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IP geolocation databases map IP addresses to their physical locations. They are used to determine the location
of online users when their precise location is unavailable. These databases are vital for a number of online
services, including search engine personalization, content delivery, local ads, and fraud detection. However,
IP geolocation databases are often inaccurate. In this work we present two novel approaches to improving
IP geolocation by mining search engine click logs. First, we show that we can derive which URLs have local
affinity by clustering clicks from IPs with known locations. We demonstrate that we can further propagate
these URL locations to IP addresses with unknown locations. Our approach significantly outperforms two
state-of-the-art commercial IP geolocation databases by 25 and 36 percentage points at a distance error of
10 kilometers, respectively. Second, we present an alternative method of assigning locations to URLs when
IP location training data is not available, by instead extracting locations from the body of web documents.
This second approach also outperforms the baselines by 7 and 17 percentage points, respectively, and has
higher coverage than the first method. Finally, we also demonstrate that our two approaches outperform the
academic state of the art based on mining query logs.
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1 INTRODUCTION

IP geolocation databases map IP ranges to geographical locations. These databases are extensively
used by online services such as search engines to determine the location of users at city-level
granularity using only their IP address. This location information is then used for geographic

personalization. For example, the generic query weather does not contain an explicit location. In
order to serve an answer with the local forecast, the search engine needs to determine the implicit
location of the user. Global positioning sensors can provide the precise location of the users if they
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have opted in to location sharing and if their devices contain the necessary hardware. However,
in the vast majority of cases, the exact location is not available if users are using a PC without
GPS hardware or if they opt out of location sharing. In this case, the search engine falls back to
using the IP address of the device to determine a coarse location using a commercial IP geolocation
database.

Commercial geolocation services such as MaxMind [39], Neustar IP Intelligence [41], and
IP2Location [26] are considered state of the art, although the exact methods they use are pro-
prietary. Related work has questioned their accuracy. Using a ground-truth set of 16,586 router
IPs, Gharaibeh et al. found a city-level disagreement of 29% across four different vendors using
pairwise distances [17]. Shavitt and Zilberman compute the distance between locations reported
by commercial databases on identical IP ranges and report that some pairs of databases have dis-
agreements in the hundreds of kilometers [48]. Poese et al. find errors exceeding 10 kilometers in
80% of the cases, across two commercial databases [45]. Laki et al. have found that MaxMind places
multiple spread-out European GÉANT routers in a single location (Cambridge, UK), because that is
where the network operator is headquartered and the IP WHOIS records point to that address [31].
Kester evaluates commercial databases using 3,206 IPs consisting of CAIDA Ark [6] and RIPE [51]
servers. Note that a subset of Ark nodes are hosted on end-user networks. For the same threshold
of 100 kilometers, he finds that MaxMind and IP2Location have an accuracy of 63% and 67%, re-
spectively. In our previous research we evaluated three commercial databases using a ground-truth
dataset of 8.4 million end-user IP addresses with known locations [12]. We show that at city level
across the top 10 countries, by ground-truth IP density none of the databases achieve an accuracy
above 70% at the city level, and in some cases have an accuracy below 10%. Komosnỳ et al. use a
mobile application to compile a ground truth of end-user IP addresses with precise GPS locations
[30]. They evaluate this dataset against eight commercial geolocation providers, including Max-
Mind, IP2Location, and Neustar. The dataset of 700 IP addresses covers 16 countries, 52 regions,
and 270 cities across 319 ISPs. The addresses include both wireless and wired network IPs, since
mobile phones connect to both cellular networks and local Wi-FI access points. Their findings
show that for region-level accuracy the best database had 50% accuracy, while city-level accuracy
was even worse at 30%. Xu et al. use a ground-truth set of 1.2 million IP addresses with known
locations from a city in China and determine that the city-level accuracy of commercial databases
varies wildly. For example, the widely used MaxMind GeoLite2 database has a city accuracy of
only 14.8% [55].

Despite their shortcomings, IP geolocation databases are used in many other applications, in-
cluding content personalization and online advertising to serve local content [23, 29], content de-
livery networks to direct users to the closest datacenter [24], law enforcement to fight cybercrime
[49], geographic content licensing to restrict content streaming by region [35], and e-commerce
to display variable pricing based on local taxes and shipping [52].

Given a search engine click log, our goal is to generate an IP geolocation database that

maps IP ranges to city-level locations. Our work focuses on using click logs, in conjunction
with a location ground-truth set and information mined from web documents, to improve IP
geolocation at the city level. We propose first assigning geographic focus to URLs by mining
user clicks using two alternative methods. We then propagate these locations to IP ranges with
unknown locations. Figure 1 presents the intuition behind our two proposals. In the first approach,
summarized in Figure 1(a), we propagate locations from IPs with known GPS locations to URLs
through user clicks. In the second approach, described in Figure 1(b), instead of propagating
locations from IPs with known locations, we mine the web documents themselves for location
clues. Finally, the second step in both approaches further aggregates locations per IP range by
clustering the coordinates of all clicks from users in each particular IP range. The example in the
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Fig. 1. Intuitive summary of our two proposed approaches. The difference between the two approaches is

that in the first one we derive URL locations from IPs with known GPS coordinates, while in the second we

derive URL locations from the body or URL fragments of the clicked web documents themselves. The second

step of further aggregating URL locations per IP range is shared by both approaches.

figures shows that users in a particular IP range often click on URLs that have local affinity to the
Seattle area. We posit that the IP range is then also likely to be in the same area.

