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Abstract

In typical applications, genetic algorithms (GAs) process populations of potential problem
solutions to evolve a single population member that specifies an “optimized” solution. The
majority of GA analysis has focused on these optimization applications. In other applications
(notably learning classifier systems and certain connectionist learning systems), a GA searches
for a population of cooperative structures that jointly perform a computational task. This
paper presents an analysis of this type of GA problem. The analysis considers a simplified
genetics-based machine learning system: a model of an immune system. In this model, a
GA must discover a set of pattern-matching antibodies that effectively match a set of antigen
patterns. Analysis shows how a GA can automatically evolve and sustain a diverse, cooperative
population. The cooperation emerges as a natural part of the antigen-antibody matching
procedure. This emergent effect is shown to be similar to fitness sharing, an explicit technique
for multi-modal GA optimization. Further analysis shows how the GA population can adapt
to express various degrees of generalization. The results show how GAs can automatically
and simultaneously discover effective groups of cooperative computational structures.
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1 Introduction

Maintaining diversity of individuals within a population is necessary for the long term success

of any evolutionary system. Genetic diversity helps a population adapt quickly to changes in

the environment, and it allows the population to continue searching for productive niches, thus

avoiding becoming trapped at local optima. In genetic algorithms (GAs), it is difficult to maintain

diversity because the algorithm assigns exponentially increasing numbers of trials to the observed

best parts of the search space (cf. Schema Theorem (Holland, 1975)). As a result, the standard GA

has strong convergence properties. For optimization problems, convergence can be an advantage,

but in other environments it can be detrimental. Further, even in optimization, strong convergence

can be problematic if it prematurely restricts the search space.

In many settings, convergence by the GA on a global optimum is not appropriate. For example,

in a classifier system (Holland, Holyoak, Nisbett, & Thagard, 1986) genetic operators are a natural

way to search for a useful set of rules that collectively performs well in a task environment, each

rule playing a unique and complementary role. Thus, the system needs to evolve a set of rules

that are specialized to various tasks (or niches) rather than producing a homogeneous (converged)

population of similar rules. As a second example, consider a computational model of the immune

system in which a population of antibodies is evolving to cover a set of antigens (Forrest &

Perelson, 1991). If the antibody population is sufficiently large, it clearly makes sense to evolve

antibodies that are specialized to recognize different classes of antigens instead of evolving one

generalist antibody that weakly matches all antigens. For these more ecological environments,

genetic operators are clearly relevant for evolving a good solution, if inappropriate convergence

can be avoided.

Related to the diversity problem is the issue of generalization. In ecological settings, where

a coadapted set of individuals is desired, the question of generalization arises when there are not

enough individuals in the population to assign one individual (or subpopulation) to each task,

niche, or fitness peak. In cases such as these, a reasonable response is for the population to evolve

individuals that can cover more than one peak by becoming “generalists.” Note, that in traditional

GA optimization, the generalist usually does not arise, since the population tends to pick one

fitness peak and specialize in optimizing it. However, for settings in which coverage of solutions

is important (e.g., set cover problems, recognition problems, and almost any classifier system),

it is imperative to have the capacity of evolving generalists. Ideally, the degree of generality

of discovered solutions should be an emergent property of the system that depends on certain

characteristics of the environment and parameters of the learning system.
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To date, most GA analysis has focused on problems in which each population member’s

fitness is independent of other population members, thus excluding coevolutionary systems such as

classifier systems and immune system models. In this paper, we introduce a simple model in which

each individual’s fitness is functionally dependent on the rest of the population, thus capturing one

important aspect of the ecological problems in which we are interested. The functional dependence

is introduced through the use of a simplified bidding mechanism similar to that of classifier systems.

We show mathematically that the use of the simple bidding procedure combined with a traditional

GA is sufficient for the population to discover and maintain independent subpopulations. Further,

our analysis shows that the model implements a form of implicit fitness sharing which we relate

to previous (explicit) models of fitness sharing. Finally, we show how certain parameters of the

model can be varied to induce it to evolve more or less general solutions to the immune recognition

problem. The theoretical results presented in this paper have been confirmed by experiments

reported in Forrest, et al. (in preparation).

The remainder of this paper is divided into eight sections. Sections 2 - 4 provide background

material on related work, a mathematical model of selection in the GA, and explicit fitness sharing.

Section 5 introduces the immune system model that motivated the work reported in this paper.

Section 6 analyzes our model mathematically and shows that it maintains stable subpopulations.

Section 7 shows how the generality of solutions can be controlled in the model, and Sections 8 and

9 discuss the implications of our results.

2 Related Work

In optimization, when the GA fails to find the global optimum, the problem is often attributed to

premature convergence, which means that the sampling process converged on a local rather than

the global optimum. Several methods have been proposed to combat premature convergence in

conventional GAs (Booker, 1982; Deb, 1989a; DeJong, 1975; Goldberg, 1989). These include

restricting the selection procedure (crowding models), restricting the mating procedure (assortative

mating, local mating, etc.), explicitly dividing the population into subpopulations (common in

parallel GAs), and modifying the way fitnesses are assigned (fitness sharing).

Crowding induces niches by forcing new individuals to replace those that are similar geno-

typically (DeJong, 1975). This is accomplished by using a “steady-state” GA which creates new

individuals one at a time, inserting them into the population by replacement of existing individuals.

In the crowding algorithm, an individual is selected for replacement (to “die”) by choosing a subset

of the population randomly and then selecting the member of that subset that resembles the new

3



individual most closely. The various restricted mating schemes (assortative, explicit subpopu-

lations, local, etc.) have a similar goal as crowding, but here the population is prevented from

becoming too homogeneous by limiting the hybridization effects of crossover. Assortative mating

algorithms, introduced by Booker (1982; 1985), restrict crossovers to occur between functionally

similar individuals. They were invented in the context of classifier systems, where the notion of

“functionally similar” has a natural interpretation as the set of classifiers that simultaneously match

the message list. This method has worked well for classifier systems, but is unproven in the context

of pure genetic algorithms.

Several parallel GAs have been studied in which the population is explicitly divided into smaller

subpopulations (Cohoon, Hedge, & Martin, 1987; Gorges-Schleuter, 1989; Grosso, 1985; Pettey,

Leuze, & Grefenstette, 1987; Tanese, 1989a; Tanese, 1989b; Whitley & Starkweather, 1990) . Each

subpopulation is isolated from the others in the sense that it evolves independently with occasional

migrations of individuals from one subpopulation to another. Based on concepts from population

genetics, the idea here is that random genetic drift will cause each subpopulation to explore different

regions of the search space and that migration will communicate important discoveries among the

subpopulations. This method can make the algorithm more efficient at discovering global optima,

but even a very small amount of migration results in the subpopulations eventually converging on

one solution, so in the end diversity is lost (Grosso, 1985).

