Crowdsourcing Cognitive Models for Assessment, Tutoring, and In-Game Support

Ken Koedinger

Human-Computer Interaction & Psychology Carnegie Mellon University

Talk for Crowdsourcing Personalized Online Education July 2012

Argument Overview

- Student models drive effective instruction
- Data can be used to create better models
 - LearnLab's DataShop: Datasets, learning curve visualizations, model comparison leaderboards, data mining algorithms
- Result: Combined human & machine intelligence discovers new models across domains
- Practical consequence: Focused redesign to improve instruction
 Devil's in the details

Koedinger, McLaughlin, & Stamper (2012). Automated student model improvement. In *Proceedings of the Fifth International Conference on Educational Data Mining*. [Conference best paper.]

Data from a variety of educational technologies & domains

Unit 1 :: Exploratory	Data Analysi	S This course is no
Examining Distributions	Examining R	Statistics Online Course

Module 2 / Linear Relationships (8 of 8)

In the special case of linear relationship, use the least squares regression line as a summary of the overall pattern, and use it to make predictions.

Let's go back now to our motivating example, in which we wanted to predict the maximum distance at which a sign is legible for a 60-year-old. Now that we have found the least squares regression line, this prediction becomes quite easy:

Intelligent tutoring goes to school

Algebra Cognitive Tutor

- Based on computational models of student thinking & learning
- Enhances student learning
- Widespread intensive use ~600K students use ~80 minutes per week

• 1998 Spin-off:

Koedinger, Anderson, Hadley, & Mark (1997). Intelligent tutoring goes to school in the big city. Cognitive Tutor Technology Use cognitive model to individualize instruction

 Cognitive Model: A system that can solve problems in the various ways students can

 Model Tracing: Follows student through their individual approach to a problem -> context-sensitive instruction Cognitive Tutor Technology Use cognitive model to individualize instruction

 Cognitive Model: A system that can solve problems in the various ways students can

- Model Tracing: Follows student through their individual approach to a problem -> context-sensitive instruction
- Knowledge Tracing: Assesses student's knowledge growth -> individualized activity selection and pacing

Why data is important to improving student learning

- If we knew everything about students' learning challenges, we would not need data
- But, there is a lot we *do not know* about student learning
- In fact, there's a lot we don't know about our own learning
 - You've had lots of experience with the English anguage
 - You might say you know English
 - But, do you know what you know?

Which kind of problem is most difficult for Algebra students?

Story Problem

As a waiter, Ted gets \$6 per hour. One night he made \$66 in tips and earned a total of \$81.90. How many hours did Ted work?

Word Problem

Starting with some number, if I multiply it by 6 and then add 66, I get 81.90. What number did I start with?

Equation

x * 6 + 66 = 81.90

Data contradicts common beliefs of researchers and teachers

Expert Blind Spot!

Koedinger & Nathan (2004). The real story behind story problems: Effects of representations on quantitative reasoning. *The Journal of the Learning Sciences*.

Nathan & Koedinger (2000). An investigation of teachers' beliefs of students' algebra development. *Cognition and Instruction.*

Why have cognitive/student models?

- Drive personalization decisions
 - Better student or cognitive model
 => better feedback & context-sensitive instruction

 better adaptive problem selection
- Relevant to improving instruction more generally

So, how can we develop & improve student models?

Cognitive Task Analysis

Methods: Expert interviews, think alouds Benefits: Better cognitive models & better instruction, 1.7 sd! (Clark et al, 2008)

But: Time & expertise intensive

Instead: Use ed tech datasets: <u>learnlab.org/datashop</u> *Insight*: Build statistical models of student performance: *latent variables* represent *components of symbolic cognitive model*

Problem Circle N in the area unit of the Geometry Cognitive Tutor

	ro choumerence and								
	1 - Finding Circumference	and Area of Circles	CIRCLE	N-ABC-p68	Hint Done chil				
	Table of Contents) Le	sson Problems	Solver	🕛 Glossary	Skii	15			
	Scenario								
	Point B is the center o	of circle B. Point A and p	point C lie on circle B.						
	Answer each quest for π.	tion using the given	information. Use 3.1	4					
-	1. The area of the circle is 7234.56 square millimeters. What are the radius and diameter of the circle? What is the circumference of the circle?								
	2. The circumference of the circle is 295.16 millimeters. What are the radius and diameter of the circle? What is the area of the circle?								
				н	int request for t	his cell			
	Worksheet								
		Radius of Circle B	Diameter of Circle B	Circumference of Circle B	Area of Circle B				
	Unit	millimeter	millimeter	millimeter	square millimeters				
	Diagram Label	AB	AC						
	Question 1				7234.56				
	Question 2								

