
On Operational Policy Conflict Detection and
Resolution in CPS-IoT systems

Jared Hall
dept. Computer and Information Science

University of Oregon
Eugene, Oregon

jhall10@cs.uoregon.edu

Abstract—With the convergence of the field of Cyber-Physical
Systems (CPS) and the “Internet of Things” (IoT), a new
generation of systems, dubbed CPS/IoT systems [1], have come
about. These systems focus on controlling physical environments
semi or even fully autonomously based on an operational policy
designed by the user for their environment. However, conflict in
the decision-making processes these systems employ can easily
happen. These conflicts arise due to a confluence of factors such
as the distributed nature of CPS-IoT systems, changes in user
preferences, or the use of multiple intelligent sub-components.
For this work, we will be investigating the current research
concerning the problem of Operational Policy conflict detection
and resolution for CPS-IoT Systems. This survey will include the
current state-of-the-art in conflict detection in CPS-IoT systems
as well as a brief overview of conflict detection methods in related
fields such as distributed systems and Software-defined networks.
Our aim with this analysis is to present a summary of the key
insights, objectives, and methods of addressing policy conflict
detection and resolution pioneered by these fields.

I. INTRODUCTION

With the convergence of the field of Cyber-Physical Systems
(CPS) and the “Internet of Things” (IoT), a new generation
of systems, dubbed CPS-IoT systems [1], have come about.
These systems focus on giving the user the ability to build
ambient intelligence into physical environments via the use
of a collection of rules/procedures that we call ”Operational
Policy” [2], [4]. In the most general sense, an “Operational
Policy” is an abstraction of a plan for the moment-to-moment
operation of a CPS-IoT system. The policy maps out what
actions the system should take in a given instance and what
constraints it should obey [2]. Typically, operational policies
take the form of a collection of rules or procedures that
are designed by the user when they provision their CPS-IoT
system and are then enforced by said system.

However, conflict in the decision-making processes these
systems employ can easily happen. These conflicts arise due
to a confluence of factors such as the distributed nature of
CPS-IoT systems, changes in user preferences, or the use of
multiple intelligent sub-components (for instance intelligent
agents, inference components, etc.). Moreover, many IoT
entities send telemetry or execute actions as atomic, infrequent,
transactions due to power/computing constraints and the active
duty cycle. This leaves them vulnerable to instances where
multiple controllers send commands in order, but they are
received by the actuator simultaneously. There may also be

conflicts that spawn from the collaboration between edge
systems and cloud-based systems [3]. Lastly, in CPS-IoT
platforms that use a deliberative AI algorithm to make deci-
sions, situations, where multiple controllers send conflicting
actions, may arise. Whether it is due to a mistake by the
user, an intelligent sub-component, or due to the distributed
nature of CPS-IoT systems, conflicts in the enforcement of
an operational policy for a CPS/IoT control system can have
severe consequences. For instance, one could deadlock critical
components in a smart city by constantly spawning conflicts in
its subsystems or breaking down equipment in a hospital by
spamming actions. These ”pain points” necessitate research
concerning how to detect these conflicts before they cause
damage and resolve them.

For this work, we will be investigating the current research
concerning the problem of Operational Policy conflict detec-
tion and resolution for CPS-IoT Systems. This research will
include the current state-of-the-art in conflict detection in CPS-
IoT systems as well as a brief overview of research offerings
in conflict resolution. However, it is our position, as will be
shown in this paper, that the current state of the art does
not sufficiently consider all conflict types that may arise as
Artificial Intelligence and Machine Learning algorithms are
more closely integrated into CPS-IoT control systems and as
the field progressively moves toward cloud-edge collaborative
systems.

The rest of this paper is organized as follows: in Section II,
we present a brief overview of the background information
needed to fully understand the research space. In section
III, we begin our discussion of operational policy conflict
by looking at what is currently done in related fields. This
discussion is continued in Section IV by extending our review
of a sample of related works in CPS-IoT. In section V,
we discuss operational policy conflict resolution. In section
VI, we discuss the open problems and challenges regarding
operational policy conflict detection and resolution. Finally,
we end in section VII with our final thoughts on the problem
space.

II. BACKGROUND

In order to gain a better understanding of the landscape of
this research area, there is a need to clarify the definitions



and relationships among a number of related concepts that are
common in the literature.

A. CPS-IoT Systems

Formally, a ’pure’ CPS consists of three core components: A
cyber component that performs computation (e.g., information
processing and control), a communication component that
handles the communication between the cyber and physical
components, and a physical environment that consists of
physical entities or processes [2] as shown in Fig. 1 below.

Fig. 1. Cyber-Physical Systems Component Model

In these systems, the cyber component is tightly coupled
with the physical component via a central feedback loop
known as the Transitional State Change (TSC) Feedback loop
[1]. In this feedback loop, the physical environment informs
the cyber component of its current state via the communication
component, and the cyber component exerts control over the
physical environment which alters its state, causing the cycle
to repeat.

The two key advancements brought by CPS-IoT systems
concern the integration of the IoT with the communication
component and the inclusion of humans as a distinctly separate
component [1]. The introduction of the IoT as a central
component in CPS design has greatly expanded the scale
and scope of these systems as well as broadly expanding
the number of application domains for CPS-IoT systems [1].
Secondly, Humans play a central role both as entities in the
physical environment and as users of the system (e.g., “human-
in-the-loop”) via their interactions with both the system and
the physical environment. Because of this, humans are added
as the fourth component in CPS-IoT systems, as stated by the
National Institute for Standards and Technology (NIST) in [1]:

“. . . reflect the varying roles humans may have in CPS/IoT
systems, ranging from user to component, environmental fac-
tor, etc. (for example, for a Level 3 automated vehicle a
passenger is a user, a safety driver is a component, and a
pedestrian is an environmental factor). The interactions of
humans with CPS/IoT systems may be limited to the logical
realm, to the physical realm, or extend to (and link) both.
Because of this diversity of interactional modes, humans are

treated as a distinct component in the CPS/IoT Components
Model.”

CPS-IoT systems can vary wildly in both architecture and
purpose with applications to domains such as the Internet
of Multimedia Things (IoMT) and the internet of healthcare
things (IoHT). This extends to the types of entities in these
systems as well, as noted in [1] - a dense heterogeneity
of entities is one of the core differences between CPS-IoT
systems and standard distributed computing systems.

B. Rules and Operational Policy

Among the technologies introduced to make using CPS-IoT
systems easier to use, one of the most influential would be
the introduction of the event-driven rules model to CPS-IoT
systems [4]. These rules add a sort of reactive intelligence into
the operating logic of the CPS-IoT system and simplify the
cost of building the physical environment (i.e., the time and
effort) by allowing the user to simply write a set of rules to
govern the CPS-IoT system and then leave the enforcement of
said rules to the system [5].

These rules come in the form of Event-Condition-Action
(ECA) rules. According to [5], an ECA rule “autonomously
reacts to actively or passively detected simple or complex
events by evaluating a condition or a set of conditions and
by executing a reaction whenever the event happens, and the
condition is true”. Formally, ECA rules consist of independent
statements in the following format:

ON Event IF Condition DO Action (1)

In CPS-IoT systems, an event is generated by “entities” or
“things” in the physical environment (e.g., the temperature is
75 degrees). A condition is a Boolean trigger constraint on the
rule itself (i.e., the rule will only fire if the condition is true).
Whereas, an action is a control to be enforced on the entity
to which the rule applies (e.g., turn on the fan). Some notable
characteristics of ECA rules are:

1) A rule is activated only by events.
2) Its execution is autonomous and independent of other

rules in the system.
3) It implements a reaction to the incoming event.
4) It contains a guarding condition to execute such actions

A crucial benefit of using rules instead of programming
scripts to control the core operating logic of a CPS-IoT system
is that they can be easily grasped by individuals with no
background in computer science as ECA rules are already in
common use by many application domains [5]. This ubiquity
expands the user base of CPS-IoT systems while also giving
the engineers of these platforms the ability to decouple the
core operating logic from the enforcement system since rules
can be altered on the fly without giving the user access to the
underlying code.

The CPS-IoT systems presented in [3] are repre-
sentative examples of many CPS/IoT systems that uti-
lize ECA rules. This kind of approach is widely used



in the IoT industry with platforms such as Ama-
zon’s IoT platform (https://aws.amazon.com/iot/) and Xively
(https://www.xively.com/) and in CPS-IoT systems research
as seen in our own work [6]–[8]. These systems come with
a number of benefits, such as device virtualization, an elastic
cloud architecture that allows users to change/create building
blocks in their service definition on-demand [2]. They also
contain the ability to dynamically alter the rule set for each
system by allowing the user to manually write the rules and
inject them into the CPS-IoT system.

These kinds of systems were the first to feature a decoupling
of the operational logic from the code itself, allowing users
to change the system on the fly increasing the elasticity of
the CPS-IoT system itself. These types of systems often come
with dynamic rule engines or other artificial intelligence agents
[3], that decouple the operational logic from the system itself
giving it robust elasticity while also making the platform itself
reusable for different application domains.

