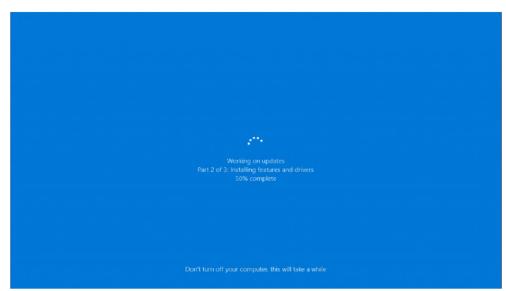
System Security Integrated Through Hardware and Firmware (SSITH)

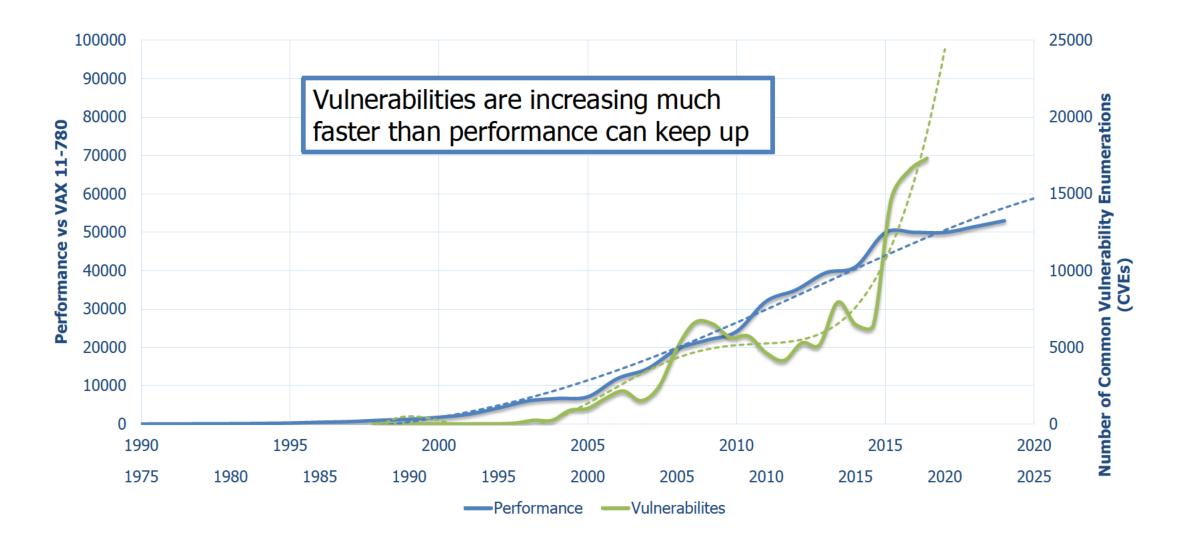
Keith Rebello

May 2021

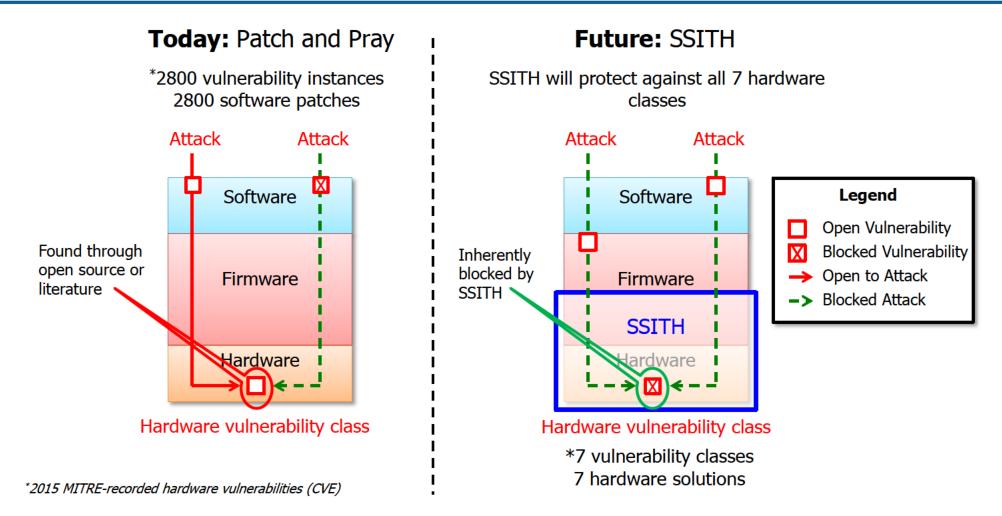


DISTRIBUTION A: Approved for Public Release, Distribution Unlimited

- \$6 trillion in damages annually by 2021
- 23% of Americans impacted
- Ransomware attacks every 14 seconds
- Software patching reduces performance (20% in Microsoft Windows)

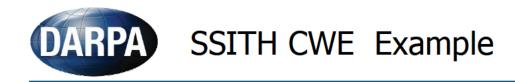


Sources: shesecures.org, federal-technology.com, zseries.in, radware com, eenews.net, ZDNet.com



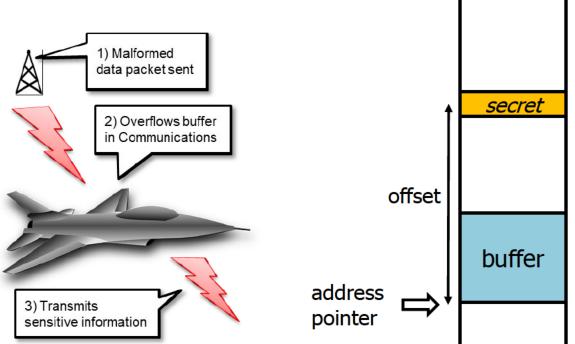
Program Overview

SSITH addresses current and future hardware vulnerabilities at their source



Close ALL seven classes of hardware weakness identified by NIST with acceptable overhead

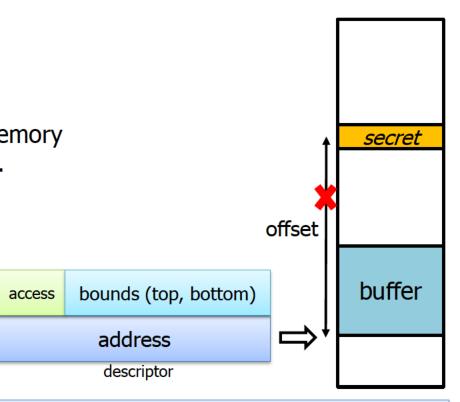
CWE	Description	Phase
Buffer Errors	Reading or writing outside memory bounds of data structures.	1
Information Leakage	Unintentional information sharing or data transfers.	1
Permissions, Privileges, Access Control	Unauthorized access based on system authorizations.	1
Resource Management	Improper access to hardware resources (memory, CPU, I/O).	2
Numeric Errors	Improper calculation or conversion of numeric types.	2
Injection	Introduction of malicious code or data.	3
Hardware/SoC	Hardware-design and SoC implementation flaws.	3


- Maintain software compatibility
 - Ideally no software changes
 - Recompilation is acceptable but discouraged
- TA1: Develop architectures which scale from simple 32 bit microcontrollers to 64 bit superscalar CPUs
- TA2: Develop methodologies and software tools to evaluate the performance of SSITH architectures
- TA3: Transition activities

SSITH protects against all classes of hardware weaknesses with minimal impact across architectures

Buffer Error CWE

- There have been thousands of malware exploits based on "buffer overflow" attacks
 - New exploits happening all the time
 - Roughly one in five exploits uses buffer errors
 - (source: cvedetails.com across ~25 years)
- Buffer Errors occur when reading or writing beyond the bounds of a data structure
- Allows an attacker to read or write to arbitrary memory locations, enabling them to:
 - Obtain potentially sensitive information from memory
 - Cause memory corruption and/or crash the application
 - Execute arbitrary code on the target system.
- Current hardware architectures have no protections and will perform the read or write operation


SSITH Tagging

- Address pointers are replaced or modified by metadata that describes the object being addressed – such as:
 - Base address in memory
 - Object size limits (bounds)
 - Access permissions
 - Code or data
- The hardware pipeline is modified to check that the requested memory access is allowed based on object bounds, type, permissions, etc.

