Tract	Origin	Crossing	Synapse	Ends	Purpose		
Motor Descending Pathways (Ventral Root)							
LCST	M1	pyramids (medulla)	lateral intermediate zone	full cord	limb movement		
ACST	M1	bilateral	medial intermediate zone	cervical/thoracic	gait & posture		
Rubrospinal	red nucleus	central tegmental decussation (midbrain)		cervical cord	unknown		
Lateral Vestibulospinal	pons (superior ganglia)	extrapyramidal		full cord	balance		
Medial Vestibulospinal	medulla (inferior ganglia)	bilateral		cervical/thoracic; medial longitudinal fasciculus	head & neck; ocular muscles		
Reticulospinal	reticular formation	extrapyramidal		full cord	gait & posture		
Tectospinal	superior colliculus	extrapyramidal		cervical	unknown		
Autonomic Pathwa	ys (Dorsal Root)						
SANS			paravertebral ganglion (symp. chain)	thoracic/lumbar			
PANS			peripheral	brainstem/sacral			
Somatosensory Ascending Pathways (Dorsal Root)							
Dorsal Column	fasciculus gracilis (lower) & cuneatus (higher)	medial lemniscus (internal arcuate) in medulla	DRG	$VPL \rightarrow S1$	vibration & position sense		
Anterolateral/ Spinothalamic	full cord	anterior commissure (2 levels above)		$VPL \rightarrow S1$	pain & temperature & crude touch		
Dorsal & Cuneo Spinocerebellar	Golgi tendon organ & spindle fibers	does not cross	Clark's & cuneate nuclei	cerebellum	proprioreception		
Mesencephalic	face	does not cross			proprioreception		
Chief	face	trigeminal lemniscus in midbrain	trigeminal ganglion	$VPM \rightarrow S1$	fine touch & dental pressure		
Spinal	face	trigeminothalamic tract in midbrain	trigeminal ganglion	$VPM \rightarrow S1$	pain & temperature & crude touch		

tracts

 $M1 \rightarrow$ internal capsule (posterior limb) \rightarrow cerebral peduncles (midbrain) & basis pontis (pons) \rightarrow pyramids VPL/VPM (gets raw & processed copy) \rightarrow internal capsule (posterior limb) \rightarrow S1 cauda equina: below L1

reflex arcs

muscle spindle (stretch) & Golgi tendon (force) afferents

muscle stretch \rightarrow la afferent firing rate increases \rightarrow gamma efferents cause intrafusal fiber contraction & increase gain AND extensor contraction via alpha MN, flexor relaxation via interneurons on alpha MN (+ DC/SCT)

input to M1 \to inhibition of inhibition \to more input to gamma MN \to intrafusal fibers of extensor contract \to raise Ia gain

gamma: tension \rightarrow Ia \rightarrow SCT \rightarrow cerebellum \rightarrow excitatory \rightarrow inhibitory \rightarrow gamma (contract spindle)

withdrawal/crossed-extensor reflex:

thermo/nocio receptors \rightarrow ALT \rightarrow VPL

excitation of ipsilateral flexor & contralateral extensor

inhibition of ipsilateral extensor & contralateral flexor

UMN disease:

rest: increased gamma MN activity enhances muscle tone \rightarrow shortens spindle, increasing la gain stretch: la activity elevation is abnormally high \rightarrow sudden movements leads to spasticity & clonus

Babinski's sign: extensor (toes fanned) plantar response

sensory neurons

touch: mechanoreceptors with different 2-point discrimination

Merkel (texture) & Meissner (motion) = small, superficial receptive fields

Pacinain (vibration) & Ruffini (stretch) = large, deep receptive fields

thermo/nocioreceptors: free nerve endings with chemical & heat-sensitive channels