C. Conflict Detection vs. Management vs. Resolution

In order to clearly define the area around which this research
revolves, we will take a brief look at three closely related,
albeit distinct, areas of operational policy conflict: Conflict
detection, conflict resolution, and conflict management. Ac-
cording to [9], conflict detection is a process that involves
determining whether or not a conflict has or may occur. This
can be done by analyzing the flow of events at the end
device or statically analyzing the rule set for potential conflicts.
Following an occurrence of a conflict, conflict resolution
involves resolving the conflict in a way that mitigates damage
to the system. Principally, both dynamic conflict detection and
resolution are reactive processes that begin after a conflict has
occurred.

By contrast, conflict management is a process that begins
before a conflict has occurred. The general idea for conflict
management involves designing and managing the system in
such a way as to mitigate potential conflicts before they occur
(e.g., by employing avoidance or proactive relaxation of the
rule sets as done in [4]). This may take the form of a policy
language with a cohesive set of design principles that mitigate
potential conflicts or a framework/architecture that enforces
strict relational boundaries between dependent entities.

However, regardless of how proficient the operational policy
conflict management process is for a CPS-IoT system, conflicts
will still occur. The best we can aim for is to mitigate the
largest number of potential conflicts with a well-designed
conflict management system, quickly detect conflicts that do
occur with a well-designed conflict detection system, then
resolve them in a way that presents the least harm to the
system. As will be discussed in the next section, great strides
have been made in adjacent fields addressing operational
policy conflicts such as distributed systems and software-
defined networks with some work being done for CPS-IoT
systems.

III. ON CONFLICT DETECTION IN THE LITERATURE

In this section, we will present an analysis of the work
done in related fields regarding policy conflict detection. Our
aim with this analysis is to present a summary of the key
insights, objectives, and methods of addressing policy conflict
detection pioneered by these fields. This analysis will allow us
to gain an understanding of how operational policy conflicts
are currently being detected and will allow us to approach the
topic of conflict resolution with a solid base of understanding.
We will start this analysis with an overview of research from
the field of distributed systems.

A. Analysis of Conflict detection in Distributed Systems

In the field of distributed systems, the problem of detecting
and resolving conflicts in instructions sent between systems is
an old problem with some of the first publications regarding
this problem being made in the 1990s by M. Sloman et. al.
[9]–[11]. At its core, CPS-IoT systems are distributed systems.
As such, reviewing the research done by M. Sloman and N.
Dunlop [12], [13] may give us valuable insight into how to
approach this problem for CPS-IoT systems.

In [16], Sloman et. al provides a number of useful defini-
tions for what they consider policy in the distributed systems
space. ”Policies are rules governing the choices in the behavior
of a system” [9]. According to Sloman et. al [16], [18], the
following are the main types of policies in a distributed system:
Obligation policies are ECA rules that can be used to define
adaptable management actions. These policies thus define the
conditions for performing a wide range of management actions
such as changing the Quality of Service, when to perform
storage server backups, registering new users in a system, or
installing new software. Authorization policies are used to
define what services or resources a subject (management agent,
user or role) can access.

The general idea presented in [10] is to take action as far
as possible on the basis of general policies, not of particular
cases. This implies the generation of policies that apply to
abstractly defined situations, and to groups of components and
users of the system rather than individual units. For example,
the same policy may apply to all people in a department or to
the set of files pertaining to an application. This idea is further
expanded in [19] with the introduction of policy roles. The
general idea of policy roles is to constrain potential conflicts of
modalities by assigning an object a policy role or a relationship
role. This role could be inherited by sub-classes, allowing for
similar objects to share policies.

In [17], Sloman et. al further expands upon their previous
work by introducing the idea of hierarchical policies. This
innovation allows the user to specify something similar to a
meta-policy that can be broken down into specific sub-policies
automatically by the policy management system. This work
also introduces the idea of management action policies which
we believe is a precursor to the concept of ”operational”
policy found in CPS-IoT today. The authors further define
the types of policies that are of core interest to conflict
analysis in distributed systems: ”Management action policies



Fig. 2. A graph representation of the different types of policy conflicts from [11]

are the main kind which are of interest to distributed system
management; briefly, they describe a persistent, positive or
negative, imperative or authority for a set of policy subjects
to achieve goals or actions on a set of target objects...”
[11]. It is plain to see how our modern view of operational
policy for CPS-IoT systems was derived from the concept of
Management Action Policies of 30 years prior.

In general, there seems to be no singular definition of
”policy conflict” from our review of the literature, instead,
the common approach is to present a list of conflict classes.
The common classes of policy conflict we have seen can
largely be broken down into two umbrella classes: Static and
dynamic. In [12], [13], the authors define a static conflict as ”a
policy conflict that may occur from conflicting rule sets during
compile time”. Static policy conflicts can be resolved at the
time when a rule set is compiled by applying a wide variety
of methods such as relaxing the rule-set as explained in [12].
Whereas a dynamic, potential conflict is quite unpredictable,
in that it may, or may not, proceed to actual conflict; that is,
the inconsistency may be exposed temporarily, or indeed not
at all [12]. To this day, dynamic policy conflicts represent the
more difficult of the two types to actually detect and resolve.

The concept of Policy conflict was expanded in [11]–[13]
to include additional classes of policy conflicts in distributed
systems as seen in Fig. 2. The major distinction is between
conflict of modalities and conflict of goals. Put simply, a
conflict of modalities refers to whether or not an entity is for-
bidden to execute an action, whereas a conflict of goals occurs
when an entity is told to execute actions with conflicting ends.
Conflicts of modalities can be recognized without reference
to the meaning of the policy goal, whereas conflicts of goals
depend upon the semantics of the goal, or are application-
dependent. This is further expanded upon in [11] with the
following general types of modality conflicts:

1) O+/O- the subjects are simultaneously required and

required not to perform the same actions on the target
objects.

2) A+/A- the subjects are both authorized and forbidden
from performing an action on the target objects.

3) O+/A- the subjects are required but forbidden to perform
the actions on the target objects (obligation does not
imply authorization in our case).

To give a brief example, consider a simple distributed
system where we have a server, a client, and an HVAC
controller. The server has a policy that the controller is to
be turned off after working hours, whereas the client can send
commands to the controller at any time. In this setup, a conflict
of modalities would occur if the client has the policy to turn
the controller on outside of working hours since from the
controller’s perspective it would be both forbidden and obliged
to execute an action. A conflict of goals would occur if the
server tells the HVAC controller to turn on to heat the room
to 75 degrees while the client says to heat the room to 80
degrees. In this instance, both the client and the server agree
that the HVAC controller should be turned on but they disagree
on the end goal of what temperature to reach. In particular,
this would be known as a conflict of duties since we would
have a double overlap between the subject (both policies are
about the HVAC system) and the actions to be taken (turn it
on for a period of time).

In [9], [20], Lupu et al. describe conflict analysis for
management policies, using a tool to conduct offline detec-
tion of conflicts in a large-scale distributed system. Sloman
et. al further expanded their works with Ponder [14] and
Ponder2 [15] which provide a common means of specifying
policies that map onto various access control implementation
mechanisms for firewalls, operating systems, and databases.
It advocates for a de-centralized model of autonomous agents
cooperating with each other and composing into more complex
configurations. The ponder systems were among some of the



first works in developing ontology-based approaches which
use a formal language to specify the policy which allows for
programmatic answers to conflict detection and resolution.

In these papers, Sloman et. al presents many of the cate-
gories and primitives used to discuss policy-based distributed
systems today. In this work, we will be using many of the same
ideas originally presented in these works while also adapting
them to the field of CPS-IoT.

B. On Policy Conflict in Software-Defined Networks

Next, we will give a summary of some of the works
regarding policy conflict in the field of Software-Defined
Networks (SDN). There have been several attempts to classify
policy conflicts in the field. In [21], the authors deal with
the packet classification and filter conflict detection problem.
They use a KD tree [22] to verify if two rules apply different
actions on the same packet. This misses out on some conflict
classification types, that involve sub-optimal rules. Fu et al.
[24] manage policies as they apply to IPSec tunnels in both
inter- and intra-domain environments. Hari et al. [23] present
a conflict detection and resolution algorithm using a k-tuple
filter that grows linearly.

FAME [25] is a conflict management environment to detect
and resolve conflicts by using rule-based segmentation. In
FAME, the authors used a matrix to represent conflicting
and non-conflicting address segments; but fails while trying
to represent larger rule sets. In [26], the authors proposed a
formalization of conflict detection for firewalls, but constrained
themselves to only look at rules where the actions are different;
as such, Fame cannot address conflicts of goals as discussed
earlier.

Rei [27] is a language based on deontic logic [28] that
defines security policies as possible actions on a resource.
All policies in Rei are free of conflicts due to the presence
of meta-policies defined by an administrator, which are used
to resolve conflicts. If a meta-policy that covers the conflict
does not exist, by default the deny action is prioritized. While
this method may have sufficient results in SDN, we have
our doubts about its usefulness in CPS-IoT as the dense
heterogeneity of the domain would lead to meta-policies just
as complex as the base operational policy. We do however
think that an investigation into a simpler representation of the
operational policy for CPS-IoT is worthwhile. We have found
some works in CPS-IoT that adopt a similar approach while
not quite leaning into a full meta-policy approach.