Tagging Variations

- All of the SSITH TA1 performers are using a variation of tagging
- Simple tagging may just be 2 bits indicating pointer to data or code
- Descriptors or "capabilities" can encode bounds, permissions, etc.
- Metadata can be encoded or contained in tables accessed by an index
- Tagging is useful for multiple CWEs, e.g. access control

SSITH tagging mechanism will eliminate Buffer Error weakness forever

- SSITH addresses current and future hardware vulnerabilities at their source
 - Software patches only needed for software bugs and weaknesses
 - Requirement to "patch" the hardware will be rare as SSITH covers all known classes of weakness
- Currently, state-of-the-art commercial approaches don't meet DoD requirements for hardware security across a broad range of applications and SoCs
- SSITH can be incrementally added to DoD SoC applications
 - Reduced re-certification overheads
- SSITH approach includes flexibility to scale from very simple embedded microcontrollers to high-performance superscalar processors

Sources: mirror.co.uk, defense-update.com

SSITH technology can be adapted to diverse application needs

SSITH Program Overview

- Program started in December 2017
- Currently in final Phase 3 through October 2021
- SSITH ASIC effort will extend through October 2022

Program Manager: Keith Rebello

Program Performers

- Lockheed Martin: HARD Parallel Security Co-Processor
- SRI/Cambridge/Arm: CHERI Capabilities
- Agita Labs: Morpheus Secure Cloud
- Galois: BESSPIN System Security Evaluation

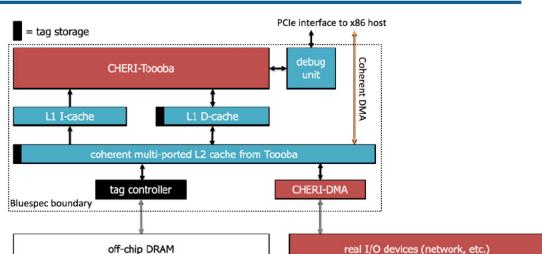
SSITH ASIC

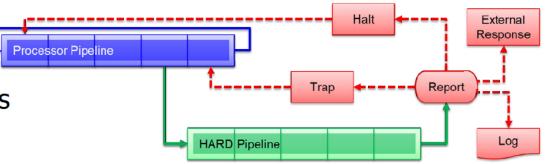
- In planning
- ARM-based multicore ASIC demonstration board

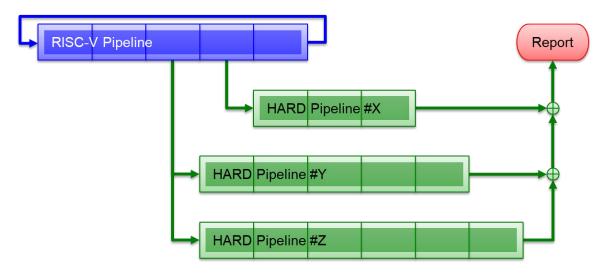
Hardware Overhead Goal

Metric	Phase 1	Phase 2	Phase 3	
Performance	<50%	<25%	<10%	
Power	<10%	<10%	0%	
Area	<100%	<50%	<30%	
Security	3 CWEs	5 CWEs	7 CWEs	
Scalability	1 CPU Simulation	3 CPUs	3 CPUs	
SSITH Metrics				

SSITH technology demonstrated in FPGA on 3 RISC-V CPUs


- P1 32-bit embedded processor (Piccolo/Rocket)
- P2 64-bit Linux processor (Flute/Rocket)
- P3 64-bit high-performance processor (Toooba/BOOM)


Hardware-based security can be implemented with low overhead


- SRI/Cambridge (TA-1)
 - Capabilities for software compartmentalization
 - CHERI-DMA protections
 - Protections in systems with untrusted hardware
 - Protections in systems with untrusted firmware
 - CHERI effects on speculative execution attacks
- Lockheed-Martin (TA-1)
 - Reduced compiler-specific behavior
 - Multi-process protections
 - Investigations of reporting/response mechanisms
 - Improved composability of pipelines
- Galois (TA-2)
 - Implementing tests for remaining CWE categories
 - Building virtualized test systems for transition partner evaluation