Nerve Plexus

terms to know: transverse & spinous processes, intervertebral disc (usually herniates laterally), foramen (spinal column)

cervical nerves exit below disc \to thoracic & lumbar nerves exit above disc \to sacral nerves exit not next to discs

plexuses are susceptible to avulsion (tearing) injury \rightarrow eg whiplash can damage nerves cervical plexus - C1-C5, including phrenic nerve (C3-C5)

Brachial Plexus

radial (C5-T1):

- motor: arm extension, forearm and thumb movements
- sensory: medial (inner) surfaces of arm

median (C5-T1):

- motor: wrist and thumb movements
- sensory: first three fingers, palm

ulnar (C6,8 and T1):

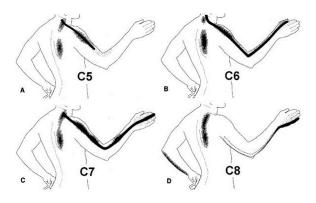
- motor: wrist and finger movements
- sensory: outer two fingers and palm
- axillary (C5,6; axilla = armpit):
 - motor: abduction of shoulder
 - sensory: sensation on shoulder

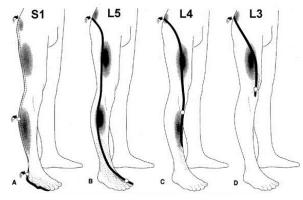
musculocutaneous (C5-7):

- motor: arm flexion and supination
- sensory: lower arm

Lumbar Plexus

femoral (L2-L4):


- motor: raise femur (quads), extend shin
- sensory: upper thigh and medial shin

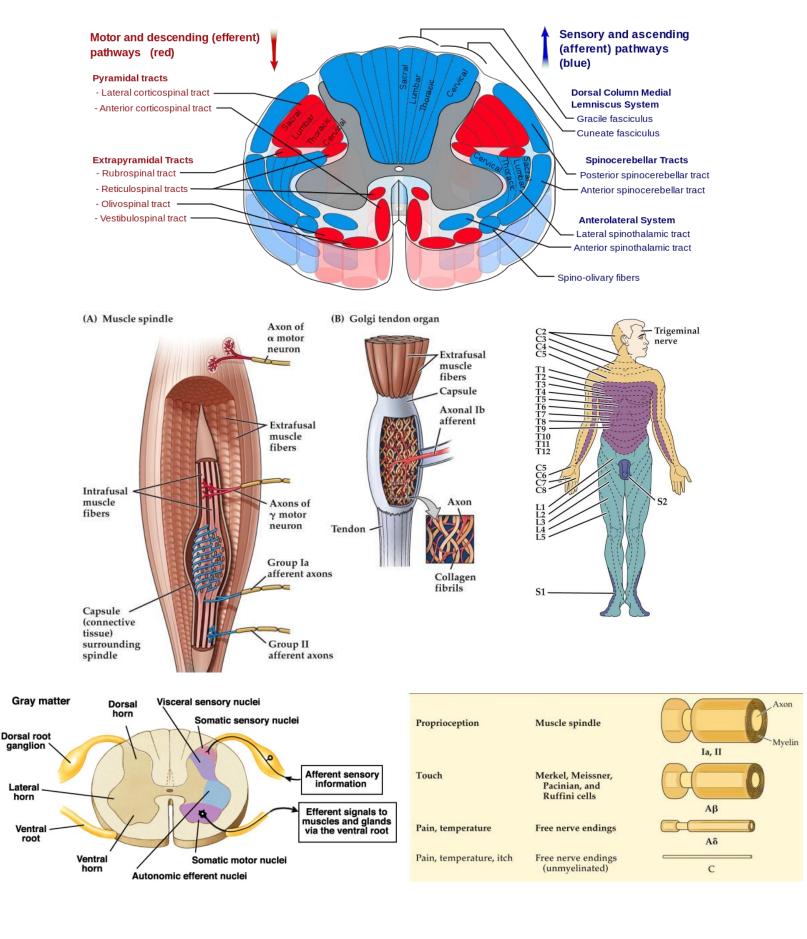

obiturator (L2-L4):