Following this idea, Fang [29] is a tool that reads vendor-
specific configuration files and converts them into an internal
representation, which is then presented to the administrator in
a tabular form in simple text. While it is a step in the right
direction, it does not display any relation between conflicting
rules. The onus is on an experienced administrator to submit
the right query that would present the conflict. PolicyVis [30]
used overlapping bars to represent conflict types, and colors
to represent the action. However, the conflicts are visible only
when a certain scope is defined. A sunburst visualization is
used in [31] to visualize the rule set but does not provide

any visualization for flow rule conflicts. None of the above
works, provide scalable rule conflict visualization that provides
high-level conflict categorization, with granular information
provided to the administrator.

Pyretic [32], is a high-level language written in Python
courtesy of the Frenetic project [33], which allows users to
write modular applications. Modularization ensures that rules
installed to perform one task do not override other rules.
Using a mathematical modeling approach to packet processing,
Pyretic compares the list of rules as functions that use a packet
as an input, and have a set of zero or more packets as output.
Given its mathematical base, Pyretic deals effectively with
direct policy conflicts, by placing them in a prioritized rule
set much like the OpenFlow flow table. However, indirect
security violations or inconsistencies in a distributed SDN
environment cannot be handled by Pyretic without a flow
tracking mechanism such as the one discussed in [34].

VeriFlow [35] is a proposed layer between the controller
and switches that conducts real-time verification of rules being
inserted. It uses search rules based on Equivalence Classes
(ECs) to maintain relationships and determine which policies
would be affected in case of a change. Thus, it can verify
that flow rules being implemented have no errors due to
their dependence on faulty switch firmware, control plane
communication, reachability issues, configuration updates on
the network, routing loops, etc. Like VeriFlow, NetPlumber
[36] sits between the controller and switches. Using header
space analysis [37], it ensures that any update to a policy
is compared to all dependent policies to prevent and report
violations.

In [38], [39], the authors present a Hierarchical Flow Tables
(HFT) framework that organizes SDN rules in an OpenFlow
switches’ flow tables (which is addressed as “policy” in this
work) into trees. It then abstracts the OpenFlow switch’s
actions to ease the traffic engineering tasks like “guaran-
tee minimum bandwidth”, each tree node can independently
choose the action to perform on a packet. Conflicts in different
parts of the tree are resolved with user-defined conflict-
resolution operators situated at each node of the tree. The
target application is derived from the policy trees and the
actions on traffic supported by HFT, which include: admission
control, guaranteed minimum bandwidth, and “don’t care”.

Our brief overview of some of the recent work in SDN
research reveals that the area tends to aim directly at conflict
resolution at the price of constraining the application domain
of the solution proposed. Each of these works chooses some
specific applications that cause conflicts and tries to solve the
problem in its own way. While this philosophy of approach
has yielded useful results, we believe that this approach will
prove difficult in CPS-IoT due to the heterogeneity of its
application domains, potential policies, and CPS-IoT system
configurations. For instance, a social-IoT system for home and
building automation will look very different from an industrial-
IoT system. In order to truly address a policy conflict in
CPS-IoT we need to know: why it happens, what class it
belongs to, which factors influence its occurrence, and how.



We assume a broader understanding of conflict to be essential
for an effective holistic conflict-handling strategy. Therefore,
we prefer a layered approach focusing on a synthesis of both
static and dynamic conflict detection on a broad scale and
taking the step toward further handling (resolution, avoidance,
application design) based on a more thorough understanding
of interference between applications’ intents.

IV. OVERVIEW OF CONFLICT DETECTION METHODS IN
CPS-IOT

In general, CPS-IoT conflict detection methods can be
described using the following four main classes: a) “Rule-
Based”, b) ”Formal Methods-based” c) “Ontology-Based”,
and d) “Application-Based”. In a rule-based system, CPS-
IoT services are expressed as a coherent operational policy
using a collection of rules, typically ECA rules, as discussed
previously. Whereas methods that use a formal approach,
rely on an inner calculus or logic-based procedure then look
for contradictions in the operational policy to determine if
a conflict has occurred. In an ontology-based system, the
operational policy can be defined as a specification of the
conceptualization of a domain. Ontology-based frameworks
enable the representation of knowledge through the use of
well-defined semantic and syntactic rules. Ontologies are col-
lections of domain knowledge encoded using axioms, natural
language labels, synonyms, and definitions. They facilitate
the creation of reusable entities and relations among devices,
events, and activities in a CPS-IoT system. In an ontology-
based approach, a conflict is defined as an interference with
the user’s preferences or when post-conditions for initiating
an event conflict with preconditions of a happening event.
Application-based work is concerned with resolving inter-
application conflicts; the presence of multiple apps controlling
the same actuator or device results in potentially undesirable
interactions. For instance, in a smart home, the owner has
two apps: one that sounds an alarm when smoke is detected,
and another that unlocks the doors. Additionally, the same
owner installed an app that automatically locks the door when
the homeowner leaves the house. Even after these apps were
safely installed, they interact unexpectedly, resulting in inter-
app conflicts.

A. Analysis of Rule-Based Conflict detection Methods in the
Literature

In [49], the authors propose a static-conflict detection
method that uses a generic knowledge graph model to rep-
resent the relationships between ECA rules defining IoT ser-
vices and environmental properties. The proposed algorithms
identify overlapping event pairs in the graph and the resulting
direct and indirect conflicts. The algorithm performs well on
a small number of real-world and synthetic data-sets, but
the authors only evaluated their proposed work statically on
predefined rules. The paper does not demonstrate the impact
of rules in a real-time setting.

In [50], the authors present a dynamic conflict detection
method that employs a framework for detecting and resolving

conflicts via a weighted-priority scheduling algorithm. The
proposed work captures and prioritizes events generated by
heterogeneous systems in a smart home environment and
utilizes a weighted scheduling algorithm to detect and resolve
conflicts. If two ECA rules are in direct or indirect conflict,
the event associated with the highest-priority rule condition is
scheduled and triggered first. The work assigns a predefined
priority to events and executes them accordingly. Although
simple, choosing one of the conflicting events based on a fixed
priority is not satisfactory since the appropriate action often
does depend on the overall context. As such this method would
struggle with a ”conflict of goals” as discussed in section 3.1.

In [51], the authors developed a framework for detecting
ECA mashup service conflicts in a smart home environment.
The proposed mechanism defines a context descriptor for each
mashup service instance that includes the following properties:
Instance IoT service, which performs actions when the mashup
service is processed; Context condition, which is impacted
by the instance; and Direction, i.e., the direction of context
change. As an illustration, consider the use of an air purifier
as a mashup service for the home environment. When it is
activated, indoor air quality improves. “Air purifier” is an
instance, “indoor air condition” is the context, and “improves”
is the direction in this example. The service conflicts are then
identified by tracking context descriptors associated with the
mashup service chains. The primary disadvantage of the pro-
posed work is that the service conflicts are detected statically
via context descriptors; the proposed work does not address
dynamic conflict detection.

The authors of [52], [65] proposed a static conflict detection
module that identifies predefined relationships between rules
and uses these relationships to classify rule conflicts. A rule
database is defined in an XML format and includes a rule
table, a location tree, and an authority tree to filter out useless
information to further improve detection efficiency. The work
proposed achieves higher efficiency in comparison to that of
other similar works. However, the work is based on static
rule checking of simple rules and is incapable of detecting
conflicts between complex policies. Moreover, the rule-parsing
technique frequently produces inefficient results in recognizing
actual conflicts.

Likewise [52], [65], [66], [66], [67], propose a rule veri-
fication mechanism based on a probabilistic analysis to de-
termine the possibility of rule conflicts and anomalies. There
are many studies on detecting conflicts in a Home Network
System (HNS), as presented in [54]–[56], and [57], where each
appliance was modeled as an object consisting of properties
and methods. The behavior of an appliance is defined by
state transition rules that include pre and post-conditions.
Feature interactions are defined as conflicts between integrated
services. These works consider feature interaction conditions
in Linear Temporal Logic (LTL) formulas and validate them
against HNS services. They consider both offline and online
feature interactions. [56] proposed a classification of these
feature interactions and resolution schemes for each type of
interaction.



B. Analysis of Formal Methods-based Conflict Detection
Methods in the Literature

The works seen in [68], [69] were based on a core calculus
for IoT Automation that generalizes ECA rules for home
automation apps. IOTA [68] involved the development of the
first calculus for the domain of home and building automation.
The evaluation part of that work includes conflict detection
as one of the possible uses of the calculus by developing an
analysis for determining when an event can trigger two con-
flicting actions based on the IOTA core formalism and a study
for determining the root cause of an event’s (non)occurrence.
Their static conflict detection framework is based on a model
checker that takes all the rules and, upon detecting a conflict,
generates traces that detail sample execution, including the
environment’s initial state, the event that triggered the conflict,
and the rules involved.

