Soft Shadows

COMP 770 Computer Graphics
Qi Mo

Q-
2,
=
O

e
©

e

)

S

)
>\

=

Challenge

 Visibility function
* Between light source and every point

|i9ht

SOUCE | T -

/ y
/ Receiver

Point light source

of Soft Shadows

,—v_"? Area light source ,-_/7 Area light source

W

18
“w Occluder QOccluder

Y 7 ;

Penumbra

Receiver

Previous Work

 Geometry-based methods
- Shadow-volume-based
* Image-based methods
- Shadow-map-based

Review: Shadow Volumes

point light
e

. occluder

\
\
' O
\
\
\
'

parity=0 parity=1 parity=0

Pros and Cons

* Pros
- No aliasing
- Unlimited light field of view

e Cons
- Poor scalability with scene complexity
- Fill-rate limited
- Polygonal models only

Review: Shadow Maps

Light

Light-ray nearest
intersection point

Eye-ray nearest
intersection point

Pros and Cons

* Pros
- Efficiency and scalability
- Polygons, parameterized surfaces,
alpha textures, etc.
e Cons
- Shadow aliasing and acne
- No omni-directional light

Methods to cover

Distributed ray tracing soft shadows

Penumbra wedges
Soft shadow volumes

Soft shadow mapping by backprojection

Methods to cover

Distributed ray tracing soft shadows

Penumbra wedges
Soft shadow volumes

Soft shadow mapping by backprojection

distribution ray tracing

distribution ray tracing

use many rays to compute average values over pixel
areas, time, area lights, reflected directions, ...

antialiasing origin

* compute average color subtended by a pixel

pixel center C =raytrace(E,Q —E)

1 |
pixel average C=—- raytrace(E,Q — E)-d4,,

AF QeP

E : camera origin
Q :point onimage plane
P :pixel of area 4,

antialiasing by deterministic integration

* subdivide the pixel in squares
* cast rays through squares centers

* average result

[Shirley]

deterministic antialiasing pseudocode

* antialising pixel (i, j)

c=0
for sx =0 to ns
for sy = 0 to ns
u=(+ (sx+0.5)/ns) / width
v =(j + (sj+0.5)/ns) / height
Q = imagePlanePoint(u,Vv)
c += raytrace(E,Q-E)
C /= ns?

antialiasing by Monte Carlo estimation

* pick random points in pixel area
* cast rays through them

* average result

[Shirley]

Monte Carlo antialiasing pseudocode

* antialising pixel (i, j)

c=0
for s = 0 to ns?
(rx,ry) = random2d();
u=(i+rx)/ width
v =(j +ry)/ height
Q = imagePoint(u,Vv)
c += raytrace(E,Q-E)
C /= ns?

Monte Carlo antialiasing pseudocode

* antialising pixel (i, j)

c=0
for sx =0 to ns
for sy = 0 to ns

(rx,ry) = random2d();
u=(i+ (sx+rx)/ns) / width
v = (j + (sy+ry)/ns) / height
Q = imagePoint(u,v)
c += raytrace(E,Q-E)

C /= ns?

soft shadows origin

* area lights create penumbras
— light is only partially visible from a given point

— want to compute how much light hits the point

light

{ ; J.: |

i A
[0 T
I i .II I

[Shirley]

/

| object |

_I'.
/] | \
|

b umbra |p|

N\ /)

intensity on ground plane

approximate soft shadows principle

point light C=C, -V(P,S)-shading(P,S)
area light €= G V(P,S)-shading(P,S) - dAq
Af_ Sel)

P :point on the surface
S : point on the light
V. visibility function (0 or 1)
L:light of area 4,
C, :total light intensity

soft shadows by deterministic integration

* approximate area light as a set of point lights

— equivalent to quadrature rule
 for each point, compute shadows and lighting

* average results

[Shirley]

soft shadows by Monte Carlo estimation

use Monte Carlo integration

pick random points on the light
— easy for quad lights, hard (but possible) for others

compute shadows and lighting

average results

[Shirley]

soft shadows by Monte Carlo estimation

S, =S, +(0.5-r,)u+(0.5-7,,)lv

N
(C)= iz V(P,S,)-shading(P,S,)

for quads

S :light source center

u, v :light source tangent vectors

[:light source size

r. : uniformly sampled random 2d vector in[0,1]*
N :total number of samples

how many samples?