Using click logs to improve geolocation poses several challenges. Our work addresses these
challenges by clustering locations at the URL and IP range levels, which reduces noise and outliers.
First, click data is noisy and sometimes contradictory. Users do not always click on URLs related to
their immediate vicinity. In our preliminary investigations we found that mining the click locations
coming from any particular IP address does not necessarily reveal its location. For example, a user
may be researching vacation spots or may be searching for events in nearby cities. However, if
we combine and cluster the clicks from all IPs in a particular IP range to a set of URLs with
assigned locations, we can successfully weed out outliers. Continuing with our example, even if
a subset of users in a particular IP range is searching for different vacation locations, clicks on
pages with a local focus are still more prevalent in aggregate over the entire IP range, allowing us
to ignore location outliers. Second, determining the geographical focus of URLs is difficult. Some
links can have city-level affinity, while others are more dispersed geographically. Take, for instance,
a regional bank that has branches in three different cities. To solve this challenge, we only select
pages that have a clear single local focus. In the case of the web page that lists branches in three
different cities, it is likely that the clicks to the page come from three different locations, which will
cause our approach to completely drop the page and not assign it a location. Furthermore, some
websites such as Yahoo Finance have no particular geographical focus or have only country-level
affinity. Here our clustering algorithm similarly determines that we should skip these pages, since
the radius of the top cluster would be too large.
More specifically, our contributions are:

(1) We study the geographic focus of URLs and show that depending on click location dispersion,
they can have regional, local, and hyper-local focus.

(2) We propose two approaches to find URLs with local affinity, one based on mining search clicks
from IPs with known GPS location, and the other based on mining the body of web documents.

(3) We present an approach to propagate these locations from URLs with local affinity to IP ranges
with unknown locations.
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(4) We evaluate the accuracy of our two approaches against two state-of-the-art commercial ge-
olocation databases and against the academic state-of-the-art approach that uses query logs.
Using a large and diverse ground-truth set of 70 million IP addresses with known locations, we
show that our approaches significantly outperform both the commercial and academic

baselines on median error and cumulative error distance.

(5) Finally, we study the agreement of the two approaches. We show that there is a high level of
agreement between the two methods. We then demonstrate that they are also complementary
in IP coverage and therefore can be used in conjunction.

2 RELATED WORK

We divide IP geolocation research into two broad categories, based on the methods they use:
network delay and topology approaches use ping, traceroute, and BGP network structure
information; Internet data mining approaches use diverse information mined from the Internet,
including web page content, WHOIS databases, reverse DNS, and social graphs.

The majority of IP geolocation research relies on active network delay measurements

to locate addresses. Early work on IP geolocation by Padmanabhan and Subramanian discusses
GeoPing [43], which sends ICMP packets from geographically distributed landmark servers to the
target IP. It then assigns the target IP the location of the closest landmark server in terms of latency.
CBG [19] goes further by creating circles on the surface of the earth around each landmark server,
where it calculates the radius of each circle based on its measured network delay. It then uses
multilateration to infer the location of the target IP at the intersection of these circles. GeoCluster,
also proposed by Padmanabhan and Subramanian [43], combines BGP routing information with
sparse IPs of known locations to assign geographical locations to whole address prefixes. TBG [28]
uses traceroute from landmark servers to the IP target and performs global optimization to find
the location of both landmarks and targets. Youn et al. [57] develop a statistical method for IP
geolocation based on applying kernel density estimation to delay measurements. More recently,
Ciavarrini et al. [11] presented a framework to understand how the position of landmarks and
their distribution affect localization performance. Multiple systems such as Octant [54], Alidade [8],
and HLOC [47] combine delay measurement methods with other data sources such as reverse DNS
and WHOIS information.

Network delay and topology methods have significant limitations. First, all such
methods require access to nodes spread throughout the globe to perform measurements. Second,
geolocating a large number of IP addresses using network measurements can run into scalability
issues, as each target IP address or range requires separate measurements. The ZMap project from
the University of Michigan can scan the entire IPv4 address space using a gigabit connection [14].
However, performing useful network delay measurements would require a significant number
of such machines distributed around the world, and attempting to perform traceroutes would
require running this probe step once for every hop distance. Third, not all networks allow ICMP
pings or fully disclose their network topology. Fourth, routes on the Internet do not necessarily
map to geographic distances. Fifth, the ground-truth data for work in this area is usually limited
to a few tens of IP addresses, typically located in the United States. For example, GeoPing and
GeoCluster are evaluated on only 256 target IP addresses, all located at universities in the United
States; CBG is evaluated on only 95 IP addresses in the United States and 42 addresses in Western
Europe; TBG only targets IP addresses located at U.S. universities; and so forth. Sixth, previously
reported mean and median errors of tens to hundreds of kilometers show that these methods
cannot be used for practical applications at the city granularity. For instance, GeoPing has an error
distance of 150 kilometers at the 25th percentile, and CBG has a median error of 100 kilometers
for some datasets. Seventh, Ciavarrini et al. have demonstrated that network delay approaches
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have a best-case error of 20 kilometers and that obtaining an error below this threshold requires
a number of active measurement servers so large as to be unpractical [11].

Our work addresses several of these limitations. First, our model does not require issuing active
network delay measurements, and therefore does not have the same scalability problems as prior
work. Since we use information mined from search engine click logs, our approach can scale to
millions of IP addresses. Second, our model has higher accuracy than previous work. Third, we
evaluate our method on a ground truth of 70 million IP addresses, which is the largest test set
reported in the geolocation literature.

Web mining approaches use diverse information mined from the web. Structon [20] is an
approach proposed by Guo et al. that mines the contents of Chinese websites for mentions of
locations, using regular expressions. The authors assign these locations to the IP addresses of the
web servers hosting this content. They then use IP location interpolation to increase both accuracy
and coverage by estimating the location of entire IP ranges from the location of a few individual
constituent IP addresses. They assume all IP addresses in the same /24 segment are in the same city
and they combine multiple types of IP location interpolation. First, if a majority of IPs in a range
are in the same city, they assign that city to the entire range. Second, they continue iteratively
applying this heuristic on increasing IP range sizes until they reach a netmask of size /18 (16,384
IPs). If smaller IP ranges inside a larger IP range agree on location, they assign the location to the
larger IP range as well. Third, they use a BGP routing table snapshot combined with Autonomous
system network information to assign locations to all ranges of small ISPs, if the location of one of
the ranges is known. Finally, they perform traceroutes to IPs in /24 segments that still do not have
a location. They retain only traceroutes where all nodes in the path responded to ICMP packets.
For a target IP, they assign its location to be that of the closest router with known location on
the traceroute path. They also propagate locations backwards, starting from a range with known
location, assigning it to a router preceding it on a traceroute path, then assigning the interpolated
location of the router to all its neighboring ranges. All these approaches taken together achieve an
accuracy of 87 percent at the city level. Instead of computing error distance as in other previous
work, they map coordinates to cities, and they check if the city of their location candidate matches
exactly to that of the ground-truth data point. While these results are impressive, this work has
several problems. The starting assumption that the web server hosting a website is in the same
location as the organization that owns the website and its users may not hold today. With the
advent of cloud computing, many websites are now hosted in centralized data centers and not
in decentralized local business offices. Second, the evaluation is performed on a crowdsourced
ground-truth set with unknown freshness and accuracy. Third, the manually created extraction
rules used to mine location information are tailored specifically for China, and the authors admit
they may not work in the rest of the world. Fourth, the paper states the task is made easier by
the fact that China only has a few hundred cities, compared to 35,000 cities and towns in the
United States. This difference can skew the results favorably when evaluating this approach on
Chinese data at city-level granularity. Nevertheless, several approaches described in this work are
interesting, especially for IP location interpolation.