Another formal method similar to IOTA was presented in
[70] named as dT-calculus and in [71] called mCWQ . The
dT-calculus is a formal method for describing a distributed
mobile real-time IoT system. The authors go over other calculi
in this paper, such as Time pi-calculus and d-Calculus. Time
pi-calculus can specify timing properties; however, time pi-
calculus does not have direct specifications of action execution
time and process mobility, such as ready time, timeouts, and
deadline. d-Calculus allows only a simple type of temporal
requirement to be specified, for instance, a temporal constraint
on the minimum and maximum values. mCWQ is a mobility
calculus that demonstrates how to capture the feature of node
mobility and improve communication quality.

In [72], [73], the authors propose a semi-formal model,
IRIS (Identifying Requirements Interactions using Semi-
formal methods) for defining and detecting policy interac-
tions/conflicts in intelligent homes. The authors introduced
an interaction taxonomy that examined interactions between
policy features other than telecommunications features in var-
ious domains. A run-time module for detecting and resolving
policy conflicts is defined based on simulation techniques.
IRIS’s conflict detection work considered negative impact
conflicts, in which one attribute or feature hurts another, and
override conflicts, in which one attribute or feature overrides
and cancels out the other. The disadvantage of IRIS is that it
does not account for rule dependency and thus cannot detect
direct and indirect dependence conflicts.

The authors of [41] proposed a formal model approach
for dynamic conflict detection that detects conflicts within
the defined rule-set of the IoT system that violate the safety
properties defined in the system. The proposed work detects
conflicts immediately after an event occurs, which may trigger
an action or a series of actions that result in conflicts, and also
demonstrates how conflicts can result in additional actions
being executed, which eventually result in increased energy
consumption.

In [74], the proposed framework detects conflicts as changes
in the environment state that result in an undesirable applica-
tion or user context, as expressed by a Constraint Satisfaction

Problem (CSP). Based on the proposed conflict taxonomy and
a CSP, the authors proposed a framework where the system
context is represented by a set of variables and constraints. The
system for detecting and resolving conflicts consists of four
major modules: a context querier, a CSP solver, a solution
translator, and a decision module. The context querier module
receives context information and any number of context-
related queries, all of which are described as environmental
conditions. It then combines the context queries as additional
conjuncts and converts them to a constraint system for in-
put to the CSP solver module. The solution translator will
receive the results from the CSP solver and convert them to
the environment model’s output format. Finally, the decision
module analyzes the data to determine: a) whether there is
a conflict; b) whether the conflict is solvable or not; and c)
whether the conflict is solvable through the environment or
occupant modification, or a combination of the two.

C. Analysis of Application-based Conflict Detection Methods
in the Literature

IA-GRAPH developed in [58] and IotSan in [79] present
a studies inter-app conflicts in the smart home domain and
adopts an approach in which an app’s transitions are repre-
sented as Satisfiability Modulo Theory (SMT) formulas. Con-
flicts between multiple apps are then detected using an SMT
solver. The advantage of using an SMT solver is that it enables
the generation of model representations that accurately capture
the interactions of device controls in an application’s source
code. However, the approach disregards complex application
logic contained in conditional statements with multiple time
and threshold values; instead, it considers only simple logic
which involves changing the state of a device with a binary
value, i.e., on or off.

There exist several works on detecting and resolving con-
flicts across the CPS-IoT services provided by multiple ap-
plications in the context of smart homes [43], [44], [58],
[80], [85] and in the context of smart cities [42], [86]–[88].
Among these [80], [83], [86], [89] are good examples of
applications that resolve conflicts by assigning priority to
different services based on the domain or administrator’s un-
derstanding of each service, among others. In [43], the authors
propose a framework inspired by the conflict detector work
first presented in [44], which is based on actuation graphs.
Actuation graphs provide a polymorphic abstraction of IoT
actuators and sensors, which is then used to formulate remedial
actions for a given IoT policy conflict. This framework is
evaluated on a set of SmartThings apps in which sensor and
actuator states are binary, i.e., on or off, and the set does not
take into account any thresholds associated with the sensor or
actuator state.

The original framework shown in [44] uses a directed graph
where each node represents a collection of device (or module)
states, and each directed edge represents a ECA relationship.
Further, a node may contain a cascade of conditions (actions)
rather than just one module state. A conflict occurs when a set
of compatible conditions (i.e., conditions that can be satisfied



concurrently) result in mutually exclusive states of the same
device. However, the framework is unable to deal with policies
that represent complex interactions between smart devices and
users.

D. Analysis of Ontology-based Conflict Detection Methods in
the Literature

In [45], the authors proposed a mechanism for detecting
conflicts based on ontology using incomplete rules with a
three-part scheme for resolving the conflicts. The first step is
rule decomposition, which considers conjunctive clauses and
their corresponding disjunctive normal forms to minimize rule
conflicts. Following that, rule relationships are established,
and finally, rule conflict incompleteness is determined using
the relationships. Additionally, this method incorporates rule
integrity to ensure that the sensor range of undefined actions
is not exceeded. Experiments demonstrate that this method
improves the accuracy of conflict detection.

The authors in [46] designed a conflict ontology model that
represents different types of conflicts. A hybrid conflict detec-
tion algorithm is proposed by combining both knowledge and
data-driven approaches to detect conflict among IoT services in
multi-resident smart homes. [59] propose a conflict detection
and resolution framework that performs context analysis based
on an ontology that formally represents the environment’s
conditions.

E. Additional Static and Dynamic Conflict Detection Methods
In [82], [94] the authors developed a static analysis tool

for tracking sensitive data flows as well as finding protection
and safety issues in an IoT application. The developed system
converts the source code of an IoT application (SmartThings
app) to an intermediate representation, extracts a state model
from this intermediate representation, and performs model
checking on IoT applications to identify property violations,
which indicate whether or not an IoT application adheres to
predefined safety and security properties.

Watchdog, the dynamic conflict detection method proposed
in [95], presents an architecture for detecting and resolving
rule conflicts in the context of smart cities based on simulation
and a topology of conflicts that can be detected at run-
time. Watchdog identifies various characteristics of smart city
services that contribute to potential conflicts in smart cities,
including uncertainty, real-time, dynamic behavior of services,
and Spatio-temporal constraints. Along with conflict detection
and resolution, Watchdog’s extension work, CityGuard [42],
specifies additional safety requirements for a smart city. Most
of these works presuppose prior knowledge of the system’s
components and the rules governing its evolution. They do
not propose conflict resolution strategies that are both local
and reusable. On the contrary, they employ globally scalable
identification and resolution mechanisms.

V. ON OPERATIONAL POLICY CONFLICT RESOLUTION
METHODS

There are two basic ways of handling operational policy
conflicts as seen in the literature: a) Avoidance, where poten-

tial conflicts are identified via static analysis (i.e., at design
or initial configuration time) and resolved by changing the
operational policy of the system, and b) Resolution, where
the conflicts are detected at run-time and actions are taken
to ameliorate them [4]. Static analysis tools build a semantic
model of the software at compile time without executing it
and then check various properties of the model as discussed
in Section 3. Static conflict resolution is performed offline,
and it is necessary to identify all conflict types that must be
detected, including conflicts that are evident from the policy
specification and that are not evident from policy specification
but arise as a result of policy dependencies. Because most
subsystems are deployed incrementally, static checking cannot
completely eliminate all conflicts because of the following
factors: a) the subsystem’s operation and interaction with
others continue to evolve as devices are added, removed,
or upgraded; b) static checking must consider all possible
interactions, which can become computationally intractable as
the number of device inter-dependencies grow; and c) many
statically identified (potential) conflicts may require highly
unlikely or even unrealizable scenarios, and thus trying to
avoid their many perfectly reasonable sets of actions would
thereby handicap the system substantially. Finally, in a multi-
party environment, it is not even possible to do a static analysis
unless all parties are willing to share their detailed operational
semantics and agree to make the identified changes.

In contrast, Dynamic resolution can operate in multiple
ways, the extreme case being where conflicts are checked
dynamically for each action, and if a conflict situation is
recognized, it is resolved by taking some action, often by
simply blocking one of the conflicting actions or changing
the associated rules. There are several advantages of such a
method over static analysis: First, conflict detection is simpli-
fied in that we only need to check the relevant rules as well
as the safety properties of the affected devices before taking
action, and then block the action (or initiate a counter-action)
so that the conflict is avoided; Second, all encountered con-
flicts can be checked without having to anticipate/enumerate
scenarios in advance; and finally a corrective measure (such as
blocking/disabling an action) is needed only when the situation
demands it, not as a result of a potential conflict.

However, the detection of conflicts when they are expe-
rienced and a reactive resolution can be undesirable and
sometimes dangerous in CPS-IoT systems since we effectively
wait until a problem happens, rather than anticipating the
problem and addressing it (if possible). There are two related
approaches to this, which we term as proactive and predictive.

A. Proactive Resolution

By proactive, we mean that the system looks ahead over a
specified time duration and examines the likely events based
on current environmental conditions. If possible, these con-
flicts can be resolved proactively by modifying the operational
policy associated with the involved entities. The proactive
model needs to identify the events that can occur in the near
future based on the environmental context, the current state



of all related entities and natural processes (such as light
levels or temperature), and possibly the history of previous
events. Apart from higher complexity, the proactive method
necessarily introduces uncertainty: the predicted/anticipated
conflict may not actually occur in which case the corrective
action becomes unnecessary. There is an obvious (but difficult
to characterize) trade-off between how far in advance we
analyze the conflicts (say, time ∆t) and the corresponding false
positive and false negative rates. Yet another difficulty is the
characterization of likely events based on current conditions
during the time ∆t. If ∆t is sufficiently small, it is reasonable
to assume that no new events will occur, and the dynamics of
the system will be governed by what is currently ongoing.

