Epipolar (Stereo) Geometry

• Epipoles, epipolar plane, and epipolar lines

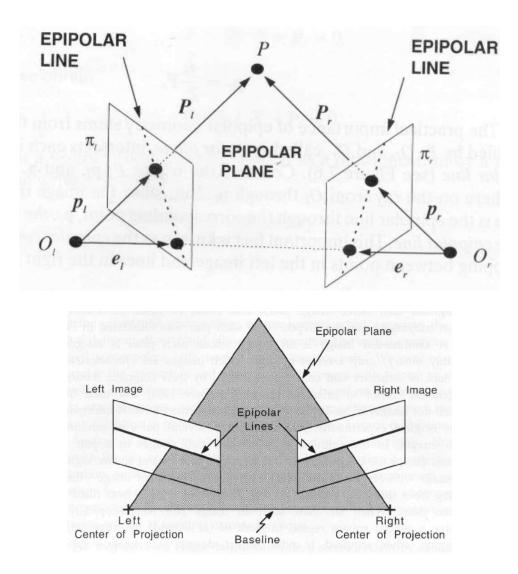
- The image in one camera of the projection center of the other camera is called *epipole*.

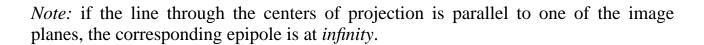
Left epipole: the projection of O_r on the left image plane.

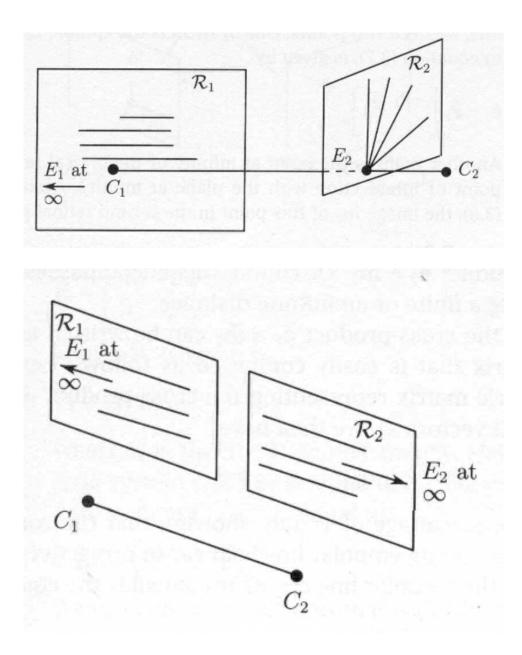
Right epipole: the projection of O_l on the right image plane.

Epipolar plane: the plane defined by P, O_l and O_r .

Epipolar line: the intersection of the epipolar plane with the image plane.







• Stereo basics

- The camera frames are related by a translation vector $T = (O_r - O_l)$ and a rotation matrix *R*.

- The relation between P_l and P_r (projection of P in the left and right frames) is given by

$$P_r = R(P_l - T)$$

- The usual equations of perspective projection define the relation between 3D points and their projections:

$$p_l = \frac{f_l}{Z_l} P_l, \quad p_r = \frac{f_r}{Z_r} P_r$$

• Epipolar constraint

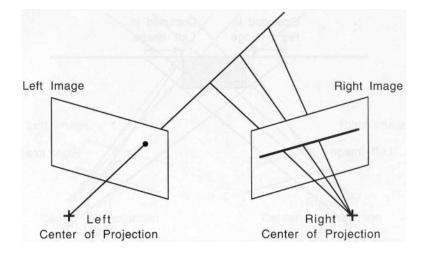
- Given p_l , P can lie anywhere on the ray from O_l through p_l .

- The image of this ray in the right image image is the epipolar line through the corresponding point p_r .

Epipolar constraint: "the correct match must lie on the epipolar line".

- Establishes a *mapping* between points in the left image and lines in the right image and vice versa.

Property: all epipolar lines go through the camera's epipole.

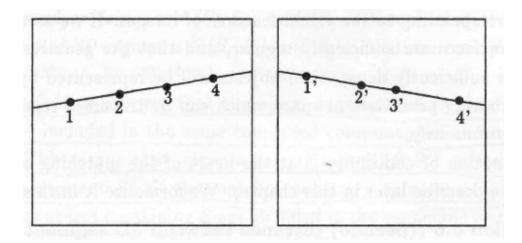


• Importance of the epipolar constraint

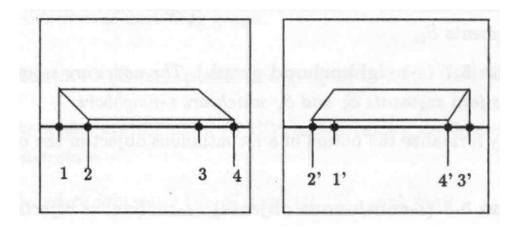
- Corresponding points must lie on conjugate epipolar lines.
- The search for correspondences is reduced to a 1D problem.
- Very effective in *rejecting false matches* due to occlusion (how?)