One of the two approaches we present here (GeoClicks-Index) is similar to Structon in that it uses
locations extracted from websites. However, this is where the similarities stop. Instead of assigning
the locations extracted from web pages to the IPs of the servers hosting those pages, we propagate
locations through clicks from websites to the IPs of users who searched for and clicked on these
websites. In contrast with Structon, we perform a comprehensive evaluation using ground-truth
IP addresses covering the entire world.

Backstrom et al. [3] propose an interesting approach that relies on a user’s social graph to de-
termine their location. This work is not specifically aimed at improving IP geolocation, and in fact
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in later steps they use a commercial IP geolocation as a secondary source of user location. They
derive the locations of target users based on the locations of friends. Using self-reported locations
as ground truth, they show an improvement over an unnamed IP geolocation database. For an
error distance of less than 25 km, the amount of correctly classified IPs increases from 57.2% for
the baseline to 67.5% for the proposed method. This approach yields a median error distance of 590
km on a test dataset of 2,830 IPs. The authors state that this method works so long as an individual
has a sufficient number of friends whose locations are known, preferably more than 16. To suc-
cessfully predict locations of users who have not provided a location, they need to be connected
to a relatively large number of friends with known locations. There is a long line of other similar
research that aims to determine user location, as opposed to IP geolocation, by mining the contents
of their social posts [7, 9, 10, 13, 21, 25, 27, 33, 36, 59]. For example, Cheng et al. [10] show that
they can geolocate 51% of Twitter users within 161 kilometers of their actual location, using only
the textual contents of their posts. However, their ground-truth set contains only 5,119 users and
their average error is 2,853 kilometers. In this work, however, we focus specifically on locating IP
addresses.

Perhaps the closest in spirit to our clicks proposals is our previous work to improve IP geolo-
cation by mining search queries [12]. There we extracted locations from explicit queries such as
restaurants in Easton and showed that we can improve the accuracy of geolocation databases in 49
of 50 countries.

However, that previous work suffers from two problems. First, many queries contain ambiguous
locations. There are at least 22 cities called Easton in the United States, which means the query-
based approach fails for these types of locations. In contrast, our two new proposals start from
precise GPS locations and locations mined from the body of web documents, respectively. In the
case of GPS locations, there is no ambiguity, so this problem is completely sidestepped. In the case
of locations extracted from web documents, the text body provides much more context to use for
disambiguation when compared to queries that are much shorter. Take, for instance, the website of
a local restaurant in Easton, PA. In addition to the city name Easton, the pages on this website are
more likely to contain other disambiguation hints such as PA, Pennsylvania, Northampton County,
or the zip code 18045. These hints are often not available when the input text is a much shorter
user query.

A second problem of our previous work is that the query-based method only improves exist-
ing geolocation databases by correcting some of their records, while our two new proposals start
from scratch and are not based on an existing commercial geolocation database. Finally, we demon-
strate in the Evaluation section that our new click-based approaches significantly outperform our
previous query-based approach.

3 DATASETS AND PRIVACY

Online privacy is becoming increasingly important. Pew Research found in 2016 that while many
Americans are willing to share personal information in exchange for accessing online services,
they are often cautious about disclosing their information and are frequently unhappy about what
happens to that information once companies have collected it [46]. We have designed both our
approach and our evaluation with this sensitive subject in mind.

Our ground-truth set contains 70 million IP addresses with known locations, compiled during
the 28-day period ending on October 26, 2018. To the best of our knowledge, it is the largest and
most diverse set used in the geolocation literature. It was derived from the query logs of a major
commercial search engine from devices with global positioning sensors, where users opted in to
provide location information. These users agreed to share their location at query time in order
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to receive personalized local results. To maintain privacy, an automated pipeline anonymized
our ground-truth set by modifying raw locations in a random direction by 584 meters. These
anonymized coordinates cannot be used to pinpoint individual addresses but can locate an IP at a
neighborhood level. Next, the pipeline aggregated all locations reported for an IP address and re-
duced location accuracy to city level. IP addresses with a large variance in reported locations were
removed as outliers. That is, we discarded any IP address that was present in multiple cities over
the course of a month. The result of this filtering step is that our ground-truth set contains mobile
IP addresses that are located within a single city, as well as fixed broadband IP addresses (Wi-Fi),
since users often connect their mobile devices to their home Internet connections. The resulting
dataset contains mappings of IP addresses and their corresponding cities. The location distribution
of these addresses roughly follows that of worldwide Internet penetration. While throughout this
article we refer to this location data as derived from GPS for succinctness, the dataset actually
covers all global positioning systems, including GPS, GLONASS, Galileo, BeiDou, and so forth. [40].

Throughout this article we used this ground-truth set for both training and testing by perform-
ing 10-fold cross-validation. In other words, we split our dataset into 10 equally sized subsets
(folds), and then we repeatedly trained on 9 folds and tested on the remaining one. We ran our
approach on the data in the 9 training folds. We then evaluated the result on the testing fold by
comparing the distance between the location predicted by our approach and the actual location of
each IP address.

