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Address Translation

Spring 2019

If a machine is expected to be infallible,
It cannot also be intelligent.

Alan Turing

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene. 
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Address Generation
qAddress generation has three stages:

vCompile: compiler
vLink: linker or linkage editor
vLoad: loader

source
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module
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module

memory
compiler linker loader
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Three Address Binding Schemes
qCompile Time: If the complier knows the 

location a program will reside, it can generate 
absolute code.  Example: compile-go systems 
and MS-DOS .COM-format programs.

qLoad Time: A compiler may not know the 
absolute address.  So, the compiler generates 
relocatable code.  Address binding is delayed 
until load time.

qExecution Time: If the process may be moved 
in memory during its execution, then address 
binding must be delayed until run time.  This is 
the commonly used scheme.
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Address Generation: Compile Time
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Linking and Loading
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Address Generation: Static Linking
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qCode and data are 
loaded into memory at 
addresses 10000 and 
20000, respectively.

qEvery unresolved 
address must be 
adjusted.

Loaded into Memory



Main Points
qAddress Translation Concept

ØHow do we convert a virtual address to a physical 
address?

qFlexible Address Translation
ØBase and bound
ØSegmentation
ØPaging
ØMultilevel translation

qEfficient Address Translation
ØTranslation Lookaside Buffers (TLB)
ØVirtually and physically addressed caches
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Address Translation Goals
qMemory protection
qMemory sharing

ØShared libraries, interprocess communication
qSparse addresses

ØMultiple regions of dynamic allocation (heaps/stacks)
qEfficiency

ØMemory placement
ØRuntime lookup
ØCompact translation tables

qPortability
9



Goals: 1/4
qMemory Protection
qMemory Sharing
qFlexible Memory Placement
qSparse Addresses
qRuntime Lookup Efficiency
qCompact Translation Tables
qPortability
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Goals: 2/4
qMemory Protection

ØWe need the ability to limit the access of a 
process to certain regions of memory

qMemory Sharing
ØWe want to allow multiple processes to 

shared selected regions of memory (e.g., 
shared memory segments)

qFlexible Memory Placement
ØWe want to allow the operating system the 

flexibility to place a process (and each part 
of a process) anywhere in physical memory.
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Goals: 3/4
qSparse Addresses

ØMany programs have multiple dynamic 
memory regions that can change (e.g., heap, 
stack, etc.).  Modern processors have 64-bit 
address spaces, but making the address 
translation more complex.

qRuntime Lookup Efficiency
ØHardware address translation occurs on 

every instruction fetch and every data load 
and save.  Thus, translation has to be 
efficient and faster than the instructions.
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Goals: 4/4
qCompact Translation Tables

ØWe need some tables to aid address 
translation.  These table data structures 
have to be compact enough to save memory.

qPortability
ØDifferent hardware implementation use 

different choices to implement address 
translation.  If an operating system is to be 
easily portable, it needs to be able hardware 
independent.
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Logical, Virtual, Physical Address
qLogical Address: the address generated by the 

CPU.
qPhysical Address: the address seen and used by 

the memory unit.
qVirtual Address: Run-time binding may generate 

different logical address and physical address.  
In this case, logical address is also referred to as 
virtual address.  (Logical = Virtual in this 
course)



Address Translation Concept
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Virtually Address Base and 
Bounds
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Relocation and Protection: 1/2
q Because executables 

may run in any area, 
relocation and 
protection are needed.

q Recall the base/limit
register pair for 
memory protection.

q It could also be used 
for relocation if the 
linker generates 
executables starting 
from 0.

q Linker generates 
relocatable code 
starting with 0.  The 
base register contains 
the starting address.

base
bound OS

a user program
address starts from 0 
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Relocation and Protection: 2/2
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Relocation: How does it work?

process moved to a new address k

1

base

base

bound

bound



Virtually Addressed Base and 
Bound

qPros?
ØSimple
ØFast (2 registers, adder, comparator)
ØSafe
ØCan relocate in physical memory without changing 

process
qCons?