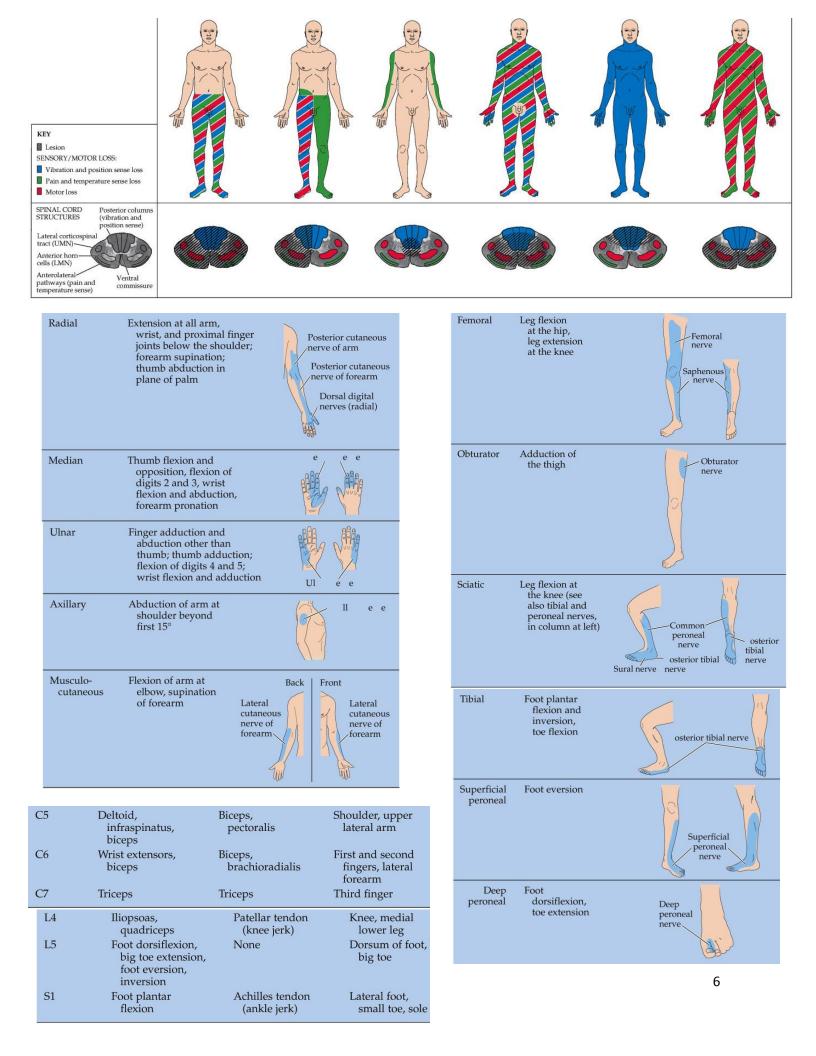
- motor: adduct femur
- sensory: inner thigh

sciatic (L4-S2):

- motor: flex knee (hamstrings)
- sensory: calf and top of foot
- gives rise to: tibial (plantar flexion, sensation on soles of feet) and peroneal (foot eversion, dorsiflexion, sensation on lateral shin and toes) nerves

Motor/Sensory Deficits


- ALS: primary (cortical UMNs), bulbar (brainstem LMNs), typical (spinal cord LMNs)
- MS: demyelinating neuropathy (disease of axon tracts)
- musculoskeletal (e.g., disc disease, trauma; myasthenia gravis (autoimmune NMJ) & muscular dystrophy)
- peripheral neuropathies (e.g., diabetes- and chemotherapy-induced; stocking and glove syndrome)
- diseases affecting LMNs (e.g., polio) and DRG neurons (e.g., syphilis)
- cortical lesions (bilateral loss in internal capsule & pyramids (below face); graphesthesia & sterognosis)
- UMN vs LMN: atrophy & fasciculations vs clonus; tone; power