The GPS clicks dataset contains 1.1 billion clicks issued from IPs with known locations. To
obtain it, we first extracted a sample of clicks on any search result page element on the same
28-day period ending on October 26, 2018. Then, we intersected this data with the ground-truth
set and only retained the clicks that were issued from IP addresses with known locations. The
search engine was also aware of the location of users at the time each query was issued initially;
therefore, this subset of the data is not skewed by IP locations from commercial databases. To also
reduce user click frequency bias, we only retained one click per IP per URL in the entire period.
For example, the IP of a user clicking on https://www.miamiherald.com/ 30 times on five different
days would only contribute a single click in the dataset. We normalized all URLs by removing the
scheme (http://, https:// ), the www. prefix from hostnames, and the # fragments. For instance, we
would normalize the URL https://www.company.com/About_Us#Board to company.com/About_Us.
Since this dataset relies on the IPs in the ground-truth set, we also segmented it by the same 10
folds. We use this dataset in Step 1 of the GPS approach Figure 1(a).

The web index locations dataset contains 4.1 billion distinct web pages with city-level loca-
tions extracted from the textual contents of the web pages or from their URL fragments. We ob-
tained this dataset by randomly sampling from the web index of a large search engine on October
27, 2018. Each address in the dataset is mapped to a single primary location. Section 5.2 discusses
the extraction process in more detail. Locations obtained from the text of web pages pose a low
privacy concern since the web pages in the index are public. We use this dataset in Step 1 of the
Index approach in Figure 1(b).

The bulk clicks dataset contains 14 billion clicks from IPs with unknown locations. These clicks
were collected from the opt-in logs of a popular browser over a 3-month period ending on October
25, 2018. To obtain the dataset, we randomly sampled from the impressions that contained an
HTTP referrer header, which means they were most likely clicks. We use this dataset in both Step
2 of the GPS approach in Figure 1(a) and Step 2 of the Index approach in Figure 1(b).

All click logs were anonymized. We did not have access to the identity of users. During our
experiments we aggregated clicks at distinct URL levels, and then further at IP range levels. We
never used clicks at an individual user level.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 1, Article 2. Publication date: February 2022.

https://www.miamiherald.com/
https://www.company.com/About_Us#Board


2:8 O. Dan et al.

Fig. 2. Comparison of a URL that has clicks that are geographically dispersed with a URL that has clear local

affinity.

4 GEOGRAPHIC FOCUS

At the onset of our study we set out to determine the viability of assigning locations to URLs using
clicks. We also wanted to investigate if it would be enough to assign locations directly to domains as
opposed to individual subpages. As a preliminary analysis we aggregated the 1.1 billion clicks from
the GPS clicks dataset by distinct URLs. We considered the number of click coordinates for each
URL as a proxy for their popularity. We then randomly sampled and visualized the coordinates of
100 URLs with varying popularity. Based on our observation, we classify the links into two main
categories: URLs that are geographically dispersed and URLs that have local affinity. We further
divide the links with local affinity into regional, local, and hyper-local.

Figure 2(a) displays a heatmap of the click coordinates on wunderground.com, which is a weather
forecast website. We consider this URL to be geographically dispersed, because its click probability
roughly follows the population density of the United States. There is no apparent geographical
sensitivity to the coordinates. On the other hand, Figure 2(b) plots a similar coordinates heatmap
for wunderground.com/weather/us/ny/new-york, which is a specific subpage on the same website.
We can immediately recognize that the clicks are concentrated toward the New York City metro
area. Based on this example, we can draw two conclusions. First, some URLs do indeed show
strong local affinity. Second, aggregating clicks only by domain is insufficient. In the case of

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 1, Article 2. Publication date: February 2022.

https://www.wunderground.com/
https://www.wunderground.com/weather/us/ny/new-york


IP Geolocation through Geographic Clicks 2:9

Fig. 3. Location of clicks to arlington.co.zw , a real estate website selling houses in Harare, Zimbabwe.

Fig. 4. Location of clicks to Bloomsburg Fair, a yearly event held in Bloomsburg, Pennsylvania.

wunderground.com, the domain is geographically dispersed, while city-specific subpages exhibit
local affinity.

To determine which URLs have a geographic focus, we first implemented a naïve approach that
used a reverse-geocoding service to determine the city, state, and country of all coordinates in
the sampled URLs. We aggregated the coordinates in each URL by city and sorted by number of
occurrences. We then manually visited all the URLs where the top city was present in at least 30%
of the clicks. First, we observed that the majority of these links had local affinity. Examples include
websites for local government and utilities, local businesses such as shopping centers, theaters and
concert venues, medical practices, local newspapers and radio, and schools and universities. Some
of the links are local to a city. Figure 3 shows that clicks on the website arlington.co.zw originated
within the confines of Harare, the capital of Zimbabwe. This website advertises houses for sale in
a local gated community. Others are more regional. Figure 4 displays clicks to bloomsburgfair.com,
which is the website of a yearly fair held in Bloomsburg, Pennsylvania. Since the fair draws atten-
tion from multiple neighboring counties, it is not possible to assign it a single geographic location.
Another similar example of regional focus is bosch.in/careers, which is the careers website for the
Bosch company in India. Clicks are concentrated in multiple cities where Bosch has factories or
training centers.

URLs can also have hyper-local focus. A common example that we observed is student login
pages for internal university websites, which are centered on campus locations. But the most
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Fig. 5. Locations of clicks to Yahoo Answers. Each point represents the mean location of an individual URL.

unexpected finding is that there are links that do not have any obvious geographical focus, yet
click information shows that they have in fact local affinity. We found more than 1,500 distinct
URLs from the answers.yahoo.com domain where most of the clicks were within a small radius
of a couple of kilometers. Many of these locations were located on campuses of English-speaking
universities and schools. Upon studying the content of the pages, we determined that the questions
on these pages were not related to any particular location but were specific math, physics, and
literature homework problems. For instance, one popular question that asks, “Enter the net ionic
equation for the reaction of aqueous sodium chloride with aqueous silver nitrate?” was accessed by
14 different IPs from the campus of a well-known university in Upstate New York. This finding
also suggests that some URL locations might have a temporal aspect, which one might explore in
future work. For instance, it is likely that the number of these clicks is reduced during the summer
holiday. We note that these types of links are still just a fraction of the 426 million distinct URLs in
the GPS clicks dataset. Figure 5 shows one mean point for each Yahoo Answers! URL that received
clicks from at least five IP addresses.

