Homework 6

Due on Tuesday, 6/13, 1:15 PM in class

Name
PID
Honor Code Pledge: I certify that I am aware of the Honor Code in effect in this course and observed the Honor Code in the completion of this homework.

Signature \qquad
(15') 1. Let $X=\{a, b, c\}$ and $\mathrm{Y}=\{u, v, w\}$. Determine whether each of the following arrow diagrams defines a function from X to Y, and explain your answers in a few words.
a.

b.

c.

Solution:
(a) No, because b is an element in X and is not related to any element in Y.
(b) Yes, because every element in X is related to exact one element in Y.
(c) No, because b is an element in X and is related to two element in Y, namely u and w.
(20') 2. Let $X=\{1,2,3,4,5\}$ and $Y=\{u, v, w, x, y\}$, and define $h: X \rightarrow Y$ as follows:

$$
h(1)=v, h(2)=x, h(3)=v, h(4)=v, h(5)=y .
$$

(a) Draw an arrow diagram for h.
(b) Let $A=\{1,2\}, C=\{x, v\}, D=\{w\}$, and $E=\{w, y\}$. Find

$$
h(A), h(X), h^{-1}(C), h^{-1}(D), h^{-1}(E) \text {, and } h^{-1}(Y) .
$$

Solution:

(a)

(b) $h(A)=\{v, x\}, \quad h(X)=\{v, x, y\}, \quad h^{-1}(C)=\{1,2,3,4\}$,
$h^{-1}(D)=\emptyset, \quad h^{-1}(E)=\{5\}, \quad h^{-1}(Y)=\{1,2,3,4,5\}$.
(15') 3. Let S be the set of all strings in 0 's and 1's, and define a function $f: S \rightarrow \mathbf{Z}$ as follows: for each string s in $S, f(s)=$ the number of 0 's in s.
(a) What is $f(101011)$? $f(00100)$?
(b) Is f injective? Prove or give a counterexample.
(c) Is f surjective? Prove or give a counterexample.

Solution:

(a) $f(101011)=2 ; f(00100)=4$.
(b) No. Counterexample: $f(100)=f(101011)=2$ but string $100 \neq$ string 101011.
(c) No. Counterexample: -1 is an element in the co-domain \mathbf{Z}, but no string can have the number of 0 's as -1 .
(20') 4. Let S be the set of all strings in 0 's and 1's, and define a function $g: S \rightarrow \mathbf{Z}^{+} \cup\{0\}$ as follows: (Note that \mathbf{Z}^{+}denotes the set of all positive integers, so $\mathbf{Z}^{+} \cup\{0\}$ denotes the set of all non-negative integers.)
for all strings s in $S, g(\mathrm{~s})=$ the number of 1 's in s.
(a) What is $g(001000)$? $g(111001) ? ~ g(10101) ? ~ g(0100)$?
(b) Is g injective? Prove or give a counterexample.
(c) Is g surjective? Prove or give a counterexample.
(d) Is g a bijection? If so, find g^{-1}.

Solution:

(a) $g(001000)=1 ; g(111001)=4 ; g(10101)=3 ; g(0100)=1$.
(b) No. Counterexample: $g(001000)=g(0100)=1$ but string $001000 \neq$ string 0100 .
(c) Yes. Proof: Let n denote a particular but arbitrarily chosen element in the co-domain $\mathbf{Z}^{+} \cup\{0\}$. Then, by the definition of $\mathbf{Z}^{+} \cup\{0\}, n$ is a nonnegative integer. We consider the string x of length $n+1$ that starts with a 0 , which is followed by n consecutive 1 's. By the definition of g, $g(x)=n$. That is, n has at least one preimage in the domain S. Therefore, g is surjective.
(d) No, because g is not injective.
(20') 5. Define $F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: $F(x, y)=(3 y-1,1-x)$ for all (x, y) in $\mathbf{R} \times \mathbf{R}$.
(a) $F(0,0)=? F(1,4)=$?
(b) Is F injective? Prove or give a counterexample.
(c) Is F surjective? Prove or give a counterexample.
(d) Is F a bijection? If not, explain why not. If yes, find F^{-1}.

Solution:

(a) $F(0,0)=(-1,1) ; F(1,4)=(11,0)$.
(b) Yes. Proof: Suppose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two elements in the domain such that $F\left(x_{1}, y_{1}\right)=F$ $\left(x_{2}, y_{2}\right)$. By the definition of F, we know $3 y_{1}-1=3 y_{2}-1$ and $1-x_{1}=1-x_{2}$, from which, by basic algebra, we can conclude that $x_{1}=x_{2}$ and $y_{1}=y_{2}$. That is, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.
(c) Yes. Suppose (u, v) is a particular but arbitrarily chose element in the co-domain. Then, u and v are both real numbers. Let $x=1-v$ and $y=(u+1) / 3$. Then, x and y are also both real numbers. So, (x, y) is in the domain. By the definition of F, we have

$$
\mathrm{F}(x, y)=\mathrm{F}\left(1-v, \frac{u+1}{3}\right)=\left(3 \cdot \frac{u+1}{3}-1,1-(1-v)\right)=(u, v) .
$$

(d) Yes, because F is both injective and surjective. By the steps in (c), we can find the inverse function

$$
\mathrm{F}^{-1}(u, v)=\left(1-v, \frac{u+1}{3}\right) .
$$

(10') Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are two functions defined as follows:

$$
f(x)=x-1 ; g(x)=x^{2}-1 .
$$

Then, define $F(x)=f(g(\mathrm{x}))$ and $G(x)=g(f(x))$.
(a) What is $F(2)$? G (2)?
(b) Write explicit expressions for $F(x)$ and $G(x)$. Simplify the results as much as you can.

Solution:

(a) $F(2)=f(g(2))=f(3)=2 ; G(2)=g(f(2))=g(1)=0$.
(b) $F(x)=f(g(\mathrm{x}))=f\left(x^{2}-1\right)=x^{2}-1-1=x^{2}-2$; $G(x)=g(f(x))=g(x-1)=(x-1)^{2}-1=x^{2}-2 x$.