ALS

- amytrophic lateral sclerosis
- motor neurons die from oxidative stress: unique expression of transporters, glutamate receptors, and Ca2+ buffers
- treatment: Na channel inhibition to tamper exitotoxicity
- mitochondria failing \rightarrow oxidative stress \rightarrow not enough ATP \rightarrow defective axonal transport \rightarrow not interacting with postsynaptic partners \rightarrow loss of trophic factors \rightarrow presynaptic die back \rightarrow stress \rightarrow don't buffer calcium well \rightarrow activate secondary messengers they shouldn't \rightarrow more mitochondrial damage \rightarrow reactive gliosis \rightarrow AHHHHHHHHH
- Wallerian degeneration damaged nerve retracts from target towards root
- familial ALS: mutated superoxide dismutase interferes with ETC, triggering apoptosis
- BCL2 family regulates apoptosis by modulating cytochrome c release
- excitotoxicity hypothesis: NMDA receptors letting in too much calcium, binding too often, too much extracellular glutamate, glial cells aren't reuptaking glutamate

Multiple Sclerosis

- autoimmune attack of myelin sheaths (interleukin receptor mutation; shown in oligoclonal CSF bands) → reactive gliosis (diffuse glial white matter lesions) → diffuse symptoms (mood, optic neuritis, dysarthria, etc)
- treatment: reduce permeability of BBB to immune cells; inhibit IL genes in T cells and IL receptor in B cells

Cranial Nerves

midbrain = 2-4; pons = 5-7; medulla = 8-11

CN2: retinal ganglion cells \rightarrow *dorsal lateral geniculate nucleus of thalamus* (image-forming) *superior colliculus* (eye movement \rightarrow vestibular output)

superchiasmatic nucleus (light intensity \rightarrow pupillary reflex & circadian regulation) CN8: hearing: cochlea \rightarrow cochlear nerve (soma in spiral ganglion) \rightarrow cross extensively in trapezoid body fibers \rightarrow lateral lemniscus carries output to contralateral inferior colliculus

vestibular sense: semicircular canals = angular acceleration; utricle & saccule = linear acceleration

Eyes:

muscles: 3 (medial & upward), 4 (superior oblique – head tilt), 6 (lateral rectus) PANS: 3 (pupils & lens), 7 (lacrimal glands), 9 (lacrimal glands)

Mouth:

motor: 12 (tongue), 5 (mastication) salivary glands: 7 taste: 7 (front), 9 (back), 10 (epiglottis & pharynx) sensory: 5 (front tongue & teeth), 9 (back tongue)

Ear:

motor: 5 (tensor tympani) & 7 (stapedius) somatic sensory: 7 & 10 (outer), 9 (inner & outer) hearing & vestibular senses: 8

Face:

motor: 7 sensory: 5

Throat:

motor: 9 & 10 (swallowing), 10 (voice box) sensory: 9 & 10 (pharynx)

Parasympathetic:

carotid body chemo & carotid sinus baro-receptor: 9 aortic arch chemo & baro-receptor: 10 all organs of chest and abdomen (heart, lungs, & digestive tract via splenic flexure): 10

cranial nerve pathology

- CN III,IV,VI palsies
- Migraine (CN V): cerebrovascular (CAv2.1 channel antagonists, triptans to block transmission from spinal nocioreceptors, tricyclics to lower cortical excitability, steroids treat CBF & CSD)
- Wallenberg syndrome (CN V): medullary stroke above ALT crossing & below trigeminal crossing: pain/temperature loss contralateral, trigeminal loss ipsilateral
- UMN (CN VII): spares forehead; can also cause arm/hand weakness
- Bell's palsy (CN VII): entire face; simultaneous PANS & motor output; treat with steroids
- Hearing/vestibular deficits (CN VIII)