Knowledge Component Models

Textbook 🔻

-

Primary

Secondary None

deselect all | select all

circle-area

Knowledge Components

circle-circumfe.

circle-diameter

compose-by-addi.

Upshot: Cognitive models of student learning can be discovered from data

12/12 selected.

<u>help | news | contact us</u>

logged in as kk1u@ANDREW.CMU.EDU logout

Export

Performance Profiler

DataShop's "leaderboard" ranks discovered cognitive models 100s of datasets coming from ed tech in math, science, & language

PSLC DATASHOP

Geometry Area (1996-97)

+

a data analysis service for the learning science community

KC Models

Export Import

Sort by Cross Validation RMSE (item stratified)

							Cross	Validation*		
	Model Name	KCs	Observations with KCs	AIC	BIC	RMSE (student stratified)	RMSE (item stratified)	RMSE (unstratified)	Observations (unstratified)	
	LFASearchAICWholeModel3	18	5104	4989.31	5610.39	0.407966	0.397185	0.396639	5104	
	LFASearchAICWholeModel2	17	5104	4992.65	5600.67	0.410169	0.397783	0.398564	5104	
₽	LFASearchAICWholeModel0	17	5104	5001.46	5609.47	0.408579	0.397816	0.39889	5104	
	LFASearchModel1.context-single	19							5104	
•	LFASearchModel1-renamed	11	Som	e model	s are mo	<i>achine</i> ge	nerated	(based	5104	
•	LFASearchModel1	11	on hu	uman-ger	nerated le	earning fac	ctors)		5104	
Þ	LFASearchAICWholeModel1	16	0104	0001.42	0000.00	0.100011	0.400100	0.000040	5104	
•	LFASearchModel1-backward	13	5104	5035.28	5590.99	0.410264	0.400649	0.399619	5104	
Þ	xDecmpTrapCheat	12	5104	5063.6	5606.24	0.409086	0.401162	0.402429	5104	<u> </u>
Þ	LFASearchModel1-renamed&chgd.2	11	5104	5042.21	5571.77	0.408617	0.4013	0.401477	5104	
•	LFASearchModel1-renamed&chgd	11	5104	5065.98	5595.54	0.409898	0.401302	0.400725	5104	
•	LFASearchModel1-context	12	5104	5030.46	5573.1	0.40916	0.401557	0.399431	5104	
•	LFASearchModel1-back-context	13	5104	5033.83	5589.54	0.410125	0.401796	0.401784	5104	
•	LFASearchMedel0	10	Som	o model	s ara hu	mangon	aratad		5104	
E	DecompArithDiam	13	30110	emouei	salenu	nun gen	eraleu		5104	<u>_</u>
	Unique-step	132	5083	5071.87	7182.25	0.413822	0.402627	0.400798	5082	
۲	textbook2	13	5104	5106.1	5661.82	0.412562	0.402893	0.402177	5104 ¹⁵	
9	DecomposeArith	12	5104	5085.89	5628.53	0.411786	0.402956	0.401513	5104	1

Statistical Model of Learning

Additive Factors Model

GIVEN:

 p_{ij} = probability student *i* gets step *j* correct Q_{kj} = each knowledge component *k* needed for this step *j* T_{ik} = opportunities student *i* has had to practice *k ESTIMATED*:

 θ_i = proficiency of student *i*

 β_k = difficulty of KC k

 γ_k = gain for each practice opportunity on KC k

Cen, Koedinger, & Junker (2006) Draney, Pirolli, & Wilson (1995) Spada & McGaw (1985)

