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Chapter 1 

Introduction and Aims  

1.1 Introduction 

 

Photorefractive crystals are promising candidates for various applications with cw and 

pulse lasers as media for optical information processing, phase conjugation, interferometry 

and others. The interaction of pulse laser radiation with photorefractive crystals provides new 

possible applications for measurements of processes with short lifetimes and processing of 

materials. One of the most important questions for application is the corresponding response 

time. Sillenites can reach low response times if pulse laser systems are applied. The high peak 

intensity of pulse laser radiation generates strong long-lived photo-induced absorption, which 

influences on the whole system. In this case the spectral and dynamical behaviors of the 

induced absorption are of great importance. This work is devoted to the investigation of the 

photo-induced processes as reason of the long-lived induced absorption. On the base of the 

experimental results we try to understand the nature of the photo-induced effects and 

theoretically describe the long-lived influence of the light on the photorefractive crystals. We 

suggest that such effects with long life-times can find wide application in future.   

The photorefractive effect has been observed in numerous materials: 

 Oxygen-octahedra ferroelectrics: LiNbO3, LiTaO3 [1,2], BaTiO3 [3], KNbO3 [4], 

K(TaNb)O3 [4, 5], Ba2NaNb5O15 [6], Ba1-xSrxNb2O6 [7],  

 

 

 Sillenites: Bi12SiO20, Bi12GeO20 [8], Bi12TiO20[9],

 III-IV Semiconductors: GaAs [10], CdS[11], InP[12],  

 Electro-optic ceramics (Pb1-xLax)(ZryTiz)O3[13].
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The most advantages of the photorefractive properties are realized in crystals of the sillenite 

group. Crystal growing technology has been improved during the years. One is able to get 

easily large boules and elements with high optically quality. Sillenites can be doped by 

several types of impurities. Due to the different impurities (Ce, Fe, Rh, Cu, Co, Al, Cr, Mo…) 

one can change the characteristics of crystals [6, 14, 15]. On the other hand doped sillenites 

show high chemical, mechanical and optical stabilities during long periods of time in 

comparison with other crystals (like doped BCT). The crystals Bi12GeO20(BGO), 

Bi12SiO20(BSO) and Bi12TiO20(BTO) possess cubic symmetry which  makes them isotropic 

and suitable for optical applications. It will be shown in chapter 3 that BTO has a maximal 

electrooptic coefficient. That’s why it shows the best nonlinear electrooptical properties in its 

group.  

The photo-induced absorption is the change of the absorption of light as the result of 

irradiation. Any influence of the light on the internal structure of the photorefractive crystals, 

which is connected with the energy redistribution of charge carriers, can change the 

absorption. The temporal and amplitude behavior of this effect depend strongly on the energy 

levels and the relaxation characteristics of the materials. Most of the characteristic effects are 

often disregarded in the quasi-stationary processes because of their short lifetime in the range 

of 1-100 ps or weak exposure intensities [16]. Sometimes the induced absorption can have 

lifetimes between seconds and even days. 

The crystals of the sillenite group show long-lived strong photo-induced changes 

which were studied since the 90’s and described as the reason for absorption gratings [17, 18]. 

During 1991-1993 Martin et al. reported about experimental investigations and the 

comparison of the photochromic effects in pure and doped (with Al and Fe) Bi12SiO20 and 

Bi12GeO20 crystals [19,20]. In 1999 Kobozev et al. investigated the light-induced absorption 

in Bi12TiO20 (BTO) [21]. In 2003 Marinova et al. studied the light-induced properties of 

Bi12TiO20:Ru and Bi12TiO20:Ca and showed the influence of impurity concentrations on the 

absorption and the photo-induced absorption with lifetimes of several hours [22-24]. In 2005 

they reported the photo-induced absorption in planar waveguides based on thin films of 

Bi12TiO20/Bi12SiO20 and Bi12TiO20:Cu/ Bi12SiO20 crystals [25]. All crystals of the sillenite 

group Bi12MO20 (where M = Si, Ti, Ge) show long-lived induced absorption due to external 

irradiation. The induced response is caused by the redistribution of charge carriers on the traps 

in the valence band. The structure of the traps depends on the impurities. Substantially the 

impurities and temperature have decisive influence on the spectrum of the photo-induced 
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absorption, which was shown by Martin et al. and Briat et al. [19, 20, 26-33]. An induced 

absorption in pure sillenite crystals like Bi12SiO20 and Bi12GeO20 could be detected at low 

temperatures. For temperatures higher than 100-150 K the photo-induced absorption was 

neglected. In spite of the long ago first observation of the photo-induced absorption in 

sillenites most of the works is devoted to doped crystals of the sillenite groups at low 

temperature. The general aim of this work is the investigation of the long-lived photo-induced 

processes in the pure crystal Bi12TiO20 as reason of strong long-lived absorption at room 

temperature. The understanding of the induced properties of the pure crystals clears up the 

effects in the doted crystals. The developed models can be used as a base for describing of 

more complex systems. The investigation at room temperature gives more information about 

possibilities for the application and control of the effects.  

 

1.2 Aims 

 

 Our aim is to present an almost complete and experimentally proved theory of the 

long-lived photo-induced absorption in the crystals of the sillenite group. We are focused on 

BTO as the sillenite crystal with the highest non-linear properties. Main tasks of our work are: 

I. Experimental and theoretical investigation of the photo-induced and dynamical 

properties of long-lived processes in BTO crystals.  

II. Comparison of the photo-induced properties of the BTO crystal with other sillenite 

crystals 

III. Development of control methods of the induced absorption 

IV. Investigation of possible applications of the long-lived induced properties in 

photorefractive BTO crystals. 

 In chapter 2 a review of the main publications connected with the photo-induced 

properties is given. Main conceptions of the light absorption in semiconductors are shown. 

The process of charge carriers redistribution in photorefractive crystals is discussed. The 

influence of the photo-induced changes on the optical properties is shown. In chapter 3 a short 

overview of the properties of sillenite photorefractive crystals and methods of their growing is 

given. Attention is focused on the crystal Bi12TiO20 (BTO), which properties are compared 

with the crystals Bi12SiO20 (BSO) and Bi12GeO20 (BGO). Chapter 4 is devoted to the study of 

long-lived photo-induced temporal and spectral properties of BTO which are compared with 
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the spectral properties of BSO. The results are analyzed and used for the manipulation of the 

photo-induced long-lived effects in sillenite crystals. On the base of the induced absorption 

new control methods for optical storage and processing of information are proposed in chapter 

5. In chapter 6 the main theoretical and experimental results of the investigations are 

summarized.  
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Chapter 2 

Nature of photo-induced processes in 

photorefractive crystals  
 

Most of the photo-induced processes in photorefractive semiconductors are based on 

the following properties of materials: 

 photoexcitation of the charge carriers, 

 photoconductivity, 

 localization of the charge carriers at donor and acceptor levels (relaxation), 

 response of the media on the charge redistribution (light absorption, electro-optical, 

pyroelectric, piezoelectric and other effects ).  

These microscopic properties govern such macroscopic phenomena in materials like light 

absorption, conductivity, holographic sensitivity etc. The most significant responses for the 

photorefractive crystals are linear electro-optical and induced light absorption effects. The 

photorefractive phenomenon is based on the local refractive index variations of a medium 

under spatially inhomogeneous illumination. 

Different theoretical models are available for describing of charge carriers redistribution 

between energy levels: 

 single-level model [10, 8] with separate electron [12] and hole conductivity [8] or 

combined electron-hole conductivity [11, 12, 34], 

 two-level model [35-38], 

 multiple level model [39-41]. 
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Knowing the characteristics of these models, one can combine them to describe more 

complex effects, e.g., to derive a multilevel model with a combined electron-hole 

conductivity. Moreover, the problem may be more complicated if we include a possible 

ionization order of each of the sublevels.  

We study the induced processes in photorefractive sillenite Bi12TiO20 crystals. It will be 

experimentally shown later in chapter 4 that the main photo-induced phenomena of the crystal 

are the photorefractive effect and the photochromic effect. Only they can effectively influence 

on the optical properties of the material during long time and have possible applications. Both 

of them are the result of the space redistribution of the charge carriers between the traps with 

different spectral (energy) characteristics. In the case of the photorefraction the electro-optical 

effect plays the main role. In the case of the photochromic effect the photo-induced absorption 

is the main effect.  

In this chapter we present a review of the main basic physical principals of the photo-

induced processes in semiconductor optical solid materials. Chapter 2.1 describes the 

absorption of the light as the case of the excitation of the charge carriers. Spatial attention is 

paid for spectral characteristics of the absorption which mainly takes place in the case of the 

stationary absorption of the non-irradiated crystal and with already excited charge carriers. 

Chapters 2.2 and 2.3 are devoted to models which are commonly used for the energy 

redistribution of the excited charge carriers between levels and in the space. The induced 

changes due to inhomogeneous irradiation and the electro-optical effect are shown too. 

Chapter 2.4 describes phenomena which cause the spatial redistribution of excited free 

charges. Chapter 2.5 is a summary of basic physical principles of the photo-induced processes 

in sillenite crystals. 

  

2.1 Impurity light absorption of semiconductor compounds  

 

Processes of optical absorption due to impurity centers have various reasons. They can 

be caused by transfers of the charge carriers from localized impurity states to one of the 

allowed levels or another localized state. In the first case the absorption is attended by the 

generation of free charge carriers with the same charge. The integral spectrum of absorption 

looks like a wide band. In the second case free charge carriers are not generated. The 

absorption spectrum has narrow lines. There is also optical absorption with initiation of the 
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excitons connected with impurity centers (bound excitons), and absorption caused by the 

stimulation of localized vibrations of the impurity atoms.  

Thus, following processes cause the doped absorption in crystals [42]:  

1) photoionization of impurities,  

2) photoexcitation of impurities,  

3) photoneutralization of impurities,  

4) photogeneration of bound excitons,  

5) photoexcitation of localized vibrations of impurity atoms.  

The electron transitions connected with the impurity absorption (processes 1-5) are illustrated 

in Fig. 2.1 

 

 

 

Fig. 2.1. Electron transitions that are responsible for the impurity absorption: 

1, 1’ – photoionization, 2, 2’ – photoexcitation, 3, 3’ – photoneutralization of shallow 

hydrogen-like impurities, 4, 4’ – photoionization and photoneutralization of deep 

impurities, 5 - intracenter transition, 6 – photogeneration of the bound exciton. Ec – energy 

edge of the conducting band, Eν –energy edge of the valence band, ED – donor’s energy 

level, EA – acceptor’s energy level, EI – energy of the ionization.  

 

2.1.1 Photoinonization of shallow impurities 

 This process is connected with the transition of a electron (hole) from the bound state 

to the free state after absorption of the photon ћω (transition 1 to 1’ in Fig. 2.1). The energy of 

the photon has to be greater than the binding energy between electron (hole) and donor 

(acceptor), i.e. ED (EA). Before the interaction with the photon the charge carrier was 

localized at the impurity center, and the impurity atom was neutral. The interaction is 

accompanied with the transition of the charge carrier to the free zone, i.e. ionization of the 
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impurity. The spectra of the absorption for such processes will be defined by the electronic 

structure of the impurity state and the structure of the free state to which the transition takes 

lace.  

 why there is a typical maximum and fall in the spectrum of the absorption kω(ћω) (Fig. 

.2).  

 

p

 Shallow impurity states can be described as an approximation of the effective mass 

with help of a hydrogen like model. The minimal energy necessary for photoionization 

(boundary energy) is equal to ED. When the energy of the photon ћω is equal to ED, the 

electron transition takes place to the level of the minimal free energy. The density of the 

allowed states in the conductivity band is proportional to the square root of the energy. Thus 

for growing of ћω there is a rapid increase of the absorption (Fig. 2.2). For ћω>Ed the density 

of the end states in the allowed band increases but the density of the initial states decreases. 

That’s

2

 

 

Fig. 2.2. Scheme of the optical absorption spectrum, caused by photoionization of the 

hydrogen-like donor. kω- coefficient of the light absorption. 

purities the spectrum of absorption caused by the 

photoionization is described by [43]  

 

For the common hydrogen like im

5)/( DE


where A is the proportionality factor connected with the

2/3)1/( DE
Ak

 
 ,     (2.1) 

 density of donors ND, ED is the 

energy of ionization, mn is the effective mass of electrons 
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 .     (2.2)  

3

ere 

 The maximum of the function (2.1), i.e. the 

spectrum, is found for 

wh c is the velocity of light, n is the number of the bound states level, e is the elementary 

charge. 

maximum of the photoionization 

 DE
7

10
 .     (2.3) 

milar mechanism. 

etween discrete 

energy

onized. The ionization energies of the shallow traps in semiconductors are 5-100 

meV. That’s why the spectra of ionization are localized in the deep IR range (λ = 10…200 

µm) [42]. 

 

 The photoionization processes of acceptors have the si

 

2.1.2 Photoexcitation of shallow impurities 

 Photoexcitation is caused by electron (hole) transition from the bound state with n = 1 

(fundamental state) to another state (excited state) with n = 2, 3, 4, … after the photon 

absorption (transitions 2 and 2’ in Fig. 2.1). Such transitions take place b

 levels. The absorption spectrum consists of a series of discrete narrow absorption lines 

when the energy of the photon is less then the energy of ionization (Fig. 2.3). 

The processes of photoexcitation and photoionization of shallow impurities take place 

in semiconductors at low temperatures when kT << ED(EA) and the impurities are not 

thermally i

 

 

Fig. 2.3. Scheme of an optical impurity absorpt n spectrum (ED - donor ionization energy) io
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ed values of energies. The photoneutralization 

and of the impurity merges with fundamental absorption and is negligible. Such transitions 

he energy of the ionization EI (or neutralization 

Eg-EI) and the edge of the fundamental absorption. The absorption spectra for photoionization 

of deep centers can be approximated by [43] 

2.1.3 Photoneutralization of shallow impurities 

 Photoneutralization is caused by transitions of electrons from the valence band to 

levels of the ionized donors nearby to the bottom of the conducting band or from the levels of 

ionized acceptors to the conducting band (transitions 3 and 3’ in Fig. 2.1 p. 8). Such 

transitions are possible only when the impurity centers are ionized e. g. due to simultaneous 

doping by acceptors and donors (as the result of compensation). Photoneutralization of the 

acceptors and the donors in the semiconductors is accompanied by additional absorption 

bands with an energy of photons ћω ≥ [Eg- ED(EA)]. For shallow impurities ED(EA)<<Eg the 

absorption spectrum usually merges with the spectrum of the fundamental absorption and 

appears as an additional “step” of the fundamental absorption band. When the ionization 

energy of the impurity is small and the concentration of centers is high than  an impurity band 

is formed. It merges with the band of allow

b

are often named “quasiintraband” transitions. 

 

2.1.4 Photoionization and photoneutralization of deep impurities 

 Like the photoionization and photoneutralization of shallow impurities photoionization 

and photoneutralization of deep impurities are based on the transition impurity-band or band-

impurity (transition 4 and 4’ in Fig. 2.1 p. 8). The impurity absorption based on deep non 

hydrogen-like impurities shows itself as a wide structureless absorption bands. These bands 

are in the range of photon energies between t

3

2/1

)/(

)1/(

I

I

E

E
Bk







 
 ,      (2.4) 

where EI – optical ionization energy of the center, B – coefficient is proportional to the 

centers density. Equation (2.4) corresponds to the non-Coulomb (short-range) potential, 

localized in boards of the central cell. Due to the space localization of the charge the deep 

impurities are accompanied by the interaction with vibrations of the lattice and with local 

vibrations of the center. That’s why the electron-phonon interaction can influence on the 

absorption spectra at the long-wave part of the spectrum. The absorption spectrum calculated 
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with (2.4), i.e. without electron-phonon interaction, is shown in Fig 2.4. The dotted curve is 

for absorption with the electron-phonon interaction. The electron-phonon interaction gives an 

exponential decrease of the absorption at the long-wave spectrums part against a sharp 

oundary. The exponential decrease depends on the temperature and the characteristics of the 

electron-phonon interaction.  

 

b

 

 

g. 2.4. Impurity absorption general spectra caused by photoionization of deep centers 

out (solid line) and with (dotted line) accounting of electron-phonon interaction 

hydrogen-like impurities in semiconductors, but it takes place 

amorphous matrixes such atoms retain the properties of free ions. Electron transitions between 

Fi

with

 

  

2.1.5 Intracenter transition  

 Intracenter transition is caused by the electron transition of the impurity center from 

one allowed state E1 to another allowed state E2 (transition 5 in Fig. 2.1 p. 8). The charge 

carriers remain bound with the center. The intracenter transition is similar to the 

photoexcitation of the shallow 

in transitions between the deep states and without hydrogen-like series of lines in the 

absorption spectrum [33, 42].  

