to
store long URIs. By storing values directly in the statement table it is possible to
perform many find operations without a join. However, a denormalized schema
uses more database space because the same value (literal or URI) is stored repeat-
edly.

The increase in database space consumption is addressed in several ways.
First, common prefixes in URIs, such as hamespaces, are compressed. They are
stored in a separate table (not shown) and the prefix in the URI is replaced by a
database reference. It is expected that the number of common prefixeswill be small

Satement Table

Subject Predicate Object

mylib:docl dc:title Jena2

mylib:docl dc:creator HP Labs - Bristol

mylib:docl dc:creator Hewlett-Packard

mylib:docl dc:description 101

201 dc:title Jena2 Persistence

201 dc:publisher com.hp/HPLaboratories

Literals Table Resour ces Table

Id Value Id URI

101 The description - avery 201 hp:aResource-
long literal that might be WithAnExtreme-
stored as a blob. lyLongURI

FIGURE 3. Jena2 Schema (Denor malized)

136

and cacheable in memory. Expanding the prefixes will be done in memory and will
not require a database join.

Second, as mentioned earlier, long values are stored only once. The length
threshold for determining when to store a value in the literals or resources table is
configurable. Applications may trade-off time for space by lowering the threshold.
Third, Jena2 supports property tables as described below. Property tables offer a
modest reduction in space consumption in that the property URI is not stored.

Both Jenal and Jena2 permit multiple graphs to be stored in a single database

instance. In Jenal, all graphs were stored in a single statement tablel. However,
Jena2 supports the use of multiple statement tables in a single database so that
applications can flexibly map graphs to different tables. In this way, graphs that are
often accessed together may be stored together while graphs that are never accessed
together may be stored separately (Figure 6). For example, as described below, the
system metadata is stored as RDF statements in its own statement table separate
from user tables. The use of multiple statement tables may improve performance
through better locality and caching. It may also simplify database administration
since the separate tables can be separately managed and tuned.

3.2 Optimizing for Common Statement Patter ns

An RDF graph will typically have a number of common statement patterns. One
source of those patterns is the RDF specification itself which defines some types
and properties for modeling higher-level constructs such as bags, sequences and
reification. For example, if object x is a sequence, it will have atype property with
value rdf: Seg and one or more element properties, 1, 2, 3, etc. that specify ele-
ments of the sequence. A reified statement (i.e., a statement about some other state-
ment) has atype property with value rdf: Satement and three properties, rdf: subject,
rdf: predicate, rdf: object for values of the statement’s subject, predicate and object.
The other source of common patterns is the user data. Applications typically
have access patterns in which certain subjects and/or properties are accessed
together. For example, a graph of data about persons might have many occurrences
of objects with properties name, address, phone, gender that are referenced
together. Using knowledge of these access patterns to influence the underlying
database storage structures can provide a performance benefit. Techniques for
detecting patterns in user data and in RDF query logs are reported in [16].

Jenal. In Jenal, the commonly-occurring case of reified statements was handled as
a special-case. Rather than storing four separate triples for each reified statement, it
stored the reified subject, predicate and object in the regular statements table, with
two additional columns to indicate its reified state and to store a statement identi-
fier. Since a statement had only one identifier, it could only be reified once. For

1. InJenal and Jena2, tablesinclude a column for the graph identifier; thisis not shown.

137

Jena2, changes were required to conform with the revised RDF specification that
allows multiple reified instances of any statement.
Jena2 Property Tables. Jena2 will provide a general facility for clustering proper-
ties that are commonly accessed together. A Jena2 property table is a separate table
that stores the subject-value pairs related by a particular property. A property table
stores all instances of the property in the graph, i.e., that property does not appear in
any other table used for the graph. For properties that have a maximum cardinality
of one, it is possible to efficiently cluster multiple properties together in a single
table. A single row of the table would store those property values for a common
subject. For example, in Dublin Core, it may be beneficial to create a property table
for the three properties dc:title, dc:publisher, dc:description if these properties are
frequently accessed together. The use of such a property table for the data in
Figure 3 ispresented in Figure 4.

Multi-valued properties may be clustered or may be stored in a separate table.
For example, dc:creator might be stored in a multi-valued property table containing
two columns, one for the subject and one for dc:creator. Alternatively, it might be
stored with the same property table astitle, publisher and description although this
may be less efficient if it results in many null-valued columns for a row. At first
glance, it may seem that multi-valued property tables offer little benefit. However,
there may be benefits to clustering values if they are frequently accessed together,
e.g. aset of valuesthat is searched as alookup table. Note that property tables offer
asmall storage savings because the property URI is not stored in the table, and for
clustered property tables, the subject is only stored once.

For some properties, the datatype of the object value will be fixed and known.
It may be specified as a property range constraint. Property tables can leverage this
knowledge by, when possible, making the underlying database column for the prop-

erty value match the property type®. This may enable the database to better opti-
mize the storage and searching of the column.

Jena 2 Property-Class Tables. A property-class table is a special kind of property

Statement Table

Subj ect Predicate Object
mylib:docl dc:creator HP Labs - Bristol
mylib:docl dc:creator Hewlett-Packard

DC Properties Table

Subject Title Publisher Description
mylib:docl Jena2 - 101
201 Jena2 Persistence com.hp/HPLaboratories -

FIGURE 4. Dublin Core Property Table

138

table that serves two purposes. It records all instances of a specified class, i.e.,
resources that have that class. It also stores properties of that class, i.e., each prop-
erty in the table must have the class as its domain. Thus, a property-class table has
two or more columns: one for the subject resource, a second boolean column indi-
cating if the subject has been explicitly asserted as a class member (as opposed to
inferred as a member), and zero or more columns for property values.

It is worth noting that Jena2 implements reification as a property-class table
(Figure 5). The properties are rdf:subject, rdf:predicate, rdf:object and the class is
constrained to be rdf: Satement. The subject of the property-class table is the URI
that reifies the statement. Storing a reification thisway saves space compared to the
aternative of explicitly storing the four statements of a reification. Note that par-
tially reified statements are easily supported.

Applications specify the schema for a graph, i.e., the property, property-class
and statement tables at graph creation time through the configuration meta-graph.
To simplify the implementation, once defined, the table configuration cannot be
altered. However indexes may be added or removed. In the future, some limited
changes to the table configuration may be enabled.

4.0 Jena2 Persistence Architecture

An overview of the Jena2 persistence architecture was presented in Figure 1. In this
section, we describe the implementation of that architecture, including the special-
ized graph interface that implements RDF sub-graphs and the database drivers that
access the database on their behalf.

4.1 Specialized Graph interface

The Jena2 persistence layer presents a Graph interface to the higher levels of Jena,
supporting the usual Graph operations of add, delete and find (Figure 6). Each logi-
cal graph isimplemented using an ordered list of specialized graphs; each of which
is optimized for storing a particular style of statement. For example, in the figure
thefirst logical graph isimplemented using three specialized graphs: one optimized
for reified statements, another optimized for ontology triples and athird which han-

Reified Satement Table

SMtURI Subj ect Predicate Object Type
mydir:alice mylib:docl dc:title Jena2 rdf: Statement
mydir:bob mylib:doc2 - Jena2 -

FIGURE 5. Reification as a Property-Class Table

1. Not all XSD types correspond to an SQL datatype.

139

Logical Graph 1

Specialized Graph 1

Optimized for
reification triples

Specialized Graph 2

Optimized for
ontology triples

Specialized Graph n

Handles any triple

. a

ad

N

A\

-

Logical Graph 2

\

\

Specialized Graph 1

Optimized for
ontology triples

Specialized Graph n

Handles any triple

|

\

Datab%se tables

N

/

triples)

Property Tat&e 1 (Optimized for re?/lon

Standard Triple Tablg” 1

r'd

Standard Triple Table 2

Property Table 2 (Optimized for ontology
triples)
L]
[]
[]
[]

Property Table M

Standard Triple Table N

-

/

FIGURE 6. Graphs Comprise Specialized Graphs Over Tables

dles any remaining triples.

An operation on the entire logical graph, such as add statement, delete state-
ment or find, is processed by invoking add, delete, find on each specialized graph,
in turn. The results of the individual operations are combined and returned as the

140

result for the entire graph.

Note that this process can be optimized because, in certain cases, an operation
can be completely processed for the entire graph by one specialized graph. Thus,
the operation need not be invoked on the remaining specialized graphs. For exam-
ple, a specialized graph that stores every statement with a property of dc:title can
process all add and del ete operations that reference dc:title and can fully satisfy any
reguest to find all such properties. To support this optimization, each speciaized
graph operation returns a completion flag to indicate if the operation has been com-
pletely processed and the ordering of the specialized graphsis kept constant.

In the case of afind operation, an additional optimization, which the special-
ized graphs permit, is to evaluate the find on each graph in a lazy fashion; using
resources from later specialized graphs only if the application is still hungry after
consuming results from earlier graphs.

Each specialized graph maps the graph operations onto appropriate tables in
the database. In the present implementation, there is a many-to-one mapping
between specialized graphs and database tables. In some cases, this allows the over-
head of each database table to be amortized across several graphs.

4.2 Database Driver

The database driver provides an abstract storage interface that insulates the special-
ized graphs from differences in how database engines support blobs, nulls, expres-
sions, table and index creation, etc. There is a generic driver implementation for
SQL databases and engine-specific drivers for Postgresgl, MySQL, Oracle, etc. The
engine-specific drivers override the generic methods as necessary, e.g., for different
guoting conventions or treatment of blobs.

The driver isresponsible for data definition operations such as database initial-
ization, table creation and deletion, allocating database identifiers. It is also respon-
sible for mapping graph objects between their Java representation and their
database encoding. For data manipulation, the drivers use a combination of static
and dynamically generated SQL. The static SQL is used for fixed, predefined oper-
ations such asinserting atriple in agraph or the various forms of the find operation.
For access to property-class tables and for RDQL queries, the drivers dynamically
generate SQL select statements. To reduce the overhead of query compilation, the
driver layer maintains a cache of prepared SQL statements.

The driver uses a storage abstraction that is designed to be mapped to other
persistent stores. Non-SQL drivers are also possible. In the future, we plan to sup-
port a Berkeley DB driver and a native-Java persistent store.

4.3 Configuration and Meta-graphs

In Jenal, database configuration parameters and options were specified in a config-
uration file of property-vaue pairs that was read when initially connecting to the
database. In Jena2, the files are not used. Instead, configuration parameters are

141

specified as RDF statements. This is analogous to storing metadata for relational
databases in tables. A graph containing configuration parameters may be passed as
an argument when creating a new persistent graph. Jena2 provides default graphs
containing the default configuration parameters for all supported databases.

Associated with each Jena2 persistent store is a meta-graph, a separate, auxil-
iary RDF graph containing metadata about each logical graph. This auxiliary graph
includes the configuration parameters and options mentioned above as well as other
metadata such as the date the database was formatted, the version of the driver, a
list of graphs stored in the database, the mapping of graphs to tables, etc. The meta-
graph may be queried just as any other Jena graph but, unlike other graphs, it may
not be modified and it does not support reification.

The default schema for a graph is a statement table and a reified statement
table, implemented as a property-class table. The user-provided meta-graph may
specify that graphs share tables. The meta-graph may also specify additional prop-
erty, property-class tables and indexes. Parameters such as the threshold size for
long literals and resources are al so specified as statements within the meta-graph.

5.0 Jena2 Query Processing

There are two forms of Jena querying. The find operation returns all statements sat-
isfying a pattern. A find pattern has the form (S,P,O) where each element is either a
constant or a don't-care. An RDQL query [17] is compiled into a conjunction of
find patterns that may include variables to specify joins. It returns all possible valid

bindings of the variables over statements in the graph®.

The addition of property tables significantly complicates query processing.
Consider iterators. Unlike a statement table where each row correspondsto asingle
RDF statement, an iterator over a property table may need to expand a row into
multiple statements and add URIs for properties that are not explicitly stored. In
addition, columns in a property table can be null.

However, the major complexity occurs when a query references an unknown
property, i.e., where the property is a don’'t-care or a variable that will be bound
when the query is processed. These cases are discussed bel ow.

5.1 Find Processing

In Jenal, afind pattern was evaluated with asingle SQL select query over the state-
ment table. In Jena2, this has to be generalized because there can be multiple state-
ment tables for agraph. To evaluate a pattern in Jena2, the patternis passed, in turn,
to each specialized graph handler for eval uation, stopping when the completion flag
is set. Theresults are concatenated and returned to the application. This handles the

1. Querying over inferred graphs is not addressed here.

142

case when the pattern contains an unspecified property, i.e., a don’'t-care (note that
find operations do not have variables).

Currently, each specialized graph issues a separate database query for the pat-
tern. We plan to investigate if a single database query over all specialized graphs
would be more efficient. For example, suppose the pattern is (*,*,*), which
retrieves all statements, and suppose the graph has two tables, a statement table and
a reified statement table. Rather than two separate queries, the following single
SQL query could be used to process the pattern.

Select t.subject, t.predicate, t.object fromstnt_table t

Uni on

Select r.URl, “rdf:subject”, r.subject fromreif_table r
where r.subject is not null

Uni on

Select r.URI, “rdf:predicate”, r.predicate fromreif_table
r where r.predicate is not null

Uni on

Select r.URI, “rdf:object”, r.object fromreif_table r
where r.object is not null

Uni on

Select r.URl, “rdf:type”, r.type fromreif_table r where
r.type is not null
Such queries can quickly become unwieldy for complicated patterns and sev-
eral statement tables and may cause challenges for query optimizers. In addition, it
is not clear that a single, large union query is more efficient that the alternative of
issuing two separate queries. With the single, union query, rows in the reification
table are read four times.

5.2 RDQL Processing

In Jenal, an RDQL query is converted into a pipeline of find patterns connected by
join variables. The query is then be evaluated in a nested-loops fashion in Jena by
using the result of a find operation over one pattern to bind values to variables and
then generating patterns for new find operations. It would be more efficient if the
join could be pushed into the database engine for evaluation.

Thisisagoal of Jena2 query processing, i.e. converting multiple triple patterns
into a single query to be evaluated by the database engine. A full discussion of
query processing is beyond the scope of the paper. In this section, we discuss two
simple cases and mention the difficulties for the general case.

For the first simple case, assume that the find patterns for a query reference
only the statement table, i.e., it can be determined a priori that statements in the
property tables match none of the patterns. As mentioned above, a single pattern
can be completely evaluated by a single SQL query over the statement table. To
evaluate multiple patterns, it is sufficient to associate atable alias with each pattern
and perform a join across the aliases for linking variables in the find patterns. For

143

example, consider an RDQL query to get the authors of a paper. It requires two pat-
terns, each of which has an associated SQL evaluation expression.

Pattern 1: (Varl, dc:title, “Jena2”)

Pattern 2: (Varl, dc:creator, Var2)

Sel ect pl.subject, p2.object

fromstm _table pl, stnt_table p2

where pl.predicate = “dc:title” and pl.object=*Jena2” and

p2. predi cate="dc. creator” and pl.subject = p2.subject

The second simple case occurs when al patterns can be completely evaluated
by asingle property table. The interesting thing about this case is that it is possible
to eliminate joins if the patterns reference single-valued properties clustered
together. For example, suppose there is a clustered property table for dc:title and
dc:creator (assume creator is single-valued here). Then, the two patternsin the pre-
vious exampl e require only a single table alias and can be evaluated without ajoin.

Sel ect pl.subject, pl.creator fromdcPropertyTable pl

where pl.title="Jena”

When the find patterns for a query apply to multiple tables, it is more difficult
to construct asingle SQL query to satisfy all patterns. This presents the same issues
as generating a single SQL query for a find operation. The current approach in
Jena2 is to partition the patterns into groups, where each group contains patterns
that can be completely evaluated by a single table, plus one additional group con-
taining patterns that span tables. A SQL query is then generated for the former
groups and the latter group is processed using the nested loops approach as in
Jenal.

In Jena2, there are three cases in which a pattern may span tables. First, the
property may be a don’'t-care in which case al tables must be searched. Second, the
property may refer to an unspecified class, i.e., the property is rdf:type but the
object value (the class) is not specified. In this case, it isimpossible to know which
property table may contain values for the pattern. Third, the property may be avari-
able. This is the most interesting case as it corresponds to table variables in rela-
tional database querying processing, i.e., the table name is unknown until the query
is processed. Thisisadifficult query processing problem.

Finally, a feature of Jena2 is that queries may span graphs. This is done by
specifying the graph to which a pattern applies. If the graphs reside in the same
database instance, it is possible to optimize those query patterns as if they were all
part of the same graph. If the graphs reside in different instances or different data-
base engines, no attempt is made to optimize the query and the basic nested-loop
approach is applied.

6.0 Miscellaneous Topics

Jena2 Performance Toolkit. To explore various layout options and understand

144

performance trade-offs, a set of Jena utility programs are under development. The
first is an RDF synthetic data generator that generates statements for a specified
number of classes and instances. Uniform and skewed data distributions can be
generated as well as predefined reference patterns for properties, such as trees (for
taxonomies, ancestor relations, etc.).

The second tool is a benchmark suite to measure the effectiveness of Jena2
enhancements and to compare different database layouts. It is designed as a genera
framework that can be used to make comparative runs of an arbitrary set of Jena
programs. The third tool is an RDF data analysis tool that, when applied to a set of
RDF statements, suggests potentially beneficial property and property-class tables
to store the statements [16].

Jena Transaction Management. In Jenal, the underlying database may or may
not support transactions. Consequently, all Jena APl methods were atomic to ensure
database consistency. In addition, transaction begin, commit and abort methods
were available to declare explicit transactions when desired. Jena2 provides the
same capabilities. However, thereis an interesting case in which Jena cannot ensure
database consistency. The Jena2 query handler supports queries across graphs. If
the graphs are stored in separate databases, then a consistent read-set for the query
cannot be guaranteed because a Jena2 transaction applies to a single database con-
nection.

In principle, it should be possible to open an XOpen/X A distributed transaction
connection to the other data source to ensure consistency. However, in the open
world of the semantic web, the common case is that data sources do not support
transactions, let alone the XA protocol. This suggests that aricher transaction inter-
face for Jena2 is needed and it remains future work.

Bulk Load. A goal of Jena2 was to significantly reduce the time to load persistent
graphs compared to Jenal. This is a critical issue if RDF isto be applied to very
large datasets. The use of adenormalized schema helps address this problem since a
typical Jena2 add operation updates fewer tables than Jenal. Jena2 also includes
support for JDBC?2 batch operations which enable multiple JDBC statements to be
passed in one call to the database engine. The value of batching depends on the
level of optimization within the database engine but in any event it reduces the
number of database calls significantly.

7.0 Satus and Future Work

Performance Notes. Preliminary performance measurements indicate that the
denormalized schema of Jena2 is faster than the normalized schema of Jenal, twice
as fast for many operations. The results of one simple retrieval experiment are pre-
sented in Table 1. The test retrieved a single, 200-byte property value for 1000 ran-
domly selected objects. The test was run under two configurations. The
denormalized configuration stored the property value directly in the statement

145

table. The normalized configuration reduced the long literal threshold (see Section
3.1) to 100 bytes which caused the property value to be stored in the literals table.

Thus, retrieving the property value in the denormalized configuration requires
two retrievals, one for the statement table and a second for the literals table while
the denormalized case requires only one. Each configuration was run multiple
times with different random seeds and the result of the first and final run are pre-
sented. The times are in milliseconds and the tests were run using MySQL under
WinXP on arecent generation PC workstation with 1.5GB RAM.

The large reduction in run time for the initial run compared to the final run we
attribute to hardware cache effects. For the warm run, as expected, the denormal-
ized retrieval istwice as fast as the normalized retrieval. If the schema were com-
pletely normalized so that the subject and predicate were also stored in separate
tables as was done in Jenal, we would see an even greater speed-up for the denor-
malized schema. A more systematic study will be done upon completion of a Jena

TABLE 1. Retrieval Timesfor Normalized vs. Denormalized Literal

Number of Retrievals Normalized Denormalized Speed-up
1000 (initia run) 3270 2850 1.2
1000 (final run) 840 420 20

performance toolkit. Similarly, the database size increase due to the denormalized
schema has not been studied pending impletion of URI prefix compression.

Next we provide some preliminary results that show the value of property-
class tables for reification. A synthetic database of 10,000 reified RDF statements
was generated and stored in two different formats. In the first case, thereified state-
ment was stored in an optimized form as a property-class table. In the second case,
the reified statement was stored unoptimized as RDF triples, i.e., each reified state-
ment was stored as four RDF statements. Consequently, the first table contained
10,000 rows while the second table contained 40,000 rows.

Then asimple test program randomly selected areified statement and retrieved
the four reification triples for that statement (recall that on retrieval, the property-
class table converts each table row to a set of triples). Each test was run four times
with different random number seeds and three different test sizes were run of 200,
1000, 5000 retrievals. The results are presented in Table 2. As before, the times are
in milliseconds and the tests were run using MySQL under WinXP on a recent gen-
eration PC workstation with 1.5GB RAM.

Our expectation was that the optimized format would perform anywhere
between one and four times faster than the unoptimized form since it only needs to
invoke the database engine once to get all four triples whereas the unoptimized for-
mat makes four calls. For asmall number of retrievals, the optimized format shows
a large improvement between the first and fourth run. We attribute this to caching
effects that decrease with larger numbers of retrievals. It is interesting to see that
the speed-up for large numbers of retrievals exceeds our expectations. This may be

146

TABLE 2. Retrieval Timesfor Four Triples of a Reified Statement

Number of Retrievals Optimized Unoptimized Speed-up
200 (initial run) 1000 1860 18
200 (final run) 270 1470 5.4
1000 (initial run) 1330 7380 55
1000 (final run) 700 6970 10.0
5000 (initial run) 4220 34380 8.1
5000 (final run) 3470 34270 9.9

due to database caching effects. Since the optimized tableis smaller, it is possible to
cache alarger percentage of the entire table which reduces the number of relatively
slow disk seek operations.

A comprehensive study of RDQL query processing has not been done. Some
preliminary analysis indicates that the Jena2 algorithm is a modest improvement
over the Jenal nested-loops approach. The Jenal agorithm works quite well for
queries with high selectivity since such queries require few nested find operations.
For such queries, Jenal and Jena2 perform about the same. Jena2 performs better
than Jenal on queries which join alarge number of tuples.

Future Work. Currently, Jena2 stores all literals as strings. An important enhance-
ment for typed literals will be to store them as native SQL types. This will enable
inequality comparisons and range queries to be processed within the database
engine. Thisisfuture work.

A major goa of Jena2 is support for OWL and reasoning. Now that this is
available, it will be interesting to explore how the persistence layer can better sup-
port these capabilities, e.g. performing transitive closure within the database.

We are presently investigating caching strategies to improve performance. One
approach is to implement the caching inside the persistence layer using the special-
ized graph interface. An alternative is to implement caching for arbitrary logical
graphs. The latter provides a convenient general -purpose solution, while the former
may make use of intimate knowledge of the database to improve performance. Our
initial caching algorithm is to implement a write-through cache which holds state-
ments with commonly-used subjects. If the cache holds one statement with sub-
ject=X then it has every statement with subject=X. Currently, the cache assumes
exclusive access to that subject to avoid cache consistency issues due to conflicting
updates from other Jena applications. However, such exclusive access appearsto be
a common case. This style of cache has previously been suggested by others with
experience in using RDF with Jenal [11] and we hope will prove to be a good
match for common application usage patterns. Testing and analysis is underway.

8.0 Related Work

A good introduction to RDF storage subsystems and a comparative review of

147

implementation is available in [4,5]. We do not attempt to duplicate such a survey
here. However, if we compare the Jena2 persistent store to some of these systems
along the dimensions of database schemas, architecture, and system functionality,
then we can better characterize the strengths and limitations of our approach.

The Jena2 schema design is unique in that it supports two basic schema types:
both a denormalized schema used for storing generic triple statements as well as
property tables to store subject-value pairs related by arbitrarily specified proper-
ties. To the best of our knowledge, no other system supports the generation of prop-
erty tables based on arbitrary properties; other systems are strictly schema-specific.
Jena2 uses the arbitrary property tables to implement anovel architecture where the
statements associated with a given graph are stored in multiple specialized sub-
graphs. This architecture enables the Jena2 query processor to effectively treat the
subgraphs as data partitions and provides an efficient implementation for reifica
tion.

Most systems (including KAON [9,], Parka Database[13], and rdfDB[14]),
support only a fixed set of underlying tables that implement a (non-schema-spe-
cific) generic store. This means that the storage mechanism cannot adapt to the data
characteristics, impacting scalability.

|CS-FORTH’s RDF Suite [10] supports both generic stores as well as automat-
ically-generated schema-specific Object-Relational (SQL3) schema definitions.
However, unlike Jena2, RDF Suite relies on schema specifications to create the
specialized tables; it doesn't support arbitrary property tables. Similarly, the Ses-
ame [15] system creates one specialized table per class. Tightly coupling the table
layout to schema structure can facilitate inferencing by alowing the systems to
exploit the explicit schema relationships, but it also means that the tables must be
rebuilt whenever the schema structure changes. This forces the storage system to
forfeit RDF's unique support for flexible dynamic schema restructuring; Jena2 is
not subject to this limitation.

Insofar as the schema-specific tables partition the stored data, such schema-
specific storage resembles the Jena2 notion of specialized subgraphs. However,
because these systems tightly couple the subgraphs with the schemas, they can only
partition data according to its syntactic structure; they cannot create subgraphs
based on other factors. The Storage and Inference Layer (SAIL) [15] provides lay-
ered interfaces to Sesame modules that stack and alow actions to be passed
between them until handled. However, because it based upon Sesame, the SAIL
database schemais class-specific, and thus subject to the limitations listed above.

To the best of our knowledge, no other RDF system optimizes storage for reifi-
cation in the style of Jena2. The notion of property-class tables appearsto be new in
RDF stores although it is commonly used in object and functional database sys-
tems.