• Ordering

- Conjugate points along corresponding epipolar lines have the same order in each image.



- *Exception:* corresponding points may not have the same order if they lie on the same epipolar plane and imaged from different sides.

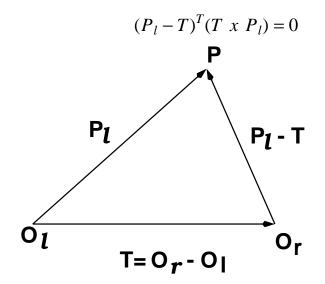


Estimating the epipolar geometry

- How to estimate the mapping between points in one image and epipolar lines in the other?

• The essential matrix, E

- The equation of the epipolar plane is given by the following coplanarity condition (assuming that the world coordinate system is aligned with the left camera):



- Using $P_r = R(P_l - T)$ we have:

$$(R^T P_r)^T T \ x \ P_l = 0$$

- Expressing cross product as matrix multiplication we have:

$$(R^{T}P_{r})^{T}SP_{l} = 0 \quad \text{or } P_{r}^{T}RSP_{l} = 0 \text{ where } S = \begin{bmatrix} 0 & -T_{z} & T_{y} \\ T_{z} & 0 & -T_{x} \\ -T_{y} & T_{x} & 0 \end{bmatrix}$$

(the matrix *S* is always rank deficient, i.e., rank(S) = 2)

- The above equation can now be rewritten as follows:

 $\mathbf{P}_r^T \mathbf{E} \mathbf{P}_l = \mathbf{0} \quad \text{or} \quad \mathbf{p}_r^T \mathbf{E} \mathbf{p}_l = \mathbf{0}$

where E = RS is called the *essential matrix*.

- The equation $\mathbf{p}_r^T \mathbf{E} \mathbf{p}_l = \mathbf{0}$ defines a mapping between points and epipolar lines.

- Properties of the essential matrix:
 - (1) encodes info on the extrinsic parameters only
 - (2) has rank 2
 - (3) its two nonzero singular values are equal

• The fundamental matrix, F

- Suppose that M_l and M_r are the matrices of the intrinsic parameters of the left and right camera, then the pixel coordinates \bar{p}_l and \bar{p}_r of p_l and p_r are:

$$\bar{p}_l = M_l p_l, \quad \bar{p}_r = M_r p_r$$

- Using the above equations and $\mathbf{p}_r^T \mathbf{E} \mathbf{p}_l = \mathbf{0}$ we have:

$$\bar{\mathbf{p}}_{\mathbf{r}}^{\mathrm{T}}\mathbf{F}\bar{\mathbf{p}}_{\mathbf{l}}=\mathbf{0}$$

where $F = (M_r^{-1})^T E M_l^{-1} = (M_r^{-1})^T R S M_l^{-1}$ is called the *fundamental matrix*.

- Properties of the fundamental matrix:

(1) encodes info on both the extrinsic and intrinsic parameters

(2) has rank 2

• Computing F (or E): the eight-point algorithm

- We can reconstruct the epipolar geometry by estimating the fundamental matrix from point correspondences only (with no information at all on the extrinsic or intrinsic camera parameters!!).

- Each correspondence leads to a homogeneous equation of the form:

$$\bar{p}_r^T F \bar{p}_l = 0$$
 or

 $x_l x_r f_{11} + x_l y_r f_{21} + x_l f_{31} + y_l x_r f_{12} + y_l y_r f_{22} + y_l f_{32} + x_r f_{13} + y_r f_{23} + f_{33} = 0$

- We can determine the entries of the matrix *F* (up to an unknown scale factor) by establishing $n \ge 8$ correspondences:

Ax = 0

- It turns out that *A* is rank deficient (i.e., rank(A) = 8); the solution is unique up to a scale factor (i.e., proportional to the last column of *V* where $A = UDV^T$).