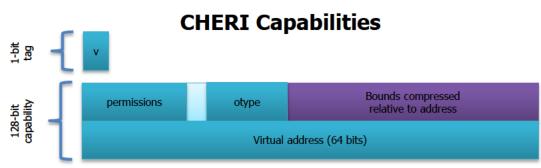
Multiple Pipelines in Parallel

Technical Insight

- Multiple lightweight pipelines running in parallel leads to:
 - Lower PPA impacts
 - Customizable to different environmental needs
- Binary processing mitigates the need to recompile

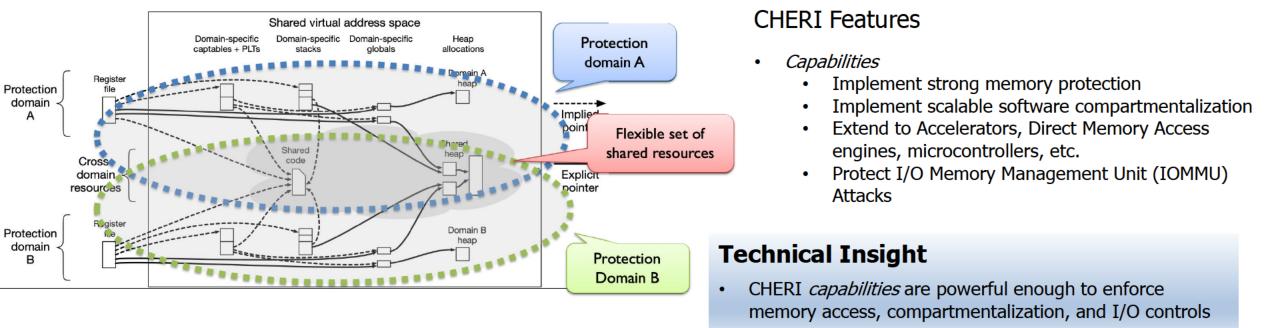
Technical Approach

- HARD processor runs in parallel low power overhead
- Multi-pronged: multiple lightweight hardware pipelines
- Each pipeline implements a specific security technique
- Binary executable code analysis and transformation (reverse engineering of binaries)
- Combination of tagging, fenced region, protection domains, perthread keying, and memory encryption


HARD Features

- Minimally Invasive
 - Source code and toolchain for main pipeline is unchanged
 - No alteration of the main processor pipeline, just exposing select register and wires for monitoring
- Out of Band
 - Performance of main pipeline is unchanged
- Modular
 - HARD pipelines may be attached to other processor pipelines
 - Multiple HARD pipelines may be attached/combined to main pipeline to meet requirements of the application/environment

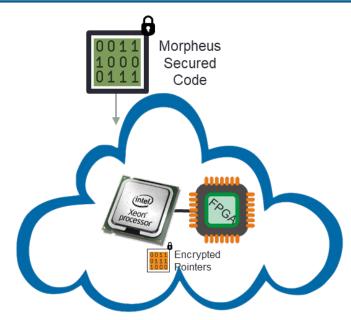
SRI International ECATS: Extending the CHERI Architecture for Trustworthiness in SSITH

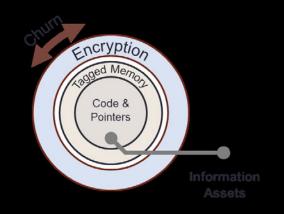


CHERI capabilities extend pointers with a 1-bit tag as well as encoding (decreasing) permissions, and bounds.

Technical Approach

- Use *capabilities* for tagging and compartmentalization
- Apply principles of "least privilege" and "intentional use" to architecture and peripherals
 - Least privilege: limit access rights to the bare minimum
 - Intentional use: exercise of privileges must be explicitly selected
- Assume I/O devices cannot be fully trusted
- Instruction set is extended with capability instructions to
 - · Query and manipulate capability fields
 - Use capabilities for load, store, jump targets, etc.