148

9.0 Conclusions

The Jena2 persistence layer supports application-specific schema while retaining
the flexibility to store arbitrary graphs. The notion of property-class tables appears
to be new and should be beneficial for query languages that expose higher-level
abstractions to applications. However, the mixing of property tables and statement
tables in a graph database complicates query processing and optimization. More
work is needed on efficient algorithms for this case.

Acknowledgements

The first three authors are new to the Jena effort and wish to thank the rest of the
Jenateam, which includes the forth author, for their help and for allowing usto par-
ticipate in its development. The rest of the Jena team includes Jeremy Carroll, lan
Dickinson, Chris Dallin, Brian McBride and Andy Seaborne. For the work in this
paper, we particularly thank Chris Dollin and Andy Seaborne for being so generous
with their time.

References

1. B. McBride JenalEEE Internet Computing, July/August, 2002.

2. J. Carrall, I. Dickinson, C. Dollin, D. Reynalds, A. Seaborne, K. Wilkinson, The Jena
Semantic Web Platform: Architecture and Design, HP Laboratories Technical Report
HPL-2003-146.

3. T.Berners-Leeet d. Primer: Getting into RDF & Semantic Web using N3, http://
www.w3.0rg/2000/10/swap/Primer.html

4. D. Beckett, SWAD-Europe: Scalability and Storage: Survey of Free Software/ Open
Source RDF storage systems, http://www.w3.org/2001/sw/Europe/reports/
rdf_scalable_storage report/

5. D. Beckett, J. Grant, SWAD-Europe: Mapping Semantic Web Data with RDBM Ses,
http://www.w3.0rg/2001/sw/Europe/reports/scalable_rdbms_mapping_report/

6. T.Berners-Lee, Web Services and Semantic Web, keynote speech at World Wide Web
Conference, 2003, http://www.w3.0rg/2003/Talks/0521-www-keynote-tbl/

7. S. Alexaki, V. Christophides, G Karvounarakis, D. Plexousakis, K. Tolle, The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases, 2nd Intl Workshop
on the Semantic Web (SemWeb'01, with WWW10), pp. 1-13, Hongkong, May 1, 2001.

8. D. Reynolds, Jena Relational Database Interface — Performance Notes, in Jena 1.6.1
download: http://www.hpl.hp.com/semweb/download.htm

9. KAON - The Karlsruhe Ontology and Semantic Web Tool Suite, http://kaon.seman-
ticweb.org/

149

10. J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A Generic Architecture for Stor-
ing and Querying RDF and RDF Schema PDF, First International Semantic Web Confer-
ence (ISWC'02), Sardinia, Italy, June 9-12, 2002.

11. D. Banks, personal communication.

12. The ICS-FORTH RDFSuite: High-level Scalable Tools for the Semantic Web. http://
139.91.183.30:9090/RDF/

13. PARKA-DB - A Scalable Knowledge Representation System.
14. http://www.guha.com/rdfdb/internal s.html

15. Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. http:/
/sesame.ai dministrator.nl/publications/del 10.pdf

16. L. Ding, K. Wilkinson, C. Sayers, H. Kuno, Application-Specific Schema Design for
Large RDF Datasets, HP Laboratories Technical Report HPL-2003-170.

17. A. Seaborne, An RDF NetAPI, , HP Laboratories Technical Report HPL-2002-109.

150

An Indexing Scheme for RDF and RDF Schema
based on Suffix Arrays

Akiyoshi MATONO!, Toshiyuki AMAGASA', Masatoshi YOSHIKAWAZ, and
Shunsuke UEMURA!

! Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
{akiyo-ma,amagasa,uemura}@is.aist-nara.ac.jp
% Information Technology Center, Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi 464—-8601, Japan
yosikawa@itc.nagoya-u.ac.jp

Abstract. The Semantic Web is a candidate for the next generation of the World
Wide Web. It is anticipated that the number of metadata written in RDF (Resource
Description Framework) and RDF Schema will increase as the Semantic Web be-
comes popular. In such a situation, demand for querying metadata described with
RDF and RDF Schema will also increase, and therefore effective query retrieval
of RDF data is important. To this end, we propose an indexing scheme for RDF
and RDF Schema. In our (proposed) scheme, we first extract four kinds of DAGs
(Directed Acyclic Graphs) from an RDF data, and extract all path expressions
from the DAGs. Then, we generate four kinds of suffix arrays based on the path
expressions. Using the indices, we can achieve efficient processing of query re-
trievals on RDF data including schematic information defined by RDF Schema
(for example, classes and/or properties).

1 Introduction

The Semantic Web [1, 2] has emerged as the next generation of the World Wide Web.
In the Semantic Web, human-to-machine and machine-to-machine interactions are ex-
pected to become more intelligent from the wealth of metadata associations between
resources on the Internet. The key difference between the current Web and the Semantic
Web is the quality and quantity of metadata. Currently available metadata are insuffi-
cient, in terms of quality and quantity, for the purposes of advanced processings. The
Semantic Web, on the other hand, makes it possible to perform high-level processes,
such as reasoning, deduction, and semantic searches, to make the best use of metadata
associated with web resources.

In the Semantic Web, RDF (Resource Description Framework) [3] and RDF Schema
[4] are commonly used to describe metadata. RDF is a framework to describe data
and their semantics, and is composed of the RDF model and RDF syntax. In the RDF
model, statements are used to describe relationships between pairs of terms. A state-
ment is called a triple, because a statement is comprised of three elements: a resource, a
property and a value. The value can be either literal or resource, and thus complex infor-
mation can be represented as a set of statements, such as a form of directed graphs. RDF

151

2 A. Matono et al.

syntax is a specification to serialize RDF statements as XML (Extensible Markup Lan-
guage) data. RDF Schema is the schema language for RDF used to specify schematic
information, such as definitions of resources, properties and classes.

In the near future, the quantity of metadata represented by RDF is expected to in-
crease significantly as the Semantic Web comes into wide use. We expect that RDF
databases will become important as an efficient means of access to massive meta-
data bases written in RDF and RDF Schema. One naive approach to constructing RDF
databases is to use XML databases to store and retrieve RDF data simply because any
RDF data can be represented in XML. However, this approach is not practical because
the structure of RDF data is different from the structure of XML data, and there are
many ways to serialize RDF data in XML form. Thus, queries to retrieve RDF data
cannot be implemented as queries of their XML representations.

Another way to implement RDF databases is to utilize relational databases. In this
approach, a piece of RDF data is decomposed and stored into relational tables. Several
methods have been proposed already [5]. RDFSuite [6] is an implementation of RQL
(RDF Query Language) [7], a query language for RDF. To store RDF data, RDFSuite
uses tailor-made relational schema specially designed for the RDF Schema that we
would like to explore. Jena [8] is an RDF database that implements RDQL (RDF Data
Query Language) [9] using MySQL. However, a few of the previously mentioned works
has investigated the performance of RDF databases.

We propose an indexing scheme for RDF and RDF Schema to achieve efficient
query retrieval. Specifically, we focus on path expressions extracted from RDF and
RDF Schema. Our first step is to extract four types of partial graphs from RDF and
RDF Schema, because RDF and RDF Schema data have four distinct relationships.
The graphs represent relationships among instances, classes and properties. Then, we
extract all possible path expressions from the graphs, and construct suffix arrays on
the path expressions. As a result, for a given query as partial path expression, we can
efficiently detect the result.

The basic concept underlying our proposal is similar to that of Yamamoto et al. [10].
The main difference is that this approach is used for XML data, whereas we propose
applying it to RDF and RDF Schema. Since XML data is a tree structure, enumeration
of all possible path expressions in XML is an easy task. However, path expression
cannot be as straightforward with RDF and RDF Schema, because they may contain
multiple paths and/or cycles. For this reason, we will limit our first targets to cases
where RDF and RDF Schema do not contain cycles.

However, even if we limit our target to DAGs, we should claim that our scheme can
be applicable to many applications due to the fact that a large majority of RDF data in
real applications is expressible as DAGs. For instance, WordNet [11], a famous on-line
lexical database written in RDF, does not contain cycles based on our investigation.
Following this step we will introduce a method to cope with cycles.

We have implemented our approach and evaluated its performance in a series of
experiments. We used four kinds of RDF documents with different sizes using Wordnet
[11], and stored each of the four RDF documents in RDFSuite. Eight queries were
executed against the RDF database to compare the processing time using our index and

152

An Indexing Scheme for RDF Data 3

authored - -
www.matono.net/paper "Akiyoshi MATONO"

Fig. 1. An RDF data model statement.

those of non-index (or original indices of RDFSuite). Our index was more efficient than
the non-index, and our approach has shown scalability.

The rest of this paper starts with an outline of RDF and RDF Schema using exam-
ples in Section 2. In Section 3, we describe our approach for efficient RDF retrieval. In
particular, we defined a suffix array for DAG, explained about extracting the four DAGs
from the RDF data, and described path expressions for each DAG. In addition, we de-
scribe our experimental setup and evaluate the performance using our index in Section
4. In Section 5, we describe an idea to cope with cycles. We discuss related work in
Section 6, and conclude the paper in Section 7.

2 An Overview of RDF

RDF (Resource Description Framework) [3] is a foundation for representing and manip-
ulating metadata on Web resources. RDF enables us to implement various applications,
such as resource discovery, interoperation of metadata and description of machine-
understandable information.

In RDF specification, the data model and its syntax are defined. In addition, RDF
Schema [4] is used to describe schematic information of RDF data.

RDF can be used to describe the metadata of any resource in the Net as long as
its location is identifiable using a URI (Uniform Resource Identifier) [12]. In RDF,
“statements” are used to represent binary relationships between two distinct (or maybe
identical) resources. Complex information can be represented by a set of statements.
Thus, an RDF document is modeled as a directed graph (DG), where a resource corre-
sponds to a vertex and a relation corresponds to an arc. For example, let us take a look
at the statement “this paper is authored by Akiyoshi MATONO.” The statement consists
of three parts, namely, a subject (“This paper”), a predicate (“is authored by”) and an
object (“Akiyoshi MATONO”). For this reason, the statement is also called a triple. We
call the relation represented by a statement the “predicate relation” (Figure 1).

For the purpose of exchanging metadata written in RDF, RDF syntax, by which we
can serialize RDF data into XML data, is defined. Figure 2 shows an RDF document
corresponding to the above example.

RDF Schema is used to give semantic information to RDF data. Specifically, RDF
Schema makes it possible to specify the properties of a resource, data type of a property,
class memberships of properties, and class hierarchies.

Using RDF and RDF Schema, we can represent complex information (Figure 3).
Classes and properties defined by RDF Schema are shown in the upper part. For exam-
ple, the property “creates” takes an “Artist” and an “Artifact” as its domain and range,
respectively. “Sculptor” is a subclass of “Artist”, and so on. Resource descriptions can

153

4 A. Matono et al.

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://www-db.aist-nara.ac.jp/ akiyo-ma/test.rdfs#">
<rdf:Description about="www.matono.net/paper">
<s:authored>Akiyoshi MATONO</s:authored>
</rdf:Description>
</rdf:RDF>

Fig. 2. An RDF document.

Last(String) last .
create: title
Artist zx Artifact Title(String)
First(String first %,
o i AN
s | ots |
2 \ : predicate
I : N » subClassOf(isA)
paint | — subPropertyOf(isA
, --------- » typeOf(instance)

1 R
) Vi
¥ [. .
2 t Les demoiselles d' Avignon ‘
<]
= !
o i
o Pi i "
w) first t Guernica Tapestry ‘
2 \ 3|
Q i last \ %'
= Rodin as \ Ipt =
g [Rodin P 5—" The Thinker
— 1 r4 r5
g firs

Fig. 3. A complex example using RDF and RDF Schema.

be found in the lower part. Resources, such as “rl1” and “r2”, are defined as instances
of classes. Consequently, resource “rl”, for example, has three properties, “last”, “first”
and “paints”, which are inherited from the “Artist” class. Resources as character strings,
such as “Pablo” and “Picasso”, are instances of the Literal class in RDF Schema.

3 Efficient RDF Data Retrieval using Suffix Array for DAGs

3.1 Problem description

Basically, queries on RDF data can be expressed as combinations of some path expres-
sions based on graph structures of RDF data. For example, the query “find all resources
that are created by artists” can be constructed as follows: 1) find all artists, and 2) for
each artist, find all resources that are reachable by following “create” property. As we
can see, both steps, 1) and 2), can be processed on the basis of path expressions of RDF

154

An Indexing Scheme for RDF Data 5

graphs. We can therefore say that efficient processing of path expressions is crucial to
achieve efficient RDF data retrieval.

In fact, this is similar to XML data retrieval, and many researchers are devoted to
efficient XML query processing based on path expressions [13, 10, 14]. Both XRel [13]
and XParent [14] propose a relational schema based on path expressions for efficient
storage and retrieval of XML data into a relational database. In Yamamoto et al. [10],
an indexing scheme based on path expressions is proposed. In this approach, all path
expressions are extracted from XML data first. Then, a suffix array is constructed on
the extracted path expressions where the occurrences of element (or attribute) names
are alphabets. As a consequence, we can efficiently find any (partial) path expression
using the full-text search functionality provided by the suffix array.

However, we cannot apply the above technique to RDF data, because of the dif-
ferences between RDF and XML data. The differences can be summarized as follows;
1) RDF data may contain cycles, whereas XML data does not. This comes from the
topology of RDF graphs, that is, an RDF data forms a directed graph and an XML data
forms a tree. Extracting all possible path expressions from an RDF data is not trivial,
consequently. 2) In RDF data, not only vertexes but also arcs have labels, whereas arcs
are not labeled in XML data. Thus, we need to take care in path expressions. 3) We need
to take schematic information provided by the RDF Schema, because we think that the
query which involves schematic information is general on the Semantic Web.

3.2 Proposed method

In this paper, we propose a novel indexing technique based on suffix arrays for effi-
cient retrieval of RDF data. The basic idea behind our approach is similar to that of
Yamamoto et al. [10]. In order to cope with the above problems, we made the following
modifications.

1. To cope with problem 1), we first limit out target to RDF data of DAGs (Directed
Acyclic Graphs), that is, we assume that RDF graphs do not contain cycles. Thus,
we can extract all possible path expressions from a DAG. Then, we construct suffix
arrays on the path expressions. To this end, we newly introduce a suffix array for
DAGs, which is an extension of suffix arrays for character strings. In fact, the pro-
posed scheme can be adapted to the cases of general directed graphs. The algorithm
will be shown later in Section 5.

2. To cope with problem 2), we define a path expression as an alternation of labels
of vertexes and labels of arcs. In addition, we introduce special symbols to make a
distinction among classes, properties and literals.

3. To cope with problem 3), we extract four kinds of subgraphs, namely, predicates
in schema, predicates in resource descriptions, class inheritance and property in-
heritance graphs, from an original RDF graph. Then, we construct four kinds of
suffix arrays for each subgraph. As a consequence, queries including schematic in-
formation can be processed by a collaboration of these suffix arrays. To answer
such queries that include both schema and instance (e.g. find the titles of Paintings
painted by the instances of Painter class), we first get the instances of the “Painter”
class using class inheritance graph. We then get the titles of “Paintings” painted

155

6 A. Matono et al.

by the instances of “Painters” using predicates in resource descriptions. Finally, we
merge the answers and obtain the final result. In this way, complicated queries can
be processed using our proposed indexing scheme.

3.3 Extracting DAGs from RDF data

Given an RDF data with RDF Schema, we extract four kinds of DAGs by taking vertex
types, arc types and their semantics into account.

Predicates in schema This graph is obtained by extracting classes and their properties
from the schema part of an RDF graph. This graph may contain cycles.

Predicates in resource descriptions This graph is obtained by extracting resources
and their properties from the resource description part of an RDF graph. This graph
may contain cycles.

Class inheritance This graph is obtained by extracting classes and “subClassOf™ arcs
connected to the classes. Note that “subClassOf” arcs do not have labels, and this
graph does not contain cycles.

Property inheritance This graph is obtained by extracting properties and “subProper-
tyOf” arcs in the schema part of an RDF graph, and thus we let properties, which
are arcs in the original graph, be vertexes in this subgraph. Note that “subProper-
tyOf™ arcs do not have labels, and this graph does not contain cycles.

These subgraphs, except for predicates in the resource descriptions graph, cannot
be obtained if RDF Schema is not provided. In those cases, we just use predicates in the
resource descriptions graph. Otherwise, we can make full use of schematic information
to query RDF data.

3.4 Path expressions

Figure 4 shows the syntax, represented in EBNF (Extended Backus-Naur Form), for
path expressions. In the figure, schemaPath, instancePath, classPath and propertyPath
correspond to path expressions extracted from predicates in schema, predicates in re-
source descriptions, class inheritance and property inheritance subgraphs, respectively.
In the path expressions, ‘>’ is used as a separator. Additionally, some special prefixes,
‘#’, ‘+” and ‘$’, are used to distinguish classes, properties and resources. If these spe-
cial symbols are used in labels, we replace their occurrence with an entity reference of
XML for encapsulation. For example, the RDF data in Figure 1 can be represented as

#www.matono.net/paper > +authored > "AkiyoshiMATONO”

based on the definition.

For a given DAG, we can extract all possible path expressions using the algorithm
shown in Figure 5. This algorithm starts with the vertexes whose in-degree are zero (0),
and search for traversable paths in a depth first manner.

156

An Indexing Scheme for RDF Data 7

paths ::= schemaPath* | instancePath* |
classPath* | propertyPath*

schemaPath ::= (classVertex ’>’ propertyVertex ’>’)*
classVertex

instancePath ::= (resourceVertex ’>’ propertyVertex ’'>’)*
literalVertex

classPath ::= (classVertex ’>’)* instanceVertex

propertyPath ::= (propertyVertex ’'>’)* propertyVertex

classVertex 1:="#’ typeName

propertyVertex ::= '+’ propName

instanceVertex ::= resourceVertex | literalVertex

resourceVertex ::='$’ URI-reference

literalVertex ::=""" literal '"’

typeName 1:=see [3]

propName r:=see [3]

literal i:=see [3]

URI-reference ::=see [3]

Fig. 4. Path expression syntax (EBNF).

3.5 Suffix array for DAGs

An ordinary suffix array is a data structure for full-text search on documents constructed
on one-dimensional character strings. Given a text data, all suffixes are extracted and
sorted in lexicographical order. Any substring can then be detected by performing a
binary search on the array of suffixes. In addition, because any suffix can be represented
by an integer (an indexing point), the array of suffixes can be implemented as an array
of integers whose size is equal to the length of the original document.

When applying a suffix array on path expressions, we need an extension that allows
a suffix array to accommodate multiple path expressions. For this reason, we use a pair
of integers as an indexing point; The first number is for representing an identifier of
a path expression, and the other is for representing an indexing point within the path
expression. It is defined as follows:

Definition 1 (Suffix array for DAGs) Let G be a directed acyclic graph (DAG), V(G)
be the set of vertexes in G, and E(G) be the set of arcs in G. Arc e = (u,v) in E(G)
is represented by a pair of vertexes u,v € V(G), and u and v are called the “source”
and “destination,” respectively. In addition, let R C V(G) be a set of vertexes whose
in-degree is equal to zero (0), and L C V(G) be a set of vertexes whose out-degree is
equal to zero (0). We call R and L the “roots” and “leaves,” respectively.

Given a path on G from a root 5,1 € R to a leaf 5,241 € L, it can be represented as
Dt = S11.812.° " -S12k—2-S12k,—1, Where:

t is the identifier of the path,

k; is the length of the path,

Ston-1 € VG)(1 £h< k), and

= Ston = (Ston-1, Stane1) € E(G) (1 Sh <k = 1)

157

8 A. Matono et al.

var roots := a set of vertexes whose in-degree is 0
var stack : Stack
foreach start (roots) begin
createPath (start)
end
function createPath (start : vertex) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of (vertex, arc, vertex)
begin
arcs := a set of arcs connected from start vertex
foreach arc (arcs) begin
end := a vertex connected from arc
triple := (start, arc, end)
stack.push (triple)
createPath (end)
stack.pop()
end
Creating a path expression based on stack
end

Fig. 5. An algorithm for extracting path expressions from DAGs.

Fig. 6. A simple DAG.

A suﬁix Ofpj =S8j1-5j2-°"" ~Sj,2kj—l is deﬁnedas Sj’,‘ = 8ji-Sjivl-c -Sj,2kj—l(i = 1, 2, ey, 2](]‘—
1), whose indexing point is a;; = [, 1].

The suffix array S(p;) of the path p; is then defined as an array of indexing points
that is sorted in lexicographical order.

The suffix array of a directed acyclic graph G is an array of indexing points, using
all paths from roots {ulu € R} to leaves {v|v € L}, that is sorted in lexicographical order,
and duplicated occurrences of the suffixes are eliminated. O

We will demonstrate how a suffix array is constructed on a DAG using a simple ex-
ample (Figure 6). From the DAG, we can extract two paths, namely, “A.a.B.b.C.d.E.fF”’
and “A.a.B.c.D.e.E.f.F.” Then, we assign indexing points to them (Figure 7), sort them
in lexicographical order, and eliminate duplicates of identical suffixes (Figure 8). As a
result, we obtain the suffix array of [1,1] [2,1] [1,3] [2,3] [1,5] [2,5] [1,7] [1,9] [1,2]
[2,2] [1,4] [2,4] [1,6] [2,6] [1,8].

When processing queries, we perform binary searches on the suffix array. For this
reason, O(logr(n + 1)) of computational complexity is required.

158

An Indexing Scheme for RDF Data 9

= | =
p oo
w W] w
o ole
S o|u
o oo
| <
H H| o0
| o

[N

Fig.7. Suffixes of paths.

A.aBDb.CAdEfF:(1,1) (1,1) : A.a.Bb.CAd.Ef.F
a.B.b.C.dEfF:(1,2) (2,1): A.aB.cD.eE.fF
B.b.C.dE.£F: (1,3) (1,3) : B.b.C.dE.fF
b.C.dEfF:(1,4) (2,3) : B.c.D.e.E.£.F
CdELF: (1,5 (1,5): Cd.ELF
d.E.£F:(1,6) (2,5) :D.e.E.f.F
E£F:(1,7) (1,7) - E.£F
fF:(1,8) (ZH=ELF
F:(1,9) N (1,9) :
AaB.cDeEfF:(2,1) ~ (Z9<F
a.B.cD.eEfF:(2,2) (1,2) : a.B.b.C.dE.£.F
B.cD.eEfF:(2,3) (2,2) : a.B.cD.e.E.fF
cDeEfF:(2,4) (1,4) : b.C.AE.fF
D.eEfF: (2,5 (2,4) : cD.e.EfF
eEfF:(2,6) (1,6) : d.E.£.F
E£fF:(2,7) (2,6) : e.E£F
£F:(2,8) (1,8): £.F
F:(2,9)

Fig. 8. Sorting and deletion of suffixes.

4 Performance Evaluation

This section evaluates the performance of the proposed scheme in a series of experi-
ments.

4.1 Experimental setup

Datasets We used RDF and RDF Schema documents of Wordnet [11] as the experi-
mental data. Wordnet is an online lexical reference system whose design is inspired by
current psycholinguistic theories of human lexical memory. English nouns, verbs, ad-
jectives and adverbs are organized into synonym sets, each representing one underlying
lexical concept.

As far as we have investigated, the RDF data of Wordnet does not contain any
cycles, and thus we can apply our scheme directly to the datasets. We created sub-
documents of them with different sizes 500 KB (Type A), 1 MB (Type B), 2 MB (Type
C) and 4 MB (Type D). Table 1 shows the details of the datasets.

159

10 A. Matono et al.

Table 1. Details of RDF documents of Wordnet

Type A B C D
Number of RDF Schema documents 1 1 1 1
Number of RDF documents 4 4 4 4
Total size of RDF Schema documents (KB) 4 4 4 4
Total size of RDF documents (KB) 513 999 2,073 3,982
Number of elements and attributes 15,089 29,542 62,565 119,368
Number of classes in RDF Schema documents 6 6 6 6
Number of properties in RDF Schema documents 5 5 5 5
Number of resources in RDF documents 1,555 3,100 6,571 12,380
Number of properties in RDF documents 5,647 10,851 22,773 42,878
Number of literals in RDF documents 4,553 8,645 18,107 33,473
Table 2. Performance evaluation queries
Queries for predicates in schema
#1 +glossaryEntry># Retrieval of classes for a given property

#2 #LexicalConcept>+ Retrieval of properties
#3 #LexicalConcept>+antonymOf>#LexicalConcept>+hyponymOf>#LexicalConcept>+
A long path expression

Queries for predicates in resource descriptions
#4 +hyponymQf># Retrieval of objects for a statement
#5 #&wn;400062583>+wordForm># Retrieval of statements
#6 #&wn;100033830>+similarTo>#&wn; 100033153>+wordForm>#
A long path expression

Queries for class inheritance
#7 #Adjective>$ Retrieval of instances
#8 #Resource#LexicalConcept>#Adjective>#AdjectiveSatellite>$
A long path expression

Query sets The query expressions used in the experiments are shown in Table 2. In the
table, “ &wn;” is a character entity reference for representing the namespace of Word-
net. Using these queries, we intend to evaluate the following aspects: queries for pred-
icate relations in schematic information (#1-#3); queries for predicate relations among
instances (#4-#6); and queries for inheritance relations among classes (#7 and #8).

Methodology We used an RDF database, RDFSuite [6], as a basis for implement-
ing our (proposed) scheme. RDFSuite is implemented on top of PostgreSQL, an open
source relational database management system. Specifically, RDFSuite supports two
kinds of relational schemas, GenRepr and SpecRepr, for storing RDF data. GenRepr
has two relational tables; Resources is for storing resources and their identifiers, and
Triples is for storing triples extracted from statements. On the other hand, SpecRepr’s
relational schema is designed according to the RDF Schema of the RDF data being
stored. In our experiments, we used SpecRepr because it is more efficient than GenRepr
from the view point of performance.

