BSCI338N: Diseases of the Nervous System

http://www.dartmouth.edu/~dons/index.html www.neuroanatomy.wisc.edu

Chapter 4: Clinical Neuroradiology

2D slices called imaging planes along **horizontal** (axial; most CT scans), **coronal** (face), and **sagittal** (side) planes <u>CAT</u> - computer-assisted (detector reconstructs image) tomography (rotated)

x-ray source moves around CT gantry aperture, which is absorbed by detector array

absorption varies with density: water/brain is isodense (grey), bone is hyperdense (white), & fat is hypodense (black)

> fresh hemorrhages (Fe) are slightly hypodense can highlight blood vessels with IV contrast

<u>MRI</u> - nuclear magnetic resonance imaging

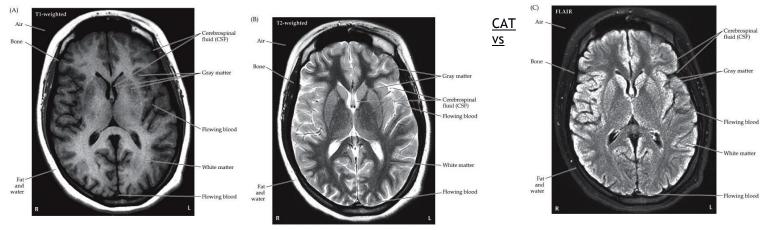
protons have spin & precession relative to an external static magnetic field

intensity of MRI signal determined by proton density & proton relaxation time

Relaxation

T1 relaxation along z axis parallel to magnetic field

T2 relaxation along x,y axis perpendicular to magnetic field


in spin echo (SE) pulse sequence, T1-weighted images from shorter repetition time (TR) & echo time

(TE); reverse for T2-weighted images

all: air/bone is black; fat is white

T1: water is dark, lipids (white matter/myelinated axons) bright $\rightarrow\,$ vice versa for T2

FLAIR: like T2 except CSF is dark so subtle abnormalities are enhanced

MRI:

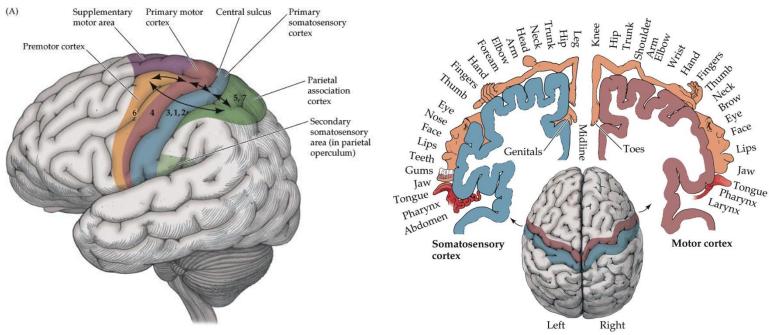
- CAT is better for bone/blood/restrictions: head trauma, calcified lesions, fresh hemorrhage, pacemaker, obesity, claustrophobia, lower cost & higher speed
- MRI is better for anatomical detail, old hemorrhages, lesion near base of skull, or subtle structures like tumors, infarcts, or demyelination

Unit 1: Spinal Cord

<u>Aim</u>

- afferent sensory pathways bring information from periphery to brain
- efferent motor pathways carry motor commands from brain to muscles
- efferent autonomic pathways control visceral functions

TABLE 4.3 MRI Appearance of Commonly Scanned Tissues				
TISSUE	T1-WEIGHTED	T2-WEIGHTED	FLAIR	
Gray matter	Gray	Light gray	Light gray	
White matter	White	Dark gray	Gray	
CSF or water	Black	White	Dark gray	
Fat	White	White ^a	White ^a	
Air	Black	Black	Black	
Bone or calcification	Black	Black	Black	
Edema	Gray	White	White	
Demyelination or gliosis	Gray	White	White	
Ferritin deposits (e.g., in basal ganglia)	Dark gray	Black	Black	
Ca ²⁺ bound to protein	White	Dark gray	Dark gray	
Proteinaceous fluid	White	Variable	Variable	


Brain surface

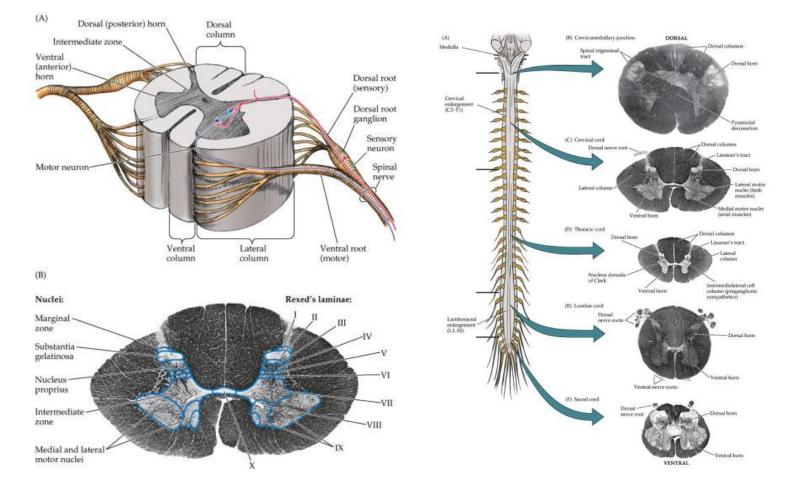
gyri (ridge), sulci (trough; wrinkles), & fissue (deep gap dividing lobes :) primary motor cortex is on the precentral gyrus, anterior to central sulcus, in front lobe primary somatosensory cortex is on the post-central gyrus, posterior to central sulcus, in parietal lobe

both are superior to Sylvan fissue that separates temporal lobe from frontal/parietal lobes brain stem: pons, midbrain, & medulla

somatotopic organization: specific parts of brain control different parts of body & vice versa maintained throughout spinal cord

coronal plane homunculus

Spinal Cord


axon tracts: white matter, descend through internal capsule

cell bodies in the spinal cord: grey matter

sensory in dorsal horn; motor in ventral horn (larger Rexed's numbers); interneurons in intermediate zone

spinal cord: cervical (head & neck), thoracic (torso), lumbar & sacral (legs)

ventral root expansion in cervical & lumbar-sacral regions due to greater fine motor control pyramidal decussation in medulla: crossing right brain to left half of body & vice versa

Descending Motor Pathways

<u>Lamina</u>

layer 6: interface with deep thalamus neurons

layer 5: output neurons (pyramidal cells \rightarrow special type is Betz cell, huge soma, fine control of muscles)

layer 4: thalamus input

layer 2 & 3: cortical neurons synapse w/ interneurons

layer 1: lateral connections

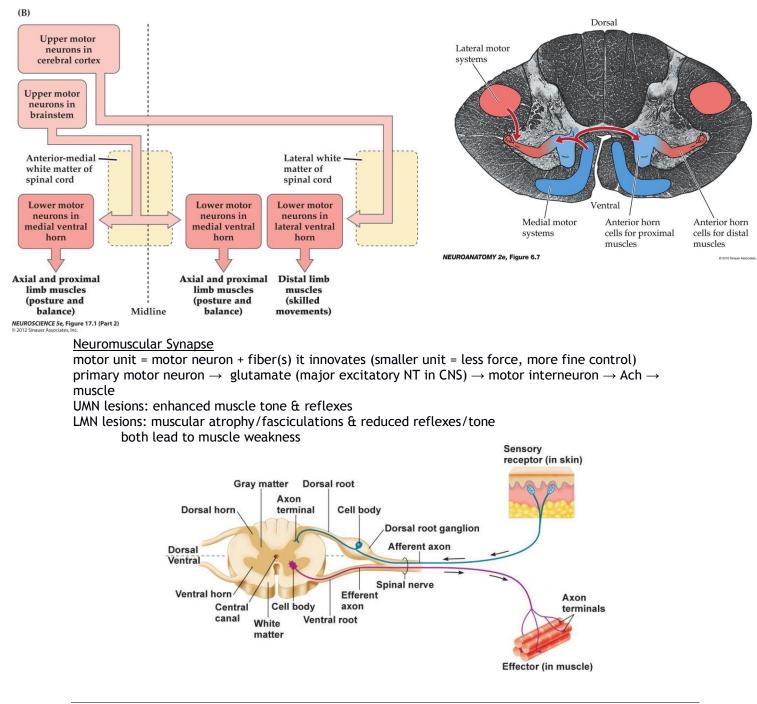
Upper Motor Neuron Pathway

1. corticospinal tracts: primary motor cortex layer 5 \rightarrow corticospinal & corticobulbar tracts \rightarrow posterior limb of internal capsule \rightarrow basis pedunculi (midbrain) \rightarrow basis pontis (pons) \rightarrow ventral column in medulla for crossing in pyramidal decussation (lateral CT) or in ventral column (anterior CT)

LCT: dorsal column & lateral intermediate zone/lateral motor nuclei (LIZ/LMN) (dorsal grey matter) \rightarrow full cord, movement of contralateral limbs

ACT: ventral column & medial intermediate zone/medial motor nuclei (MIZ/MMN) (ventral grey matter) \rightarrow cervical/upper thoracic, bilateral axial & girdle muscles

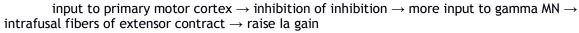
2. rubrospinal tract: red nucleus & central tegmental decussation (midbrain) \rightarrow lateral column RST: cervical cord, function not well known in primates

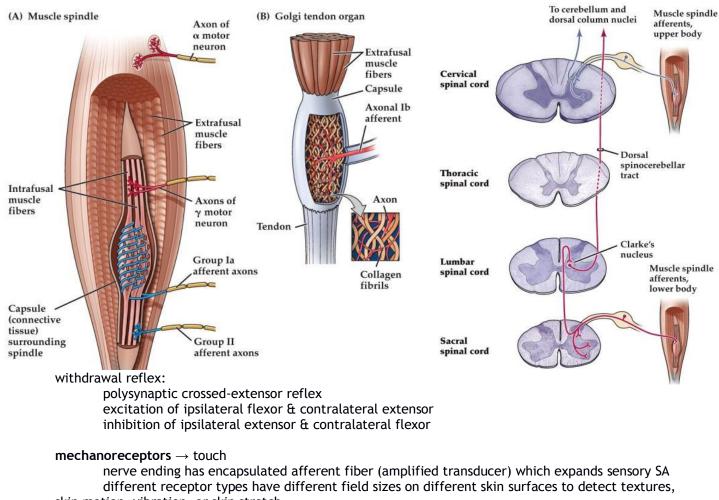

3. vestibulospinal tracts: lateral vestibular nucleus (pons) or medial vestibular nucleus (medulla) MVT: MIZ/MMN \rightarrow cervical/thoracic, head & neck positioning

LVT: MIZ/MMN \rightarrow full cord, balance

4. reticulospinal tracts: pontine/medullary reticular formation \rightarrow meduallary reticulospinal tract RCT: MIZ/MMN \rightarrow full cord, gait & posture

5. tectospinal tract: superior colliculus (midbrain) \rightarrow tectospinal tract


TST: $MIZ/MMN \rightarrow$ cervical, function not well known in primates



Reflex Arcs

proprioceptors \rightarrow stretch & withdrawal reflexes

reflex grades: 0 = absent, 1-3 = normal, 4-5 = clonus muscle spindle (stretch) & Golgi tendon (force) afferents muscle stretch \rightarrow Ia afferent firing rate increases \rightarrow gamma efferents cause intrafusal fiber contraction & increase gain AND extensor contraction via alpha MN, flexor relaxation via interneurons on alpha MN

skin motion, vibration, or skin stretch

two-point discrimination: calipers test integrity of somatosensory input

deficit indicates peripheral neuropathy

receptive fields are more discriminatory in fingers, face, & toes

thermo/nocioreceptors \rightarrow free nerve endings with chemical & heat-sensitive channels (pain, temperature, itch :)

TABLE 9.1 Somatic S	Sensory Afferents tha	t Link Receptors to the Centra	l Nervous Sy	stem
SENSORY FUNCTION	RECEPTOR TYPE	AFFERENT AXON TYPE [®]	AXON DIAMETER	CONDUCTION VELOCITY
Proprioception	Muscle spindle	Axon Ia, II	13–20 μm	80–120 m/s
Touch	Merkel, Meissner, Pacinian, and Ruffini cells	Αβ	6–12 µm	35–75 m/s
Pain, temperature	Free nerve endings	Αδ	1–5 µm	5–30 m/s
Pain, temperature, itch	Free nerve endings (unmyelinated)	C	0.2–1.5 μm	0.5–2 m/s

current flow resistance is proportional to fiber diameter different processes have axons with different properties myelin: reduce membrane capacitance \rightarrow less charge moved for same voltage change \rightarrow saltatory conduction between nodes of Ranvier

