Cancellation I

- Catastrophic cancellation and benign cancellation
- Catastrophic cancellation :
$b=3.34, a=1.22, c=2.28$,
true answer: $b^{2}-4 a c=0.0292$
$b^{2} \approx 11.2,4 a c \approx 11.1 \Rightarrow$ computed answer $=0.1$ error $=0.1-0.0292=0.0708$
computed answer $=0.1=1.00 \times 10^{-1}$
ulps $=0.01 \times 10^{-1}=10^{-3}$
$0.0708 \approx 70$ ulps

Cancellation II

- A large error happens when subtracting two close numbers
- Benign cancellation: subtracting exactly known numbers, by guard digits
- \Rightarrow small relative error
- In the example, b^{2} and $4 a c$ already contain errors

Avoid Catastrophic Cancellation I

- By rearranging the formula
- Example

$$
\begin{equation*}
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \tag{1}
\end{equation*}
$$

- If $b^{2} \gg 4 a c \Rightarrow$ no cancellation when calculating $b^{2}-4 a c$ and $\sqrt{b^{2}-4 a c} \approx|b|$
Then $-b+\sqrt{b^{2}-4 a c}$ has a catastrophic cancellation if $b>0$

Avoid Catastrophic Cancellation II

- Multiplying $-b-\sqrt{b^{2}-4 a c}$, if $b>0$

$$
\begin{equation*}
\frac{2 c}{-b-\sqrt{b^{2}-4 a c}} \tag{2}
\end{equation*}
$$

- Use (1) if $b<0$, (2) if $b>0$
- Difficult to remove all catastrophic cancellations, but possible to remove some by reformulations
- Another example: $x^{2}-y^{2}$

Assume $x \approx y$
$(x-y)(x+y)$ is better than $x^{2}-y^{2}$

Avoid Catastrophic Cancellation III

x^{2}, y^{2} may be rounded $\Rightarrow x^{2}-y^{2}$ may be a catastrophic cancellation
$x-y$ by guard digit

- A catastrophic cancellation is replaced by a benign cancellation
Of course x, y may have been rounded and $x-y$ is still a catastrophic cancellation.
Again, difficult to remove all catastrophic cancellations, but possible to remove some

Avoid Catastrophic Cancellation IV

- Calculating area of a triangle

$$
\begin{equation*}
A=\sqrt{s(s-a)(s-b)(s-c)}, s=\frac{a+b+c}{2} \tag{3}
\end{equation*}
$$

a, b, c : length of three edges
If $a \approx b+c$, then

$$
s=(a+b+c) / 2 \approx a
$$

and $s-a$ may have a catastrophic error
Example: $a=9.00, b=c=4.53$
$s=9.03, A=2.342$

Avoid Catastrophic Cancellation V

Computed solution: $A=3.04$, error ≈ 0.7
ulps $=0.01$, error $=70$ ulps

- A new formulation by Kahan [1986], $a \geq b \geq c$ $A=$

$$
\frac{\sqrt{(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}}{4}
$$

$A \approx 2.35$, close to 2.342

- Conclusion: sometimes a formula can be rewritten to have higher accuracy using benign cancellation

Avoid Catastrophic Cancellation VI

- Only works if guard digit is used; most computers use guard digits now

Exactly Rounded Operations

- Round then calculate \Rightarrow may not be very accurate
- Exactly rounded: compute exactly then rounded to the nearest \Rightarrow usually more accurate
- The definition of rounding
- $12.5 \Rightarrow 12$ or 13 ?
- Rounding up: $0,1,2,3,4 \Rightarrow$ down, $5,6,7,8,9 \Rightarrow$ up
Why called "rounding up"? Always up for 5
- Rounding even:
the closest value with even least significant digit

Exactly Rounded Operations II

50% probability up, 50% down
example: $12.5 \Rightarrow 12 ; 11.5 \Rightarrow 12$

- Reiser and Knuth [1975] show rounding even may be better

Exactly Rounded Operations III

Theorem 1
Let

$$
x_{0}=x, x_{1}=\left(x_{0} \ominus y\right) \oplus y, \ldots, x_{n}=\left(x_{n-1} \ominus y\right) \oplus y
$$

. If \oplus and \ominus are exactly rounded using rounding even, then

$$
x_{n}=x, \forall n \text { or } x_{n}=x_{1}, \forall n \geq 1
$$

$x \oplus y, x \ominus y$: computed solution

- Consider rounding up,

Exactly Rounded Operations IV

$$
\begin{aligned}
& \beta=10, p=3, x=1.00, y=-0.555 \\
& x-y=1.555, x \ominus y=1.56,(x \ominus y)+y= \\
& 1.56-0.555=1.005, x_{1}=(x \ominus y) \oplus y=1.01 \\
& x_{1}-y=1.565, x_{1} \ominus y=1.57,\left(x_{1} \ominus y\right)+y= \\
& 1.57-0.555=1.015, x_{2}=\left(x_{1} \ominus y\right) \oplus y=1.02 \\
& \text { Increased by } 0.01 \text { until } x_{n}=9.45
\end{aligned}
$$

- Rounding even:

$$
\begin{aligned}
& x-y=1.555, x \ominus y=1.56,(x \ominus y)+y= \\
& 1.56-0.555=1.005, x_{1}=(x \ominus y) \oplus y=1.00 \\
& x_{1}-y=1.555, x_{1} \ominus y=1.56,\left(x_{1} \ominus y\right)+y= \\
& 1.56-0.555=1.005, x_{2}=\left(x_{1} \ominus y\right) \oplus y=1.00
\end{aligned}
$$

Exactly Rounded Operations V

- How to implement "exactly rounded operations"? We can use an array of words or floating-points But you don't have an infinite amount of spaces
- Goldberg [1990] showed that using two guard digits and one sticky bit the result is the same as using exactly rounded operations (details not discussed)