160

An Indexing Scheme for RDF Data 11

Table 3. The number of path expressions and arrays of index-points

Description A B C D

paths (total) 9,709 19,480 43,008 90,058
suffixes (total) 25977 51,060 111,108 217,549
paths (preds in schema) 10 10 10 10
suffixes (preds in schema) 21 21 21 21
paths (preds in resource descs) 8,144 16,370 36,427 77,668
suffixes (preds in resource descs) 19,409 37,999 83,459 165,512
paths (class inheritance) 1,555 3,100 6,571 12,380
suffixes (class inheritance) 6,547 13,040 27,628 52,016
paths (property inheritance) 5 5 5 5
suffixes (property inheritance) 10 10 10 10

We compared the query processing time between RDFSuite and RDFSuite powered
by our indexing scheme as follows:

1. We store each dataset in RDFSuite based on SpecRepr schema. Then, we construct
suffix arrays on the relational tables of RDFSuite. Specifically, a table for storing all
path expressions extracted from Wordnet data, and four tables for storing indexing
points are created in the relational database.

2. We then measure the query processing time of the queries in Table 2 for the two
cases, pure RDFSuite and RDFSuite powered by suffix arrays.

We used a PC with an Athlon 1.1 GHz CPU and 768 MB memory running RedHat
Linux 8.0, and used Java 1.4.1 for the implementation.

4.2 Experimental results

Table 3 shows the statistical data of the generated suffix arrays. From the table, we can
observe that the number of path expressions and suffixes increase in proportion to the
sizes of the datasets for the cases of “predicates in resource descriptions” and “class
inheritance.” However, this is not the case for “predicates in schema” and “property in-
heritance,” because this information solely depends on RDF Schema, and RDF Schema
is fixed for the experiments in this paper.

Figure 9 shows ratios (N/I) of the processing time of RDFSuite (N) to our scheme
(1). That is, our approach is about four times faster than RDFSuite with respect to query
#2 for dataset A. It is clear that our scheme outperforms RDFSuite.

Table 4 shows the details of the processing times. Note that for the case of #1 — #3,
because the dataset is small, the absolute processing times are too short, and the results
may not be reliable compared to other results.

Our scheme can process #4 — #6 in almost the same time, whereas RDFSuite does
not. In particular, #4 is slower than others (#5 and #6). This is because #4 searches
objects for a given predicate, while #5 and #6 search objects for a given pair of subject
and predicate. For this reason, RDFSuite can make use of built-in indices to process the
queries.

161

12 A. Matono et al.

Table 4. Processing time

Type A B C D
Suffix array | Yes No Yes No Yes No Yes No
#1 307 300 | 256 270 | 259 282 | 284 28.2
#2 276 109.0 | 260 973 | 26.0 96.0 | 28.0 92.0
#3 232 1647 | 243 1626 | 248 1804 | 25.1 158.0
#4 99.5 396.5 | 130.6 707.3 | 2059 12749 | 3379 23258
#5 82.8 166.6 | 113.6 2174 | 1827 3575 | 3123 5419
#6 84.7 182.1 | 108.0 231.6 | 178.0 3859 | 300.7 6464
#7 714 2376 | 803 3342 | 1141 702.7 | 142.3 12387
#8 770 263.0 | 913 4477 | 122.0 579.6 | 160.7 8169

When processing queries for inheritance between class and instance (#7 and #8),
as the data size is large, the ratios of the processing time between our scheme and
RDFSuite are larger. In other words, our scheme achieved scalability.

5 Coping with Cycles

In this paper, we limited our targets within directed acyclic graphs. We think that we can
find many other RDF data without cycles, because even a large scale data like Wordnet
does not contain cycles. Consequently, our scheme can be used for many applications.
However, some RDF data with directed graph structures with cycles also exist. Thus,
it is important to be able to cope with cycles in order to widen the applications of our
scheme.

5.1 Path expressions extraction and index construction

When applying indices based on suffix arrays for querying graphs, we need to extract
all possible path expressions beforehand. However, the previous algorithm for extract-
ing path expressions cannot cope with graphs that include cycles, because it may not
terminate due to dissatisfaction of terminal conditions. For this reason, we made some
improvements on the algorithm so that it can extract all the vertexes and arcs thoroughly.

The algorithm in Figure 12 has two features as follows: 1) if a path expression
contains two (or more) identical vertexes, a loop-stamp(s) is put on their second (and
later) occurrence; and 2) we change our strategy to decide the starting positions of the
path expressions. Actually, we make a list of vertexes whose in-degrees are equal to
zero (0), followed by vertexes ordered by the differences between the out-degrees and
in-degrees in ascending order. Starting from these vertexes, we try to enumerate path
expressions until all the vertexes and arcs are included.

Let us take a look at such an example. Figure 10 illustrates a graph including a cycle,
and Figure 11 shows two path expressions extracted from the graph using the algorithm
in Figure 12. Note that "’ is the loop-stamp.

We then create suffixes with respect to those path expressions and sort them in
lexicographic order. Finally, we get the following suffix array: [2,1] [1,1] [2,3] [1,3]

162

An Indexing Scheme for RDF Data 13

=

3

£

3

_f]__)

21

e 1 2 3 4 5 6 8

[isy

%

o
O Type A (500KB)
M Type B (1MB)
OType C (2MB)
O Type D (4MB)

0.1
Query

Fig. 9. Processing time (RDFSuite / Suffix array)

Fig. 10. Directed graph including a cycle

[2,5] [1,5] [2,7] [2,9] [1,7] [2,11] [2,2] [1,2] [2,4] [1,4] [2.,6] [2,8] [2,10] [1,6], whose
length is 18.

5.2 Query processing

When processing queries based on path expressions against a graph with cycles, han-
dling unintended termination of the path expressions is crucial. That is, path expressions
listed in a suffix array are not powerful enough to express cycles because of the limi-
tation of their expressiveness. As a consequence, we may come to the end of such a
termination when we are matching a query key and a path expression in the index, and
may thus miss correct answers.

If a query #E>+e>#B>+b>#C>+c>#D is given, we cannot find the same occur-
rence in the suffix array, although it is a correct answer. When processing this query, we

163

14 A. Matono et al.

|1 2 3 4 5 6 7 8 9 10 11
1 #A>+a>#B>+b>#C>+f>#F
2 | #A>+a>#B>+b>#C>+c>#D>+d>#E>+e>#"B

Fig. 11. Path expressions and indexing points of the suffixes

start from the starting element (#E) and proceed as much as possible as usual. Then, we
get the indexing point [2,9] (#E>+e>#"B). This intermediate result partially patches
until #E>+e>#B. Eventually, we come to the loop-stamp. Then, we decompose the
query path expression here, let the following path expression (#B>+b>#C>+c>#D) be
a new query, and initiate it. As a result of the brand-new query, we get a suffix [2,3]
(#B>+b>#C>+c>#D>+d>#E>+e>#"B). Now, the initial query key is fulfilled, and we
get a result of the query.

We expect that we can achieve efficient retrieval for a directed graph with cycles
using the indexing scheme. However, we may have to improve the scheme, because the
number of path expressions and suffixes are increasing in the case of the target data that
contains many cycles.

6 Related Work

Indexing techniques for structured documents are classified into a position-based index
and path-based index according to Sacks-Davis et al.w [15].

The indices proposed by Kanemoto et al. [16] and Shin et al. [17] are position-
based indices. Kanemotno et al. [16] proposed an approach in which four indices are
combined to achieve efficient document retrieval. The indices were a content index for
maintaining positions of elements and contents, local structure index for maintaining
the tree structure of document instances, global structure index for maintaining the
tree structure of document schema, and structure meta index for maintaining the meta
information of the other indices. Although this approach was efficient, the performance
did not scale with respect to data size, because four kinds of indices must be joind. In
the study by Shin et al. [17], an indexing scheme called BUS (Bottom Up Scheme) was
proposed. In this approach, document features were maintained in a bottom-up manner.

Path-based indices were proposed by Yamamoto et al. [10], Kaushik et al. [18] and
Cooper et al. [19]. The study by Yamamoto et al. [10] is a basis of our proposal. In this
paper, given an XML document, all possible path expressions were extracted, and suffix
arrays were constructed on path expressions and reverse path expressions, and hence
efficient processing of path expressions (and reverse path expressions) was achieved. In
the study by Kaushik et al. [18], they created compact models from document trees by
grouping similar vertexes into one vertex. Query processing was performed using path
expressions on the compact models. That is, they achieved space efficient indexing by
giving up accuracy. An indexing scheme called Index Fabric, as an extension of Patricia
trie [20], was proposed by Cooper et al. [19]. Patricia trie was an efficient and compact
indexing scheme that could deal with large-size text. Index Fabric is an extension of
Patricia trie, and is a height-balanced indexing structure for semi-structured data,

164

An Indexing Scheme for RDF Data 15

In addition, combinations of position- and path-based indices were proposed by
Sacks-Davis et al. [15] and McHugh et al. [21]. In Sacks-Davis et al.’s study [15], a
position-based index was constructed as inverted lists consisting of all words and ele-
ments, and a path-based index represented the list of element names and their positions
for each path. In McHugh et al.’s study [21], four indices were proposed, namely, the
Value Index, Text Index, Link Index and Path Index. Value Index has pairs of values and
element names. Text Index is implemented as an inverted list of text. Link Index main-
tains information on a list of children for each element. Finally, Path Index has path
information for all elements.

Path-based indices were also used in object databases [22—24]. Similar to our ap-
proach, these approaches maintain the relationships of class hierarchies and/or object
composition hierarchies. The key difference between our scheme and their approaches
is that we treat path expressions as character strings, whereas the others do not.

Christophides et al. [25] have proposed a labeling scheme for efficient retrieval of
RDF Schema. The study relevant to our research. They applied previously proposed
labeling schemes for tree structures to RDF schema. Concretely, there approach em-
ployed the study by Agrawal et al. [26], in which an optimal spanning tree is generated
from a DAG based on the number of ancestors per node, so that it can handle DAGs.
The labeling schemes investigated in [25] are classified into bit vector, prefix and in-
terval scheme. Bit vector [27] is a labeling scheme in that a node is represented by a
n bits vector. Prefix scheme directly encodes the label of a node in an XML tree, in
that the prefix is inherited by the parent’s label followed by the order of the node in its
siblings. Dewey scheme [28] is one of prefix scheme. Interval scheme [29, 26, 30] en-
codes the interval label (start, end) such that it is contained in its parent’s interval label.
Christophides et al. [25] limited the target data as RDF Schema for efficient retrieval.
Making a comparison between their scheme and ours is an interesting topic. We plan to
do it in the near future.

7 Conclusions

In this paper, we proposed an indexing scheme to enable RDF and RDF Schema to
achieve efficient query retrievals on path expressions. To this end, we first proposed four
types of partial graphs that can be obtained from RDF and RDF Schema. In addition, we
proposed suffix arrays on DAGs. By applying this scheme to path expressions extracted
from the above graphs, we achieve efficient RDF query processing. Because most of
the RDF and RDF Schema in real applications are expected to be modeled as DAGs,
we can make use of our proposed scheme. We conducted a performance study and the
results showed that our approach outperformed an existing RDF database, RDFSuite.

In the future, we will try to deal with RDF data that include cycles and investigate
query optimization techniques for RDF queries. Since our indexing scheme needs to
precompute all paths as statical indexing data, we must consider an update of RDF data
and schema.

References

1. World Wide Web Consortium: Semantic Web. http://www.w3c.org/2001/sw/ (2001)

165

16

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Matono et al.

. Berners-Lee, T.: What the Semantic Web can represent.

http://www.w3.org/Designlssues/RDFnot.html (1998)

. World Wide Web Consortium: Resource Description Framework(RDF) Model and Syntax

Specification. http://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222/ (1999) W3C Rec-
ommendation 22 February 1999.

. World Wide Web Consortium: Resource Description Framework(RDF) Schema Specifi-

cation 1.0. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/ (2000) W3C Candidate
Recommendation 27 March 2000.

. World Wide Web Consortium: Survey of RDF/Triple Data Stores.

http://www.w3.0rg/2001/05/rdf-ds/DataStore (2001)

. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The RDFSuite:

Managing Voluminous RDF Description Bases (2000)

. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A

Declarative Query Language for RDF. In: Proceedings of the eleventh international confer-
ence on World Wide Web, ACM Press (2002) 592-603

. McBride, B.: Jena: Implementing the RDF Model and Syntax Specification. In: Proceedings

of the Second International Workshop on the Semantic Web - SemWeb’2001. (2001)

. Hewlett-Packard ~ Company: RDQL - RDF Data Query Language.

(http://www.hpl.hp.com/semweb/rdql.htm)

Yamamoto, Y., Yoshikawa, M., Umeura, S.: On Indices for XML Documents with Names-
paces. In: Conference Proceedings of Markup Technologies 99, GCA, Philadelphia, U.S.A.
(1999)

Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet:
An On-Line Lexical Database. http://www.cogsci.princeton.edu/ wn/ (1993)

. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifiers (URI): Generic

Syntax. http://www.isi.edu/in-notes/rfc2396.txt (1998) RFC2396.

Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach to
storage and retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology (TOIT) 1 (2001) 110-141

Jiang, H., Lu, H., Wang, W., Yu, J.X.: Path Materialization Revisited: An Efficient Stor-
age Model for XML Data. In Zhou, X., ed.: Thirteenth Australasian Database Conference
(ADC2002), Melbourne, Australia, ACS (2002)

Sacks-Davis, R., Dao, T., Thom, J.A., Zobel, J.: Indexing Documents for Queries on Struc-
ture, Content and Attributes. In: Proceedings of the International Symposium on Digital
Media Information Base, Nara, Japan. (1997) 236-245

Kanemoto, H., Kato, H., Kinutani, H., Yoshikawa, M.: An Efficiently Updatable Index
Scheme for Structured Documents. In: Proceedings of 9th International Workshop on
Database and Expert Systems Applications (DEXA’98), IEEE Computer Society. (1998)
991-996

Shin, D., Jang, H., Jin, H.: BUS: An Effective Indexing and Retrieval Scheme in Structured
Documents. In: Proceedings of the Third ACM Conference on Digital Libraries. (1998)
235-243

Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local Similarity for Efficient
Indexing of Paths in Graph Structured Data. In: ICDE. (2002)

Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for
Semistructured Data. In: The VLDB Conference. (2001) 341-350

Knuth, D.E.: The Art of Computer Programming Volume 3 Sorting and Searching, Second
Edition. Addison-Wesley (1998)

McHugh, J., Widom, J., Abiteboul, S., Luo, Q., Rajamaran, A.: Indexing Semistructured
Data. Technical report, Stanford University, Computer Science Department. (1998)

166

22.

23.

24.

25.

26.

27.

28.

29.

30.

An Indexing Scheme for RDF Data 17

Bertino, E.: Index Configuration in Object-Oriented Databases. VLDB Journal 3 (1994)
355-399

Lee, W., Lee, D.: Path Dictionary: A New Approach to Query Processing in Object-Oriented
Databases (1995)

Xie, Z., Han, J.: Join Index Hierarchies for Supporting Efficient Navigations in Object-
Oriented Databases. In Bocca, J.B., Jarke, M., Zaniolo, C., eds.: VLDB’94, Proceedings of
20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, Morgan Kaufmann (1994) 522-533

Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
semantic web. In: Proceedings of the twelfth international conference on World Wide Web,
ACM Press (2003) 544-555

Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient Management of Transitive Relationships
in Large Data and Knowledge Bases. In Clifford, J., Lindsay, B.G., Maier, D., eds.: Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management of Data,
Portland, Oregon, May 31 - June 2, 1989, ACM Press (1989) 253-262

Wirth, N.: Type Extensions. ACM Transactions on Programming Languages and Systems
10 (1988) 204-214

Online Computer Library Center: Dewey Decimal Classification.
(http://www.oclc.org/dewey/)

Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proceedings of the
nineteenth annual ACM conference on Theory of computing, ACM Press (1987) 365-372
Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In: The
VLDB Journal. (2001) 361-370

167

18 A. Matono et al.

var stack : stack /* for storing triple */
var rootsl : list of vertexes /* whose in-degree = 0 */
var roots2 : list of vertexes /* sorted by values of (in-degree — out-degree)
into descending order — roots1 */
var roots := append (rootsl, root2)
foreach start (roots) begin
createPath (start)
end
function searchGraph (start : vertex) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of (vertex, arc, vertex)
begin
roots.remove (start)
arcs := a set of arcs connected from start
foreach arc (arcs) begin
end := a vertex connected from arc
roots.remove (end)
triple := (start, arc, end)
/* a path expression does not include same statements. */
if (stack = nil or triple ¢ stack.items) then
stack.push (triple)
searchGraph (end)
stack.pop ()
end
end
var path : path expression
var loop_stamp : loop-stamp /* for representing a path expression containing cycles */
path := concat (path, stack[0].start)
for (var i :=0; i < stack.length; i :=i+ 1) then
var vertex .= stackli].end
/* When a path expression has same vertexes */
if (vertex € path.items) then
vertex := vertex + loop_stamp
end
path := concat(path, stackli].arc, vertex)
end
end

Fig. 12. An algorithm of creating path expressions for DG

168

RDF Core: A component for effective
management of RDF Models

FLORIANA ESPOSITO, LUIGI IANNONE, | GNAZIO PALMISANO AND

GIOVANNI SEMERARO

Dipartimento di Informatica
Universitadegli Studi di Bari
ViaOrabona, 4
Bari, 70125, ITALY
+39 080 544 2299

{ esposito,iannone,semeraro} @di.uniba.it, ignazio_io@yahoo.it

Abstract.

In order to make Semantic Web effective, the first step was the development of
languages that could support data portability, namely XML, metadata
descriptions, namely RDF, and ontology management and inference, such as
DAML+OIL, OWL etc. Those languages have to be manipulated by
applications and many Application Programming Interfaces (APIs) have been
developed in order to accomplish this task. Obviously, they differ in
implementation details. Moreover, devel opers often would like to exploit more
than an APl at a time. Another issue is that a developer would be very
advantaged if he could have a uniform support for some services across these
frameworks (such as query languages), despite the lack of standards. In this
paper, we present a component, called RDFCore, developed in order to
overcome these problems. We will also illustrate the added value that our
framework provides to RDF in order to exploit the full potentiality of the
language and to employ it in research as well as in real world applications.
Consequently we will provide some test results on the performances of the

presented framework.

169

Introduction

World Wide Web Consortium (W3C), that is the main promoting committee involved
in the evolution towards the Semantic Web[1], has been recently working on the
development of technologies that could support this process. While some of these
technologies are still in early phases, part of them can already be exploited in real
world applications. This is the case of Resource Description Framework (RDF). It
represents the basic support to write metadata on Web resources and to grant
interoperability among heterogeneous applications when exchanging these metadata.
RDF describes resources in terms of primitives (classes, properties, resources, etc.)
without taking into account the description structure itself. In fact, the description can
be encoded in XML (but also in other different formats, see for instance [2]). This
ensures its portability acrossthe Web.
Moreover, RDF represents a suitable solution to implement the Semantic Web vision
also because it presents three key features:

Extensibility. Each user can add its own description extending pre-existing

ones without any limit.

Interoperability. RDF descriptions can rely on XML serialization every

time they need to be exchanged among heterogeneous platforms

Scalability. RDF descriptions can be viewed as sets of three field records

(triples) (Subject, Predicate and Object). This makes them easy to fetch and

manage even when a single description holds many triplesinit.
Many Application Programming Interfaces (APIs) have been developed in order to
support RDF-based applications. They offer a lot of useful features, ranging from
efficient persistence and powerful query languages [8] to simple and well designed
object models[4]. That is why we felt the need for a uniform framework (RDFCore)
that will be presented in the following sections. The main aim of RDFCore is granting
the widest compatibility with existing RDF APIs, exploiting their advantages in a
transparent way for users and, where possible, enhancing traditional approaches to
RDF-based development.

170

RDF Core

Overview

In the following section we will describe a framework named RDFCore and, besides
its features, we will also point out how the problems related to RDF have been
tackled.

RDFCore main components: Managers

The architecture sketched below Figure 1) shows the main components of the

RDFCore Framework.

Description Triple
Manager Manager

Figure 1 RDFCore Architecture

RDF Descriptions can be seen as sets of statements (typically called Models). Each
statement is a triple compound by a subject, a predicate and an object. Therefore,
users access RDF resources at two different levels of granularity — Models and
Satements. That is why we developed two different entities, called Description

Manager and Triple Manager, that deal with all the possible operations on

171

Descriptions and on Triples, respectively. Therefore, as far as Descriptions are
concerned, users can:

Add/Delete, Retrieve a Description to/from their own repository

Update an entire Description with anew one

Query a Description or a bunch of them.
while Triple Manager offers all the typical operations on single statements or on sets
of statements (as subsets of a Description) like:

Add

Delete

Update
All these operations would seem quite obvious. Indeed, all the most famous APIs
currently available offer similar support to RDF users (see for instance Jena RDF
Toolkit [3] or Stanford RDF APIs [4]). However, all these operations within our
framework bring with themselves a slight advantage.
First of all, RDFCore has been devised as a multi-user environment. In fact, each user
owns its own repository of RDF resources. Furthermore, users can be arranged in
groups, can share resources with other members and there is the possibility of
establishing policy rights on operations involving shared resources, such as
granting/removing read/write access for a particular user or group of users. Other
APIs do not offer a well-constructed persistence model like this one. The usefulness
of such user management is strictly related to resource authoring. As a matter of fact,
if the scenario is the WWW we could easily foresee communities of Web resource
authors that generate, along with the actual web-resource, its description in RDF (no
matter whether this generation will be automatic or not). Therefore, the need of

having such an organisation of the RDF resources would soon arise.

RDF Engine and RDF Persistence

Description Manager and Triple Manager make up the sole user interface of
RDFCore and they both rely on the RDF Engine module (see Figure 1).
In the RDFCore architecture, RDF Engine represents a specification rather than a

concrete piece of software. In fact, it enumerates all the necessary operations for the

172

upper modules to properly carry out their functionalities. Actually, each call to the
business functions of the proper Manager is translated into a combination of RDF
Engine operations.
In the previous sections, we mentioned that there are many existing APIs to manage
RDF and we also pointed out that it is strongly desirable that users can have the
possibility to exploit features of any of them without switching architecture. That is
why RDF Engine specifies which operations are required and nothing else. The
responsibility of actual implementation of the services specified by RDF Engine is
delegated to RDF Persistence level components.
In this way, a well-known best practice in Object-Oriented design, that is the
implementation of abstract interfaces, can be exploited. In practice, RDF Engineis an
interface whose implementation can vary depending on the requirements developers
want to meet.
Therefore, many RDF Engine implementations can co-exist in a single instance of
RDFCore. A typical scenario would be one in which different kinds of users have
different implementations of the underlying RDF Engine. The advantage is that some
users could need some reguirements that are provided (for instance) within some
specific persistence. The only effort in order to meet those requirementsis to build up
an implementation of the RDF Engine that acts as a bridge between that persistence
and the upper level components Managers). A more concrete example will be
provided below in the description of the applications of our framework.
Actualy, two implementations of RDF Engine have been produced, based on two
different solutions for RDF Description storage/retrieval:

An implementation based on RDF/XML serialization

An implementation based on triple storage, built on Jena Toolkit API [3]
Both of them, as well as the upper components, comply to the well-known Stanford
RDF API [4] as a standard for RDF object model, since it is the most widespread
basic APl for RDF Description management. This is accomplished by means of
establishing that the input/output parameters in the modules interface have types taken
from the RDF API object model (such asModel, Statement, Resour ce etc.)

173

Exploitation of RDFCore: COLLATE

One of the most complete exploitation case studies for our framework takes place in
the EU research project COLLATE (IST-1999-20882) [5]. It belongs to the Fifth
Framework Programme in scientific European Community research programme,
under the Information Society Technology category, Key Action Ill: “Multimedia
Content and Tools”. The focus of this project is the development of a collaborative
system for scientists involved in the study of the film production in Austria, Germany
and Czech republics in the 30s. Three film archives have to be made electronically
available (in order, above all, to preserve very fragile and intangible material) and
scientists have to be allowed to index, catalogue and annotate such assets in order to
build scientific discourses on their work among the scientific community endorsed
with COLLATE [6], [7]).
This could be easily assimilated to the wider scenario foreseen by Semantic Web: a
huge quantity of resources (documents, assets) with many relationships among them.
COLLATE requirements are:

A uniform way of identifying resources (films, film related documents,

cataloguing and indexing information, scientist annotations, scientific

discourses)

Distribution of information; in fact, archives still keep their resources in a

decentralized architecture in order to avoid the moving of huge amount of

data, both physically and electronically (for obvious reasons)

Intelligent navigation through data and metadata, including navigation across

scientific discourses on resources
For al these reasons RDF is a straightforward solution since it holds in itself the
features we underlined in the introductory sections.
We go on examining which added value our framework providesto COLLATE. Itis
quite obvious that a huge collection of documents and metadata such as COLLATE
heritage needs a careful devising of a scalable component in order to manage storage
and retrieval of both resources and relationships among them. While the solution for
the former problem is delegated to efficient RDBMS, as far as the latter we developed
a suitable RDF Persistence for granting scalability to RDFCore framework. This

module relies on Jena Toolkit storage model for RDF. It consists in exploiting a

174

relational representation of the RDF triples (subject, predicate, object) stored in a
database. This approach takes advantage of the outstanding performance rates of the
most famous RDBMS (such as Oracle, MySQL and PostgreSQL). One of the most
immediate benefits is the fact that applications need not to load in-memory RDF
Models (Descriptions) in order to deal with small portions of them (typically small
sets of Satements), saving lots of memory and time for each operation.

Moreover, Jena Toolkit offers RDF Description Query Language (RDQL [8]) as
language for querying RDF Descriptions. This support has been extended for
querying multiple Models, that together with multi-user environment and scalability,
proved to be a suitable solution for COLLATE requirement.

The query language, however, remains a weakness point of all RDF APIs available,
including Jena. At the time of writing, still no standard query language specifications
are available. This hampers the interoperability between components and, therefore,
between different systems; in other words, two systems using different APIs to
manage RDF can exchange data, but cannot easily exchange queries on these data.