Motor Pathology

UMN Disease

loss of cortical control of spinal reflex arcs

LST synapses on interneurons to inhibit gamma MNs

rest: increased gamma MN activity enhances muscle tone \rightarrow shortens spindle, increasing la gain stretch: la activity elevation is abnormally high \rightarrow sudden movements leads to spasticity & clonus Babinski's sign: extensor (toes fanned) plantar response

Autonomic Control

from hypothalamus, pons, & medulla \rightarrow cell bodies in medial portions

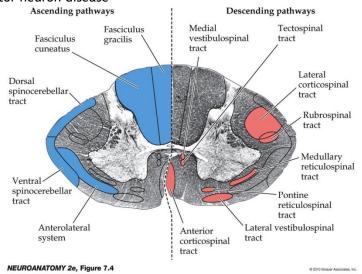
 $nAchR \rightarrow NE$ or Ach (synpase effector organ via varicosities en passant)

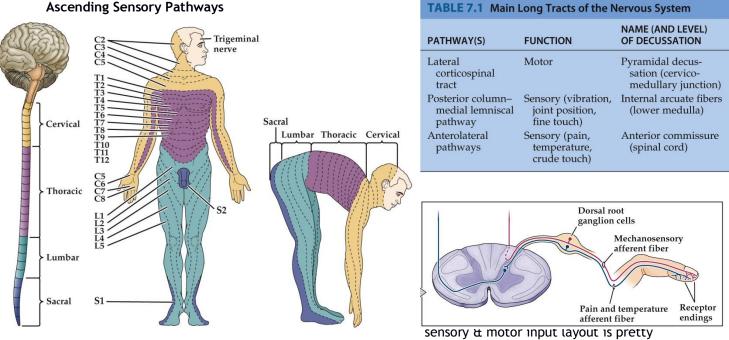
SANS: thoracic/lumbar \rightarrow intermediolateral nucleus (Rexed's lamina #5) \rightarrow ventral nerve root \rightarrow paravertebral ganglion via white ramus \rightarrow synapse \rightarrow to effector organ via grey ramus

preganglioinc neuron sends axon collaterals up and down sympathetic chain \rightarrow generalized response

PANS: brainstem/sacral \rightarrow sacral parasympathetic nuclei \rightarrow ventral nerve root \rightarrow peripheral synapse near effector organ

damage to sacral spinal cord will lead to urination/defecation/sexual function deficits


Descending Motor Control Pathology Cortical insult/lesion (stroke) UMN disease (primary lateral sclerosis) UMN axonal damage (MS)

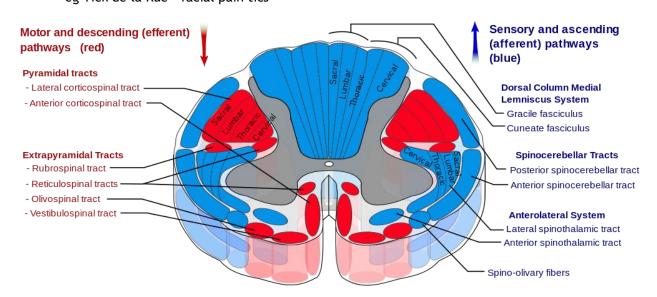

spinal cord injury (trauma) LMN disease (ALS)

<u>Stroke</u> ischemic: blood clot from plaque in artery (thromolitic), break off from elsewhere (embolitic), or atherosclerotic plaque hemorrhagic: burst blood vessel lacunar infarct: silent stroke, block from deep artery from Circle of Willis

Lesions

cortex \rightarrow unilateral weakness according to somatotopic mapping internal capsule \rightarrow pure hemiparesis (including lower face) pyramidal decussation \rightarrow hemiparesis sparing face spinal cord \rightarrow weakness below lesion site qaudriparesis: could be medullary lesion (bilateral lesions are unlikely in cortex & efferents), but more likely generalized motor neuron disease

much the same (except that muscles can run across two dermatomes)


Sensory Pathways

1. posterior column: VPL \rightarrow cross in medulla via medial lemniscus \rightarrow descend through dorsal columns (fasciculus gracilis for lower body and cuneatus for upper body) \rightarrow dorsal root ganglion (DRG) \rightarrow vibration & position sense

2. anterolateral pathways: VPL \rightarrow secondary sensory neuron \rightarrow anterolateral pathway \rightarrow cross via anterior commissure \rightarrow DRG \rightarrow pain & temperature

3. spinocerebellar tracts: Golgi apparatus & spindle fibers also send synapses to dorsal & ventral spinocerebral tracts to convey point position via collaterals to cerebellum (also cross in medulla) \rightarrow via posterior column collaterals?

4. trigeminal nerve: emerges from brainstem rather than spinal cord, sensory input for face crosses in trigeminal limnesces

eg Tick de la Rue - facial pain tics

Primary Somatosensory Cortex

sensory cortex: anterior part of parietal lobe, behind central gyrus (has 3 sections) gets input from ventral posterior lateral (VPL) or medial (for facial) nuclei of thalamus layer 2 & 3: projections from layer 4; local integration

layer 4: thalamic input

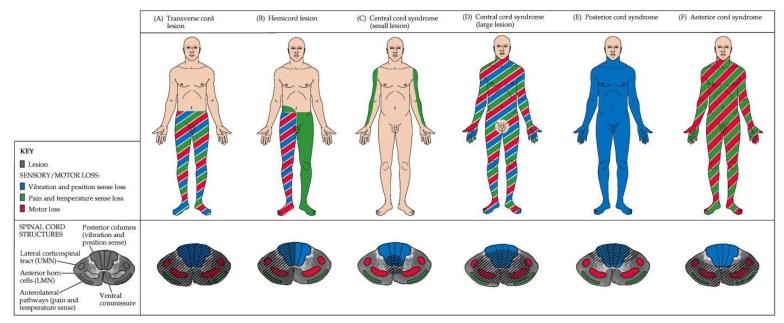
layer 5: output to body

layer 6: output to thalamus

feedback loop: somatosensory projections go to VPL and other brain areas AND output of primary sensory cortex goes to other brain areas \rightarrow give more weight to raw/reference or processed signal \rightarrow hormones, pain perception, etc

eg thalamus gets a raw copy from ascending tracts & a processed copy from cortex which affects how it relays & modulates sensory input to cortex

pain modulation in periaqueductal gray matter: input from anterolateral system & hypothalamus/amydala/cortex modulates output to dorsal horn


Patterns of Sensory Loss

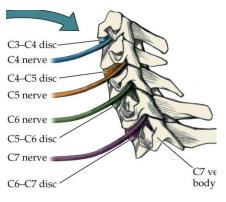
differentiate primary input vs processing problem

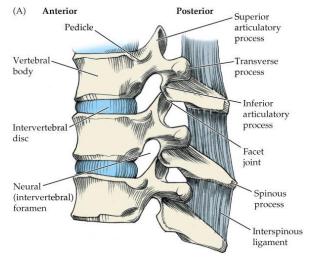
stereognosis - determination of tactile stimulation, mediated by posterior column pathways graphesthesia - recognition of letters traced on skin, mediated by posterior column pathways & cortical circuits

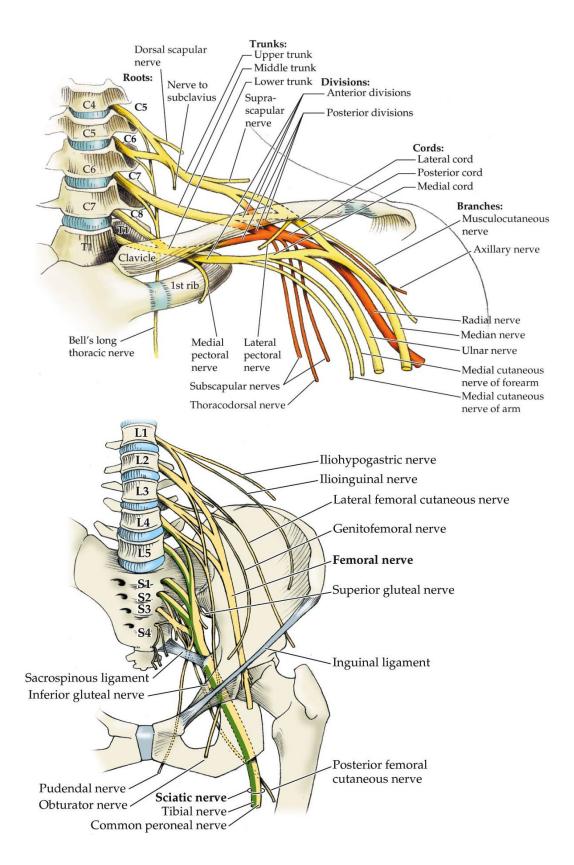
lesions: pons - contralateral anterolateral/posterior columns tract & ipsilateral trigeminal (already crossed)

peripheral neuropathy - bilateral distal sensory loss (stocking and glove syndrome)

pathways to know: pinprick, temperature, vibration, joint position sense, two-point discrimination, graphesthesia, stereognosis, tactile extinction


Nerve Plexus


terms to know: transverse & spinous processes, intervertebral disc (usually herniates laterally), foramen (spinal column)


cervical nerves exit below disc \rightarrow thoracic & lumbar nerves exit above disc \rightarrow sacral nerves exit not next to discs

plexuses are susceptible to avulsion (tearing)

injury \rightarrow eg whiplash can damage nerves

cervical plexus - C1-C5, including phrenic nerve (C3-C5) Brachial Plexus radial (C5-T1):

- motor: arm extension, forearm and thumb movements
- sensory: medial (inner) surfaces of arm

median (C5-T1):

- motor: wrist and thumb movements
- sensory: first three fingers, palm

ulnar (C6,8 and T1):

- motor: wrist and finger movements
- sensory: outer two fingers and palm

axillary (C5,6; axilla = armpit):

- motor: abduction of shoulder
- sensory: sensation on shoulder

musculocutaneous (C5-7):

- motor: arm flexion and supination
- sensory: lower arm

Lumbar Plexus

femoral (L2-L4):

- motor: raise femur (quads), extend shin
- sensory: upper thigh and medial shin

obiturator (L2-L4):

- motor: adduct femur
- sensory: inner thigh

sciatic (L4-S2):

- motor: flex knee (hamstrings)
- sensory: calf and top of foot
- gives rise to: tibial (plantar flexion, sensation on soles of feet) and peroneal (foot eversion, dorsiflexion, sensation on lateral shin and toes) nerves

TABLE 8.5 Three Important Nerve Roots in the Arm

NERVE ROOT	MAIN WEAKNESS ^a	REFLEX DECREASED ^a	REGION OF SENSORY ABNORMALITY ⁶	USUAL DISC INVOLVED	APPROXIMATE PERCENTAGE OF CERVICAL RADICULOPATHIES
C5	Deltoid, infraspinatus, biceps	Biceps, pectoralis	Shoulder, upper lateral arm	C4-C5	7%
C6	Wrist extensors, biceps	Biceps, brachioradialis	First and second fingers, lateral forearm	C5–C6	18%
C7	Triceps	Triceps	Third finger	C6–C7	46%

TABLE 8.6 Three Important Nerve Roots in the Leg

NERVE ROOT	MAIN WEAKNESS ^a	REFLEX DECREASED ^a	REGION OF SENSORY ABNORMALITY ^b	USUAL DISC INVOLVED	APPROXIMATE PERCENTAGE OF LUMBOSACRAL RADICULOPATHIES
L4	Iliopsoas, quadriceps	Patellar tendon (knee jerk)	Knee, medial lower leg	L3-L4	3%-10%
L5	Foot dorsiflexion, big toe extension, foot eversion, inversion	None	Dorsum of foot, big toe	L4-L5	40%-45%
S1	Foot plantar flexion	Achilles tendon (ankle jerk)	Lateral foot, small toe, sole	L5–S1	45%-50%

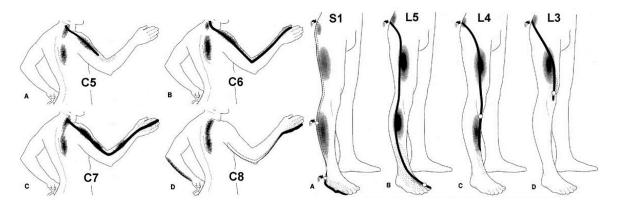
Muscle Movements

Flexion: joint angle decreases Extention: joint angle increases Adduction: away from median plane Abduction: toward median plane Supination:

- arm: palm up
- leg: weight on lateral edge of foot

Pronation:

- arm: palm down
- leg: heels in


TABLE 9.1 Five Important Nerves in the Arm (Part 1)