Opp

count

Metrics for model prediction

P	SLC DATAS	H(OP cience comm	nunity			Cross	s Validation*		
	Model Name	KCs	Observations with KCs	AIC	BIC	RMSE (student stratified)	RMSE (item stratified)	RMSE (unstratified)	Observations (unstratified)	
Þ	LFASearchAICWholeModel3	18	5104	4989.31	5610.39	0.407966	0.397185	0.396639	5104	
Þ	LFASearchAICWholeModel2	17	5104	4992.65	5600.67	0.410169	0.397783	0.398564	5104	
Þ	LFASearchAICWholeModel0	17	5104	5001.46	5609.47	0.408579	0.397816	0.39889	5104	
F	LFASearchModel1.context-single	19	5104	4990.76	5624.93	0.409601	0.398209	0.399035	5104	

- AIC & BIC penalize for more parameters, fast & consistent
- Cross Validation, 10 fold
 - Target root mean squared error (RMSE)
 - Stratified by student, item, or not
 - Student models predict future performance
 - => item stratified is best choice

Automated search for better models

Learning Factors Analysis (LFA)

(Cen, Koedinger, & Junker, 2006)

- Method for discovering & evaluating cognitive models
- Finds Q matrix that best predicts learning
- Inputs
 - Data: Student success on tasks over time
 - > P matrix: Factors hypothesized to explain learning
 - Initial Q matrix
- Outputs
 - Rank order of most predictive Q matrix
 - Parameter estimates for each

Simple search process example: modifying Q matrix by factor in P matrix to get new Q' matrix

Q

Problem Step	Mult	Sub
2*8-30 => 16-30	1	0
16 - 30 => -14	0	1
30-2*8 => 30-16	1	0
30-16 => 14	0	1

- Q matrix factor Sub *split* by P matrix factor Neg-result
- Produces new Q matrix
- Two new KCs (Sub-Pos & Sub-Neg) replace old KC (Sub)
 - Redo opportunity counts

LFA: Best First Search Process

But where does P matrix come from?

Frequent questions about LFA:

- Isn't all the feature labeling too much work?
- Wouldn't it be better to have a data mining algorithm that doesn't require it?

Answers: No and no!

 Better prediction without interpretation does not help to redesign instruction!

=> Extract labels from "normal" course of work ...

Scientist "crowd"sourcing: Feature input (P) comes "for free"

PSLC DATASHOP

Geometry Area (1996-97)

‡

a data analysis service for the learning science community

Export Import

Sort by Cross Validation RMSE (item stratified) \$

						Cross Validation"				
	Model Name	KCs	Observations with KCs	AIC	BIC	RMSE (student stratified)	RMSE (item stratified)	RMSE (unstratified)	Observations (unstratified)	
Þ	LFASearchAICWholeModel3	18	5104	4989.31	5610.39	0.407966	0.397185	0.396639	5104	
•	LFASearchAICWholeModel2	17	5104	4992.65	5600.67	0.410169	0.397783	0.398564	5104	
Þ	LFASearchAICWholeModel0	17	5104	5001.46	5609.47	0.408579	0.397816	0.39889	5104	
•	LFASearchModel1.context-single	19	5104	4990.76	5624.93	0.409601	0.398209	0.399035	5104	
Þ	LFASearchModel1-renamed	11	5104					0.39813	5104	
•	LFASearchModel1	11	5104	Union	of all hy	pothesiz	ed KCs in	0.399224	5104	
Þ	LFASearchAICWholeModel1	16	5104	⁵¹⁰⁴ human generated models					5104	
Þ	LFASearchModel1-backward	13	5104	5055.20	0000.00	0.410204	0.400049	0.399619	5104	
Ð	xDecmpTrapCheat	12	5104	5063.6	5606.24	0.409086	0.401162	0.402429	5104	<u></u>
•	LFASearchModel1-renamed&chgd.2	11	5104	5042.21	5571.77	0.408617	0.4013	0.401477	5104	
Þ	LFASearchModel1-renamed&chgd	11	5104	5065.98	5595.54	0.409898	0.401302	0.400725	5104	
Þ	LFASearchModel1-context	12	5104	5030.46	5573.1	0.40916	0.401557	0.399431	5104	
Þ	LFASearchModel1-back-context	13	5104	5033.83	5589.54	0.410125	0.401796	0.401784	5104	
Þ	LFASearchModel0	10	Som	n modol	c ara hu	mangon	oratod		5104	
Z	DecompArithDiam	thDiam 13 Some models are numan generated 5104							5104	<u></u>
	Unique-step	132	5083	5071.87	7182.25	0.413822	0.402627	0.400798	5082	
Þ	textbook2	13	5104	5106.1	5661.82	0.412562	0.402893	0.402177	5104 ²²	
Ŧ	DecomposeArith	12	5104	5085.89	5628.53	0.411786	0.402956	0.401513	5104	1

Does it work?