For example, if the smoke density is currently increasing
due to something burning, we assume that this will continue.
Similarly, if a car is getting closer to the one ahead, this will
continue. Obviously, such assumptions become increasingly
untenable as ∆t increases, but there is also uncertainty about
what actions may or may not occur as a result, and these
would also need to be predicted. Furthermore, if a new event
or action does occur, we need to somehow transition from the
current evaluation to a new one that takes the new situation
into account (e.g., start over entirely or determine what aspects
of the prediction may have changed). A formal analysis of
the system is essential to detect existing conflicts, anticipate
potential conflicts in the future, or determine actions to resolve
or avoid the conflict. The basic analysis techniques needed
for this are much broader and can also be used to check
other properties of the CPS-IoT system. Other than operation,
this also includes access-related properties, provided that the
formulation also includes allowed or disallowed accesses.

B. Predictive Resolution

By predictive, we mean a mechanism that observes the
behavior of the system over time and perhaps over multiple
occurrences of a similar sequence of events and actions
and learns from them. The key distinction between this and
proactive is that: a) predictive is not necessarily tied to short
time-window behavior that we exploit in the proactive method;
and b) predictive-based decisions are based on multiple oc-
currences of similar situations, rather than on the short-term
environmental context of the situation. This would lend itself
very well to the growing influence of AI algorithms in CPS-
IoT systems as prediction is a task that they do very well.

To the best of our knowledge, there are no works that
exploit prediction in this sense for conflict resolution pur-
poses; however, many works attempt to predict user behavior
in a CPS-IoT system. These and related mechanisms could
potentially be integrated with conflict detection and resolu-
tion to provide this class of solutions. In [96], the authors
proposed a framework, FORTNIoT, for making intelligible
future predictions by combining self-sustaining predictions
(e.g., weather forecasts) and simulations of associated ECA
rules, to ascertain when these rules will trigger in the future
and what state changes they will cause to connected, intelligent
home entities; however, this study falls short of detecting

conflicts during the prediction of future activities in a smart
home.

Numerous algorithms were developed to predict the user’s
behavior in a smart home. For instance, a user typically
awakens at 8 a.m. and immediately operates the toaster on
weekends. Any method for predicting user behaviors should
mine the user’s behavior from such operation records and
return it to the smart home control center. If tomorrow is a
weekend, the system will ask the user one day in advance
whether they require assistance with using the toaster at 8 a.m.
In [97], the authors proposed an algorithm for Unsupervised
User Behavior Prediction (UUBP) that utilizes an Artificial
Neural Network (ANN) to learn user behavior along with
an innovative update strategy that integrates an Ebbinghaus
forgetting factor [125]. Further, a Forgetting Curve is proposed
to eliminate the influence of infrequent and out-of-date oper-
ation records generated by the user. This can help to mitigate
the impact of out-of-date records on the prediction process,
resulting in predictive behaviors that are more consistent with
recent user behaviors. This work detects and resolves the
conflicts in user behavior records that might trigger the same
actuator simultaneously.

In [98], the authors developed a model based on a Long
Short Term Memory (LSTM) network to predict Activity of
Daily Living (ADL), or the next activity that may occur after
the user’s current activity. [99] presented a comprehensive
survey of prediction algorithms proposed in the literature for
smart environments. The algorithms presented predict future
events based on historical data drawn from sensors and smart
devices to reduce the likelihood of malicious events occurring.
This paper introduces the system models and data that are
commonly used in smart prediction algorithms and discusses
their features, strengths, and weaknesses in detail.

VI. FUTURE CHALLENGES IN CONFLICT DETECTION AND
RESOLUTION

Despite a significant quantity of research on the topics
surveyed in this paper, numerous challenges remain. In this
section, we provide a brief overview of these key challenges.
First, A significant gap in previous works is represented by the
inability to resolve conflicts proactively. The proposed proac-
tive conflict detection and resolution strategy are discussed in
detail in the previous section. [82], [84] considered a static
analysis to check whether a collection of IoT apps working
together adheres to identified safety, security, and functional
properties. Further work was done in [44], [50], [89] to adapt a
dynamic conflict resolution strategy by analyzing the run time
behavior of an IoT application and blocking the action of an
IoT app that violates defined safety and security policies.

The primary drawback of such an approach is that it may
have undesirable physical consequences. For instance, suppose
that a door should be unlocked only for a security service when
the user is away for a vacation. A policy that disables the
unlock-door state to resolve a conflict prevents the security
service from entering the house, which may or may not be
desirable depending on the circumstances. Much of the work



that dynamically resolves conflicts (e.g., [100]) allows the user
to specify policies that govern the collective behavior of the
IoT applications. This presents a significant challenge in a
complex IoT environment. An incorrect policy specification
may prevent legitimate states, fail to block unsafe and insecure
states, or conflict with another policy. However, when a
proactive conflict analysis strategy is used, the operational
policies or rules defined for each subsystem are checked for
the occurrence of intra-subsystem conflicts.

One major issue that remains unaddressed mainly is the
classification of conflicts in terms of their impact on the
system’s functioning. As discussed earlier, a “conflict” can
be defined in many ways, and in general, it merely indicates
something undesirable. The impact of the conflicts can range
from minor resource inefficiency (e.g., lights being on when
no one is around), to user inconvenience (e.g., temperature
or luminance moderately outside the comfortable range), to
detrimental (e.g., unauthorized entry allowed), to disastrous
(e.g., a person trapped during a fire).

Learning such a classification automatically remains a chal-
lenge. A related issue is that some of the priorities may depend
on the context rather than being static. A fundamental question
that still needs more work is defining or characterizing the
conflicts. As discussed earlier, many characterizations exist,
and they all have pros and cons. For example, defining
conflicts via (violation of) safety properties is very general.
We can consider almost any type of requirement as a safety
property and then enforce it using the methods discussed
in this paper. Yet, it raises two questions: a) how do we
come up with safety properties, and b) how do we know
whether we covered all essential safety properties? Neither of
these questions are well-formed, and thus cannot be answered
without further specification.

Many authors characterized conflicts in terms of generic
relationships between commands issued to one or more ac-
tuators. Nevertheless, a comprehensive specification of such
generic situations can help identify or verify the safety prop-
erties. For example, if a specified safety parameter does not
result in any of these generic situations, then it may be
regarded as illegitimate. Moreover, suppose the system does
enter a state that, in retrospect, is considered to be undesirable.
In that case, it is helpful to consider which of these generic
properties are violated and accordingly formulate a new safety
parameter.

Finally, a major challenge in the field concerns the integra-
tion of AI algorithms with CPS-IoT systems. This particular
problem presents a suitable area for further research, and
yet as far as we have seen in the literature there is a lack
of proposals that can work with the predictive algorithms
methods discussed to resolve potential conflicts in CPS-IoT
systems. This is in addition to the general lack of proactive
methods as well. Many of the methods that we have shown in
this paper mainly focus on conflict detection or formal analysis
of policy conflict. While conflict resolution remains a hot area
of research, it is our position that research needs to be done
in integrating methods that tackle the problem of proactive

and predictive conflict resolution in a large-scale, real-time,
CPS-IoT system.

VII. CONCLUSION

In this paper, we presented a survey of works regarding
operational policy conflict detection and resolution in CPS-
IoT systems. We believe that, by studying this problem in a
more general scope, we can illuminate the discussion of this
issue in our specific context. We believe that future work in
this domain should revolve more closely around integrating
intelligent algorithms that take advantage of an ensemble
approach. Such a method should be able to handle both static
and dynamic conflicts as well as both conflicts of modality
and goals. The works presented in section 4.2 go a long
way toward conflict resolution in the conflict of goals case
as we hypothesize that conflicts of goals can be correlated
to predicted user behaviors. For example, if a user usually
feels cold around 60 degrees then they are likely to want the
heater turned on. This may conflict with current operational
policy when the user gives a command for the heater to turn
on. This can be further extended in a social context as if
more people are in the room it will naturally increase the
temperature. As such, more research is needed in operational
policy conflict detection and resolution in order to aid the user
in efficiently designing the complex operational policies that
govern the operation of the CPS-IoT system while giving them
the flexibility to change the rules, add new devices, or modify
the system without forcing them to shut down the system to
redesign or add components.

REFERENCES

[1] D. W. C. Greer, M. Burns and E. Grior, ”Cyber-physical systems and
internet of things,” Tech. Rep. NIST.SP.1900-202, National Institute for
Standards and Technology, 2019.

[2] R. Baheti and H. Gill, ”Cyber-physical systems,” tech. rep., IEEE
Control Systems Society, February 2011.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, ”Edge Computing: Vision
and Challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[4] Kant, Krishna and Pradeep Kumar, Pavana. (2022). Conflict Detection
and Resolution in IoT Systems: A Survey. IoT. 3. 10.3390/iot3010012.