NERVE	MOTOR FUNCTIONS	REGION OF SENSORY LOSS WITH NEUROPATHY
Radial	Extension at all arm, wrist, and proximal finger joints below the shoulder; forearm supination; thumb abduction in plane of palm	Posterior cutaneous nerve of arm Posterior cutaneous nerve of forearm Dorsal digital nerves (radial)
Median	Thumb flexion and opposition, flexion of digits 2 and 3, wrist flexion and abduction, forearm pronation	e e e

TABLE 9.1 Five Important Nerves in the Arm (Part 2) **REGION OF SENSORY** NERVE MOTOR FUNCTIONS LOSS WITH NEUROPATHY Ulnar Finger adduction and abduction other than thumb; thumb adduction; flexion of digits 4 and 5; wrist flexion and adduction UI e é Axillary Abduction of arm at 11 e e shoulder beyond first 15° Musculo-Flexion of arm at Back Front elbow, supination cutaneous Lateral of forearm Lateral cutaneous cutaneous nerve of nerve of forearm forearm NUD

TABLE 9.3 Important Nerves in the Leg (Part 2)				
NERVE	MOTOR FUNCTIONS	REGION OF SENSORY NERVE LOSS WITH NEUROPATHY		
Tibial	Foot plantar flexion and inversion, toe flexion	osterior tibial nerve		
Superficial peroneal	Foot eversion	Superficial peroneal nerve		
Deep peroneal	Foot dorsiflexion, toe extension	Deep peroneal nerve		

Terms review

ventral & dorsal roots merge into a nerve root which exits at spinal canal nerve - bundle of axons: sensory afferents & motor efferents nerves move towards dorsal and distal portions of limbs lower sacral: innervation medial pelvis + descending sympathetic (eg sphincters) piriformis (hip abductor) muscle can entrap sciatic nerve

Every Pathway Ever

Three major pathways: somatotopic

LCST:

M1 (UMNs)->posterior limb of internal capsule->cerebral peduncles->pyramids->LCST->LMNs Distinguish UMN and LMN dysfunction with reflexes, tone **Dorsal columns:**

gracile (legs, medial) and cuneate (arms and neck, lateral)

DRG->nuclei in medulla->internal arcuate fibers->VPL->S1 posterior limb of internal capsule Anterolateral system:

DRG->dornal horn->anterior commisure->VPL->S1 (spinothalamic pathway; discriminative) cord->elsewhere (emotional, modulatory aspects of sensation)

Autonomic efferents

control bladder, rectal, and sexual function Preganglionic in intermediate zone->postganglionic->target Sympathetic: preganglionic cholinergic neurons in thoracic cord postganglionic noradrenergic neurons in thoracic chain ganglia Parasympathetic: preganglionic cholinergic neurons in brainstem and sacral cord postganglionic cholinergic neurons in ganglia at target tissue

Major Tracts Dorsal (sensory) and ventral (motor and autonomic) roots cervical (8), thoracic (12), lumbar (5), and sacral (5) levels cord ends at L1 vertebra (approximate); cauda equina continue below most clinically relevant: C5-7 (arms) and L4-S1 (legs) Cervical plexus arises from C1-5 phrenic (C3-5): diaphragm Brachial plexus arises from C5-T1 radial (C5-T1): all arm extension, forearm and thumb, sensation on medial surface of arm median (C5-T1): wrist and thumb, sensation on lateral hand axillary (C5-C6): abduction of shoulder, sensation on shoulder musculocutaneous (C5-7): arm flexion, supination, sensation on lower arm **Lumbar plexus arises from L1-S4** femoral (L2-L4): raise femur (quads), extend shin, sensation on upper thigh and medial shin obiturator (L2-L4): adduct femur, sensation on inner thigh sciatic (L4-S2): flex knee (hamstrings), sensation on calf and top of foot tibial: plantar flexion, sensation on soles of feet; from sciatic peroneal: foot eversion, dorsiflexion, sensation on lateral shin and toes; from sciatic

Motor/Sensory Deficits	TABLE 7.4 Differential Diagnosis ^a of	f Spinal Cord Dysfunction
 <u>ALS & MS</u> how to diagnose motor deficits: localize level of neuromuscular system by associated symptoms (eg a pure motor problem is probably not a spinal cord lesion) heriditary? family history? distribution: radiculopathy, plexopathy, or peripheral neuropathy? neurogenic or myogenic? radiculopathy - nerve (eg compression) damage radiating out from cord neuropathy - pathological process originating from within the nerve <u>Symptoms:</u> Aphasia/visual defect: higher cortex Face: cranial nerves above brain stem Arms & legs: anything below C5 	Trauma or mechanical Contusion Compression Disc herniation Degenerative disorders of vertebral bones Disc embolus Vascular (see Figure 6.5) Anterior spinal artery infarct Watershed infarct Spinal dural AVM (arteriovenous malformation) Epidural hematoma Nutritional deficiency Vitamin B ₁₂ Vitamin E Epidural abscess Infectious myelitis Viral, including HIV Lyme disease	Tertiary syphilis Tropical spastic paraparesis Schistosomiasis Inflammatory myelitis Multiple sclerosis Lupus Postinfectious myelitis Neoplasms Epidural metastasis Meningioma Schwannoma Carcinomatous meningitis Astrocytoma Ependymoma Hemangioblastoma Degenerative/developmental Spina bifida Chiari malformation Syringomyelia

Sensory:

same side: cortical lesion, especially if basic sensation intact but complex processing is impaired below a level on trunk: spinal cord/brain stem none: MN disease, myopathy

Muscles:

appearance: atrophy or fasciculations, aka spontaneous contractions (lower MN) vs flexor/extensor spasms/clonus, aka hyperreflexia (upper MN)

LCST & all decending pathways are excitatory/glutaminergic & provide input to interneurons (mostly inhibitory/glycinergic)

excitatory: step on a tack \rightarrow must retract leg & stiffen opposite leg

interneurons synapse with gamma motor neurons, which innervate muscle spindle, increasing gain of stretch reflex

tone: :) flaccid (lower) vs rigid (upper)

upper: too much innervation from spindle, leading neurons to believe muscle is always flexed lower: less input

power: distinguish between tone & strength

upper: arm extensors & abductors affected most; leg flexors more than extensors lower: symptoms vary based on MN affected

<u>Gait:</u>

impaired sensation (proprioreception) \rightarrow high-stepping gait

eg tabes dorsalis (syphiliss) \rightarrow degeneration of DRG neurons in dorsal columns \rightarrow loss of vibration and position sense

sensory neuropathies (chemotherapy, diabetes)

worsened by removing visual input

LMN & muscle disorders \rightarrow foot drop (lower leg weakness) & waddling (hip/core weakness)

<u>Motor deficits:</u> acute vs chronic acute: vascular, toxins, spinal cord injury chronic: days/weeks: neoplastic (tumor), infection, inflammation months/years: degenerative, endocrine

Pathology: nerve root & plexus lesions

disc prolapse

spondylolisthesis - movement of vertebrae relative to each other \rightarrow stenosis of canal or nerve compression

spondylosis - fractures between facet joints

spinal stenosis - narrowing of spinal foramen

osteophytes - bony spurs between adjacent vertebrae

avulsion - tearing underlying faschia/muscle

Erb-Duschenne: dislocation of shoulder/hip in birth canal

Pathology: spinal cord disorders

traumatic myelopathy: whiplash, fracture/vertebral dislocation cord transection:

acute: spinal shock (swelling; flaccid paralysis; loss of reflexes, sensory, & autonomic capabilities)

chronic: hyperreflexia & clonus except flaccid where ventral roots/LMNs are damaged, intermittent autonomic function, loss of UMN control

treatment: immediate cold to prevent swelling (corticosteroids don't promote healing) sacrolitis - inflammation of sacrum-illeum joint connection (eg reactive gliosis)

sciatica - disk compression

L4-L5 disc is frequently herniated which compresses L5 root (narrowest form in lumbar spine) can fix with formenautomy (make a bigger window)

Pathology: NMJ & muscle disorders

myasthenia gravis - antibodies target nAchR (autoimmune)

ptosis (eyelid droop)

treated with Ach-esterase inhibitors & immunosuppression

break down of the cytoskeletal structure that defines neuromuscular junction

muscular dystrophy - dystrophyn complex (anchors actin to cell membrane) is mutated Ducchene's is worst (no protein), Becker's is milder

<u>ALS</u>

Amytrophic (no muscle nourishment) Lateral (position in spinal cord) Sclerosis (scarring) motor neurons die from oxidative stress

unique expression of transporters, glutamate receptors, Ca buffers? other spinal-muscular atrophies: can be UMN or LMN only; can affect brain stem or spinal MNs infections that target MNs: polio, West Nile (variant that targets MN specifically) post-polio syndrome: surviving neurons innervate more fibers \rightarrow stressors \rightarrow activate apoptotic processes

presentation: 20% bulbar onset 40% upper extremity weakness clinical & pathological overlap with fronto-temporal dementia \rightarrow MN stressors may be the same as frontal lobe stressors

treatment:

riluzole - Na channel inhibition; presynaptic inhibition to tamper excitotoxicity doesn't work well, but cheap & no side effects feeding tubes & ventilator

progressive, fatal 3-5 years after onset, death from pulmonary infections

diagnosis:

problems are bilateral, upper & lower, in multiple regions

mitochondria failing \rightarrow oxidative stress \rightarrow not enough ATP \rightarrow defective axonal transport \rightarrow not interacting with postsynaptic partners \rightarrow loss of trophic factors \rightarrow presynaptic die back \rightarrow stress \rightarrow don't buffer calcium well \rightarrow activate secondary messengers they shouldn't \rightarrow more mitochondrial damage \rightarrow reactive gliosis \rightarrow AHHHHHHHH

Wallerian degeneration - damaged nerve retracts from target towards root

familial ALS (<10% cases) have mutated superoxide dismutase 1

binds copper & zinc, neutralizes free radicals

several mutations, which vary disease intensity (eg mutation in beta-sheet enzymatic pocket leads to worst prognosis)

this interferes with mitochondrial ETC, triggering apoptotic pathway

BCL2 family members regulate apoptosis by modulating cytochrome c release from mitochondria into cytosol

classic morphology of neuron death can be seen in all degenerative diseases

cytohistology: p53, tunel labeling

excitotoxicity hypothesis:

NMDA receptors letting in too much calcium, binding too often, too much extracellular glutamate, glial cells aren't reuptaking glutamate

oxidative stress is a hypothesized cause of many MN degenerative disorders

Multiple Sclerosis

can leave glial scar)

histology: demyelinating neuropathy \rightarrow sensory and motor

myelin - oligodendrocytes (CNS) & Schwann cells (PNS) wrap around axons must recognize axon, then have PM proteins on one side that recognize proteins on other side of PM scattered demyelination followed by reactive gliosis (astrocytes in CNS are activated, clear debris, and

risk factors:

presents at age 20-40, more common in women, increases with distance from equator & positively correlated with hygiene

genetic predisposition (interleukin receptor mutations)

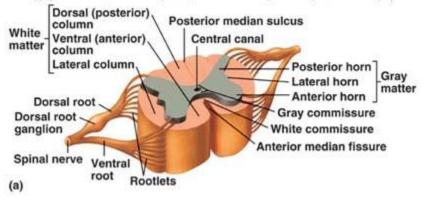
is there an initial metabolic insult (mitochondria)?

symptoms:

episodes of focal motor & sensory deficits MRI: diffuse glial white matter lesions diffuse symptoms: dysarthria, dysphagia, unstable mood, optic neuritis, pain, incontinence oligoclonal bands within CSF (autoimmune problem)

treatment:

remission can be spontaneous or drug-assisted drugs target immune system


- steroids: inhibit transcription of IL genes in T cells & IL receptors in B cells

- interferons: anti-inflammatory, reduce permeability of BBB to immune cells
- natalizumab: monoclonal antibody against ECM protein which reduces permeability of BBB to immune cells

Anatomy & Physiology Quiz

cervical & lumbar enlargements supply upper & lower limbs dorsal horn = sensory; ventral horn = motor; lateral horn = autonomic stretch reflex: excitatory, no interneuron (eg knee-jerk) withdrawal reflex: excitatory, interneuron Golgi reflex: inhibitory, interneuron crossed extensor reflex: excitatory & inhibitory, interneurons

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Radiology

Introduction

1895 - X-ray machine invented, first brain scan by Cushing at JHU

"He did a scan of a bullet in the brain, and their doing a lot of those down in Baltimore still today" - I. Weinberg

role of radiologist:

disease detection by symptoms \rightarrow confirmation by imaging differential diagnosis (could be this, rara avis) assist in management decisions (anticoagulants, surgery) & monitor therapy research

sources of signal:

CT/electron density: calcifications, hemorrhage, edema, contrast enhancement, mass effect MRI/water density: same as CT except diffusion, flow, no calcifications PET/radiotracer density: glucose utilization, receptor density different pulse sequences & contrast \rightarrow examine different structures :)

Normal Brain Catechism

ventricles & sulci have normal size, shape, & position no mass effect or midline shift

no abnormal attenuation/signal to suggest hemorrhage or cerebrovascular accident no abnormal contrast enhancement

<u>Differential Diagnosis</u> infectious neoplastic developmental/congenital vascular inflammatory/autoimmune environmental trauma degenerative

Case Studies toxoplasmosis - abnormal attenuation from ring-enhancing lesion & inflammation cysticercosis - same as above meningitis - abnormal contrast enhancement abcess pilocytic astrocytoma - juvenile tumor, 90% survival "If the issue is tissue, the answer is cancer." mestastasis glioblastoma multiforme - midline shift & mass effect meningioma - nothing in the brain is benign (neoplasm, but not cancer because it can't metastasize) heterotopia - developmental migration error chiari - herniated cerebellar tonsils, smaller cerebellum stroke - CT scan, bright white clot & dark hemorrhage with swelling internal coratid aneurysm crescental epidural hematoma subarachnoid hemorrhage subdural hematoma sarcoid - inflammatory disease, meningeal thickening global edema - asphyxiation radiation - low attenuation in radiated areas drug toxicity - white matter lesions grey/white junction hemorrhages - diffuse axonal/shear injury frontal lobotomy hydrocephalus - enlarged ventricles

<u>New Stuff</u> super-fast imaging magnetic drug delivery small PET/MRI

BSCI338N Midterm Two: Study Guide

Cranial Nerves

Names: On old Olympus' towering tops, a Finn and German vend snowy hops. *Functions*: Some say make merry but my brother says bad business making merry.