 Typical examples of impurities with high optical absorption caused by intracenter 

transitions are elements with non occupied inner shells (3d – Fe-group, 4f – lanthanide – 

group, 5f – actinide group). These shells are well screened (especially 4f and 5f) by 4s-, 5s-, 

5p- and 6s- electrons against an external action. That’s why after allocation in crystalline or 
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energy states of the inner 3d-, 4f – shallows are intracenter transition. The corresponding lines 

of the absorption can be widened due to splitting and widening of energy levels of impurity 

enters under the influence of the crystal lattices field. 

tion of an exciton bond to the defect 

ompanied with narrow lines nearby a forbidden band in the 

absorp

ceptors). 

hen a carrier of another polarity can be easily trapped and an exciton is generated.  

2.1.7

 crystal. That’s why it is impossible to present it at the 

general diagram (Fig. 2.1 p. 8) [42]. 

 

 

c

 

2.1.6 Bond exciton absorption 

 Bond exciton absorption is caused by the genera

due to photon absorption (transition 6 in Fig. 2.1 p. 8).   

 The nonequilibrium electron and hole can generate an exciton localized at a defect 

“bond” as well as a moving “free” exciton. The binding energy of the bond exciton is counted 

from the energy of the free exciton, i.e. from exciton width of the energy gap. The energy of 

the bond exciton has to be less then the energy of the free exciton. Only than the bond exciton 

has a stable state. An exciton becomes bond in the potential well near to the defect. The bond 

exciton is localized, i.e. it is acc

tion spectra [30, 42, 44].  

In most cases excitons are at the neutral centers. But under special conditions they can 

appear at the charged centers. There is a most effective formation of bond excitons at the 

isoelectron impurities (traps). An isoelectron impurity is any impurity with isoelectron 

displacement of the main atom of the lattice. Not every isoelectron impuritiy of displacement 

can bond excitons. Bonding only takes place when impurity and displaced atom differ in 

electronegativity and in covalent atomic radius. Then an impurity center generates a potential 

well and the electron (hole) can be trapped by it. After the charge carrier of defined polarity 

being localized the isoelectron center obtains charge (in contrast to donors and ac

T

 

 Absorption at local vibrations of impurities 

The absorption can be caused by the impurity atom vibration too. The impurity atom is 

bounded with main atoms of lattice by elastic forces. The frequency of the impurity vibration 

differs from the ideal lattice vibration. That’s why in the IR absorption spectra new resonance 

lines can appear as a result of local vibration excitation. These vibrations don’t change the 

main electron-energy structure of the
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2.2 Single-level model 

 

A single-level model has been developed at the beginning of the investigation of the 

photorefractive effect. The first equations were derived in 1971 [45]. A complete system of 

mathematical equations proposed in the works of Kukhtarev et al. (e.g., see [9]) gives the 

adequate explanation for the results obtained using the crystals LiNbO3:Fe and LiNbO3:Cu. 

Because of this, the model has been readily accepted and tested for other materials as well.  

Fig. 2.5 presents a single-level model as a diagram of levels. Electrons are excited 

under the effect of illumination or thermally, leaving the filled traps (donors) D- and entering 

the conduction band. Free electrons within the conduction band may recombine into the 

empty traps (donors) D0. Equations (2.5) and (2.6) describe similar motion of charge carriers 

[9] 

eNNrNIs
t

N



 


0)( ,   (2.5) 

0NNN D   ,     (2.6) 

where ND − possible maximum charge concentration at the traps,  N- − concentration of 

trapped charges D-, N0 − concentration of the “empty” traps D0 “ready” to accept the 

recombining charges, β − thermal excitation coefficient, s − excitation cross-section of a 

charge, I − light intensity measured in [photon/m2s], r − recombination degree, Ne − electron 

concentration within the conduction band. The charges are excited in illuminated regions, 

migrating to darker regions to recombine there. A mechanism of charge motion within the 

conduction band will be analyzed in detail later, and first we discuss the charge redistribution 

between energy levels.  

For homogeneous illumination of a material in the equilibrium state equation (2.5) 

gives the concentration of free carriers within the conduction band and hence the 

photoconductivity σ as a function of the light intensity as follows 

ee Nµe  ,       (2.7) 

0N

N

r

Is
Ne









,          (2.8) 

where e − elementary charge, µe –charge mobility (mobility tensor in the general case).  At 

small thermal excitation coefficients (β << s·I) the photoconductivity is linearly growing with 

the intensity as a ratio of filled and empty electron traps. 

 



Chapter 2. Nature of photo-induced processes in photorefractive semiconductors 16

 

 

Fig. 2.5 Single-level model 

 

The material absorption factor is nothing else but . In this way the charge 

excitation results in a decreased number of the photorefractive centers N

 Nsk

)0

- in traps D- and 

hence in lowering of the absorption factor ()(  IkIkk . 

At high coefficients of thermal excitation the concentration of photorefractive centers 

in the traps is dramatically decreased. The contribution made by the intensity of a light wave 

into the increased conductivity becomes lower, in the limit tending to the function σ I1/2 

[46]. 

Inhomogeneous illumination of a crystal causes spatial redistribution of the charge. In 

the case of an arbitrary illumination the problem of determining the charge distribution 

density for the spatial light-intensity distribution is undecidable.  That’s why one uses 

sinusoidal light intensity distribution  

 )cos(10 xKmII  ,     (2.9) 

 where I0 − background intensity, K − vector magnitude of a grating recorded within a crystal, 

m − intensity modulation depth, x − coordinate axis. 

The process may be qualitatively described as follows. In regions of high illumination 

the charges are excited into the conduction band, where, due to diffusion and drift 

mechanisms, the charges migrate to the low-intensity regions to recombine in the traps. The 

charge density thus changed creates the internal electrical field Esc. This field of redistributed 

charges is called the space charge field. The charge density as well as the created electrical 

field is characterized by the sine-formed spatial and intensity distribution (2.9). However, the 
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electrical field has a phase shift that is analytically determined in the stationary state by 

Kukhtarev equation [9] 

 DOCphvOCsc EIRiEEIRmIE  )()()( 0 ,   (2.10) 

where 
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 ,     (2.11)  

ee
phv Nµe

IN
E







,     (2.12) 

 

and  

K
e

Tk
E B

D 


 ,     (2.13) 

Here   − bulk photovoltaic coefficient, kB − Boltzmann constant, T − temperature. As seen 

from equations (2.10)-(2.13), a field of the spatially distributed charge consists of three 

components: external field E0, bulk photovoltaic field Ephv, and diffusion field ED. The 

external and photovoltaic fields are coincident in phase with the light intensity modulation, 

whereas diffusion is responsible for the phase shift 
2


. At a relatively high light intensity the 

attenuation factor Roc is equal “1”. The physical meaning of this factor resides in the fact that 

a part of the carrier modulation distribution is lowered due to the dark conductivity σ (I = 0). 

 Grating recording and deleting are monoexponential processes with characteristic time 

[6] 

M
M

D

E

EiE  


 )1( 0 ,     (2.14) 

e
M µK
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E







,       (2.15) 

0
0

Nµe e
M 




 ,            (2.16) 

  − dielectric constant. 

The works performed at the 1987-1989 demonstrate combined electron and hole 

conductivity in experiments with two-wave mixing in photorefractive crystals. A relative 

contribution of each of the charge types depends on the wavelength of light and the redox 
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state of the crystal [45]. Detailed descriptions of the charge transfer process were 

independently published in 1986 by Valley [12] and Strohkendl, Jonathan, Hellwarth [11]. 

For the electron-hole conductivity in photorefractive materials two different physical 

models are available [12]. The first model is based on a single-level model (Fig. 2.6). At the 

same time, the thermal and photo-induced electron transitions to the levels D0 and the 

recombination from the level D- with holes within the valence band are included 

supplementary. Obviously, equation (2.5) should involve two additional terms on the left side 

[11, 12] 

hhhheeee NNrNIsNNrNIs
t

N



 


00 )()(  ,  (2.17) 

where the indices e and h identify the electron and hole conductivity, respectively.  

The second model is concerned with levels of two types. At one level the predominant 

carriers are electrons, and at the second level − holes (Fig. 2.3 p 10.). In this case equation 

(2.5) for the electron redistribution remains the same but a similar equation is added for the 

hole conductivity.  

Under homogeneous illumination the photoconductivities are determined by both 

models as 

he   ,       (2.18) 

eee Ne   ,     (2.19) 

hhh Ne   ,      (2.20) 

where σe and σh − electron and hole conductivities, µe and µh − mobility of electrons and 

holes, respectively; Ne and Nh − density of electrons and holes within the conduction and 

valence bands, respectively. For negligible coefficients of thermal excitation this model 

predicts the light-intensity dependence of the photoconductivity as well. 

Under inhomogeneous illumination, electrons and holes diffuse from more illuminated 

regions to darker ones. As a result of differing signs of the charges, the formed fluxes tend to 

compensate each other. 

When we consider one center with the transition to the valence and to the conduction band 

(Fig. 2.6), the stationary field of the redistributed electric charge has the form [11 - 13] 

)( 0 Dehsc ERiEmE  ,      (2.21) 

where 

he

he
ehR







 ,      (2.22) 
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and thermal excitation is neglected. 

 

 

 

Fig. 2.6: Single-level model with electron-hole conductivity 

 

The formation and decay of the photo-induced structure proceed exponentially with the 

characteristic time 

he
sc 







 0 .     (2.23) 

In this manner the existence of conductivity of both types causes the decrease of the electric 

field of the redistributed charge.  

In case of different centers for electrons and holes (Fig. 2.7) the charges at these 

centers interact only due to the electrical field [12, 13]. 
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.  (2.24) 

This field is quasi-stationary as σe and σh are decreasing in time.  

The phase shift of the grating (-/2 or +/2) depends on the concentration of the 

centers. In the equilibrium state the center with the most effective carrier is dominant, creating 

a diffusion field. Experimentally, recording and decay of a structure takes much longer time 

than is given by the formula (2.23). 

Besides, with the use of a single-level model for both charge types or with another 

model, where there is a separate level for each type of the carriers, a grating may be initially 

recorded with one characteristic time subsequently reaching a maximum, and then 

degenerates to a certain steady state with another characteristic time. Such an effect is 

exhibited because of the difference in electron and hole mobilities (µe > µh). Electrons are 
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distributed more rapidly creating the associated grating, and in some period of time the 

grating formed by electrons is compensated by holes. 

 

 

 

Fig. 2.7: Single-level model with electron-hole conductivity and levels of two types 

 

 

2.3 Two-level model 

 

A two-center model was proposed by Valley in 1983 to explain the erasure of a 

holographic grating in a photorefractive material with two distinct characteristic times [47]. 

Proceeding from their experimental results, in 1986 Leaux, Roosen, and Brun suggested the 

existence of so called shallow traps responsible for the charge transfer along with the deep 

ones [48]. The light-induced variations of the absorption factor were explained in 1988 by 

Brost, Motes, and Rotge with the well-known two-level model [38]. They have considered a 

high thermal excitation coefficient for charges from shallow traps which was a key moment 

for understanding of the energy and temperature dependences and also for the explanation of 

the time evolution of photorefractive properties in materials. Later this model has been used to 

treat the photoconductivity [35, 36]. 

Fig. 2.8 gives a schematic diagram of a two-level model, where traps of two types are 

involved (D1 and D2). Each type may be in two valence states: filled D- and excited D0. The 

traps D1 are deep and traps D2 are shallow with respect to the conduction band. 
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Fig. 2.8: Two-level model 

 

The model is described with the system of equations [38] 

eNNrNIs
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111 NNN   ,        .    (2.27) 0

222 NNN  

The variables have been already described for the single-level model.  

Let us consider the case of homogeneous illumination. In the dark the population of 

the level D1 is much greater than that of the level D2 because the thermal excitation 

coefficient for shallow traps β2 is much higher compared to β1 for deep traps, i.e. a quantity of 

the traps in the state is negligible as compared to that of , and . Being 

illuminated, electrons are excited from the traps  and to recombine in the traps  

and . But due to thermal excitation from shallow traps, the charge density in D

0
2D 0

11 , DD 
2D


1D 

2D 0
1D

0
2D 2 is always 

lower than that in D1. The photoconductivity in this case is theoretically described in [35, 36] 

as follows 

eee Ne   ,      (2.28) 

where 
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Isg  111  , Isg  222  .     (2.30) 

So, we have σ  Ix.  NA − concentration of immobile compensation charges supporting the 

medium electroneutrality (acceptors).  

For low intensities (I << β2
1

2
s  but I >> β1

1
2
s  ) shallow traps are of little significance 

and hence x  1. At I  β2 ·  the presence of shallow traps becomes appreciable to result in 

an x below unity. As the density of electrons excited from deep traps becomes too high, they 

recombine to shallow traps. For very high intensities the theory predicts a linear dependence 

of the photoconductivity on the light intensity because recombination to shallow traps in this 

case is practically impossible. 

1
2
s

Under inhomogeneous illumination the redistributed charge field has the form [37] 
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NN
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However, equation 2.31 was derived for the case of the diffusion currents at the 

absence of drift currents. The function (I,K) is caused by an additional dependence for the 

internal field in a material on the light intensity and on the parameters of the recorded grating 

[37-41, 46-51]. In the particular case (I<< β2· ) we have (I, K) = R1
2
s oc(I) (see equation 

2.10). Experimentally, the value of the function  may be obtained by measurement of the 

photoconductuivity as Roc(I) = x(I), where σ = I x(I) [52]. 

An analysis of holographic recording within a model with two types of traps leads to 

very interesting conclusions. Two gratings are recorded at all times: one at deep and one at 

shallow traps, and the redistributed-charge field amplitude may be given by 

  


 21
0

1
NN

K

e
iEsc 

.     (2.34) 

When we consider diffusion currents only, the distribution of  is always opposite in phase 

to the intensity distribution, whereas the distribution of  may be in phase or opposite in 

phase depending on the light intensity and spatial frequency of the grating [37]. At low 


1N


2N
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intensities and minor light modulation frequencies the gratings  and  compensate each 

other. In case of high intensities and high spatial frequencies both gratings are enhanced.  


1N 

2N

The basic effects involved in a two-level model as compared to the single-level one are as 

follows. 

 Holographic grating amplification after illumination of the photorefractive material is 

switched off. Since the gratings in deep and shallow traps may compensate each other 

and there is a possibility of rapid thermal erasure of the grating at shallow traps as 

soon as the recording beams are switched off, one can usually observe amplification of 

the redistributed charge field Esc [37, 53].  

 Increasing of the conductivity after illumination switched off as a result of the 

appearance of rapidly excited electrons from shallow traps. 

Thus, recording and erasure of a grating take place with two characteristic times, shorter times 

being associated with shallow traps and longer – with deep traps.  

The two-level model may be extended for several trap types, though no principally 

new mechanisms have been found according to literature [54]. 

 

2.4 Charge spatial transport mechanisms in 

photorefractive semiconductor media 

 

Redistribution of the photoinduced charges may occur by three different mechanisms: 

diffusion, drift, and photovoltaic effect. The corresponding currents are referred to in a similar 

way: diffusion , drift , and photovoltaic current diffj


driftj


phj


. The total current  

phdriftdiff jjjj  ,      (2.35) 

is spatially inhomogeneous and time dependent in the general case. 

In this chapter the attention is focused on the above-mentioned mechanisms of charge 

redistribution in photorefractive media. 

 

2.4.1 Diffusion 

Let us consider the case of electron conductivity. Being subjected to illumination, 

electrons are excited to the conduction band. On inhomogeneous illumination, the 

concentration of free carriers in the illuminated regions is higher than in the dark regions. The 
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difference of concentrations is responsible for the diffusion of the particles to more sparse 

regions. In these regions the particles may recombine, as a result creating a permanent charge 

density distribution. Fig. 2.9 shows a spatial charge distribution for the sine-shaped one-

dimensional light-intensity modulation. The internal field Esc is induced by redistributed 

charges. The field modulates the refractive index due to the Pockels effect or, in other words, 

generates a phase grating within the medium. To be precise, redistribution of the charge 

results in the formation of three charge-density gratings. The first grating associated with 

positively charged donors is determined by 

    0cos   xKx ,      (2.36) 

where 
,
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stIme ex , ρ0 average value of the positive charge density,  exposure 

time, 

ext

  − photon energy. 

The two other gratings are associated with negatively charged acceptors having the 

following charge densities 
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 and  
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The formation of these gratings is due to electron diffusion in both directions from the 

excitation area. Ld is the diffusion length.  