[5] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz and L. Gurgen, ”ECA
Rules for IoT Environment: A Case Study in Safe Design,” 2014 IEEE
Eighth International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, 2014, pp. 116-121, doi: 10.1109/SASOW.2014.32.

[6] J. Hall and R. Iqbal. 2017. “CoMPES: A Command Messag-
ing Service for IoT Policy Enforcement in a Heterogeneous Net-
work,” In Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation (IoTDI ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 37–43.
DOI:https://doi.org/10.1145/3054977.3054988

[7] R. Iqbal, J. Lee and J. Hall, ”A Cloud Middleware Enabling
Natural Speech Analysis for IoT Policy Enforcement in Smart
Home Environments,” 2018 IEEE International Congress on Inter-
net of Things (ICIOT), San Francisco, CA, 2018, pp. 184-187, doi:
10.1109/ICIOT.2018.00035.

[8] R. Iqbal, J. Hall, J. H. Lee, A. Islam, “Enabling real-time audio-
video inputs for Internet of Things operational policy enforcement,”
Internet of Things, Volume 6, 2019, 100041, ISSN 2542-6605,
https://doi.org/10.1016/j.iot.2019.02.001.

[9] E. C. Lupu and M. Sloman, ”Conflicts in policy-based distributed
systems management,” in IEEE Transactions on Software Engineering,
vol. 25, no. 6, pp. 852-869, Nov.-Dec. 1999, doi: 10.1109/32.824414.



[10] M. Sloman, ”Policy driven management for distributed systems,” J Netw
Syst Manage 2, 333–360 (1994). https://doi.org/10.1007/BF02283186

[11] Jonathan D. Moffett and Morris S. Sloman (1994) ”Policy conflict
analysis in distributed system management”, in Journal of Organizational
Computing, 4:1, 1-22, DOI: 10.1080/10919399409540214

[12] N. Dunlop, J. Indulska and K. Raymond, ”Dynamic conflict detec-
tion in policy-based management systems,” Proceedings. Sixth Inter-
national Enterprise Distributed Object Computing, 2002, pp. 15-26, doi:
10.1109/EDOC.2002.1137693.

[13] N. Dunlop, J. Indulska and K. Raymond, ”Methods for conflict resolu-
tion in policy-based management systems,” Seventh IEEE International
Enterprise Distributed Object Computing Conference, 2003. Proceed-
ings., 2003, pp. 98-109, doi: 10.1109/EDOC.2003.1233841.

[14] Damianou, N., Dulay, N., Lupu, E., Sloman, M. (2001). The Ponder
Policy Specification Language. In: Sloman, M., Lupu, E.C., Lobo, J.
(eds) Policies for Distributed Systems and Networks. POLICY 2001.
Lecture Notes in Computer Science, vol 1995. Springer, Berlin, Heidel-
berg. https://doi.org/10.1007/3-540-44569-2

[15] K. Twidle, N. Dulay, E. Lupu and M. Sloman, ”Ponder2: A Policy Sys-
tem for Autonomous Pervasive Environments,” 2009 Fifth International
Conference on Autonomic and Autonomous Systems, 2009, pp. 330-
335, doi: 10.1109/ICAS.2009.42.

[16] Damianou, Nicodemos and Bandara, Arosha and Sloman, Morris and
Lupu, Emil. (2002). A Survey of Policy Specification Approaches.

[17] J. D. Moffett and M. S. Sloman, ”Policy hierarchies for distributed sys-
tems management,” in IEEE Journal on Selected Areas in Communica-
tions, vol. 11, no. 9, pp. 1404-1414, Dec. 1993, doi: 10.1109/49.257932.

[18] Lupu, E., Sloman, M. (1997). Conflict Analysis for Management Poli-
cies. In: Lazar, A.A., Saracco, R., Stadler, R. (eds) Integrated Network
Management V. IM 1997. IFIP — The International Federation for Infor-
mation Processing. Springer, Boston, MA. https://doi.org/10.1007/978-
0-387-35180-3

[19] Lupu, E., Sloman, M. (1997). Conflict Analysis for Management Poli-
cies. In: Lazar, A.A., Saracco, R., Stadler, R. (eds) Integrated Network
Management V. IM 1997. IFIP — The International Federation for Infor-
mation Processing. Springer, Boston, MA. https://doi.org/10.1007/978-
0-387-35180-3

[20] E. Lupu and M. Sloman, “Conflict Analysis for Management Policies,”
in Integrated Network Management V, ser. IFIP - The International
Federation for Information Processing. Springer, 1997, pp. 430–443. 121

[21] D. Eppstein and S. Muthukrishnan, “Internet Packet Filter Management
and Rectangle Geometry,” in Proceedings of the 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’01). Society for
Industrial and Applied Mathematics, 2001, pp. 827–835.

[22] J. L. Bentley, “Multidimensional Binary Search Trees Used for Asso-
ciative Searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[23] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter
Conflicts,” in Proceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2000), vol.
3. IEEE, 2000, pp. 1203–1212.

[24] 24] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C.
Xu, “IPSec/VPN Security Policy: Correctness, Conflict Detection, and
Resolution,” in Proceedings of the International Workshop on Policies
for Distributed Systems and Networks (POLICY 2001), ser. Lecture
Notes in Computer Science, vol. 1995. Springer, 2001, pp. 39–56.

[25] H. Hu, G.-J. Ahn, and K. Kulkarni, “Fame: A Firewall Anomaly
Management Environment,” in Proceedings of the 3rd ACM Workshop
on Assurable and Usable Security Configuration (SafeConfig ’10). ACM,
2010, pp. 17–26.

[26] V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formal Correctness
of Conflict Detection for Firewalls,” in Proceedings of the 2007 ACM
Workshop on Formal Methods in Security Engineering (FMSE ’07).
ACM, 2007, pp. 22–30.

[27] L. Kagal, “Rei: A Policy Language for the Me-Centric Project,” HP
Laboratories, Palo Alto, Technical Report, 2002.

[28] G. H. v. Wright, “Deontic Logic,” Mind, vol. 60, no. 237, pp. 1–15,
1951.

[29] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis Engine,”
in Proceedings of the 2000 IEEE Symposium on Security and Privacy.
IEEE, 2000, pp. 177–187.

[30] T. Tran, E. S. Al-Shaer, and R. Boutaba, “PolicyVis: Firewall Security
Policy Visualization and Inspection,” in LISA, vol. 7, 2007, pp. 1–16.

[31] F. Mansmann, T. Gbel, and W. Cheswick, “Visual Analysis of Com-
plex Firewall Configurations,” in Proceedings of the 9th International
Symposium on Visualization for Cyber Security. ACM, 2012, pp. 1–8.

[32] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, and others,
“Composing Software-Defined Networks,” in Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI ’13). USENIX Association, 2013, pp. 1–13.

[33] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. Walker, “Frenetic: A Network Programming Language,”
in Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’11), vol. 46. ACM, 2011, pp. 279–291.

[34] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing Network-Wide Policies in the Presence of Dynamic Mid-
dlebox Actions Using Flowtags,” in Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’14). USENIX Association, 2014.

[35] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying Network-Wide Invariants in Real Time,” in Proceedings of
the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13). USENIX Association, 2013, pp. 15–27.

[36] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S.
Whyte, “Real Time Network Policy Checking Using Header Space Anal-
ysis,” in Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13). USENIX Association,
2013, pp. 99–111.

[37] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis:
Static Checking for Networks,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’12). USENIX Association, 2012, pp. 113–126.

[38] A.D. Ferguson, A. Guha, C. Liang, R. Fonseca and S. Krishnamurthi,
”Hierarchical policies for software defined networks”, Proceedings of
the first workshop on Hot topics in software defined networks, pp. 37-
42, 2012.

[39] C. N. Tran and V. Danciu, ”On Conflict Handling in Software-
Defined Networks,” 2018 International Conference on Advanced
Computing and Applications (ACOMP), 2018, pp. 50-57, doi:
10.1109/ACOMP.2018.00016.

[40] Huang, B.; Dong, H.; Bouguettaya, A. Conflict Detection in IoT-based
Smart Homes. arXiv 2021, arXiv:2107.13179.

[41] Al-Farooq, A.; Al-Shaer, E.; Kant, K. A Formal Method for Detecting
Rule Conflicts in Large Scale IoT Systems. In Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2019), Washington, DC, USA, 8–12 April 2019.

[42] Ma, M.; Preum, S.M.; Stankovic, J.A. Cityguard: A watchdog for safety-
aware conflict detection in smart cities. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implemen-
tation, Pittsburgh, PA, USA, 18–21 April 2017; pp. 259–270.

[43] Liu, R.; Wang, Z.; Garcia, L.; Srivastava, M. RemedioT: Remedial
actions for internet-of-things conflicts. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, New York, NY, USA, 13–14 November 2019
; pp. 101–110.

[44] Celik, Z.B.; Tan, G.; McDaniel, P.D. IoTGuard: Dynamic Enforcement
of Security and Safety Policy in Commodity IoT; NDSS: San Diego,
CA, USA, 2019.