Input: *n* correspondences with
$$n \ge 8$$

1. Construct homogeneous system Ax = 0 where A is an nx9 matrix. Suppose $A = UDV^T$ is its SVD.

2. The entries of F are proportional to the components of the last column of V.

Enforcing the constraint rank(F) = 2: (singularity constraint)

3. compute the SVD of F

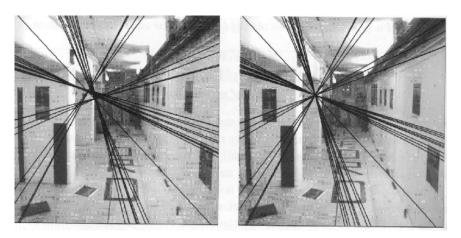
$$F = U_F D_F V_F^T$$

4. Set the smallest singular value equal to 0; Let D'_F be the corrected matrix.

5. The corrected estimate of F, F', is given by

$$F' = U_F D'_F V_F^T$$

Important: we need to normalize the coordinates of the corresponding points, otherwise, *A* has a very bad condition number which leads to numerical instabilities (see p156).



• Homogeneous (projective) representation of lines (see Appendix A.4)

- A line ax + by + c = 0 is represented by the homogeneous vector below (*projective line*):

- Any vector
$$k \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 represents the same line.

- Only the ratio of the homogoneous line coordinates is significant:

* lines can be specified by 2 parameters only (e.g., slope/intercept):

y = mx + i

* rewrite ax + by + c = 0 in the slope/intercept form:

$$y = -\frac{a}{b}x - \frac{c}{b}$$

* homogenization rule for lines: $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$: $\begin{bmatrix} -a/b \\ -c/b \end{bmatrix}$

- Some properties involving points and lines:

(1) The point x lies on the line iff x^T l = 0
(2) Two points define a line: l = p x q
(3) Two lines define a point: p = l x m

<u>Duality</u>: in homogeneous (projective) coordinates, points and lines are dual (we can interchange their roles).

Example1: (0,-1) lies on 2x + y + 1 = 0

The point (0,-1) is represented by
$$x = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

The line $2x + y + 1 = 0$ is represented by $l = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$
 $x^{T} l = 0, 2 + (-1), 1 + 1, 1 = 0$

Example2: find the intersection of x = 1 and y = 1

The line
$$x = 1$$
 is equivalent to $-1x + 1 = 0$ or $l = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
The line $y = 1$ is equivalent to $-1y + 1 = 0$ or $l' = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$

The intersection point x is

$$x = l \ x \ l' = \begin{vmatrix} i & j & k \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Example3: find the intersection of x = 1 and x = 10 (parallel)

The line
$$x = 1$$
 is equivalent to $-1x + 1 = 0$ or $l = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
The line $x = 10$ is equivalent to $-1x + 10 = 0$ or $l' = \begin{bmatrix} -1 \\ 0 \\ 10 \end{bmatrix}$

The intersection point x is

$$x = l \ x \ l' = \begin{vmatrix} i & j & k \\ -1 & 0 & 1 \\ -1 & 0 & 10 \end{vmatrix} = \begin{bmatrix} 0 \\ -9 \\ 0 \end{bmatrix}$$

• Finding the epipolar lines

- The equation below defines a mapping between points and epipolar lines:

$$\bar{p}_r^T F \bar{p}_l = 0$$

Case 1: right epipolar line u_r

the right epipolar line is represented by $u_r = F \bar{p}_l$

 \bar{p}_r lies on u_r , that is, $\bar{p}_r^T u_r = 0$ or $\bar{\mathbf{p}}_r^T \mathbf{F} \bar{\mathbf{p}}_l = \mathbf{0}$

<u>Case 2:</u> left epipolar line u_l

 $\bar{p}_r^T F \bar{p}_l = 0$ is equivalent to $\bar{p}_l^T F^T \bar{p}_r = 0$

the left epipolar line is represented by $u_l = F^T \bar{p}_r$

 \bar{p}_l lies on u_l , that is, $\bar{p}_l^T u_l = 0$ or $\bar{\mathbf{p}}_l^T \mathbf{F}^T \bar{\mathbf{p}}_r = \mathbf{0}$

Case 1: locate \bar{e}_l

 \bar{e}_l lies on all epipolar lines in the left image, thus, it satisfies the equation:

$$\bar{e}_l^T u_l = 0$$
 or $u_l^T \bar{e}_l = 0$ or $\bar{\mathbf{p}}_r^T \mathbf{F} \bar{\mathbf{e}}_l = \mathbf{0}$

which leads to the following homogeneous system:

 $F\bar{e}_{l} = 0$

We can obtain \bar{e}_l by solving the above homogeneous system (the solution \bar{e}_l is proportional to the last column of V of the SVD of F).