From the Poisson equation  
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it follows that the space-charge field may be determined as 

      xKLK
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,   (2.40) 

where  and 0  − dielectric constants in the vacuum and crystal, respectively. We consider a 

one-dimensional case. The field is modulated only along the x-axis. 

For the special case K·Ld << 1(short-length diffusion), that is common for the 

photorefractive media, the relation 2.40 may be simplified 
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It should be emphasized that in a diffusion mechanism the electric field is shifted 

relative to the light intensity distribution by 2/ . Moreover, due to the increasing of the 

diffusion length and decreasing of the dielectric constant of the medium, the contrast of the 

redistributed-charge field Esc is enhanced [14]. 

 

 

 

Fig. 2.9: Diffusion mechanism of the charge redistribution  
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During increasing of the light intensity the field amplitude Esc rises up to the effective 

diffusion value Dsc EE


  . This field in the equilibrium state compensates the thermal 

motion of the electrons 

dx

xdN
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)( 


 ,     (2.42) 

where Ne(x) − concentration of free carriers. For the harmonic distribution of the light 

intensity I(x) = I0·[1 + n ·cos(K ·x)] and at small modulation depths m << 1 we have 

 xK
e

Tk
KmxE B

D 


 sin)( .     (2.43) 

In this case the diffusion current is determined as 

 )()( xNgradTkµxj eBdiff  ,     (2.44) 

where µ − charge mobility. 

 

2.4.2 Drift 

A distinctive feature of the drift mechanism is the fact that the motion of the excited 

electrons is due to an external electric field rather than due to the difference of the 

concentration densities. Fig. 2.10 demonstrates the special case for a homogeneous external 

field 000 EµLE   − the drift length is covered by free electrons with the mobility µ 

during their lifetime τ. As before, a harmonic intensity modulation is considered. 

The physical meaning of this process is as follows. The charge distribution for short-

length drifts may be represented in the form of two gratings 

    0cos   xKx ,     (2.45)  

and  

     00cos   LxKx ,     (2.46) 

 

produced by positively-charged donors and negatively-charged acceptors, and the total charge 

density is 

         0coscos LxKxKxx    .   (2.47) 

For small drift lengths K·L0<< 1 we can determine from equation (2.39) a field of the 

redistributed charge as 
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Fig. 2.10: Drift mechanism of the charge redistribution  

 

In this case the field distribution is in phase with the intensity light distribution. 

In the case of long-length drifts K·L0>>1 no negative-charge grating  is formed 

as the electrons have enough time to be uniformly distributed across the crystal. The 

remaining “grating” of positive-charge “ ” is responsible for the 

)(x

0)(   x
2


 shift of the field 

Esc within the crystal with respect to the intensity distribution. 
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A maximum saturation field created according to the drift mechanism corresponds to a 

minimal value of two donor and acceptor densities Nmin = min ND, NA, being equal to  

K
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.      (2.49) 

The drift current is determined by the expression 

Enµej fccdrift  ,      (2.50) 

 

with nfcc − free carrier concentration. The field pyrosc EEEE
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 0  is a sum over the 

redistributed charge field Esc, external field E0, and pyroelectric field 
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where T  − temperature variations in the medium subjected to high-intensity illumination, 

PS − spontaneous polarization, and Se


unit vector for spontaneous polarization. The space 

charge field scE


 and pyroelectric field pyroE


 are spatially modulated, whereas the external 

field 0E


 is considered to be homogeneous within the crystal.  

nd we have 

 

2.4.3 Photovoltaic mechanism 

Photocurrents in electro-optical crystals may be produced even without an applied 

electric field. Photoelectrons are excited to the conduction band in the direction of the 

polarization axis, generating a photovoltaic current 

*
kjijkph EEj

i
  ,      (2.52) 

where Ej and Ek − components of an electromagnetic light wave, * denotes phase 

conjugation, and βijk − third-rank tensor ( *
ijkijk   ) [55]. As a rule, the one-dimensional 

photovoltaic effect is measured along one of the axes, a

IkIEEjph   333
*
33333 ,   (2.52) 

where k − absorption factor for the light polarized in the x3-direction,  − constant factor 

characterizing the crystal and doping elements. 

There are several similar explanations for the photovoltaic currents considering the 

wave functions and orientations of electronic orbitals around excited and unexcited ions of the 

crystal lattice.  
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But we may conclude that atoms in the lattice may be shifted along a particular axis 

that is specified during the growth of a crystal when an external field is applied. Due to such a 

shift, the effect of an external field is compensated during heating. And the grating becomes 

fixed as the crystal chills. Because of this, a field created within the crystal subsequently 

initiates the photovoltaic effect. 

The photovoltaic effect is observed not only for light illumination but also with X-ray 

irradiation enabling applications in medical diagnostics. It should be noted that the 

photovoltaic effect is responsible for interactions of orthogonally polarized waves in 

photorefractive crystals.  

In conclusion, the charge redistribution induced by the photovoltaic mechanism at 

small light modulation depths m << 1 may formally be represented as electron drift in a 

virtual external field and, as a consequence, the drift mechanism in the external field can be 

actually equivalent to the photovoltaic one.  

 

2.5 Main photo-induced processes taking place in 

photorefractive crystals of the sillenite group  

 

 In this chapter we give a brief summary of photo-induced processes taking place in the 

studied Bi12TiO20 crystal (similare properties have all representatives of the sillenite group 

BTO, BSO, BGO). A nominally pure BTO crystal has an electronic conductance or n-type 

conductivity. For processes with short lifetimes one can use a one-level model. But for long-

lived processes one has to use two-level model. The spectral and dynamical properties may 

differ obviously and even unpredictable. This will be shown in chapter 4 in details. The 

photorefractive effect is the response on the low-intensity irradiation with a modulation of the 

refractive index due to the electro-optical effect. The photochromic effect is the response on 

high-intensity radiation due to the modulation of the optical absorption in a certain spectral 

range. The main non-induced absorption takes place due to photoionization of deep impurities 

and direct electron transitions from the valence band (VB) to the conducting band (CB). The 

photo-induced absorption is realized due to the photoionization and photoneutralization of 

shallow and deep long-lived traps (chapter 4). The main spatial charge transport mechanisms 

are diffusion and drift. Photovoltaic mechanisms are not adequately detectable for the crystals 
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of the sillenite group in comparison with previous effects. Diffusion takes place always. Drift 

is taken into account only in the case of an external electrical field.  
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Chapter 3 

Photorefractive crystals of the  

sillenite group 

 

Our work is aimed on the investigation of photo-induced processes in photorefractive 

Bi12TiO20 crystals as one of the typical representatives of the sillenite group. Most of the 

properties are similar for the whole group 

This kind of crystals is a popular medium due to response, high symmetry and crystal 

growth technique. Sillenites are promising structures for doping. Impurities can change the 

optical properties significantly. This makes the crystals flexible for applications.  

 In Chapter 3.1 the common chemical and crystalline properties of sillenite crystals are 

shown. Chapter 3.2 is devoted to the optical characteristics of the crystal Bi12TiO20 and 

compares them with other crystals. 
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3.1 Sillenites  

 

Sillenites are one of the promising groups of photorefractive materials. These 

materials are named in honor of the Swedish chemist Lars Gunnar Sillen, who in 1937 studied 

the polymorphism of bismuth sesquioxide Bi2O3, and discovered the formation of abody-

centered cubic (bcc) phase by the fusion of Bi2O3 in porcelain, or with the oxides Al2O3 or 

Fe2O3 [56].The obtained phase was isomorphous in the synthetic compound Bi24Si2O40, 

which represents a large class of materials, later called sillenites, with the theoretical 

composition Bi12MO20. 

  The bcc cell with lattice constants in the range 10.10 - 10.26 Ǻ is characteristic for a 

large group of compounds formed between the metastable γ-phase of Bi2O3 and various 

oxides. Both stable and metastable compounds have been reported [57, 58]. The oxides of 

quadrivalent elements MO2 (M = Si, Ge, Ti) give stable phases approximated by the formula 

Bi12MO20, where the Bi : M ratio closely approaches 12 : 1. The formula Bi12MO20 describes 

the ideal or stoichiometric species in which all particular cationic and anionic sites in the bcc 

cell are fully occupied. 

 An ideal sillenite structure consists of two main fragments. Each M4+ atom is 

surrounded by four oxygen atoms forming perfect tetrahedra at the eight corners and center of 

a cube, with the oxygen atoms on the cube diagonals. On the other hand, each Bi atom is 

surrounded by seven oxygen atoms. In principle, this arrangement can be considered as 

octahedral coordination with the oxygen atom at the corner replaced by two atoms at higher 

distances [59, 60], or as distorted tetragonal pyramid whose base is formed by four oxygen 

atoms while the fifth oxygen atom occupies an axial vertex [61]. Two [BiOx] polyhedra 

sharing one oxygen-oxygen edge form the frame work of the sillenite structure. The unit cell 

can be written as Bi24M2
4+O40 or Bi24[M4+O4]2O32. Bi12SiO20, Bi12GeO20 and Bi12TiO20. It 

has stable bcc sillenite structure very close to the ideal. Theoretically all particular cationic 

and anionic sites in the bcc cell are fully occupied. In the real structure of sillenites, however, 

the occupancy factor qM of the M cations in tetrahedral positions is less than unity, e.g., qGe = 

0.87(2) for Bi12GeO20 (BGO), qSi = 0.87(8) for BSO [62]. The vacancies in the cationic (Bi3+ 

and M4+) and anionic (O2-) sublattices create the acceptor and donor levels in the energy gap 

that are mainly responsible for the photorefractive properties of sillenites [63]. The vacancies 

present in the sillenite structure permit to add various elements by doping and therefore 
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change the electronic band structure and optical (photorefractive) properties of sillenites in the 

desirable direction. 

 Another, much more promising method of carrying out an intentional correction of 

optical properties of sillenites exists. It is known that the sillenite structure can fit various M 

atoms with a valence other than four, because the tetrahedron of oxygen atoms surrounding 

the M atom can expand or contract without a major effect on the remaining atomic 

arrangement [62].  

 There are two different descriptions of the resulting sillenite structure. A structural 

model in which the valence of the M cation or the effective valence of the isomorphous 

cationic mixture at the M site is always equal to four is discussed in [60, 64 - 66]. Based on 

the data of X-ray analysis, it was assumed that the partial oxidation of bismuth (3+) into the 

(5+) state is necessary to stabilize the sillenite phases of the compositions 

Bi12[M3+
1/2M5+

1/2]O20 and Bi12[M2+
1/3M5+

2/3]O20. Where M2+ = Zn, M3+ = Fe, Ca, M5+ = P, 

As, Bi.  The structure of these phases can be derived from Bi12M4+O20 by the substitution pair  

2M4+ = M3+ + M5+ / 3M4+ = M2+ + 2M5+.    (3.1) 

The chemical formulae of these compounds can be written as Bi24(M3+M5+)O40 and 

Bi36(M2+M5+)O60 or Bi24[M3+O4][M5+O4]O32 and Bi36[M2+O4][M5+O4]2O48, respectively, 

where Mn+ are the cations in a valence state other than four that fractionally occupied 

tetrahedral sites in the bcc sillenite structure. The [Mn+O4] is regular, and no oxygen 

deficiency was supposed to exist in the structure. 

 Another proposed model of the sillenite structure is based on neutron diffraction data 

[61]. According to this model all Bi atoms at tetrahedral positions in the sillenite structure are 

always trivalent. The presence of a large and asymmetric Bi3+ cation with 6s2 electron pair in 

the tetrahedral voids arises from the loss of one oxygen vertex in those tetrahedra populated 

by Bi atoms. This means that there are two types of the sillenite structure: regular and 

“distorted” [63]. The Bi3+ cations are populated in the distorted oxygen polyhedra. The space 

available to host the ion 6s2 electron pair of the Bi3+ ion is provided as a result of the oxygen 

vacancy [61]. The Bi3+ ion is displaced towards the oxygen vacancy, increasing the distances 

between the Bi atom and the other three neighboring oxygen atoms up to allowed values. The 

chemical formulae of these compounds can be written as Bi24(M3+Bi3+)O39 and 

Bi36(M2+Bi2
3+)O58 respectively. Obtained results have been confirmed for some sillenites 

containing Mn+ cations in the valence state other four [61, 67, 68].  
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 The Bi – O distances in some isostructural sillenites are compared in [62]. It has been 

shown that the Bi – O network in these compounds remains nearly unchanged. The increase 

in the  M – O distance  through the series BSO, BGO, BTO, causes a corresponding decrease 

in the Bi – O(3) distance (from 2.647 Ǻ in BSO to 2.606 Ǻ in BTO) [69].  

 Compared with four-valence sillenites (BGO, BSO, BTO), there are many more 

possibilities to influence the electronic band structure and thus the photorefractive properties 

of this group of sillenites. 

 As mentioned above, sillenites containing M cations in the valence state other than 

four were mainly studied crystallographically. The information concerning the phase 

diagrams of the binary systems Bi2O3-MxOy and the compositions of the obtained 

compounds are important. Only three compounds with a sillenite structure – Bi12GeO20, 

Bi12SiO20 and Bi12TiO20 – have been grown as large single crystals of high optical quality. 

All other sillenites have been obtained either as polycrystalline ceramics using solid-state 

synthesis or as small single crystals with an optical quality insufficient for any optical 

investigations nor, of course, practical application in any devices. Thus, it is possible to 

conclude that these sillenites are practically unknown because of the chemical-technological 

problems of their production.  

cture.  

As mentioned above, bismuth oxide, Bi2O3, can be stabilized in the metastable cubic 

γ-form by the addition of small amounts of oxides [58]. Depending on the melting 

characteristics of the obtained compounds, various techniques of the crystal growth can be 

used. Some compounds (e.g., those formed by the addition of GeO2 and SiO2) melt 

congruently and may be pulled by Czochralski technique. Others, formed by the addition of 

TiO2 and Ga2O3, melt incongruently, and the hydrothermal technique or high temperature 

solutions should be used to crystallize these compounds. So, two principally different 

methods can be used for single crystals of sillenites: hydrothermal synthesis and 

crystallization from the melts (Czochralski method, e.g.). 

Most of the crystals studied have been grown from stoichiometric or 

nonstoichiometric melts. The most rapid technique of crystal growth is the Czochralski 

method. Congruently melting Bi12GeO20 and Bi12SiO20 single crystals were first grown by 

this method in 1966 in the Bell Telephone Laboratories [70]. In later years significant efforts 

have been made to improve the optical quality and size of the grown BGO and BSO crystals 

[71-75]. Inductive (RF) heating and the resistance furnaces are usually used for growing 

crystals with a sillenite stru
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It was shown that the composition of the crystal depended on the melt composition 

and the oxygen pressure, which are the reason that a nonstoichiometric crystal will have 

native defects, such as substitutions, interstitials and vacancies [76, 77]. These defects were 

originally proposed as the source of the absorption shoulder that is the origin of the relatively 

large photocurrent in the visible spectrum [78]. 

 The intentional variation of the optical properties of sillenites can be caused by 

doping. Doped sillenite crystals are obtained by adding small amounts of the desired oxides to 

the melt. Some impurities (Al, P, Ga and etc.) are introduced in concentrations of about 

several percent to improve the crystal transparency. Among the properties they can affect are 

crystal stoichiometry and photocarrier sign. Another group of impurities, mainly transition-

metal and rare earth ions, can be introduced in concentrations ranging from 1-1000 ppm and 

various optical, EPR and spectroscopic studies involving this have been published. Studied 

impurities, their valence states and investigation techniques are reviewed in [79]. Also the 

scanning electron microscopy gives the possibility to check this. A typical spectrum of the 

BTO crystal is shown Fig. 3.1.  
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Fig. 3.1.Spectrum of the light emission under incident scanning electron beam detected by 

the scanning electron microscope: Leo1455VP “Carl-Zeiss” 
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The comparison of the emission spectrum with the characteristic lines of elements (coloured 

lines) shows chemical elements in the crystal. The quantitative analysis of the spectrum 

confirmed the purity of the observed crystal with an accuracy of 99.9%.   

 

3.2 Properties of sillenites 

 

 In the band transport model of photorefractivity there are at least eight parameters of 

the material controlling the formation of the refractive index gratings when the material is 

illuminated with an optical interference pattern. These parameters are: 

 ε – low frequency dielectric constant 

 nb – background refractive index 

 reff – effective electro-optic coefficient  

 s – cross-section for photoionization 

 ND – number density of dopants 

 NA – number density of acceptors compensating for the number density of ionized 

         dopants ND
+

 in the dark 

μ – mobility 

γR – coefficient for electron recombination in ionized traps ND
+. 