Koedinger, McLaughlin, & Stamper (2012). Automated student model improvement. In *Proceedings of the Fifth International Conference on Educational Data Mining*. [Conference best paper.]

Applying LFA across domains

Detect			RMSE	Median Learning slope (logit)		
Dataset	Content area	Orig in-use	Best- hand	Best- LFA	Best- hand	Best- LFA
Geometry 9697	Geometry area	0.4129	0.4033	0.4011	0.07	0.11
Hampton 0506	Geometry area	NA	0.4022	0.4012	0.03	0.04
Cog Discovery	Geometry area	NA	0.3250	0.3244	0.16	0.16
DFA-318	Story problems	0.4461	0.4407	0.4405	0.07	0.17
DFA-318-main	Story problems	0.4376	0.4287	0.4266	0.09	0.17
Digital game	Fractions	0.4442	0.4396	0.4346	0.17	0.14
Self-explanation	Equation solving	NA	0.4014	0.3927	0.01	0.04
IWT 1	English articles	0.4262	0.4110	0.4068	0.10	0.12
IWT 2	English articles	0.3854	0.3854*	0.3806	0.12	0.16
IWT 3	English articles	0.3970	0.3965	0.3903	0.05	0.15
Statistics-Fall09	Statistics	0.3648	0.3527	0.3353	**	0.09
	Variety of domains & technologies	11 of 11 improved			ed	9 of 11 eo

learning

Interpreting student model improvements

<u>Method</u>

 Isolate improvement in KCs from base model to new models by computing reduction in RMSE

Example analysis from Geometry 9697 dataset

	Original model		% reduction in RMSE				
	KCs	orig	g->hand	hand->LFA	orig-LFA		
	CIRCLE-RADIUS		5.8%	4.0%	9.5%		
	COMPOSE-BY-		5 204	0.20/	5 504		
	ADDITION		3.2%	0.3%	5.5%		
	TRIANGLE-SIDE		10.0%	1.2%	11.1%		
~	Range of the 12		5 to 3.4%	- 3 to 1 0%	- 2 to 3 1%		
	other KCs	3 10 5.4%		5 10 1.070	2 10 5.170		

New KC revealed from LFA search

KC Values For DecompArithDiam Model

Working backgrounds is not a general skill (in this domain)

Circle-area backward (54%) harder than forward (80%)

But no backward vs. forward diff in general pentagon area: 66% vs. 62% trapezoid area: 54% vs. 55%

Devil's in the details

Interpretation:

...

- Unique feature of circle-area backwards is need for a square root operation
- More practice & instruction needed

Implications for tutor redesign

Recommendations:

- More focus on problems requiring square root

 More area-to-radius & square-area-to-side problems
- Merge all *other* forward/backward distinctions
- Modify skill bars

Expected Outcomes:

- Reduce time to mastery for other area formulas
- More time for practice on square root

Conclusions

- Combine human & machine intelligence
 - Student crowdsourcing: data from widely fielded systems
 - Scientist crowdsourcing (in the small): Use leaderboard to gain human participation in feature labeling
 - Results in better prediction AND interpretable and useful models
- Better predictions across 11 datasets & a variety of domains
 - Models overlap => small prediction error reduction, but ...
- Isolated improvements are large and useful
 - Yield tutor redesign recommendations
 => more efficient & effective learning & transfer

Comment on the Zeitgeist...

- Lots of great excitement, new ideas & smart people coming to the educational technology table
- Keep it coming!
- Find partners & do not get discouraged as it gets tough
 - Education is a **hugely** complex system
 - Complex systems have many failure joints
 - Devil's in the details
- Complexity/opportunity in instruction options too:

Koedinger, Corbett, & Perfetti (2012). The Knowledge-Learning-Instruction (KLI) framework: Bridging the science-practice chasm to enhance robust student learning. *Cognitive Science*.