To address this issue, RDFCore embeds a subcomponent, called Enhanced Query
Engine, able to deal with different query languages. The design of this component
exploits the Strategy pattern [10] (like other components in RDFCore architecture),
enabling the use of adynamic set of query languages. In order to add the support for a
new query language, only the classes implementing the interfaces to wrap the parser
of the language and the query engine are needed, allowing for easy update. This
update, obviously, can be the standard query language the W3C (together with other

organizations) isworking on, as soon asit is available.

Empirical evaluation of performances

In this section we present some results from a preliminary empirical evaluation we
carried out on the RDFCore software components. We mainly tried to investigate one
of the key features that a framework devoted to Web (and Semantic Web)
development should have: scalability. The notion of scalability is very well known in

IT environment and it can be measured with respect to many variables. Being

! http://www.daml .org/dgl/

175

basically a knowledge storage system, RDFCore needs to be scalable, firstly with
respect to the amount of data that it has to manage. Therefore, tests that have been
carried out had the purpose of investigating how smoothly RDFCore performances
decreased as the data size increased. Particularly, our aim was to have a component
showing linear scalability with datasize, i.e. time doubles as data si ze doubl es.
In the previous sections, while describing the design of RDF persistence architecture,
we pointed out that our framework could provide simultaneously different strategies
for the actual data storage thanks to the persistence architectural layer of abstraction.
Indeed, as we mentioned in the previous section, we developed two different
persistence mechanisms, respectively:

Based on file system binary storage of RDF/XML resources, relying on a

compressed XML storage format (namely PDOM 2)

Based on RDBM S storage of RDF resources, relying on Jena APl for RDF.
We prepared two different test sets, both devised in order to progressively scale up in
data size but with slightly different strategies. The first one increases data in size but
not in content, by simply repeating the basic RDF description n times in the same
document. The second one has been created by adding new statements to the starting
description without repeating any object, subject or properties. In this way all triples
in the descriptions from the second test set are different from each other, while there
isalot of redundancy in thefirst test set. The reason for doing that is that in both RDF
persistence implementati ons some mechanism to take advantage from redundancy has
been devised (e.g.: indexing of URI). Therefore an RDF description with many
repetitions should be processed in lesser time than a variegated description.
In al our tests, the descriptions named NNNXx_rdf are redundant descriptions, where
NNN is the number of times a particular triple is replicated in the description; on the
other hand, the descriptions named OutputNNNNN_rdf are descriptions with no

redundancy, and NNNNN is the number of triplesin the particular model.

2 http://www.infonyte.com/en/prod_pdom.htmi

176

Obtained results

In Table 1 and Table 2, divided for the sake of readability, we show the results of
processing the first test set (highly redundant) with an RDFCore exploiting the file
system-based persistence that we mentioned before, and with the JENA-based
persistence, relying on the MySQL RDBMS. In Figure 2 and Figure 3 (for PDOM)),
and subsequently Figure 4 and Figure 5 (for JENA), we show the growth of required
time to store descriptions compared with a theoretical linear function on data size
(used as baseling). In these figures, as well as in the subsequently ones, the scale on
the Y axis is logarithmic. Where not specified, the measuring unit for time is the
millisecond. Table 3 reports the results obtained on the redundancy-free test set, while
Figure 6 and Figure 7 provide a graphical representation of them. Notice that missing

values (- in tables) were omitted because they have been considered irrelevant.

PDOM Persistence JENA Persistence
Filesize| Elapsedtime| Theoretical PDOM | Reading | Storing | Theoretical
File[(Kbytes) | (milliseconds)| elapsed time | filesize time time storingtime
2x.rdf 173 3886 4000 - 203 9777 10000
3x.rdf 259 4016 6000 - 250 14772 15000
ax.rdf 342 4226 8000 - 313 19779 20000
5x.rdf 432 4446 10000| - 453 24767 25000
6x.rdf 518 4827 12000 - 485 29787 30000
7x.rdf 605 4547 14000 - 563 34787 35000
8x.rdf 691 5178 16000 - 640 39766 40000
ox.rdf 7 4757 18000 - 734 44822 45000
10x.rdf 864 5417 20000 - 875 49822 50000
11x.rdf 950 5117 22000 - 953 54762 55000
12x.rdf 1036 5168 24000 - 1125 59783 60000
13x.rdf 1122 5007 26000 - 1062 64747 65000
14x.rdf 1209 5488 28000 - 1250 69827 70000,
15x.rdf 1295 5427 30000 - 1234 74727 75000
16x.rdf 1381 5948 32000 - 1312 79837 80000
17x.rdf 1468 5728 34000 - 1422 84737 85000
18x.rdf 1554 5808 36000 - 1547 89737 90000
19x.rdf 1640 5879 38000 - 1547 94687 95000
20x.rdf 1727 5929 40000 - 1656 99682 100000

Table1 High redundancy test (a)

177

PDOM Persistence JENA Persistence
Filesize| Elapsedtime| Theoretical PDOM | Reading | Storing | Theoretical
File[(Kbytes) [(milliseconds)| elapsed time | filesize time time storingtime
20x.rdf 1727 5929 40000 - 1656 99682 100000
30x.rdf 2590 7411 60000 261 2390 149573 150000
40x.rdf 3453 9043 80000 314 3250| 1993%4 200000
50x.rdf 4316 10104 100000 370 4015 249230 250000
60x.rdf 5179 10905 120000, 427 4781 299171 300000
70x.rdf 6042 11636 140000 482 5578| 348987 350000
80x.rdf 6905 13930 160000 532 6453| 398823 400000
90x.rdf 7768 13450 180000 584 7203| 448658 450000
100x.rdf 8631 14130, 200000 638 9437 498494 500000
110x.rdf 9494 15292 220000 691 9406 548403 550000
120x.rdf| 10357 15793 240000 744 10343| 598239 600000
130x.rdf| 11220 18807 260000, 797 11032| 648011 650000
140x.rdf| 12083 13450, 280000 848 11688| 697917 700000
150x.rdf| 12946 22272 300000 900 12594 747847 750000
160x.rdf| 13809 21802 320000 952 13469| 797643 800000
170x.rdf| 14672 23384 340000 1003 14469| 847636 850000
180x.rdf| 15535 24105 360000 1055 15469| 897452 900000
190x.rdf| 16398 25317 380000 1106 17438| 947425 950000
200x.rdf| 17261 26201 400000 1157 16891 997201 1000000
Table 2 High redundancy test (b)
9 File size @ Elapsed time A Theoretical elapsed time
100000
a a S P
a L3 s e
a = a .
a a
10000 "—r
a
W.
-
° 14 < @ @ ° i
1000 " - 5 = a =
PS o
A4
o
<
100 T T T T T T T T T T T T T T T T 1
2x 3 4 5x 6x 7x 8 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

Figure 2 High redundancy test (PDOM) (a)

10

178

o File size @ Elapsed time A Theoretical elapsed time ¥ PDOM file size

1000000
a a a a a a a & & 3
a a
100000 s 8 °
—
a
8
o o ° < ° ® 1
10000 kﬂ_‘_'_,_,-f— y s <
<
o > ¢
14
o
4
v. "3 v v
1000 T
v v
v v v
v
100 T T T T T T T T T T T T T T T T T 1

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

Figure 3 High redundancy test (PDOM) (b)

0 Filesize 9 Reading time ¥ Storing time 4 Theoretical storing time
100000]
. = s 8 % 7
2 2
- 3
, a B
s
a
e
[
10000
1000 M
100t T T T T T T T T T T T T T T T T T 1
2x 3x 4ax 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x
Figure 4 High redundancy test (JENA) (a)
0 Filesize 9 Reading time ¥ Storing time 4 Theoretical storing time
1000000 z
3 3 B 2 ° ¥ i
& =
5 3
, z 2
s
=
[
&
100000
10000 . _ _._'_a_'_._,_‘._'-l-'—‘—'_'a’_'
1000 T T T T T T T T T T T T T T T T T 1

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

Figure 5 High redundancy test (JENA) (b)

11

179

PDOM Persstence JENA Persistence
File |PDOM [Reading [Storing [Theoretical |Reading [Storing |Theoretical
File size |[filesize |time time storingtime [time time storingtime
Output10000 | 1480 1210 6990 15382 15000 2219 83612 80000
Output20000 | 2990 2470 10404 26689 30000 3140 167201 160000
Output30000 | 4490 3700 15682 36823 45000 4797| 250750, 240000
Output40000 | 6000| 4970| 19999 48139 60000 6125 334200 320000
Output50000 | 7510 6210 26178 59776 75000 7828 418035 400000
Output60000 | 9000 7450 29893 76700 90000 9422 501715 480000
Output70000 [10500(8700(34089 99152 105000 13281 585204 560000
Output80000 | 12000 9920 38305| 145219 120000 15328| 667835 640000
Output90000 |13500] 11100| 45174 208650 135000 16531 752483 720000]
Output100000| 15000(12400 49812 308293 150000 18438| 836212 800000
Table3 No redundancy test

The X axisinFigure 6 and Figure 7 reports the number of triples in the files used for

the test.

o Filesize

@ PDOM file size

A Reading time

WV Storing time

» Theoretical storing time

1000000

100000

10000

1000

10000

30000

40000 50000

60000 70000

Figure 6 No redundancy test (PDOM)

80000

90000 100000

12

180

0 Filesize 9 Reading time ¥ Storing time 4 Theoretical storing time

1000000
8 2
E
B

1

100000 T

10000
/

1000 -1 T T T T T T T T 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

=

Figure 7 No redundancy test (JENA)

Table 4 reports RDFCore performances in adding a statement to very huge
descriptions that have been already stored in the repository. Figure 8 and Figure 9
show the graphic trend of required time.

PDOM Persistence JENA Persistence
Elapsed File Filesize Elapsed time

File time Theoretical elapsed time

160x.rdf 9333 9333| Output10000 1480 358
170x.rdf 9564 9916| Output20000 2990, 12
180x.rdf 10826 10500 Output30000 4490 25
190x.rdf 10756 11082 Output40000 6000, 70
- - -| Output50000 7510 36
- - -| Output60000 9000, 10
- - -|Output 70000 10500 17
- - -|Output80000 12000 21
- - -| Output90000 13500 20
- - -| Output100000 15000 20

Table4 Addtripletest

13

181

O Elapsed time @ Theoretical elapsed time

100000
10000
1000 T T !
160x 170x 180x 190x
Figure 8 Add triple test (PDOM)
© File size @ Elapsed time
100000
o
10000 - a ° 2
- <
o
o
4
1000
100 \
P 1
10 T T T T T T T T |

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 9 Add triple test (JENA)

Furthermore, we measured the time spent by RDFCore to retrieve a description from
the repository and make it ready for manipulation by user (Table 5 and Figure 10 and
Figure 11) and in querying a model for every tripleit contains (Table 6 and Figure 12
and Figure 13).

182

14

PDOM Persstence | JENA Persistence
Resource Elapsed time Theoretical elapsed time Elapsed time
Output10000 13570 13000 484
Output20000 23804 26000 5
Output30000 34420 39000 15
Output40000 43573 52000 63
Output50000 59285 65000 31
Output60000 - - 5
Output70000 - -
Output80000 - - 15
Output90000 - - 16
Output100000 - - 16

Table5 Retrieve description test

Asfor Figure 6 and Figure 7, in Figure 8 and Figure 9 the X axis reports the number of

triplesin thefiles used for the test.

100000

10000

© Elapsed time

@ Theoretical elapsed time

10000

T
20000

T
30000

40000

Figure 10 Retrieve description test (PDOM)

50000

183

15

© File size @ Elapsed time

100000

10000

1000

oD\
. \v/'\\w/.—-—-

1 T T T T T T T T 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 11 Retrieve Description(JENA)

PDOM Persistence JENA Persistence
Resource Triplenumber Elapsed time Elapsed time
Output10000_rdf 10000 10505 453
Output20000_r df 20000 15502 31
Output30000_rdf 30000 24075 16
Output40000_rdf 40000 32497 15
Output50000_rdf 50000] 49361 16
Table6 Querying persistence

|0 Triple number @ Elapsed timel

W-

100000

10000

1000

100

10

1 T T T |
output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

Figure 12 Querying persistence (PDOM)

184

16

9 Triple number @ Querying time

100000

10000

1000

10 T T T 1
output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

Figure 13 Query test (JENA)

Queries

The query test involves the use of the Enhanced Query Engine component of our

architecture; specifically, the query used to stress the system (taking into account the
size of the dataset and the size of results) was a very simple one: we asked the system

to return every statement, describing a matching statement as a statement with a
variable value for subject, predicate and object. Thisis done, in our system, creating a
Pattern (alist of conditions on statements) and translating it into a query expressed in

one of the query languages that are supported by the Enhanced Query Engine. In our
test, we used RDQL as a query language; the translated query is

SELECT ?s, ?p, ?0 WHERE (7?s, ?p, ?0)

that returns every statement in the given model.

Result analysis

The obtained results show that the whole system does scale in alinear way with both
persistence layers. It is noteworthy that JENA persistence absolute times, when
adding a new model, are higher than those of the PDOM implementation. This
depends on a JENA weakness due to the complexity of the internal database structure.
The next version of JENA (JENA 2.0) promises substantial performance

improvements, and this should tackle the resulting weakness of our system. On the

17

185

other hand, when doing retrieving and querying tests, where PDOM is still linear,
JENA is very close to constant complexity, independently from the size of managed
data. This result was expected because of the different approaches used by the two
distinct layers: PDOM loads its data into in-memory representations, while Jenarelies

on its RDBMS persistence, obviously faster in these operations.

Conclusions

In this paper, we briefly described motivations and requirements for the brand new
vision emerging on the Web: the Semantic Web. We pointed out, among others, the
need of exploiting suitable technology for dealing with metadata, such as RDF. This
technology has many benefits and, as we stated in the first sections of this paper, has
to be integrated in frameworks that offer both scalability and standard support. Then,
we presented our solution to tackle RDF related issues and we mentioned one specific
application of RDFCore in a current ongoing EU research project (COLLATE).
Finally, we presented an empirical evaluation from which we noticed that our
designed architecture resulted in a scalable system (as shown by early tests on the
prototype presented in this paper). Forthcoming research will have three main
directions:

Integration with RDF Schema Technology

Moving to a standard RDF Query Language (when issued by responsible

committee)

Embedding Semantic Web upper level languages, such as DAML+OIL[9], in

order to deal with ontologies and reasoning.

References

[1] T.BernersLee, J. Hendlersand O. Lassilla, The Semantic Web Scientific American,
May 2001 http://www.scientificamerican.com/article.cfm?articlel D=00048144-
10D2-1C70-84A9809ECS588EF21& catl D=2

[2] D. Beckett N-Triples EBNF Grammar definition
http://mail.ilrt.bris.ac.uk/~cmdjb/2001/06/ntriples/

18

186

(3]

(4]
(5]

(6]

(7]

(8]
(9]

B. McBride, Jena: A Semantic Web Toolkit, |EEE Internet Computing, Vol. 6, N. 6,
55-59, Nov/Dec 2002.

S. Melnik: "RDF API Draft", working document, Stanford University, 1999
COLLATE — COLLATE - Collaboratory for Annotation, Indexing and Retrieval of
Digitized Historical Archive Material http://www.collate.de/

S. Ferilli, Management of Cultural Heritage Material: The COLLATE project. In: L.
Bordoni, G. Semeraro (Eds.), Proceedings of the Workshop on Artificia Intelligence
for Cultural Heritage and Digital Libraries, 7th Congress of the Italian Association
for Artificial Intelligence (A1*IA '01), Bari, 25 September 2001, pp. 29-33.

H. Brocks, U. Thiel, A. Stein & A. Dirsch-Weigand, Customizable Retrieval
Functions Based on User Tasks in the Cultural Heritage Domain. In:

Constantopoulos, P. & Salvberg, |I.T. (Eds.). Research and Advanced Technology for
Digital Libraries. Proceedings of the 5th European Conference, ECDL 2001. Berlin:
Springer, 2001, pp. 37-48.

Jena RDF Query Language http://www.hpl.hp.com/semweb/rdgl-grammar.html
Horrocks, DAML+OIL: a Reason-able Web Ontology Language, in Jensen, C. S;;
Jeffery, K. G.; Pokorny, J.; Sdltenis, S.; Bertino, E.; Bohm, K.; Jarke, M. (Eds.),
(2002) Advancesin Database Technology - EDBT 2002, Lecture Notes in Computer
Science 2287, 2-13, Springer:Berlin, 2002.

[10] E.Gamma, R.Helm, R.Johnson, J.Vlissides, Design Patterns Addison-Wesley Pub

Co; 1st edition (1995) ISBN 0201633612, pp. 315-324

19

187

188

Sharing Ontology by Web Services:

| mplementation of a Semantic Network Service (SNS)
in the context of the German Environmental | nformation
Network (gein®)

Thomas Bandholtz

Consultant, Karl-F.-Schinkelstr. 2, 53127 Bonn, Germany
(formerly: Solutions Manager Knowledge Technologies, SchlumbergerSema)
thomas@bandholtz.info

Abstract. A thesaurus, a gazetteer and a chronology have been integrated in a
consolidated ontology on the basis of the Topic Map pattern. The result has
been made accessible to a working information community of 89 environmental
authorities in Germany by Web Services technology. A semantically shared
ontology can be shared physically in the Web.

1 Introduction

Way back in 1998, the Federal Environmental Agency in Germany launched the
German Environmental Information Network [1] (@ein®, www.gein.de), an R&D
project which resulted in the implementation of a first version of an Internet
Information Broker in 2000. In most aspects, this was what today is called anagent in
the Semantic Web. gein® was a loose coupling of — initially - 50 information
providers with about 50,000 Web pages and nine Web-interfaced databases,
integrated by the agent (broker) with the help of a - hopefully - shared ontology,
common Internet technology, and XML. Thus gein® is part of the "database and
information system research as they relate to the Semantic Web and more broadly, to
gain insight into the Semantic Web technology as it relates to databases and
information systems' (http://swdb.semanticweb.org), as it is focused by the current
workshop.

gein® successfully applied a common content classification system as afirst step to
any further content-related integration (or even "harmonization") of the different
Internet information sources in its domain. The semantics had been formalized by a
Thesaurus, a Gazetteer, and a Chronology. Bases on these, gein® was practicing
automatic indexing of unstructured documents as well as a distributed query using
XML metadata in HTTP requests. With this rather "avantgardistic" approach in 2000,
gein® proved as the public information portal ("The Portal to German Environmental
Information") of the German environmental authorities on the federal and states level

anyway.

189

2 Thomas Bandholtz

Following this encouraging experience, a follow-up project named “Semantic
Network Service (SNS)” [2] has been launched in 2001 to overcome some restrictions
of the initial version of ontology management and automatic indexing by
improvements such as:

e Semantic integration of thesaurus, gazetteer, and chronology;

e Resolving of homonym ambiguities by context analysis

o Elaborated criteria for keyword ranking according to their significance in one
document.

e Sharing ontology by Web Services

e Accessing semantic methods by Web Services

In this paper, | will concentrate on issues of Semantics and Application, as these
have proved to be the more crucia aspects. The Infrastructure (gein® and SNS are
built on J2EE, with open source as far as possible) sometimes has raised problemsin
reliability, interoperability, or performance, but these never have been critical for the
project. Inthefollowing, | will discuss:

e Topic Maps, in their ability to integrate thegein® legacy and exposeit to the
Semantic Web,

e Web Services as an interfacing method that allows to share an ontology not
only semantically, but aswell physically.

2 Semantic Integration of a Thesaurus, a Gazetteer, and a
Chronology in a Topic Map

The SNS project has been started in 2001, and there has been an early decision to use
Topic Maps to model the ontology. While there is a — sometimes controversia -
discussion about Topic Maps and the Semantic Web [3,45], | recommend considering
Topic Maps as a pattern to be applied to Web Ontology. This may include using the
Web Ontology Language (OWL) [6] to seridize Topic Maps.

There had been an early RDF discussion [7] in the design phase of gein® in 1999
which resulted in the decision not to use RDF as the productive XML format in the
network. We implemented a community metadata profile in XML instead, with the
option to be converted into RDF later.

In early 2001, we experienced a kind of déja vu discussing the XML Topic Maps
(XTM) [8] interchange format. Again, there was a format which was designed on an
extremely abstract level, while we were looking for something which was optimized
for fast and simple processing. That is why we developed a different XML structure
for Topic Maps[9] first, defined in an XML Schema. After XTM became an Annex to
ISO13250 as a recommended interchange format, we also implemented an XTM
interface. From today’s perspective one would consider to implement an OWL
interface as well, but this had been out of scope in 2002.

190

Sharing Ontology by Web Services. 3

Anyway - none of these formats can embarrass the architecture of SNS, they just
add another interchange format. The physical storage structure is encapsulated,
following the requirements of a smooth performance. What had attracted us to apply
the Topic Map model was not an interchange format, but the semantic pattern of
Topic Mapsitsalf, as described in the core SO 13250 document [10].

Having worked with a thesaurus, a gazetteer, and a chronology, each of them in an
individual (XML-) structure, we understood the need for an integrated model. Topic
Maps promised a generic pattern to integrate the given diversity without loss.

2.1 Building on Linguistic Inheritance

The gein® vocabulary has been developed since 1999 integrating and extending the
major semantic sources of the environmental domain in Germany.

The starting point was in the initial requirement to implement a thesaurus-based
search with dimensions of subject, location, and time. Following this, gein®
combined three semantic structures:

1. athesaurusof currently 39,143 environmental terms (UmThes®),

2. agazetteer including the intersections between 48,213 geographical objects
of al kinds,

3. achronology — the synopsis of historical and contemporary events that
affected the environment.

Site‘

Component

Morphology |

Descriptor

broader

Fig. 1. Thesaurus Model of UmThes®

UmThes® [11] is a full-blown thesaurus supporting all the relations required by
SO 2788/5964 (Broader/Narrower; Synonym; Related; Component), and it contains
most of the word morphology, as shown in Fig.1. It is aso used by several German-
speaking authorities such as the German and Austrian Environmental Data Catalogue,
and it is the German source of the GEneral Multilingual Environmental Thesaurus
(GEMET) [12,13].

191

4 Thomas Bandholtz

The gein® Gazetteer is based on the GN250 (by Federal Agency for Cartography
and Geodesy), but it adds severd layers relevant for the environment, and it contains
all the spatial intersections as explicit relations in the data, ready-to-use in a rapid
query.

intersects

al Names Morphology |
R
GeoObject ==t Types / Layers |
AN

~‘| Coordinates |

part of

T

Fig. 2. Gazetteer Model of the "Geo-Thesaurus’

Today there is no established standard about gazetteers as it is for thesauri. There
was an early approach of the Alexandria Digital Library in 1999 [14], and now we
have the Open GIS Consortium's proposal of a"Gazetteer Service Specification”, and
the ISO Draft 19112 "Geographic information - Spatial referencing by geographic
identifiers" [15]. Fig. 2 shows a generic model which is more or less implemented (or
extended) by most of the existing gazetteers.

sequence

a Names Morphology |
IR

E e‘n\l}“‘l Types |
AS

\l Temporal Extent |

related

i

Fig. 3. Chronology Model of gein®

After having harvested a rich ontological legacy for the dimensions subject and
location, we were inspired to find something comparable for thetemporal aspect. We
discovered that there are several symbolic names for events that do not contain any
temporal notation, but an implicit reference to a date, such as "before (or after)
Christ". While most people in the Christian culture can associate this with year "0",
this cannot be postulated globally. Each domain knows its specific mgjor events "by
name", and most people cannot tell the exact date that they are talking about when the

192

Sharing Ontology by Web Services. 5

use phrases like "since the Chernobyl disaster" (1986-04-26). This raised the idea to
set up a mapping of symbolic names for events to their dates. Thegein® Chronology
has been started from scratch. Fig. 3 shows the structure.

22 TopicMaps

Topic Maps have originated in the neighborhood of SGML, more closely: in the
ISO/IEC JTC 1/ SubCommittee (SC) 34 "Information Technology -- Document
Description and Processing Languages' [16] which had worked with SGML, DSSSL,
HyTime before. Unsurprisingly, the first interchange format has been written in
HyTime, two years before an additional XML format (XTM) has been released by
TopicMap.org.

But the standardization has not been based on interchange formats (“transfer
seridizations', which has been stressed by Jim Mason, Chairman of ISO/IEC
JTC1/SC34:

“We need to keep clear that the transfer serializations are not the definition of
Topic Maps: The standard is the definition. SC34 intends that the supplementary
standards will clarify the meaning of Topic Maps without changing their essential
nature. (We also recognize that other transfer serializations are possible, outside the
standard.)” [17]

Topic Maps have often been described as the "GPS of the Information Space”.
They can be represented by graphs ("nodes and arcs'), but they are restricted to a
more specific pattern of Topics, Associations, and Occurrences. Topics have
Occurrences (in information objects), and there are certain Associations between
these Topics.

This exactly corresponded to the view of the gein® information broker: a Topic
may be a thesaurus descriptor or synonym, a geographic object in a gazetteer, an
event, (or a person, an organization), whatsoever. Distinct kinds of Topics are defined
as Topic Typesin a Topic Map instance.

Associations may interconnect Topics in some kind of semantic relation. Distinct
kinds of Associations, bound to certain Topic Types as their members, are defined as
Association Templates in a Topic Map instance (though this is not sufficiently
standardized yet).

An Occurrence may be seen as any kind of existing information about a Topic, but,
as Occurrences are “ groupings of addressable information objects around topics’ [10],
this should not be misunderstood to be the general index of a*“ corpora’ likegein®. In
SNS, the document index is separated from the Topic Map. Topics are used as
classification properties in document metadata, which rather means: “groupings of
topics around addressable information objects’ [9].