 

The first three parameters are intrinsic properties of photorefractive crystals, which are 

not amenable to change in well-poled crystals and are not expected to vary significantly from 

one crystal sample to another. The remaining five parameters depend on the impurity and/or 

the defect content of the crystal, and thus may be adjusted by either doping during crystal 

growth, oxidation and reduction treatment, radiation, or in-diffusion. A detailed description of 

various experimental techniques for determining photorefractive parameters is given in [80]. 

Some ways of the materials parameters optimization for better performance are shown in [81]. 

Basic physicochemical properties and the main photorefractive parameters of sillenites are 

summarized in [79, 82, 83] and presented in table 1. 
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Parameter BSO BGO BTO 
Chemical composition Bi12SiO20 Bi12GeO20 Bi12TiO20 

Melting point. ˚C 895±5 
congruent 

930±5 
congruent 

873±5 
incongruent 

Unit cell 
Lattice constant, Ǻ 

bcc 
10.1043 

bcc 
10.1455 

bcc 
10.178 

Density, g/cm 3 9.19 9.22 9.06 
Dielectric constant 56 38.7 47 
Refractive index 

at 488 nm 
at 514 nm  
at 633 nm  

 
2.650 
2.615 
2.530 

 
2.650 
2.615 
2.530 

 
2.682 
2.650 
2.563 

Rotatory power, ˚mm-1 
at 488 nm 
at 514 nm  
at 633 nm  

 
44 
38 
21 

 
45 
38 
22 

 
12.8 
10.8 
6.2 

Optical bandgap, eV 3.25 3.25 3.1 
Electro-optic coef. r41, m/V 4.1 x 10-12 3.8 x 10 -12 5.17 x 10 -12 
Piezoelectric constant, C/N 4.05 x 1011 3.39 x 10 11 4.82 x 10 11 

 

Table 1. Physicochemical properties and main photorefractive parameters of sillenites 

 

For the crystal BTO the tensor matrix of the electro-optic coefficients looks like 
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The half-wave voltage is Uλ/2=λ /2 n3r = 3.3 kV. Pure BTO crystals have a dominant electron 

photoconductivity in the blue-green. The charge carrier mobility under voltage is μτ = 2.4·10-8  

cm2/V. The mean free length LD = 0.25 µm. The photovoltaic fields EG in BTO do not exceed 

2·10-2 V/cm ( λ = 488nm). The maximum diffraction effici ency was obtained in the (110)-cut 

samples with the  111  axis parallel to the H-polarized light beams. The efficiency of up to 

30% was obtained for the diffusion grating reco rded by the light beams entering the crystal 

through adjacent orthogonal faces [14]. Because of  the strong optical absorption in the blue-

green, the working range of BTO is yellow-red.  
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Chapter 4 

Investigation of long-lived centers in 

photorefractive Bi12TiO20 (BTO) 

crystals  

romatic light from the red (660 nm) and green (525 nm) spectral regions, there 

is an i

 
The charge redistribution in donor and trapping centers should result in a reversible 

change of the properties of the crystal. The easiest way to observe the redistribution of the 

charge carriers between initially empty long-lived traps is the induced absorption dynamic 

measurements. As a rule, the photo-induced light absorption in crystals of sillenites is studied 

with their continuous illumination by broad-band lamps [84-90], and also by monochromatic 

lasers [41, 91-93] or quasi-monochromatic semiconductor light-emitting diodes [92, 93]. In a 

study [93] of the photo-induced absorption dynamics in calcium-doped crystals of bismuth 

titanate (Bi12TiO20:Ca) it has been found that, upon gradual irradiation of the crystals by 

quasi-monoch

nteraction between illumination at one wavelength and absorption of radiation at 

another one.  

In this chapter we are discussing long-lived photo-induced phenomena in a nominally 

pure photorefractive crystal Bi12TiO20 (BTO). In chapter 4.1 the initial and photo-induced 

light absorption is investigated. One calculates calculate theoretically the spectral properties 

of the long-lived centers (traps). Chapter 4.2 is devoted to the relaxation investigation for the 

experimental proof of the theoretical model and the spectral characteristics of the traps. In 

chapter 4.3 we present an experimental study of dynamic processes of the electron relaxation 
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to the deep traps located in the forbidden band (and responsible for the photorefractive effect) 

with the method of four-wave mixing (FWM). FMW gives the opportunity for direct 

measurements of the dynamical characteristics. In chapter 4.4 the influence of the multi-

wavelength low intensity cw irradiation is investigated. Experimental methods to influence on 

the behavior of induced absorption are shown. Chapter 4.5 is devoted to the absorption 

induced by different methods. We compare the irradiations with ns and ps pulses. In chapter 

.6 the crystals Bi12TiO20 and Bi12SiO20 (BSO) are compared. In chapter 4.7 the results are 

oto-induced absorption 
 

average intensity of the laser radiation incident on the 

crystal

4

summarized.  

 
4.1 Excitation of the ph

4.1.1 Experimental setup 

The investigation of the photo-induced absorption in BTO was carried out for a 

nominally pure Bi12TiO20 crystal, which was grown from a high-temperature solution by the 

Czochralski method. The crystal has the cubic symmetry 23 like the other members of the 

sillenite family. The light radiation propagated along the [100] crystallographic axis. The 

(100) faces with the transverse dimensions 7 x 7 mm2 were polished with optical quality. The 

thickness of the crystal with regard to the dimension [100] was 2.8 mm. For inducing of the 

absorption a pulse laser at 532 nm (second harmonic of Nd:YAG) (Fig. 4.1a) was applied. 

The spatially homogeneous part of the laser beam was cut out by an aperture of 2.5 mm. The 

pulse duration was 30-50 ns, the repetition rate was 10 Hz, and the average pulse energy after 

passing through the diaphragm was 0.5 mJ. The average power of the pulse was 0.13 MW. 

So, the average intensity of the laser radiation incident on the surface of the crystal during the 

pulse was 2 MW/cm2. The integral 

 during exposition was 110 mW/cm2
. The polarization of the laser light was located in 

the plane (100) and parallel to [011]. 

The absorption of the crystal was measured with a spectrophotometer based on a CCD 

line array with 2048 pixels. The dispersion element was a fixed diffraction grating with 600 

lines/mm yielding a resolution < 1 nm. The probe beam consisted of light emitted by a Xe and 

halogen lamp (Xe/HL) simultaneously with a total intensity below 0.8 mW/cm2 in the whole 

spectral range. Five seconds after the irradiation with the laser (532 nm) the 

spectrophotometer and the Xe/HL were switched on, and the absorption was measured in the 

range 480 – 1100 nm. The integration time of the CCD array was 11 ms, which gives a time 
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of measurement of 0.11 s for 10 single measurements. After each cycle of measurement the 

laser was turned on for 5 s and the irradiation continued. The relaxation of the induced 

absorption was found to be constant in the darkness and at fixed room temperature. Within the 

VIS a long-lived photo-induced absorption appears which could be measured using the setup 

shown in Fig. 1b. In this case the laser beam was focused by a micro objective into a spot of 

0.2 mm diameter.   

 

 

 
b) 

irror, DG – diffraction 
grating, CCD – CCD linear array “Sony 2048”, Det – photo detector, PC – computer. b) 
Scheme of the experimental setup for visualization of the photo-induced absorption in the 
VIS. MO – micro objective, CCD – CCD matrix 1400x1400 pixel.  

 

rption against the exposition energy are shown 

in Fig. 4.2. A change of absorption became detectable already after 1 minute of exposition 

(total energy per square centimeter - ca. 7 J). 

 

Bi12TiO20 Laser beam 
532 nm 

CCD 

MO 

a) 

 

Fig. 4.1. a) Scheme of the experimental setup for the generation and measuring of the 
photo-induced absorption. Laser – Nd:YAG (532 nm) , TS – telescopic system, D – 
diaphragm, BS – beam splitter, Xe/HL – Xe/halogen lamp (200 nm-1000 nm), F - fiber 
optics, C – collimator, S – spectrophotometer, CM – collimating m

BS 

 

4.1.2 Experimentally observed induced absorption 

The spectra of the photo-induced abso
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Fig. 4.2. a) Absorption spectrum of BTO for different values of the total exposition 
(J/cm2). k is the absorption coefficient. b) Dependence of the photo-induced absorption 
kPI (difference between integral absorption k and initial absorption without exposition k0). 
The pulse laser had an average intensity of 110 mW/cm2 at 532 nm.  

 
One can observe a strong increasing of the absorption in the range up to 900 nm 

during the light exposition. This effect can be explained by long-lived centers with energy 

levels in the forbidden band that are caused by impurities and defects in the bulk of the crystal 

[18]. These centers can be denoted as intermediate-level traps (IT) [94, 95] (Fig. 4.3).  

Under normal conditions at room temperature and without pre-exposure the absorption 

is coursed only by the excitation of charges from deep levels (deep traps DT) and from the 

valence band (VB) to the conducting band (CB) [96]. The DT can be attributed to the 

spreading of the VB due to impurities and defects. The population of the DT is due e. g. to a 

stochastic excitation of charges from the VB and is much weaker than the population of the 

VB. The spectrum of the non-photo-induced absorption (Fig. 4.2a) shows that the upper level 

of the DT lays at ca. 2.3 eV (ca. 540 nm) below the CB. The width of the forbidden band of 
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Bi12TiO20 is experimentally detected in measurements of the transmission of the light through 

thin samples (thickness is 30 µm) of pure crystals of the sillenite group BGO, BSO, BTO 

(Fig. 4.4). Measurement errors are less than 5%. The width of the forbidden band of 

Bi12TiO20 crystals is approximately 3.1 eV (ca. 400 nm) [10]. 
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Fig. 4.3. Schematic illustration of the photo-induced absorption in BTO. The long-lived 
intermediate traps (IT) are located in the forbidden band and are responsible for the 
stronger increasing of the photo-induced absorption in the VIS and near IR spectral 
ranges. Eq –width of the forbidden band, EDT –depth of the upper border of the deep 
levels, EIT - depth of the upper border of the levels of the long-lived centers (intermediate-
level traps).  

 
In our case for an irradiation at 532 nm the excitation of electrons basically takes place 

from the DT to the CB. If the charges are excited into the CB they can recombine back to the 

VB and DT as well as to the long-lived IT. The lifetime of charges in the CB is relatively 

short because of the short recombination time constant τr, which is below 100 ns [17, 44]. The 

charges of the long-lived levels can be excited again into the CB by photons with lower 

energy. A growth of the photo-induced absorption kPI is observed at wavelengths below 900 

nm (Fig. 4.2b). The photo-induced absorption kPI is connected with the excitation of charges 

from the IT to the CB. It will be shown below that there are two different long-lived levels in 

the system of IT. The upper level border of the long-lived levels lays at ca. 1.4 eV (900 nm) 

below the CB (Fig. 4.2b).  

 



Chapter 4. Investigation of the long-lived centers in photorefractive Bi12TiO20 (BTO) crystals  43

 

2.2 2.4 2.6 2.8 3.0 3.2 3.4

0.00

2.50x102

5.00x102

7.50x102

1.00x103

1.25x103

1.50x103

1.75x103

2.00x103

2.25x103

2.50x103

2.75x103  Bi
12

GeO
20

 Bi
12

SiO
20

 Bi
12

TiO
20

 

  

D0 

E, eV 

Fig. 4.4. Spectrum of the fundamental absorption of the sillenite group crystals: 
Bi12TiO20, Bi12SiO20, Bi12GeO20. D0 is the optical density of the crystals with a thickness 
30µm.  

The spectrum of the in

 

 

4.1.3 Theoretically approximated induced absorption  

duced changes in absorption may be derived as the difference 

)0,(),(),(  ktktk  . 

changes in absorption and 

PI

theoretical consideration it is convenient to go to the relationship between the induced 

k is the absorption coefficient, t is the time of exposition. For the 

the energy of a single photon E    expressed in eV. The 

 are represented by easurement error 

is less than 5%. 

experimental results of kPI ),( tE points in Fig. 4.5. The m
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E, eV 
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1 

Fig. 4.5. Spectral dependences of the additional absorption in a BTO crystal subjected to 
illumination by laser pulses at values of the total exposition (J/cm2): 14 J/cm2 (1), 70 J/cm2 
(2), 140 J/cm2 (3), 420 J/cm2 (4), 1260 J/cm2 (5). Points – experiment, solid curves –  
theory 

 
As shown in Fig. 4.5, the absorption is growing with the photon energy reaching their 

maximum values ~5.5 cm-1 at E = 2.52 eV (for 492   nm). 

Quantitative models of the photo-induced light absorption in crystals of sillenites are 

based on the hypothesis that the defect centers with differing photoionization cross-sections 

are recharged [41, 97, 98]. It is assumed that the electrons photoexcited from deep donor 

centers into the conduction band fill the traps, leading to changes in optical absorption. In 

some works [41, 98] the traps are supposed to be shallow, and their depletion, as the electrons 

are thermally excited into the conduction band, provides relaxation of the induced changes in 

absorption under dark conditions. But in [97] it is demonstrated that the localization of the 

energy levels associated with these traps in the bandgap of a Bi12TiO20:Ca crystal is deeper 

than 1.43 eV with respect to the conduction band. The corresponding value for an undoped 

BTO crystal may be estimated from the data of [99] as 1.17 eV.  

 The form of an absorption spectrum for the photoexcitation by photons with the 

energy   from the deep defect center that is characterized by a discrete local  energy level 

within the bandgap  and ionization energy IE  may be approximated as follows [42] 
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where the factor  is proportional to the concentration  of these centers and to 

their photoionization cross-section . It is seen from Fig. 4.5 that the spectral dependence of 

the induced absorption in a BTO crystal doesn’t correspond with the equation (4.1). This may 

be caused by different factors. First, by the presence of several types of traps with different 

energies and photoionization cross-sections. Second, a highly imperfect structure of bismuth 

titanate crystals [85, 90] should result in significant random fluctuations of the defect 

concentration with associated fluctuations of the ionization potential. As this takes place, local 

levels of the defects are overlapping, and the energy distribution density for their 

concentrations within the bandgap may be represented in the form of a smooth 

function

EI EIB SN EIN

S

( )IN E . This makes it possible to introduce a factor ( ) ( )I I IB E dE SN E dE I  

determining the light absorption associated with the ionization energy interval IdE . The total 

absorption factor for radiation at the frequency   may be determined in the integral form by 
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where the energy  equals the distance of the Fermi level to  the conduction band,  – 

Boltzmann constant, and T  – absolute temperature. 

FE Bk

 Let us assume the normal energy distribution law for the concentrations  of the 

n-type traps. As it is claimed that the parameters of each distribution remain constant during 

filling or depletion of the traps, the functional relationship  between the ionization 

energy and time may be represented in the following form  

( )n IN E

( , )IB E t

 2

2
( , ) ( ) exp n I

I n
n n

E E
B E t b t

E

 
  

  
 ,                                  (4.3) 

where the function  allows for the time dependence of the n-type trap filling by the 

electrons.  

( )nb t

The results obtained by approximation of the experimental dependences for the 

induced changes in absorption  on the basis of relations, taking account of two 

centers with the average ionization energies 

),( tEkPI

092.0597.11 E  eV and 028.0566.22 E  

eV, are demonstrated by solid curves in Fig. 4.5. The values for the distribution half-width 
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b1,2, cm-1 

t, s 

and Fermi level position are 018.0277.01  E 031.0580.02  eV,  E  eV and 

eV.  027.1FE

Fig. 4.6 shows the dependences of the approximated parameters  and  on 

illumination. The second center, whose energy levels are distributed close to the top of the 

valence band, is filled by the electrons and reaches saturation at the exposure time t  900 s 

(210 J/cm

)(1 tb )(2 tb

2). The first center occupation is far from saturation even at t  3600 s (1260 J/cm2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. Time profiles of the functions  and which characterize the trap filling 

by electrons at the ionization energies 
1( )b t

1

2 ( )b t
597.1E  eV (1) and  eV (2) on 

illumination of the crystal by laser pulses. The pulse laser had an average intensity of 110 
mW/cm

5668.22 E

2 at 532 nm.  
 
 
 
 
 

4.2 Relaxation of photo-induced absorption 
 

4.2.1 Experimentally observed relaxation of the 

  photo-induced absorption 

The BTO crystal shows slow relaxation characteristics and keeps the absorption 

induced during the exposition by laser pulses with a relatively high intensity (2 MW/cm2)  for 

a long time (till 80 hours). E. g. the induced absorption in VIS and its dynamics of relaxation 

can be seen in Fig. 4.7a. The dependence of the spectrum of the induced absorption in BTO 

versus the relaxation time is shown in Fig. 4.7b. 
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Fig. 4.7. a) View of the crystal with photo-induced absorption in its center. A microscope 
took the images during the relaxation process. The laser radiation was focused to a spot 
size of 0.2 mm. b) Absorption spectrum for different relaxation times after laser exposition 
during 1 hour with an average intensity of 110 mW/cm2 at the wavelength 532 nm 
(exposition was approx. 400 J/cm2). k is the coefficient of absorption. 