Agita Labs **Morpheus Cloud**: Protecting Critical Assets with Encryption



Morpheus Cloud Innovations

- Critical program assets are randomized with encryption
 - Code, code pointers, data pointers
 - Each domain has its own crypto keys
 - Decrypted at fetch, jumps and load/stores
- Assets remain encrypted in registers, memory, buses, I/O
 - Requires strong ciphers in the pipeline
- Churn re-encrypts a domain under a new random key
 - Places a time limit on penetrating encryption, determined in

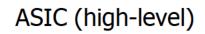
strength

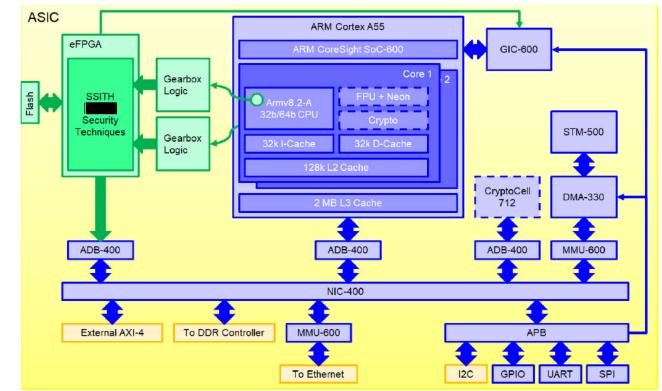
Morpheus Cloud Technical Approach

- Run bulk of enterprise software on Xeon core
- Pointer processing occurs on always-encrypted data in the FPGA processor
- Cipher keys and pointer plaintext are sequestered to the FPGA, cannot be accessed by software
- Churn pointers using authenticated encryption

Technical Insight

Instead of fixing vulnerabilities, pervasively employ always-encrypted pointer protections to hide the critical information needed to attack





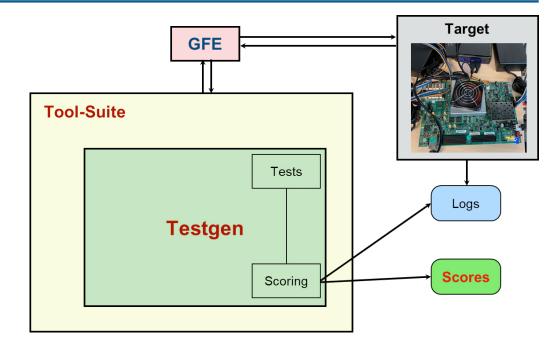
- Embedded FPGA
 - One-way monitoring and reporting of processor cores
 - Enables use of updated HARD pipelines
- Processor
 - Dual core A55
 - **> 1 GHz**
 - Cache: (32k L1, 128k L2, 2 MB L3)
 - o Optional
 - FPU+Neon extension
 - Crytpo extension
 - CryptoCell 712
- Interfaces
 - DDR4: 64 bit with ECC
 - o 10/100/1000 Ethernet
 - o GPIO (24)
 - SPI, Quad SPI
 - External AXI-4 bus
 - o I2C (2)
 - o UART (4)
 - JTAG Debug port
 - CoreSight
 - STM-500

Tape Out Notes

- 12 nm at Global Foundries
- MPW shuttle run
- Assumption
 - October-November 2021 Tape-Out date
 - 5-6 months between tape-out and return of diced chips

Galois BESSPIN: Balancing Evaluation of System Security Properties with Industrial Needs

Testgen Security Evaluation Platform


- Tests weaknesses (CWEs) and not exploits (CVEs)
- Highly customizable to various TA-1 configurations
- Evolves more based on TA-1 teams feedback and processors behaviors
- Tool Suite generates PPAS metrics for TA-1 designs

BESSPIN Tool Suite

DARPA

The BESSPIN Tool Suite includes tools to:

- Analyze, extract, and visualize the system architecture of an SoC
- Identify configurable aspects of a design and derive the feature model of a SoC
- Specify the security properties of a SoC by configuring different feature models for the CWE classes
- Specify the features of a platform under evaluation, including CPU, SoC, operating system, and compiler

Government-Furnished Equipment (GFE)

