Epipolar (Stereo) Geometry

 Epipoles, epipolar plane, and epipolar lines

- The image in one camera of the projection center of the other camera is called
epipole

Left epipole: the projection 0o, on the left image plane.

Right epipole: the projection ofD, on the right image plane.

Epipolar plane: the plane defined bly, O, andO,.

Epipolar line: the intersection of the epipolar plane with the image plane.
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Note: if the line through the centers of projection is parallel to one of the image
planes, the corresponding epipole igénity.
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» Stereo basics

- The camera frames are related by a translatemovT = (O, — O,) and a rotation
matrix R.

- The relation betwee®, and P, (projection of P in the left and right frames) is
given by

P, =R(P, - T)

- The usual equations of perspeetirojection define the relation between 3D points
and their projections:

=hp =frp
pI—ZI [ pr—zr r

* Epipolar constraint
- Given p;, P can lie agwhere on the ray fror®, throughp.

- The image of this ray in the right image image is the epipolar line through the corre-
sponding point, .

Epipolar constraint: "the correct match must lie on the epipolar line".

- Establishes anappingbetween points in the left image and lines in the right image
and vice ersa.

Property. al epipolar lines go through the camexadipole.
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 Importance of the epipolar constraint

- Corresponding points must lie on conguig epipolar lines.

- The search for correspondences is reduced to a 1D problem.
- Very efective in rejecting false matwesdue to occlusion (hva?)
 Ordering

- Conjugate points along corresponding epipolar linegehtae same order in each
image.
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- Exception:corresponding points may notueathe same order if tlydie on the same
epipolar plane and imaged fromfdifent sides.
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Estimating the epipolar geometry
- How to estimate the mapping between points in one image and epipolar lines in the
other?
* The essential matrix, E

- The equation of the epipolar plane isagi by the folloving coplanarity condition
(assuming that theavld coordinate system is aligned with the left camera):

(P -T)'(T xP) =0

O1 Oy
T: O r = O I
- UsingP, = R(P, - T) we have
(RTP)'T xP, =0
- Expressing cross product as matrix multiplication weeha

oo -T, T,0O
(RTPr)TSH =0 or PrTRSFf =Qwhere S= BTZ 0 _TXD
D_Ty Tx 0 ]

(the matrixSis aways rank deficient, i.erank(S) = 2)



- The abwe agjuation can n@ be rewritten as follavs:
PTEP,=0 or p/Ep =0

whereE = RSis called theessential matrix
- The equatiom, Ep, = 0 defines a mapping between points and epipolar lines.
- Properties of the essential matrix:

(1) encodes info on thtinsic parameters only

(2) has rank 2

(3) its two nonzero singularalues are equal

» The fundamental matrix, F

- Suppose thaM, and M, are the matrices of the intrinsic parameters of the left and
right camera, then the gkcoordinate$, and p, of p, and p, are:

p=Mp, B =Mp
- Using the abee equations ang, Ep, = 0 we have:
P Fp =0
whereF = (M)TEM;? = (M )T RSM? is called thédundamental matrix
- Properties of the fundamental matrix:

(1) encodes info on both th&tensic and intrinsic parameters
(2) has rank 2



» Computing F (or E): the eight-point algorithm
- We @an reconstruct the epipolar geometry by estimating the fundamental matrix
from point correspondences only (with no information at all on xt@nsic or intrin-
sic camera parameters!!).
- Each correspondence leads to a homogeneous equation of the form:
pPFP =0 o
X Xe fo + XY fr+ X far + VX fo+ WYy oo+ Y fap + % fiz + Yy fag + f33=0

- We @an determine the entries of the matfix(up to an unknan scale &ctor) by
establishing = 8 correspondences:

Ax=0

- It turns out thatA is rank deficient (i.erank(A) = 8); the solution is unique up to a
scale &ctor (i.e., proportional to the last columnvbivhere A = UDVT).