Local mating algorithms (Collins & Jefferson, 1991; Davidor, 1991; Hillis, 1990; Muhlenbein,

1989; Spiessens & Manderick, 1991) attempt to move away from explicitly subdividing the

population (explicit subdivision implies some prior knowledge about how many niches are in the

environment, and their relative size). In local mating, the population is arranged geometrically

(e.g., in a two-dimensional plane) and crossovers occur only between individuals that are “near”

one another geographically. Once again, the idea is that random genetic variation will lead to

subgroups of individuals, each exploring different regions of the search space. These methods

can slow down convergence time dramatically, but by themselves cannot maintain stable separate

subpopulations (McInerney, 1992).

Another method for maintaining diversity in a classifier system is called the “Pitt” approach

(DeJong, 1988). First used by Smith (1980), this method concatenates a population of classifiers

to form a single individual for the genetic algorithm to manipulate. Thus, the genetic algorithm

is acting on populations of rule sets. Although diversity can be maintained within a rule set using

this method, there is an inherent inefficiency that results from maintaining populations of rule sets

rather than populatins of rules. Interestingly, something resembling the Pitt approach exists in the

genetic encoding of real immune systems (?)
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Finally, fitness sharing (Deb & Goldberg, 1989a; Deb, 1989a; Goldberg & Richardson, 1987)

(discussed in detail in Section 4) induces subpopulations by penalizing individuals for the presence

of other similar individuals in the population, thereby encouraging individuals to find productive

uncrowded niches. While the methods discussed in the previous paragraphs (except the Pitt

approach) focus on the mechanics of selection and recombination in the GA, fitness sharing leaves

the standard GA unchanged and simply modifies the way in which fitness values are computed.

Fitness sharing works well, but has several important limitations:� It requires a comparison of every population member to every other population member in

each generation (
� 2 comparisons where

�
is the size of the population).� Setting the critical parameter ��� requires knowledge about the number peaks in the space

(Deb, 1989b).� Setting ��� is also dependent on a uniform distribution of peaks in the search space. Al-

though Deb (1989b) shows experiments where sharing succeeds on a problem with mildly

non-uniform peak separation, it is likely fitness sharing would overlook peaks that were dis-

tributed with less uniformity (K. Deb, personal communication, 1991). Goldberg (personal

communication, 1992) has suggested that a “skewing factor” coupled with fitness scaling (?)

could help sharing to maintain multiple, non-uniformly distributed peaks. However, these

techniques have yet to be fully investigated.

In spite of these limitations, fitness sharing is important because it induces stable niches (rather

than simply slowing down the time to convergence), and it incorporates the concept of limited

resources into the GA model.

3 Preliminaries: The Effects of GA Selection on Population

Composition

Consider a population evolving in time under the GA. The reproduction and survival of an individual

into the next generation depends on the individual’s fitness. The exact details of how fitness affects

reproduction varies among different implementations of the GA (Goldberg & Deb, 1990). Here we

illustrate the effects of fitness-proportionate selection among a set of 2� individuals in a selection-

only GA.1 The individuals can be thought of as completely specified GA population members (bit

1Fitness-proportionate selection was adopted for several reasons: (1) it is the simplest and most widely known
method of selection, (2) it is easily related to the Schema Theorem and has the important property of increasing good
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strings of length � ), or as competing schemata of order � . Let �
	� be the proportion of individual �
in the population at time  ( � 2 ����

1 �
	��� 1), and let � � be the expected fitness of individual � , or in

the case of Schema � , the observed fitness. Assume (as is typical in GA optimization applications)

that � � does not depend on the population proportions. Under fitness-proportionate selection, the

value of � � at time �� 1 is given by

� 	�� 1� � � 	� � �� 2 ����
1 � 	� � ��� �

1 �
where the denominator in Eq. (1) is the mean fitness of individuals in the population at time  . It

is easy to see that iteration of this equation assigns an increasing number of copies to individuals

that have fitness higher than the mean. However, as the proportion of individuals with high fitness

increases, the mean fitness will also increase. As a consequence, ultimately only those individuals

with the highest fitness (i.e., with fitness � � , where �!�#"$� � for all � ) will increase. Let the set

of individuals with fitness �!� be called %&� . Then, the iteration of Eq. (1) will converge to a

state in which the entire population is composed of individuals from % � . At steady state, where� 	�� 1� � � 	�(' � �)�� for all � , � �*�� � � �)�� � �� 2 ����
1 � �)�� � �,+

By the previous argument, � �*��.-� 0 only for those individuals in %&� . Thus, the sum of proportions

of individuals in %&� must equal one. Inserting these conditions into the equation above gives

1 � �!�� �0/2143 � �)�� � � � � �� � �
which shows that any distribution of proportions of individuals in %5� is a valid steady state. In

practice, genetic drift tends to drive a GA population to a population comprised entirely of one type

of individual from %5� . This effect has been discussed extensively in population genetics and in the

GA literature (Goldberg & Segrest, 1987). For example, consider a population composed of two

types of individuals, 1 and 0, each present at 50 copies and having equal fitness. If a sample of the

population is chosen for reproduction and replacement of their parents so that the population size is

maintained constant, then after one generation the population may be skewed randomly to say 52

1s and 48 0s. In the next round, 1s are more likely to be chosen for reproduction than 0s due to their

greater representation in the population, and further skewing can occur. Thus even in the absence

of fitness differences between two or more individuals, the slightest nonuniformities of distribution

can be amplified by the reproduction scheme. Mutation and crossover can also randomly change

schemas exponentially, and (3) many other selection methods are derived from fitness-proportionate selection.
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the population composition and can contribute to drift. Therefore, by random drift a population

comprised of only one type of individual inevitably occurs.

In the above derivation we assumed that the fitness values were not a function of the proportion

values. If fitness values are a function of population proportions, then convergence to a single type

of individual can be avoided. In the next section we review a technique called fitness-sharing (Deb,

1989b; Deb & Goldberg, 1989b; Goldberg & Richardson, 1987) that explicitly relates fitness values

to proportions to overcome the convergence associated with fitness-proportionate GA selection in

multi-modal problems.

4 Fitness Sharing

Fitness sharing (Deb & Goldberg, 1989a; Deb, 1989a; Goldberg & Richardson, 1987) induces

diversity in a population by penalizing individuals for the presence of similar individuals in the

population. In ecological theory such strategies are called negative frequency-dependent selection

(Levin, 1981). Fitness sharing is based on the idea of environmental niches with finite resources

available for each niche. As the number of individuals in a given niche increases, the availability

of resources in the niche decreases, resulting in an effective decrease in the viability of individuals

in the niche, and the subsequent decrease in their numbers. To maintain a viable population in a

niche, the population size must come into equilibrium with the availability of resources.

To illustrate the effects of sharing resources, consider the effect of replacing an individual’s

fitness by a shared fitness ��6� ' � �*7 � 	� . This shared fitness is the value used in fitness-proportionate

selection. Thus, equation (1) becomes

� 	�� 1� � � 	� ��6�� 2 ����
1 � 	� � 6� � �

2 �
or � 	�� 1� � � �� 2 ����

1 � �,+ �
3 �

Under such a scheme, selection assigns each individual a population proportion equal to its fitness

relative to the sum of all fitness values in one step, and from then on, the proportions are stable.