1 sample 9 samples 36 samples
-— -— f—

t

_—
. 100 samples

Methods to cover

Distributed ray tracing soft shadows

Penumbra wedges
Soft shadow volumes

Soft shadow mapping by backprojection

Penumbra
Wedges

Tomas Akenine-Moller
Ulf Assarsson
Department of Computer Engineering,
Chalmers University of Technology
Sweden

|dea

 Extend the shadow volume algorithm
* Inthe shadow volume algorithm

each silhouette edge - shadow quad
e For soft shadows, instead

each edge = penumbra wedge

light sourceg

object

. - i (']' On e il o _d
penumbra wedge \ =\ N penumbra

wedge

entry point (p) exit point P,

In 3D, ...

o Simplifications:
— Spherical light sources

— Only use silhouette as
seen from center of light
source

— Bound the penumbra
volume with 4 planes,
sharing a silhouette

edge
e Also, use a hires
stencil buffer (we use
16 bits) — called light
Intensity buffer here

How to rasterize a wedge...

 |nit light intensity (LI) buffer to 255 before
o 255 =full light, 0 = no light, 0 < x < 255 - penumbra

rasterizeWedge()

foreach visible fragment(x,y)...
...on front facing triangles of wedge
Pr = computeEntryPointOnWedge(x,y);
P, = computeExitPointOnWedge(x,y);
p =point(x,y,z); —zis the Z-buffer value at (x,y)
p; = choosePointClosestToEye(p,pb);
sy = computeLightIntensity(py); Olight source
s;i = computeLightIntensity(pi);
addToLIBuffer(round(255*(s;i—s¢))):

end;

1°¢
2
3:
4:
5:
6 :
¥
8 :
9
0:
]:

[N —

Examples of rasterization in 2D

LI-buffer =255 + (0 —255) =0 (umbra)

* Next, describe missing pieces:
— Construction of wedges
— Light intensity interpolation

Penumbra wedge construction

b e
. : e
roint light source aralle . ;
! g ’I parallel to mnmala\/_'ic_/:‘ f
1
1
1
1
1
1
1
1
1
1
1
1

. STl
of shadow quad ¥
1
1

-

normal of
SV quad silhouette edge

{
[
I
L
o
1o
Vo
o
.
vy
Ly
Yr
Vi
]
Il
Y
Kl

silhouette edges

/side plane

Light Iintensity interpolation

 To make It possible to
Implement using programmable
hardware:

— Our only requirement was C°
continuity across wedges (side
planes)

stlhouette cdge

right plane left plane
direction direction

_ back
kﬂa/’r; L\ /ty ‘ ‘\llght
i AR \
Q. + Iront

rf

Methods to cover

Distributed ray tracing soft shadows

Penumbra wedges
Soft shadow volumes

Soft shadow mapping by backprojection

Soft Shadow Volumes for
Ray Tracmg

-

Samuli Laine Tlmo Alla Ulf Assarsson Jaakko Lehtlnen Tomas Akenine-

Moller
Helsinki Helsinki ARTIS, GRAVIR Helsinki University of Lund University
University of University of [IMAG INRIA, Technology,
Technology, Technology, Chalmers Remedy
Hybrid Graphics Hybrid Graphics University of Entertainment Ltd.
Ltd. Ltd. Technology

Classic solution

e Multiple shadow rays

New solution - overview

 Replace the shadow rays '
— With soft shadow volume computations
— Plus one reference shadow ray

Classic approach Our approach

What's a Soft Shadow Volume?

Light source

\ /7

Shadow éaster

Soft Shadow Volume ~,

Soft Shadow Volume =

Volume from which an edge projects
onto the light source

Region of penumbra caused by an
edge

Wedge Creation Criterions

1. Wedges are created for all
edges that are silhouettes
from any point on the light
source

. The wedge includes all
positions from which the
edge projects onto
(occludes) the light
source.