Galois developed three GFE RISC-V processors:

- P1: 32-bit embedded processor
- P2: 64-bit Linux processor
- P3: 64-bit high-performance (out-of-order) CPU

Chisel and BSV versions delivered to TA-1 performers

DARPA's first ever bug bounty program

- Crowd-Sourced Red Team: Stress-test SSITH using real world cyber exploits executed by white hat hackers
- Validate SSITH's security benchmarking tool
- 07 09/2020: https://fett.darpa.mil

The SSITH technology instances are:

Lockheed Martin 32-bit Microcontroller Instance	 IoT based over-the-air update client running on FreeR¹ 	
University of Michigan 32-bit Microcontroller Instance	COVID-19 Medical records database server running on	
Lockheed Martin 64-bit CPU Instance	 Voter registration system Debian Linux distro with userland and applications 	
MIT 64-bit CPU Instance	 AES engine in secure enclave Password authentication module in secure enclave Debian Linux distro with userland applications 	
SRI/Cambridge 64-bit CPU Base Instance	 Voter registration system FreeBSD distro with userland and applications 	

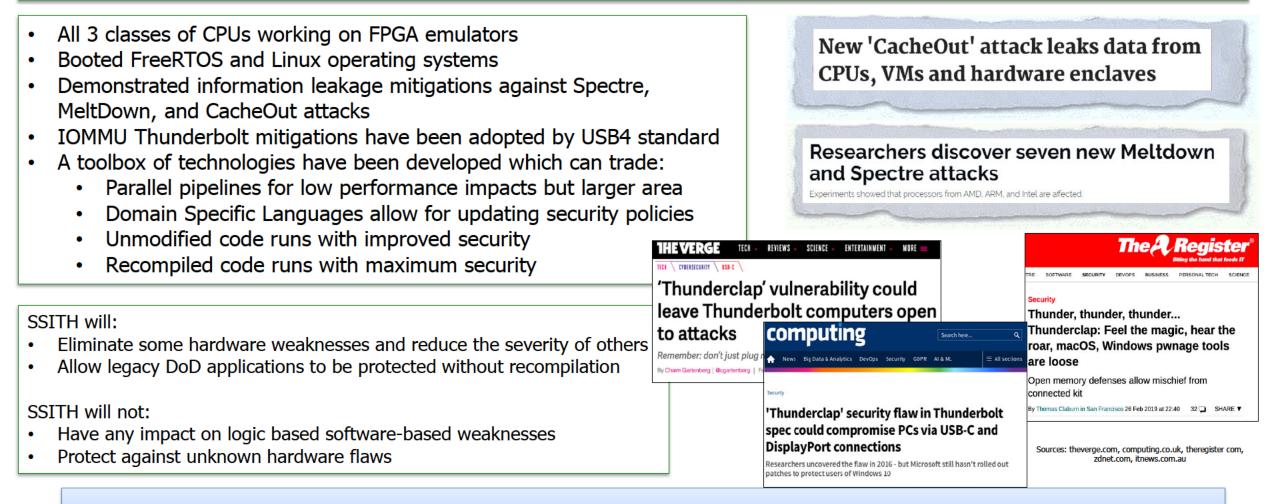
Commercialization

- ARM is investigating SRI/Cambridge technology
 - The United Kingdom is funding the development of a CHERI-ARM ASIC
- SRI/Cambridge working with Microsoft
 and Google to improve OS security
- Dover Microsystems has licensed Draper Labs technology and designed ASICs with SSITH safeguards for NXP and Cadence/Tensilica
- Agita Labs startup out of University of Michigan

Influences or Establishes a Defined Technology Standard

- SRI/Cambridge formal semantics instructions set architecture (ISA) definition adopted by RISC-V community
- SSITH IOMMU security recommendations adopted in USB 4 standard
- MIT, UCSD, and SRI intend to publish software and IP via open source

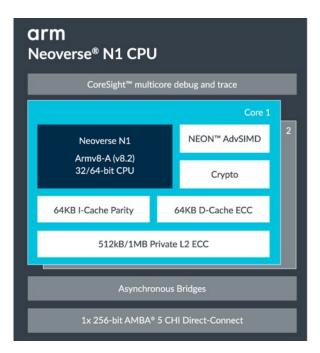
Follow-on Development by a DoD Component