CN1: olfactory nerve [frontal lobe] special sensory

olfactory epithelium \rightarrow olfactory bulb \rightarrow periform cortex (only sensory with no thalamic relay) anosmia & frontal lobe lesions

CN2: optic nerve [midbrain] special sensory retinal ganglion cells → dorsal lateral geniculate nucleus of thalamus (image-forming) superior colliculus (eye movement → vestibular output) superchiasmatic nucleus (light intensity → pupillary reflex & circadian regulation) optic neuritis: common symptom of MS

CN3: oculomotor nerve [midbrain] **somatic motor parasympathetic** top eyelid, medial & upward eye movement (roll & cross your eyes) PANS for pupillary constriction & lens focusing

CN4: trochlear nerve [midbrain] somatic motor rotate eyes when head tilts (superior oblique muscles)

CN6: abducens nerve [pons] **somatic motor** move eyes laterally (lateral rectus muscles)

CN5: trigeminal nerve [pons] branchial motor somatic sensory

somatosensory for face, dental pressure, anterior 2/3 of tongue, sinus meninges branchial motor: mastication & tensor tympani (middle ear gain of transduction) trigeminal ganglia above jaw \rightarrow TMJ

three branches are analogs of spinal pathways

mesencephalic: only case in which primary neurons are in CNS; sensory loss ipsilateral to nuclei lesion

chief: trigeminal ganglion analog of DRG

Wallenberg syndrome - medullary stroke above anterolateral crossing & below trigeminal crossing \rightarrow loss of pain/temperature sensation contralateral, trigeminal loss ipsilateral

TABLE 12.6 Analagous Trigeminal and Spinal Somatosensory Systems

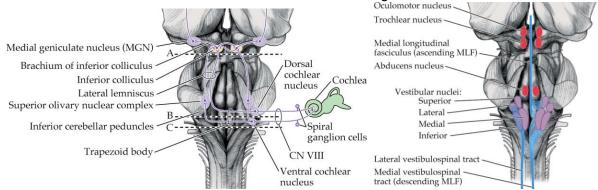
NUCLEUSSENSORY MODALITIESMAIN PATHWAY TO THALAMUSMAIN THALAMIC NUCLEUS"TRIGEMINAL SENSORY SYSTEMS	Those The Analogous Trigenin	iai ana opinar oonacooc	insory systems	
Mesencephalic trigeminal nucleusProprioception——Chief trigeminal sensory nucleusFine touch; dental pressureTrigeminal lemniscusVPMSpinal trigeminal nucleusCrude touch; pain; temperatureTrigeminothalamic tractVPMSPINAL SENSORY SYSTEMSFine touch; proprioceptionMedial lemniscusVPLDorsal hornCrude touch; pain; Spinothalamic tractVPL	NUCLEUS			
Chief trigeminal sensory nucleusFine touch; dental pressureTrigeminal lemniscusVPMSpinal trigeminal nucleusCrude touch; pain; temperatureTrigeminothalamic tractVPMSPINAL SENSORY SYSTEMSPosterior column nucleiFine touch; proprioceptionMedial lemniscusVPLDorsal hornCrude touch; pain; spinothalamic tractVPL	TRIGEMINAL SENSORY SYSTEMS			
pressure Spinal trigeminal nucleus Crude touch; pain; temperature Trigeminothalamic tract VPM SPINAL SENSORY SYSTEMS Posterior column nuclei Fine touch; proprioception Medial lemniscus VPL Dorsal horn Crude touch; pain; Spinothalamic tract VPL	Mesencephalic trigeminal nucleus	Proprioception	_	_
Image: Temperature Image: Temperature SPINAL SENSORY SYSTEMS Image: Temperature Posterior column nuclei Fine touch; Medial lemniscus VPL proprioception Dorsal horn Crude touch; pain; Spinothalamic tract VPL	Chief trigeminal sensory nucleus		Trigeminal lemniscus	VPM
Posterior column nucleiFine touch; proprioceptionMedial lemniscusVPLDorsal hornCrude touch; pain;Spinothalamic tractVPL	Spinal trigeminal nucleus		Trigeminothalamic tract	VPM
proprioception Dorsal horn Crude touch; pain; Spinothalamic tract VPL	SPINAL SENSORY SYSTEMS			
and the second se	Posterior column nuclei		Medial lemniscus	VPL
temperature	Dorsal horn	Crude touch; pain; temperature	Spinothalamic tract	VPL

CN7: facial nerve [pons] branchial motor parasympathetic visceral sensory somatic sensory branchial motor: stapedius muscle & facial expressions (including eyelid) PANS: lacrimal & salivary glands

visceral sensory: anterior 2/3 of tongue (distributed bilaterally) somatic sensory: external auditory meatus (EAM)

CN8: vestibulocochlear nerve [medulla] special sensory

hearing: sound waves enter EAM \rightarrow transmitted mechanically to middle ear via cochlea \rightarrow transduced by hair cells to neural signals (excite cochlear nerve, somata in spiral ganglion) \rightarrow fibers cross extensively in brainstem (trapezoid body fibers) \rightarrow lateral lemniscus carries output to contralateral inferior colliculus (via superior olive and other brainstem nuclei)


- tonotopy: high frequencies nearer oval window
- mechanical dampening by stapedius & tensor tympani muscles
- unilateral hearing loss must arise from a problem in the cochlea or CN VIII itself
- need auditory input from both ears to compare timing & intensity

vestibular sense:

vestibular hair cells: stereocilia deflected by medium movement \rightarrow transmit to vestibular nerves (cell bodies in superior/inferior vestibular ganglia)

- semicircular canals: hair bundles in cupula \rightarrow activate ampulla \rightarrow detect angular acceleration
- utricle & saccule: maculae (otoliths in gelatinous layer) \rightarrow detect linear acceleration & head tilt
- input & output: posture/muscle tone (cerebellum → brainstem motor) & eye position (cortical inputs of eye/head position → extra-ocular systems)
- symptoms: vertigo & nystagmus (eye tracking)
- vestibular nuclei: medial motor system (extrapyramidal, essentially uncrossed)
- lateral tract: extends length of spinal cord for balance and muscle tone
- medial tract: descending: neck, head position; ascending: extra-ocular muscles

Muniere's disease: fluid-filled canal autoimmune disease \rightarrow vertigo

CN9: glossopharyngeal nerve [medulla] branchial motor parasympathetic visceral sensory somatic sensory

taste from posterior 1/3 of tongue somatosensory from middle ear, EAM, pharynx, & posterior 1/3 of tongue branchial motor to swallowing muscles in throat (sounds that contract the soft palette (G & K)) chemoreceptors (oxygen/carbon monoxide balance and acid/base balance of blood) located in the carotid body and baroreceptors of carotid sinus PANS to parotid salivary gland

CN10: vagus nerve [medulla] **branchial motor parasympathetic visceral sensory somatic sensory** taste receptors in throat (epiglottis & pharynx)

somatosensory from pharynx, meninges, & EAM

branchial motor: pharyngeal (swallowing) & laryngeal (voice box) muscles

chemo & baroreceptors in aortic arch

PANS to all organs of chest and abdomen (heart, lungs, & digestive tract via splenic flexure)

CN11: spinal accessory nerve [medulla] branchial motor

branchial motor to sternomastoid & upper trapezius \rightarrow weakness of ipsilateral shoulder shrug & turning head away from lesion

CN12: hypoglossal nerve [entire brainstem] somatic motor somatic motor to tongue

Cranial Nerve Pathways

Eyes: muscles: 3 (medial & upward), 4 (superior oblique), 6 (lateral rectus) pupils & lens: 3 lacrimal glands: 7, 9

Mouth:

salivary glands: 7
taste: 7 (front), 9 (back), 10 (epiglottis & pharynx)
sensory: 5 (front tongue & teeth), 9 (back tongue)

Ear:

motor: 5 (tensor tympani) & 7 (stapedius) somatic sensory: 7 & 10 (outer), 9 (inner & outer) hearing & vestibular senses: 8

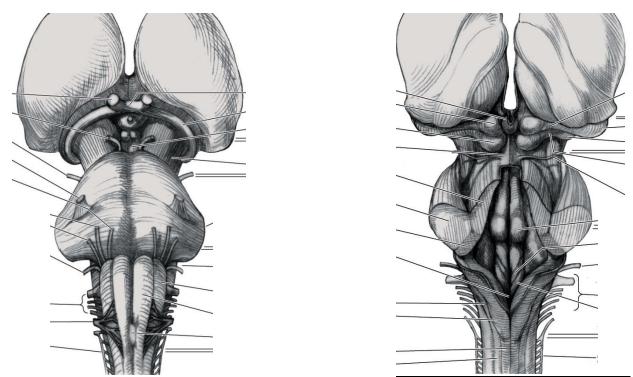
Face:

motor: 5 (mastication), 7

sensory: 5

UMN: spares forehead (both hemispheres contribute), mild orbicularis oculi weakness (can control eye lashes), lower facial weakness, can also cause arm or hand weakness

LMN (Bell's Palsy): entire face, dry eye, ipsilateral taste loss, no hand weakness or aphasia herpes zoster (shingles) or autoimmune origin


simultaneous tearing & salivation; blinking and platysma muscle contraction steroids & nerve stimulation \rightarrow slow recovery, nerves may regenerate incorrectly

Parasympathetic:

carotid body chemo & carotid sinus baro-receptor: 9 aortic arch chemo & baro-receptor: 10

Brainstem

label: 5 structures, 4 junctions, inferior olive, pyramid, pyramidal decussation, superior & inferior colliculus, cerebral peduncle, cerebellar peduncles, nuclei cuneatus & gracilis

cerebral peduncles - (direct & indirect motor pathways) \rightarrow pyramidal tract (flows through pons behind cerebellar peduncles) \rightarrow pyramidal decussation (indirect motor crossing in medulla)

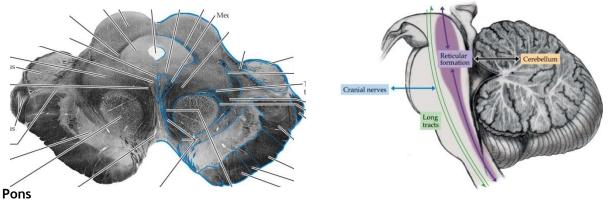
crus cerebi (pes pedunculi) = ventral efferent fibers

middle 1/3rd is corticospinal & corticobulbar tracts; remaining is corticopontine tracts dorsal columns → nucleus gracilis/cuneatus → internal arcuate fibers → medial lemniscus cranial nuclei - sensory & motor pathways carry information from multiple nuclei, but are spatially

segregated (motor is medial & sensory is lateral)

inferior olive - major integrative center, function unknown

projects to contralateral cerebellum


input from collaterals from contralateral spinocerebellar tract, corticospinal tracts, red nucleus; direct input from ipsilateral M1 & red nucleus