In a multi-modal search problem, it would be desirable for the population to cluster around

several peaks, rather than simply distributing itself based on relative fitness, as in the previous

calculation, or converging to a single peak, as would a typical GA with fitness-proportionate

selection. The mechanisms of fitness sharing used in previous studies (Deb, 1989b; Deb &

Goldberg, 1989b; Goldberg & Richardson, 1987) cause population members to cluster around
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Figure 1: The sharing function 8:9 �<; �=� � for various values of > . Note that the function is zero for; �=� greater than � � .
peaks in a search space by reducing a population member’s fitness to account for the proximity of

other individuals in the population (under some distance metric). Specifically, they calculate the

shared fitness as � 6�?� � ��A@��� 1 8:9 �B; �=� � � �
4 �

where
; �=� is the distance between � and C under a given metric, 8:9 �B; �D� � is the sharing function,

given by

8:9 �B; �=� � � EFFFG FFFH 1 if
; �=� � 0

1 IKJMLON PQSRUTWV if
; �=�YX ��� ;

0 otherwise
� �

5 �
�

is the number of individuals in the population, and ��� and > are parameters2. Figure 1 depicts

various sharing functions. Note that since the distance between any individual and itself,
; �Z� � 0,

at least one term in the denominator of Eq. (4) is equal to one. Since each individual contributes

one term to the sum, having many individuals close together leads to a large denominator, and

hence a small fitness.

The critical parameter in the fitness sharing technique is ��� , which dictates a cutoff distance,

beyond which no sharing will occur. Deb considers the case in which there are [ peaks that one

2The condition \^]`_ba2cedgf!h 1 for a2ced:h 0 is only implied in previous fitness sharing studies. It is included here to
clarify the limiting case where ikj h 0.
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wishes the GA to find and maintain, and these peaks are equidistant (in terms of the given distance

metric) from one another in the search space (Deb, 1989b). He also shows how to set ��� such that[ hyperspheres of radius ��� fill the search space. Then, under Deb’s assumptions, one and only one

peak lies in each hypersphere of radius ��� .
To understand the effects of fitness sharing, consider a problem where Deb’s assumptions

hold, and ��� is set appropriately. Imagine a GA population that begins with an equal number of

representatives of each point in the search space (a flat population). In the first iteration of Eq.

(2), where ��6 is the shared fitness given by Eq. (4), each individual’s fitness � � is divided by the

same number, since each individual has the same distribution of “neighbors” in its ��� hypersphere.

Thus, the relative values of fitness are not changed by sharing in this step, and we can expect that

individuals at the [ peaks will increase in their numbers. In the next iteration, individuals at the [
peaks have increased numbers relative to the rest of the population, therefore their shared fitness

values are lowered. Note, however, that individuals at any given peak are affected by the proportion

of individuals at or near that peak only, due to the setting of ��� and individuals at different peaks

are assured not to affect one another’s shared fitness values. Now consider an individual that is not

on but is near, i.e. within ��� , of one or more of the [ peaks. In the second application of selection,

such individuals have fitness values that are decreased by the strong proportions of individuals at

one or more peaks. Thus, the relative character of the fitness landscape (with peaks remaining

effectively higher than non-peaks) is maintained, and the GA will move towards a population

clustered at the [ peaks. After all individuals are at these peaks, their shared fitness values must all

be equal to maintain equilibrium under fitness proportionate selection. Thus, one can expect that

the proportion of individuals at each peak will be directly related to that peak’s relative height.

The previous arguments point out the importance of ��� ’s value, and the assumptions used in

setting this value. If ��� is too large, and two peaks are within ��� of one another, individuals at these

peaks will affect one another’s shared fitnesses, and one can expect that the GA will converge to

a population that contains one or the other of these peaks, but not both. The limiting case of this

behavior is where ��� equals the maximum possible distance between two individuals (the radius of

the search space). In this case, each individual’s fitness is divided by the same value, the effects of

sharing are eliminated, and one can expect the GA to converge towards one type of individual in the

usual fashion. If ��� is too small, one can expect that individuals near a peak may not be sufficiently

affected by other nearby individuals, and that complete convergence to this peak may not occur

(nearby individuals may remain in the final population). The limiting case of this behavior is where��� � 0, in which case each individual’s fitness is only divided by its own proportion. Equation (3)

shows that this can be expected to allot proportions to each individual based on fitness relative to
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the sum of all fitnesses in one step, without a search for peaks.

Fitness sharing is an effective method for encouraging the population to maintain diverse

subpopulations in all the high-fitness regions of the search space. However, as we mentioned

earlier, it has several important limitations: (1) to set ��� , the number of peaks must be known, (2)

the peaks must be equidistant (or nearly so), and (3) the method requires
� 2 comparisons on every

generation. These limitations arise from the fact that fitness sharing is defined explicitly—what

we would like is a method that avoids the explicit
� 2 calculations and can discover for itself how

many peaks are in the search space and can allocate trials appropriately. In the next section we

introduce an algorithm for fitness sharing that does not require explicit construction of the sharing

function. The method thus avoids the difficulty of appropriately choosing ��� . Further, the method

can solve problems in which the peaks are not equally spaced. Because the method arose in the

context of studying how the immune system can maintain the diversity needed for it to detect

multiple antigens, we briefly summarize the relevant biology before introducing the algorithm.

5 GA Simulations of the Immune System

Our immune system protects us from a wide variety of different viruses, bacteria, toxins, and other

pathogenic organisms. Although there are many different host defense mechanisms employed,

the first step in any of these mechanisms is the recognition of the foreign cell or molecule, which

we call antigen. Recognition in the immune system occurs by a chemical interaction between

antigen and a specific host defense molecule such as antibody. Thus, the problem that the immune

system faces is the generation of a repertoire of antibodies with sufficient diversity to recognize

any antigen.

Forrest, et al. (in preparation) study an abstract version of this problem in which antigens

and antibodies are represented by bit strings of a fixed length � . Recognition is assessed via a

string matching procedure. The antigens are considered fixed, and a population of
�

antibodies

is evolved to recognize the antigens using a GA. For any set of antigens, the goal is to obtain an

antibody cover, defined to be a set of antibodies such that each antigen is recognized by at least

one antibody in the population. Maintaining antibody diversity is crucial to obtaining a cover.

The initial model makes the important simplification that a bit string represents both the genes

that code for a receptor and the phenotypic expression of the receptor molecule. The model includes

only recognition of our idealized antigens by receptors and does not consider how the immune

system neutralizes an antigen once it is recognized.

The model is based on a universe in which both antigens and receptors on B cells and T cells are
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Antigens

1001100001110001
1101001000100010
0101010101010011
1101010101000111
0000111100010001
0111000100010001
1100001010100110

...

0111110011100101

Antibodies

1010001110000111
1100100100010010
0000110100011000

...

1100110010010100l l m
nnnnnnnnn oM(0111110011100101,

1100100100010010)=1 � 2 � 1 � 5 � 3 � 12

Antibodies

0101110100011011
1111001001001001
1001010101000110

...