 
 

The absorption coefficient k in the case of the transition between two fixed energy 

levels is given by 

 121 )( nnnk  ,    (4.4) 

where n1 is the population of the lower level (quantity of the absorption centers), n2 is the 

population of the upper level (quantity of the emitting centers), and σ is the cross section of 

absorption. The approximated equation (4.4) occurs in the case of higher population of the 

lower level (n2 << n1). 

The population of the long-lived levels decreases as a result of thermal processes in 

darkness and can be described by  

/
0

tenn  ,     (4.5) 

where n0 is the population of the level at the beginning, t is the time,  is the lifetime of charge 

carriers on the trap level. Fig. 4.8a shows the temporal development of the coefficient of 

absorption for different wavelengths during relaxation. 

 

 

23 h. 50 h. 0 h. 

55 h. 30 h. 2 h. 

70 h. 4 h. 32 h. 

74 h. 46 h. 7 h. 

λ, nm 
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Fig. 4.8. a) Dependence of absorption on the relaxation time for different wavelengths 
after laser exposition during 1 hour with an average intensity of 110 mW/cm2 and a 
wavelength 532 nm. b) Spectral dependence of the lifetimes 1 and 2 of the long-lived 
levels. The measurement error is less than 5%. 

 
Analyzing the relaxation dynamics presented in Fig. 4.8a shows that it can be 

approximated by a double - exponential function (dotted line)     

21 /
2

/
10

 tt ekekkk   ,    (4.6) 

where k0, k1, k2, τ1, τ2  are the mathematical coefficients of approximation. It is possible to 

find a relationship between the coefficients of approximation and the physical magnitudes: k0 
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is the coefficient of absorption without the photo-induced effect, k1, k2 are the initial 

coefficients of absorption for long-lived levels, τ1, τ2 are the corresponding lifetimes. There 

are two relaxation comp 2/
2

tek  ). Each of them is connected with a 

specific type of absorption centers. Using the experimental values (Fig. 4.8a) and equation 

(4.6) the spectral dependences of lifetimes of the long-lived levels can be found (Fig. 4.8b). 

The two “spectra” of lifetimes for the two kinds of induced long-lived centers can be seen in 

Fig. 4.8b. In the ideal case the lifetime of the absorption centers has to be constant for the 

relatively narrow trap’s level. In our case the dependences of the lifetimes on the wavelengths 

are non linear and non monotone, which is in agreement with the stochastic nature of the 

traps. A random variation of the surrounding of each center yields a broadening of the levels 

of the traps. Moreover, the variation of the surrounding influences on the lifetimes of centers 

and gives dispersion of the energy level of each center. Fig. 4.8b shows that the lifetime of the 

trap depends on its location depth in the forbidden band. This is explicitly expressed for the 

second type of traps with longer lifetimes. 

onents ( 1/
1

tek  

Using the experimental values (Fig. 4.8a) and equation (4.6) the initial induced 

absorption spectrum of each long-lived trap can be found (Fig. 4.9). Using a similar method 

[101] the lifetimes of the traps were determined. 
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Fig. 4.9 Experimentally investigated absorption spectrum of the long-lived trap with short 
lifetime – red line and long lifetime – green line. 

As it is seen in Fig. 4.10 the separated (calculated) initial absorption (black line) of the crystal 

is in good agreement with the measured one (dotted line). Therefore this is an indirect test of 

the correctness of the used method.  
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Fig. 4.10. Separated absorption spectrum of the long-lived trap with short lifetime – red 
line and long lifetime – green line, separated initial absorption of the non irradiated 
crystal – black line, direct measured real initial absorption of the non irradiated crystal – 
dotted line. 

 
If the absorption characteristics are measured in the VIS at photorefractive 

semiconductor crystals one can use the scheme of the absorption presented in Fig. 4.11. The 

absorption coefficient k at the corresponding wavelength λ or energy ћω can be described by 

 






0

)()()( dEESENk ,       (4.7) 

where N(E)- is the density of the absorption centers, which is the quantity of 

absorption centers per volume unit with energy E. S(E) - is the cross section of the absorption 

of the absorption centers localized at the depth E in the forbidden band, ћω – is the energy of 

the absorbed light quantum.  

To simplify the discussion the parameter “level density” - K(E) can be introduced by 

)()()( ESENEK  ,          (4.8) 

which connects the absorption with the absorption centers localized at the depth E. 

From equation (4.7) it is easy to isolate the level density  

)(
)(

)( 







K

k





.     (4.9) 

According to the experimental absorption spectra of the traps (Fig. 4.9) one can calculate the 

level density for each of the long-lived traps in the forbidden band (Fig. 4.12).  
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Fig. 4.11. Scheme of the transitions between energy levels and corresponding absorption 
of light. In the case of the photo-induced absorption, all electrons located in the forbidden 
band over the Eћω (energy of the absorbed light quant) can be excited to the CB by 
absorption of a light photon ћω. 
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Fig. 4.12. Separated dependences of the long-lived traps level densities at the depth of the 
energy in the forbidden band with short lifetime – black line – and long lifetime – red line. 

 
 

4.2.2 Hysteresis 

It is found that the lifetimes differ by one order for both components and depend on 

the wavelength. This could be connected with the complex structure and the high vacancy of 

the tetrahedral lattice of sillenites [18]. The multicentered nature of photo-induced absorption 

was additionally proved by comparison of the absorption for different wavelengths. The 

phase-plane picture of the system for basic parameters: (absorption at 600 nm and 800 nm) is 

shown in Fig. 4.13. At the wavelengths 600 nm and 800 nm the effect of hysteresis can be 
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clearly seen. The existence of two different ways of evolution during inducing and relaxation 

of absorption (hysteresis) is the consequence of the multilevel structure of the long-lived 

levels in the forbidden band of the crystal. During relaxation the redistribution of charge 

carriers takes place between different levels with various spectral and temporal properties.  

Thus, from the observations of the dynamics of the photo-induced absorption one can 

conclude about the multicentered nature of the long-lived levels in the forbidden band of 

BTO. At the same time the intraband transportation of energy results in a hysteresis behavior 

of the dark relaxation of the induced absorption relatively to the stimulation of the effect. 
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Fig. 4.13. Dependence of the absorption coefficient for the wavelength 800 nm on the 
absorption coefficient for the wavelength 600 nm (bistability). The exposure was realized 
with a pulse laser (average intensity - 110 mW/cm2, 532 nm) during 1 hour. The relaxation 
was studied during 61 hours. The measurement error was less than 5%. 

 

 

4.2.3 Dynamics of trap filling by electrons during relaxation of the 

induced absorption  

It is possible to approximate theoretically the absorption spectrum during relaxation as 

it was made in chapter 4.1 for the laser-induced absorption and analyze it. In the process of 

dark relaxation (Fig. 4.14) a reduced contribution to the induced absorption for the first center 

that is described by the function b1(t) (Fig. 4.15) is nearly exponential, with the time constant 

~ 18 h. We take into account that filling of these traps with the average ionization energy E1 ~ 

1.6 eV proceeds through the conduction band only, while their depletion occurs by means of 
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tunneling with subsequent recombination of the electrons into ionized donors and some lower 

lying traps. The possibility of such tunneling, by the way confirmed in [100] for lithium 

niobate with a high content of iron, stems from great concentrations of structural defects in 

bismuth titanate [85, 90]. Just trapping of some tunneling electrons into the centers with the 

average energy E2 ~ 2.57 eV may be responsible for the nonmonotonic time dependence 

observed on relaxation of the photoinduced absorption changes due to these traps (curve b2(t) 

in Fig. 4.15). 

 

E, eV 

kPI, cm-1 

Fig. 4.14. Spectral dependences of additional absorption in a BTO crystal at the different 
relaxation stages: 0 (1), 15 (2), 17 (3), 34 (4), 40 (5), 43 (6), and 60 h. (7). Points - 
experiment, solid curves - theoretical approximation. Measurements errors are less than 5% 
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Fig. 4.15. Time profiles of the functions b1(t) and b2(t) which characterize the trap filling 
by electrons at the ionization energies E1=1.597 eV (1) and E2=2.566 eV (2) on 
illumination of the crystal by laser pulses (а) and at the relaxation stage (b). 

 

 

4.2.4 Comparison of the experimental results with the 

theoretical model 

In Fig. 4.16 the level density of the long-lived centers with lifetimes in the order of 104 

s [101] is demonstrated. One can conclude that these traps are mostly localized at a depth of 

1.7 eV with a half width of the level of about 0.5 eV. The center of the levels predicted by the 

theoretical calculations [43] is in good agreement with the experimental results, whereas the 

level width is greater than predicted. This means that the nature of the absorption is not pure 

as it was taken into account for the theoretical calculations but it is a mixture of 

accompanying effects like exciton interaction and others. This spreads the function of the 

absorption and shifts it.  

Fig. 4.17 shows the level density of the long-lived centers with lifetimes in the order 

of 105 s [101]. The measured range of the absorption limits the investigation to the low energy 

part of these traps. Extrapolating the curve at Fig. 4.10 yields that the centre of the traps level 

is localized in the forbidden band at a depth greater than 2.5 eV and that its half width is 
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greater than 0.5 eV.  These results are in agreement with the theoretically calculated values 

[43]. 
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Fig. 4.16. Dependence of the long-lived traps level densities on the depth of the energy in 
the forbidden band with short lifetime. 
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Fig. 4.17 Dependence of the long-lived traps level densities on the depth of the energy in 
the forbidden band with long lifetime. 
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4.3 Investigation of lifetime of electrons in the conduction 

band with four wave-mixing 

 

Redistribution of the space charge at the traps produces an internal electrical field 

(Chapter 2.4). The electro-optical effect takes place. As result a modulation of the refractive 

index appears (Chapter 2.2 – 2.3). Detecting the changes of the refractive index one can 

measure the dynamic recombination of charges to the traps. Modulation of the refractive 

index produces Bragg phase diffraction gratings due to the photorefractive effect. Four wave-

mixing generates a conjugate wave as a result. Studying the response dynamics of four wave-

mixing yields the redistribution dynamics of the charge carriers between traps.      

 

4.3.1 Experimental setup 

The photorefractive response depends on the properties of the crystal. Bi12TiO20 

belongs to the noncentrosymmetric class 23. Being optically isotropic due to the cubic 

crystalline system, it has no inversion center and hence exhibits a linear electrooptic effect. 

The crystal displays the optical activity that in turn is independent of the light propagation 

direction, being described by the only constant: specific optical rotation or rotatory power. 

Both dextro- and levorotatory modifications are known, their specific activities being 

identical in absolute value. Impurity conductivity in the blue-green spectral region is the 

electronic conductivity. When no field is applied, the length of the photoexcited electron free 

path may be fairly large up to 10 µm. The BTO crystal is characterized by a high 

photoconductivity (compared to LiNbO3) and hence it shows a rather fast response. At a 

power density of light of 1 W/cm2 the recording/erasure cycle is effected (aiming at transfer to 

the stationary mode) in a few tenths of microseconds. A BTO crystal also features a relatively 

high electron mobility. Because of this, the drift mean free path of electrons may be 

comparable to the period of the excited light grating. In the general case, sillenite crystals, and 

BTO crystals in particular, demonstrate the diffusion-drift type of the photorefractive 

response. As previously mentioned, the diffusion charge transfer is due to the free-carrier 

density gradient (section 2.4.1), whereas the drift charge transfer is caused by the presence of 

an external field (section 2.4.2). We neglect the drift charge transfer, because an external field 

is not applied.  
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Fig. 4.18 shows the experimental setup used to create the four-wave mixing process in 

a BTO crystal with the help of a pulse laser. Within the crystal, three beams Lb1, Lb2, and 

Lb3 are convergent at a common point. Lb1 is the reference wave, Lb2 - reading wave that is 

propagating counter to the reference one, Lb3 - object wave. All these beams are coherent and 

interfere with each other to produce an interference pattern. A diffraction structure is recorded 

in the crystal. The beams, for which the necessary requirements are met, diffract from this 

structure.  
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Fig. 4.18. Scheme of the experimental setup for the investigation of four-wave mixing. 
Laser 532 nm – Nd:YAG pulse laser, TS – telescopic system, BS – beam splitter,  - angle 
between beams, Lb1, Lb2, Lb3, Lb4 – laser beams, Det – photodetector 

 

 

4.3.2 Four wave-mixing 

 The interference pattern written in the crystal in our case may be represented as three 

independent interference patterns. The interference patterns are associated with the 

interference of the beam pairs Lb1 and Lb2, Lb2 and Lb3, Lb3 and Lb1. 

 These beams represent coherent plane waves with a horizontal polarization plane, and 

the interference of two beams results in the illumination-induced sinusoidal interference 

grating formed within the crystal. The illuminated regions exhibit manifestations of two 

phenomena associated with the radiant energy absorption: photogeneration of free carriers and 
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heating of the crystal lattice followed by the appearance of thermal optical nonlinearities. The 

first phenomenon that is essential for the photorefractive effect leads to the formation of the 

internal electrical field grating shifted by /2 relative to the initial interference grating as it is 

shown in chapter 2.4. The internal electrical field affects the impermeability tensor ηij and the 

index of refraction n due to the electrooptic effect 

mkijkmkijk
ij

ij EEsEr
n









1 ,     (4.10) 

where Ek, Em are components of the electrical field, rijk are electrooptic coefficients, sijkm are 

quadratic electro-optic coefficients. For sillenite crystals the linear electrooptic effect is basic 

(Pockels-effect). For the crystal Bi12TiO20 equation (4.10) (Chapter 3) 

Ernn 41
3

2

1
 .     (4.11) 

The modulation of the refractive index induces a phase diffraction grating.  

The second phenomenon results in the emergence of its own (thermal) phase diffraction 

grating without shift. It will be demonstrated that this thermal grating has no significant effect 

on measurements of the photorefractive dynamics due to the high characteristic time of the 

thermal nonlinearity. The exposition of the crystal at 532 nm by one pulse is low, so photo-

induced absorption is not taking in account. 

Four-wave mixing in a photorefractive crystal results in recording of three sinusoidal 

phase diffraction gratings with the involvement of the following beam pairs: Lb1 and Lb2, 

Lb2 and Lb3, Lb3 and Lb1. These gratings are of the Bragg-type. With the use of the above 

setup for two of the formed gratings, the Bragg condition of diffraction is met: for the grating 

formed between beams Lb2, Lb3 and the beam Lb1, grating between beams Lb3, Lb1 and the 

beam Lb2.  

The fulfilled Bragg condition leads to diffraction of the reference and reading waves 

from the corresponding gratings with the phase conjugation of wave Lb4. The period of the 

grating formed by beams Lb3 and Lb1 is by an order of magnitude greater than that formed 

between Lb2 and Lb3, and the amplitude of the second grating is lower due to its smoothing 

under the effect of diffusion processes. The wave front reversal in turn may be considered as 

indication of the formation of a dynamic hologram in the photorefractive crystal. Comparing 

the intensities of the conjugate and object waves, one can estimate the efficiency of a 

diffraction grating formed in the medium.  
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Four-wave mixing in a BTO crystal is realized with a 532nm pulse laser. Varying the 

laser pulse length with constant energy of a single pulse, independent of its length, we can 

observe the dynamics of the diffraction efficiency exhibited by the formed hologram. Besides, 

we can estimate the time of the grating recording process based on the photorefractive effect 

in the BTO crystal.  

Let us perform the calculations to determine the required time and experimental 

parameters.  The grating period  is determined as  







 



2
sin2


,                                                (4.12) 

where  - angle between Lb2 and Lb3 ( = 18). As a result,  = 1.7µm. This period is 

characteristic for the initial interference grating as well as for the gratings of thermal and 

electrooptic nonlinearities.  

Thermal processes in the medium proceed at the speed of sound propagation in this 

medium (sound ~ 5·103 m/s). Thus, the characteristic time of the thermal grating formation is 

given by  

sound
thermT




 ,                                                   (4.13) 

whereas the characteristic relaxation (erasure) time for the thermal nonlinearity grating is 

determined by 

therm
therm a




2

2

4 
 .                                               (4.14) 

with atherm the thermal conductivity coefficient, atherm ~ 10-3cm2/s. Substituting the numerical 

values, we have Ttherm ~ 0.4 ns, therm ~ 200 ns.  