Thank you

• Crowdsourcing Cognitive Models for Assessment, Tutoring, and In-Game Support

Cognitive Tutors personalize online education by adapting problem-based instruction both within problems, by providing feedback and instruction specific to students' solution progress, and between problems, by selecting and pacing activities based on students' performance history. The approach relies on a cognitive model of the unobservable mental skills and concepts needed for success across problem-solving tasks. Widespread use of tutors (and educational games and simulations too) is producing vast data that can be used to create and improve cognitive models to drive better adaptive instruction. LearnLab's DataShop (<u>http://learnlab.org/datashop</u>) is the world's largest open repository of such data. I will discuss educational data mining algorithms to create, test, and improve cognitive models for better personalized assessment and tutoring within educational technologies. Large crowds of students and, more recently, small crowds of learning researchers are being leveraged in these approaches. In a recent study, we employed our Learning Factors Analysis algorithm on eleven different DataShop datasets to automatically discover better cognitive models in all cases.

Extra slides

Sample of log data used to generate learning curves

Items = steps in tasks with feedback			Q-matrix in single column: works for single skill items			Opportunities student has had to learn skill		
		Υ.		Ļ		Ļ		
	Student	Step (Item)		Skill (KC)	Opp	ortunity	Success	
	A	p1s1		Circle-area	1		0	
	А	p2s1		Circle-area	2		1	
	А	A p2s2 A p2s3		Rectangle-area	1		1	
	A			Compose-by- addition	npose-by- addition 1		0	
	A	p3s1		Circle-area	3		0	

Example in Geometry of "split" based on factor in P matrix

		Original Q matrix		Fac ma	ctor in P trix
					ł
Student	Step	Skill	Opportur	nity	Embed
А	p1s1	Circle-area	1		alone
А	p2s1	Circle-area	2		embed
Α	p2s2	Rectangle-area	1		
Α	p2s3	Compose-by-add	1		
Α	p3s1	Circle-area	3		alone

LAWN_SPRINKLER: SECTION FOUR, #2

Problem Statement

If a lawn sprinkler spins 360 degrees and has a 17 ft spray, find the area of lawn that will be watered if the sprinkler is not moved.

_	Length of Spray (OD) - Radius	Watered Lawn - Circle
Units	feet	sq. feet
Question 1	17	907.92

After Splitting Circle-area by			New Q matrix		Revised Opportunity
EIIIDEU Student Step			Skill		Opportunity
	A	p1s1	Circle-area-a	lone	
	А	p2s1	Circle-area-e	mbed	1
	А	p2s2	Rectangle-ar	ea	1
	А	p2s3	Compose-by-	-add	1
	А	p3s1	Circle-area-alone		2

LAWN_SPRINKLER_2: SECTION FOUR, #5

Problem Statement

A lawn sprinkler spins 360 degrees and has a 1 ft spray. If the rectangular lawn is 5 feet by 9 feet, find the area of lawn that will not be watered if the sprinkler is not moved.

	Length of Spray (OD) - (Radius)	Watered Lawn (Circle)	Area of Total Lawn (Rectangle)	Area of Unwatered Lawn
Units	cm	cm	sq. cm	cm
Question 1	1	3.1416	45	41.86

DataShop visualizations help identify potentially bad KCs

Example model modification with implications for tutor redesign

Splitting and combining of circle-radius and other related hypothesized KCs

- Circle-radius splits to circle-area, circle-diam-from-subgoal, and circle-diam-from-given
- Target skill for all 3 is computing radius
- Circle-area further splits to circle-area and radius-from-area

Future Work

- Variations on Learning Factors Analysis
 - Use add operator in search (models partial transfer)
 - Try other statistical models: BKT, PFA ...
 - Other search methods: beam search, new heuristics ...
- In vivo experiments to test model discoveries
 compare learning with revised vs. original ed tech
- Apply human-machine discovery approach in other domains
 - Humans do feature engineering; machine uses
 - Humans & machine compete & cooperate through leaderboard