The current work of SC34 [16] is dedicated to the creation of two related
standards:
e 1S0O 18048: Topic Maps Query Language (TMQL)
e |S0O 19756: Topic Maps Constraint Language (TMCL)

It is planned to create a Sandard Application Model (SAM), a"formal data model
for topic maps", flanked by aReference Model, and a Canonicalization.

193

6 Thomas Bandholtz

Not only to my opinion, these activities closely relate to the Semantic Web. In
particular, couldn't the Web Ontology Language (OWL) [6], which had just advanced
to a W3C Candidate Recommendation, function as a "Topic Maps Constraint
Language'? | think, definitely yes, athough OWL may not satisfy every TMCL
requirement [18] currently in discussion. This has been explored by Lars Marius
Garshol, SC34 member and editor, with the result that "semantic annotations in OWL
can be trandlated directly into a topic map representation of the same information” [5].
While he states anyway that "merging the two technologies does not appear desirable
or possible" (ibid.), | see relevant benefits in applying the Topic Map pattern to the
modeling of Web ontologies, and in using OWL to serialize Topic Maps and their
constraints.

Besides SC34, there is a vivid Topic Map community at OASIS with three technical
committees [19] working on "Published Subjects’. This work wants to extend the
concept of subjects as given in the original 1SO13250:

"In the most generic sense, a subject is anything whatsoever, regardless of whether
it exists or has any other specific characteristics, about which anything whatsoever
may be asserted by any means whatsoever.” [10]

In this concept, each Topic "reifies’ a subject by referencing a " subject indicator".

"Any information resource can be considered a subject indicator simply by being
referred to as such by an application, whether or not that resource was intended by its
publisher to be a subject indicator, and whether or not the publisher is aware of (or
even cares about) its use as a subject indicator." [20]

The OASIS TCs are proposing the use of more explicit published subjects,
published subject indicators (PSIs) and published subject identifiers (PSIDs). To me
this sounds reasonable (and | am personally contributing), but this idea is not
necessarily dedicated to solely Topic Maps.

While SC34 still behaves quite reserved about OWL, there is a first draft of
expressing Topic Maps in OWL by Bernard Vatant, chair of the TC Published
Subjects, providing

"... areasonable platform for interoperability at a pragmatic level, covering quite a
range of moderately complex use cases and applications, without need of any
extension of current specifications beyond declaration of a minimal OWL vocabulary”
[21].

2.3 Modeling the gein® Ontology in a Topic Map

SNS has defined its own Topic types and Association templates to model the three
components of the gein® ontology. The Thesaurus type and its sub-types reproduce
the classical thesaurus structure as defined in 1SO 2788/5964. Thelocation typeisthe
abstract parent of all the spatia types such as cities, catchment areas, or national
parks. Likewise, the Event typeis parent of conferences, disasters, and so on.

The given relations (such as broader/narrower terms, or intersection of locations) can
be easily typed as Associations. So far, the three different structures can be formally
integrated into a single Topic Map without any significant semantic loss or
modification.

194

Sharing Ontology by Web Services. 7

Beyond this, the three components have been interlinked by two new association
types labeled where, and what. Both of them are using Event as the integration point.
The Where-association links between Event and Location, pointing out where an event
has happened. The What-association links between Event and Descriptor to describe
which subjects have been affected by the event.

Thesaurus
intersects _ﬂ
broader
Location related
/—7Descriptor
what? preferred
Synonym
Administrative, ... Conference, ... composite
Component
EStopword

Fig. 4. The SNS Topic Map Typology

This modeling remains implicit, as the Topic Map community still owns no modeling
or "constraint” language. There is kind of a "good practice" of describing the typesin
form of Topics themselves. But there the semantic expressivity of this style is only
rudimentary, and there is no well-defined validation as it exists with XML Schema. In
2001, we experimented with using XML Schema to describe our Topic Map model
and have the XML serialization validated against it, but this resulted in a rather
proprietary solution which finally cannot be recommended. These issues have been
discussed more closaly in [9].

What | experienced as the most restricting issue is the missing support of extending
Topic characteristics in an object-oriented manner. E.g., we need a temporal extent
attribute for the Event types, and a bounding box attribute for the Location types.
XML Topic Maps allow to (miss?-) use Occurrences to add properties, but you cannot
use data types and explicit modeling to do so. This has been solved by OWL.

3 Sharing Ontology by Web Services

The gein® Broker has been hosting al the domain ontology since 1999. It has been
used for the classification of currently 200,000 static Web pages published by 89
information providers, and in the distributed query to include nine cooperating
databases in a distributed query.

There have been several requests by the information providers to be enabled to
apply the same ontology and auto-classification methods for their own purposes.
Thinking about the effort to prepare a compact module to be distributed for
implementation in 89 possibly different technical environments, we preferred to
consider a centralized service that can be accessed online by any of them.

195

8 Thomas Bandholtz

gein® looks back to very positive experiences with distributed queries using XML
embedded in HTTP requests. We had implemented this communication in the
distributed query in 1999, even before the Simple Object Access Protocol (SOAP)
had been submitted to the W3C (2000), which initiated the XML Protocol Working
Group, and later expanded to the Web Service Activity.

In the recent months, Web Services have been discussed in the context of the
Semantic Web quite frequently. In most cases the discussion is about using Web
Services to process the Semantic Web, as by Tim Berners-Lee (*A story of program
and data as old as computing” [22,23]), or using the Semantic Web for an approved
Web Service description, as in Semantic Web Enabled Web Services (SWWS) [24].
Also the W3C Web Service Architecture [25] and the W3C Web Service
Choreography [26,27] are recognizing the importance of explicit semantics and
ontology to clarify the semantics of services. Similar for UDDI [28], or ebXML [29].
There is an elaborated approach of an "ontology of services' by DAML-S[30].

What we had in mind, was sharing ontology by Web Services physically.

3.1 Semanticsof SNSWeb Services

Based on the application experience ingein®, we designed three services [31]:

e Single Topic access by aunique ID (getPSl)
e Search for Topics by asingle character string findTopics)
e Auto-classification of anatural language document (@utoClassify)

For "Single Topic access by a unique 1D", the notation getPS was taken from the
Published Subject paradigm already introduced above and is short for: "get Published
Subject Indicator (PSI)". We wanted to support Published Subject Identifiers (PSID)
for each Topic.

Like in most Web Service applications, we bind this service to the SOAP protocol.
However, SOAP does not satisfy the requirement that a PSID must have the form of a
single URL, while SOAP needs a more complex protocol (HT TP Post).

Single URLSs can have the form of a HTTP Get request, and indeed Web Services
can be bound to the HTTP Get protocol. Doing so (additionally to the SOAP binding),
aURL like:
http://www.semantic-network.de/.../getPSI 7id=uba _thes 24027

will result in a representation of the referenced Topic, in this case the "Technica
Instructions on Air Quality Control".

The idea of this service simply is to provide the Topic's characteristics (names,
description, etc.) once aclient (agent) has taken the ID from areference. A typical use
case may be finding this reference in some metadata, and trying to resolveit.

There has been lots of discussion in the committee about the kind of representation
of a PSI. Should it be readable for humans or machines? In the Semantic Web, there
must be a machine readable presentation, so that it may be processed by an agent.
Likewise, Web Services are not directly invoked by humans, and an XML format is

196

Sharing Ontology by Web Services. 9

expected in the response. So this PSI response is definitely machine-readable —
(leaving out the argument that XML may be human-readable as well).

A human readable version is also provided by the URL :
http://www.semantic-network.de/display T opic.html 2lang=en& tid=uba_thes 24027,
but, while this may be called a kind of display service in the Web, it is not a Web
Service, asit responds with only semi-structured, display-oriented HTML code.

"Search for Topics by a single character string' (findTopics) is provided as a classical
free text query against the textual properties of Topics. There are several parameters
controlling the search tolerance, such as restricting the search to names only or
including textual parts of occurrences as well. The basic idea of this service is that the
client is looking for Topics that possibly match a given keyword (character string).
This is used by gein® to assist a human user who wants to proceed from a colloquial
term to a Topic. In most cases, more than one Topic is returned, and the list may
become quite long when the parameters are set to gain the most search tolerance.

"Auto-classification of a natural language document' (autoClassify) invokes a
linguistic analysis of the passed text. It is the same analysis that gein® is using to
generate the document index of the corpora automatically, but it may be applied in
different cases as well, e.g. using a paragraph of a known document as an initial search
condition. In this case, autoClassify returns a list of Topics which are significant for
the given text paragraph and should be used as search terms.

3.2 Responsesare Topic Map Fragments

In the design phase of the service responses we came across the problem that a single
Topic with its full characteristics cannot be isolated from the Topic Map it appears in.
The reason is Associations. 1SO 13250 clearly sees Associations as part of the
characteristics of a Topic, but each Association is referring to at least a second Topic.
Surely an Association cannot by understood without an understanding of the
associated Topic — which has more Associations ...

Practice has to find a solution. We have chosen to omit Associations in the results
of findTopics and autoClassify which return lists of Topics, and to leave it to the
requester of getPS if he wants Associations to be included in the representation of a
single Topic — together with the associated Topics, even recursively. getPS has a
parameter named distance to control the appearance of associated Topics.

But still, a fragment remains a fragment. Each thinkable subset of a Topic Map is
loosing semantics by being isolated from the origina context. That is why we decided
to let the fragment be explicit, which means adding a notation that expresses the
origin, method of filtering (i.e. the request and its parameters), and date of filtering.

197

10 Thomas Bandholtz

Bala Mare

Schadslofigenalt Schadstofbestimmung

g
\ / Avfall
/
v
\ . s

/

der Kiasse CH)

Sonderabfall

pr Kidranlage

i ¥ o 172 W Ereignis I 0t des Geschehens ¥

Fig. 5. Interactive SV G graphic displaying a Topic Map fragment

3.3 Formal Web Service Description

In Web Services, the XML structure and syntax of the communication have to be well
defined using an XML Schema embedded in the <types> section of a Web Service
Description Language [32] document.

More precisely, WSDL does not necessarily require XML Schema, but at least
some document type definition written in XML itself (and what would this be else
than XML Schema today?). That is why one cannot use a DTD type document
structure definition with Web Services (DTD are not writtenin XML).

As discussed above, XTM provides a well defined XML interchange format for
Topic Maps. However, there is no normative XML Schema for XTM. This has been
discussed in the public Topic Map mailing lists in February, 2003. In this context
there has been afirst draft by Max Voskob, which later has been “dlightly modified”
by Lars Marius Garshol.

SNS uses this version, with one further modification: Neither of the two had
declared an explicit XML namespace (xs:targetNamespace) for XTM. Thisis required
so that XML serializations of Topic Maps are able to reference the XTM schema.

Still something was missing: a Web Service provider also needs to describe the
requests (getPS, findTopics, autoClassify) and responses (topicMapFragment) in an
XML Schema. So we had to provide a SNS.XSD doing so. As topicMapFragment
includes the <topicMap> defined in X TM, the final structure looks like:

SNS.WSDL embeds SNS.XSD embeds XTM.XSD
(not to mention that XTM imports XLINK).

198

Sharing Ontology by Web Services. 11

Given the not too mature state of current implementations of WSDL processors,
this structure had its odds and ends to be settled before everything worked on today's
major platforms of WSDL processing (Apache Axis and Microsoft dotNet).

4 State of Realization

The SNS R&D project has been finalized end of 2002, with some additional minor
enhancements in 2003. The 2003 version of gein® replaces the previous semantic
methods completely by interfacing SNS Web Services, which will enter the
production phase in September.

But SNS has not been intended to be agein®—only service. Its semantic model and
functional services are provided for the integration in any kind of information system
dealing with environmental issues in Germany, and, as SNS is bi-lingud,
internationally.

In the near future there are several integration options, targeted to different usersin
different application areas, such as

1. UDK (German Catalog of Environmental Data Sources): An administrative
agreement [33] of the Federal and Lander authorities in Germany has become
effective, in which SNSisintended as the common basis of both systemsin the
next year.

2. gein® Information Providers: the (currently 89) contributing organizations
[34] are invited to integrate SNS by Web Services for any kind of information
activities. Some of them intend to implement a local version of SNS
themselves. Finally, there may be a network of cascading Topic Maps
depending on the spatial or thematic focus of an application.

3. GeoMIS.Bund: the “Metainformation-System for geodata of the Federation” of
(IMAGI) [35], pat of the German “nationa Geo data infrastructure is
incorporating SNS to support thesaurus-based search and geographic names.

4. Europe: The eEIONET community discusses “environmental web services e.g.
Reportnet, country networks, and metadata, as well as terminology/ontol ogy
issues’ on a European level [36]. As the relation between GEMET and
UmThes® is very close, and as SNS aready is working bi-lingual
(German/English), it is a candidate to be extended to a European Scope
(gazetteer) and to the full multilingual context of currently 19 GEMET
languages. This has been proposed in an Expression of Interest [37] within the
6th Framework Program of the European Commission.

5 Conclusions

SNS has successfully integrated the gein® thesaurus, gazetteer and chronology legacy
into a service-oriented, integrated ontology system that serves a large information
community.

Topic Maps have proved as a generic modeling pattern, but there are deficits in a
formal modeling language.

199

12 Thomas Bandholtz

Web Services have proved as aworking communication protocol in order to access
a domain ontology physically.

There are several issuesto be solved, among which | regard the most crucial:

o Apply the Web Ontology Language with the Topic Maps pattern.

e Advance the interoperability of the Web Service Description features and
XML Schema details to improve rapid implementations on different
platforms.

References

1. Umweltinformationsnetz Deutschland. German Environmental Information Network -
GEIN Research project UFOPLAN-Ref. No. 298 116 03/0.
http://www.gein.de/docs.html.

2. “Implementation of a Semantic Network Service (SNS) in the context of the German
Environmental Information Network (gein®)”. Research project UFOPLAN-Ref. No.
20111612, promoted by BMU/UBA, Germany. http://www.sematic-network.de.

3. Martin S. Lacher and Stefan Decker: On the Integration of Topic Maps and RDF Data.
International Semantic Web Working Symposium, Stanford 2001.
http://www.semanti cweb.org/ SWWS/program/full/paper53.pdf

4. Marc de Graauw: Business Maps. Topic Maps Go B2B. August 21, 2002.
http://www.xml.com/I pt/a/2002/08/21/topi cmapb2b.html

5. LarsMarius Garshol: Living with topic maps and RDF.
http://www.ontopia.net/topi cmaps/material s/'tmrdf.html

6. Web Ontology Language (OWL). Overview. W3C Candidate Recommendation 18 August
2003. http://www.w3.0org/TR/2003/CR-owl-features-20030818/

7. Thomas Bandholtz: GEIN 2000 and beyond: Environmental Information in the “Semantic
Web”. 1. Workshop "Environmental Markup Language (EML)". Berlin, Humboldt
University, 1999. http://www.bandholtz.info/publications/1999/gei n-eml 99-en. pdf

8. XML Topic Maps (XTM) 1.0. TopicMaps.Org Specification 1.16 2001/08/06.
http://www.topi cmaps.org/xtm/index.html

9. Thomas Bandholtz: A Taxi in Knowledge Land. XMLeurope 2002, Barcelona.
http://62.231.133.220/idea-eks-nav/papers/03-05-03/03-05-03.html

10. 1SO/IEC 13250 Topic Maps. Second Edition. 19 May 2002
http://www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-2nd-ed-v2.pdf

11. A short description (in German) of UmThes can be found at
http://www.umweltbundesamt.de/uba-datenbanken/thes1.htm See also: the Thesaurus

Editorial Board, http://www.cedar.at/wgr_home/
12. The GEneral Multilingual Environmental Thesaurus (GEMET) was developed by the

European Environment Agency (EEA) and the ETC/CDS.
http://www.mu.ni edersachsen.de/cds/etc-cds_neu/library/Gemet. pdf
HTML version at: http://www.mu.niedersachsen.de/cds/etc-cds _neu/library/select.html
13. UNEP.Net and the GEMET thesaurus. http://www.unep.net/hel p/about-gemet.cfm
14. AlexandriaDigital Library: ADL Gazetteer Content Standard (version of 4/21/99).
http://adl.billzworld.com/projects/gazetteer/content_standard/
15. Jens Fitzke: Standard-based Gazetteer Services. Presentation at the NKOS Workshop,
JCDL 2002, on Digital gazetteers: integration into distributed digital library services, July

18, 2002. jens.fitzke@uni-bonn.de

200

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.
33.

35.

36.

37.

Sharing Ontology by Web Services. 13

M. Biezunski, S. Newcomb, and M. Bryan (ISO SC34): Guide to the topic map standards.

2002-06-23. http://www.y12.doe.gov/sgml/sc34/document/0323.htm
Jim Mason, Chairman of |SO/IEC JTC1/SC34 in his posting from 2001-12-14.

http://lists.oasis-open.org/archives/topicmaps-comment/200112/msg00012.html
ISO/IEC JTC 1/SC34. Topic Map Constraint Language.

http://www.isotopi cmaps.org/tmcl/.
OASIS Topic Maps Published Subjects TC

http://www.0asi s-open.org/committees/tc_home.php2wg_abbrev=tm-pubsubj
OASIS Topic Maps Published Subjects for Geography and Languages TC

http://www.0asi s-open.org/committees/tc_home.php2wg_abbrev=geolang
OASIS Topic Maps Vocabulary for XML Standards and Technologies TC

http://www.0asi s-open.org/committees/'tc_home.php?wg_abbrev=xmlvoc
Published Subjects: Introduction and Basic Requirements. OASIS Published Subjects
Technical Committee Recommendation, 2003-06-24

http://www.0asi s-open.org/committees/downl oad. php/3050/pubsubj - pt1-1.02-cs.pdf
Bernard Vatant: Cooking for the Semantic Web. OWL and Topic Map Pudding

http://www.mondeca.com/owl/lang.rdf

Tim Berners-Lee: (W3C Design Issues) Roadmap for Web Services. 2003/07/24.
http://www.w3.org/Designl ssues/\WebServices.html

Tim Berners-Lee: Web Services - Semantic Web.
http://www.w3.0rg/2003/Talks/0521-www-keynote-tbl/

Christoph Bussler, Dieter Fensel, Alexander Maedche: A Conceptual Architecture for
Semantic Web Enabled Web Services. ACM Specia Interest Group on Management of
Data: Volume 31, Number 4, Dec 2002. See also http://swws.semanti cweb.org/swws
Web Services Architecture. W3C Working Draft 8 August 2003.
http://www.w3.0rg/TR/2003/WD-ws-arch-20030808/

Web Services Choreography Working Group Charter, W3C v 1.25 2003/01/14.
http://www.w3.0rg/2003/01/wscwg-charter

Web Services Choreography Requirements 1.0. W3C Working Draft 12 August 2003
http://www.w3.0rg/TR/2003/WD-ws-chor-reqs-20030812

UDDI tModels. Classification Schemes, Taxonomies, |dentifier Systems, and
Relationships, Version 2.04 11 December 2002.
http://uddi.org/taxonomiesUDDI_Taxonomy_tModels.htm

ebXML Case Study: Exploiting Web Service Semantics through ebXML Registries and
Software Agents. February 19, 2003.
http://www.ebxml.org/case_studies/documents/metuebxmljmtcasestudy _060503.pdf
David Martin (The DAML Services Coalition): DAML-S: Semantic Markup for Web
Services. White Paper 2003-05-05. http://www.daml.org/services/daml-5/0.9/daml-s.html
For closer information see the Semantic Network Services online documentation.
http://www.semantic-network.de/doc_intro.htmldang=en

W3C Web Services Description Working Group. http://www.w3.0rg/2002/ws/desc/
Administrative Agreement and Coordination UDK/GEIN®. http://www.udk-gein.de/
gein® Information Providers. http://www.gein.de/provi_en.html

Inter-ministerial commission for geo-information (IMAGI), Germany,
http://www.imagi.de/

EIONET: European Environment Information and Observation Network. eEIONET Work
Conference from 26-28 September 2002 in Vienna. Released: 2002/07/03.
http://eea.eionet.eu.int/Best_Practice/eEIONET2002

Eol: European Environmental Topic Map Engine with Multilingual Auto-Classification
(EETM). Expression of Interest to the 6th Framework Programme of the European
Commission. June 2002. http://www.jiscmail.ac.uk/filesDC-
ENVIRONMENT/Eol_Bandholtz.doc

201

202

ODE-SWS: A Semantic Web Service
Development Environment

Oscar Corcho', Asuncién Gémez-Pérez!, and Mariano Ferndndez-Lépez!
b b
Manuel LamaZ2

! Departamento de Inteligencia Artificial. Facultad de Informética.
Campus de Montegancedo, s/n. Universidad Politécnica de Madrid.
28660 Boadilla del Monte, Madrid, Spain.
{ocorcho,mfernandez,asun}@fi.upm.es
2 Departmento de Electrénica y Computacién. Facultad de Fisica.
Campus Sur, s/n. Universidad de Santiago de Compostela.
15782 Santiago de Compostela, A Coruna, Spain.
lama@dec.usc.es, davidal@usc.es

Abstract. Web Services (WS) are software modules that perform op-
erations that are network-accessible through XML messaging. Web Ser-
vices in the Semantic Web, that is, Semantic Web Services (SWS), should
describe semantically their structure and capabilities to enable its auto-
matic discovery, invocation and composition. In this work we present
a development environment to design SWS in a language-independent
manner. This environment is based on a framework that defines an ontol-
ogy set to characterize how a SWS should be specified. The core ontology
of this framework describes the SWS problem-solving behaviour and en-
ables the SWS design at a conceptual level. Considering this framework,
the SWS development environment is composed of (1) a graphical inter-
face, in which the conceptual design of SWSs is performed, and (2) a tool
set, which instantiates the framework ontologies according to the graph-
ical model created by the user, verifies the completeness and consistency
of the SWS through instance evaluation, and translates the SWS concep-
tual model description into SWS (and WS) languages, such as DAML-S,
WSDL or UDDI. This tool set is integrated in the WebODE ontology
engineering workbench in order to take advantage of its reasoning and
ontology translation capabilities.

1 Introduction

Web Services (WSs) are software modules that describe a collection of opera-
tions that can be network-accessible through standardized XML messaging [1].
WSs are distributed all over the Internet, and in order to enable this accessibility
and interactions between WSs, it becomes necessary an infrastructure offering
mechanisms to support the WS discovery and direct invocation from other ser-
vices or agents. Nowadays, there are a number of proposals (usually ecommerce-
oriented) that claim to enable partial or totally this required infrastructure, such

203

as ebXML [2], E-Speak [3], or BPELAWS [4]. However, the approach that has
emerged as a de facto standard, due to its extended use and relative simplicity,
is the Web Service Conceptual Architecture [1]. This framework is composed
of a set of layers that, basically, enable: (1) WS publication, where the UDDI
specification [5] is used to define the WS capabilities and characterize its ser-
vice provider; (2) WS description, which use the WSDL language [6] to specify
how the service can be invoked (input-output messages), and SOAP [7] as the
communication protocol for accessing web services; and (3) WS composition,
which specifies how a complex service can be created combining simple ones.
The language used to describe this composition is WSFL [8].

In this context, the Semantic Web [9] has risen as a Web evolution where the
information is semantically expressed in a markup language (such as DAML4OIL
[10]) and, thus, both agents and services could access directly to it. This approach
considers that the Web Services in the Semantic Web, so called Semantic Web
Services (SWSs), should specify their capabilities and properties in a semantic
markup language [11], [10]. This markup would enable other services to reason
about the SWS, and, as a result, decide whether it matches their requirements.
Taking this into account, two frameworks, SWSA [13] and WSFM [14], have been
proposed to describe a semantic Web infrastructure for enabling the automatic
SWS discovery, invocation and composition. Both frameworks use the DAML-S
specification [15], which is a DAML+OIL ontology for SWS specification, and
emphasize the SWS integration with de facto standard WS, in order to take
advantage of its current infrastructure.

On the other hand, Problem-Solving Methods (PSMs) describe explicitly how
a task can be performed [16]. PSMs are intended to be reusable components
applicable to similar tasks but in different domains. A PSM description specifies
the tasks in which the PSM is decomposed (methods-tasks tree); the input-
output interactions between the tasks; the flow control that describes the task
execution; the conditions in which a PSM can be applied to a domain or task;
and, finally, the ontology used by the PSM (method ontology). The UPML
specification [17] provides containers in which these PSM views can be described,
and, also, it incorporates elements that enable the PSM reuse. UPML has been
developed in the context of the IBROW project [18] with the aim of enabling
the semi-automatic reuse of PSMs. This objective could be interpreted as a
composition of PSMs.

In this work we provide a SWS development environment, called ODE-SWS,
which would allow the user to design SWSs on the basis of PSM modelling, en-
abling its description and composition at a conceptual level. This environment
also performs verification about the consistency and completeness of the design
created by the user. Once the design is verified, the user will select the spe-
cific languages in which the SWS will be specified. Thus, the SWS development
process supported by this environment does not depend on a specific SWS spec-
ification language. On the other hand, ODE-SWS is integrated in WebODE [19],
an ontology development workbench that offers an infrastructure in which on-
tology services (such as merging, evaluating and reasoning with ontologies) can

204

be reused by other services or applications. In this way, ODE-SWS development
has been facilitated with its integration in WebODE.

The structure of the paper is as follows. In section 2, a PSM-based framework
that enables the SWSs (and WSs) development is presented. In section 3, the
software architecture of the environment that supports this framework and how
it has been integrated in WebODE is described. In section 4, the current capa-
bilities of its graphical interface are explained. Finally, in section 5, the main
contributions of the work are summarized and other proposals to develop SWS
are discussed.

2 Framework for SWS Development

Relationships between SWSs and PSMs have been emphasized by several authors
[20], [14]. When both SWSs and PSMs are applied, they execute an operation
(or equivalently a method) to perform a task in a domain. As a result of this
execution, either new domain information is obtained or an effect is provoked
in the real world. Taking this similarity into account, it seems to be reasonable
to use the PSM paradigm to define the SWS features related to their internal
structure (SWS description and composition). Thus, we propose a framework in
which the SWS development is based on PSM descriptions, which could be ex-
tended with knowledge about ecommerce features (to facilitate SWS discovery)
and communication protocols (to provide network-accessibility).

