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Figure 1: Visualizing 2048 nodes in a regular adjacency matrix (left) and in a MultiLayerMatrix of two layers: The middle
panel shows the first layer, and the right panel shows an example of the second layer, which is shown when users select a cluster
in the first layer. Green indicates similar characters while red highlights dissimilarity.

Abstract
Adjacency matrices can be a useful way to visualize dense networks in which each node is connected to most or all
of the rest. However, this technique does not scale well with network size due to limited screen space, especially
when the number of rows and columns exceeds the pixel height and width of the screen. We introduce a new
scalable technique, MultiLayerMatrix, to visualize very large matrices by breaking them into multiple layers. In
our technique, the top layer shows the relationships between different groups of clustered data while each sub-
layer shows the relationships between nodes in each group as needed. This process can be applied iteratively to
create multiple sub-layers for very large datasets. We illustrate the usefulness of MultiLayerMatrix by applying it
to a network representing similarity measures between 2,048 characters in the Asteraceae taxonomy, a rich dataset
that describes characteristics of species of flowering plants. We also discuss the scalability of our technique by
investigating its effectiveness on a large synthetic dataset with 20,000 columns by 20,000 rows that is initially
clustered into 50 distinct groups, and that can then be interactively investigated to examine a further level of detail
within a selected cluster.

1. Introduction

Taxon-character matrices are one of the primary tools that
biologists traditionally create by hand to classify organisms
and to study evolution. With the ongoing development of
productivity and text mining software [OK11, RCH∗14], it
has become possible to create matrices much larger than a
manual workflow could support. For example, O’Leary et

al. [OBF∗13] use a mammal matrix with 86 rows and 4,541
columns, Dececchi et al. [DBLM15] use a matrix with 1,051
rows and 639 columns. Another matrix that was generated
using the ETC Toolkit† — representing about one third of
the Asteraceae family — has a size of 978 rows by 2,048

† http://etc.cs.umb.edu/etcsite/
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columns. The size of these matrices demands novel visual-
ization techniques that are scalable and intuitive to facilitate
the curation, management, and use of large taxon-character
matrices and their derivatives (e.g. character-character ma-
trices). We were invited to the Information Visualization of
Characters and Taxonomies Workshop hosted by the Ex-
plorer of Taxon Concept Project (hereafter, ETC) in May
2015 where we worked with several experts in biology, ecol-
ogy, and visualization to develop the novel matrix visualiza-
tion technique reported in this paper.

An obvious solution for visualizing character-by-
character similarity is an adjacency matrix where the color
in each cell encodes the similarity of each pair of characters.
This is depicted in the left panel of Figure 1. However, this
technique does not scale well due to the size constraints of a
typical computer screen (i.e., there are not enough pixels to
represent thousands of characters on each side of a matrix).
To account for this scalability constraint, we can provide
a high-level abstraction [Zei97] of the original matrix. In
other words, instead of drawing every single cell, we can
apply a smoothing function on the matrix to ease perceptual
recognition [LAE∗12]. This technique hides certain details
of the original matrix at higher levels, while allowing a user
to view details at lower levels through interaction.

In this paper, we introduce a new technique for visual-
izing large matrices with thousands of items on each di-
mension. Our technique “breaks” the original matrix into
multiple layers by using the leader algorithm [Har75]. The
top layer shows the similarity between clusters represented
by the leaders. The finest layer shows similarity between
characters in each cluster and sub-cluster. In Section 4 we
demonstrate how our technique effectively facilitates the ex-
ploration of the Asteraceae dataset, which has 2,048 charac-
ters and 978 taxa.

The proposed technique aims to achieve the following
goals related to the analysis of taxonomies. These design
goals are further broken down into specific tasks presented
in Section 3.

• Pattern Discovery and Hypothesis Generation: An ef-
fective visualization should be able to support the discov-
ery of interesting patterns in existing data which could
lead to the generation of novel hypotheses. For exam-
ple, taxonomists, ecologists, and phylogeneticists would
like to identify unusual distribution patterns of characters
across taxa such as when taxa sharing the same characters
are located far apart in a tree.

• Curation and Management of Existing taxon-by-
character data: Analysts who regularly interact with tax-
onomies and ontologies have a common need to perform
simple curation and editing of existing datasets, such as
merging sets of characters and removing characters that
are unnecessary or redundant.

2. Related Work

A heat map is a 2D graphical representation of values in
a data matrix where cells are color-encoded by the given
values. Along the sides of a heat map, additional informa-
tion can be displayed, such as the dendrogram produced
by hierarchical clustering of rows or columns [WF09]. De-
cecchi et al. [DBLM15] present taxon-by-phenotype matrix
heatmaps, where cell colors reflect the number of character
states for each anatomical entity for each taxon.