1100110010010100

p
GA

Figure 2: A schematic illustration of the immune model. The match score, q , of an antigen-
antibody pair is the number of bits that are complementary.

represented by binary strings (Farmer, Packard, & Perelson, 1986). This is certainly a simplification

from the real biology in which genes are specified by a four-letter alphabet and recognition between

receptors and antigens is based on their three-dimensional shapes and physical properties. Further,

the model does not distinguish between receptors on B cells and the soluble, secreted form of the

receptor, which is antibody. However, the universe of binary strings is rich enough to allow one

to study how a relatively small number of recognizers (the antibodies) can evolve to recognize a

much larger number of different patterns (the antigens).

A receptor, or “antibody,” is said to match an antigen if their bit strings are complementary

(maximally different). Since each antibody may have to match against several different antigens

simultaneously, we do not require perfect bit-wise matching. There are many possible match rules

that are plausible physiologically (Perelson, 1989). The degree of match is quantified by a match

score function q : r
s�0�ut�vwsyxzr
s�{�O|~} ;W��� �
. This function identifies contiguous regions of

complementary bitwise matches within the string, computes the lengths ( � � ) of the regions, and

combines them such that long regions are rewarded more than short ones. Using this basic idea,

many different specific functions can be defined that are linear or nonlinear in � � . We have studied

the behavior of the model under several different functions (Forrest et al., in preparation).

Using the bit string representation for antibodies, we construct one population of antigens and

one of antibodies. Antibodies are matched against antigens, scored according to a fitness functionq , and replicated using a genetic algorithm. Figure 2 illustrates the basic immune model.

>From this basic model, many variations can be created by changing the details of how
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antibodies are chosen to be matched against antigens. For example, we have used the basic model

to study antigen populations that cannot be matched by a single antibody type. Suppose the the

population of antigens is:

50% - 000 +S+S+ 000

50% - 111 +S+w+ 111.

In order for an antibody population to match these antigens perfectly, there would need to be

some antibodies that are all 1s and others that are all 0s. Thus, a solution to this problem would

require the GA to maintain two different solutions simultaneously. This is a simple example of

a multiple-peak problem in which there are only two peaks and they are maximally different. A

solution requires a population of antibodies that contains strings that are all 1s and all 0s. The

hybrids formed by crossover are not useful. Maximally different peaks are used for illustration.

When we have varied the Hamming distance between peaks experimentally, there is little if any

effect on the performance of the model (Forrest et al., in preparation).

With a fixed set of antigens, the antibodies are initialized either to be completely random (to see

if the GA can learn the correct antibodies) or initially given the answer by setting the population

to include the correct antibodies (000...000 and 111...111 in the example). By giving the answer

initially, the stability of the answer can be tested. Fitness scoring is as follows:

1. A single antigen is randomly selected from the antigen population.

2. From the population of
�

antibodies a randomly selected sample of size � is taken without

replacement.

3. For each antibody in the sample, match it against the selected antigen, determine the number

of bits that match, and assign it a match score3.

4. The antibody in the sample population with the highest match score is determined. Ties are

broken at random.

5. The match score of the winning antibody is added to its fitness.

6. This process is repeated for � cycles.

In this scheme, the fitness values of antibodies are interdependent, since an antibody’s proportion

is only increased if it is the best matching antibody in the sample. Numerical experiments reported

3For the purposes of this discussion, details of the matching and scoring procedures are unimportant.
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Antigens

1111111111111111
0000000000000000

Antibodies

1010001110000111
1100100100010010
0000110100011000

...

1100110010010100

� � � � �O�� � � � �O�� � � � �O�
�Max( q �

0000000000000000 � 1010001110000111 � �q �
0000000000000000 � 1100100100010010 � �q �
0000000000000000 � 1100110010010100 �{�

Figure 3: A schematic illustration of the two-peak problem. Each antigen corresponds to one peak.
An antigen and a subset of the antibody population are each selected randomly; the antibody (from
the subset) that matches the antigen best (Max) has its fitness incremented.

in Forrest et al. (in preparation) have shown that this scheme can maintain a diverse population of

antibodies that cover a set of antigens, that the antibodies will occur with frequency proportional

to the sampling rate for each antigen, and that the system performance seems relatively insensitive

to the Hamming distance between these antigens. We will show that this procedure implicitly

embodies fitness sharing. The process is iterated so that each antigen in the antigen population

has a chance of being selected and each antibody in the antibody population will receive a fair

evaluation of its fitness. Figure 3 illustrates the model.

This model corresponds quite closely to certain features of learning classifier systems. In effect,

each antibody in our model is a highly simplified classifier rule with only a condition part (defined

over the alphabet 0 � 1 rather than the more traditional 1 � 0 � #). The message-processing cycle is

similar to classifier systems in that it uses a bidding mechanism. In our model, the bidding is

deterministic (the closest match always wins), whereas many different bidding schemes are often

used with classifier systems. Since we only allow one winner, this is analogous to a classifier

system with a message list of size 1. Obviously, there are many aspects of classifier systems that

our model does not incorporate (e.g., posting messages, bucket brigade learning, etc.), but even in

this simplified form we can study the interaction between the genetic algorithm and bidding.
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6 Emergent Fitness Sharing in the Immune System Model

To understand the mechanisms of maintaining population diversity in the immune system model,

we first calculate an antibody’s expected fitness. Some new notation is required. Let the distance

between an antibody � and an antigen C be called
; �=� . The following discussion assumes that

; �D� is

the number of bits of antibody � that do not match (i.e. are not complementary to) those in antigenC , although other distance metrics can be used in the following developments. Under this distance

metric, antibody � and antigen C are said to perfectly match if
; �=� � 0. The maximum distance

possible between an antibody and an antigen is � , the bit string length. Let � �B; �=� � be the match

score assigned to antibody � when it is matched against antigen C . Let
� � �B� � be the number of

antibodies in the population that are at distance
�

from antigen C . Also let > � be the probability of

selecting antigen C for matching. Finally, let � � be the expected fitness of antibody � .
Consider a given antigen C . Assume that the population is of size

�
, and that it contains� � �<� � antibodies at distance

�
from antigen C . The probability that � antibodies at exactly

distance
�

from antigen C are in a sample of size � taken without replacement from this pop-

ulation, � � � ; � � � � � � �<� �{� , is given by the hypergeometric distribution (Freund, 1962; Hines &

Montgomery, 1980)

� � � ; � � � � � � �B� �{� �
�� � � �B� �� ����� � I � � �B� ��#I�� ��

�� � � �� � � � 0 � 1 � +S+S+ � � + �
6 �

Since the hypergeometric distribution will play an important role in subsequent calculations,

it is important to understand how it arises. Think of the
� � �B� � antibodies at distance

�
as

“successes” and the remaining
� I � � �<� � antibodies as “failures.” We choose a sample of size �

without replacement and are interested in the probability of picking � success elements and hence

necessarily ��I�� failure elements. There are J @ Q�T possible ways of picking a sample of size � .

The number of ways of picking � successes from a total of
� � �<� � elements is J @ P0�Z���� T , whereas

the number of ways of picking ��I�� failures from
� I � � �B� � elements is J @ �W@ P0�Z���Q � � T . Thus, the

fraction of times a sample is drawn with � success elements and ��I�� failure elements is given

by Eq. (6).