ØCan’t keep program from accidentally overwriting its 
own code

ØCan’t share code/data with other processes
ØCan’t grow stack/heap as needed
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Segmentation: 1/7
qSegment is a contiguous region of virtual address 

space
qEach process has a segment table, and each entry in 

the table has a pointer to a segment
qSegment can be located anywhere in physical 

memory, and each segment has: start (i.e., base), 
length (i.e., bound), access permission, etc.

qTherefore, segmentation can be considered as having
multiple base/bound registers stored in a table.

qProcesses can share segments.
21



Segmentation: 2/7
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Each process has at four segments:
code, data, heap and stack

Each virtual address is divided into a segment # and an offset in that segment.
Suppose we have 31-bit address, and this address is divided into 16-bit for offset
and 15-bit for segment number.  In this way, 16-bit offset means segment max. size 
is 216 = 64K bytes  and 215 segments. 

segment table pointer
in a special register



Segmentation: 3/7
qA process is divided into segments.  The chunks 

that a program is divided into which are not 
necessarily of the same length.

qEarly systems (MULTICS and Burroughs 
B5700/B6700) used segmentation memory 
management.  

qBurroughs Corporation was founded in 1886, in 
1986 merged with Sperry UNIVAC and renamed 
Unisys.  In the 1970’sm Burroughs developed 
some large systems based on the block-based (i.e., 
ALGOL) languages.
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Segmentation: 4/7
qBurroughs B5700/B6700 are interesting as their 

processors are designed around the language 
blocked-structured  (e.g., ALGOL, PL/I, etc.).

qProcedures can be declared as local procedures, 
which are called by the containing procedure. 

qThus, procedures do have a tree structure.
qEach procedure is in its own segment.
qA hardware pointer ip is the program counter.
qAnother pointer EP points to the activation record 

on a stack.
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Segmentation: 5/7
qThere are two sets of pointers, one pointing to the 

executing code and the order to the its 
corresponding execution environment.
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Each “procedure” is in its own segment, and 
the segment directory table has pointers to 
each segment. 

The left diagram shows 6 procedures
and the ip pointer indicates that the 
processor is executing procedure C! 

Diagram is taken from Elliott I. Organick, Computer System Organization: The B5700/B6700, ACM Press, 1973. 

The ip (3,j) indicates the next instruction
is in segment 3 and offset j.



Segmentation: 6/7
qThere are two sets of pointers, one pointing to the 

executing code and the order to the its 
corresponding execution environment.

26
Diagram is taken from Elliott I. Organick, Computer System Organization: The B5700/B6700, ACM Press, 1973. 

Each “procedure” has its own
“environment” (i.e., segment), and 
the segment Display points to the
Location of its activation record.

This diagram shows the corresponding
activation record on the stack.

The left diagram shows 5 procedures
and the EP pointers indicate the 
processor is executing procedure C! 



Segmentation: 7/7
qPros?

ØCan share code/data segments between processes
ØCan protect code segment from being overwritten
ØCan transparently grow stack/heap as needed
ØCan detect if need to copy-on-write

qCons?
ØComplex memory management

üNeed to find chunk of a particular size
ØMay need to rearrange memory from time to time to 

make room for new segment or growing segment
üExternal fragmentation: wasted space between chunks
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Segmentation Sharing

shared code
segment

point to the same segment

point to the same segment



Segmentation Fault

qEach entry in the segment table controls a portion of 
the virtual address space.

qWhen a request for creating a new segment comes 
but the system does not have enough space, a 
segment fault is generated.  Note that the system 
may still have enough memory in total; but, each 
piece of free space is smaller than the requested one 
(e.g., fragmented).

qSome systems (e.g., Unix) may also generate a 
segment fault if a process accesses an address not in 
any existing segment.
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UNIX fork and Copy on Write

qUNIX fork
ØMakes a complete copy of a process

qSegments allow a more efficient 
implementation
ØCopy segment table into child
ØMark parent and child segments read-only
ØStart child process; return to parent
ØIf child or parent writes to a segment (ex: stack, heap)

ütrap into kernel
ümake a copy of the segment and resume
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Zero-on-Reference
qHow much physical memory is needed for the 

stack or heap?
ØANS: only what is currently in use

qWhen program uses memory beyond end of stack
ØSegmentation fault into OS kernel
ØKernel allocates some memory

üHow much?
ØZeros the memory

üavoid accidentally leaking information!
ØModify segment table
ØResume process
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Segmentation Downside
q The number of segments can be large, and their size vary 

significantly.
q What if a request for a 14K segment arrives?
q This is impossible even though the system does 

have 37k = 12+10+8+7.
q The free space is not contiguous even though the 

total is good enough for this allocation..
q These free slots not in any segment are

external fragmentation.
q We could move the allocated space around to get a 

large enough space for the request provided that
each allocated space is relocatable (e.g., segment).
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Fragmentation
qProcesses are loaded and removed from memory, 

eventually memory is cut into small holes that are 
not large enough to run any incoming process.