Algorithm
Input: n correspondences witin= 8

1. Construct homogeneous systék® =0 where A is an nx9 matrix. Suppose
A=UDV' isits SVD.

2. The entries oF are proportional to the components of the last column. of
Enforcing the constraintrank(F) = 2: (singularity constraint)
3. compute the SVD df
F=U:DgV{
4. Set the smallest singulaailue equal to O; LeD'r be the corrected matrix.
5. The corrected estimate bf F', is gven by

F'=UpD'VE




Important: we need to normalize the coordinates of the corresponding points, other
wise, A has a ery bad condition number which leads to numerical instabilities (see
p156).
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 Homogeneous (pojective) representation of lines (see ppendix A.4)

- Aline ax+ by+c =0 is represented by the homogeneoestor belav (projective

line):
Cald
SO O
O
(O
Cald
- Any vector kgo Brepresents the same line.
(O

- Only the ratio of the homogoneous line coordinates is significant:
* lines can be specified by 2 parameters only (e.g., slope/intercept):
Yy = mx+i

* rewrite ax + by + ¢ = 0 in the slope/intercept form:

__a ¢
Y="b" b

o Ao Deabl
* homogenization rule for Ilne%) 0 Ogpd
g U O

- Some properties wolving points and lines:
(1) The pointx lies on the line ix"I =0
(2) Two points define a lind: = p xq
(3) Two lines define a poinpp=1 x m

Duality: in homogeneous (projeeé) coordinates, points and lines are dual (we can

interchange their roles).



Examplel:(0,-1) lies or2x+y+1=0

00 O
The point (0,-1) is represented ky= B—lg
0l o

20O

The line2x +y +1 =0 s represented bly= Sl B

ENE
x"I=0.2+(-1).1+1.1=0

Example2:find the intersection at =1 andy =1

10
The linex =1 is qquivalentto-1x+1 =00l = BO B
01 O
00 O
The liney =1is gquivalent to-ly+1=0o0or |' = S—lg
0l O

The intersection point is

Oi | kO @O

= O O_0G 0
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Example3:find the intersection at =1 and x =10 (parallel)

10
The linex =1 is gquivalent to-1x+1=0or | = BO B
0l O
010
The linex =10 is equivalent to-1x +10=0or I' = go B
EYN
The intersection point is
Oi j kO 000
- = O O- g
x=Ixl D1 0 1D D9D
1 0 100 0 g



* Finding the epipolar lines
- The equation belw defines a mapping between points and epipolar lines:
pfFp =0
Case 1: right epipolar lineu,
the right epipolar line is representedlpy= F p,

p; lies onuy, that is,pf u, =0 or p/ Fp; =0

Case 2: left epipolar lineu,
P, Fp, = 0is equivaent top] F'p, =0
the left epipolar line is representedigy= F' p,

p, lies onuy, thatis,pfu, =0 or p/F'p, =0



i

* Locating the epipoles fom F (or E)
Case 1: locate g
g lies on all epipolar lines in the left image, thus, it satisfies the equation:
egu=0 o ueg=0 o pFg=0
which leads to the follesing homogeneous system:
Fg =0
We @n obtaing by solving the abge homogeneous system (the solutignis

proportional to the last column ¥fof the SVD ofF).

Case 2: locate &

€ lies on all epipolar lines in the right image, thus, it satisfies the equation:
egu =0 o eFp =0 o p/Fe=0
which leads to the follsing homogeneous system:
F'g =0

The solution is proportional to the last columnvobf the SVD ofF ' (i.e., same
as the last column &f of the SVD ofF).

FT =vDU'



» Rectification

- This is a tranformation of each image such that pairs of catgugpipolar lines
become collinear and parallel to the horizontal axis.

- Searching for corresponding points becomes much simpler for the case of rectified
images:

to find the point coasponding tdi;, j;) in the left image,
we just need to look along the scanline j; in the right imae

- Dispatrities between the images are inxhgirection only (noy disparity)

o




Left image

- Main steps (assuming kwtedge of the xrinsic/intrinsic parameters):

(1) Rotate the left camera so that the epipolar lines become parallel to the hori-
zontal axis (epipole is mapped to infinity).

(2) Apply the same rotation to the right camera tovecthe original geometry

(3) Rotate the right camera I/



- Let’s consider step (1) (the rest are straightiamy:
We will construct a coordinate systdm, e,, &;) centered a0,.

Aligning the axes of this coordinate system with theeaxof the image plane
coordinate system yields the desired rotation matrix.

(1.1) g is a unit ector along theectorT

T [TeT, T
Tl VT2 +T,2+T,2

S

(1.2) & is chosen as the cross produceoénd thez axis

_ e x[0,01" _ 1

- — [_Ty1TX1O]T
loxd yFEaT,

(1.3) chooses; as the cross product ef ande,

=6 X&
e O
- The rotation matrix that maps the epipoles to infinityRige; = - ) B
:
[ O

- Note:rectification can also be done without Wledge of the erinsic/intrinsic
parameters (more complicated).
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