The calculation of the characteristic times for a grating of thermal nonlinearities is 

more difficult due to various factors affecting the grating formation. Because of this, only 

approximate estimates are given: τeo may be as great as hundreds of nanoseconds, and  can 

reach a few minutes depending on the experimental conditions. Fig. 4.19 demonstrates the 

experimental diffraction efficiency of a hologram as a function of the laser pulse length used 

for its recording and reading. ηhol is the ratio of the diffracted beam’s pulse energy to the 

incident beam’s pulse energy.  
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Fig. 4.19 Experimental diffraction efficiency of the formed hologram (ηhol) versus the 
recording pulse length (τp). The measurement error is less than 10%. 

 

Fig 4.19 shows that the diffraction efficiency is increased with a growing length of the 

recording pulse. 

As discussed above, two independent phase diffraction gratings in case under 

consideration appear in the crystal due to the  

  thermal nonlinearity, 

 electrooptic nonlinearity (photorefractive effect).  

The characteristic time of the formation of a thermally nonlinearity grating in the case 

under study is Ttherm~0.2 ns, being less than the pulse length or formation time of the 

electrooptic nonlinearity grating (and hence formation time of the photorefractive effect) by 

two orders of magnitude. This means that a thermal grating is formed and fixed during a laser 

pulse. However, the theoretical calculations demonstrate that a grating of thermal nonlinearity 

is considerably weaker than the grating caused by the photorefractive effect.  

The transition of the thermal nonlinearity effect to the stationary mode is much faster 

than the pulse length. That’s why the length of the pulse has no effect on the contribution 

made by the thermal grating to the phase conjugation. This contribution is influenced only by 

the initial energy of the laser pulse used for recording and reading.  

So, a thermal grating formed by pulses with the same energy has the same 

contributions to the energy of a conjugate wave front independently of the recording pulse 
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length. In other words, the thermal grating is responsible for a minor constant component of 

the experimental diffraction efficiency, having no effect on its dynamics. It may be stated that 

the experimental dependence shows time of the formation of the photorefractive effect as a 

function of the recording pulse length.  

Experimental measurements show that the time of the photorefractive response is 

approx. 50 – 60 ns. One can estimate that this is the characteristic time of the relaxation of the 

charge carriers from the CB to DT in the Bi12TiO20 crystal. 

 
 
4.4 Methods for controlling of the laser-induced 
absorption in a BTO crystal by cw-laser radiation 
 
4.4.1 Experimental setup 

The investigation of the photo-induced absorption in BTO was carried out for a 

nominally pure Bi12TiO20, which was grown from a congruent melt by the Czochralski 

method. It has the cubic symmetry 23 like all representatives of the sillenite family. The light 

radiation propagated along the [100] crystallographic axis. The (100) faces with transverse 

dimensions of 7x7 mm2 were polished with optical quality. The thickness of the crystal in the 

[100] direction was 2.8 mm. The light induced absorption was realized by a cw-laser at 514 

nm (Ar+) (Fig. 4.20). The spatially homogeneous part of the laser beam was cut out by an 

aperture of 5.45 mm. The average power of the laser achieved 100 mW. The average intensity 

of the laser radiation incident on the crystal during the exposition was 430 mW/cm2
. The 

polarization of the laser light was located in the plane (100) and parallel to [011].  

The absorption of the media was measured with a spectrophotometer based on a CCD 

line array with 2048 pixels. As the dispersion element a diffraction grating was used with 600 

lines/mm. It results in a resolution of the absorption measurements less than 1 nm. The probe 

beam was emitted by a Xe/halogen lamp (Xe/HL) with a total intensity less than 0.8 mW/cm2 

in the whole spectral range. After 5 seconds of irradiation with the laser at 514 nm the 

spectrophotometer and the Xe/HL were switched on and the absorption was measured in the 

wave range between 480 nm and 1100 nm. The integration time of the CCD array was 11 ms. 

Therefore the time for one measurement corresponding to an averaging of 10 values of 

absorption was about 0.1 s. After 5 seconds of completing the measurement cycle the laser 

was switched on and the irradiation went on. During the measurement of the induced 
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absorption’s relaxation the crystal was in darkness (laser was switched off) and with fixed 

room temperature.  
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Fig. 4.20. Scheme of the experimental setup for the generation and measuring of the 
photo-induced absorption. Laser 514 nm –  Ar  cw-laser, Laser 532 nm – Nd:YAG cw-
laser, Laser 633 nm – He-Ne cw-laser, TS – telescopic system, D – diaphragm, BS – beam 
splitter, M – mirror, DM – dichroitic mirror AR@532 nm/HR@633 nm, Xe/HL – 
Xe/halogen lamp (200 nm-1000 nm), F - fiber optics, C – collimator, S – 
spectrophotometer, CM – collimating mirror, DG – diffraction grating, CCD – CCD linear 
array “Sony 2048”, Det – photo detector, PC – compute

+

r. 
 

 
In Fig. 4.21a and 4.21b the spectra of common and photo-induced absorption against the 

exposition energy are shown. A cw-laser with a wavelength of 514 nm was used for inducing 

of absorption.  
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Fig. 4.21. a) Absorption spectrum of BTO for different values of the total exposition 
(J/cm2). k is the absorption coefficient. b) Dependence of the photo-induced absorption kPI 
(difference between integral absorption k and initial absorption without exposition k0) for 
cw-laser: 430 mW/cm2 at 514 nm.  

 

4.4.2 Control of the photo-induced absorption in a BTO crystal by 

low intensity cw-lasers 

The relaxation of the photo-induced absorption can be slowed down using cw-

radiation with low intensity (Fig. 4.22, Fig. 4.23). If the photo-induced absorption is 

generated with an intensity of 430 mW/cm2 at 514 nm, it is enough to use cw-radiation at the 

wavelengths 532 nm and 514 nm with low intensities (e. g. 12 mW/cm2 and 15 mW/cm2 

correspondingly) to stop the relaxation process (Fig. 4.22). In such a way it is possible to stop 

the relaxation at any stage. If one switches off the low cw-radiation, the relaxation process 

resumes (Fig. 4.23).   
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Fig.4.22. Influence of the cw-radiation with the low intensity 15 mW/cm  and wavelength 
514 nm on the photo-induced absorption of BTO. The absorption is generated by cw-
radiation: 430 mW/cm  at 514 nm
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Fig.4.23 An example for the temporal retardation of the relaxation at different stages by a 
cw-radiation with low intensity 12 mW/cm2 at 532 nm in BTO. It demonstrates the 
dependence of the coefficient of absorption on the time of free relaxation and cw-radiation 
at 532 nm for the given wavelengths; during the free relaxation the cw-radiation at 532 nm 
is switched on for 0-180 min., 970-1500 min., 2400-3000 min (there are three plateaus at 
the curves). 
  
 

If the BTO crystal with induced absorption is exposed by a cw-radiation at 633 nm with low 

intensity (e. g. 17 mW/cm2), the relaxation is accelerated. If one switches off the low cw-

radiation of 633 nm, the relaxation process resumes with the evolution as without previous 

acceleration (Fig. 4.24). One can calculate the exponential lifetime of the photo-induced 
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absorption under stimulation of the relaxation (Fig. 4.24b). Compared with the results from 

[101] for the unstimulated relaxation red light accelerates the relaxation approximately by a 

factor of 10.   
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Fig.4.24. Example for the temporal acceleration of the relaxation at different stages by a 
cw-radiation with low intensity 17 mW/cm2 at 633 nm in BTO. a) Dependence of the 
coefficient of absorption for the given wavelengths on the time of exposition, b) 
dependence of the calculated long-lived centers lifetimes on the probe beam wavelength. 

 
 

Low intensity cw-radiation of the wavelengths 514 nm, 532 nm, and 633 nm didn’t 

produce enough photo-induced absorption to be experimentally detected. Thus, one can use 

low intensity expositions at different wavelengths in order to control the photo-induced 

absorption. 

Qualitatively, the mechanism of induced absorption can be explained by the scheme in  

Fig. 4.25. The long-lived absorption is connected with a population of the IT. During 

relaxation of the crystal the number of absorption centers at the trap levels decreases with 
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approx. lifetimes of 104 s and 105 s [101]. This quantity can be kept invariable. Using low 

intensity exposition of “green” light one transfers electrons from DT to IT. When the number 

of transferred electrons is equal to the number of relaxed ones from IT to VB or DT than the 

absorption remains constant (Fig. 4.25a). The induced absorption relaxation can be 

accelerated by low intensity “red” radiation. In this case the radiation excites electrons from 

IT to CB with a following relaxation to the VB. Together with the normal relaxation this 

speeds up the decreasing of the absorption (Fig. 4.25b).   

  

a) 

DT
IT

CB

VB

DT
IT

CB

VB

532nm

633nm

 

b) 

Fig. 4.25. Schematic illustration of the photo-induced absorption in BTO controlled by 
“green” and “red” radiations. a) – stopping of the relaxation by light at 532 nm, b) 
speeding of the relaxation by light at 633 nm.   

 
 

According to the experimental results one is able to write down the coupling equation 

for describing of the BTO dynamical characteristics, which is also schematically illustrated in 

Fig 4.26 (Chapter 2)     
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N
232,3232,3131,3222211
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N1, N2a, N2b, N3 are the concentrations of the charge carriers (electrons) involved in the 

phenomena at the levels of deeps traps, lower long-lived traps, upper long-lived traps and the 

conducting band respectively. N1
+, N2a

+, N2b
+ are the corresponding concentrations of the 

ionized centers (ready to “receive” electron) at the levels of the traps. S1, S2a, S2  are cross 

sections of the light quantum absorption during excitation of the electrons from traps to CB. 

Si is a function of the light frequency Si(ω) and the depth of the level in the forbidden band. 

ri,j  are the recombination coefficients from the upper level i to the lower j. a,b and b,a are 

the constants defining inner transitions coefficients between long-lived levels caused by 

thermal excitation, recombination, tunneling and etc. According to the initial spectrum of the 

absorption and especially low absorption in the long-wave range one may ignore thermal 

ionization between DT, IT and CB. Low long-wave absorption at the final spectrum means 

insignificant light induced transition of the electrons between the long-lived traps. I is the 

intensity of the homogenous and uniform light with the frequency ω measured in 
sm

photon

2
. 

 

Fig. 4.26. Schematic illustration of electron transitions between levels of the photo-induced 
absorption in BTO. 

 
As the result of the initial electric neutrality of the crystal 

  32213221 NNNNNNNN baba .    (4.19) 

In such way the absorption coefficients of the light for the wavelengths 514 nm and 532 nm 

have the form 

bbaa NSNSNSk 222211  ,     (4.20) 

The corresponding photo-induced absorption is 

S1IN1

1

3

N1, 

N3
 

r32bN3N2b
+ r32aN3N2a

+

r31N3N1
+ 

S2bIN2b S2aIN2a 
N2a, N2a

+

2a

ba ab  
N2b, N2b

+ 

2b

r2a1N2aN1
+

r2b1N2bN1
+



Chapter 4. Investigation of the long-lived centers in photorefractive Bi12TiO20 (BTO) crystals  68

 

bbaapi NSNSk 2222  .           (4.21) 

The average recombination coefficient r2,1 is 

ba
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NN
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
 .     (4.22) 

Physically this means a common probability of recombination of the electrons from IT to DT. 

r3,2 is the average recombination coefficient for recombination of the electrons from CB to IT 
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S2  is the average absorptions cross section for the IT  
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 .              (4.24) 

After the summation of the (4.16) and (4.17) and considering equations (4.22) - (4.24) we can 

write Eqs. (4.15) - (4.18)  as follows 
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The general and the photo-induced absorption coefficients obtain the form  

2211 NSNSk  ,         (4.28) 

22NSk pi  .      (4.29) 

As it was shown in the experiment (Fig. 4.22) for a low intensity radiation at the wavelength 

response for inducing of the long-lived absorption, relaxation stopped. This means that the 

system was in equilibrium. 

Under these conditions (Fig. 4.22) the adiabatic approximation 0



t

Ni can be used, and Eqs. 

(4.25) - (4.27) take the from 

211,2131,3110 NNrNNrINS   ,    (4.30) 

211,2232,3220 NNrNNrINS   ,    (4.31) 

  232,3131,322110 NNrNNrINSINS .   (4.32) 
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The characteristic recombination time of the electrons from the CB to the DT and VB lays in 

order of 10 ns [96]. On the other hand the characteristic recombination time of the electrons 

from the IT to the DT and VB averages out hours [101]. That’s why   

1,21,3 rr  ,             (4.33) 

and Eq. (4.30) takes the form 

 131,311 NNrINS .      (4.34) 

Taking into account (4.32) and (4.34) yields 

 232,322 NNrINS ,     (4.35) 

and from the equation of (4.34) and (4.35) we get 
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In other words 
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1,30

R

R

k

k

pi

 ,               (4.37) 

where k0 and kpi are the initial and the photo-induced absorption coefficients reached during 

the “relaxation stopping” experiment. R3,1 and R3,2 are the relaxation constants from CB to 

DT and IT respectively. R3,1 and R3,2 are inverse parameters to the lifetimes of the electrons at 

the levels τ3,1 and τ3,2. So one finds out the ratio between the electron recombination from CB 

to long-lived IT and DT. This ratio shows that the electrons ionized to the CB have a 

relaxation probability to the long-lived IT, which is 1.2 times lower than to the DT for 532 nm 

(1.9 for 514 nm).  

Our conclusions may be applied to all the wavelengths of the range, which can induce the 

absorption. For wavelengths of the stimulation range one can present a dependence of the 

ratio (4.36) on the wavelength (Fig. 4.27). According to the spectrum of the initial absorption 

(Fig. 4.21a) the stimulation range lies up to the 580 nm. However, this border is dither and 

depends on the complex nature of the traps. The dependence on the wavelength is the result of 

the broad long-lived energy level and of the various concentrations of the absorption centers 

therein.  

According to this result and to our previous experimental investigations [101, 96] one 

can estimate the dynamical characteristics of the levels (traps) (Table 4.1) illustrated in Fig. 

4.28. 
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Fig. 4.27. Dependence of the ratio of the effective recombination coefficients on the 
stimulation wavelength. 
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Table 4.1. Dynamical characteristics of the nominally pure Bi12TiO20 
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Fig. 4.28. Dynamical characteristics of the nominally pure Bi12TiO20 
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4.5 Evolution dynamics of the photo-induced light 

absorption in sillenite crystals for ns and ps laser pulses  

 

As described in chapter 4.4, no photo-induced absorption is observed in a bismuth 

silicate crystal at temperatures from 25 0С and light intensities from 1 to 100 mW/cm2. This is 

in agreement with the data of [85], where a maximum photochromic effect in BSO, BGO, and 

BTO is observed at T < 200 K.  

In this chapter the evolution dynamics of the photoinduced light absorption is analyzed 

for a bismuth titanate crystal on the base of its band structure and the material parameters at 

the corresponding temperature. An analysis is performed on a time scale comparable with the 

width of the ns or ps illumination pulses.  

 

4.5.1 Evolution dynamics of the photo-induced light absorption in 

BTO crystals on illumination by ns pulses  

The photo-induced light absorption dynamics, when the extended illumination is 

switched on or switched off, is adequately described by the model from chapter 4.4. The 

system of coupled rate equations associated with this model (4.15) - (4.18) is nonlinear for 

pulse laser radiation, and its analysis may be performed by numerical methods only. The 

intensity of a light pulse may be given as  

( ) ( ) ( )pI t I t t p       ,                                           (4.38) 

with ( )t  - step Heaviside function, p  - pulse width. The intensity of the laser pulse with 

50p   ns used for illumination of the bismuth titanate crystal is ~ 2109 W/m2. 

The results of numerical analysis for the dynamics of the electron redistribution in 

donor and trapping centers as well as for the changes in electron concentrations within the 

conduction band and in optical absorption of a bismuth titanate crystal at a temperature of 25 
0С are presented in Fig. 4.29. The rate of an increase or decrease in the electron 

concentrations within the conduction band under the effect of a light pulse (Fig. 4.29а) is 

determined by their lifetime that is close to the time of recombination into the N2a
+- and N2b

+-

type centers,  
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n – the concentration of electrons in the CB, ND – total amount of the donor centers in the 

forbidden band. 
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Fig. 4.29 Calculated from the experimental measurements: electron concentrations at the 
conduction band under the effect of a light pulse а), population of the N2a

+-type centers by 
electrons b), change of optical absorption c), population of donors and traps per laser pulse 
d). Electronic noise of the detection system is the cause of the noise at the dependence in the 
fig. b). The common measurement error is less than 3%.   