It will be useful for later discussions to note two special cases. If the sample size � � 1, then

the probability that the sample contains an antibody at distance
�

is� � 1; 1 � � � � � �<� �{� � � � �<� �� �
14



and the probability that it does not contain such an antibody is� � 0; 1 � � � � � �<� �0� � � I � � �B� �� �
If the sample size � � �

, then

� � � ;
� � � � � � �<� �{� � EG H 1 if � � � � �B� �

0 otherwise.

6.1 Expected fitness of an antibody when perfect matching is required

To introduce the method of calculating the expected fitness of an antibody, we first consider the

case in which an antibody receives a non-zero score only if it perfectly matches the antigen. Thus,

the match score � �<; �=� � -� 0 if and only if
; �=� � 0. Let the score received for a perfect match be�2¡ . For antibody � that perfectly matches antigen C to receive a score �w¡ at time  , the following

conditions must be met:

(i) Antigen C must be the antigen selected for matching against. This occurs with probability> � .
(ii) Antibody � must be in the sample of size � .

(iii) If � antibodies in the sample perfectly match the antigen, antibody � must be chosen to be

the tie breaker. This occurs with probability 1 7 � .

Note from Eq. (6) that the probability that � antibodies in a sample of size � are at distance 0

from antigen C is � � � ; � � � � � � � 0 �{� . Given that � perfect matches against antigen C appear in the

sample, the probability that this sample contains one particular antibody � that perfectly matches C
is � � 1; � � � � � 0 � � 1 � � � 7 � � � 0 � . Since events (i), (ii) and (iii) are independent, the probability that

antibody � receives a non-zero score is> � Q¢� � 1

1� �� � � 0 � � � � ; � � � � � � � 0 �{� � > � 1� � � 0 � � 1 I�� � 0; � � � � � � � 0 �0�{� +
Hence, the expected fitness of antibody � after one cycle is� � � �2¡w> �� � � 0 � � 1 I£� � 0; � � � � � � � 0 �{�0� +
Note that the expected fitness for � cycles would simply be �(� � . Since � will be a common

factor for all expected fitness values, it will not have a bearing on the expected behavior of fitness-

proportionate selection, and, therefore, it is not considered in the subsequent discussion. Also, this

equation assumes that all the antigens are distinct which for bit strings of reasonable length is a

reasonable assumption.
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In terms of our previous discussions on fitness sharing, the term �2¡w> � roughly corresponds

to the height of the fitness function at point C in the sequence space, i.e., in the � -dimensional

hypercube. The expected fitness calculation indicates that this value is divided by the proportion

of individuals at that point,
� � � 0 � . This corresponds to explicit fitness sharing with ��� � 0, where

an individual’s fitness is divided by the proportion of identical individuals in the population. The

final hypergeometric term in the calculation is due to the sampling scheme. Its role in the analogy

to fitness sharing is not immediately obvious, but it will be clarified in the following discussion.

6.2 Expected fitness of an antibody when partial matching is allowed

We now consider the general case in which an antibody receives a score for a partial match

with an antigen at distance
; �=� � �

, where
�

ranges from
� � 0 (perfect match) to

� � �
(perfect mismatch). As before, in each cycle of the algorithm an antigen is picked at random, with

replacement. Assume that each antigen C is selected with probability > � . Let % � �<� � be the set of

all antigens C at distance
�

from antibody � (
; �=� � �

). For antibody � to receive the match score

in a cycle when antigen C at distance
�

is selected, we require

(i) No antibody at distance less than
�

from antigen C occurs in the sample. Recall that only

the closest antibody in the sample receives the match score.

(ii) If � antibodies in the sample are all at distance
�

, antibody � must be in the sample and be

chosen as the tie breaker. This latter event occurs with probability 1 7 � .

Events (i) and (ii) are not independent. Thus to compute the probability that events (i) and (ii)

are both true, we use the well known formula (Freund, 1962):� �B¤ 1 ¥ ¤
2 � � � �B¤ 2 ¦ ¤ 1 �O� �B¤ 1 � � �

7 �
where

¤ � denotes event (i).

To compute � �B¤ 1 � , the probability of event (i), we again use the hypergeometric distribution.

Recall that
� � �¨§ � is the number of antibodies at distance

§
from antigen C . Thus there are a total of© � �<� � � � � 1¢ª{�

0

� � �O§ � �
8 �

antibodies at distance less than
�

from antigen C . The probability that none of these is in the

sample of size � is � � 0; � � � � © � �B� �0� . For later reference we define
© �

0 � � 0, i.e., there are no

antibodies closer than distance 0.

To compute � �B¤ 2 ¦ ¤ 1 � , note that given that none of the
© � �B� � antibodies appears in the match

sample, the probability that � of the
� � �<� � antibodies at distance

�
from antigen C appear in the
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match sample is � � � ; � � � I © � �<� � � � � �<� �0� . Not all antibodies at distance
�

from antigen C need

be copies of antibody � . If � antibodies at distance
�

are in the sample, then the probability that

antibody � is one of the � is � � 1; � � � � �B� � � 1 � � � 7 � � �B� � . The probability antibody � is chosen

as the tie breaker is 1 7 � . Since any value of � between 1 and � is possible, we find� �B¤ 2 ¦ ¤ 1 � � Q¢� � 1

� � � ; � � � I © � �<� � � � � �<� �{� 7 � � �B� � � �
1 I#� � 0; � � � I © � �<� � � � � �B� �{� 7 � � �B� � +�

9 �
Finally, combining the terms discussed above yields:

� � � �¢� � 0

¢�{/g1 N«�Z��� �
�B; �D� �O> �� � �<� �¬ � � 0; � � � � © � �B� �{� � 1 I�� � 0; � � � I © � �B� � � � � �B� �{�0�B® � �

10 �
where the first summation, � � � � 0, considers all possible distances

�
from antibody � , and the

second summation, � �{/g1 N«�Z��� , considers all antigens that are at distance
�

from antibody � . As in

the previous simplified example, the terms � �B; �=� ��> � are related to the fitness available to a given

antibody � , but in this case, the antibody can share in the finite fitness resources available at many

distant antigens. However, like in fitness sharing, each of these resources is divided amongst the

individuals that share it, as is indicated by the divisor
� � �B� � .

Thus far the correspondence to fitness sharing is relatively straight-forward. However, the

meaning of the bracketed hypergeometric terms,

¬ � � 0; � � � � © � �B� �{� � 1 I£� � 0; � � � I © � �B� � � � � �B� �{�0� ® � �
11 �

should be explained. The first term represents the probability that no antibody within distance� I 1 of antigen C will be selected in the sample. The second term represents the probability that,

given the previous condition, at least one copy of an antibody at distance
�

from antigen C will be

in the sample.

6.3 Relation to Explicit Fitness Sharing

To clarify the role of the hypergeometric terms in fitness sharing, we examine two special cases.

