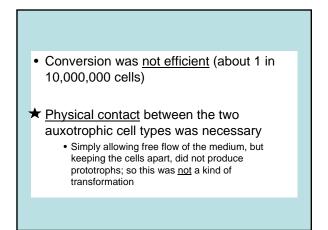
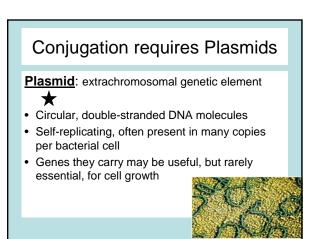
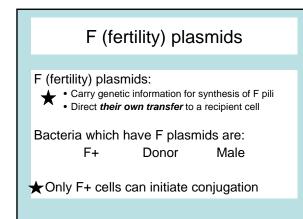
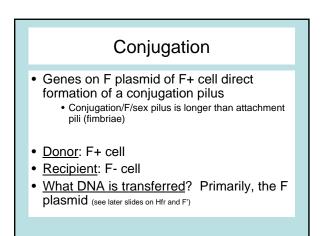
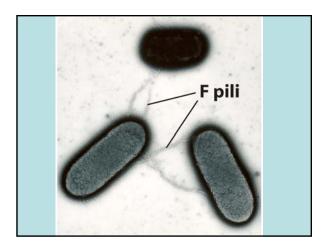

# Lateral Gene Transfer #3: ★ Conjugation

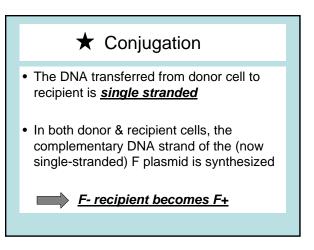

•Transfer of DNA by <u>direct contact</u> between two <u>living</u> bacteria

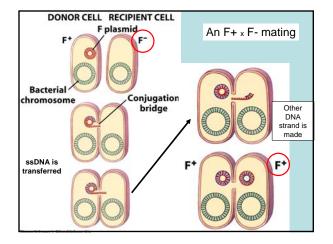

•Contact is made, and DNA is transferred, by way of a conjugation <u>pilus</u> (conjugation bridge/sex pilus/F pilus)


•Much <u>larger amounts of DNA</u> can be transferred by conjugation than by transformation or transduction



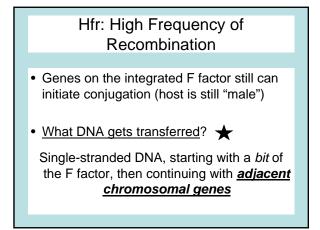



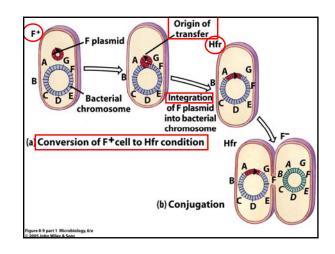



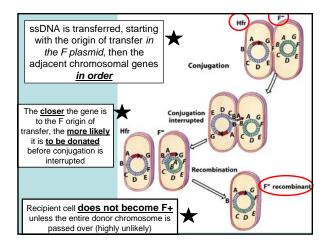








## Hfr: High Frequency of Recombination

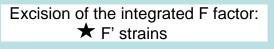
- The F plasmid is a special kind of plasmid called an episome
- <u>Episomes</u> exist <u>either</u> as free <u>extrachromosomal</u> elements, <u>OR</u> can be <u>integrated</u> into the bacterial chromosome (like a prophage)
- F plasmids can integrate at any of several locations in the host chromosome





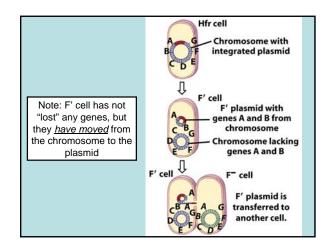


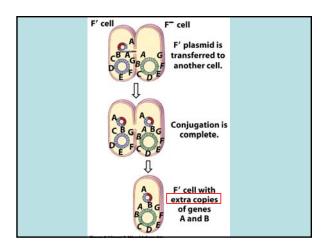
During conjugation, because singlestranded DNA is transferred, donor bacteria <u>do not</u> lose any genes!