ZAME [EDG∗08] visualizes large graphs by aggregating
information. Aggregates are arranged into a pyramid hierar-
chy that allows for on-demand paging to GPU shader pro-
grams to support smooth multiscale browsing. In particular,
every level of detail has half the number of nodes as the level
below it. Consequently, each cell in a higher level is the sum-
mary of four cells at the level below it. ZAME also supports
the rendering glyphs for aggregated cells, which can take
various forms, such as histograms, to represent various ag-
gregations of underlying data. Net-Ray [KLKF14] projects
a large matrix into a smaller one, where an element of the
small matrix is set to the number of nonzeros in the corre-
sponding submatrix of the big matrix. This leads to another
challenge: small matrix is almost full in most cases. Net-Ray
handles this problem by reordering nodes in the matrix be-
fore projecting and by scaling the x and y axes, as well as the
numerical value of each submatrix using different log scales.

The basic difference between ZAME, Net-Ray, and Mul-
tiLayerMatrix is in the computation and representation of
aggregations. ZAME simply groups two neighboring nodes
into one in the next abstraction level. Net-Ray projects large
matrices into a predefined resolution (for example, 1000 by
1000); each cell in the target matrix is given a color based on
the average value, thereby giving a false impression about
the original matrix. MultiLayerMatrix uses the leader algo-
rithm to cluster similar nodes. In particular, two nodes are
considered to be similar if they have similar connections to
other nodes. For example, in social networks, two people are
considered to be similar if they have similar sets of friends.
Nodes in a cluster can be from different spatial locations,
and cluster size can vary. This algorithm has been success-
fully used in clustering similar scatterplots in a scatterplot
matrix [DW14] and in grouping proteins with similar biolo-
gial interactions in a pathway [DMF15].

Some existing work using the hierarchical structure to col-
lapse or expand groups for large adjacency matrix visualiza-
tion can be found in this state-of-the art report [VBW15].
These techniques are not applicable when there is no in-
herent hierarchical information attached to the nodeset. In
contrast, MultiLayerMatrix collapses the characters (nodes)
based on the information available within the raw adjacency
matrix. There are also several previous works that use an in-
teractive navigable matrix of a previously clustered dataset
[AvH04, vH03, AK02].

Henry et al. [HFM07] integrate node-link diagrams and
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adjacency matrix-based representations into a hybrid visual-
ization, NodeTrix. This hybrid representation is suitable for
a network where the connections are dense within commu-
nities (represented by adjacency matrices), while the con-
nections between these communities are sparse (represented
by node-link diagrams). Social networks are an example of
such data. For our character similarity data, this technique
is unsuitable since the entire network is very dense. Each
matrix cell is only empty if we do not have any measure of
similarity between two characters, which is rarely the case.

In general, node-link diagrams and other variances
of adjacency matrices, such as Compressed Adja-
cency Matrices [DWvW12], BioFabric [Lon12], Ge-
neaQuilts [BDF∗10], and DAGView [KT13], are not suitable
for visualizing very dense networks where the degree of
nodes is consistently high.

3. Overview of Visualization Tasks

In this section, we provide an overview of some of the main
challenges in the visualization of character matrices with
thousands of rows and columns.

Taxonomists, ecologists, and phylogeneticists regularly
interact with biological taxonomies. They have a common
need to cluster related characters and to perform simple edit-
ing on the taxonomic data. To this end, a visual analytics
platform should allow a user to:

• T1: Automatically cluster related characters and provide
a high level overview of the large character-by-character
table. Users should be able to drill down on the details of
these clusters if needed.

• T2: Merge sets of characters that are determined by the
analyst to be identical for the current analysis.

• T3: Separate a selected set of characters from a group that
are determined by the analyst to be irrelevant. Moreover,
analysts should be able to remove characters that are un-
necessary or redundant.

The input data in a typical taxonomic analysis contains
both a character-by-character similarity table and a taxon-
by-character table, and it is often interesting (albeit chal-
lenging) to link both tables to visualize interesting patterns.
This could lead to the generation of novel hypotheses. Vi-
sualization tasks related to pattern discovery and hypothesis
generation include:

• T4: Locating potentially important characters as well as
missing or redundant characters.

• T5: Identify the characters that define or relate to particu-
lar sets of taxa within the input taxonomy.

• T6: Explore distributions of characters within the taxon-
omy.

To facilitate these visualization tasks, we propose a new
visualization technique which presents a large adjacency
matrix in multiple abstraction levels.