Consider sample size � � 1. In this case, the hypergeometric term (11) becomes¯ � I © � �B� �� ° ¯
1 I � � I © � �<� �±I � � �B� �� I © � �<� � ° � � � �<� �� +

Thus, for � � 1 � � � �¢� � 0

¢�0/21 N²�Z��� �
�B; �=� �O> �� +
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In this special case, there is no fitness sharing, and the fitness values are independent. Essentially,

the relative, expected fitness values are equivalent to those one would expect under a standard

genetic algorithm. Under these conditions one would expect fitness-proportionate selection to

converge to a single type of antibody. Note that this corresponds to fitness sharing with ��� set to a

value that spans the entire search space.

As a second special case, consider � � �
. If one assumes that a perfectly matching antibody

exists for every available antigen in the population, the expected fitness reduces to� � � �2¡w> �� � � 0 � +
In this case, each antibody is only divided by its own effective proportion in the population. Like

fitness sharing with ��� � 0, one would expect fitness-proportionate selection to distribute the

population based on relative fitness in one step, without a search for peak antibodies (see Section

4).

These special cases show that the limiting behavior of � is similar to the limiting behavior of��� . To investigate the effects of other values of � , consider the term³ � ¬ � � 0; � � � � © � �<� �{� � 1 I£� � 0; � � � I © � �<� � � 1 �0� ® � �
12 �

in which
� � �B� � is set to one. This simulates the situation where one antibody at distance

�
from

the selected antigen is competing with
© � �B� � closer antibodies for fitness resources available from

that antigen.

Figure 4 shows
³

plotted versus
© � �<� � for

� � 30 and various values of � .4 Note that
³

is zero for
© � �B� �µ´ � � I��¶� , and that

³
is near zero for a range of values of

© � �B� � lower than� I�� . Compare these curves to those in Figure 1 for > X 1.

This graph and previous arguments imply that the hypergeometric terms correspond to a sharing

function, and that � plays a role in the immune system algorithm that is similar to that of ��� in

fitness sharing. Its value essentially implies a cutoff beyond which no sharing can occur. However,

there is an important distinction to be drawn between fitness sharing and the implicit sharing in

the immune system simulations. In fitness sharing, ��� is a strict cutoff based on
; �=� , which Deb

(Deb, 1989b) recommends setting based on the volume of a hypersphere around a given peak.

In the immune system algorithm, � dictates a cutoff based on
© � �B� � , which is the proportion of

the population within a hypersphere of radius
� I 1 around a given antigen. As the proportion

of antibodies close to an antigen increases, the likelihood of more distant antibodies winning the

4Since only relative values of fitness terms are significant, curves in this figure are linearly scaled between zero and
one.
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Figure 4: The hypergeometric term
³

, given by Eq. (12), versus
© � for various sample sizes � .

Note the similarity to 8:9 �B; �=� � for > X 1 and various values of ��� (see Figure 1).

match competition decreases. Thus, effective antibodies block sharing by less effective antibodies.

The sample size � is a control on this effect. Under this scheme, the boundaries of sharing are a

function of the proportion of antibodies clustered around given antigens. These emergent sharing

boundaries explain much of the resilience shown by the GA in the immune system experiments.

7 Emergent Generalization

The previous section clarifies the correspondence between fitness sharing and the immune system

experiments. In this section we use expected fitness calculations to explore various properties of

the model, most importantly its capacity to generalize. We study the effects of the dependence of

sharing boundaries on population proportions, the effects of various settings of � , and finally, the

question of generalization. Generalization is an important issue for resource-limited settings where

either the population size is limited (and therefore one individual cannot be assigned to every task,

niche, or fitness peak), or the resources under one peak are not sufficient to support one individual.

Consider three-bit antigens and antibodies. Note that these three bits can also be thought of as

a portion of longer antibodies (schemata). Given � �B; �D� � and > � for the antigens and antibodies, the

expected proportion growth equation, Eq. (1), and the expected fitness equation, Eq. (10), we can

compute the expected effects of fitness-proportionate selection.
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Assume that � �<; �=� � is simply the number of complementary bits between antibody � and antigenC . As an illustration, consider a simulation in which the antigens 000, 011, and 110 are all

equiprobable and none of the remaining five possible antigens occur ( > 000 � > 011 � > 110 � 1
3 ).

Note that these antigens are equally distant from one another (each is at a distance of two from

the others). Starting with equal proportions of each possible antibody, and a population size5 of� � 100, Figure 5 shows the results of iterating the expected proportion equation, Eq. (1), with� � given by Eq. (10), for � � 10, � � 2, and � � 3. For � � 10, the population converges

to a condition in which the three antibodies that perfectly match the three antigens have equal

proportions of 1
3 each. Similar results occur for larger sample sizes. However, interesting results

are obtained when the sample size is lowered to � � 2. Surprisingly, the population converges

to a single antibody that would perfectly match antigen 010, an antigen which never occurs. The

reason for this result is that all of the sampled antigens are within a hypersphere of radius one from

this antibody. Thus, this antibody effectively generalizes from the given distribution of antigens.

In a population that cannot maintain several peaks (due to the sharing limitations imposed by small� ) this antibody is the most effective. Given the previous results, it is interesting to ask whether

the population can maintain both this generalist antibody and the three more specific antibodies at

steady state. The answer is yes, given � � 3.

The tendency for � to act as a control on antibody generalization is further illustrated by a more

complex example. Consider the situation in which each of the eight possible antigens occurs, but

with different frequencies. Specifically, consider the following (randomly selected) probabilities

of occurrence: > 000 � 0 + 0510> 001 � 0 + 0110> 010 � 0 + 1581> 011 � 0 + 1582> 100 � 0 + 2177> 101 � 0 + 0893> 110 � 0 + 1210> 111 � 0 + 1936

Other parameters are the same as in previous examples. Table 1 shows the steady-state results of

5In these computations, the binomial approximation to the hypergeometric distribution was used when factorials
greater than 32! were needed.
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Figure 5: Changes in the antibody population predicted by iterating Eq. (1), with � � given by
Eq. (10). The population consists of the eight possible three-bit antibodies, which are matched
against the equidistant antigens 000, 011, and 110. Initially all antibodies were present in equal
proportion. The symbols used are — = � 000, - - = � 001, ¸¹¸º¸ � � 010, I¸4I � � 011, ¸»¸ � � 100,� � � 101, ¼ � � 110, and x � � 111, where ��½ represents the proportion of antibodies that perfectly
match antigen ¾ . All eight proportions are plotted versus generation. In the upper left-hand plot,� � 10, in the upper right-hand plot, � � 2, and in the lower plot, � � 3. In the � � 10
case, three antibodies that perfectly match the three antigens 000, 011, and 110 all ultimately
attain population proportions of 1/3. The graphs of three antibodies are all coincident, as are the
graphs of many of the antibodies that go extinct. In the � � 2 case, a single antibody, which
perfectly matches antigen 010, takes over the entire population. In the � � 3 case, all four of
these antibodies are maintained, those which perfectly match antigens 000, 011, and 110 at equal
population proportions of ¿ 0 + 27 (coincident lines), and that which perfectly matches antigen 010
at population proportion of ¿ 0 + 2.
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� # of Antibodies Ordered List of
Retained (with �K´ 0) Perfectly Matched Antigens

100 8 100, 111, 011, 010, 110, 101, 000, 001
50 7 100, 111, 011, 010, 110, 101, 000
10 6 100, 111, 010, 011, 110, 101
5 5 100, 111, 011, 010, 110
2 2 110, 111
1 1 110

Table 1: Steady-state conditions obtained by iterating Eq.(1), with � � given by Eq. (10). The
population consists of 100 three-bit antibodies. The eight possible antibodies are initially present
at equal proportions. The antibodies are matched against a nonuniform distribution of eight
antigens. The number of antibodies retained at non-zero steady-state proportions is indicated in
Column 2. The antigens that are perfectly matched by these antibodies are listed (from highest to
lowest proportion of matching antibodies) in column 3.

iteratively solving the proportion growth equations for various values of � .