On the other hand, the design of the framework has been guided by a set
of requirements that establish the conditions to define an open and extensible
framework to develop SWSs. These requirements are as follows:

1. SWS conceptual modeling. SWS development must be carried out at a con-
ceptual level and, therefore, characterization and description of the SWS
capabilities and internal structure (for composition and description) can-
not depend on specific languages that could limit the expressiveness of the
SWS model. Our aim is to allow the users to develop SWSs in a language-
independent manner; the environment that supports the framework will be
responsible to translate the SWS design into the required SWS languages.

2. Integration of SWS with Web Service standards. SWS specifications should
be integrated with Web service de facto standards (both frameworks and
languages) to be able to use the current infrastructure that supports these
standards [13], [20]. This requirement is compatible with the need of enabling
a SWS conceptual design, because this integration is carried out once the
SWS conceptual model has been created.

3. Modular design. The framework must be composed of a set of independent,
but related, modules, which contain knowledge about different views of the
SWS development process. This criterion guarantees the extensibility of the
framework, because we could introduce new modules without have to modify
the others.

205

2.1 Layered-Based Framework

To cover these requirements we propose a framework with a layered design,
whose layers are identified following a generality criterion, from the data types
(lower layer) to the specific languages in which SWSs will be expressed (higher
layer). Each layer is defined by an ontology that describes its elements on the
basis of well-known standards. These ontologies (or layers) are the following (see
figure 1):

— Data Types (DT) Ontology. Tt contains the data types associated to the
concept attributes of the domain ontology. The data types included in the
DT ontology are the same as the ones defined in the XML Schema Data
Types specification [21].

— Knowledge Representation (KR) Ontology. It describes the representation
primitives used to specify the domain ontology managed by SWSs in its
operations. That is, the components of the domain ontology will be KR
instances. KR ontology is needed because higher framework ontologies (PSM
and SWS) could need to reason about the domain ontology. For example,
preconditions of a method could impose that the input-output data should
be attributes. Usually, the KR ontology is associated to the knowledge model
of the tool used to develop the domain ontology.

— PSM Description Ontology. This ontology describes the elements that com-
pose a PSM, which, as we have previously discussed, can be used to generate
SWS descriptions. The PSM ontology is constructed following the UPML
specification [17], that has been extended with (1) a programming structure

UDDI WSFL WSDL/SOAP
(publishing) (composition) (description)
SWS Ontology
(DAMLS-Based)

PSM Description Ontology
(UPML-Based)

Programming Ontology

Knowledge Representation Ontology
(WebODE KR)

Data Types Ontology
(XSD-Based)

Fig. 1. Framework for SWS development. This framework is composed of a set of design
layers, each one defined by an ontology that is based on well-known specifications of
the components that it describes

206

ontology, which describes the primitives used to specify the PSM flow con-
trol (such as conditional and parallel loops, conditional statements, etc.); (2)
inferences, which are new PSM elements defined as in the CommonKADS
knowledge model [22], that is, as building blocks for reasoning processes; and
(3) relations between PSM elements to explicitly declare whether an element
may be executed independently of the others or not and whether they can
be invoked by an external agent (or service). In figure 2 an excerpt of the
PSM ontology is showed. On the other hand, the PSM ontology contains a
number of axioms that constrain how PSM element instances are created.
This guarantees the consistency of the PSM model. For example, there exists
an axiom establishing that the input method must be covered by the inputs
associated to the tasks that compose the method.

SWS Ontology. This ontology is constructed on the basis of the PSM descrip-
tion ontology, which is extended with both knowledge related to ecommerce
interactions, which enable the publication and advertisement of services, and
communication protocols. These extensions are performed using the DAML-
S specification as reference [15], because it describes containers to include
these types of knowledge.

Standard language ontologies for Web Services. They describe the elements
associated to the de facto Web standard languages for service publication
(UDDI), description (WSDL/SOAP), and composition (WSFL). These on-

SWS Ontology
SERVICE
supports presents describedBy
Grounding Profile Method
model model model
hasMethod
PSM Ontology \
Task Method
solves
Primitive
isSolvedBy method
hasSubtasks
decomposes Composite
isD: method
hasOperational
Conditional T Loop J/—MM
X . Operational
Iterative Condition clement
Assign

Fig. 2. Excerpt of the PSM ontology and how it is related with the SWS ontology

207

tologies complete the SWS specification, because they facilitate its integra-
tion in the current infrastructure of the Web.

This framework verifies the design requirements: conceptual modeling of
SWSs is performed in the PSM layer, which is not constructed following a spe-
cific language, but modelled at knowledge level [23]; integration with Web service
standards is explicitly enabled in the higher framework layer, which, if required,
could be easily extended to include new standards; and, finally, modular design
is achieved through the layered approach itself.

3 SWS Development Environment

To provide support for the framework, we have designed a SWS development
environment, in which users can design the conceptual model of SWS through
a graphical interface. Once finished, the model must be checked to guarantee
its consistency and correctness. Then the SWS model can be converted into a
DAML+OIL specification (such as DAML+OIL), which will be complemented
with Web service standard languages. The software architecture of this envi-
ronment, which is called ODE-SWS, has been designed following the framework
requirements, that is, to develop an open and extensible environment, which, if
required, could be easily modified to support new SWS (and WS) specification
languages or frameworks.

3.1 Software Architecture

According to the proposed framework, the SWS development could be viewed
as the process of instancing an ontology set that contains the knowledge needed
to generate the SWS specifications. ODE-SWS software architecture is based on
this consideration and it is composed of: a graphical interface, which allows the
users to develop SWSs at a conceptual level (section 4); and a set of services (or
tools), called ODE-SWS services, which process the SWS graphical descriptions
(previously created by the users) to generate the instances of the framework
ontology at which each service is connected. That is, each framework layer is
associated to a ODE-SWS service which operates with the knowledge contained
into the ontology that describes that layer.

Figure 3 shows the general structure of a ODE-SWS service. Usually, a service
is activated by the ODE-SWS graphical interface to (1) verify the consistency
and completeness of the SWS conceptual model; or (2) translate this model from
its graphical description into a specific language. In both cases, however, it is
necessary to generate an instance set of the ontology connected to the service. In
the first case, the SWS conceptual model is verified applying the ontology axioms
to the instance set; the ODE-SWS service contains a module that will activate
the reasoning with the ontology axioms. In the second case, it is also necessary
to check the consistency and completeness of the SWS model to avoid errors
in the specification of the SWS. Once this verification has been carried out, an

208

inference service translation services
(WebODE) (WebODE)

Instances
A
v
create
instances
A

Y
ODE-SWS

(graphical interface)

Fig. 3. General structure of a ODE-SWS service, where the ontology with which the
service operates must be one of the ontologies identified in the SWS development
framework

ODE-SWS service module will export the ontology to the language selected by
the user.

On the other hand, ODE-SWS is completely integrated in WebODE [19],
which is a workbench for ontology development that provides additional services
for exporting ontologies to different languages (such as DAML4OIL, RDF, etc.),
merging and evaluating ontologies, and reasoning with ontologies using their
axioms. The WebODE software architecture is scalable and easily extensible, and
it is divided in three layers (figure 4). In the first layer, the ontology development
services are included. They verify the ontology consistency, enable the access to
the ontologies stored in a relational database, reason with ontology axioms, and
export/import the ontologies to/from different languages.

In the second layer the middleware services are located. They use the ontol-
ogy development services in their operations and provide additional capabilities
to WebODE, such as merging or evaluation. The ODE-SWS services are inte-
grated in this layer. Thus, they directly use: (1) the WebODE inference service
to evaluate the ontologies by means of their axioms; (2) the WebODE ontology
access service to manage the framework ontologies (which are stored in We-

209

saner
o PS\EX‘ Agteatens 7. srer
C I\ ‘oﬂ
PXY‘) - ppitn 2,

v 12SIEHO7
sence

YW 7eass,
SVeE

Fig. 4. Integration of ODE-SWS services in the WebODE architecture

bODE); and (3) the export services to translate the SWS model into a specific
SWS language. In this layer the ODE-SWS graphical interface is also included
and uses the ODE-SWS services and the WebODE ontology access service.

Finally, in the third layer the applications that mainly use the middleware
services in their operations are constructed. For example, a theatre server ap-
plication that offers SWSs to allow the users to book tickets for a particular
film projected in the theatre, will probably use ODE-SWS because it provides
capabilities needed in the application definition. Therefore, WebODE platform
could be considered as an application development environment, in which new
services can be easily integrated and reused by other applications by means of
the infrastructure provided by the platform.

3.2 ODE-SWS services

ODE-SWS services are directly invoked from the ODE-SWS graphical interface
when the users, once they create the SWS conceptual model in a graphical
manner, require to export that model to well-known SWS languages or when
the graphical interface itself needs to verify whether an operation carried out
by the user has generated a SWS inconsistent model or not. Taking this into
account, we identify the following ODE-SWS services (figure 5):

210

— KR service. This service gets as input the ontology used in SWS operation
(usually the domain ontology) and establishes the instances associated to
the KR and Data Types ontologies. The domain ontology can be available in
WebODE or could be imported from an ontology language into the WebODE
specification. In both cases, this service will invoke the ODE service to access
the domain ontology components stored in a database.

— PSM service. It uses the graphical descriptions of the SWS model to generate
an instance set that describes completely the PSM model (internal structure
and flow control). Once the instance set is created, this service must invoke
the WebODE inference service [24] to verify the consistency and complete-
ness of the PSM model. In this verification, the axioms that constrain how
the PSM elements can be combined with each other are used. For example,
if we would define a general service that is decomposed in two sub-services,

&
=)
)
= KR
e service
=
=
5
<= Data Types Ontology
KR Ontology
PSM
— service
P
=
E
E PSM Description Ontology
=
=2
=
S SWS Java
7 service service
3
SWS Ontology
WSLang DAML-S
service service
\ 4
WSFL UDDI WSDL/SOAP
(composition) (publishing) (description) DAML-S Java

Fig. 5. Input-output relations between ODE-SWS services in order to generate the
SWS model and its specification in a SWS language

211

it would be necessary to verify that the inputs of these sub-services would
be of the same (or subsumed) type as the general service inputs. In order
to perform this verification, the PSM service must operate with an explicit
description of the representation primitives in which the domain ontology
will be instanced.

— SWS service. Instances created by this service will enhance the knowledge
included in the PSM model by adding the information related to ecommerce
interactions. This information will be directly obtained from the ODE-SWS
graphical interface.

These three services constitute the ODE-SWS core, because they support the
generation of the SWS conceptual model (from the SWS graphical descriptions)
and their operation does not depend on the specific languages in which the
SWS will be described. Therefore, these services will be modified only if their
associated framework layers are also changed.

— WSLang service. It gets as inputs the SWS ontology instances and gen-
erates an instance set from which the SWS model is specified in UDDI,
WSDL/SOAP and WSFL de facto standard languages.

— DAML-S service. It provides the DAML-S specification of the SWS having
as inputs the instances of the SWS ontology. Nevertheless, this operation is
not straightforward because in the DAML-S ontology a service is modeled
as a process, whereas in our framework a service is considered to be a spe-
cialization of a PSM (or method). Once this operation is performed, this
service must invoke the WebODE service, which exports an ontology into
the DAML+OIL language.

— Java service. Using the PSM ontology instances as inputs, this service will
generate the skeleton of the programming code (Java beans) needed to exe-
cute the SWS and to perform its operations. Once this code has been gener-
ated by the service, the user must fill in the methods responsible of carrying
out the operations modelled in the PSM.

These three services represent ODE-SWS additional services, because they
have been specifically included in the environment to support the translation
from the SWS model into the languages in which the SWS will be expressed. This
means that these services would be changed (or substituted) if it was required
to use other languages or if the core services were also modified.

4 Graphical Interface

ODE-SWS graphical interface is based on the assumption that the design and
development of a service should be performed from different, but complementary,
points of view (such as in PSM modelling). These different views help the user
to understand the internal structure of a service and the interactions between
its components (sub-services); that is, these views facilitate the SWS description
and composition. Taking this into account, the graphical interface contains the
following views (see figure 6):

212

I [=] e

Zapy Ctl-C
[Paste Gty
T service
Dti {‘?Removefrom\u'iew Mayiiseulas Suprimir n n - n n S o o Dfindcinema
Dc Rename ... L L A L L S L L DchackTimetable
Oy Insert 3 [selectsest
OoSSEEE D bttt
e Zoom out Co Co buyMovieTicket R C C
[— N Sy :
Dcomady o
Dwestarn . [%

D thriller
D drama
D seat

findCinema checkTimetable selectSeat buyTicket

7 attribute
D walidity
D riurber
[niame

=B]

Session Edition Service Evaluate Onbology Configuration

BEEE™

D theater @ [buyMovieTickst

D icket E Interaction view of buyMovie Ticket D findCinemna
D credit card D checkTimetable
[timetable movie.title - Co - N [selectseat
[ety — - . o o L 0 buyTiket
] Ijmuvie P - - P - .
[} science fici " ety H > findCinema ———=» theater |- checkTimetable —> fimetahle
[comedy
Dwestern

D thriller
D drama
D seat
| — |
7 attribute
D walidity
D rurber
[niame

) d selectSeat o
"

P Remove from panel .

Delete

’ W buyTicket <-——————— seat Shaw inference view
'credltcard""""'------%-

(b)

Fig. 6. ODE-SWS graphical interface

213

— Definition view. In this view the user defines a service by specifying its
name (mandatory) and, optionally, by introducing the information needed
to enable service discovery and advertisement, such as a description of the
provider that offers the service, the types of business for which the service
is oriented (industry classifications), etc.

— Decomposition view. This view allows the user to define (and also create) the
services (sub-services) that would be executed when a (composite) service is
activated. That is, a service hierarchy can be specified. This view, therefore,
enables service composition by creating a hierarchy in which the sub-services
of a composite service are activated if it verifies their execution conditions.
Figure 6.(a) shows how the service BuyMovieTicket is decomposed in its
sub-services. On the other hand, this view can be used to detect possible
inconsistencies between different views. For example, in the flow control of
a service cannot appear services that do not belong to its hierarchy.

— Interaction view. In this view the input-output interactions between the sub-
services of a composite service are specified. This operation requires that
the domain ontology would be previously loaded from WebODE database
to the graphical interface. Figure 6 shows the main window of the ODE-
SWS, where the specification of the interactions between the sub-services of
buyMowieTicket composite service can be seen. All these services have been
created in the decomposition view (or in the definition view), which will
generate the service tree shown in the right side of figure 6.(b).

— Flow control view. In this view the user specifies the flow control of a service,
where its sub-services are combined with programming structures to obtain a
description of the service execution. This view, which is not implemented yet,
will be used to model the service composition by means of several diagrams
that describe the different compositions of services. On the other hand, this
view and the decomposition view could be used to export to languages (as
WSFL) that specify the service composition.

The graphical interface guarantees the consistency and completeness of the
models that have been created in each one of its views. For example, if the user
specifies that a service is composed of three sub-services (decomposition view),
the graphical interface will invoke the PSM service to assure that the interaction
view contains exactly those three services (as in the example shown in figure 6).

5 Conclusions

ODE-SWS enables the users to develop SWSs following a PSM-oriented design,
which is based on a language-independent framework for SWS development.
Furthermore, ODE-SWS will assure the consistency and completeness of the
SWS designs. Once the SWS design correctness is verified, the user can select
the languages in which the SWS will be described. Thus, in ODE-SWS the user
does not need to know specific details about the languages used to specify the
SWSs.

214

On the other hand, the ODE-SWS integration in WebODE has simplified
its software architecture and implementation, because (1) it uses directly the
WebODE services, which offer support for ODE-SWS operations; and (2) it uses
the infrastructure itself that WebODE provides for including software modules
as services, which could be easily accessed form the graphical interface. Thus,
the integration in WebODE favors the ODE SWS modularity, which is a key
requirement to adapt the environment to new standard languages or frameworks.

Finally, there exists some development environments which offer capabilities
for SWS composition and consistency verification [26], [25]. Both environments
are based on the DAML-S ontology and they use the reasoning capabilities as-
sociated to the DAML+OIL language to verify the SWS model consistency.
These environments are language-dependent and the SWS conceptual modelling
depends on the DAML+OIL mark-up, which, therefore, highly difficult its trans-
lation to others languages or frameworks. On the other hand, none of these two
environments are supported by an infrastructure that could offer other useful
capabilities such as evaluation or reasoning about ontologies.

References

1. H. Kreger: Web Services Conceptual Architecture (WSCA 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, May
2001.

2. D Webber and A. Dutton: Understanding ebXML, UDDI and XML/edi.
http://www.xmlglobal.com/downloads/ebXML_understanding.pdf, October 2000.

3. S. Graupner, W. Kim, D. Lenkov, and A. Sahai: E-Speak — An Enabling Infras-
tructure for Web-based E-Services. Proceedings of the International Conference on
Advances in Infrastructure for Electronic Business, Science, and Education on the
Internet, L’ Aquila, Ttaly, July August 2000.

4. F. Curbera, Y. Golan, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.
Weerawarana: Business Process Execution Language for Web Services. Version
1. http://www.ibm.com/developerworks/library /ws-bpel, July 2002.

5. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen: UDDI
Version 3.0. Published Specification. http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm, July 2002.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana: Web Services
Description Language (WSDL) 1.1. http://www.w3c.org/TR/2001/ NOTE-wsdl-
20010315, March 2001.

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F.
Nielsen, S. Thatte, and D. Winer: Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, May 2000.

8. F. Leymann: Web Service Flow Language (WSFL 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSDL.pdf, May
2001.

9. T. Berners-Lee, J. Hendler, and O. Lassila: The Semantic Web. Scientific American,
284(5):34-43, 2001.

10. J. Hendler and D. McGuinness: The DARPA Agent Markup Language. IEEE In-
telligent Systems, 15(6):72-73, 2000.

215

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

S.A. Mcllraith, T.C. Son, and H. Zeng: Semantic Web Services. IEEE Intelligent
Systems, 16(2):46-53, 2001.

J. Hendler: Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37,
2001.

T. Sollazzo, S. Handshuch, S. Staab, and M. Frank: Semantic Web Service Archi-
tecture — FEvolving Web Service Standards toward the Semantic Web. Proceedings
of the Fifteenth International FLAIRS Conference, Pensacola, Florida, May 2002.
D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF. Proceed-
ings of the NSF-EU Workshop on Database and Information Systems Research for
Semantic Web and Enterprises, pages 15-20, Georgia, USA, April 2002.

A. Ankolenkar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, S.A. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng: DAML-S: Seman-
tic Markup for Web Services. Proceedings ot the First Semantic Web Working
Symposium, pages 411-430, July August 2001.

V.R. Benjamins and D. Fensel: Special Issue on Problem-Solving Methods. Inter-
national Journal of Human-Computer Studies (IJHCS), 49(4):305-313, 1998.

D. Fensel, E. Motta, F. van Harmelen, V.R. Benjamins, M. Crubezy, S. Decker,
M. Gaspari, R. Groenboom, W. Grosso, M. Musen, E. Plaza, G. Schreiber, R.
Studer, and B. Wielinga: The Unified Problem-Solving Method Development Lan-
guage UPML. Knowledge and Information Systems (KAIS): An International Jour-
nal, 2003. To appear.

V.R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel: Brokering Problem-
Solving Knowledge at the Internet. Proceedings of the European Knowledge Acqui-
sition Workshop (EKAW-99), Lecture Notes in Artificial Intelligence, LNAI 1621,
May 1999.

J.C. Arpirez, O. Corcho, M. Ferndndez-Lépez, and A. Gémez-Pérez: WebODE — A
Scalable Ontological Engineering Workbench. Proceedings of the First International
Conference on Knowledge Capture, Victoria, Canada, October 2001.

V.R. Benjamins: Web Service Solve Problems, and Problem-Solving Methods Pro-
vide Services. IEEE Intelligent Systems, 18(1):76-77, January/February 2003.
P.V. Biron and A. Malhotra: XML Schema Part 2: Datatypes.
http://www.w3c.org/TR/2001/REC-schema-2-20010502, May 2001.

G. Schreiber, H. Akkermans, A. Anjevierden, R. de Hoog, H. Shadbolt, W. van
de Welde, and B. Wielinga: Knowledge engineering and management. The Com-
monKADS Methodology. MIT Press, Cambridge, Massachusets.

A. Newell: The Knowledge Level. Artificial Intelligence, 18(1):87-127, 1982.

O. Corcho, M. Fernandez-Lépez, A. Gémez-Pérez, and O. Vicente: WebODE -
An Integrated Workbench for Ontology Representation, Reasoning and FEzchange.
Proceedings of the Thirteenth International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02), LNAI 2473, pages 138-153, Sigenza,
Spain, October 2002.

E. Sirin, J. Hendler, and B. Parsia: Semi-automatic Composition of Web Services
using Semantic Descriptions. Proceedings of the Workshop on Web Services: Mod-
eling, Architecture and Infrastructure in conjunction with ICEIS2003. 2003. Ac-
cepted.

S. Narayanan and S.A. Mcllraith: Simulation, Verification and Automated Com-
position of Web Services. Proceedings of the Eleventh International World Wide
Web Conference (WWW-2002), pages 77-88, Hawaii, USA, May 2002.

216

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES

MICHAEL GRUNINGER

ABSTRACT. In this paper we will show how the ontology of the Process Specification
Language can be used as an upper-level process ontology that serves as the semantic foun-
dation for the DAML-S ontology for web services.

1. SEMANTICS FOR WEB SERVICES

To achieve the vision of the Semantic Web, software agents will need a computer-
interpretable description of the services they offer and the information that they access.
Such a description can be provided by an ontology, which explicitly represents the in-
tended meanings of the terms being used. Within the DARPA Agent Markup Language
programme, an ontology of services called DAML-S has been proposed to support the
discovery, invocation, and composition of the services offered by software agents on the
Semantic Web.

The Process Specification Language (PSL) ([2], [4], [5]) has been designed to facilitate
correct and complete exchange of process information among manufacturing systems 1.
Included in these applications are scheduling, process modeling, process planning, pro-
duction planning, simulation, project management, workflow, and business process reengi-
neering. In this paper we will show how PSL can be used as an upper-level process ontol-
ogy that serves as the semantic foundation for an ontology for web services that extends
DAML-S.

Any ontology that supports the representation of web services will consist of generic
classes to support service specification as well as classes of constraints in service specifi-
cations, such as ordering, temporal, occurrence, and duration.

The ontology must also support reasoning problems for web service specifications such
as determining the consistency of a service specification and the composability of services,
particularly with incomplete service specifications.

The approach taken in this paper will be to specify a first-order semantics for DAML-S
concepts through PSL translation definitions and then use the grammars associated with
PSL classes as an abstract syntax for service specifications.

2. THE ROLE OF FIRST-ORDER LOGIC

The PSL Ontology is a set of theories in the language of first-order logic. There are sev-
eral other approaches to semantics for web services, such as BPEL [1], for which Petri nets
and rr-calculus have been proposed as the basis for their semantics. However, a first-order
semantics has several advantages. First, we can specify and implement inference tech-
niques that are sound and complete with respect to models of the theories. Also, a process

1PSL has been accepted as project 1SO 18629 within the International Organisation of Standardisation, and
as of October 2002, part of the work is under review as a Draft International Standard.

1

217

2 MICHAEL GRUNINGER

ontology with a first-order axiomatization can be more easily integrated with other ontolo-
gies (which are almost all first-order theories themselves). Finally, a first-order semantics
allows a simple characterization of incomplete service specifications.

The semantics of a first-order theory are based on the notion of an interpretation that
specifies a meaning for each symbol in a sentence of the language. In practice, interpreta-
tions are typically specified by identifying each symbol in the language with an element of
some algebraic or combinatorial structure, such as graphs, linear orderings, partial order-
ings, groups, fields, or vector spaces; the underlying theory of the structure then becomes
available as a basis for reasoning about the concepts and their relationships.

First-order logic is sound and complete — a theory is consistent if and only if there exists
a model that satisfies the axioms of the theory. This allows us to evaluate the adequacy of
the application’s ontology with respect to some class of structures that capture the intended
meanings of the ontology’s terms by proving that the ontology obeys the following two
fundamental theorems:

o Satisfiability: every structure in the class is a model of the ontology.
e Axiomatizability: every model of the ontology is isomorphic to some structure in
the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there do not exist
any unintended models of the theory, that is, any models that are not specified in the class
of structures. In general, this would require second-order logic, but the design of PSL
makes the following assumption (hereafter referred to as the Interoperability Hypothesis):
The ontology supports interoperability among first-order inference engines that exchange
first-order sentences. By this hypothesis, we do not need to restrict ourselves to elemen-
tary classes of structures when we are axiomatizing an ontology. Since the applications
are equivalent to first-order inference engines, they cannot distinguish between structures
that are elementarily equivalent. Thus, the unintended models are only those that are not
elementary equivalent to any model in the class of structures.

Classes of structures for theories within the PSL Ontology are therefore axiomatized up
to elementary equivalence — the theories are satisfied by any model in the class, and any
model of the core theories is elementarily equivalent to a model in the class. Further, each
class of structures is characterized up to isomorphism.

3. PSL ONTOLOGY

Within the PSL Ontology, there is a a further distinction between core theories and
definitional extensions. Core theories introduce new primitive concepts, while all terms
introduced in a definitional extension that are conservatively defined using the terminology
of the core theories 2.

3.1. Core Theories. All core theories within the ontology are consistent extensions of
PSL-Core (T, core): although not all extensions need be mutually consistent. Also, the
core theories need not be conservative extensions of other core theories. The relationships
among the core theories in the PSL Ontology are depicted in Figure 1.

2The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix and defi-
nitional extensions are indicated by a .def suffix. As of June 2003, the ontology is in version 2.0.