4. Our technique

4.1. Input data

The input data provided by the taxonomists in our team con-
tains two tables. The first table is a 2,048 by 2,048 character
similarity table. Each cell in this table receives a value in
the range of 0 to 1. A value of 1 means two corresponding
characters are identical, and they are encoded in green in
our visualization. A value of 0 indicates corresponding char-
acters are dissimilar, and they are encoded in red. In some
cases we do not have the similarity measures between two
characters, and in this case the associated cell in the Multi-
LayerMatrix is left empty. Users can select different color
scales (including colorblind safe scales) to encode similarity
between characters. In the examples in this paper, we use a
red-green bipolar color scale since it clearly distinguishes
similar and dissimilar characters.

The second table given in the input data is a 978 by
2,048 taxon-by-character table. Each row in this table is a
taxon, which contains taxonomic information (i.e. family,
tribe, genus, and species), authority information (i.e. authors
and publication date), and character values (values on 2,048
characters). This table is very sparse because many charac-
ters are unique to a particular taxon or group, or many char-
acters are not described. A visual analytics platform should
allow analysts to not only perform curation and management
on individual tables but also to link the two tables to high-
light interesting distribution patterns.

4.2. Computing the MultiLayerMatrix Visualization

MultiLayerMatrix breaks the input character-by-character
matrix into multiple levels using the leader algo-
rithm [Har75]. Given a set of characters and a threshold
r, the radius around a cluster’s center, the leader algo-
rithm quickly generates a number of clusters and a set of
leader characters (T1). Each leader represents a cluster of
characters.

The assignment of characters to clusters is similar to the
k-means algorithm [Har75], but the computational complex-
ity of the leader algorithm is roughly linear (considerably
less than that of k-means). The second difference is that we
do not need to specify how many clusters that we are look-
ing for (as in k-means). Instead, we want to limit the num-
ber of clusters from

√
n to 2 ∗

√
n where n is the number

of characters. For example, given data with 2048 charac-
ters, we expect from 50 to 100 leader characters, and most
clusters have fewer than 100 characters. For a larger dataset
of 1,000,000 characters, we expect 1,000 clusters, and each
clusters will have roughly 1,000 characters. For the same
data, if we want to obtain a 3-layer matrix (leader algorithm
is computed twice: one for the first layer and one for second
layer), we should expect 100 clusters in the top layer, an es-
timate of 100 sub-clusters in each cluster in the second layer,
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and an estimate of 100 characters in each sub-cluster in the
third layer.

The middle panel of Figure 1 shows a similarity matrix
of the 76 clusters of the left panel. When users roll over the
cluster name, its details (the second layer matrix of 51 char-
acters) are displayed, as depicted in the right panel of Fig-
ure 1. Notice that characters in each cluster are also ordered
by their similarities.

MultiLayerMatrix also supports lensing over the matrix
to interactively distort the matrix to see more detail around
the current mouse position. Figure 2 shows an example. The
thumbnails underneath cluster names show a summary of the
similarity matrices in the next level. In the lensing area, we
can also see that a few names are grayed out. These are dis-
tinct characters (without grouping) where similar characters
could not be found based on the threshold set by the slider.
In brief, the leader algorithm not only groups similar charac-
ters into the same clusters but also helps to highlight outlier
characters which do not fit into any clusters (T4). MultiLay-
erMatrix also supports filter similarity (only plot cells with
high similar scores) by using the slider on the top right cor-
ner.

Figure 2: Visualizing character by character table in the
the Asteraceae dataset in the first layer of MultiLayerMatrix.
Lensing is applied on the middle section of the matrix.

4.3. Curation and Management of character clusters

Important visualization tasks supported in MultiLayerMatrix
include allowing analysts to merge sets of characters that
are determined to be identical in a taxonomy (T2) and to

split a selected set of characters from a group that are de-
termined to be irrelevant (T3). This helps to improve the
data quality of the matrix. When merging or splitting clus-
ters of characters into one, leaders are recomputed for the
new clusters. The leader character is the one which has min-
imum distance (or most similar) to other characters in the
cluster. To see these cluster curations in action, we advise
the readers to view the accompanying video available on
our GitHub project repository: https://github.com/
CreativeCodingLab/MultiLayerMatrix.

4.4. Pattern discovery and hypothesis generation

Given one taxonomy with associated characters, analysts
would like to zoom into or highlight the branches with cer-
tain characters. This feature is particularly interesting to edu-
cators and can be used in museums or classrooms as a teach-
ing tool.