The � � 100 case results are like those one would expect from total sharing. The system jumps

to a population that is distributed across all possible antibodies in one step. The proportion of each

antibody is directly related to the relative frequency of occurrence of its perfectly-matched antigen.

As � is lowered, the population can not maintain as many antibodies at steady state. Results

with � � 5, � � 2 and � � 1 are shown in Figure 6. At � � 5 the number of antibodies maintained

drops to five. Antibodies that perfectly match the three least-frequent antigens (000, 001, and

101) are eliminated. The other five antibodies remain present, with the order of their proportions

related to the frequency of occurrence of their respective perfectly-matched antigens.

An interesting shift in behavior occurs at � � 2. For this parameter value, only two antibodies

can be maintained. These two antibodies are those which match antigens 110 and 111 perfectly.

Neither of these is a perfect match for antigen 100, which has the highest probability of occurrence.

Moreover, antigen 110 perfectly matches the antigen with the lowest occurrence probability of

those retained with � � 5. Yet, it has the highest steady-state proportion for � � 2. Upon careful

examination of occurrence probabilities and antigen structure, one can see the reason for these

changes. The antigens within a hypersphere of radius one of110 occur with probability 0.6904, and

that antigens within a hypersphere of radius one of 111 occur with probability 0.5621. Moreover,

antigens within the union of these two hyperspheres occur with probability 0.9375. Therefore,

these two antibodies are excellent generalizations over the given distribution of antigens. In effect,

the fitness landscape perceived by the GA has shifted substantially as a function of the sample size
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Figure 6: Iteration of the proportion equations, Eqs. (1) and (10), with � � 5 (upper left), � � 2
(upper right), and � � 1 (lower), for eight three-bit antibodies matched against a nonuniform
distribution of eight antigens. Symbols are as in the previous figure.
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� . When the population can only sustain a limited number of antibodies, selective pressures shift

towards generalization.

For � � 1 (where we know that the GA can only maintain a single peak) the antibody that

perfectly matches antigen110 takes over the entire population. Since antigens within a hypersphere

of radius one of 110 occur with probability 0.6904 (the highest value for all possible anitbodies),

this antibody is an effective generalization, given the constraint that only a single individual can

be maintained.

8 Discussion

The study of biological systems can provide insights that are useful in the development of machine

learning and pattern recognition algorithms. Conversely, studying biological systems with the

perspective of trying to identify the algorithms that they use can provide new understanding of the

operation of biological systems. Here we have shown how one can exploit insights that we have

gained from studying the operation of the immune system for the development of a new algorithm

for maintaining diversity in genetic algorithm search procedures. We have applied the result to a

multipeak optimization problem of importance in immunology.

The immune system must be able to recognize an almost limitless population of foreign cells

and molecules, i.e., antigens, with finite resources. We have formulated an abstract recognition

problem of the type the immune system must solve in the form of recognizing a population of

bitstrings that represent antigens. The immune system succeeds in its recognition task using both

specialists (i.e. antibodies that recognize only one or very few antigens but recognize them with

great accuracy) and generalists (i.e. antibodies that recognize many antigens but with limited

specificity). Interestingly, the model that we have developed also discovers both specialists and

generalists.

In this paper, we have developed a mathematical model to explain the behavior of the genetic

algorithm simulations reported in (Forrest et al., in preparation), and used the model to make

certain predictions about the ability of the simulation to develop general solutions. Based on

these predictions, we then ran additional simulations and confirmed that the simulation does in

fact develop generalizations when the sample size � is smaller than the number of fitness peaks

(antigens) (Forrest et al., in preparation) . This confirms the mathematical analysis presented here

and demonstrates an important property of our immune model—the flexibility to develop either

specific or very general solutions.
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9 Conclusions

Maintaining diversity in a population is important in many computational models. For example, in

classifier systems it is important to maintain a diverse set of rules that collectively perform complex

tasks in varying situations. One mechanism for maintaining diversity in genetic algorithms is fitness

sharing (Deb, 1989b; Deb & Goldberg, 1989b; Goldberg & Richardson, 1987). However, previous

algorithms have been limited by the fact that the number of peaks or high fitness areas had to

be known to correctly set ��� , the peaks had to be (nearly) equidistant (Deb, 1989b), and
� 2

comparisons are required. Here we have shown that an algorithm developed by Forrest et al. (in

preparation) to study pattern recognition in the immune system has emergent properties that are

similar to those of explicit fitness sharing. However, the fitness sharing in this algorithm is implicit,

the number of peaks is determined dynamically by the algorithm and there is no specific limitation

on the distance between peaks.

In order to help understand this algorithm we have calculated how the average fitness of an

individual changes from generation to generation. Using these calculations we can predict what

will happen when the environment requires the immune system model to generalize. In particular,

our calculations show that the sample size � plays the role of ��� in fitness sharing, and controls

the number of distinct individuals a population can maintain. Simulations show that � is a control

of generalization in the antibody population. As � is reduced, selective pressures are altered such

that a population of more general antibodies emerges.

The fitness sharing effects in the immune system algorithm are a result of the sample-and-match

procedures employed which resemble the bidding mechanism commonly used in classifier systems.

We believe that our analysis may provide a useful tool for understanding classifier system behavior.

The fact that our model has the ability to generalize (even without using the # symbol explicitly)

may prove relevant to the classifier system domain. An important area of further investigation is to

extend our model to include more classifier-system like features. The immune system domain is an

excellent testbed for classifier-system like models, since it provides a complex pattern recognition

task.

Whether similar effects can be obtained as an alternative to explicit fitness sharing in multi-

modal optimization problems is unclear. However, in other ecological problems the analysis

performed here may have a straight forward application. For instance, in learning classifier

systems, where ideas like “partial matching,” “best match,” and “generalization” have natural

interpretations, techniques like those used here may prove useful.

In the context of classifier systems, some of the results presented here can be thought of as an
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analytical confirmation of arguments presented by Wilson (?). Booker (1982) employs a similar

technique. Wilson’s experiments and approximate analyses suggest that division of reward between

like-acting classifiers can lead to stable subpopulations of different classifier “concepts”. Booker

(1982) employs a similar technique. Although the mechanisms are different, the emergent effects

in these systems are similar to those in the immune system simulations.