- Potential SSITH ASIC projects:
 - an Electronic Warfare RF SoC
 - an F-35 Cyber-network interface
 - Avionics Edge Computing
 - Power Plant Control

SSITH is working and transitioning

Key accomplishments: Multiple demonstrations of secure architectures against 5 classes of hardware weaknesses

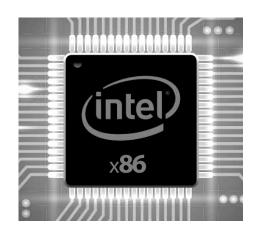
SSITH protects against all classes of hardware weaknesses with minimal overhead

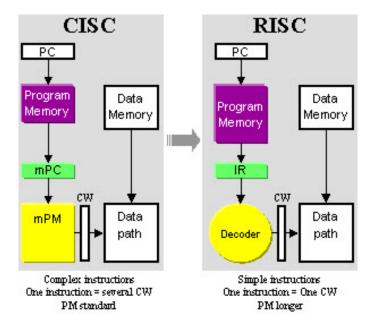

- 5-year "Digital Security by Design" UK Research and Innovation (UKRI) program
- £185M funding
- University of Cambridge and ARM (SSITH performers and SRI subs)
- Develop an industrial demonstrator of a Capability architecture: the Morello Board
 - Superset of CHERI (Capability) architecture
 - Prototype technology that could be migrated to ARM architecture
 - Used for software experimentation and evaluation
 - Quad core high-end CPU based on Neoverse N1

Collaboration with UKRI

- Engaging in exploratory discussions with UK
 - Share technical progress
 - Access to prototype hardware
 - Avoid duplication of effort
- Drafting Project Arrangement document
- Planning joint review/kickoff meeting in the Spring

Morello Cherry (CHERI)





- ARM / RISC predominate in low-power mobile and IoT
- x86 Intel proprietary CISC (complex instruction set computing) predominate in server / personal computing

Can we implement SSITH concepts in a CISC architecture?

- x86 is the most used ISA throughout DoD and commercial industry. Secure x86 is the number one transition partner request and paramount to national security
- DARPA is interested in the design and fabrication of secure x86 prototype chips which would incorporate SSITH like security features for DoD evaluation. If successful this effort would:
 - Enable rapid maturation, commercialization, transition, and fielding of SSITH secure technologies into x86 for modernization of DoD systems
 - Create U.S. based IP and a domestic commercial product line accessible to DoD
 - Provide DoD and the defense industrial base early access to advanced secure x86 processors
- Performed market research with all 3 x86 licensees to assess feasibility

SSITH Limitations

- SSITH addresses weaknesses that can be mitigated by hardware
 - Large numbers of vulnerabilities can be addressed: 70% of all cyber attacks are a result of buffer errors
 - But, vulnerabilities exist in higher-levels of the software stacks that SSITH does not address
 - Script injection
 - SQL injection
 - Weak custom authentication protocols
- It is challenging to defend against deliberately inserted weaknesses
 - Backdoors
 - Hard-coded credentials
- Full integration of SSITH security features with operating systems and common application software will be a prolonged transition activity
- There are never perfect solutions to security
 - Must expect the development of novel exploit techniques that violate SSITH assumptions

- The SSITH program will meet goals and expectations
 - All performers have demonstrated that their technical approaches will protect against hardware weaknesses
 - In Phase two of the program protections against 6 of 7 CWE classes were developed
- Strong transition strategy with multiple commercial and DoD partners
 - International cooperation efforts
 - Incorporation in industry standards
 - Potential buy-in by major companies, Google, Microsoft, ...
 - SSITH ASIC to be tested in DoD-relevant applications
- Major impact going forward
 - Performers have developed multiple technologies to address problem
 - Can protect against attacks to legacy systems without redesign / recompilation
 - Industry is investigating the incorporation of SSITH technologies into COTS products
 - Possible extension to x86 architectures

Secure hardware can be implemented with minimal overhead