

WHAT IS A DATABASE?

- Database = collection of data + set of rules that specify certain relationships among the data.
- · Data is stored in one or more files
- The database file consists of **records**, which in turn consists of **fields** or **elements**.
- The logical structure of the database is called a schema.
- A subschema is that part of the database, to which a particular user may have access.
- Data can be organised in tables. All columns are given names, which are the **attributes** of the database.
- A relation is a set of columns

WHAT IS A DATABASE? (2)

- Database management system (DBMS) (databashanterare) is a program with which the user interacts with the data base
- Database administrator is a person that defines the rules that organise the data and who should have access to which parts of the data. (expresses an access policy)
- Several databases could be joined ("samköra")
- Users interact with the database through commands to the DBMS. A command is called a **query**.
- Security requirements (in general):
 - Confidentiality, Integrity, Availability (!)

WHAT MAKES DATABASE SECURITY A PROBLEM?

- the sensitivity for the"same type" of elements may differ
- differentiated sensitivity may be necessary (>2)
- the sensitivity of a combination of data differs from the sensitivity of the data elements
 => aggregation (Sw. ung. sammanlagring)
- data are semantically related
 => inference (Sw. slutledning),
 i.e. "unwanted" conclusions can be drawn

DATABASE SECURITY REQUIREMENTS

- Physical database integrity power failures etc
- Logical database integrity the structure is preserved
- Element integrity data must be accurate
- Auditability possibility to track changes
- Access control
- User authentication
- Availability
- · Confidentiality protection of sensitive data

INTEGRITY of the DATABASE

Overall Goal : data must always be correct

Mechanisms for the whole database:

- DBMS must regularly back up all files
- DBMS must maintain a transaction log

INTEGRITY of the DATABASE (2)

Mechanisms for element integrity (correctness, accuracy):

- field checks/input control (do the data "fit")
- (check type, limits, max/min, logic, completeness)
- access control/configuration management
 - who may perform changes?
- if more than one: how to handle inconsistent changes
- consistent changes (in more than one place)
- double/multiple records?
- change log (who did what?) - contains previous value and updated value

DATA BASE SECURITY VS OPERATING SYSTEM SECURITY

- In general are the protection mechanisms for the Operating System (OS) also useful for the database.
 - Differences between DB security and OS security
 - More objects must be protected in a database
 - Data must normally be protected longer in a database
 - In a database different levels of "resolution" must be handled, such as record, file, element, etc

RELIABILITY and INTEGRITY MECHANISMS

- record locking (write):
- we want *atomic* and *serialisable* operations: *atomic*:
- (cp "read-modify-write" for instructions) means that operations can not be interrupted => either OK and data correctly updated
- or NOT OK and data correctly update
- serialisable: the resultat of a number of transactions that are started at the same time must be the same as if they were made in a strict order

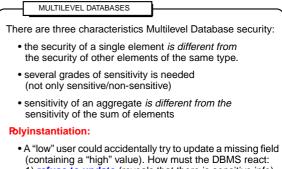
RELIABILITY and INTEGRITY MECHANISMS (2)

- error correction codes (ECC)
- internal redundancy: in order to find errors (shadow fields)
- monitor (performs structural checks)
- range comparisons (range, type, internal consistency)
- state constraints are constraints valid for the entire database (commit flags, uniqueness)
- transition constraints (conditions that apply before a change can be made)

SENSITIVE DATA

There are several reasons why data are sensitive:

- inherently sensitive (location of missiles)
- from a sensitive source (an informer's identity may be compromised)
- declared sensitive (military classification, anonymous donour))
- part of a sensitive record/attribute
- sensitive in relation to previously disclosed information (longitude plus latitude)


SENSITIVE DATA - TYPES OF DISCLUSURES

There are various *forms of disclosure* for sensitive data: • exact data

-
- bounds
 e.g giving a lower and an upper bound for the data item
- negative result revealing that the data item does not have a specific value can be compromising, in particular that the value $\neq 0$.
- the **existence** of a data may be sensitive, e.g a criminal record
- probable values: it might be possible to determine the probability that an element has a certain value
- summary of partial disclosure: e.g. some of the above

DATABASE ATTACKS CONTROLS FOR STATISTICAL INFERENCE ATTACKS **INFERENCE** means deriving sensitive data from non-sensitive data In general there are three types of controls: direct attack - finding sensitive information directly with queries that suppression yield only a few records - reject query without response (data not given) • indirect attacks seeks to infer the final result based on a concealing number of intermediate statistical results - provide an inexact answer to the query - sum • track what the user knows - maintain a record for each user of earlier queries - count - median (extremely costly) - tracker attack finding sensitive information by using additional queries that each produce a small result

CONTROLS FOR STATISTICAL INFERENCE ATTACKS (2) limited response suppression "the n-item k-percent rule" combining results - combining rows or columns - present values in ranges - rounding • random sample - compute the result on a random sample of the database • random data perturbation - add an error term ε query analysis - keeping track on previous queries ("query history") to prevent inference

1) refuse to update (reveals that there is sensitive info)

2) overwrite the data (compromises integrity) 3) keep both values, i.e. polyinstantiation