Our solution - overview

WO parts:

e from any receiving point p,
we need to find silhouette
edges affecting the visiblility

A method for computing the
visibility from silhouette
Information

Hemicube Construction

Rasterize soft shadow volumes into a hemicube
for each light source

hemicube

\

Each cell
contains list
of edges \{

!
!
!
!
!
!
!
!
!
!
!
!
!
_

T This cell contains potential silhouette edges from p

Hemicube Construction

Wedge marked to all cells it even partially
overlaps — no artifacts

Bottom face of
hemicube

Each cell
contains list
of edges

Hemicube Construction

Wedge marked to all cells it even partially
overlaps — no artifacts

Bottom face of
hemicube

Each cell
contains list

of edges — ==
I/ :’; .II 1‘7 “\tl‘. : \‘\
/A i —— i _—
/ l J1 \L
1 \'
/I
/R
Ll \l
/7 1] \}
E I Al

——
1\

Visibility Reconstruction

* Which light samples s; are visible from point p?
» Brute force: cast a shadow ray for each s

e Our recipe:

1. Find silhouette edges between p and light
source

. Project them onto light source - reduces to 2D
. Compute relative depth complexity for every s

. Solve visibility with a single shadow ray ¢

. Profit

Depth Complexity

* Depth complexity of s, = number of surfaces
between p and s,

Light source as seen from p Depth complexity function

From Silhouette Edges to
Relative Depth Complexity

* Projected silhouette edges define the first
derivative of the depth complexity function

 Hence, relative depth complexity can be solved
by integrating the silhouette edges over the light

source
ntegration is

inear = can be »b

nerformed one S 9

edge at a time é‘
/1 /\

Integration: Example

e Left-to-right integration of a triangular silhouette

Light source as seen from p Depth complexity function

Integration: Sampling Points

« We don’t need the value of the depth complexity
function except at the sampling points s;

« Sufficient to maintain a depth complexity counter
for each s,

 Integration: find s; that are inside
update region and update their
depth complexity counters

Integration: Rules

 There’s a caveat - we only have the edges that
overlap the light source

* Loops are not necessarily closed, since parts
outside the light source may be missing

We don’t have this edge!

.C ..
. e
.
" .
- .
= .
.
.
-
- -
))
. -
\J -
. -
. .
. :
%o, @
‘..

Integration: Rules

o Solution: apply special rules to edges that cross
the left side of the light source

e This accounts
for potentially
missing edges

From Relative Depth Complexity
to Visibility

We are not done yet, since the constant of
Integration is not known - cannot solve visibility

Solution: cast a shadow ray
ray to one s; with lowest
relative depth complexity

If blocked, all s, are blocked

Otherwise, all s; with lowest r
depth complexity are visible

Columns: 580 triangles, adaptive AA, 960x540

L =256 L =1024
Speedup factor 103 242

Formula: 60K triangles, adaptive AA, 960x540

{00 L =800
Speedup factor 30 65

Sponza: 109K triangles, adaptive AA, 960x540

L =150 L =600
Speedup factor 11 33

Robots: 1.3M triangles, adaptive AA, 960x540

{00 L =800
Speedup factor 21 58

L =150

L =600

Speedup factor

13

32

Conclusions

e Fast shadow algorithm in wide range of scenes
e Easy to plug into an existing ray tracer

e Scalability considerations
— Number of light samples: excellent (~ sqrt M)
— Number of triangles: good (silhouettes: ~ N(something < 1))
— Output resolution: not so good (linear)
— Spatial size of the light source: not so good (~ linear)

Methods to cover

Distributed ray tracing soft shadows

Penumbra wedges
Soft shadow volumes

Soft shadow mapping by backprojection

Real-time Soft Shadow Mapping
by back-projection

Gaél Guennebaud

Loic Barthe, Mathias Paulin
IRIT — UPS — CNRS

TOULOUSE - FRANCE
http://www.irit.fr/~Gael. Guennebaud/

Soft Shadows

light source

How the light
source is visible ?

Gaél Guennebaud - Cyprus - June 2006

Principle

light source

* What is the visibility
percentage v, between a

point p and the light source ?