The techniques may also prove useful in other systems that form computational networks via

genetic learning. A particular instance is in the development of polynomial networks for system

modeling (Kargupta & Smith, 1991), where explicit fitness sharing was previously required.

Whether or not the techniques used in the immune system simulations can be explicitly trans-

ferred to more prescriptive applications, analysis of the type used in this paper can aid in under-

standing GA behavior in settings that require diversity. Improved understanding in this area is

necessary if GAs are to be actively employed in systems that require cooperating sets of interacting

individuals.

10 Acknowledgements

This work was partially done under the auspices of the U.S. Department of Energy. We thank

the Center for Nonlinear Studies, Los Alamos National Laboratory and the Santa Fe Institute

for support. Forrest also acknowledges the support of the Association of Western Universities,

National Science Foundation (grant IRI-9157644), and Sandia University Research Program (grant

AE-1679). Perelson acknowledges the support of the National Institutes of Health (grant AI28433).

Brenda Javornik programmed the simulations referred to in this paper. Javornik and Ron Hightower

both provided helpful comments on the manuscript.

References

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. PhD thesis,

The University of Michigan, Ann Arbor, MI.

Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier systems. In

J. J. Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algorithms

and their Applications, 80–92, Pittsburg, PA. Lawrence Erlbaum.

26



Cohoon, J., Hegde, U., Martin, W., & Richards, D. (1987). Punctuated equilibria: A parallel genetic

algorithm. In Proceedings of the Second International Conference on Genetic Algorithms,

148–154, San Mateo, CA. Morgan Kaufmann.

Collins, R. J., & Jefferson, D. R. (1991). Selection in massively parallel genetic algorithms. In

R. K. Belew, & L. B. Booker (Eds.), Proceedings of the Fourth International Conference

on Genetic Algorithms, 249–256, San Mateo, CA. Morgan Kaufmann.

Davidor, Y. (1991). A naturally occurring niche and species phenomenon: the model and first

results. In R. K. Belew, & L. B. Booker (Eds.), Proceedings of the Fourth International

Conference on Genetic Algorithms, 257–263, San Mateo, CA. Morgan Kaufmann.

Deb, K. (1989a). Genetic algorithms in multimodal function optimization (Tech. Rep.). Department

of Engineering Mechanics, University of Alabama, Tuscaloosa, AL: The Clearinghouse for

Genetic Algorithms. (Master’s Thesis)

Deb, K. (1989b). Genetic algorithms in multimodal function optimization (TCGA Report No.

89002). Tuscaloosa: The University of Alabama, The Clearinghouse for Genetic Algo-

rithms.

Deb, K., & Goldberg, D. E. (1989, Junea). An investigation of niche and species formation in

genetic function optimization. In Proceedings of the Third International Conference on

Genetic Algorithms, 42–50, San Mateo, CA. Morgan Kaufmann.

Deb, K., & Goldberg, D. E. (1989b). An investigation of niche and species formation in genetic

function optimization. Proceedings of the Third International Conference on Genetic

Algorithms, 42–50.

DeJong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD

thesis, The University of Michigan, Ann Arbor, MI.

DeJong, K. A. (1988). Learning with genetic algorithms: An overview. Machine Learning, 3,

121–138.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and

machine learning. In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution,

games and learning. North–Holland. (Reprinted from Physica, 22D, 187–204)

27



Forrest, S., Javornik, B., Smith, R., & Perelson, A. S. (in preparation). Using genetic algorithms to

explore pattern recognition in the immune system.

Forrest, S., & Perelson, A. (1991). Genetic algorithms and the immune system. In H. Schwefel, & R.

Maenner (Eds.), Parallel Problem Solving from Nature, 320–325, Berlin. Springer-Verlag

(Lecture Notes in Computer Science).

Freund, J. E. (1962). Mathematical statistics. Englewood Cliffs, NJ.: Prentice-Hall.

Goldberg, D., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function

optimization. In Proceedings of the second international conference on genetic algorithms

(148–154). Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Reading, MA: Addison Wesley.

Goldberg, D. E., & Deb, K. (1990). A comparative analysis of selection schemes used in genetic

algorithms (TCGA Report No. 90007). Tuscaloosa: The University of Alabama, The

Clearinghouse for Genetic Algorithms.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms.

Proceedings of the Second International Conference on Genetic Algorithms, 1–8.

Gorges-Schleuter, M. (1989, June). ASPARAGOS: An asynchronous parallel genetic optimization

strategy. In Proceedings of the Third International Conference on Genetic Algorithms,

422–427, San Mateo, CA. Morgan Kaufmann.

Grosso, P. B. (1985). Computer simulations of genetic adaptation: Parallel subcomponent in-

teraction in a multilocus model. PhD thesis, The University of Michigan, Ann Arbor,

MI.

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an optimization

procedure. Physica D, 42, 228–234.

Hines, W. W., & Montgomery, D. C. (1980). Probability and statistics in engineering and man-

agement science (2nd ed.). New York: Wiley.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The University

of Michigan Press.

28



Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction: Processes of inference,

learning, and discovery. Cambridge, MA: MIT Press.

Kargupta, H., & Smith, R. E. (1991). System identification with evolving polynomial networks

(TCGA Report No. 91001). Tuscaloosa: University of Alabama, The Clearinghouse for

Genetic Algorithms.

Levin, S. A. (1981). Mechanisms for the generation and maintence of diversity in ecological

communities. In R. W. Hiorns, & D. Cooke (Eds.), The mathematical theory of dynamics

of biological populations ii (pp. 173–194). Academic Press.

McInerney, J. (1992). Biologically influenced algorithms and parallelism in non-linear optimiza-

tion. PhD thesis, Unviersity of California, San Diego, La Jolla, CA.

Muhlenbein, H. (1989). Parallel genetic algorithms, population genetics and combinatorial op-

timization. In Proceedings of the Third International Conference on Genetic Algorithms,

416–421, San Mateo, CA. Morgan Kaufmann.

Perelson, A. S. (1989). Immune network theory. Immunol. Rev., 110, 5–36.

Pettey, C., Leuze, M., & Grefenstette, J. (1987). A parallel genetic algorithm. In Proceedings

of the Second International Conference on Genetic Algorithms, 155–161, San Mateo, CA.

Morgan Kaufmann.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. PhD thesis, University

of Pittsburgh, Pittsburgh, PA.

Spiessens, P., & Manderick, B. (1991). A massively parallel genetic algorithm: implementation and

first analysis. In R. K. Belew, & L. B. Booker (Eds.), Proceedings of the Fourth International

Conference on Genetic Algorithms, 257–263, San Mateo, CA. Morgan Kaufmann.

Tanese, R. (1989a). Distributed genetic algorithms. In J. D. Schaffer (Ed.), Proceedings of the Third

International Conference on Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

Tanese, R. (1989b). Distributed genetic algorithms for function optimization. PhD thesis, The

University of Michigan, Ann Arbor, MI.

Whitley, D., & Starkweather, T. (1990). Genitor II: A distributed genetic algorithm. Journal of

Experimental and Theoretical Artificial Intelligence, 2(3), 189–214.

29