 
The population of the N2a

+-type centers by electrons occurs in the course of time of their 

existence within the conduction band (Fig. 4.29b), their contribution to a change in optical 

absorption (Fig. 4.29c) being relatively small. Characteristics for the initial illumination stage 

are the decreasing of electron population of donors and traps (Fig. 4.29d) due to 

photoexcitation that leads to crystal bleaching. However, at  ns the rate of recombination 8t 
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into traps begins to exceed the electron photoexcitation rate, and optical absorption of the 

crystal is growing up to kpi~ 0.1 cm-1, that is provided by the first illuminating pulse.   

The time required for depletion of traps that may be estimated as  

)exp(
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2
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B

N
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N

b

b


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


 ,    (4.40) 

 comes to about 3000 s and hence the attained value of an increase in the crystal absorption is 

retained to the beginning of the next light pulse.  is the energy of the thermal activation 

of the donor N

bN
aE 2

2b. 

 

4.5.2 Evolution dynamics of the photo-induced light absorption in 

BTO crystals on illumination by ps pulses  

100-ps laser pulses have a length of about 12 mm in crystals of sillenites with the 

refractive index n ~ 2.5. This is comparable to the thickness of photorefractive samples. 

The foregoing system of rate equations (4.15) - (4.18) is valid in all the cases when the 

photoexcited electrons are thermalized, i.e. when we can neglect the contribution made by so-

called “hot” electrons for the charge transfer processes which provide the formation of 

photorefractive holograms. According to [102], the relaxation time of the nonthermalized 

charge carriers down to the conduction band bottom in a photorefractive lithium niobate 

crystal is in the order of 0.1 ps. Assuming the same order for the electron thermalization time 

in bismuth titanate, when analyzing the evolution dynamics of the photo-induced light 

absorption in this crystal on illumination by 100-ps pulses, we can use the system of rate 

equations (4.15) - (4.18).          

The results obtained by the numerical analysis of the electron redistribution dynamics 

in donor and trapping centers as well as of the changes in the electron concentrations within 

the conduction band and in optical absorption of bismuth titanate at 250С are shown in Fig. 

4.30, at the time scale associated with the time of the electron recombination 

processes . It is assumed that the energy of the light pulse is the same as for the above-

mentioned nanosecond pulse (  W/m

e

NN ba

22 ,



1210pI  2). As demonstrated by comparison of Figs. 4.29 

and 4.30, the changes of the electron redistribution in the defect centers and also in optical 

absorption as the result of the recombination processes are nearly identical in both cases. The 
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efficiency of the initial crystal bleaching by a picosecond pulse is by an order of magnitude 

higher than that for the crystal bleaching induced by the nanosecond pulse with the same 

energy.  

 a) b) 
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Fig. 4.30 Calculated from the experimental measurements: electron concentrations at the 
conduction band during illumination of the laser pulse а), population of the N2a

+-type 
centers by electrons b), change in optical absorption c), population of donors and traps d). 

 

 

4.6 Comparison of the induced absorption in photorefractive BTO 

and BSO crystals  

 

The experiments have been conducted with monocrystalline samples of bismuth 

titanate Bi12TiO20 and bismuth silicate Bi12SiO20. The samples were grown in a platinum 

crucible in the air using the seed with [100] orientation and under the conditions specified in 
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[25, 85]. The (100)-cut plates of the single crystal were subjected to grinding and polishing to 

attain the optical grade quality.   

Absorption spectra of these samples ( )T   in the region 350 to 900 nm were recorded 

by a Specord M40 spectrophotometer. The measurement error /T T  was below 0.02. The 

spectral dependence of the light absorption factor ( )k   was calculated as [103] 

2

2

(1 ) exp( )

1 exp( 2 )

R kd
T

R kd

 


 
,     (4.41) 

where  – sample thickness, d R  – Fresnel coefficient for reflection from the crystal edge.  

The experimentally obtained curves as a function of the quantum energy  for the 

region of impurity absorption, where the long wavelength limit is determined by the 

admissible experimental error and the short wavelength one – by the bandgap E

( )k E

g, are denoted 

by circles in Figs. 4.4, 4.31 and 4.32 for BTO (Eg = 3.08 eV [85]) and BSO (Eg = 3.25 eV 

[85]) crystals, respectively. The logarithmic scale used here for the absorption factor enables 

one to distinguish the spectral curve bends known as absorption “shoulders” [84, 85]. 

 

 

 
 

Fig. 4.31. Spectral dependences of the impurity absorption in a BTO crystal. Points - 
experiment, solid curve – theoretically calculated.  
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k, cm-1 

 
 

Fig. 4.32. Spectral dependences of the impurity absorption in a BSO crystal. Points - 
experiment, solid curve – theoretically calculated. 

 
As is known [84, 85, 90, 103], in many crystalline materials including the sillenites the 

curve  close to the fundamental absorption edge follows the exponential law that is called 

Uhrbach rule. As seen in Fig. 4.33, such a situation is observed in BSO crystals at the 

quantum energy from 3.15 to 3.25 eV. And further, at E < 3.15 eV, the absorption “shoulder” 

is observed. In the case of a BTO crystal this shoulder is directly adjacent to the fundamental 

absorption edge at E = Eg = 3.08 eV (see Fig. 4.4, 4.32). 

( )k E

Approximating the absorption spectra of nonilluminated crystals in the “shoulder’ 

region, we assume that photoexitation of the electrons is mostly from deep donors described 

by equations (4.1), (4.2). As a result, the spectral dependence of the absorption factor is given 

in the form  
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where EU is the characteristic energy conforming to the Uhrbach rule that is proportional to 

kBT at high temperatures [103]. The function BD (EI) that determines the light absorption by 

donor centers taking place within the ionization energy interval dEI represented from (4.3) as 

the superimposed contributions of the donor centers following the normal distribution law  
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The experimental results for BTO and BSO crystals are well approximated within this 

model (see solid curves in Figs. 4.31 and 4.32) based on three donor-traps centers (two 

intermediate traps IT and one deep trap DT at the scheme Fig 4.3 ).  

 

Crystal Bi12TiO20 Bi12SiO20 

E1
IT, eV 1.597 1.111 

E2
IT, eV 2.566 2.525 

EDT, eV 2.897 2.751 

ΔE1
IT, eV 0.277 0.167 

ΔE2
IT, eV 0.580 0.598 

ΔEDT, eV 0.326 0.259 

b1
IT, cm-1/eV 0.088 5.152 

b2
IT, cm-1/eV 1.561 6.936 

bDT, cm-1/eV 4545 440 

UE , eV 0.0585 0.0469 

Uk , cm-1 228 601 

 

Table 4.2. Properties of the BTO and BSO crystals 

 

The distribution parameters for these centers as well as the values of kU and EU 

derived in the process of the theoretical curve fitting by the least-squares method are listed in 

Table 4.2. The main contribution to the absorption of these crystals in the “shoulder” region 

adjacent to the absorption band edge is made by the centers with the average ionization 

energies ~2.9 (for BTO) and ~2.75 eV (for BSO). It should be noted that the contribution of 

these centers to the absorption is by one order of magnitude higher for bismuth titanate 

compared to bismuth silicate. This point to the fact that the donor centers of this type may be 

associated with vacancies of Me (Ti in BTO or Si in BSO) as, according to the data given in 

[90], similar differences are exhibited for BTO and BSO crystals in the Me vacancy 

concentrations by neutron diffraction analysis.  
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4.7 Summary  

 

In chapter 4 we have observed long-lived photo-induced absorption in the crystal BTO. 

The long-lived absorption is studied at the stage of the excitation and relaxation. Under 

normal conditions at room temperature and without pre-exposure the absorption is coursed 

only by the excitation of charges from deep levels (deep traps DT) and from the valence band 

(VB) to the conducting band (CB). The DT can be attributed to the spreading of the VB due 

to impurities and defects. The population of the DT is due e. g. to a stochastic excitation of 

charges from the VB and is much weaker than the population of the VB. The spectrum of the 

non-photo-induced absorption shows that the upper level of the DT lays at ca. 2.3 eV (ca. 540 

nm) below the CB. The width of the forbidden band of the Bi12TiO20 crystal was measured 

and is approximately 3.1 eV (ca. 400 nm). After pre-exposure a growth of the photo-induced 

absorption kPI is observed at wavelengths below 900 nm. The photo-induced absorption kPI is 

connected with the excitation of charges from the long-lived intermediate traps (IT) to the CB. 

Traps are populated by charges due to the excitation of electrons from the DT and the VB to 

the CB and relaxation to the IT. 

Due to the experimental observation of the induced absorption relaxation a two level 

(trap) model is suggested. The results are obtained with an approximation of the experimental 

dependences of the induced changes of absorption  on the basis of relations, taking 

into account two centers that cause the average ionization energies  eV and 

 eV. The values of the half-widths of the distribution are 

 eV and 

),( tEkPI

092.0597.11 E

028.0566.22 E

018.0277.01 E 031.0580.02 E  eV. The theoretically calculated values are 

compared with the experimentally detected in table 4.3 and stay in good agreement. 

Experimental investigations approve the theoretical results On the base of the selected 

model and according to the experimental results one can estimate the dynamical 

characteristics of the energy levels (table 4.4). 

It is shown that the pulse radiation is more effective for the stimulation of the long-

lived absorption The relaxation of the photo-induced absorption can be slowed down and 

stopped using cw-radiation with low intensity from the blue-green wave range. In such a way 

it is possible to stop the relaxation at any stage. If one switches off the low cw-radiation, the 

relaxation process keeps going.   
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Crystal 

Bi12TiO20 

Theoretically 

calculated 

Experimentally 

measured 

E1
IT, eV 1.597 1.7 

E2
IT, eV 2.566 2.6 

EDT, eV 2.897 2.7 

ΔE1
IT, eV 0.277 0.4 

ΔE2
IT, eV 0.580 0.6 

ΔEDT, eV 0.326 0.4 

 

Table 4.3. Comparison of the theoretical calculations and experimental measurements.  

- ionization energy of the corresponding electron trap,  - half-width of the 

corresponding electron trap 

j
iE

j
iE

 
 

λ, nm 514 532 

1,2a , s 1.2x104 1x104 

1,2b , s 5.5x104 7.5x104 

1,3
1,3

1

R
 , s 6x10-8 6x10-8 

2,3
2,3

1

R
 , s 12x10-8 7x10-8 

 
Table 4.4. Dynamical characteristics of the nominally pure Bi12TiO20.   - lifetime of an 
energy level 

 
If the BTO crystal with the photo-induced absorption is exposed by cw-radiation from 

the red wave range with low intensity the relaxation is faster. Compared with the previous 

results for the unstimulated relaxation red light accelerates the relaxation approximately by a 

factor of 10. On the other hand low intensity cw-radiation of the wavelengths 514 nm, 532 

nm, and 633 nm didn’t produce enough photo-induced absorption to be experimentally 

detected. Thus, one can use low intensity expositions at different wavelengths to control the 

photo-induced absorption.  

The same method can be applied to other sillenite crystals. The spectral properties of 

the Bi12SiO20 (BSO) are analyzed successfully. The crystal Bi12SiO20 has the same structure 

of the two long-lived intermediate traps with a shift of the energy levels.  
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Chapter 5 

Application of the photo-induced 

absorption 

 

In chapter 4 we studied photo-induced properties of BTO (BSO) crystals as 

representatives of the sillenite group and investigated the high effective long-lived photo-

induced absorption. Unstable absorption properties are on the way to the application of 

photorefractive crystals. In chapter 4.4 we discussed methods to control, reduce or stabilize 

the induced absorption. In this chapter we analyze possible applications of induced 

absorption. 

Chapter 5.1 is devoted to the arising of the photorefractive sensibility for the red and 

IR spectral range due to long-lived induced absorption centers. In chapter 5.2 we analyze the 

possibility of information processing by controlling the long-lived absorption in BTO. The 

outlook for the application of induced absorption for the measurement of short pulses is 

discussed in chapter 5.3.  
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5.1 Analysis of the induced photorefractive sensitivity of 

BTO in the near IR 

 

The increasing sensitivity of a BTO crystal for the recording of photorefractive 

holograms in the near IR region, as observed in [99, 104] under illumination of the crystal by 

VIS, is mainly due to the population of traps with an average energy E1 = 1.60 eV by 

electrons. We express the photorefractive sensitivity in terms of the relation between the 

growth rate of the refractive index modulation amplitude n  for the photorefractive grating at 

the initial stage of its formation and the intensity modulation amplitude 0mI  as follows  

0

1
ph

d n
S

mI dt


 ,     (5.1) 

where m - contrast and 0I  - average light intensity of the interference pattern [14]. With the 

diffusion mechanism of the photorefractive grating formation [99, 104], the relations given in 

[14] make it possible to express the photorefractive sensitivity as follows  

 
3

2 2

( ) ( )
( )

2 1
eff D R

ph

D

n r E e k
S

K L

   
 


 

,   (5.2)  

where n  and effr  - refractive index of the crystal and the effective Kerr constant, 

 D BE K k T e  - diffusion field,  1 2

D R BL k T e  - diffusion length,   and R  - mobility 

and recombination of a charge carrier, 2K   ,   - spatial grating period, Bk  - Boltzmann 

constant, T  - absolute time,   - low frequency dielectric constant, e  - elementary electric 

charge, and   - quantum efficiency.  

The dependence of the photorefractive effect on the wavelength described in (5.2) by 

the last factor is varying with the irradiation of the crystal due to changes in its optical 

absorption ( )k  . At a wavelength of 780 nm, the experimental absorption factor of a BTO 

crystal not subjected to irradiation measured k = 0.14 cm-1, being equal to 1.56 cm-1 for 1 

hour of irradiation. As the wavelength is growing to 840 nm, the initial absorption decreases 

down to 0.02 cm-1, coming to k = 0.76 cm-1 after the irradiation is terminated.  

For the spectral region with 840   nm the absorption of the BTO crystal is decreased 

as the wavelength is increasing. For the BTO crystal under study, the changes in the 

photorefractive sensitivity caused by an increase of optical absorption in the process of 
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irradiation, including the range of 840   nm, may be estimated by the above-mentioned 

experimental results and theoretical model. In the region from 700 nm till 1100 nm, the 

dependence of the induced absorption on the wavelength calculated with the averaged model 

parameters and factors )(2,1 tb  at the relaxation times τ = 17 h and 34 h are shown in Fig. 5.1. 

It can be seen that the irradiation of the BTO crystal by nanosecond laser pulses ( = 532 nm) 

may contribute significantly to its photorefractive sensitivity to IR radiation at wavelengths up 

to 1100 nm. However, the estimated absolute values of the photorefractive sensitivity for 

1064  nm are lower by decades compared to 780 nm.  

 

 
Fig. 5.1. Spectral dependence calculated for the induced absorption of a BTO crystal in the 

near IR immediately after irradiation (1), and after 17 h (2) and 34 h (3) dark relaxation. 

Absorption was induced with ns laser pulses (532 nm).  

     

In this way, owing to irradiation of the BTO crystal by laser pulses at a wavelength of 

532 nm, one can observe the changes of the optical absorption spectrum, which increases with 

the exposure. In the dark, the relaxation of the photo-induced changes of the absorption 

proceeds for more than 60 h. The spectral dependence of the additional absorption is 

adequately described with the model for the trapping of the photoexcited electrons by traps of 

two types with the normal energy distribution law for the concentrations at the average values 

of the ionization energy E1 ~ 1.6 eV and E2 ~ 2.57 eV.  

Δk, cm-1 

λ, nm 
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On the base of the approximation methods for the spectral dependences of the induced 

absorption, one can estimate the dynamics of trap filling by electrons during the process of 

illumination by nanosecond laser pulses as well as the dynamics of trap depletion at the stage 

of dark relaxation. When the electrons populate the traps with the average energy E1 ~ 1.6 eV 

the photorefractive sensitivity of the irradiated crystal in the near IR is increased, which 

depends on the magnitude of the induced absorption.  

 

5.2 Processing of information 

 

Using four light sources with different wavelengths one will be able to realize in future 

a system for information processing and storage. The location of electrons in the valence 

band, at the first or second long-lived energy level, is detected by changes of the absorption 

spectra. Due to the pulse laser radiation at 532 nm these levels are populated with electrons 

from the valence band during the pulse length of about 100 ns. Cw laser radiation at 514 nm 

or 532 nm enables one to maintain the redistribution of the electrons as long as necessary. The 

electrons are transferred back to the valence band by photoirradiation at 633 nm. A low-

intensity probe beam with a visible-range wavelength can be used to control absorption and 

population of the levels. An electron is considered as a carrier of information. Its location in 

an energy system and space represents a bit of information. The distribution of electrons 

between the levels can be taken as a data register. Data processing can be realized by changes 

of the distribution of electrons. The usage of “UV-“green” radiation pulses offers a fast 

information recording in the bulk structure of the media, and the reverse operation is enabled 

by radiation of the “Red”-region. (Fig. 5.2) 

It was shown in chapters 4.1.2 and 4.6 that the most effective wavelengths for the 

inducing of absorption in crystals of the sillenite group are in the UV-blue range (Fig. 4.4 p. 