218

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 3

Tact occ

T

complex

T. omic Tdisc_state

i
7
i

7
T

subactivi Tdur ion Tocdree

7
7
4
7

Tpsl_core

FIGURE 1. The core theories of the PSL Ontology. Solid lines indicate
conservative extension, while dashed lines indicate an extension that is
not conservative.

3.1.1. Occurrence Trees. The occurrence trees that are axiomatized in the core theory
Tocatree are partially ordered sets of activity occurrences, such that for a given set of activi-
ties, all discrete sequences of their occurrences are branches of the tree (see Figure 2). An
occurrence tree contains all occurrences of all activities; it is not simply the set of occur-
rences of a particular (possibly complex) activity. Because the tree is discrete, each activity
occurrence in the tree has a unique successor occurrence of each activity.

There are constraints on which activities can possibly occur in some domain. This intu-
ition is the cornerstone for characterizing the semantics of classes of activities and process
descriptions. Although occurrence trees characterize all sequences of activity occurrences,
not all of these sequences will intuitively be physically possible within the domain. We
will therefore want to consider the subtree of the occurrence tree that consists only of pos-
sible sequences of activity occurrences; this subtree is referred to as the legal occurrence
tree.

3.1.2. Discrete States. The core theory T .. 4 introduces the notion of state (fluents).
Fluents are changed only by the occurrence of activities, and fluents do not change during
the occurrence of primitive activities. In addition, activities have preconditions (fluents that
must hold before an occurrence) and effects (fluents that always hold after an occurrence).

3.1.3. Subactivities. The PSL Ontology uses the subactivity relation to capture the basic
intuitions for the composition of activities. This relation is a discrete partial ordering, in
which primitive activities are the minimal elements.

3.1.4. Atomic Activities. The core theory T, axiomatizes intuitions about the concur-
rent aggregation of primitive activities. This concurrent aggregation is represented by the
occurrence of concurrent activities, rather than concurrent activity occurrences.

219

4 MICHAEL GRUNINGER

4
019 033

3
034

FIGURE 2. Example of legal occurrence trees. The elements o} denote
occurrences of the activity a;, 0? denote occurrences of the activity a,,
o? denote occurrences of the activity a,, and o denote occurrences of
the activity a,. The activity occurrences o} and of are the initial occur-
rences in their respective occurrence trees.

3.1.5. Complex Activities. The core theory T ., Characterizes the relationship between
the occurrence of a complex activity and occurrences of its subactivities. Occurrences of
complex activities correspond to sets of occurrences of subactivities; in particular, these
sets are subtrees of the occurrence tree. An activity tree consists of all possible sequences
of atomic subactivity occurrences beginning from a root subactivity occurrence. In a sense,
activity trees are a microcosm of the occurrence tree, in which we consider all of the ways
in which the world unfolds in the context of an occurrence of the complex activity.

Different subactivities may occur on different branches of the activity tree i.e. different
occurrences of an activity may have different subactivity occurrences or different orderings
on the same subactivity occurrences. In this sense, branches of the activity tree characterize
the nondeterminism that arises from different ordering constraints or iteration.

An activity will in general have multiple activity trees within an occurrence tree, and
not all activity trees for an activity need be isomorphic. Different activity trees for the same
activity can have different subactivity occurrences. Following this intuition, the core theory
Toomplex d0€s not constrain which subactivities occur. For example, conditional activities
are characterized by cases in which the state that holds prior to the activity occurrence
determines which subactivities occur. In fact, an activity may have subactivities that do not
occur; the only constraint is that any subactivity occurrence must correspond to a subtree
of the activity tree that characterizes the occurrence of the activity.

3.2. Ddfinitional Extensions. Many ontologies are specified as taxonomies or class hier-
archies, yet few ever give any justification for the classification. If we consider ontologies

220

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 5

of mathematical structures, we see that logicians classify models by using properties of
models, known as invariants, that are preserved by isomorphism. For some classes of
structures, such as vector spaces, invariants can be used to classify the structures up to
isomorphism; for example, vector spaces can be classified up to isomorphism by their di-
mension. For other classes of structures, such as graphs, it is not possible to formulate a
complete set of invariants. However, even without a complete set, invariants can still be
used to provide a classification of the models of a theory.

Following this methodology, the set of models for the core theories of PSL are parti-
tioned into equivalence classes defined with respect to the set of invariants of the models.
Each equivalence class in the classification of PSL models is axiomatized using a defi-
nitional extension of PSL. In particular, each definitional extension in the PSL Ontology
is associated with a unique invariant; the different classes of activities or objects that are
defined in an extension correspond to different properties of the invariant. In this way,
the terminology of the PSL Ontology arises from the classification of the models of the
core theories with respect to sets of invariants. The terminology within the definitional
extensions intuitively corresponds to classes of activities and objects.

4. TRANSLATION DEFINITIONS

Translation definitions specify the mappings between PSL and application ontologies.
Such definitions have a special syntactic form — they are biconditionals in which the an-
tecedent is a class in the application ontology and the consequent is a formula that uses
only the lexicon of the PSL Ontology.

Translation definitions are generated using the organization of the definitional exten-
sions. Each invariant from the classification of models corresponds to a different defini-
tional extension. Any particular activity, activity occurrence, or fluent will have a unique
value for the invariant. Each class of activity, activity occurrence, or fluent corresponds to
a different value for the invariant. The consequence of a translation definition is equivalent
to the list of invariant values for members of the application ontology class.

4.1. DAML-STrandlation Definitions. In this section we will present the translation def-
initions 3 for concepts in the DAML-S Process Ontology. Such translation definitions pro-
vide a first-order axiomatization of the intended semantics for the DAML-S constructs.
Moreover, this axiomatization inherits the proofs of the Axiomatizability and Satisfiability
Theorems from the underlying PSL Ontology.

4.1.1. Atomic Activities. The composedOf property in DAML-S is equivalent to the sub-
activity relation in PSL:
(forall (7al 7a2)
(iff (composed0f 7al 7a2)
(subactivity 7a2 7al)))
Within DAML-S, an AtomicProcess has no subprocesses; consequently, this corre-
sponds to a primitive activity within PSL.
(forall (7a)
(iff (AtomicProcess ?7a)
(and (primitive 7a)
(markov_precond 7a)
(or (markov_effects 7a)

3The translation definitions in this paper are written in the Knowledge Interchange Format. For more infor-

mation on this language, see http:cl.tamu.edu

221

6 MICHAEL GRUNINGER

FIGURE 3. Example of activity trees for transfer, which is a Sequence
DAML-S activity. 0, and 0, are occurrences of the subactivity withdraw,
while o, and o, are occurrences of the subactivity deposit. Note that
the diagram depicts two separate activity trees within a stylized legal
occurrence tree.

(context_free 7a)))))

The most common cconstraint on the legal occurrences of an activity specify the ac-
tivity’s preconditions. Activities whose preconditions depend only on the state prior to
the occurrences The class of activities with markov preconditions is defined in the PSL
definitional extension state_precond.def.

Effects characterize the ways in which activity occurrences change the state of the
world. Such effects may be context-free, so that all occurrences of the activity change the
same states, or they may be constrained by other conditions. The most common constraints
are state-based effects that depend on the context; the class of activity associated with such
constraints are defined as markov effect activities in the PSL extension state ef fects.def.

A CompositeProcess in DAML-S is decomposable into other processes. Within PSL,
the corresponding activity cannot be primitive; it will either be atomic (in which case it is
a concurrent activity) or complex:

(forall (7a)
(iff (CompositeProcess 7a)
(and (activity 7a)
(not (primitive ?a)))))

4.1.2. Ordered Activities. The classification of models within the the PSL Ontology leads
to classes of activities, activity occurrences, and fluents. Classes of activity occurrences
correspond to invariants for activity trees. The translation definitions for remaining DAML-
S concepts are all related to invariants for activity trees.

Within DAML-S, a Sequence is a list of processes to be done in order (see Figure 3) .
The translation definition for Sequence has two parts; one says that there exists an activity

4All of the examples in this section refer to the activities whose process descriptions are found in the
Appendix.

222

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 7

FIGURE 4. Example of an activity tree for buy _product, which is a Split
DAML-S activity. For this purposes of this example, consider transfer
to be a complex activity, with deposit and withdraw as subactivities.

tree for the activity which is ordered and which is simple and rigid (that is, there are no
nontrivial permutations of subactivity occurrences). The second part says that the activity
is uniform, that is, all activity trees for the activity are isomorphic:
(forall (7a)
(iff (Sequence 7a)
(and (uniform 7a)
(exists (7occ)
(and (occurrence_of 7occ 7a)
(simple 7occ)
(rigid 7occ)
(ordered 7occ)
(strong_poset 7occ))))))

In a DAML-S Split activity, sets of subactivities are performed in parallel (see Figure
4). Split activities differ from Sequence actvities in that there exist nontrivial permutations
of subactivity occurrences among the branches of the activity trees, so that the translation
definition becomes:

(forall (7a)
(iff (Split 7a)
(and (uniform ?7a)
(exists (7occ)
(and (occurrence_of 7occ 7a)
(not (simple 7occ))
(ordered 7occ)

5Two branches of an activity tree are isomorphic if there is a one-to-one mapping of subactivity occurrences
that preserves the activities, e.g. occurrences of activity g are mapped to occurrences of . Two activity trees
are isomorphic if all of their branches are isomorphic. In the visual convention adopted in this paper, occurrences
of different activities are depicted by different shapes; thus, a mapping that preserves activities will map a square
to a square, a circle to a circle, and so on.

223

8 MICHAEL GRUNINGER

FIGURE 5. Example of an activity tree for buy_product, which is an
Unordered DAML-S activity. For this purposes of this example, con-
sider transfer to be a primitive activity; o, and o, are occurrences of the
subactivity (transfer ?Fee 7Buyer ?Broker),0, and o, are occur-
rences of the subactivity (transfer 7Cost 7Buyer 7Seller)

(strong_poset ?occ))))))

For example, in Figure 4, the two branches of the activity tree consist of isomorphic
subactivity occurrences that occur in different orderings on each branch.

According to [3], the Unordered construct allows process components to be executed in
some unspecified ordered, although all components must be executed. This is equivalent
to the class of bag activity trees within the PSL Ontology:

(forall (7a)
(iff (Unordered 7a)
(and (uniform 7a)
(exists (7occ)
(and (occurrence_of 7occ 7a)
(bag 7occ))))))

In Figure 5, we see an example of an activity tree that is the unordered activity with two
subactivities.

4.1.3. Nondeterminism. The simplest form of hondeterminism is captured by the class of
activities in which some subactivity occurs (see Figure 6). Given this intended semantics,
the translation definition to PSL would be:

(forall (7a)
(iff (Choice 7a)
(and (uniform 7a)
(exists (7occ)
(and (occurrence_of 7occ 7a)
(simple 7occ)
(rigid 7occ)
(unordered 7occ)

224

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 9

FIGURE 6. Example of an activity tree for a Choice DAML-S activity
that is equivalent to a choice_poset in PSL. In this example, 0, is an
occurrence of a withdrawal from Accountl and o,, is an occurrence of a
withdrawal from Account3.

FIGURE 7. Example of an activity tree for a Choice DAML-S activity
that is equivalent to a weak_poset in PSL.

(choice_poset 7o0cc))))))

There are some indications in [3] that the intended semantics for Choice activities is
more general than this translation definition. For example, some possible applications
of this construct may be intended to capture intuitions such as “choose subactivities and
perform them in sequence” or “choose subactivities and perform them in parallel”. In
such cases, the corresponding PSL class would be based on the notion of weak posets (see
Figure 7), so that the translation definition would be:

225

10 MICHAEL GRUNINGER

FIGURE 8. Example of activity trees for withdraw, which is an
IfThenElse DAML-S activity. 0, and o, are occurrences of the subactiv-
ity change_balance, and o, is an occurrence of the subactivity noti fy.

(forall (7a)
(iff (Choice 7a)
(and (uniform 7a)
(exists (7occ)
(and (occurrence_of 7occ 7a)
(simple 7occ)
(weak_poset ?7o0cc))))))
In addition, there are suggestions in [3] for extensions that construct new subclasses
such as “choose exactly n subactivities from m”. Such extensions do not correspond to any
classes within Version 2.0 of the PSL Ontology.

4.1.4. Conditional Activities. The class of IfThenElse activities within DAML-S are equiv-
alent to the conditional activities in PSL:

(forall (7a)
(iff (IfThenElse 7a)
(conditional ?7a)))

Conditional activities are not uniform; however, if the same fluents hold prior to two
occurrences of a conditional activity, then the activity trees for the activity are isomorphic.
Figure 8 depicts three different activity trees, two of which are isomorphic.

4.1.5. Iterated Activities. The intended semantics of the Iterate process in DAML-S makes
no assumption about how many iterations are made, or when to terminate. Within PSL, this
corresponds to an activity in which there exist multiple isomorphic subtrees; for example,
the activity tree in Figure 9 contains three subtrees that are isomorphic to the activity tree
in Figure 6. Since different activity trees may have different numbers of iterations of
the subactivities, the activity is not uniform. These considerations lead to the following
translation definition:

(forall (7a)

226

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 11

FIGURE 10. Example of activity trees for a RepeatUntil DAML-S activity.

(iff (Iterate 7a)
(forall (7occ)
(implies (occurrence_of 7occ 7a)
(and (repetitive 7occ)
(multiple_outcome ?occ)))))

A RepeatUntil process in DAML-S executes until some state condition becomes true

(see Figure 10). Because of this dependence on state, a RepeatUntil process is equivalent
to an Iterate process which is conditional:

227

12 MICHAEL GRUNINGER

(forall (7a)
(iff (RepeatUntil 7a)
(and (conditional 7a)
(forall (?occ)
(implies (occurrence_of 7occ 7a)
(and (repetitive 7occ)
(multiple_outcome ?occ)))))
Thus, there will exist multiple nonisomorphic activity trees (corresponding to occur-
rences of the activity with different iterations) and activity trees that agree on state will be
isomorphic.

5. GRAMMARS FOR PROCESS DESCRIPTIONS

PSL makes a distinction between the ontology (which is the lexicon together with an
axiomatization of their intended meaning) and the process descriptions that are exchanged
between software applications. For each class in the ontology, PSL specifies a grammar
that is satisfied by process descriptions of the activities or activity occurrences in that class.

For example, if two software applications both used an ontology for algebraic fields,
they would not exchange new definitions, but rather they would exchange sentences that
expressed properties of elements in their models. For algebraic fields, such sentences are
equivalent to polynomials. Similarly, the software applications that use PSL do not ex-
change arbitrary sentences, such as new axioms or even conservative definitions, in the
language of their ontology. Instead, they exchange process descriptions, which are sen-
tences that are satisfied by particular activities, occurrences, states, or other objects.

DAML-S specifications are in fact grammars for service specifications. Using the trans-
lation definitions proposed in the previous section, we can use the grammars associated
with the classes in the PSL Ontology to characterize the correctness and completeness of
the DAML-S specification for the corresponding DAML-S constructs.

There are several classes within the DAML-S Ontology that are classes of sentences
rather than classes of activities, activity occurrences, or fluents. In particular, DAML-S has
two classes of conditions, ConditionalEffects and UnconditionalEffects. Within the PSL
Ontology, this distinction is captured by the classes of context _free and markov ef fects
activities. If one considers the PSL process description grammars for a context _free ac-
tivity, conditions appear as a class of formulae, but they are not a class in the ontology.
Similarly comments apply to conditional activities. For example, in the process descrip-
tion for withdraw in the Appendix, the condition is the formula

(and (prior (balance 7account ?Balance) (root_occ 7occ))
(greaterEq 7Balance 7amount)))

6. SUMMARY

Within the increasingly complex environments of enterprise integration, electronic com-
merce, and the Semantic Web, where process models are maintained in different software
applications, standards for the exchange of this information must address not only the syn-
tax but also the semantics of process concepts.

DAML-S is an attempt to support semantic web services within the framework of the
DARPA Agent MArkup Language. However, the intended semantics of the concepts in
DAML-S cannot be axiomatized within the Ontology Web Language, and the DAML-S
ontology itself combines object level classes of concepts together with metalevel classes
of sentences.

228

APPLICATIONS OF PSL TO SEMANTIC WEB SERVICES 13

The PSL Ontology draws upon well-known mathematical tools and techniques to pro-
vide a robust semantic foundation for the representation of process information. This foun-
dation includes first-order theories for concepts together with complete characterizations
of the satisfiability and axiomatizability of the models of these theories. The PSL Ontology
also provides a justification of the taxonomy of activities by classifying the models with
respect to invariants. Finally, process descriptions are formally characterized as syntactic
classes of sentences that are satisfied elements of the models.

The translation definitions presented in this paper are the first step towards laying firm
logical foundations for semantic web services specified in DAML-S. Through these defi-
nitions, DAML-S can be given a sound and complete axiomatization and ontological dis-
tinctions can be clarified.

REFERENCES

[1] Business Process Execution Language for Web Services, Version 1.0
http://www-106.1ibm.com/developerworks/webservices/library/ws-bpel/

[2] Gruninger, M. (2003) A Guide to the Ontology of the Process Specification Language”, in Handbook
on Ontologies in Information Systems, R. Studer and S. Staab (eds.). Springer-Verlag.

[3] Mcllraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services, |EEE Intelligent Systems,
Special Issue on the Semantic Web. 16:46-53, March/April, 2001.

[4] Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling, Second Interna-
tional Conference on Formal Ontologies in Information Systems, Welty and Smith (eds), 256-269.

[5] Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process Specification Lan-
guage, Transactions of the Society for Computer Smulation vol.16 no.4 (December 1999) pages
204-216.

APPENDIX: EXAMPLES OF PROCESS DESCRIPTIONS

To buy a product, pay a fee to the broker and the cost of the product to the seller,
performing these steps in parallel.
The PSL process description for buy_product is:

(forall (?x 7y 7z) (subactivity (transfer 7x 7y ?7z) (buy_product 7y)))
(forall (?x 7y 7z) (subactivity (withdraw 7x ?y) (transfer ?x 7y 7z)))
(forall (?x ?y ?z) (subactivity (deposit ?x 7z) (transfer 7x 7y 7z)))

(forall (?occ 7Buyer)
(implies (occurrence_of 7occ (buy_product 7Buyer))
(exists (Poccl 7occ2 7Fee 7Cost 7broker 7Seller)
(and (occurrence_of (transfer ?Fee 7Buyer 7Broker))
(occurrence_of (transfer 7Cost 7Buyer 7Seller))
(subactivity_occurrence 7occl 7occ)
(subactivity_occurrence 7occ2 7occ)))))

To transfer money from Accountl to Account2, withdraw some amount from Account1
and deposit the amount in Account2.
The PSL process description for transfer is:

(forall (7occ)
(implies (occurrence_of 7occ (transfer 7Amount 7Accountl ?7Account2))
(exists (Poccl 7occ2 7Tocc3)
(and (occurrence_of 7occl (withdraw 7Amount ?7Accountl))
(occurrence_of 7occ2 (deposit 7Amount 7Account?2))
(subactivity_occurrence 7occl 7occ)

229

14 MICHAEL GRUNINGER

(subactivity_occurrence 7occ2 7occ)
(leaf_occ 7occ3 7occl)
(min_precedes 7occ3 (root_occ 7occ2))))))
To withdraw money from an account, if the amount is greater than the balance, then
change the account balance, otherwise notify the account that there are insufficient funds
available.
Suppose

(forall (?x ?y ?z) (activity (change_balance 7x 7y 7z)))

(subactivity (change_balance 7Account 7Balancel 7Balance2)
(deposit 7Amount 7Account))

(subactivity (change_balance 7Account 7Balancel 7Balance2)
(withdraw ?7Amount 7Account))

(subactivity (notify 7Account)
(withdraw 7Amount 7Account))

In this case, deposit and withdraw are conditional activities, with the following PSL
process descriptions:
(forall (7occ)
(and (implies (and (occurrence_of 7occ (withdraw 7Amount 7Account))
(prior (balance 7account ?Balance) (root_occ 7Tocc))
(greaterEq 7Balance 7amount))
(exists (7occl)
(and (occurrence_of 7occl (change_balance 7account ?Balance
(plus 7Balance 7Amount)))
(subactivity_occurrence 7occl 7occ))))
(implies (and (occurrence_of 7occ (withdraw 7Amount 7Account))
(prior (balance ?7account ?Balance) (root_occ 7occ))
(lesser 7Balance 7amount))
(exists (7occ2)
(and (occurrence_of 7occ2 (notify 7Account))
(subactivity_occurrence 7occ2 7occ)))))
The effects of change balance are:
(forall (7occ)
(implies (and (occurrence_of 7occ (change_balance 7Account 7Amountl 7Amount2))
(leaf_occ 7occl 7occ))
(and (holds (balance 7Account 7Amount2))
(not (holds (balance 7Account 7Amounti))))))

INSTITUTEFOR SYSTEMS RESEARCH, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742, gruning@cme .nist.gov

230

H-MATCH: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems *

S. Castano, A. Ferrara, and S. Montanelli

Universita degli Studi di Milano
DICO - Via Comelico, 39, 20135 Milano - Italy
{castano,ferrara,montanelli}@dico.unimi.it

Abstract. In this paper, we present H-MATCH, an algorithm for dynam-
ically matching distributed ontologies. By exploiting ontology knowledge
descriptions, H-MATCH can be used to dynamically perform ontology
matching at different levels of depth, with different degrees of flexibility
and accuracy. H-MATCH has been developed in the HELIOS framework,
conceived for supporting knowledge sharing and ontology-addressable
content retrieval in peer-based systems.

1 Introduction

Ontologies are generally recognized as an essential tool for allowing communica-
tion and knowledge sharing among distributed users and applications, by pro-
viding a common understanding of a domain of interest. Due to the vision of the
Semantic Web, a large body of research is being moving around ontologies, and
contributions have been produced regarding methods and tools for covering the
entire ontology life cycle, from design to deployment and reuse [8], and ontology
languages, such as OIL [9] or OWL [18]. As a matter of fact, when considering
distributed contexts, the knowledge of interest is generally provided by many dif-
ferent ontologies. For instance, the vision of the Semantic Web envisages the Web
enriched with several domain ontologies, which specify formal semantics of data,
for different intelligent services for information sharing, search, retrieval, and
transformation [3,11]. As another example, the problem of distributed knowl-
edge sharing is eminent in the P2P area and is receiving a lot of attention in
the research community [10, 15]. Basically, peers need to perform content re-
trieval by interacting with other peers of the network, and queries have to be
routed and resolved based on knowledge descriptions available at the peers. To
enable information processing and content retrieval in distributed contexts with
a multitude of autonomous ontologies, appropriate matching techniques are re-
quired to determine semantic mappings between concepts of different ontologies
that are semantically related [2,7,17]. Some research work on this topic has re-
cently appeared. We review such work in the related work section of the paper.

* This paper has been partially funded by “Wide-scalE, Broadband, MIddleware for
Network Distributed Services (WEB-MINDS)” FIRB Project funded by the Italian
Ministry of Education, University, and Research.

231

An important requirement to be considered in developing ontology matching
techniques for distributed contexts, such as the P2P, is related to the inherent
dynamicity of the context, and to the need of matching techniques that are con-
ceived to operate in a dynamic fashion. In this paper, we present H-MATCH, an
algorithm for dynamically matching distributed ontologies. H-MATCH has been
developed in the framework of HELIOS, the infrastructure we have conceived
for supporting knowledge sharing and ontology-addressable content retrieval in
peer-based systems [5, 6]. After introducing the reference architecture of a He-
LIOS peer ontology, we show how the ontology knowledge description can be
exploited to perform dynamic ontology matching at different levels of depth,
with different degrees of flexibility and accuracy.

The paper is organized as follows. In Section 2, we provide the main motivations
of our work. In Section 3, we present the HELIOS ontology model for knowledge
representation. In Section 4, we describe the foundations of our approach for on-
tology matching. In Section 5, we present the H-MATCH algorithm for semantic
affinity evaluation. In Sections 6 and 7, we compare our approach with other
recent approaches for distributed ontology matching, by showing the original
contribution of our work. Finally, in Section 8, we give our concluding remarks.

2 Motivating scenario

To address the requirements of knowledge sharing and ontology matching in dis-
tributed systems, we consider a typical P2P scenario, where a number of peers
can acquire or extend their knowledge by interacting with other peers of the
network. As shown in Figure 1, we suppose that the peer A wants to enlarge
its knowledge about the concept of Book by learning which nodes own concepts
with semantic affinity with it. This requires capability to describe the knowl-
edge owned by a peer and to match an incoming request against the knowledge
of a peer, to find semantically related information to be returned to the re-
questing peer. The HELIOS (Helios Evolving Interaction-based Ontology knowl-
edge Sharing) framework has been conceived to enable knowledge sharing and
evolution considering a P2P system where nodes are equipotential in terms of
functionalities and capabilities. The knowledge sharing and evolution processes
in HELIOS are based on peer ontologies, describing the knowledge of each peer,
and on interactions among peers, allowing information search and knowledge
acquisition/extension, according to pre-defined query models and semantic tech-
niques for ontology matching. Each peer has a different amount of knowledge,
that depends on the interactions it has performed in the network. Each peer
can acquire new knowledge and/or extend his knowledge only by querying peers
which have this information. Probe queries are sent by a peer interested in ex-
tending its knowledge of the network. Each peer having concepts matching the
target concept(s) of a probe query can answer to the requesting peer. When the
peer A asks for semantically related contents about the target Book concept,
peer B and peer C evaluate the semantic affinity between Book and the concepts
contained in their respective peer ontology. The semantic affinity evaluation pro-

232

Peer antology

Pger Qn(ol_c)gy

Answer

Answer - Book
r) %eerB
?‘% X /M

=
- rh’ Peer C
PeerA‘w TN =\ — - ‘?
(&) se 7

Answer Book
)

Peer ontology

Fig. 1. Example of request/answer in the HELIOS network

cedure is based on the execution of the H-MATCH algorithm which determines
the level of affinity of each concept in the peer ontology of peer B and peer C and
the Book concept. Concepts having a high affinity value with Book are finally
returned by peer B and peer C to the requesting peer A.