Brainstem

label: 5 structures, 4 junctions, inferior olive, pyramid, pyramidal decussation, superior & inferior colliculus, cerebral peduncle, cerebellar peduncles, nuclei cuneatus & gracilis cranial nuclei – sensory & motor pathways carry information from multiple nuclei, but are spatially segregated (motor is medial & sensory is lateral)

inferior olive – inputs: contralateral SCT & CST + ipsilateral M1 & red nucleus output: contralateral cerebellum

midbrain: tectum: *superior colliculus* (visual nuclei) & *inferior colliculus* (auditory nuclei) \rightarrow tecto & vestibulo spinal tracts

tegmentum: *substantia nigra, red nucleus, periaqueductal grey,* & *reticular formation* + medial lemniscus

pain: ALT & limbic system \rightarrow periaqueductal grey \rightarrow modulates dorsal columns basis: long tracts of corticospinal & corticobulbar fibers

pons: pontomesencephalic reticular formation (PRF) receives inputs from somatosensory (cord), limbic/cingulate cortex, frontoparietal association cortex, & thalamic reticular nucleus

thalamic reticular nucleus: cortical input \rightarrow modulate other thalamic structures \rightarrow project to PRF

locked-in syndrome: bilateral damage to corticospinal & corticobulbar tracts in ventral pons

neurotransmitters

up = cortex, thalamus, & basal ganglia

down = cerebellum, medulla, & spinal cord

 $\ensuremath{\text{NE}}\xspace$ increase MN excitability, sleep, deficits in attention & mood disorders

down from lateral tegmental area & up from locus ceruleus

5-HT: increases MN excitability, psychiatric disorders (transporter mutations)

down from *caudal raphe nuclei* (caudal pons & medulla) & up from *rostal raphe nuclei* (rostral pons & midbrain)

Histamine: *tuberomammilary nucleus* \rightarrow alertness

Ach: *pontine nuclei* \rightarrow motor function via thalamus, cerebellum, basal ganglia, tectum, medulla/cord

 $\textit{basal forebrain} \rightarrow \text{attention} \& \text{memory via Alzheimer's, theta rhythm (arousal, memory formation)}$

internal capsule

anterior limb: frontopontine (corticofugal) & thalamocortical fibers (between lenticular nucleus & head caudate)

genu ("knee"): corticobulbar (cortex to brainstem) fibers

posterior limb: corticospinal & sensory fibers (medial lemniscus and the anterolateral system) (between lenticular nucleus & thalamus)

other: retrolenticular fibers from LGN, branch to optic radiation

sublenticular fibers including auditory radiations and temporopontine fibers

The Cerebellum

gross anatomy

cerebellar peduncles: fiber tracts that run through brainstem (trace these) superior: primary output of the cerebellum to red nucleus & thalamus

middle: input from the contralateral cerebral cortex via the pons

inferior: fibers from ipsilateral spinocerebellar tract (proprioceptive), inferior olives, vestibular nuclei

somatotopic input: repeats & layering provide multiple modes of coordination & interactions inner \rightarrow outer::head \rightarrow legs in posterior & anterior lobes

audio/visual input in medial vermis

motor planning: direction, force, speed, & amplitude of movements

circuitry

all ascending fibers are excitatory & descending fibers are inhibitory **output:** *Purkinje* (spontaneously active/tonic) \rightarrow deep cerebellar & vestibular nuclei **input:** *climbing fibers* (inferior olive)

mossy fibers (pontine nuclei & vestibular ganglia) \rightarrow granule cells \rightarrow parallel fibers structures providing input to Purkinje also provide input to structure that receives inhibitory output of Purkinje cells (raw & processed nuclei)

big proprioreceptive-motor loop modulated by input from locus coeuruleus (NE), raphe nuclei (5-HT)

output circuitry

all output paths are double-crossed: once in decussation of superior cerebellar peduncle & once in spinal cord (or bilateral)