5 ASSIGNING LOCATIONS TO URLS

We propose two methods of assigning geographic focus to URLs. The first method requires access
to a seed list of IPs with known GPS locations. We aggregate and cluster clicks from these IPs per
distinct URL. The advantage of this approach is that, as we will see in the Evaluation section, it is
very accurate in assigning locations to URLs. The disadvantages are that it requires having access
to the coordinates of a subset of IP ranges, and it has low coverage. The second method instead
derives locations from the contents of the clicked documents themselves. The advantages of this
approach are that it has much higher coverage, and it only requires access to the web index instead
of IP location information. However, these advantages are at the expense of slightly lower accuracy.

5.1 Locations Extracted from IPs with GPS Data

The approach of reverse-geocoding coordinates and aggregating by city names in Section 4 is
not sufficient to find URLs with local affinity. We have found that clicks outside the boundary
of a city can also contribute directionally to finding the location of links. For example, a blood
bank that serves three neighboring cities receives clicks from all three, but only the mean loca-
tion correctly indicates the neighborhood where the organization is located. Furthermore, using
reverse-geocoding services has its own share of problems and might incorrectly place coordinates
in the wrong cities.
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Instead of reverse-geocoding IP coordinates, we propose using spatial clustering. To better rep-
resent geographic focus, we use a modified version of DBSCAN [15], which is a density-based
clustering algorithm. Intuitively, it groups together coordinates in high-density areas. One feature
of this algorithm is that it does not require specifying the number of clusters a priori. Clusters
can reach any size as long as they satisfy the density requirements. Another feature is that it
can find arbitrarily shaped clusters, which is not possible with other clustering approaches such
as the expectation-maximization (EM) algorithm for Gaussian Mixtures. The algorithm has a
complexity of O (n logn) if the implementation uses an indexing structure for finding neighbors.

DBSCAN requires two parameters, ϵ (epsilon) and minPoints. The ϵ parameter represents the
radius of the search density range around the current point. If the current point has minPoints
neighbors that are at most ϵ distance away, then the density bar is met and a cluster is formed.
The cluster can grow in any direction and to any size as long as the added points are also in a
dense area with at least minPoints neighbors. Points in low-density areas are considered noise
(outliers) and are ignored.

However, using DBSCAN directly yields poor results because of the underlying prior click prob-
ability of each geographical area. Cluster sizes are skewed by the presence of primate cities, which
are cities that dominate the surrounding populated places economically and culturally due to their
size [5]. For instance, a person living in a small town at the outskirts of Miami may often search
for and click on events in the larger city. To account for this natural bias, we propose re-ranking
clusters. For a URL, given a set of coordinates G = {д1,д2, . . .дn }, DBSCAN partitions G into
m clusters, C = { c1, c2, . . . , cm } clusters, each with one or more points. We define the adjusted
confidence of a cluster as its size, divided by the prior probability of clicks on its surface:

Confidence(ci ) =
|ci |

P (click | Surface(ci ))
, (1)

where we define the surface of a cluster by the polygon that contains all of its points. Note that
prior click probability is computed based on the clicks in the entire dataset. In Section 7 we propose
a method to estimate this probability.

Figure 6 shows the click coordinates for the rosalindfranklin.edu domain, which is a medical
school in North Chicago. DBSCAN extracts two clusters, a larger one with more clicks located in
Chicago, and a smaller one with fewer clicks located in North Chicago, where the school is actually
located. Using just the size of each cluster directly would incorrectly lead us to choose the larger
cluster. However, re-ranking the clusters by prior probability gives a higher score to the smaller
(correct) cluster.

After ranking the clusters, we pick the top cluster by score and compute its bounding radius,
which is the radius of the circle that encompasses all of its points. We then assign the center (mean)
location of the cluster to the URL if the bounding radius is within a certain threshold, as discussed
in the Evaluation section. This ensures we retain only URLs that have local affinity.

5.2 Locations Extracted from Web Documents

Obtaining a seed list of IPs with known GPS locations can be difficult as location from global
positioning sensors may only be available to medium and large online services. Since the size of
the resulting dataset is directly proportional to the size of the seed IP list, a large set of IPs is
needed to obtain high URL coverage, which may not always be possible. We describe an alternate
approach of assigning geographic focus to URLs that only uses the content of clicked documents
themselves, instead of using IPs with GPS locations. Our hypothesis is that some web documents
contain physical addresses, and these addresses can be later used in aggregate for IP geolocation.
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Fig. 6. Re-ranking clusters based on region click density. Coordinates shown are clicks on a specific page in

the rosalindfranklin.edu domain, which is a medical school in North Chicago. Initially, the bottom cluster in

Chicago was ranked first. After adjusting confidence based on prior click density, our approach promoted

the cluster in North Chicago to be highest ranked.

There has been ample prior work on extracting addresses from the body of text documents.
Amitay at al. [1] parse web documents to extract a taxonomy of locations using a gazetteer. They
report an accuracy of up to 82% on multiple document collections that together covered 600 pages
and 7,000 geotags. Silva et al. similarly use an ontology of geographical concepts to recognize and
disambiguate location references, but they also introduce a graph-ranking algorithm similar to
PageRank as a second step to further disambiguate locations. They obtain an F-score of up to 0.81
on document collections in four languages [50]. Martins et al. take a machine learning approach
to this problem by using a Hidden Markov Model learner to find location references, then using an
SVM classifier to disambiguate references. They outperform two state-of-the-art commercial sys-
tems [37]. Locations extracted from web documents are typically used to personalize web search
[2, 4, 38]. However, these approaches assume user location is already known and correct. The rank-
ing function then finds documents that are close geographically to the user. If user IP geolocation
is incorrect, this assumption may lead to irrelevant search results.