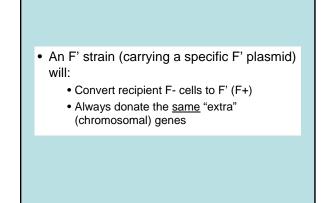

In Hfr transfers, the recipient cell <u>does not</u> end up with 2 copies of any genes: the original copy is recombined (spliced) out and replaced

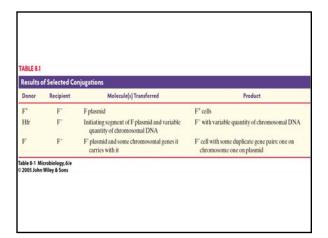
#### $\star$ Hfr strains

- In Hfr strains of bacteria, the F plasmid is stably integrated into the chromosome
   i.e., it stays integrated over many cell generations
- Recombination of chromosomal genes into the recipient occurs 1,000x more often with Hfr than ordinary F+ donor strains
   hence the name, High frequency of recombination


### Hfr strains & mapping


- Genes adjacent to the inserted F factor are transferred to the recipient cell first
- The longer conjugation occurs uninterrupted, the more genes get transferred (in order)
- The location of various genes on the bacterial chromosome was originally mapped using "interrupted mating"
  - Conjugating bacteria were put in a blender at various times, and recombinant cells analyzed for which genes they got





- The F plasmid, once integrated into the bacterial chromosome, can pop out again
- As with specialized transduction (prophage excision errors attach some bacterial DNA to the viral genome), the F plasmid sometimes takes a bit of adjacent DNA with it when it goes

Resulting (free) plasmid is called F' (F prime)









| Kind of Transfer                           | Effects                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transformation                             | Naked DNA from dead cell is picked up by living recipient.<br>Recipient must be competent. Changes certain characteristics of an<br>organism, depending on which genes are transferred.                                                                                                                           |
| Transduction<br>Specialized<br>Generalized | Transfer is effected by a bacteriophage.<br>Only genes near the prophage are transferred to another bacterium.<br>Fragments of host bacterial DNA of variable length and number<br>are packed into the head of a virus.                                                                                           |
| Conjugation<br>F <sup>+</sup><br>Hfr<br>F' | Transfer is effected by a plasmid.<br>A single plasmid is transferred.<br>An initiating segment of a plasmid and a linear sequence of bacterial<br>DNA that follows the initiating segment are transferred.<br>A plasmid and whatever bacterial genes adhere to it when it leaves<br>a bacterium are transferred. |
|                                            | n of the above lateral gene transfers has the<br>ntial to transfer the largest amount of DNA?                                                                                                                                                                                                                     |
|                                            | Conjugation with Hfr strain                                                                                                                                                                                                                                                                                       |

#### R (resistance) plasmids

- F plasmids were the first plasmids discovered
- Other circular, double-stranded, selfreplicating extrachromosomal elements (plasmids) exist e.g.



#### R (resistance) plasmids:

Carry genes for antibiotic resistance

### ★ R plasmids

- Like F plasmids, they carry genes needed to implement their own transfer by conjugation (*resistance transfer factor*)
- Carry one, or frequently more, resistance genes
  - Resistance genes confer insensitivity to a specific antibiotic (or class of antibiotics)

#### R plasmid promiscuity

- Resistance plasmids can be transferred
  Within a species
  - Between closely related genera (genuses)
  - Between unrelated genera!!!
- <u>Major problem</u> in health care as R plasmids carrying <u>multiple</u> resistance genes can spread rapidly under <u>natural</u> <u>selection</u> within a hospital