all deep cerebellary nuclei project to VLN \rightarrow motor & associate cortices \rightarrow down LCST ventral SCT: cross in ventral commissure \rightarrow synapse in intermediate zone \rightarrow affect ACST/LCST **lateral**: dentate nucleus \rightarrow parvo red nucleus \rightarrow inferior olivary nucleus \rightarrow down rubrospinal tract

extremity ataxia: finger tapping test

intermediate/paravermis: interposed nuclei (emboliform & globose) \rightarrow same as above, except through magno red nucleus

appendicular ataxia: dysrhythmia (abnormal timing) or dysmetria (abnormal trajectories in space) (excessive check/finger to nose test)

medial: vermis: fastigial nucleus \rightarrow contralateral tectospinal; bilaterally to VLN \rightarrow cortex \rightarrow ACST

flocculonodular lobe: reticular formation & vestibular nuclei

truncal ataxia, disequilibrium, eye movement abnormalities (Romberg's test)

cerebral pathology

infarcts & hemorrhages:

- small in SCA: unilateral ataxia
- PICA and SCA: vertigo, nausea, horizontal nystagmus, limb ataxia, unsteady gait, headache (from swelling, hydrocephalus, usually occipital)
- SCA has brainstem involvement while PICA does not

ataxia:

• peduncle/pontine lesions; hydrocephalus; prefrontal cortex; spinal cord disorder; contralateral ataxia-hemiparesis

- sensory ataxia: loss of joint-position sense; overshooting movements
- vestibular ataxia is gravity dependent: goes away when patient lies down
- cerebellar ataxia: irregularities in rate, rhythm, amplitude, & force of movements
- inherited ataxia: polyglutamine expansion (CAG) which affects channels or other proteins (like PKC) \rightarrow these are in all neurons/cells \rightarrow kills Purkinje cells

disorders of equilibium

parapontine reticular formation: input from VN + superior colliculus & output to motor nuclei where vestibulo & tecto tracts interact

front eye fields: activated prior to planned eye movements; also integrate these inputs control the excitability of medial motor neurons based on head position

Basal Ganglia

striatum (caudate + putamen), globus pallidus (lenticular nucleus when combined with putamen), subthalamic nucleus, substantia nigra, nucleus accumbens, ventral pallidum basal ganglia evaluate voluntary motor program based on cortical & thalamic inputs \rightarrow signal to thalamus to initiate or terminate

inhibition of thalamus $\rightarrow\,$ reduction of drive back to motor system

circuitry

input: from striatum (98% GABAergic, 2% cholinergic)

cortical & thalamic + domainergic modulation from SNc

output: GABAergic via GP and SNr (pars reticulata)

GPi inhibits thalamus, which projects to frontal lobe

SNr inhibits superior colliculus (visual & vestibular inputs influence locomotion in Parkinson's)

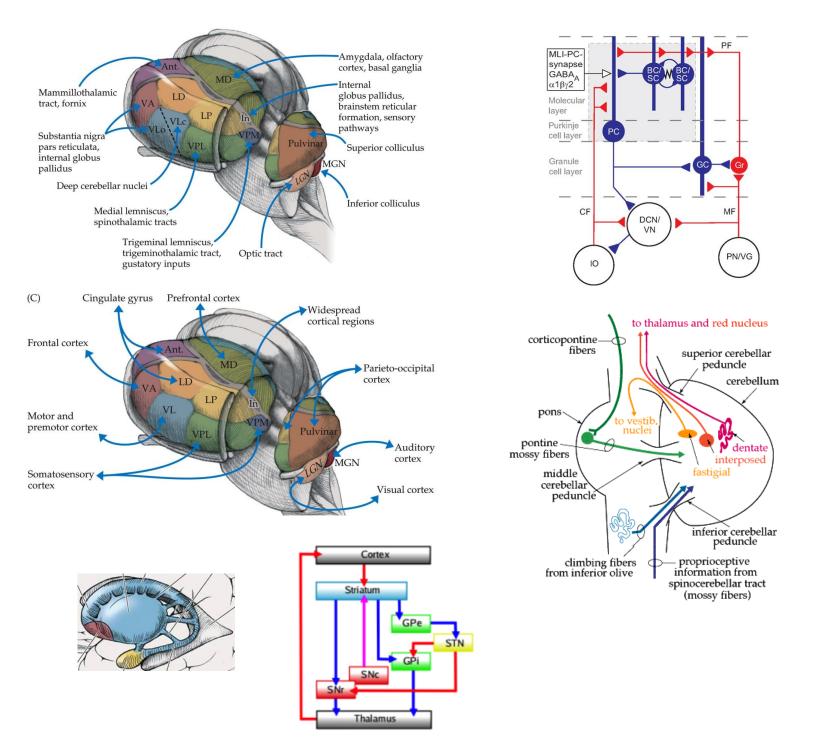
both output to reticular formation \rightarrow influence over lateral & medial motor systems