Midbrain

tectum: superior colliculus (visual nuclei) & inferior colliculus (auditory nuclei)

feed into tecto & vestibulo spinal tracts

tegmentum: substantia nigra (motor dopamine), red nucleus (rubrospinal tract), periaqueductal grey (pain modulatory), & reticular formation + medial lemniscus (spinothalamic tract) **basis:** long tracts of corticospinal & corticobulbar fibers

pontine nuclei: ipsilateral input from motor cortex \rightarrow project via middle cerebellar peduncle to contralateral cerebellum as mossy fibers \rightarrow preparation, initiation, & execution of movement where sensory (dorsal) & motor (ventral) tracts split \rightarrow these have different blood supplies

Reticular Formation collection of "mesh-like" regulatory nuclei that project to nearly every area rostral regulates forebrain (alertness) caudal works with cranial nerve nuclei to modulate cord, reflexes, ANS

TABLE 14.1 Summary of Brainstem Structures (Part 2)

MAIN FUNCTIONAL GROUPINGS	SUBCOMPONENTS
2. Long tracts (see Chapters 6, 7)	Motor pathways Corticospinal and corticobulbar tracts; other descending somatomotor pathways; descending autonomic pathways
	Somatosensory pathways Posterior column-medial lemniscal system; anterolateral system
3. Cerebellar circuitry	Superior, middle, and inferior cerebellar peduncles
(see Chapter 15)	Pontine nuclei; red nucleus; (parvocellular portion); central tegmental tract; inferior olivary nucleus
4. Reticular formation and related structures	Systems with widespread projections Reticular formation; cholinergic nuclei; noradrenergic nuclei; serotonergic nuclei; dopaminergic nuclei; other projecting systems
	Nuclei involved in sleep regulation
	Pain modulatory systems
	Periaqueductal gray; rostral ventral medulla
	Brainstem motor control systems: somatic, branchial, and autonomic Posture and locomotion (reticular formation; vestibular nuclei; superior colliculi; red nucleus [magnocellular portion]; substantia nigra; pedunculopontine tegmental nucleus); respiration, cough, hiccup, sneeze, shiver, swallow; nausea and vomiting (chemotactic trigger zone); autonomic control, including heart rate and blood pressure;
	sphincter control, including pontine micturition center

Neurotransmitters

neuromodulation:

- bulk release of neurotransmitter (e.g., DA, 5-HT)
- action through metabotropic receptors (7-TM domains, G-proteins)
- control of gain/state of circuits (e.g.: 5-HT makes spinal MNs more responsive to input)
- functions:
 - alertness: all but DA
 - mood elevation: NE, 5-HT
 - others: breathing control (5-HT); memory (Ach); movements, initiative, & working memory (DA)

up = cortex, thalamus, & basal ganglia

down = cerebellum, medulla, & spinal cord

NE: increase MN excitability, sleep, deficits in attention & mood disorders down from *lateral tegmental area* & up from *locus ceruleus*

DA: substantia nigra → motor output to straitum, causes gain (tremor) & loss (rigidity) in Parkinson's ventral tegmental area → motivation/reward (mesolimbic); attention (mesocortical);

Schizophrenia

5-HT: increases MN excitability, psychiatric disorders (transporter mutations)

down from *caudal raphe nuclei* (caudal pons & medulla) & up from *rostal raphe nuclei* (rostral pons & midbrain)

Histamine: tuberomammilary nucleus \rightarrow alertness

Ach: pontine nuclei → motor function via thalamus, cerebellum, basal ganglia, tectum, medulla/cord basal forebrain → attention & memory via Alzheimer's, theta rhythm (arousal, memory

formation)

Consciousness

Reticular activating system:

pontomesencephalic reticular formation (PRF) receives inputs from somatosensory (cord), limbic/cingulate cortex, frontoparietal association cortex, & thalamic reticular nucleus thalamic reticular nucleus: cortical input \rightarrow modulate other thalamic structures \rightarrow project to PRF

Consciousness: alertness (PRF, thalamus, & cortex); attention (alertness & association cortex); and awareness (abstract cognitive process)

loss of cortex, thalamus, or pontine RAS (not caudal RAS) \rightarrow coma brain dead (EEG is flat line) \rightarrow coma (some basic reflexes/EEG, severely depressed function throughout) \rightarrow vegetative state (variably depressed diencephalon/PRF) \rightarrow minimally conscious (variably depressed cortex) \rightarrow akinetic mutism (variably depressed frontal lobe) Locked-in syndrome: damage to ventral pons, usually from infarct

bilateral damage to corticospinal and corticobulbar tracts

sensory pathways spared: patient is aware, able to feel, unable to move (save for some eye movements)

severely depressed function in brainstem reflex & motor

Headaches

cranial nerve disorders: headache & facial pain; equilibrium problems; vision problems nocioreceptors on meninges, BV, nerves, & muscles

headache types:

new (acute onset): subarachnoid hemorrhage, meningitis or encephalitis

subacute onset: temporal arteritis (autoimmune disease, hardening of temporal arteries that feed trigeminal nerve \rightarrow steroids), trigeminal neuralgia (Tic de la Rue \rightarrow tricyclic antidepressants), postherpetic neuralgia (shingles of the face)

chronic (ongoing): migraine, cluster headaches

steroids reduce vascular permeability

migraine: trigeminal neuralgia, cerebrovascular headache

cortical spreading depression or PAG activation \rightarrow activation of the trigeminal vascular system \rightarrow rCBF increases, then decreases (including in red nucleus & substantia nigra)

heightened cortical excitability hypothesis - lack of habituation in migraine patients

Ca2+ channels: only in neurons, heritable mutation causes migraines

familial hemipalegic migraine: motor aura, CAv2.1 channel in cerebellum & nocioreception brainstem nuclei \rightarrow increase glutamate release in cortex \rightarrow more CSD triptans also block transmission from spinal trigeminal nucleus (pain nucleus)

prophylaxis with tricyclics, beta-blockers, CAv2.1 antagonists OR avoid triggers (foods with tyramine, nitrates, stress)

cluster: always unilateral, usually behind eye at night

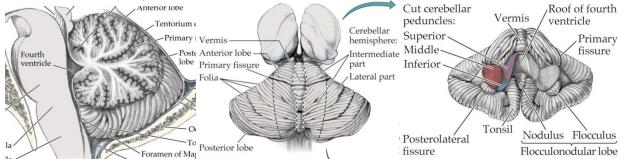
patients have recurrent headaches followed by remission

treated with triptans, Ca channel blockers, steroids OR avoid alcohol/vasodilators

tension: bilateral squeezing over forehead, often accompanied by neck spasm and pain Other: TMJ, dental disease, sinusitis, cervical spine disease

The Cerebellum

Gross Anatomy


purpose: integrates sensory inputs & motor outputs to modify ongoing movement ataxia - inability to coordinate smooth limb movement based on sensory feedback bounded by midbrain tectum, tentorium cerebelli, posterior fossa, & 4th ventricle blood supply: offshoots of basilar artery

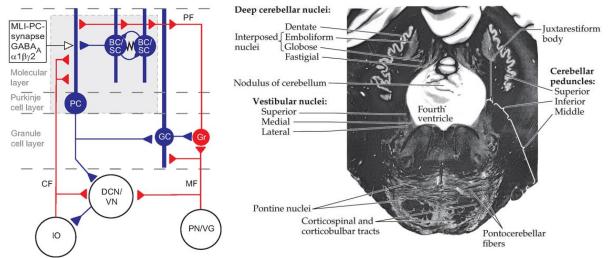
cerebellar peduncles: fiber tracts that run through brainstem (trace these) superior: primary output of the cerebellum to red nucleus & thalamus middle: input from the contralateral cerebral cortex via the pons inferior: fibers from ipsilateral spinocerebellar tract (proprioceptive), inferior olives,

vestibular nuclei

somatotopic input: repeats & layering provide multiple modes of coordination & interactions inner \rightarrow outer::head \rightarrow legs in posterior & anterior lobes

audio/visual input in medial vermis

Circuitry


each area has the same circuitry, but different inputs & outputs all ascending fibers are excitatory & descending fibers are inhibitory **output:** *Purkinje* (spontaneously active/tonic) \rightarrow deep cerebellar nuclei **input:** *climbing fibers* (inferior olive)

mossy fibers (pontine nuclei & vestibular ganglia) \rightarrow granule cells \rightarrow parallel fibers structures providing input to Purkinje also provide input to structure that receives inhibitory output of Purkinje cells (raw & processed nuclei)

deep cerebellar nuclei/vestibular nuclei

other descending fibers, excited by parallel fibers: *Basket cells* (strongly inhibit Purkinje), *Stellate cells* (weakly inhibit Purkinje) & *Golgi cells* (inhibit granule cells)

eg guided arm movement: compare motor command (move hand) to proprioreceptive feedback big sensory-motor loop modulated by input from locus coeuruleus (NE), raphe nuclei (5-HT)

deep cerebellar nuclei: each pair of nuclei is associated with a region of the surface anatomy

- dentate nuclei: lateral hemispheres
- interposed nuclei (emboliform & globose): paravermis (intermediate zone)
- fastigial nuclei: vermis

from lateral to medial: Don't eat greasy foods

vestibular nuclei receive direct PC input (from flocculonodular lobe)

Cerebellar Function

output:

lateral: extremity motor planning via LCST

intermediate: distal limb coordination via LCST & rubrospinal tract

vermis & flucculonodular lobe: proximal limb & trunk coordination via ACST & reticulo/vestibule/tectospinal tracts

balance & vestibulo-ocular reflexes via medial longitudinal fasciculus all these paths are double-crossed: once in decussation of superior cerebellar peduncle & once in spinal cord (pyramidal decussation for cortico or ventral tegmental decussation for rubro) medial: control over gamma motor system \rightarrow hypotonia

lateral cerebellum circuitry:

from dentate nucleus, crosses through superior cerebellar peduncle, to...

1. ventral lateral nucleus of thalamus \rightarrow motor & associate cortices (motor planning)

2. parvo red nucleus \rightarrow (central tegmental tract, descends with pyramidal tracts) \rightarrow inferior olivary nucleus \rightarrow (olivocerebellar fibers, second crossing) (distal limb feedback)

lateral zone & dentate lesions lead to decomposition of movements: errors of direction, force, speed, & amplitude of movements

intermediate cerebellum circuitry:

(extra)pyramidal systems; from interposed nuclei, crosses through superior cerebellar peduncle, to...

1. VLN \rightarrow cortex \rightarrow down lateral corticospinal tract (crosses in pyramids)

2. magno red nucleus (rubrospinal tract & large muscles in upper limbs) \rightarrow ventral tegmental decussation \rightarrow down rubrospinal tract

these circuits update movement plan (fire after movement has been initiated)

medial cerebellum circuitry:

gait, balance, etc; from fastigial nucleus to ...

1. contralateral to tectospinal; bilaterally to VLN \rightarrow cortex \rightarrow medial corticospinal

2. reticular formation & vestibular nuclei \rightarrow cord

loss of excitatory drive to one VN allows others to dominate

input: spinocerebellar tract

dorsal (gracile fascicle) & cuneo (cuneate fascicle) tracts (uncrossed): limb position DRG neurons synapse in Clark's nucleus & ascend ispilaterally

external cuneate nucleus is extremity version of Clark's nucleus \rightarrow gives rise to inferior peduncle (mossy fibers)

ventral & rostral tracts (double crossed): spinal interneuron activity

nucleus dorsalis \rightarrow interneurons in ventral horn \rightarrow cross in anterior commissure \rightarrow rise in ACST to cerebellum

Cerebral Pathology

infarcts & hemorrhages:

small in SCA: unilateral ataxia

PICA and SCA: vertigo, nausea, horizontal nystagmus, limb ataxia, unsteady gait, headache (from swelling, hydrocephalus, usually occipital)

SCA has brainstem involvement while PICA does not

large infarct causes swelling in posterior fossa \rightarrow needs immediate treatment

fatal gastroenteritis: nausea/vomiting from infarct

midline (vermis/flocculonodular) lesions: truncal ataxia, disequilibrium, eye movement abnormalities tend to sway towards side of lesion

Romberg's test: if patient sways with eyes closed, vestibular system cannot correct cerebellar deficit (also characteristic of LCST damage)

adult onset Tay-Sachs disease can be mistaken for spinocerebellar disorders (truncal ataxia)

intermediate lesions: appendicular ataxia (can be lesions in other areas)

dysrhythmia (abnormal timing) or dysmetria (abnormal trajectories in space)

tests: apply pressure to outstretched arms & release (excessive check); finger to nose

non-cerebellar ataxias:

peduncle/pontine lesions; hydrocephalus; prefrontal cortex; spinal cord disorder; contralateral ataxiahemiparesis

sensory ataxia: loss of joint-position sense

wide-based gait or overshooting movements (reduced by visual input)

look for other cerebellar signs (lack of speech issues, nystagmus, etc)

vestibular ataxia is gravity dependent: goes away when patient lies down cerebellar ataxia: irregularities in rate, rhythm, amplitude, & force of movements little muscle weakness and observable tremors during movement