Although the focus of this article is not on parsing locations from text but on using them in-
directly through clicks for geolocation, we briefly describe the extraction approach used during
web index generation. Locations are found either in the body of the document or from URL frag-
ments. The parser attempts to locate full postal addresses, zip codes, or mentions of popular cities
in the text of documents. For example, the page nibbanarestaurant.com is mapped to the coordi-
nates of Bellevue, WA, since it is the web page of a local restaurant and the body of the docu-
ment contains its geographical address. Sometimes URLs also contain location information. For
example, weather websites often contain the forecast location in the link. Another example is
redfin.com/zipcode/30305, a real estate search web page where the URL contains the zip code of
Atlanta, GA.

Each document is mapped to at most a single location. If multiple locations are present
in the text, only the first one is used. While this data can be noisy at an individual URL level, we
posit that aggregating these locations over millions of clicks can lead to reasonable results. The
evaluation results will demonstrate that this is a reasonable approach.

We sampled 4.1 billion pages with city-level locations from the index of a large commercial
search engine on October 27, 2018, to obtain the web index locations dataset. This alternate ap-
proach has a much higher coverage at the URL level of 261 million distinct URLs as compared to
the IP GPS location seed list approach, which only yields 3.4 million distinct URLs. However, this
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second method may introduce higher noise because the locations listed in text documents may
not be representative of the locations of users clicking those documents. We further explore this
difference in coverage and accuracy in the Evaluation section.

6 IP RANGE GEOLOCATION

In the previous section we presented two approaches to assign locations to distinct URLs. Here
we further propagate these locations to IP ranges with unknown locations using the separate bulk
clicks dataset. Our goal is to determine a single location per IP range at the city level, which
is the same granularity used by commercial geolocation services. To match the typical layout of
these services, we segment the IPv4 space into contiguous ranges of 256 IP addresses (/24 netmask).
For example, the 131.107.174.0/24 range starts with address 131.107.174.0 and ends with address
131.107.174.255.

By grouping IP addresses by IP ranges and assigning locations to ranges instead of individual
addresses, our assumption is that addresses that are numerically colocated are often also geograph-
ically colocated. This assumption is supported by previous research, which has used multiple terms
for extrapolating the location of an entire IP range from a few individual addresses, including clus-
tering [43, 44], geographic locality [16], block-based geolocation [18, 32], segment inference [20],
IP segmenting [34], and aggregation [8]. Here we call this approach IP interpolation. Early work
by Padmanabhan and Subramanian proposed a technique called GeoCluster, which consists of ob-
taining IP network prefixes from BGP router table dumps and then propagating IP addresses with
known location throughout these prefixes [43, 44]. They also proposed breaking up larger network
blocks into smaller segments if the contained ground-truth IPs did not agree on a location. Alidade
makes an even stronger assumption that all of the IPs in a prefix must be located in the same lo-
cation [8]. Structon, proposed by Guo et al., uses interpolation as a technique to increase the IP
coverage of a web-mining-based geolocation approach [20]. They assume all IP addresses in the
same /24 segment are in the same city. They iteratively apply majority voting to increase IP range
sizes until they reach a netmask of size /18. They also combine interpolation with information
from BGP routes and traceroutes. Finally, Liu et al. also apply IP location interpolation as part of
a location-sharing social-network-based geolocation method called Checkin-Geo [34].

Although we evaluate our approach on IPv4, all methods described in this article can be equally
applied to IPv6 IPs. The main difference between the two IP addressing schemes is that the IPv6
ranges are much larger in size; therefore, the IP interpolation needs to happen at a different gran-
ularity. At the time when we ran our experiments we did not have access to IPv6 data, but we are
considering revisiting this subject in the future.

We begin by describing this step using URL location data derived from IP GPS data discussed
in Section 5.1, then detail the same step for the alternate approach using the web index from
Section 5.2.

6.1 Using URL Locations from GPS Coordinates

We first intersect the clicks from the bulk clicks dataset with the URLs with assigned locations
we found in Section 5.1. The resulting subset contains only clicks to URLs that we previously
determined have a certain local affinity. Similar to the previous section, to reduce bias in the data,
we count clicks from an IP to a URL a single time in the 3-month period. Then, we aggregate
the locations of these clicked URLs per IP range. So for each separate contiguous range of 256 IP
addresses we now have a list of coordinates, where each coordinate is derived from the location of
the underlying URLs that have local affinity. Finally, we run DBSCAN on the coordinates in each
IP range to determine their predominant locations.
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We propose a second method to improve the output from DBSCAN at the IP range level. Given an
IP range and its top location cluster, the coordinates that make up the cluster are each derived from
the location of a single URL. For each of these URLs we have previously computed a confidence
score in Section 5.1. As the score increases we are more confident that the URL has affinity to
that location. Using these scores, we adjust the centroid of the DBSCAN cluster using a weighted
average. Since all of the clusters we extract have a small radius of a few kilometers, we can ignore
the curvature of the earth. In the next section, we will demonstrate that this proposal results in a
noticeable improvement in distance error.

6.2 Using URL Locations from Web Documents

We also perform the same IP range clustering step on locations extracted from the body of web
documents. The implementation is very similar to the approach we just took on locations from
IPs with GPS coordinates. The main difference is that for the web index data we extracted at most
a single location per URL, as previously discussed in Section 5.2. Therefore, the location for each
URL has a confidence of 1. In this case, it is unnecessary to use the DBSCAN weighing scheme
and we can directly use the standard DBSCAN output. This alternate method has 13 times higher
coverage than the IP GPS method, which leads to more IP range clusters and therefore higher IP
coverage.

7 MODEL PARAMETERS

Before evaluating our two approaches, we first discuss tuning their model parameters. We begin
by discussing the three parameters we use for the model based on IP GPS locations: ϵ (epsilon),
minPoints, and the maximum cluster bounding radius. We show that by filtering on the bounding
radius of the output clusters in the first step, we can obtain a desired balance of accuracy and IP
coverage in the second step.

Our geolocation approach consists of two DBSCAN clustering steps. In the first step we cluster
locations at the URL level, and in the second step we further cluster URL locations at the IP range
level. We run the clustering algorithm separately for each URL and then separately for each IP
range. DBSCAN requires two parameters, ϵ and minPoints. To find the optimal values for our task,
we experimented using a separate validation set of 3 million IP addresses. We set ϵ to 16 kilometers
(10 miles) for both clustering steps. This parameter does not represent our desired cluster radius,
but it represents the neighboring density threshold. DBSCAN can find clusters of any size as long
as the density requirements are met. Figure 7 helps demonstrate this property of DBSCAN. The
long tail of the figure shows that the output clusters can sometimes cover a large surface as long as
the points are dense. We initially set the second parameter minPoints to a fixed size, but we soon
discovered that we obtained better results if we assigned it dynamically to be 5% of the number of
input points. So, for instance, if a URL contained 100 click coordinates, we set minPoints to 5.