[45] Shah, T.; Venkatesan, S.; Ngo, T.; Neelamegam, K. Conflict detection
in rule based IoT systems. In Proceedings of the 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019
; IEEE: Piscataway, NJ, USA, 2019; pp. 0276–0284.

[46] Chaki, D.; Bouguettaya, A.; Mistry, S. A Conflict Detection Frame-
work for IoT Services in Multi-resident Smart Homes. arXiv 2020,
arXiv:cs.CY/2004.12702.

[47] Abusafia, A.; Bouguettaya, A. Reliability Model for Incentive-Driven
IoT Energy Services. arXiv 2021, arXiv:cs.DC/2011.06159.

[48] Lakhdari, A.; Bouguettaya, A.; Mistry, S.; Neiat, A.G.; Suleiman, B.
Elastic Composition of Crowdsourced IoT Energy Services. arXiv 2020,
arXiv:cs.DC/2011.06771.

[49] Huang, B.; Dong, H.; Bouguettaya, A. Conflict Detection in IoT-based
Smart Homes. arXiv 2021, arXiv:2107.13179.

[50] Perumal, T.; Sulaiman, M.N.; Datta, S.K.; Ramachandran, T.; Leong,
C.Y. Rule-based conflict resolution framework for Internet of Things
device management in smart home environment. In Proceedings of the
2016 IEEE 5th Global Conference on Consumer Electronics, Kyoto,



Japan, 11–14 October 2016 ; IEEE: Piscataway, NJ, USA, 2016; pp.
1–2.

[51] Oh, H.; Ahn, S.; Choi, J.K.; Yang, J. Mashup service conflict detection
and visualization method for Internet of Things. In Proceedings of the
2017 IEEE 6th global conference on consumer electronics (GCCE),
Nara, Japan, 9–12 October 2018; IEEE: Piscataway, NJ, USA, 2017;
pp. 1–2.

[52] Sun, Y.; Wang, X.; Luo, H.; Li, X. Conflict detection scheme based on
formal rule model for smart building systems. IEEE Trans. Hum.-Mach.
Syst. 2014, 45, 215–227.

[53] Ahmed, M.O.; Elfaki, S.E.E. Adaptation Conflicts of Heterogeneous
Devices in IOT Smart-Home. Am. Acad. Sci. Res. J. Eng. Technol.
Sci. 2021, 81, 64–78.

[54] Nakamura, M.; Igaki, H.; Matsumoto, K.I. Feature interactions in
integrated services of networked home appliances. In Proceedings of the
International Conference on Feature Interactions in Telecommunication
Networks and Distributed Systems (ICFI’05) , Leicester, UK, 28–30
June 2005; pp. 236–251.

[55] Leelaprute, P.; Matsuo, T.; Tsuchiya, T.; Kikuno, T. Detecting fea-
ture interactions in home appliance networks. In Proceedings of the
2008 Ninth ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing,
Phuket, Thailand, 6–8 August 2008 ; IEEE: Phuket, Thailand, 2008; pp.
895–903.

[56] Leelaprute, P. Resolution of feature interactions in integrated services
of home network system. In Proceedings of the 2007 Asia-Pacific
Conference on Communications, Bangkok, Thailand, 18–20 October
2007 ; IEEE: Bangkok, Thailand, 2007; pp. 363–366.

[57] Igaki, H.; Nakamura, M. Modeling and detecting feature interactions
among integrated services of home network systems. IEICE Trans. Inf.
Syst. 2010, 93, 822–833.

[58] Li, X.; Zhang, L.; Shen, X. DIAC: An Inter-app Conflicts Detector for
Open IoT Systems. ACM Trans. Embed. Comput. Syst. (TECS) 2020,
19, 1–25.

[59] Camacho, R.; Carreira, P.; Lynce, I.; Resendes, S. An ontology-based
approach to conflict resolution in Home and Building Automation
Systems. Expert Syst. Appl. 2014, 41, 6161–6173.

[60] Cabitza, F.; Fogli, D.; Lanzilotti, R.; Piccinno, A. Rule-based tools for
the configuration of ambient intelligence systems: A comparative user
study. Multimed. Tools Appl. 2017, 76, 5221–5241.

[61] TASKER For Android. Available online:
https://tasker.joaoapps.com/index.html (accessed on 10 October
2021 ).

[62] BIPIO GRaph API. Available online: https://github.com/bipio-
server/bipio/wiki (accessed on 10 October 2021 ).

[63] WIGWAG SMARTHOME. Available online:
https://www.wigwagapp.com/ (accessed on 10 October 2021 ).

[64] ZIPATILE2. Available online: https://www.zipato.com/ (accessed on 10
October 2021 ).

[65] Sun, Q.; Yu, W.; Kochurov, N.; Hao, Q.; Hu, F. A multi-agent-based
intelligent sensor and actuator network design for smart house and home
automation. J. Sens. Actuator Netw. 2013, 2, 557–588.

[66] Luo, H.; Wang, R.; Li, X. A rule verification and resolution framework
in smart building system. In Proceedings of the 2013 International
Conference on Parallel and Distributed Systems, Seoul, Korea, 15–18
December 2013; IEEE: Seoul, Korea, 2013; pp. 438–439.

[67] Maternaghan, C.; Turner, K.J. Policy conflicts in home automation.
Comput. Netw. 2013, 57, 2429–2441.

[68] Newcomb, J.L.; Chandra, S.; Jeannin, J.B.; Schlesinger, C.; Sridharan,
M. IOTA: A calculus for internet of things automation. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Vancouver,
BC, Canada, 25–27 October 2017 ; pp. 119–133.

[69] . Bak, N.; Chang, B.M.; Choi, K. Smart block: A visual programming
environment for smartthings. In Proceedings of the 2018 IEEE 42nd
Annual Computer Software and Applications Conference (COMPSAC),
Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 32–37.

[70] Sen, J. Internet of Things: Technology, Applications and Standardiza-
tion; BoD–Books on Demand: Norderstedt, Germany, 2018.

[71] Xie,W.; Zhu, H.;Wu, X.; Vinh, P.C. Formal verification of mCWQ using
extended Hoare logic. Mob. Netw. Appl. 2019, 24, 134–144.

[72] Shehata, M.; Eberlein, A.; Fapojuwo, A. Using semi-formal methods
for detecting interactions among smart homes policies. Sci. Comput.
Program. 2007, 67, 125–161.

[73] Shehata, M.; Eberlein, A.; Fapojuwo, A.O. A taxonomy for identifying
requirement interactions in software systems. Comput. Netw. 2007, 51,
398–425.

[74] Carreira, P.; Resendes, S.; Santos, A.C. Towards automatic conflict
detection in home and building automation systems. Pervasive Mob.
Comput. 2014, 12, 37–57.

[75] Android Things Website. Available online:
https://developer.android.com/things (accessed on 10 October 2021 ).

[76] SAMSUNG Smartthings. Available online: https://www.samsung.com
(accessed on 10 October 2021 ).

[77] Apple Homekit 2021. Available online:
https://www.apple.com/shop/accessories/all/homekit (accessed on
10 October 2021 ).

[78] OpenHAB 2021. Available online: https://www.openhab.org/ (accessed
on 10 October 2021 ).

[79] Shen, X.; Zhang, L.; Li, X. A Systematic Examination of Inter-App
Conflicts Detections in Open IoT Systems; Technical Report; North
Carolina State University, Department of Computer Science: Raleigh,
NC, USA, 2017.

[80] Liang, C.J.M.; Karlsson, B.F.; Lane, N.D.; Zhao, F.; Zhang, J.; Pan, Z.;
Li, Z.; Yu, Y. SIFT: Building an internet of safe things. In Proceedings of
the 14th International Conference on Information Processing in Sensor
Networks, Seattle, WA, USA, 14–16 April 2015; pp. 298–309.

[81] Trimananda, R.; Aqajari, S.A.H.; Chuang, J.; Demsky, B.; Xu, G.H.; Lu,
S. Understanding and automatically detecting conflicting interactions
between smart home IOT applications. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Online, 8–13
November 2020; pp. 1215–1227.

[82] Celik, Z.B.; McDaniel, P.; Tan, G. Soteria: Automated IOT safety and
security analysis. In Proceedings of the 2018 USENIX ATC, Boston,
MA, USA, 11–13 July 2018; pp. 147–158.

[83] Munir, S.; Stankovic, J.A. Depsys: Dependency aware integration of
cyber-physical systems for smart homes. In Proceedings of the 2014
ACM/IEEE International Conference on Cyber-Physical Systems (IC-
CPS), Berlin, Germany, 14–17 April 2014; pp. 127–138.

[84] Nguyen, D.T.; Song, C.; Qian, Z.; Krishnamurthy, S.V.; Colbert, E.J.;
McDaniel, P. IotSan: Fortifying the safety of IoT systems. In Proceedings
of the 14th International Conference on emerging Networking EXper-
iments and Technologies, Heraklion, Greece, 4–7 December 2018; pp.
191–203.

[85] Ding, W.; Hu, H. On the safety of IOT device physical interaction
control. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018; pp. 832–846.