distinct pathways for: motor control, eye movements, cognitive & emotional functions **direct pathway**: excite thalamus via disinhibition

cortex \rightarrow striatum \rightarrow inhibits GPi/SNr \rightarrow reduces inhibition of thalamus indirect pathway: inhibit thalamus via STN

cortex \to striatum \to inhibits GPe \to reduces inhibition of STN \to excites GPi/SNr \to inhibit thalamus

dopamine enhances striatum output depending on DA receptor expression in medium spiny neurons: D1Rs excite direct & D2Rs inhibit indirect \rightarrow disinhibition of thalamus input modulates spontaneous firing activity: low activity: striatum (putamen) & SNc; moderate activity: STN; high activity: GPi & SNr; irregular (low & high): GPe


pathology

movement disorders distinct from cerebellar ataxia: all have cognitive/emotional components hypokinetic (e.g., Parkinson's): rigidity, difficulty initiating movement, direct pathways

- motor symptoms: tremor, bradykinesia, cog-wheel rigidity, postural and gait instability (antero- or retro-pulsion)
- DA in SNc die \rightarrow direct pathway loses strength \rightarrow more inhibition of thalamus
- treatment: levodopa (BBB-permeant DA precursor) increases DA "tone" in striatum; deep brain stimulation stimulate thalamus via depolarizing block of GPi & STN; isradipine
- continuous Ca2+ influx in these pacemaking cells may lead to mitochondrial dysfunction by disrupting ATP production (same genes tied to PD, patients have reduce mitochondrial complexin 1, blocking influx causes reversion of juvenile pacemakers)

hyperkinetic (e.g., Huntington's): uncontrolled involuntary movements, indirect pathways

- degeneration of projections from striatum to GPe \to STN more inhibited \to SNr less inhibited \to less inhibition of thalamus
- increased polyglutamine repeats in Huntington gene (autosomal dominant and fully penetrant)
- initial symptom is chorea (jerky, random movements); cognitive/emotional component arises later

SOURCES OF CORTICAL INPUT	BASAL GANGLIA INPUT NUCLEI	BASAL GANGLIA OUTPUT NUCLEI ^a	THALAMIC RELAY NUCLEI ^b	CORTICAL TARGETS OF OUTPUT		
MOTOR CHANNEL						
Somatosensory cortex; primary motor cortex; premotor cortex	Putamen	GPi, SNr	VL, VA	Supplementary motor area; premotor cortex; primary motor cortex		
OCULOMOTOR CHANNEL						
Posterior parietal cortex; prefrontal cortex	Caudate, body	GPi, SNr	VA, MD	Frontal eye fields; supplementary eye fields		
PREFRONTAL CHANNEL						
Posterior parietal cortex; premotor cortex	Caudate, head	GPi, SNr	VA, MD	Prefrontal cortex		
LIMBIC CHANNEL						
Temporal cortex; hippocampus; amygdala	Nucleus accumbens; ventral caudate; ventral putamen	Ventral pallidum; GPi; SNr	MD, VA	Anterior cingulate; orbital frontal cortex		