To compute the confidence score for each URL (Equation (1)), we approximate the prior click
density in an area by using Geohash [42, 58], which is a well-known geocoding system for latitude
and longitude. We aggregate all coordinates in the GPS clicks dataset by Geohash ID. We set the
Geohash precision to five characters, which divides the entire world into 4.9-km-by-4.9-km tiles.
In each tile we count how often we observe location clicks across the entire dataset. This allows us
to determine a rough prior click probability for any location in the world by consulting the density
in its equivalent geohash tile. After re-ranking the clusters by confidence, we pick the cluster with
the highest score.

In addition to the ϵ and minPoints parameters, we also set a maximum bounding radius for the
clusters generated in the first step. The bounding radius of the cluster is determined by the circle
that encompasses all points in the cluster. By filtering on the bounding radius at the end of
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Fig. 7. Distribution of radius for clusters extracted from URL click locations (first clustering step) for ϵ = 16,

minPts = 5%. The figure shows a normal distribution centered around the [8, 9) data point, which shows that

there were about 355,405 clusters with radius between 8 and 9 kilometers. The long tail demonstrates that

DBSCAN can generate clusters of dramatically different sizes, as long as the underlying coordinates abide

by the density criteria.

Fig. 8. Effect of varying cluster max radius on median error and on IP coverage. As we increase the maximum

radius parameter, both the median error and the IP coverage increase. This setting allows selecting a balance

of accuracy and coverage.

the first step, we can tune the amount of accuracy and IP coverage we eventually achieve

in the second step. Figure 8 demonstrates the effect that varying this parameter has on both
median distance error and IP coverage. We define distance error as the distance between where
a model places the coordinates of an IP and the actual location of the IP as given by our ground
truth. We define IP coverage as the percentage of IPs from the ground-truth set for which a model
makes a decision.

To further show the effect of tuning parameters for accuracy or coverage, we will evaluate two
instances of our model based on GPS data: GPS-HigherAcc, which is tuned for higher accuracy by
setting the maximum bounding radius to 6, and GPS-HigherCov, which is tuned for higher coverage
by setting the radius to 20. The higher-accuracy variant has a ground-truth IP coverage of 2.2%,
while the higher-coverage one has a coverage of 52.2%.
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Table 1. Improvement in Accuracy When Using Weighted Centroids for IP Range

Locations in GeoClicks-GPS-HigherCov

Cumulative Unweighted Weighted Improvement

Error in km Centroids Centroids for Weighted

<10 km 49.9% 52.1% 4.2%
<20 km 74.7% 75.4% 0.9%
<30 km 81.1% 81.3% 0.2%

Table 1 demonstrates the effect of our proposal from Section 6.1 to modify DBSCAN by weighing
the centroid locations in the second step by the URL confidence scores computed in the first step.
We obtain an improvement of 4.2% in the error < 10 km band.

The alternate method to assign geographic focus to URLs makes use of locations extracted from
the text of web documents. Since in this approach we do not have to cluster IP coordinates, in the
first step we directly assign at most one location to each URL. In the second step we aggregate and
cluster URL locations based on clicks issued by users in each IP range. This step allows us to tune
the DBSCAN clustering parameters for higher accuracy or coverage. For the index-based approach
we also create and evaluate two instances of our model: Index-HigherAcc and Index-HigherCov.
They have higher ground-truth IP coverage than the GPS variants, at 10.9% and 75.4%, respectively.

8 EVALUATION

We compare our approach against three baselines: two state-of-the-art commercial geolocation
databases a state-of-the-art academic baseline. We then determine the overall and agreement be-
tween the two approaches, and finally we evaluate a combined variant that uses both GPS and
index data.

8.1 Commercial Baselines

We compare our approaches against two state-of-the-art commercial databases, ProviderA and
ProviderB. We cannot reveal the names of the proprietary databases since their terms of use forbid
comparative benchmarking. They are among the most popular and accurate databases and they
are both available to the public.

Figure 9 compares error distance between four GeoClicks instances and the two commercial
providers. The x-axis represents the cumulative error distance, while the y-axis shows how many
points fall within that particular error distance band. For instance, the second column shows that
GeoClicks-GPS-HigherAcc places 80.5% of the predicted locations within 20 km of their actual loca-
tion in the ground-truth set. The figure shows that our approaches significantly outperform

the commercial location services in cumulative error distance.
Table 2 also compares the methods across several metrics. Our four variants achieve better re-

sults in median error and percentage of ground-truth IPs with error smaller than 10 kilometers.
The last column in the table shows Root-Mean-Squared-Error [22] in kilometers. One difference
between RMSE and median is that RMSE easily gets swayed by large outliers, whereas median does
not. Our four base variants come close but do not surpass the commercial providers in RMSE. While
our models generally yield more accurate locations than the commercial baselines, when they do
make a mistake the distance error is sometimes larger than that of the commercial providers, since
click data can be noisy. Nevertheless, overall our proposals yield much better results than the com-
mercial services. Furthermore, in Section 8.3 we evaluate a variant that combines the GPS and
index methods and achieves a better RMSE result than all of the baselines.
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Fig. 9. Error distance in kilometers with 10-fold cross-validation between our four variants, two commercial

geolocation services, and an academic baseline that mines query logs [12].