[86] Ma, M.; Stankovic, J.A.; Feng, L. Cityresolver: A decision support
system for conflict resolution in smart cities. In Proceedings of the 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), Porto, Portugal, 11–13 April 2018; IEEE: Porto, Portugal,
2018; pp. 55–64.

[87] Ma, M.; Stankovic, J.A.; Feng, L. Runtime monitoring of safety and
performance requirements in smart cities. In Proceedings of the 1st
ACMWorkshop on the Internet of Safe Things, Delft, The Netherlands,
5 November 2017; pp. 44–50.

[88] Ma, M.; Preum, S.M.; Stankovic, J.A. Demo abstract: Simulating con-
flict detection in heterogeneous services of a smart city. In Proceedings
of the 2017 IEEE/ACM Second International Conference on Internet-
of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA,
18–21 April 2017; pp. 275–276.

[89] Chaki, D.; Bouguettaya, A. Adaptive priority-based conflict resolution of
IoT services. In Proceedings of the 2021 IEEE International Conference
onWeb Services (ICWS), Chicago, IL, USA, 5–10 September 2021; pp.
663–668.

[90] Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am.
2001, 284, 34–43. IoT 2022, 3 217

[91] Grau, B.C.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-Schneider, P.;
Sattler, U. OWL 2: The next step for OWL. J. Web Semant. 2008,
6, 309–322.

[92] Bouquet, P.; Giunchiglia, F.; Van Harmelen, F.; Serafini, L.; Stuck-
enschmidt, H. Contextualizing ontologies. J. Web Semant. 2004, 1,
325–343.

[93] Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.;
Dean, M. SWRL: A semantic web rule language combining OWL and
RuleML. W3C Memb. Submiss. 2004, 21, 1–31.



[94] Celik, Z.B.; Babun, L.; Sikder, A.K.; Aksu, H.; Tan, G.; McDaniel,
P.; Uluagac, A.S. Sensitive information tracking in commodity IoT.
In Proceedings of the 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 1687–1704.

[95] Ma, M.; Preum, S.M.; Tarneberg, W.; Ahmed, M.; Ruiters, M.;
Stankovic, J. Detection of runtime conflicts among services in smart
cities. In Proceedings of the 2016 IEEE International Conference on
Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May
2016 ; IEEE: Piscataway, NJ, USA, 2016; pp. 1–10.

[96] Coppers, S.; Vanacken, D.; Luyten, K. FORTNIoT: Intelligible Predic-
tions to Improve User Understanding of Smart Home Behavior. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–24.

[97] Liang, T.; Zeng, B.; Liu, J.; Ye, L.; Zou, C. An unsupervised user
behavior prediction algorithm based on machine learning and neural
network for smart home. IEEE Access 2018, 6, 49237–49247.

[98] Du, Y.; Lim, Y.; Tan, Y. A novel human activity recognition and
prediction in smart home based on interaction. Sensors 2019, 19, 4474.

[99] Wu, S.; Rendall, J.B.; Smith, M.J.; Zhu, S.; Xu, J.; Wang, H.; Yang, Q.;
Qin, P. Survey on prediction algorithms in smart homes. IEEE Internet
Things J. 2017, 4, 636–644.

[100] Nagendra, V.; Bhattacharya, A.; Yegneswaran, V.; Rahmati, A.; Das,
S.R. VISCR: intuitive and conflict-free automation for securing the
dynamic consumer IOT infrastructures. arXiv 2019, arXiv:1907.13288.

[101] Chi, H.; Zeng, Q.; Du, X.; Yu, J. Cross-app interference threats in smart
homes: Categorization, detection and handling. In Proceedings of the
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Valencia, Spain, 29 June–2 July 2020 ;
IEEE: Piscataway, NJ, USA, 2020; pp. 411–423.

[102] Fernandes, E.; Paupore, J.; Rahmati, A.; Simionato, D.; Conti, M.;
Prakash, A. Flowfence: Practical data protection for emerging iot
application frameworks. In Proceedings of the 25th USENIX security
symposium (USENIX Security 16), Austin, TX, USA, 10–12 August
2016; pp. 531–548.

[103] Bastys, I.; Balliu, M.; Sabelfeld, A. If this then what? Controlling flows
in IoT apps. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018; pp. 1102–1119.

[104] Mohsin, M.; Anwar, Z.; Husari, G.; Al-Shaer, E.; Rahman, M.A.
IoTSAT: A formal framework for security analysis of the Internet of
Things. In Proceedings of the IEEE Conference on Communications
and Network Security (CNS), Philadelphia, PA, USA, 17–19 October
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7.

[105] Tian, Y.; Zhang, N.; Lin, Y.H.;Wang, X.; Ur, B.; Guo, X.; Tague,
P. Smartauth: User-centered authorization for the internet of things.
In Proceedings of the 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 361–378.

[106] Zhang,W.; Meng, Y.; Liu, Y.; Zhang, X.; Zhang, Y.; Zhu, H. Homonit:
Monitoring smart home apps from encrypted traffic. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1074–1088.

[107] Pandita, R.; Xiao, X.; Yang, W.; Enck, W.; Xie, T. WHYPER: Towards
automating risk assessment of mobile applications. In Proceedings
of the 22nd USENIX Security Symposium (USENIX Security 13),
Washington, DC, USA, 14–16 August 2013; pp. 527–542.

[108] Wang, J.; Hao, S.; Wen, R.; Zhang, B.; Zhang, L.; Hu, H.; Lu, R. IoT-
praetor: Undesired behaviors detection for IoT devices. IEEE Internet
Things J. 2020, 8, 927–940.

[109] Jia, Y.J.; Chen, Q.A.;Wang, S.; Rahmati, A.; Fernandes, E.; Mao, Z.M.;
Prakash, A.; Unviersity, S. ContexloT: Towards Providing Contextual
Integrity to Appified IoT Platforms. In Proceedings of the NDSS, San
Diego, CA, USA, 26 February–1 March 2017; p. 2.

[110] Wang, Q.; Hassan, W.U.; Bates, A.; Gunter, C. Fear and logging in
the internet of things. In Proceedings of the Network and Distributed
Systems Symposium, San Diego, CA, USA, 18–21 February 2018.

[111] Babun, L.; Celik, Z.B.; McDaniel, P.; Uluagac, A.S. Real-time analysis
of privacy-(un) aware IoT applications. arXiv 2019, arXiv:1911.10461.

[112] Ernst, M.D. Static and Dynamic Analysis: Synergy and Duality; MIT
Computer Science and Artificial Intelligence Lab: Cambridge, MA,
USA, 2003.

[113] de Moura, L.; Bjørner, N. Z3: An Efficient SMT Solver. In TACAS;
Ramakrishnan, C.R., Rehof, J., Eds.; Springer: Berlin/Heidelberg, Ger-
many, 2008; pp. 337–340.

[114] Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.;
Micheli, A.; Mover, S.; Roveri, M.; Tonetta, S. The nuXmv symbolic

model checker. In Proceedings of the 26th International Conference on
Computer Aided Verification, Vienna, Austria, 18–22 July 2014; pp.
334–342. IoT 2022, 3 218

[115] Ansótegui, C.; Bonet, M.L.; Levy, J. A new algorithm for weighted
partial MaxSAT. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, Atlanta, GA, USA, 1 December 2009–18
January 2010 .

[116] Hoos, H.; Sttzle, T. Stochastic Local Search: Foundations and Appli-
cations; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA,
2004.

[117] Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A survey on
metaheuristics for stochastic combinatorial optimization. Nat. Comput.
2009, 8, 239–287.

[118] Tolson, B.; Shoemaker, C. Dynamically dimensioned search algorithm
for computationally efficient watershed model calibration. Water Resour.
Res. 2007, 43.

[119] Arsenault, R.; Poulin, A.; Côté, P.; Brissette, F. Comparison of stochas-
tic optimization algorithms in hydrological model calibration. J. Hydrol.
Eng. 2014, 19, 1374–1384. [CrossRef]

[120] Mohammadi, N.; Sondur, S.; Kant, K. Effective Configuration Opti-
mization of Large Scale Software Systems. 2022.

[121] Mezura-Montes, E.; Coello, C. Constraint-handling in nature-inspired
numerical optimization: Past, present and future. Swarm Evol. Comput.
2011, 1, 173–194.

[122] Riera, B.; Emprin, F.; Annebicque, D.; Colas, M.; Vigario, B. HOME
I/O: A virtual house for control and STEM education from middle
schools to Universities. IFAC-Papers OnLine 2016, 49, 168–173.

[123] Pradeep, P.; Kant, K.; Pal, A. Managing Access Control in Large-Scale
Multi-Party IoT Systems. In Proceedings of the IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGrid 2022),
Taormina, Sicily, Italy, 16–19 May 2022.

[124] Ouaddah, A.; Abou Elkalam, A.; Ouahman, A.A. Towards a novel
privacy-preserving access control model based on blockchain technology
in IoT. In Europe and MENA Cooperation Advances in Information and
Communication Technologies; Springer: Cham, Switzerland, 2017; pp.
523–533.

[125] Ebbinghaus, Hermann (1913). Memory: A Contribution to Experimen-
tal Psychology. Translated by Ruger, Henry; Bussenius, Clara. New York
city, Teachers college, Columbia university.