Disorders of Equilibium

pathways to know: central & peripheral pathways pathways controlling eye movements pathways mediating proprioreceptive sensation

vertigo - illusion of movement of body or environment

impulsion - sensation of being pulled into space

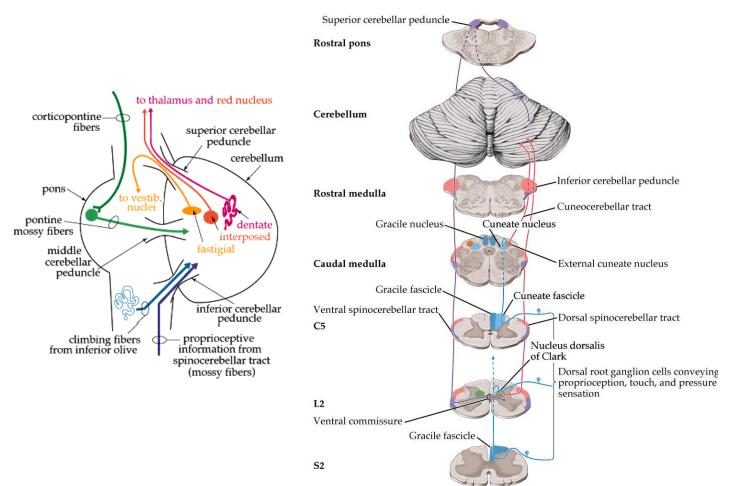
oscillopsia - visual illusion of movement

must be distinguished from dizziness (impaired oxygen or glucose delivery to brain :) semicircular canal \rightarrow vestibular nuclei \rightarrow medial longitudinal fasciculus ascends \rightarrow 3 cranial oculomotor nerves

vestibulospinal tract descends \rightarrow lateral (uncrossed) vs medial (bilateral) parapontine reticular formation: input from VN & output to motor nuclei

also receives input from superior colliculus (non-image forming vision) where vestibulo & tecto tracts interact

front eye fields: activated prior to planned eye movements; also integrate these inputs control the excitability of medial motor neurons based on head position

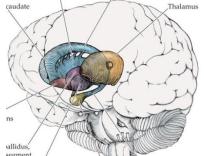

tectospinal does the same thing, except with eye movement

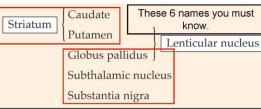
infarct in left superior peduncle: motor symptoms, nausea, aphasia

nausea \rightarrow must be cerebellar, pressing on brainstem

optokinetic response: eyes move and reset to moving spatial grading (without head movement) cerebellar atrophy: inherited spinocerebellar ataxia

usually polyglutamine expansion (CAG) which affects channels or other proteins (like PKC) \rightarrow these are in all neurons/cells \rightarrow kills Purkinje cells


Basal Ganglia


Gross Anatomy

Nuclei: striatum (caudate + putamen + cellular bridges), globus pallidus (GP), subthalamic nucleus (STN), substantia nigra (SN)

putamen + nucleus accumbens + amydala = limbic system

limb caudate & thalamus are medial to internal capsule, while lenticular nucleus is lateral

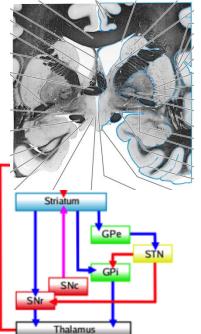
^{*a*}The nucleus accumbens and ventral pallidum can also be considered part of the basal ganglia.

internal capsule

anterior limb: frontopontine (corticofugal) & thalamocortical fibers (between lenticular nucleus & head caudate) genu ("knee"): corticobulbar (cortex to brainstem) fibers posterior limb: corticospinal & sensory fibers (medial lemniscus and the anterolateral system)

(between lenticular nucleus & thalamus) other: retrolenticular fibers from LGN, branch to optic radiation sublenticular fibers including auditory radiations and

temporopontine fibers


Circuitry

thalamus

dopamine enhances striatum output depending on DA receptor expression: D1Rs excite direct & D2Rs inhibit indirect \rightarrow disinhibition of thalamus

input modulates spontaneous firing activity

low activity: striatum (putamen) & SNc moderate activity: STN high activity: GPi & SNr irregular (low & high): GPe

somatotopy preserved in loops through basal ganglia

TABLE 16.2 Four Parallel	Channels through th	e Basal Ganglia		
SOURCES OF CORTICAL INPUT	BASAL GANGLIA INPUT NUCLEI	BASAL GANGLIA OUTPUT NUCLEI ^a	THALAMIC RELAY NUCLEI ^b	CORTICAL TARGETS OF OUTPUT
MOTOR CHANNEL				
Somatosensory cortex; primary motor cortex; premotor cortex	Putamen	GPi, SNr	VL, VA	Supplementary motor area; premotor cortex; primary motor cortex
OCULOMOTOR CHANNEL				
Posterior parietal cortex; prefrontal cortex	Caudate, body	GPi, SNr	VA, MD	Frontal eye fields; supplementary eye fields
PREFRONTAL CHANNEL				
Posterior parietal cortex; premotor cortex	Caudate, head	GPi, SNr	VA, MD	Prefrontal cortex
LIMBIC CHANNEL				
Temporal cortex; hippocampus; amygdala	Nucleus accumbens; ventral caudate; ventral putamen	Ventral pallidum; GPi; SNr	MD, VA	Anterior cingulate; orbital frontal cortex

Pathology

movement disorders distinct from cerebellar ataxia: all have cognitive/emotional components hyperkinetic (e.g., Huntington's): uncontrolled involuntary movements, direct pathways hypokinetic (e.g., Parkinson's): rigidity, difficulty initiating movement, indirect pathways

Parkinson's: symptoms

idiopathic (no known cause), onset 40-70 years, slow (5-15 year) progression degeneration of DA neurons in SNc \rightarrow initial treatment with L-DOPA motor symptoms: tremor, bradykinesia, cog-wheel rigidity, postural and gait instability (antero- or retro-pulsion) other symptoms: decrease in facial expression and in blinking; cognitive/emotional

Parkinson's: neural circuitry

DA has opposite effect on direct & indirect pathways \rightarrow net effect is disinhibition DA in SNc die & DA input from striatum reduced \rightarrow direct pathway loses strength \rightarrow inhibition of thalamus & Lewy bodies

Parkinson's: treatment

initial: levodopa (BBB-permeant DA precursor), increases DA "tone" in striatum, but effects attenuate (circuitry changes)

can cause dyskinesias/freezing as levels change: similar to "on-off" syndrome supplement with anti-cholinergics (2% of striatal neurons are cholinergic) deep brain stimulation: stimulate thalamus directly

Huntington's disease: symptoms

degeneration of striatum, particularly of projections to GPe (indirect pathway)

STN more excitable \rightarrow more inhibition of thalamus

increased polyglutamine repeats in Huntington gene (autosomal dominant and fully penetrant) initial symptom is chorea (jerky, random movements); cognitive/emotional component arises later

Other Movement Disorders

differential diagnosis based on basal ganglia involvement:	
signs of UMN/LMN disease?	
sensory loss?	

Bradykinesia, hypokinesia	SLOW
Rigidity	
Dystonia	
Athetosis	
Chorea	
Ballismus	
Tics	↓ ·
Myoclonus	FAST
Tremor	Slow or fast depending on typ

"extrapyramidal" - not cortical or cerebellar in origin, but instead basal ganglia influence on pyramidal tract

dyskinesia: MPP+ poisoning outbreaks, boxer's dementia, copper accumulation, or antipsychotic drugs (DA agonists \rightarrow tardive dyskinesia)

rigidity: increased resistance to passive movement, continuous throughout movement Parkinson's is not velocity dependent, but corticospinal lesions are

dystonia (distorted positions): small basal ganglia lesions \rightarrow treated with botulism toxin athetosis & chorea: involuntary twisting, fluid, or jerky movements ballismus: large amplitude movements of limbs

hemiballismus: contralateral to lesion in STN, decreased indirect pathway tics: urge for action \rightarrow brief action \rightarrow relief afterwards tremors: rhythmic oscillations of agonist/antagonist muscles

Key Points

basal ganglia evaluate voluntary motor program & signal to thalamus to continue basal ganglia loop is more initiation & termination than continuation & positioning operate on cortical & thalamic inputs

normally results in disinhibition via direct & indirect pathways, which operate on different types of information & are affected differently by dopamine

dopamine is an important neuromodulator: loss of tone leads to underactive thalamus

Parkinson's: key's in the ignition, but the car has trouble starting

inhibition of thalamus \rightarrow reduction of drive back to motor system

Limbic System

Olfactory

bulb

Gyrus rectus

Olfacto

cortex surrounding corpus callosum & basal ganglia functions: olfaction (olfactory cortex), memory (hippocampal formation), emotion & drives (amygdala), and homeostasis: autonomic & neuroendocrine (hypothalamus) main focus: hippocampal formation TABLE 18.1 Main Components basal ganglia channel: [temporal cortex; hippocampus; amygdala] \rightarrow [NA, ventral of the Limbic System striatum] \rightarrow [GPi/SNr, ventral pallidum] \rightarrow [MD, VA] \rightarrow [AC, OFC] Limbic cortex olfactory epithelium runs through cribiform plate Parahippocampal gyrus Cingulate gyrus ACC – error & conflict monitoring (eg Stroop task) Medial orbitofrontal cortex Other cortical areas Temporal pole Anterior insula Hippocampal formation Dentate gyrus Limbic cortex Hippocampus Subiculum

Thalamus and

epithalamus

Hippocampal

formation

Brain-

stem

Spinal cord, cranial nerve, and neurohumoral pathways

Olfactory bulb

Olfactory tract

Rhinal sulcus

Uncus

gyrus

Parahippocampal

Collateral sulcus

Basal

ganglia

Medial olfactory

Lateral olfactory

Orbital frontal cortex

Anterior perforated

substance

Rhinal sulcus

(seen through

Parahippocampal

Collateral sulcus -Inferior temporal sulcus

Occipitotemporal (fusiform gyrus)

Amygdala

cortex)

gyrus

stria

stria

Septal area and

basal forebrain

Amygdala

Hypothalamus

Olfactory sulcus

hippocampus

(B)

Orbital frontal gyri

Anterior perforated

Temporal pole-

substance

areas for memory:

medial temporal lobe (including hippocampus): communicates with association cortex via bidirectional pathways via entorhinal cortex

medial diencephalic nuclei (around 3rd ventricle, including thalamic & mammillary nuclei): communicates with medial temporal lobe via several pathways

basal forebrain also has projections to cerebral cortex involved in memory

Amygdala Olfactory cortex

Diencephalon

Habenula

Basal ganglia Ventral striatum Nucleus accumbens Ventral caudate and putamen

Hypothalamus Thalamus

> Anterior nucleus Mediodorsal nucleus

Ventral pallidum

Gyrus rectus

Olfactory bulb

Olfactory tract

Orbitofrontal

olfactory area

Piriform and

periamygdaloid

cortex (primary

olfactory cortex)

cortex

Entorhinal cortex

Perirhinal cortex

Parahippocampal

Basal forebrain

Septal nuclei Brainstem

Olfactory sulcus

hippocampus: storage & retrieval of short-term memory

input from parahippocampal gyrus: piriform, periamygdaloid, presubmicular, parasubicular, entorhinal, prorhinal, and parahippocampal cortices

interconnected by several tracts

strong modulation by cholinergic projections from basal forebrain

hippocampal formation: dentate gyrus (granule cells), hippocampus (pyramidal cells/cornu ammonis), & subiculum (pyramidal cells)

older cortex because has only three layers

mossy fibers: large terminal which dendrites poke post-synaptic membrane into

hypocampus pyramidal sectors: CA4 (near dentate gyrus) through CA1 (near subiculum)