Table 2. Performance of Four Instances of Our Approaches, Two State-of-the-Art Commercial Geolocation

Services, a Strong Academic Baseline, and a Combination of Our Methods, on Several Metrics: Median

Error (Lower Is Better), Percent of Matching Ground-Truth Points Where Error Is Smaller Than 10 km

(Higher Is Better), and RMSE (Lower Is Better)

Median Error % Distance <10

km

RMSE in km

GeoClicks-GPS-HigherAcc 4.5 72.2% 893.4
GeoClicks-GPS-HigherCov 9.5 52.1% 711.1
GeoClicks-Index-HigherAcc 9.2 54.0% 1,327.4
GeoClicks-Index-HigherCov 10.7 47.3% 1,498.6

Commercial Provider A 11.1 47.2% 545.9
Commercial Provider B 16.7 36.7% 545.3
Query Logs Geolocation [12] 9.6 51.0% 2,126.4

GeoClicks-Intersect-HigherCov 8.7 57.2% 375.5

The disadvantage of our two approaches is that they have lower ground-truth coverage than
commercial databases. In our previous work we have evaluated three commercial databases,
which had IP coverage between 94.1% and 97.3% [12]. In comparison, here our instance with
highest coverage only achieves a coverage of 75.4%. However, our coverage still far surpasses
prior academic work. We discuss one approach to further improve coverage in Section 8.3.

8.2 Academic Baseline

We compare our two approaches against the aforementioned academic state-of-the-art IP geolo-
cation approach based on mining query logs [12]. We re-implemented this academic baseline
by mining query logs over a period of 28 days, ending on October 26, 2018. We reduced bias
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caused by single addresses by selecting one query instance per IP per day. Using the same
methodology as in the original paper [12], we then retained queries with local intent such as
business searches, directions, local cinema showtimes, and local weather. Finally, we filtered the
remaining impressions to keep only the ones that contained explicit locations. This resulted in
374 million queries that were issued from 3.4 million distinct /24 (256 IPs) buckets. After grouping
and filtering locations by IP range, we evaluated the baseline on our ground-truth set.

Figure 9 shows that the query logs approach generally has lower accuracy than the click-based
approaches, with the exception of accuracy at <10 km, where the baseline surpasses our web index-
based variant that is tuned for higher coverage, but still comes up short when compared to our
three other instances.

Table 2 contains a comparison across several metrics. Our four click-based instances signifi-
cantly outperform the query logs approach in RMSE, and three of four variants outperform the
baseline in median error and accuracy at the 10-kilometers threshold.

In conclusion, our click-based approaches outperform a baseline based on mining query logs,
but the choice of using one click-based variant over another depends on the application. For ap-
plications in need of higher coverage, the index-based approach is the best option. However, if
instead the goal is to achieve the highest accuracy, then a GPS-based approach is the best choice.

8.3 Agreement and Overlap

Our two approaches are based on propagating location information extracted from GPS sensors
and the body of web pages, respectively. In this section we aim to quantify the degree to which
there is overlap and agreement between these techniques. We compare the higher-coverage vari-
ants. The variant based on GPS data has a ground-truth IP coverage of 52.2%, while the ones using
data from the body of web pages has a higher coverage at 75.4%.

The method based on GPS locations has a total coverage of 1.32 million IP ranges, while the
one based on mining web content has a coverage of 1.69 million ranges. Their intersection results
in 821,571 ranges. This result shows that while the techniques output many IP ranges in

common, they are also quite complementary, with 504,109 IP ranges only covered by the GPS
method, and 870,971 IP ranges only covered by the web index approach.

We now analyze the IP ranges that the methods share in common. We examined IP ranges
shared by both approaches and found out that in 74.5% of cases the locations emitted by the two
approaches are within 10 kilometers of each other. If we expand this range to 20 kilometers, then
the agreement increases to 80.5%. The results show that even though the approaches derive loca-
tions from very different data sources, they have excellent agreement.

Finally, an obvious question one may ask is if the intersection of the two approaches yields
better evaluation results than the individual methods. First, we retain the common IP ranges where
the two locations are within 20 km of each other. Second, for each IP range we take the mean
point between the two locations. Third, we evaluate the resulting dataset against the ground truth.
Figure 10 shows that taking the intersection of the approaches results in better accuracy across
the entire distance spectrum. Table 2 further shows that the median error is 8.7 km, which makes
it second in accuracy only to the higher-accuracy variant of the GPS approach. RMSE is only 375.5,
which is the lowest (best) across all variants and baselines. However, the combined approach has
a coverage of only 40.5%, which as expected is lower than either approach.

9 CONCLUSIONS

We studied propagating locations from IPs with known locations to IPs with unknown locations
using user clicks. To the best of our knowledge, search using clicks to improve IP ge-

olocation has never been attempted before in the literature. Using click logs to improve
geolocation poses several challenges. First, click data is noisy and sometimes contradictory. Users
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Fig. 10. Evaluation of blended results against ground truth.

do not always click on URLs related to their immediate vicinity. For example, they may be research-
ing vacation spots, or they may be searching for events in nearby cities. Second, determining the
geographical focus of URLs is difficult. Some links can have city-level affinity, while others are
more dispersed geographically. Take, for instance, a regional bank that has branches in three dif-
ferent cities. Furthermore, some websites such as Yahoo Finance have no particular geographical
focus or have only country-level affinity.

Our research has practical applications in improving search engine personalization, as well as
other online services. It can also augment academic research in geographic user cohort modeling
[53, 56]. Results show that our two proposals significantly outperform two widely used commer-
cial geolocation databases and a strong academic baseline. The results also show that our two
approaches are complementary, with roughly half of the IP ranges overlapping, and that their
intersection is highly accurate, with a median error of only 8.7 kilometers.

Both the GPS and index-based approaches propagate locations through user clicks. We do not
distinguish between the type of page or page element that was clicked. One could further develop
these approaches by further breaking down the types of clicks. For example, if a click is issued
inside a search result page, did the user click on a simple algorithmic result or inside an answer
module such as business listings, weather, or movie showtimes? Also, does the intent of the user
query before the click matter? Furthermore, is there a difference between users who click on news
articles versus people who click on Wikipedia pages? In summary, it might be worthwhile to
investigate if specific categories of clicks better reveal the locations of users. Finally, it would also
be interesting to further study the temporal aspect of certain URLs with hyper-local focus, such
as the answers.yahoo.com example from Section 4.

Lastly, in this article we have exclusively used IPv4 data. We believe that the same approach can
be used on IPv6 by modifying the IP range size used in Section 6. Nevertheless, it would be good
to perform experiments to validate our assumption.
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