In the remainder of the paper, we focus on the formalization of the peer ontology
knowledge model and on the H-MATCH algorithm for ontology matching.

3 Peer ontology representation

In this section, we provide a description of the architecture of a peer ontology
and we formalize the peer ontology model adopted in HELIOS.

3.1 Ontology architecture

The ontology of a HELIOS peer is organized as a two-layer ontology, where the
upper layer represents the content knowledge and the lower layer represents the
network knowledge (See Figure 2).

The Content Knowledge Layer describes the knowledge of a peer, namely
the knowledge a peer brings to the network and the knowledge the peer has
of the network contents. We conceptualize the content knowledge layer as a
network of content concepts, where each content concept is characterized by a
set of properties and a set of semantic relations with other content concepts.
A generic peer P can increase its content knowledge by adding new content
concepts and/or by enriching existing content concept descriptions in terms of

233

Content
concept
1 \\

N

Property

Content Knowledge Layer

1
]
1
1
'
1
1
'
L
[
1

N ~
B
Network
concept

Network Knowledge Layer

Network
concept

Legenda >
—>>
——» Semantic relations - -----| » Location relations
_—
-—

Network
concept

Fig. 2. Architecture of a peer ontology of a generic peer P

new properties and/or of new semantic relations, based on the answers acquired
by other peers.

The Network Knowledge Layer describes the knowledge that a generic peer
P has of other peers of the network it has interacted with. When a peer P receives
a content concept from another peer P1, it stores in the network knowledge layer
a description of the peer P1l. Peer descriptions are given in form of network
concepts, characterized by a set of properties describing the network features of
a peer (e.g., IP-address).

An inter-layer relation, called location relation associates a content concept cc in
the content knowledge layer with all network concept(s) describing peers storing
concepts having semantic affinity with cc.

3.2 Peer ontology model

The peer ontology model organizes ontology knowledge in terms of concepts,
properties, semantic relations and location relations, and is formally defined as
follows.

Definition 1 (Peer Ontology). A peer ontology PO is a 4-tuple of the form
PO = (C,P,SR,LR), where:

— C = CCUNC is a set of concepts of PO, where CC' is a set of content
concepts of the content knowledge layer, and NC is a set of network concepts
of the network knowledge layer.

234

— P is a set of concept properties. A property p € P is defined as a unary
relation of the form p(c), where ¢ € C' is the concept associated to the property
.

— SR = {same-as, kind-of, part-of, contains, associates} is a set of semantic
relations between content concepts. A semantic relation st € SR is defined
as a binary relation of the form sr(c,c’), where ¢ and ¢ € CC are the content
concepts related through sr.

— LR is a set of location relations between content concepts and network con-
cepts. A location relation lr € LR is defined as a binary relation of the
form lr(e,c), where ¢ € CC is a content concept in the content knowledge
layer and ¢ € NC is a network concept in the network knowledge layer,
respectively.

To obtain a semantically rich and expressive representation of the knowledge in
a peer ontology, we introduce the following semantic relations :

kmd of
same as part -of contams assoclates

@ Fubllcatlon @ Publlcallon @

Fig. 3. Examples of semantic relations in a HELIOS peer ontology

— Same-as. The same-as relation is defined between two concepts ¢ and ¢’ which
are considered semantically equivalent, that is, which denote the same real
world entity or have the same meaning. As an example, we have Same-
as(Periodical, Magazine) shown in Figure 3(a), referring to a peer ontology
describing knowledge on publications.

— Kind-of. The kind-of relation defined between two concepts ¢ and ¢’ states
that the concept ¢ is a specialization of the concept ¢’. As an example,
consider the case of Kind-of(Book, Publication) in Figure 3(b).

— Part-of. The part-of relation defined between two concepts ¢ and ¢’ states
that the concept ¢ represents a component of the concept ¢’ as in the case
of Part-of(Chapter, Book) shown in Figure 3(c).

— Contains. The contains relation defined between two concepts ¢ and ¢’ states
that the concept ¢ contains the concept ¢’ as in the case of Contains(Bookshop,
Publication) shown in Figure 3(d).

! The set SR of semantic relations has been defined according to relation classifications
in ontology modelling [14] and metadata management [16] literature.

235

— Associates. The associates relation defined between two concepts ¢ and ¢’
states that a generic positive association is defined between ¢ and ¢ . We use
this relation when no other semantic relations hold between two concepts. As
an example, consider the case of Associates(Magazine, Book) in Figure 3(e).

4 Foundations of ontology matching in HELIOS

The general goal of ontology matching techniques is to find concepts that have
a semantic affinity with a target concept 2. In this section, we propose an al-
gorithm, called H-MATCH, for evaluating semantic affinity between concepts of
different ontologies. In the context of HELIOS, we are interested in matching a
target concept described in a query against a peer ontology (knowledge sharing),
or in assimilating new concepts returned as the answer to probe queries into a
peer ontology (knowledge evolution). H-MATCH grounds on the techniques devel-
oped in the ARTEMIS tool environment [1,4] for the integration of heterogeneous
data sources. In ARTEMIS, the semantic affinity evaluation is performed in the
context of the schema matching process, in order to find mappings among ele-
ments of different source schemas that are semantically related for subsequent
unification. In HELIOS, we extend and enrich the ARTEMIS techniques to address
the typical problems of the ontology matching. In particular, the H-MATCH algo-
rithm is based on the idea of considering both the linguistic features of concepts
as well as the semantic relations among concepts in a peer ontology. Linguistic
features are constituted by the semantic content of terms used as names of con-
cepts and properties. The meaning of concepts is not established according to a
given definition, but depends on the network of relations holding among terms
(i.e., terminological relationships) and among concepts (i.e., semantic relations),
respectively. Based on these considerations, the evaluation of the linguistic fea-
tures is not based on a dictionary, where the meaning of each term depends on
its definition, but on a thesaurus, where the meaning of each term is represented
by the set of terminological relationships that it has with other terms in the the-
saurus. Following the same approach, we assume that the meaning of a concept
depends not only on its name, but also on its properties and on its semantic
relations with other concepts in the ontology. To this purpose, the H-MATCH
algorithm explicitly considers the context of each concept given by the set of its
properties and of its adjacents (i.e., concepts which have a semantic relation with
the considered concept), allowing a deep evaluation of semantic affinity between
ontology concepts.

4.1 Linguistic interpretation

To capture the meaning of terms used as names of concepts and properties in a
peer ontology, we exploit the terminological relationships among terms. In HE-
L10S, the network of terminological relationships is represented by a thesaurus,

2 When speaking of concepts for matching, we refer to content concepts although not
explicitly specified.

236

which is built by exploiting WordNet [13] as a source of lexical information, which
can be possibly enriched by the ontology designer, if required. In particular, we
consider a subset of the relations provided by WordNet represented by the follow-
ing terminological relationships: {SYN (Synonym-of), BT/NT (Broader/Narrower
Terms), RT (Related Terms)}, where the SYN relationship corresponds to the
Synonym relation of WordNet, the BT/NT relationships correspond to the Hy-
pernym/Hyponym relations of WordNet, and the RT relationship corresponds to
the Meronym relation of WordNet, respectively. In the following, we denote by
TR the set of terminological relationships in the HELIOS thesaurus.

4.2 Context interpretation

The H-MATCH algorithm evaluates the semantic affinity between two concepts by
taking into account the affinity between their contexts. Given a concept ¢ € CC,
we denote by P(c) = {p; | pi(c)} the set of properties of ¢, and by SR(c) = {¢; |
srj(c, cj)} the set of adjacents of ¢, namely all concepts ¢; which have a semantic
relation sr; with c. The context of a concept is defined as follows:

Definition 2 (Concept context). The context Ctx(c) of a concept c € CC' is
defined as the union of the properties and of the adjacents of ¢, that is, Ctx(c) =
P(c) USR(c).

An example of concept context for the Volume concept is shown in Figure 4,
where content concepts are represented as white ovals, properties are represented
as grey ovals, and relations as arrows, respectively.

_ — Context of Volume
- <
-

-
- ~

7 @ contains @
\
/
)

associates

Fig. 4. Example of context for the Volume concept in a peer ontology

237

5 The H-MATCH algorithm

The semantic affinity between two ontology concepts ¢ and ¢’ is evaluated in
HELI0S by weighting both the terminological relationships in the thesaurus and
the semantic relations in the contexts of ¢ and ¢/, respectively. In Table 1, we
report the weights associated which each kind of terminological relationship and
semantic relation, respectively. The weights associated with the terminological

| Relation [Weight
SYN 1.0
Linguistic interpretation | BT/NT 0.8
RT 0.5
property 1.0
same-as 1.0
Context interpretation l;!:i_g: 83
contains 0.5
associates 0.3

Table 1. Weights associated with terminological and semantic relations

relationships are taken from ARTEMIS, where they have been tested on several
real integration cases. The weights associated with semantic relations have been
defined in HELIOS to express a measure of the strength of the concept connec-
tion posed by each relation for semantic affinity evaluation purposes. The higher
is the weight associated with a semantic relation, the higher is the strength of
the semantic connection between concepts. Furthermore, we associate the weight
1.0 with properties since they are strongly related to a concept and provide its
structural description. The weight associated with the terminological relation-
ships are exploited for performing linguistic affinity evaluation, while the weights
associated with properties and semantic relations are exploited for performing
contextual affinity evaluation, respectively.

5.1 Linguistic affinity

The aim of the linguistic affinity is to evaluate the semantic affinity between two
concepts by considering the semantic contents of their names as terms in the the-
saurus. An affinity function LA(t,t') is defined to evaluate the affinity between
two terms ¢ and ¢, as shown in Figure 5. The affinity LA(¢,t’) of two terms ¢ and
t' is equal to the highest-strength path of terminological relationships between
them in the thesaurus, if at least one path exists, and is zero otherwise. Given ¢t
and t’ and a path of terminological relationships between them, the strength of

238

function LA(t,t)
input two terms t and ¢/
output linguistic affinity value between ¢ and ¢/
begin function
defz =0,y = 1;
if exists a path P of terminological relationships tr; € TR between ¢ and '
/* oy, is the weight associated with each tr; € P */

for each P
y=1
for each tr; €¢ P
Y=Y Otry,
ify>ux
T =Y
return z;

end function

Fig. 5. The LA() function for linguistic affinity evaluation

this path is computed by multiplying the weights of all terminological relation-
ships forming the path.

Ezxample 1. As an example of linguistic affinity evaluation, we consider the por-
tion of thesaurus shown in Figure 6. Suppose we are interested in the linguistic
affinity of concepts Book and Publication. Two paths exist between Book and
Publication in the thesaurus. The first path P1 is {NT(Book,Publication)}. The
second path P2 is composed by {RT(Book,Heading), RT(Heading,Publication)}.
A graphical representation of the thesaurus graph and of the results of the lin-
guistic affinity evaluation are shown in Figure 6. The linguistic affinity of Book

Thesaurus LA (Book,Publication)
[Volume | [Publication |
S\}N NT Path \ Path composition \ Path evaluation \ Result
P1 NT 0.8 0.8
o v P2 [F\[T, R]I'] 0.5-05 0.25
| Publilsher | [Heading |

Fig. 6. Example of linguistic affinity evaluation between the Book and Publica-
tion

and Publication is 0.8, obtained by considering the path P1.

239

5.2 Contextual affinity

The aim of the contextual affinity is to calculate a measure of affinity between
concepts based on their contexts. To this purpose, we evaluate the linguistic
affinity of properties and adjacents, as well as the degree of closeness between
the semantic relations that are involved in concept contexts.

Relation affinity function. The aim of the relation affinity function is to calculate
a measure of closeness between two semantic relations or between a semantic
relation and a property, based on their associated weights (see Table 1). Function
RA(r,r") is defined to evaluate the affinity between r and 7/, where r and r’ are
either two semantic relations or a semantic relation and a property, respectively.
The relation affinity function RA(r,r’) is reported in Figure 7. The relation

function RA(r,r")

input relations r and r’

output relational affinity value between r and r’

begin function
def 0,, 0,/ as the weights associated with r and 7', respectively
def 2z = 0;
x=1-|o, —op |;
return zx;

end function

Fig. 7. The RA() function for relational affinity evaluation

affinity is a value in the range [0,1] and is proportional to the level of closeness
of the considered relations. The highest value (i.e., 1.0) is obtained when r and »’
have the same weight. The higher the difference between the weights associated
with the relations, the lower the relation affinity value.

Evaluation of the contextual affinity. The contextual affinity evaluation is per-
formed by exploiting a function CA(CV (¢), CV(¢’)) on the contexts of two con-
cepts ¢ and ¢’. In this function, context Ctz(c) of a concept ¢ is represented
through a context vector CV(¢c) = (cvy,...,cvy), where Vi € (1,...,n),cv; =
(fi,r:), where f; denotes either a property or an adjacent concept of ¢, and r;
denotes the semantic relation between ¢ and f;. The contextual affinity function
is defined as shown in Figure 8.

Based on some experimental results, we noted that in the contextual affinity
evaluation the impact of the concepts with low affinity is stronger than the
impact of the concepts with a high affinity, thus originating biased measures.
For this reason, a control factor F} has been introduced for refining the results
of the contextual affinity evaluation. In particular, in presence of very low affinity
values, F} proportionally increases them, in order to better balance all affinity
values in the context and avoid too large gaps between affinity results.

240

function CA(CV (c),CV (')
input the context vectors CV (¢) and C'V(c’) representing the contexts of
the concepts ¢ and ¢/, respectively
output contextual affinity value of ¢ and ¢/
begin function
defx =0,y =0,2=0;
foreach cv € CV (c) | cv = (f,r);
foreach v’ € CV () | v’ = (f',r');
y = LA(f, f') - RA(r, ")
z=z+y
z =z + (length(CV(c))-length(CV(c))));
/¥ F, =1+ (1 —z) is a control factor */
=z F;
return z;
end function

Fig. 8. The C'A() function for contextual affinity evaluation

Ezxample 2. As an example of the contextual affinity evaluation, we consider the
concepts Book and Volume shown in Figure 9, with their respective contexts:

Book context Volume context

Publication @

contains
£
Bookshop contains associates @
part-of

.ﬁ associates associates @
Magazine Proceedings @

Fig. 9. The contexts of the Book and Volume concepts

kind-of

.z

CV(Book) = [(Heading, property), (Author, property), (Pages, property),
(Magazine, associates), (Chapter, part-of), (Bookshop, contains), (Publication,
kind-of)]

CV (Volume) = [(Title, property), (Author, property), (Publisher, property),
(Proceedings, associates), (Journal, associates), (Library, contains)]

The linguistic affinity and the relation affinity are evaluated as shown in Table 2.
The contextual affinity CA(CV (Book), CV (Volume)) is evaluated by exploiting

241

[Linguistic affinity (CV(Book), CV (Volume)) ‘

LA() HHeading\Author\Pages\Magazine\Chapter\Bookshop\ Publication
Title 0.5 0.25 | 0.25 0.25 0.25 0.25 0.4
Author 0.25 1.0 | 0.25 0.25 0.25 0.25 0.4
Publisher 0.25 0.0 |0.25 0.5 0.25 0.0 0.5
Proceedings| 0.25 | 0.25 | 0.0 0.64 0.25 0.0 0.8
Journal 0.25 | 0.25 | 0.0 0.64 0.25 0.0 0.8
Library 0.25 | 0.25 | 0.0 0.5 0.25 0.5 0.5

[Relation affinity (C'V(Book), C'V (Volume)) \

RA() [property| property| property| associates| part-of] contains] kind-of
property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
property 1.0 1.0 1.0 0.3 0.7 0.5 0.8
associates 0.3 0.3 0.3 1.0 0.6 0.8 0.5
associates 0.3 0.3 0.3 1.0 0.6 0.8 0.5
contains 0.5 0.5 0.5 0.8 0.8 1.0 0.7

Table 2. Linguistic and relation affinity evaluation for the contexts of Book and
Volume

the LA() and RA() results, according to the function definition shown in Fig-
ure 8:

CA(CV (Book), CV (Volume)) = (9.4 / 42) - 1.78 = 0.40

5.3 The H-MATCH algorithm

The H-MATCH algorithm evaluates the semantic affinity between two concepts
by considering both their linguistic and contextual affinity. H-MATCH can be
configured for differently evaluating concept semantic affinity, by setting the im-
pact of the linguistic and the contextual affinity, and by choosing dynamically
which part of concept context has to be considered in the matching process.
This flexibility of H-MATCH has the aim of facing two different requirement of
the ontology matching process. The first requirement regards the balance be-
tween the linguistic and the contextual features of concepts in a peer ontology.
The meaning of the peer ontology concepts depends basically on the terms used
for their definition and on the relations they have with other concepts in the
ontology. In HELIOS, we are interested in addressing the fact that those features
can have a different impact in different ontology structures. A second require-
ment regards the context evaluation, in which we distinguish between properties
and concepts. The role of the properties in the concept definition might have a
different relevance in different peer ontologies. As an example, if a peer ontology

242

is defined describing high structured data sources (e.g., relational databases),
the properties which describe the structure of each concept have a high impact
on the concept meaning evaluation. Furthermore, the composition of the con-
text and its extension in terms of number of adjacents have an impact on the
matching quality and on its performance. The aim of H-MATCH is to allow a
dynamic choice of the kind of features to be considered in the semantic affinity
evaluation.

Matching models. In order to address these requirements, three different match-
ing models are proposed in HELIOS to configure H-MATCH.

— Shallow matching. The shallow matching is performed by considering only
the linguistic information provided by the concept names and by the refer-
ence thesaurus. The precision of the semantic affinity evaluation depends on
the choice of the concept names in the ontology definition. Meaningful and
precise names will guarantee more appropriate results. Being based only on
linguistic information, the shallow matching guarantees a high performance
since requires less computation than the other two models, and is recom-
mended when only concept names are specified in a query.

— Intermediate matching. The intermediate matching is performed by consid-
ering concept names and also concept properties. With this model, we want
a more accurate level of matching by taking into account the property part
of the concept context.

— Deep matching. The deep matching model considers concept names and the
whole context of concepts. The deep matching requires a complete descrip-
tion of target concept in the query and guarantees the highest level of pre-
cision in the semantic affinity evaluation. As such, it requires more compu-
tation than the other two, and is recommended when the accuracy is more
important than the response time.

Linguistic and contextual information balancing. The problem of dynamically
setting the balance between the linguistic and the contextual features of a peer
ontology in the matching process is addressed in HELIOS by setting a weight
Wra € [0,1] which measures the degree of the impact of the linguistic affinity in
the semantic affinity evaluation process.

H-MATCH algorithm. The input of the H-MATCH algorithm is constituted by:
two concepts ¢ and ¢’; the matching model; the value of the weight Wi 4. Deep
and 0.5 are the default values for the matching model and Wy, 4, respectively.
Wra =0.5 ensures that the linguistic affinity and the contextual affinity have
the same impact in the semantic affinity evaluation. The output of H-MATCH is
the semantic affinity value of ¢ and ¢, calculated as the weighted sum of their
linguistic affinity and contextual affinity. The H-MATCH algorithm is shown in
Figure 10. The algorithm exploits the LA() and C' A() functions for evaluating
the linguistic and the contextual affinity values, respectively. The choice of the
matching model determines the composition of the context vectors used for the

243

algorithm H-MATCH(c, ¢/, model = “deep”, W4 = 0.5)
input the concepts ¢ and ¢/, the matching model € [shallow; intermediate; deep
], and the weight W4 € [0,1]
output the semantic affinity value between ¢ and ¢/
begin algorithm
def t,t’ as the names of c and ¢/, respectively;
def CV(c) =[],CV (') =] as the context vectors for ¢ and ¢/, respectively;
def context_item = [| as a pair of the form (f,r), where f is a name asso-
ciated with a property or a concept, and r € {property; same-as; kind-of;
part-of; contains; associates};
def = =0,y = 0, semantic_af finity = 0;
x = LA(t,t');
switch model
case “shallow” :
Wra =1,
case “intermediate” :
foreach property p(c) € Ctz(c)
context_item = [p(c), “property”];
append context_item to CV(c);
foreach property p(c’) € Ctz(c)
context_item = [p(c’), "property”];
append context_item to CV(c');
case ‘“deep” :
foreach property p(c) € Ctz(c)
context_item = [p(c), “property”];
append context_item to C'V(c);
foreach concept ¢; € Ctz(c)
/* sr(c,c;) is the semantic relation between ¢ and ¢; */
context_item = [¢;, sr(c, ¢;)];
append context_item to CV(c);
foreach property p(c’) € Ctz(c)
context_item = [p(c’), "property”];
append context_item to CV(c');
foreach concept ¢; € Ctx(c)
/¥ sr(c’,c;) is the semantic relation between ¢’ and ¢; */
context_item = [c;, sr(c, ¢;)];
append context_item to CV(c');
y=CA(CV(c),CV());
semantic_af finity = Wra-x+ (1 = Wra) - y;
return semantic_af finity;
end algorithm

Fig. 10. The H-MATCH algorithm

244

contextual affinity evaluation. If the shallow model is chosen, W7 4 is set to 1, and
only the linguistic affinity is considered. Otherwise, Wp 4 is exploited in order to
correctly combine the linguistic affinity value with the contextual affinity value.

Ezample 3. Consider the concepts of Book and Volume of Example 2. Below, we
report the semantic affinity of Book and Volume obtained by exploiting the H-
MATCH algorithm according to the three different matching models, with W 4 =
0.5.

— Shallow matching. The shallow matching returns a semantic affinity value
which coincides with the linguistic affinity value, that is:

H-MATCH(Book,Volume, “shallow”,0.5) = 1

— Intermediate matching. The intermediate matching evaluates the linguistic
and the contextual affinity, by considering only the properties in the contexts
of Book and Volume, that is:

H-MATCH(Book,Volume, “intermediate”,0.5) = 0.5 - 1 + 0.5 - 0.55 = 0.78

— Deep matching. The deep matching evaluates semantic affinity by considering
the whole contexts of Book and Volume, that is:

H-MATCH(Book,Volume, “deep”,0.5) = 0.5 -1+ 0.5 - 0.40 = 0.7

Considerations. We note that in our example the deeper is the matching model
used for semantic affinity evaluation, the lower is the semantic affinity returned
for Book and Volume. It depends on the fact that considering the context of the
concepts to be matched, H-MATCH is able to capture more precisely the differ-
ences between them than considering only the linguistic affinity. In particular,
H-MATCH is useful in order to address the fact that the same concept can have a
different meaning if used in different contexts. In our example, the Book and the
Volume concepts, which are synonyms from a linguistic point of view, are used
in a bookstore context and in a library context, respectively. The differences
between the kind of publications contained in the bookstore context and in the
library context are the reason of the decreasing value of semantic affinity when
applying the deep match.

6 Related work

In this section, we overview the main approaches for ontology matching in dis-
tributed systems.

Edamok [17] is a research project focused on semantic interoperability issues in
P2P systems. The project implements the KEx (Knowledge Exchange) P2P sys-
tem which aims to realize knowledge sharing among peer communities of interest
(called federations). The system is based on the concept of context of a peer, to
represent the interests of the peer. KEx implements specific tools (e.g., context

245

editors, context extractors) to extract the context of a peer from the peer knowl-
edge (e.g., file system, mail messages). In order to point out semantic mapping
between concepts stored in distinct peers, the system uses the CTX-MATCH al-
gorithm. This algorithm compares the knowledge contained in different contexts
looking for semantic mappings denoting peers interested in similar concepts.
These mappings are stored in order to assist the query resolution components
to direct queries to peers which store relevant information. The CTX-MATCH
is based on a semantic explicitation phase where concepts are associated with
the correct meaning with respect to their context and on a semantic comparison
phase where concepts are translated in logical axioms and matched. The algo-
rithm implements a description logic approach: mapping discovering is reduced
to the problem of checking a set of logical relations.

Chatty web [2] represents a novel approach for obtaining semantic interoper-
ability among data sources in a semi-automatic manner. This approach applies
to any system which provides a communication infrastructure (e.g., decentralized
systems, P2P systems) and offers the opportunity to study semantic interoper-
ability as a global phenomenon in a network of information sharing communities.
Each peer offers data which are organized according to some schema expressed
in a data model (e.g., relational, XML, RDF). Semantic interoperability is ac-
complished by assuming the existence of local agreements provided as mappings
between different schemas. Peers introduce their own schemas and exchanging
translations between them; then peers can incrementally come up with an im-
plicit “consensus schema” which gradually improves the global search capabil-
ities of the system. The paper identifies different methods that can be applied
to establish global forms of agreement starting from a graph of local mappings
among schemas and presents the gossiping algorithm which is used to identify
the sufficiently large set of peers capable of rendering meaningful results on a
specified query.

GLUE [7] is a system that employs machine learning techniques to find seman-
tic mappings between concepts stored in distinct and autonomous ontologies.
Given two distinct ontologies, the mapping discovery process between their con-
cepts is based on the measure of similarity which is defined through the joint
probability distribution. GLUE follows a probabilistic approach: the measure of
similarity between the concepts A and B is computed as the likelihood that an
instance belongs to both the concepts (P(ANB)). According to these probabilis-
tic measurements, two base learning techniques are applied in order to build a
similarity matrix expressing the prediction of semantic affinity between concepts.
A relazxation labeling procedure is performed in order to improve the matching
accuracy of the affinity predictions. Domain-independent and domain-dependent
constraints are introduced to evaluate such kind of refinement process.

KAON [14] is an ontology and Semantic Web tool suite. In [14], the authors dis-
cuss the problem of ontology representation and querying for semantics-driven
applications, describing a prototype implementation within the KAON system.
In particular, the paper presents the mathematical definition of the KAON mod-
eling language, and the denotational semantics for it. The ontology structure is

246

presented as a view of a general model, called OI-model, which consists of enti-
ties and may include a set of other OI-models. The ontology structure contains
definitions specifying how instances should be constructed, and is composed by
concepts and properties. The properties can have domain concepts, and rela-
tional properties can have range concepts. Relational prope