qFree memory holes between allocated ones are 
called external fragmentation.

qIt is unwise to allocate exactly the requested 
amount of memory to a process, because of  address 
boundary alignment requirements or the minimum 
requirement for memory management.

qThus, memory that is allocated to a partition, but is 
not used, is an internal fragmentation.
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External/Internal Fragmentation
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Compaction for External 
Fragmentation

qIf processes are relocatable, we may move used 
memory blocks together to make a larger free 
memory block.
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Paging: 1/2
qThe physical memory is divided into fixed-sized 

page frames, or frames.
qThe virtual address space is also divided into 

blocks of the same size, called pages.
qWhen a process runs, its pages are loaded into 

page frames.
qA page table stores the page numbers and their 

corresponding page frame numbers, etc.
qThe virtual address is divided into two fields: 

page number and offset (in that page).
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Paging: 2/2
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Logical address <1, d>  translates to physical address <2, d>
because page 1 is logical space is stored in page frame 2.
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Paged Translation (Abstract)
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Physical space is divided into page 
frames of equal size usually 2k, 4k, 8k.

Virtual space is also divided into [ages
of the same size so that each page
can be fit into a page frame.

the code section has 2 pages (& page frames) 

the data section has 2 pages (& page frames)

the heap section has 3 pages (& page frames) 
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Address Translation

page table pointer



Paged Translation (Implement)
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virtual address is divided
into page # and offset

page #  indices into the page table from page table, the initial
address of that page is obtained.

eventually a valid
physical address
is constructed.



41

Translation Example: 1/3
qSuppose we have a logical/virtual address x, and 

suppose the page size is y.
qThen, x/y is the group (of size y) x is in, and x%y

is the offset within that (x/y) group.
qExample: Suppose y = 16 and x = 76.  Then, x/y

= 76/16 = 4.  Therefore, if 76 elements are 
grouped into 16 each, then 76 is in the 4th group.  
Because 76%16 = 12, 76 is the 12th element in the 
4th group.



42

Translation Example: 2/3
q Suppose page size uses k bits.  The address of a page is

from 0 to 2k-1.  If page size is 4K = 212, then the address in 
a page is from 0 to 212-1=4095.

q Dividing by 2 can be achieved by shifting to the right. For 
example, for 1310 = 11012, dividing 13 by 2 is obtained by
shifting 11012 to the right 1 bit yielding 1102 = 610.  Thus, 
dividing a number x by 2k can be obtained by shifting x to 
the right k bits.

q Example: Suppose an address 110110011011102 is 
divided by 28.  The result is 1101102, which is the page 
number.  The remainder 011011102 is the offset in this page.

q Conclusion: Given a logical/virtual address of n bits and 
page size 2k, the page number of this address is the first n-k
bits and the offset in this page is the last k bits.



43

Translation Example: 3/3
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Hardware Support
qPage table may be stored in special registers if the 

number of pages is small.
qPage table may also be stored in physical memory, 

and a special register, page-table base register, points 
to the page table.

qUse translation look-aside buffer (TLB).  TLB stores 
recently used pairs (page #, frame #).  It compares 
the input page # against the stored ones.  If a match 
is found, the corresponding frame # is the output.  
Thus, no page table access is required.

qThis comparison is done in parallel and is fast.
qTLB normally has 64 to 1,024 entries.



Paging Questions

qWith paging, what is saved/restored on a process 
context switch?
Øpointer to page table, size of page table
Øpage table itself is in main memory

qWhat if page size is very small?
qWhat if page size is very large?

ØInternal fragmentation: if we don’t need 
all of the space inside a fixed size chunk
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Paging and Copy on Write

qCan we share memory between processes?
ØSet entries in both page tables to point to same page 

frames
ØNeed core map of page frames to track which processes 

are pointing to which page frames (e.g., reference count)
qUNIX fork with copy on write