MultiLayerMatrix allows users to select a particular
branch in the taxonomy and display related characters (T5).
The related characters are defined as the characters which
contain some data in the taxon-by-character table within the
selected branch, such as a tribe, a genus, and a species. Fig-
ure 3 use the Asteraceae family data. This family contains
10 tribes (in the first column), 137 genera (in the second col-
umn), and 537 species (in the third column). The links in
this taxonomy are color-encoded by tribe. Ten colors (for ten
tribes) were selected from ColorBrewer [HB03]. The thick-
ness of the links are relative to the number of taxa belonging
to these branches. Genera (second column) and species (last
column) are ordered based on the tribes that they belong to.

In particular, Figure 3 shows an example of selecting
a particular species, Californica. As depicted, the Califor-
nica species belongs to 4 different genera (Artemisia, Mala-
cothrix, Rafinesquia, and Trixis) which come from 3 differ-
ent tribes (Anthemideae, Cichorieae, and Mutisieae). Taxo-
nomic names in biology can be complex. At some rank, for
example, family, one word name is enough. At sub-ranks,
such as tribe or species (sub-species, variety etc.), a binomial
naming system is used. For example, a species name has two
parts: its genus and its specific epithet. It is not unusual for
a specific epithet to be shared by many genera. The nam-
ing system’s complexity is reflected by the crossing edges
between the second and the last column of Figure 3(a). Re-
lated characters of the selected species in Figure 3(b) can
be displayed (in the form of a smaller similarity matrix) on
demand.

T6 requires exploring the distributions of characters
within the input taxonomy. In particular, analysts would like
to view character distribution patterns across taxa to identify
unusual patterns, such as taxa sharing the same characters
that are located far apart in a tree. Analysts can select a group
of characters in one of the following ways: (1) Characters
from a cluster (or multiple clusters) produced by the leader
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Figure 3: Visualizing the Asteraceae family which contains
10 tribes (color-encoded), 137 genera, and 537 species: Se-
lecting the Californica species in the last column.

algorithm presented in Section 4.2 (2) Using rectangular se-
lections to highlight characters of interest. Figure 4(a) shows
an example of a selected group of 11 characters. The taxon-
by-character table (only characters containing data within
the selected taxa) of this group are displayed at the bottom
in different orderings. In particular in Figure 4(b), we order
taxa by the characters that they first are associated with in
the data. This makes ordered indentations on the character
columns and helps readability. MultiLayerMatrix also sup-
ports ordering taxa alphabetically by tribe, genera, and then
species. This reveals that taxa sharing the same characters
are located far apart in the input taxonomy (T6).

5. Scalability

In this section, we explore how well our technique scales
to synthetic datasets with over 20,000 elements. This is ten
times larger than the number of characters in the example
Asteraceae data, so the adjacency matrix size is 100 times
larger. Each cell in the 20,000 by 20,000 matrix randomly
receives a value from 0 to 1. This is also the largest matrix
that can fit into the memory of our testing computer. The
test was performed on a 2.5 GHz Intel Core i7, Mac OS X
Version 10.10.2, 16 GB RAM running Java 1.7 and Process-
ing 1.5.1. The total running time of the leader algorithm on
this synthetic data is about 16 seconds, which generates 50
clusters in the first layer (each cluster contains roughly 400
elements).

This process is completely parallelizable when more re-

Figure 4: Selecting a group of 11 characters: (a) Similarity
matrix of 11 ordered characters (b) Taxon-by-character ta-
ble of the selected characters and the related taxa. Taxa are
ordered by the characters that they first are associated with.

sources are available. We propose to take a bottom-up ap-
proach in parallelization. For example, the number of char-
acters can be divided evenly to the available processes m.
Each process will then generate a set of clusters (and leaders)
by running the leader algorithm. The results of all processes
can then be combined by running the leader algorithm on
all leaders (instead of characters) provided by each machine.
This would significantly reduce running time.

6. Conclusion

In this paper, we presented a novel technique for visualizing
and interacting with large matrices by breaking them into
multiple layers using the leader algorithm described in Sec-
tion 4.2. The leader algorithm is roughly linear, making it
more scalable for larger networks. We presented this tech-
nique using an example dataset which contains a 2,048 x
2,048 character similarity table and a 978 x 2,048 taxon-
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by-character table. We also ran tests on a 20,000 x 20,000
synthetic character dataset.

The number of nodes (n) in ZAME [EDG∗08] is reduced
by a factor of two after each abstraction level (n/2). In Multi-
LayerMatrix, the number of nodes (n) is reduced by a square
root factor (

√
n). Therefore, to represent a matrix with po-

tentially millions of rows or columns, we only need to break
it into two layers. The first layer displays one thousand by
one thousand summary matrix and the second layer displays
roughly thousand-by-thousand character matrix. For a larger
matrix, more than two layers can be used.
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