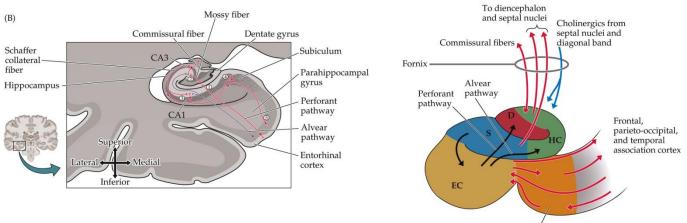
perforant pathway: layers 2 & 3 of entorhinal cortex \rightarrow dentate gyrus \rightarrow CA3 via mossy fibers \rightarrow fornix (CA3 pyramidal cell axons) or CA1 via Schaeffer collaterals \rightarrow fornix or subiculum

alveolar pathway: entorhinal cortex \rightarrow CA1 & CA3

both pathways primarily output to subiculum $\rightarrow\,$ monosynaptic connections to amygdala, OFC, & ventral striatum

example of processed & unprocessed copy to CA3

medial temporal lobe: long-term memory


input: association cortex \rightarrow perirhinal & parahippocampal cortices \rightarrow entorhinal cortex \rightarrow hippocampus perforant output pathway \rightarrow subiculum \rightarrow entorhinal cortex \rightarrow association cortex

fornix: fiber tracts that start in alveus & project counterclockwise around hippocampal formation

fornix output pathways: subiculum \rightarrow mammillary nuclei & lateral septal nuclei

hippocampus $\rightarrow\,$ lateral septal nuclei & anterior thalamic nucleus

medial septal nucleus & mammillary nuclei \rightarrow hippocampal formation

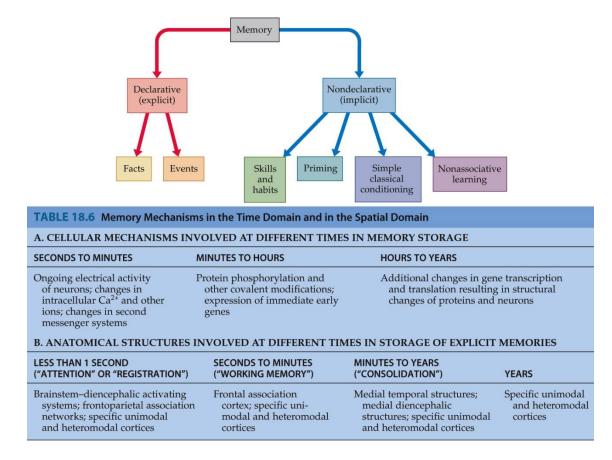
memory

mechanisms of storage (consolidation) & retrieval of memories are different

long-term memories relies of short-term memory relies on working memory

patient HM has medial temporal lobes resected bilaterally to control epilepsy \rightarrow declarative memory loss: long-term retrograde amnesia & short-term anterograde amnesia

causes of memory loss: lesions in bilateral medial temporal lobe, bilateral medial diencephalon, basal forebrain, or diffuse (eg MS)


eg Wernicke-Korsakoff: alcoholic encephalopathy caused by B1 deficiency \rightarrow diencephalon

eg Whipple's disease: bacterial infection \rightarrow diencephalon

not lesions: seizures, concussions, anoxia, psychogenic, toxins, Alzheimer's normal: infantile, sleep, passage of time

unilateral lesions do not normally produce severe memory loss, although left temporal./diencephalon lesion = verbal memory loss & right lesion = visual-spatial memory loss

PRC and PHC

amygdala

coordinate behavior, autonomic, & endocrine

nuclei (corticomedial, basolateral, central) plus bed nucleus of stria terminalis

stria terminalis: fiber tracts to hypothalamus & septal area (fornix of amygdala)

- output: association cortex & subcortical structures like hippocampus, plus olfactory structures
 - cortical connections: hippocampal formation, OFC, cingulate cortex
 - subcortical connections: thalamus, septal area, basal forebrain, ventral striatum, hypothalamus olfactory connections: piriform cortex & olfactory bulb
- emotion & drive are interactions between amygdala and other areas

not involved in encoding emotions into memories

lesions: failure to recognize emotion & social cues; placid

septal area associated with pleasure (monkey studies, sham rage)

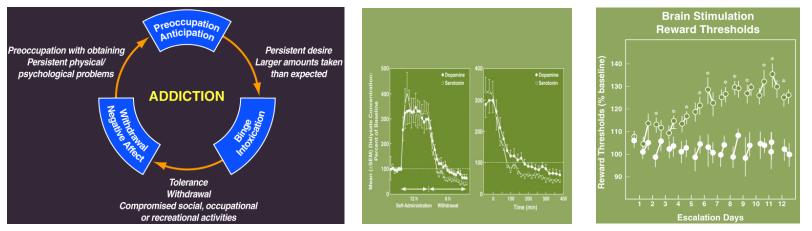
neuroendocrine function: why depressed patients contract infections more often

seizures

common seizures: simple partial, complex partial, absence (petit mal), tonic-clonic (grand mal) types: partial (particular brain structure) vs generalized (cut corpus collosum)

partial: simple (retain consciousness) vs complex; normally no post-ictal deficits

generalized: tonic phase (loss of consciousness, muscle rigidity) & clonic phase (rhythmic bilateral jerking, autonomic output) & recovery (deep breathing to accommodate for acidosis, confusion, amnesia, lethargy, etc)


auras similar to those in migraines in that they are symptomatic of abnormal brain activity drugs: anticonvulsants & sedatives to reduce neural activity

stabilize inactive Na channels, potentiate GABA transmission, or affect Na/Ca channels

Addiction

<u>addiction</u> - a chronic, relapsing brain disease characterized by compulsive drug seeking and use, despite harmful consequences. It is a disease because it causes brain changes, which are long lasting and cause self-destructive behaviors

key areas: ventral tegmental area (VTA) & ventral striatum in binge stage, amygdala in withdrawal stage, & OFC (+ dorsal striatum, PFC, amygdala, hippocampus, cingulate gyrus, etc) in preoccupation stage addiction causes changes in the mesolimbic DA pathway leading to plasticity in the striatum, OFC, PFC, cingulate cortex, & amygdala

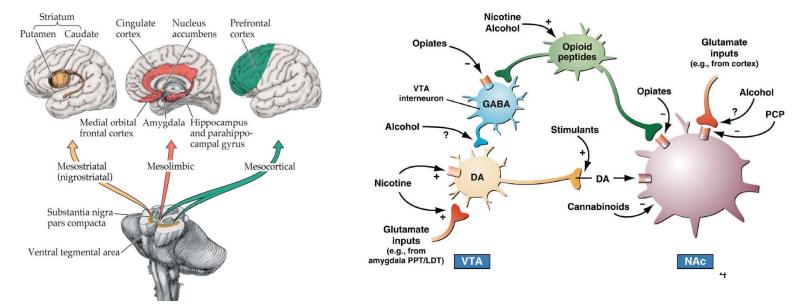
dopamine

all rewards increase dopamine in the brain, not just drugs of addiction dopamine: neuromodulator from midbrain

mesocortical pathway: VTA to prefrontal cortex (attention, anticipation)

mesolimbic pathway: VTA to NA (reinforcement learning, motivation/reward)

nigrostriatal pathway: SNc to dorsal striatum (habits, gain & loss of motor output)


DA neurons signal errors in reward prediction (better or worse than expected)

Schultz in 1997: introduce reward after stimulus \rightarrow originally fire in response to reward, then fire in response to stimulus & ceases firing in response to no reward at expected time

natural rewards are correlated with dopamine release, as measured by microdialysis artificial rewards also elevate DA (intracranial self-stimulation)

stimulate (threshold) $\to\,$ turn wheel $\to\,$ learn that turning a wheel produces more stimulus when DA is blocked, rats will no longer work for reward

tonic-phasic theory of DA: phasic = reinforcement learning, tonic = pleasure threshold

drug action on downstream areas

direct: impact DA receptor

indirect: modulate DA via other receptor systems & NT that modulate DA system

cocaine: direct, binds to and inhibits DAT

alcohol: inhibits GABAergic neurons that project to DA neurons in the VTA

nicotine: activates Ach neurons that project to DA neurons of the VTA

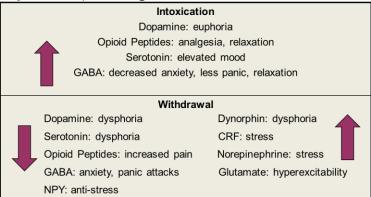
heroin: binds opioid receptors that inhibits GABAergic neurons that project to DA neurons of the VTA

drugs of addiction can work on other NT reward systems, but all of them work on DA

problems with long-term use

tolerance: long-access rats will press the lever more during a single session than short-access rats self-administration frequency & reward threshold both increase

withdrawal: disturbance of ANS, activation of locus coeruleus, & release of corticotrophin releasing factor


NT drop below baseline \rightarrow brain is compensating for overload

stress reliably reinstates drug seeking in rats

CRF facilitates & enhances freezing, startling, burying, conditioned fear, place aversion, & lack of exploration

can give them a single injection or foot shock them $\rightarrow\,$ will press lever even though saline is administered

incubation of craving: this frequency never decreases \rightarrow stress becomes a conditioned stimulus this is attenuated by CRF receptor antagonists

models of addiction

tolerance: reinforcing properties of drugs are gradually decreased

withdrawal: use is increased to maintain auphoria & avoid withdrawal

dependence: need to maintain this new homeostasis is increased

drug abuse results in structure & functional brain changes with changes in behavior: decreased DAT & decreased DA-D2 receptor binding $% \left(\frac{1}{2}\right) =0$

dependent in pre-existing receptors (eg different D2 receptors or decrease in DAT make rats more impulsive & subordinate monkeys more likely to self-administer)

model of addiction: percentage of rats who will take a footshock to get the drug is about the same as drug users who become addicted

these rats have the hardest mPFC DA neurons to drive (frequency of firing given stimulation)

top-down control of inhibiting things you don't want to do

optogenetics: use selective virus with pond scum activated by light \rightarrow channel protein transcribed and inserted into PM \rightarrow blue laser excites only these neurons, green light inhibits only these neurons

excite mPFC \rightarrow addiction cured!; inhibit mPFC \rightarrow addiction worsened!

cocaine abuse decreases metabolism in OFC \rightarrow inhibits reversal learning (discriminate between two stimuli, then reverse this association)

strong OFC phasic responses to odor that means sucrose

this reward firing was decreased in rats given cocaine

substance abusers all demonstrate executive control deficits (fail to switch to good decks from bad decks in lowa gambling task)

delay discounting - determine when low reward = high reward + delay

substance abusers have steeper discounting functions

review: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805560/pdf/npp2009110a.pdf

summary

DA pathways:

nigra: regulation of motor output; produces both gain (tremor) & loss (rigidity) in Parkinson's VTA: motivation/reward (mesolimbic); attention (mesocortical); implicated in Schizophrenia basal ganglia "decide" between competing cortical programs

modulated by SNc (motor programs) or VTA (limbic programs)

Epilepsy

epilepsy – a chronic disorder characterized by recurrent (at least 2) *unprovoked* seizures seizures – manifestations of excessive & hypersynchronous (usually self-limited) activity of networks of neurons in the brain

seizures transiently interfere with normal brain function

partial seizure: symptoms & signs reflect the part of the brain involved

motor, sensory, autonomic (limbic), psychic (limbic)

hippocampus is very commonly involved

seizures are spontaneous, but some stimuli can trigger a seizure (eg photosensitive epilepsy) patients can have seizures without being epileptic (eg withdrawal from CNS depressants such as Xanax or alcohol, hypoglycemia)

types & symptoms

seizure onset: modeled by interictal discharges (brief high amplitude network-driven bursts of high frequency firing)

seizure spread: serial (Jacksonian march), parallel, feedback loop, commissural, distributed (grand mal, usually through thalamus)

aura: fear/anxiety, euphoria, deja vu, autonomic (epigastric, piloerection), indescribable

complex partial seizure: aura \rightarrow unilateral nonpurposeful repetitive movements \rightarrow unresponsive \rightarrow postictal confusion & amnesia

juvenile myoclonic epilepsy: small myoclonic seizures precede tonic-clonic seizure

loss of breathing (only 1-2 minutes, so not dangerous)

patients with grand mal seizures are more likely to respond to medication (genetic disposition), but are also more likely to die from epilepsy

provoked seizures: usually generalized convulsive types

causes: fever (in young children), head trauma, stroke, infection (eg meningitis), drug withdrawal, medications, electrolyte abnomalities, hypoglycemia

differential diagnosis

incidence (first clinical presentation): 1 in 1000 in infants, 0.5 in 1000 at age 40, 1.5 in 1000 at age 80 age-specific etiologies: genetic/metabolic/congenital defects in infants; infections in children; trauma in young adults; tumors & vascular disease in adults

vast majority are idiopathic

after severe traumatic brain injury, 17% occurrence of developing epilepsy over the next 20 years epileptogenesis – as neurons recover, become the source of seizures other diagnosis: syncope, migraine, pseudoseizure

imaging

used to supplement family/clinical history, can help classify type of epilepsy & identify abnormal brain area EEG: alpha rhythm: resting awake with eyes closed, thalamic-cortical relay MRI: detect abnormalities correctable by surgery PET: brain metabolism

treatments & side effects

40% risk of recurrence after first seizure \rightarrow 70% after second comorbidities more common in patients who do not respond to medication

traumatic accidents, underemployment, cognitive dysfunction, depression/anxiety, endocrine disorders, drug side effects, mortality rate