ØCopy page table of parent into child process
ØMark all pages (in new and old page tables) as read-only
ØTrap into kernel on write (in child or parent)
ØCopy page
ØMark both as writeable
ØResume execution
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Fill On Demand

qCan I start running a program before its code is in 
physical memory?
ØSet all page table entries to invalid
ØWhen a page is referenced for first time, kernel 

trap
ØKernel brings page in from disk
ØResume execution
ØRemaining pages can be transferred in the 

background while program is running
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Sparse Address Spaces

qMight want many separate dynamic segments
ØPer-processor heaps
ØPer-thread stacks
ØMemory-mapped files
ØDynamically linked libraries

qWhat if virtual address space is large?
Ø32-bits, 4KB pages => 500K page table entries
Ø64-bits => 4 quadrillion page table entries
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Multi-level Translation
qTree of translation tables

ØPaged segmentation 
ØMulti-level page tables
ØMulti-level paged segmentation

qFixed-size page as lowest level unit of allocation
ØEfficient memory allocation (compared to segments)
ØEfficient for sparse addresses (compared to paging)
ØEfficient disk transfers (fixed size units)
ØEasier to build translation lookaside buffers
ØEfficient reverse lookup (from physical -> virtual)
ØVariable granularity for protection/sharing
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Paged Segmentation

qProcess memory is segmented
qSegment table entry:

ØPointer to page table
ØPage table length (# of pages in segment)
ØAccess permissions

qPage table entry:
ØPage frame
ØAccess permissions

qShare/protection at either page or segment-level
50



Paged Segmentation 
(Implementation)
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Multilevel Paging
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8-bit       6-bit        6-bit        12-bit

q There are 256, 64 and 64 entries
in level 1, 2, and 3 page tables.

q Page size is 4k = 212 = 4,096 bytes
q Virtual space size = (28*26*26 pages)*4K = 232 bytes



x86 Multilevel Paged 
Segmentation

qGlobal Descriptor Table (segment table)
ØPointer to page table for each segment
ØSegment length
ØSegment access permissions
ØContext switch: change global descriptor table register 

(GDTR, pointer to global descriptor table)
qMultilevel page table

Ø4KB pages; each level of page table fits in one page
Ø32-bit: two level page table (per segment)
Ø64-bit: four level page table (per segment)
ØOmit sub-tree if no valid addresses
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Multilevel Translation

qPros:
ØAllocate/fill only page table entries that are in 

use
ØSimple memory allocation
ØShare at segment or page level

qCons:
ØSpace overhead: one pointer per virtual page
ØTwo (or more) lookups per memory reference
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Portability

qMany operating systems keep their own memory 
translation data structures
ØList of memory objects (segments)
ØVirtual page -> physical page frame
ØPhysical page frame -> set of virtual pages

qOne approach: Inverted page table
ØHash from virtual page -> physical page
ØSpace proportional to # of physical pages
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Inverted Page Table: 1/2
qIn a paging system, each process has its own page 

table, which usually has many entries.
qTo save space, we may build a page table which has 

one entry for each page frame.  Thus, the size of this 
inverted page table is equal to the number of 
page frames.  Why is this saving memory?

qEach entry in an inverted page table has two items:
vProcess ID: the owner of this frame
vPage Number: the page number in this frame

qEach virtual address has three sections:
<process-id, page #, offset>
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Inverted Page Table: 2/2
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Fragmentation in a Paging 
System

qDoes a paging system have fragmentation?
qPaging systems do not have external 

fragmentation, because un-used page frames 
can be used by other process.

qPaging systems do have internal fragmentation.
qBecause the address space is divided into equal 

size pages, all but the last one will be filled 
completely.  Thus, the last page may have 
internal fragmentation and may be 50% full.
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Protection in a Paging System
qIs it required to protect among users in a paging 

system? No, because different processes use 
different page tables.

qHowever, we may use a page table length register
that stores the length of a process’s page table.  In 
this way, a process cannot access the memory 
beyond its region. Compare this with the base/limit 
register pair.

qWe may add read-only, read-write, or execute bits 
in page table to enforce r-w-e permission.

qWe may also add a valid/invalid bit to each page 
entry to indicate if a page is in memory.
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Shared Pages
q Pages may be shared by multiple processes.  
q If the code is a re-entrant (or pure) one, a program does 

not modify itself, routines can also be shared!
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Efficient Address Translation

qTranslation lookaside buffer (TLB)
ØCache of recent virtual page -> physical page 

translations
ØIf cache hit, use translation
ØIf cache miss, walk multi-level page table

qCost of translation =
ØCost of TLB lookup +

Prob(TLB miss) * cost of page table lookup
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TLB and Page Table Translation

62



TLB Lookup
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Translation Look-Aside Buffer
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If the TLB reports no hit, then we go for a page table look up!