®* Our approach:

key idea: use the shadow
map as a simplified and
discrete representation

of the scene

Gaél Guennebaud - Cyprus — June 2006

Principle

— occluded area

* Area occluded by a
shadow map sample ?

* back-projection on
the light source

* + clipping (trivial)

Gaél Guennebaud - Cyprus — June 2006

Principle

light source

* What is the visibility
percentage v, between a point

p and the light source ?

* algorithm:

subtract the area
occluded by each
shadow map sample

Gaél Guennebaud - Cyprus — June 2006

Main issue

light source

®* gaps & overlaps
* simple in 1D
* very complex in 2D

Gaél Guennebaud - Cyprus — June 2006

Gaps filling

* gaps & overlaps
* simple in 1D
* very complex in 2D

overlap artifacts
are acceptable

=> at this time,
we just fill the gaps

Gaél Guennebaud - Cyprus — June 2006

light source

\.

X

extension

\ y

gaps filling

Gaps filling

reference naive algorithm

Gaél Guennebaud - Cyprus — June 2006

Gaps filling

reference with gap filling

Gaél Guennebaud - Cyprus — June 2006

Optimizations
hierarchical shadow map (HSM)

* shadow map - hierarchical shadow map (HSM)
* similar to mipmaps

* each pixel stores the min
and max depth values

Summary of the algorithm

Draw the scene in the shadow map

Compute the HSM (GPGPU, ~3 ms)

Draw the scene from the view point in a depth buffer
* ~ deferred shading

Compute the visibility buffer:
* for each pixel p (draw a quad)
* estimate the occluder search area (HSM)
* if pis lit or in the umbra then OK
* else loop over the occluder samples...
* ~ 15 instructions / sample

Draw the scene with lighting and soft shadows !

performances
(on a GeForce 7800)

Scene Fig.7 Fig. 1
Shadow map 1.7 2.6
Camera depth map 0.7 1.3
HSM construction 3.1 3.1
Visibility pass 1 0.9 0.9
Visibility pass 2 39 28
Final rendering pass 0.8 1.6
Total (ms) 46.2 37.5
fps 2+.6 26.6

Gaél Guennebaud - Cyprus — June 2006

Soft shadow mapping
conclusion

* Summary

* provides high quality soft shadows in real-time
* not physically exact, but close in most cases

* has all the advantages of shadow maps
* suitable for complex scenes
* suitable for any rasterizable geometry
* no pre-computation => dynamic scenes

Geometry-based Methods

* Discontinuity mesh and backprojection
v ' Penumbra wedges

v Soft shadow volumes

Image-based Methods

e Multi-layered shadow map

 Extended shadow map

v Soft shadow mapping by backprojection
Other Methods

e Occlusion camera

e Spherical harmonics

v'Ray tracing/Radiosity

Summary

Performance / Scalability
Polygonal scenes or Other scenes
Plausible or Physically accurate
Common artifacts

- Single sample artifact

- Occlusion fusion artifact

Single Sample Artifact

* Only parts visible from the light center
are taken into account in the visibility computation

Occlusion Fusion Artifact

reference penumbra wedges

Reading List

Tomas Akenine-Moller and Ulf Assarsson, “Approximate Soft
Shadows on Arbitrary Surfaces using Penumbra Wedges.” 13th

Eurographics Workshop on Rendering 2002, pp. 309-318, June
2002.

Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehtinen and
Tomas Akenine-Modller, “Soft Shadow Volumes for Ray Tracing."
ACM SIGGRAPH 2005.

Randima Fernando, “Percentage-closer soft shadows.” ACM
SIGGRAPH 2005 Sketches.

Gaél Guennebaud, Loic Barthe and Mathias Paulin. “Real-time Soft
Shadow Mapping by Backprojection.” Eurographics Symposium on
Rendering 2006

Additional Reference

* A survey of Real-Time Soft Shadows Algorithms

http://artis.inrialpes.fr/Publications/2003/HLHS03a/
 Shadow Rendering Page at Lund University

http://graphics.cs.lth.se/research/shadows/
 Real-time Rendering

http://www.realtimerendering.com/