50% become seizure-free on first prescription $\rightarrow 67\%$ eventually become seizure free

non-medication treatments: vagal nerve stimulation

ketogenic diet (atkins)

surgery: tissue removed is scarred, displastic, has wrong connections & morphology, etc

corpus collosotomy: prevent seizures from generalizing (makes them less severe)

surgery: for tumor, vascular problem, sclerosis in hippocampus

Schizophrenia

schizophrenia – severe chronic disorder characterized by hallucinations, delusions, & cognitive deficits "to split" + "mind" = splitting of mental functions

disorder of thought & function

1% of adult population (childhood onset is rare; usually age 18-25)

most expensive illness to treat (need custodial treatment for full life span)

affects men 1.5x as often as women (also presents earlier)

ascertainment bias: men tend to be more aggressive when acting out, tend to recognize emotional disorders in men more than in women

50% of psychiatric hospital patients are schizophrenic

neurodevelopmental stages:

presymptomatic (age <15): risk factors

prodrome (age 15-18): cognitive/social deficits emerge, unusual thought content, minor functional deficits psychosis (age 18-25): acute disability, withdrawal, lack of hygeine

chronic illness (age 25+): medical complications, long-term disability

episodic psychosis or delusions (associated with change in mood) is not enough to qualify for the diagnosis depression with psychotic features & bipolar disorder can look like schizophrenia, but course of

onset differentiates

severe interactive pervasive delusions are more characteristic of schizophrenia **psychosis**: disorder of thought characterized by hallucinations, delusions, & eccentric beliefs neurosis: habits, not a thought disorder

symptoms

positive, negative, & cognitive deficits; all must present for diagnosis

positive (added on): hallucinations, delusions, thought disorder, abnomal movements

hallucination: unusual sensory perceptions of things that are not present

auditory: most common, can be command, are very real to unmedicated patients, may be inability to differentiate own mental dialogue from voice of demon

visual: more common to other disorders

delusion: false beliefs that are persistent & organized, do not go away after receiving logical

rationalization, normally based on subconscious fears of the individual, misinterpret common experiences as a conspiracy against them

negative (taken away): flat affect (even with treatment), anhedonia, apathy, poverty of thought (empty mind), social withdrawal

similar to depression, except no poverty of thought

these are more difficult to treat (external motivation is hard)

lack neural structures of goal-directed behavior

cognitive deficits: executive (understand information & use it to make decisions)

working memory: representational knowledge; mental scratch pad; ability to use information immediately after learning it

guides thought, action, & emotion through inhibition of inappropriate thoughts, actions, & emotions dorsolateral prefrontal cortex dysfunction

problems with independent daily life: social deficits similar to autism (emotion & motive perfecptions) & memory deficits similar to Alzheimer's (sequencing, encoding, naming, object construction)

neurodevelopmental hypothesis

multiple genes act in concert with adverse environmental factors (neonatal or infantile illness) \rightarrow pathological changes that remain latent while the prefrontal cortex is developing \rightarrow manifests in early adulthood (once parents are no longer acting as your PFC)

evidence: correlation with obstetrical complications; presence of symptoms before illness; no neurodegredation

heritability: 10% from parent to child

microenvironment of identical twins (one with lower birth weight or second delivered) is different enough that concordance is only 48%

genome-wide association studies $\rightarrow 80$ candidate genes related to synaptic signaling machinery

1944 Netherlands malnutrition study \rightarrow 3-4x increase in schizophrenia incidence in children

genetic risk amplified by environmental conditions

similar spikes observed in other regions with famine

treatment

main method: drugs (new class of atypicals has fewer side effects)

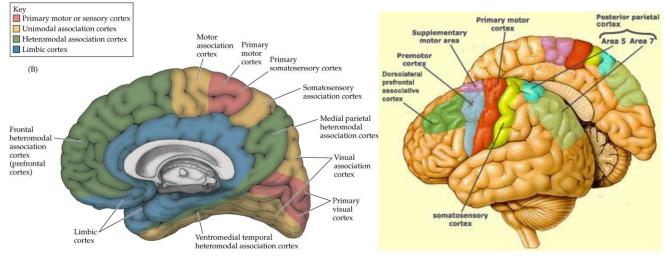
D2 receptor antagonists which treat psychotic symptoms (from hippocampus/thalamus) psychosocial interventions help patients form a meaningful life

some can work part-time, need a support structure to ensure that they get their medication on time they are more often the victims of crimes than criminals themselves

when the family is involved, relapse rate is significantly decreased

need case managers (will not seek out help on their own)

comorbidity: mood disorders, nicotine addition (may help the side effects), shizoaffective disorder (with depression or bipolar disorder), alcoholism, drug abuse, obesity/diabetes (from drugs) genetic benefits: may be oncoprotective (have lower solid tumor incidence rate)


rarely get lung cancer from smoking or liver cancer from drinking

most patients are not famous because the onset blunts their careers \rightarrow not enough mental health funds go to this because it's not visible

Cortex

dominant hemisphere: language processing (also praxis, sequential & analytic math/music abilities; following directions in sequence)

non-dominant hemisphere: visual-spatial processing/attention (also prosody, estimation, & orientation) dominant hemisphere is usually left, (matches motor dominance in general population) but language dominance is less lateralized in left-handed people

heteromodal areas: eg frontal eye fields, frontal cortex

eg exam (tell me about your childhood): hear & process question, pull memories, select information relevant to context, process language & related motor program

apraxia - inability to perform a task due to a higher-order processing deficit

eg unable to move arm even though auditory & motor neurons not affected

complexity of underlying circuits makes false localization a problem

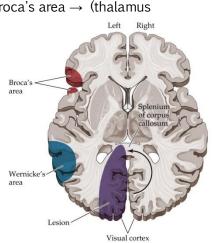
disconnection syndromes can interrupt connections between relevant areas

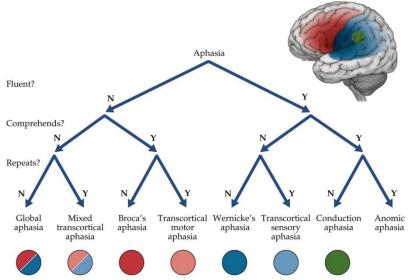
hemispheric dominance develops postnatally

handedness does not always correlate with dominance in other areas (eg left hemisphere is dominant in language in left-handed people, but right hemisphere is dominant in motor areas)

cortical aphasias

Wernicke (receptive aphasia): sounds to words (auditory processing deficit) [happy man]


impaired comprehension; speech sounds normal but makes no sense


Broca (expressive aphasia): neural representations of words to sounds, syntax, motor (speech production) deficit [grumpy man]

comprehension is intact; speech is labored, affectless, syntaxless, & perseverated; could also be apraxia, hemiparesis, & disarthria

visual \rightarrow (angular gyrus) \rightarrow Wernicke's area \rightarrow (arcuate fasciculus; layer 2/3) \rightarrow Broca's area \rightarrow (thalamus & basal ganglia) \rightarrow motor

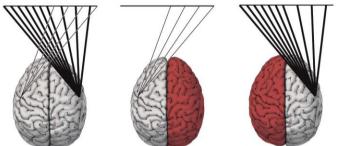
reciprocal connections to many other areas vascular divisions: MCA superior (Broca's) & inferior (Wernicke's) Broca's in temporal lobe & Wernicke's in posterior lobe

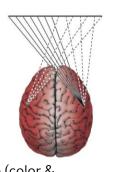
related auditory/motor deficits:

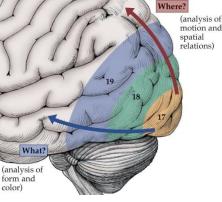
dysarthria: eg basal ganglia disorder (difficultly choosing between motor programs)

apraxia: fine motor control disorder

mutism: psychological disorder


word deafness: inability to differentiate between closely spaced sounds


alexia (loss of reading) & agraphia (loss of writing)


lesion in dominant occipital cortex extending through posterior corpus callosum \rightarrow right hemianopia prevents visual signals from crossing to language areas \rightarrow patient can write but can't read what s/he has written

eg ipsilateral apraxia caused by infarct in left MCA, disrupting signals from Broca's area to premotor cortex language processing is distributed (eg viewing words, listening, speaking, generating word associations)

visual attention/gestalt: non-dominant hemisphere

vision begins in V1 \rightarrow V2 & V3 (signals & form) \rightarrow V4 & V5 (color & movement)

dorsal visual stream (where?): posterior parietal lobe to frontal lobe; motion & spatial relations ventral visual stream (what?): to temporal lobe (auditory & limbic areas); analysis of form & color;

facial recognition & movement (different areas respond to different movements & face areas)

attention requires multiple areas acting together

opsias: loss of ability to understand a precept

simultanagnosia: unable to perceive visual scene as a whole (one small region at a time) optic ataxia: inability to use visual information to reach for an object under visual control

ok with auditory or proprioceptive cues

ocular apraxia: difficulty directing one's gaze toward objects in the peripheral vision through saccades related to simultanagnosia; can't keep the visual scene all together

prosopagnosia: unable to recognize people from their faces (eg Oliver Sacks)

agnosia: normal perception stripped of its meaning

know it's a face, can describe it, but cannot identify the individual

hemineglect: lesions in right parietal association cortex in dorsal stream

primarily posterior parietal lobes (sensory association areas) exam: extinction of response to stimulus as stimulus moves in space; extinction of motor output

eg bisect the line; circle the letter A

neocortical layers

1 - molecular

- 2 external granular; interneurons
- 3 external pyramidal; interneurons
- 4 internal granular; inputs
- 5 internal pyramidal (eg Betz cells in PMC); output to spinal cord
- 6 polymorphic/multiform; output to thalamus

perihippocampal cortex has only 4 layers

frontal lobes

all cognitive/emotional processing that characterizes a "human being"

abstract reasoning, working memory, forming perspectives, planning, insight, sequencing, organization, temporal order

planning: cue \rightarrow delay \rightarrow response

novel patterns: dorsolateral PFC

lesions produce profound & often contradictory symptoms

depression vs mania, mutism vs confabulation, akinesia vs distractability, abulia vs environmental dependency

abulia – inability to act or make decisions (eg initiate speech, social interaction, movement) confabulation – formation of false memories, perceptions, or beliefs

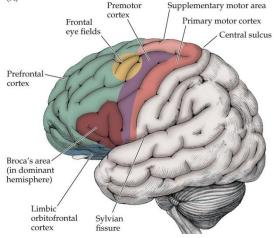
frontal lobotomies & Phineas Gage

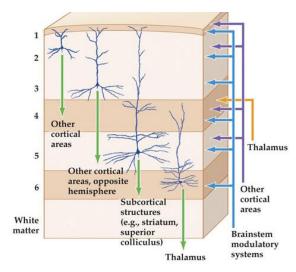
dorsolateral PFC common in schizophrenia \rightarrow loss of motivation

frontal cortex: all areas in front of central sulcus

major areas: orbitofrontal cortex (limbic & olfactory); Broca's area, PFC, FEF, motor areas (premotor, supplementary motor, primary motor), micturition inhibitory area (in supplementary motor area)

connections to every region save primary motor $\&\ sensory\ areas$


association cortices, limbic & subcortex structures, thalamus (mediodorsal nucleus), basal ganglia (head of caudate)

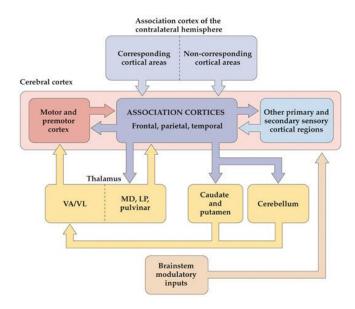

input from all neuromodulatory systems feneralizations with many exceptions:

- dorsolateral lesions produce an apathetic, lifeless state
- ventromedial orbitofrontal lesions lead to impulsive, disinhibited behavior and poor judgment
- left frontal lesions: depression-like symptoms
- right frontal lesions: behavioral disturbances

patients with lesions may be: catatonic, inappropriate responses to social cues, respond to inappropriate stimuli, give the same answer to multiple questions (perseverate), lack of concentration on single task, lack of abstract reasoning (eg sequencing difficulties)

eg written alternating sequence test - motor perseveration

dementias


grouped by location pathology (cortical vs subcortical) or relationship to pathology (primary vs secondary) primary dementia: Alzheimer's (cortical) vs Huntington's (subcortical)

secondary dementia: cotical vs HIV-induced

Alzheimer's: sporadic or familial (lipid transport defects, mutations in ApoE4)

cerebral atrophy, neurofibrillary tangles, amyloid plaques

medial temporal lobes (amygdala & hippocampus), basal temporal cortex, frontal lobes, nucleus basalis & locus ceruleus