Case 2: locate \bar{e}_r

 \bar{e}_r lies on all epipolar lines in the right image, thus, it satisfies the equation:

$$\bar{e}_r^T u_r = 0$$
 or $\bar{e}_r^T F \bar{p}_l = 0$ or $\bar{\mathbf{p}}_l^T \mathbf{F}^T \bar{\mathbf{e}}_r = \mathbf{0}$

which leads to the following homogeneous system:

 $\mathbf{F}^{\mathrm{T}}\bar{\mathbf{e}}_{\mathrm{r}}=\mathbf{0}$

The solution is proportional to the last column of V of the SVD of F^{T} (i.e., same as the last column of U of the SVD of F).

$$F^T = VDU^T$$

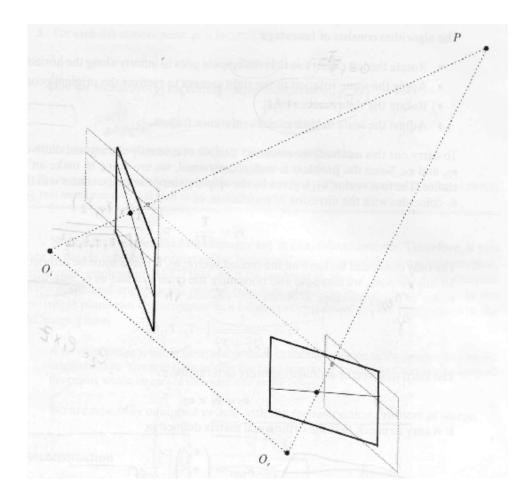
Rectification

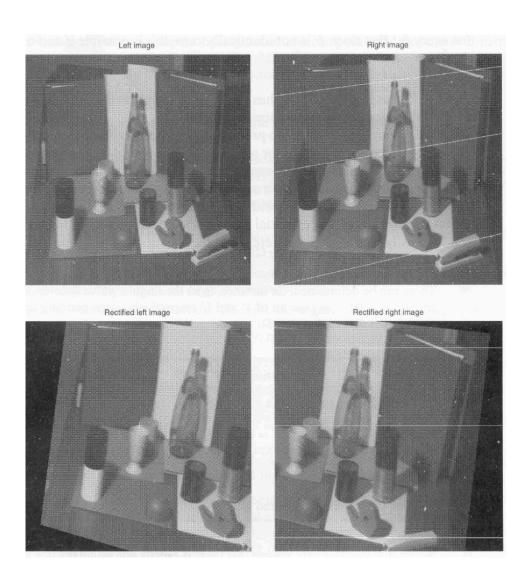
- This is a tranformation of each image such that pairs of conjugate epipolar lines become collinear and parallel to the horizontal axis.

- Searching for corresponding points becomes much simpler for the case of rectified images:

to find the point corresponding to (i_l, j_l) in the left image, we just need to look along the scanline $j = j_l$ in the right image

- Disparities between the images are in the *x*-direction only (no *y* disparity)





10

- Main steps (assuming knowledge of the extrinsic/intrinsic parameters):

(1) Rotate the left camera so that the epipolar lines become parallel to the horizontal axis (epipole is mapped to infinity).

- (2) Apply the same rotation to the right camera to recover the original geometry.
- (3) Rotate the right camera by R

- Let's consider step (1) (the rest are straightforward):

We will construct a coordinate system (e_1, e_2, e_3) centered at O_l .

Aligning the axes of this coordinate system with the axes of the image plane coordinate system yields the desired rotation matrix.

(1.1) e_1 is a unit vector along the vector T

$$e_1 = \frac{T}{\|T\|} = \frac{[T_x, T_y, T_z]^T}{\sqrt{T_x^2 + T_y^2 + T_z^2}}$$

(1.2) e_2 is chosen as the cross product of e_1 and the z axis

$$e_{2} = \frac{e_{1} x [0, 0, 1]^{T}}{\|e_{1} x z\|} = \frac{1}{\sqrt{T_{x}^{2} + T_{y}^{2}}} [-T_{y}, T_{x}, 0]^{T}$$

(1.3) choose e_3 as the cross product of e_1 and e_2

$$e_3 = e_1 \ x \ e_2$$

- The rotation matrix that maps the epipoles to infinity is: $R_{rect} = \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix}$

- *Note:* rectification can also be done without knowledge of the extrinsic/intrinsic parameters (more complicated).