42) and in the green range for the pulse laser irradiation. Using short pulses one can work 

with two-photon absorption (Fig. 5.3). This gives the opportunity to write information with 

one ps or ns pulse. 



Chapter 5. Application of the photo-induced absorption 

 

84

detector

writing of information 

saving of information

deleting of information

re
a din

g
of

in
fo rm

a tio
n

filter

detector

writing of information 

saving of information

deleting of information

re
a din

g
of

in
fo rm

a tio
n

filter

 
 

Fig. 5.2. On the base of the photochromic effect and methods of controlling of photo-
induced absorption different kinds of switchers, optical logical and memory elements could 
be built. 

 

 

 

 

Fig. 5.3. Illustration of the multi-photon inducing of absorption centers.  
 

 Petrov et al. [14] showed that the diffusion length LD in BTO crystals is 0.25 µm (0.29 

µm for BGO). This is demonstrated in Fig. 5.4a.  

Using the Bouguer law  

kxeII  0       (5.3) 

one finds that the induced absorption can be already detected in crystals with a thickness of 50 

µm. It is possible to realize data storage (Fig. 5.4b). 
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Fig. 5.4. a) Cross sections of the recombination and absorption during irradiation of the 
crystal, b) writing of the information on the active face of the crystal  

 

 

5.3 Autocorrelator  

 

The past decade has seen a tremendous progress in the development of lasers that emit 

ultrashort pulses. Light pulses are approaching durations of a single optical cycle: one to two 

femtoseconds for visible and near-IR wavelengths. And, in addition, the use of ultrashort 

pulses for both fundamental studies and applications is rapidly increasing. As these pulses 

shrink in length and grow in utility, the ability to measure them becomes very important.  
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The pulse is defined by its electric field E(t) as a function of time. For the sake of 

simplicity, we treat the field as linearly polarized and therefore consider only the scalar 

component of it. We also assume that the pulse separates into the product of spatial and 

temporal factors, and we neglect the spatial factor. The time-dependent component of the 

pulse can be written as 

  ))}(exp()(Re{ 0 tititItE   ,    (5.5) 

where I(t) and φ(t) are the time-dependent intensity and phase of the pulse, and ω0 is the 

carrier frequency. The time-dependent phase contains the frequency versus time information, 

and the pulse instantaneous frequency ω(t) is given by  

dt

d
t

  0)( .     (5.6) 

Also the analytic signal in the single-side inverse Fourier transform of the field is 





0

)exp()(
~

)( tiEdtE  ,   (5.7) 

where  

)exp()()(
~

titEdtE  




 .    (5.8) 

 It is complicated to measure ultrashort fs- and ps- pulses with typical semiconductor 

detectors. One uses autocorrelation methods to find the length of pulses. Specifically, an 

autocorrelator yields 






 dttItIA )()()(  ,    (5.9) 

where τ is the relative delay between the pulses. Unfortunately, this measurement yields a 

smeared out version of I(t), and it often hides structure. For example, satellite pulses must be 

indirectly inferred from enlarged wings in A(t ).  

Practically, one can use a two-photon process which takes place in a semiconductor 

detector excited at a wavelength below the band-gap cut off (Fig.5.6). Only a high peak power 

of laser pulses can give a two-photon signal which can be directly recorded on an oscilloscope 

as a function of the delay τ . Alternatively, a phase-matched doubling crystal, properly filtered 

to provide only the second-harmonic field, can extract the correct answer from the 

interferometer output. This harmonic field, recorded by a photodetector – a photomultiplier or 

a simple photodiode if the average signal is sufficient – as a function of the delay will give the 

same result. 
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Variable delay
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Fig. 5.6. Basic scheme of the autocorrelator 

 

The main disadvantages of commonly used interferometric methods or the optical parametric 

generation are dependence on the wavelength and high frequency repetition rate.  

 Here, we propose a new autocorrelator concept based on the photo-induced absorption 

in BTO crystals which can be realized in future. Two pulse replicas without delay are mixed 

in the BTO crystal (Fig. 5.7a). Each pulse replica will be absorbed according to two photon 

processes. The modulation of the induced absorption is 

 IbIakpi
** )(  ,      (5.10) 

where I – intensity, a* – coefficient of the two-photon absorption, b* – coefficient of one-

photon absorption. As it was shown in chapter 4 one-photon absorption can be neglected. In 

the area of pulse mixing the induced absorption (Fig. 5.7b) is 






 0000
* )()())(()( dxxxIxIxIaxk pi ,    (5.11) 

where x – coordinate of the axis of the light propagation. Equation (5.11) is the 

autocorrelation function of the short laser pulse (Fig. 5.7b). Detecting of the induced 

absorption with another probe beam and a linear photodetector array in transversal direction 

determines the correlation function (Fig. 5.7c).     

 

E(t)exp[i(ωt+φ(t))] 
+ E(t-τ)exp[i(ω(t-τ )+φ(t-τ))] 
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Fig. 5.7. a) basic scheme of the autocorrela tor on the base of the BTO crystal, b) two 
photon absorption in the crystal, c) detection of the induced absorption with another probe 
beam and a linear photodetector (PD)  

 

Advantages of this method are the detection of the single-pulse characteristics and the 

insensibility to the wavelength. The forbidden band of the BTO is 3.1eV and the depth of the 

deep traps is 2.3 eV (chapter 4). The multi-photon processes are detectable due to induced 

absorption for wavelengths in the range of 500 nm-1100 nm. Using crystals in the form of the 

plane waveguides with a length till 10 cm one gets a detection range for pulses till 300 ps. 

The minimal length of pulses and the resolution of the system are limited only by the detector 

area.  

a) b) 

c) 



Chapter 6. Summary 89

 

 

 

 

Chapter 6 

Summary 

 
This work was devoted to long-lived photo-induced processes which are due to long-lived 

spectral changes of the photorefractive Bi12TiO20 crystal.  

I. We study experimentally the spectral properties of the Bi12TiO20 crystal with and 

without induced long-lived absorption at room temperature. The long-lived photo-induced 

absorption is connected with the excitation of charges from the long-lived intermediate traps 

to the conducting band. Due to the experimental observation of the induced absorption under 

cw- and pulse laser radiation a model of two level (trap) relaxations is suggested. The 

investigation of the relaxation dynamics shows lifetimes of the long-lived levels of 1·104 s and 

7·104 s. The experimental dependences show ionization energies of 1.6 eV and 2.8 eV of the 

levels. The values of the levels half-widths are 0.3 eV and 0.6 eV. These two intermediate 

levels are populated by charges due to excitation of electrons from the deep traps and the 

valence band to the conducting band and relaxation to the intermediate traps. The 

recombination times of electrons to the long-lived intermediate traps are 100 ns and 60 ns for 

the deep traps. 

II. The investigation method can be applied to other sillenite crystals. Spectral 

properties of the Bi12SiO20 are analyzed and compared with Bi12TiO20. The crystal Bi12SiO20 

has the same structure of the two long-lived intermediate levels. The ionization energies are 

1.1 eV and 2.5 eV, with half-width 0.2 eV and 0.6 eV respectively. The energy level of the 

deep traps is 2.8 eV.  

III. The changes of the electron redistribution in the defect centers and also the optical 

absorption caused by the recombination processes are nearly identical for picosecond, 

nanosecond and cw- irradiation. But the level of the initial crystal bleaching by a picosecond 
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pulse is by an order of magnitude higher than for nanosecond pulses with the same energy and 

by three orders higher than for cw-regime. 

The long-lived induced absorption can be controlled by low cw-laser radiation 

(100µW/mm2). The relaxation of the photo-induced absorption can be slowed down and 

stopped using cw-radiation from the blue-green wave range. If the crystal with the recently 

photo-induced absorption is exposed by a cw-radiation from the red wave range, the 

relaxation is accelerated. On the other hand low intensity cw-radiation of the wavelengths 514 

nm, 532 nm, and 633 nm doesn’t produce enough photo-induced absorption to be 

experimentally detected. 

Photo-induced absorption influences on the photorefractive effect in crystals. When 

electrons populate the traps with the average energy 1.6 eV, the photorefractive sensitivity of 

the irradiated crystal in the near IR is increased, that may be estimated by the magnitude of 

the induced absorption. 

IV. The photo-induced absorption can be used for information processing and storage 

based on four light sources with different wavelengths. Laser irradiation changes the electron 

distribution at the energy levels. The location of electrons in the valence band, at the first or 

second long-lived energy level, is detected by changes in the light absorption spectra. Due to 

the high-intensity green-blue pulse laser radiation these levels are populated. Low-intensity of 

green cw-laser radiation enables one to maintain the redistribution of the electrons as long as 

necessary. The electrons are transferred back to the valence band by red wave range light. The 

distribution of electrons between the levels can be taken as a data register. 

We propose a new possible realization of an autocorrelator based on the photo-induced 

absorption in a BTO crystal. Two pulse replicas without delay are mixed in the BTO crystal. 

Each pulse replica will be absorbed according to two photon processes. The absorption is 

higher when the short laser pulses are overlapping. Detecting of the induced absorption with 

another probe beam and a linear photodetector array in transversal direction gives the 

correlation function. Advantages of this method are detection of the single pulse 

characteristics in the wide range 500-1100 nm. 

In this work we have investigated experimentally and theoretically the long-lived 

photo-induced absorption in a Bi12TiO20 and Bi12SiO20 crystals. We characterize the internal 

system of the energy levels and its dynamic properties under room temperature, the pulse 

laser irradiation and show the bistable characteristics of the photo-induced absorption, to our 

knowledge for the first time.  
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As outlook for the future work the investigations of the multi-photon processes like 

two- and three- photon absorption are important. The sillenite crystals are promising media 

for transformation and control of high power pulse radiation generated by fs and ps lasers 

with high repetition. That’s why it is important to get full information about the spectral and 

dynamical properties of the multi-photon processes in sillenite crystals. Also the investigation 

of the influence of the high power irradiation on the photorefractive and photochromic 

characteristics of the sillenite crystals and their possible applications will be continued.      
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ZUSAMMENFASSUNG 

 
Diese Arbeit ist langlebigen photoinduzierten Prozessen gewidmet, die durch 

langlebige Spektralveränderungen des photorefraktiven Bi12TiO20 Kristalls bedingt sind.  

I. Wir haben experimentell die Spektraleigenschaften von Bi12TiO20 Kristallen mit 

und ohne photoinduzierte langlebige Absorption bei Raumtemperatur untersucht. Die 

langlebige photoinduzierte Absorption ist mit der Anregung der Ladungen von 

Zwischenniveaus in das Leitungsband verbunden. Aufgrund der experimentellen Ergebnisse 

der photoinduzierten Absorption unter cw- und Pulslaserstrahlung wird ein Modell von 

Zweienergieniveaus vorgeschlagen. Die Untersuchung der Relaxationsdynamik zeigt 

Lebenszeiten der langlebigen Niveaus von 1·104 s und 7·104 s. Die experimentellen 

Abhängigkeiten zeigen Ionisationsenergien der Niveaus von 1,6 eV und 2,8 eV. Die 

Niveauhalbwertsbreiten betragen 0,3 eV und 0,6 eV. Diese zwei Zwischenniveaus werden 

wegen der Anregung von Elektronen von den tiefen Niveaus und dem Valenzband in das 

Leitungsband und der danach folgenden Relaxation in die Zwischenniveaus besiedelt. Die 

Rekombinationszeiten von Elektronen zu den langlebigen Zwischenniveaus betragen 100 ns 

und 60 ns für die tiefen Niveaus. 

II. Die Untersuchungsmethode kann auf andere Sillenitkristalle angewandt werden. 

Die Spektraleigenschaften von Bi12SiO20 sind analysiert und mit Bi12TiO20 verglichen 

worden. Der Kristall Bi12TiO20 hat dieselbe Struktur der zwei langlebigen Zwischenniveaus. 

Die Ionisationsenergien sind 1,1 eV und 2,5 eV mit den entsprechenden Halbwertsbreiten von 

0,2 eV und 0,6 eV. Die Energie des tiefen Niveaus ist 2,8 eV. 

III. Die Veränderungen der Elektronenverteilung in den Defektzentren und auch der 

optischen Absorption, die durch Rekombinationsprozesse verursacht werden, sind fast 

identisch für ps-, ns- und cw-Strahlungen. Aber der Grad der anfänglichen Kristallbleiche für 
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ps-Pulse ist eine Größenordnung höher als für ns-Pulse mit derselben Energie und drei 

Ordnungen höher als für das cw-Regime. 

Die langlebige photoinduzierte Absorption kann von der cw-Laserstrahlung mit 

niedriger Leistung (z. B. 100µW/mm2) gesteuert werden. Die Relaxation der photoinduzierten 

Absorption wird mit einer cw-Strahlung mit einer Wellenlänge aus dem grün-blauen Bereich 

verlangsamt und angehalten. Wenn der Kristall mit der gerade photoinduzierten Absorption 

einer cw-Strahlung mit einer Wellenlänge aus dem roten Bereich ausgesetzt wird, wird die 

Relaxation beschleunigt. Andererseits erzeugt die cw-Strahlung niedriger Leistung der 

Wellenlängen 514 nm, 532 nm, und 633 nm nicht genug photoinduzierte Absorption, die 

experimentell messbar ist. 

Die photoinduzierte Absorption beeinflusst den photorefraktiven Effekt in 

Sillenitkristallen. Wenn Elektronen die Niveaus mit der durchschnittlichen Energie 1,6 eV 

besiedeln, wird der photorefraktive Effekt im nahen IR-Bereich verstärkt. Das kann über die 

Modulation der photoinduzierten Absorption berechnet werden. 

IV. Eine mögliche Anwendung der photoinduzierten Absorption für die 

Informationsspeicherung und -verarbeitung kann mit vier Lichtquellen verschiedener 

Wellenlängen realisiert werden. Die Laserstrahlung ändert die Elektronverteilung in den 

Energieniveaus. Die Position der Elektronen im Valenzband sowie im ersten oder zweiten 

langlebigen Energieniveau wird durch Änderungen in den Absorptionsspektren bestimmt. 

Wegen der hohen Intensität der grün-blauen Pulslaserstrahlung werden diese Niveaus 

besiedelt. Die niedrige Intensität grüner cw-Laserstrahlung ermöglicht es, die Neuverteilung 

der Elektronen so lange als notwendig aufrechtzuerhalten. Durch Beleuchtung aus dem roten 

Wellenlängenbereich gehen die Elektronen zurück in das Leitungsband. Die Verteilung von 

Elektronen zwischen den Niveaus kann als ein Datenregister genutzt  werden. 

Wir schlagen eine mögliche Realisierung einer Autokorrelation für kurze Laserpulse 

in einem Sillenitkristall vor, die auf der photoinduzierten Absorption basiert.  

Zwei Laserpulszüge werden ohne Verzögerung im BTO Kristall gemischt. Jeder 

Pulszug wird gemäß der Zweiphotonenprozesse absorbiert. Die Absorption ist höher, wenn 

die kurzen Laserpulse überlappen. Die Messung der induzierten Absorption mit einem 

anderen Probestrahl und einem linearen Photodetektorarray in transversaler Richtung ergibt 

die Korrelationsfunktion. Der Vorteil dieser Methode wäre die Messung der 

charakteristischen Eigenschaften der Laserpulse im Wellenlängenbereich von 500 nm - 1100  

nm. 
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In dieser Arbeit haben wir experimentell und theoretisch die langlebige photo- 

induzierte Absorption in Bi12TiO20 und Bi12SiO20 Kristallen untersucht. Wir charakterisierten 

das innere System der Energieniveaus und seine dynamischen Eigenschaften unter 

Raumtemperatur, Pulslaserstrahlung und zeigten die bistabilen Eigenschaften der 

photoinduzierten Absorption nach unserem Kenntnisstand zum ersten Mal.  

Die zukünftige Arbeit sollte besonders den Mehrphotonenprozessen, wie der Zwei- 

und Dreiphotonenabsorption, gewidmet werden. Die Sillenitkristalle stellen ein gutes Medium 

für die Transformation und Kontrolle von Hochleistungspulslaserstrahlung dar, die durch fs - 

und ps - Laser mit hohen Wiederholungsraten erzeugt wird. Deshalb ist es wichtig, weitere 

Informationen über die spektralen und dynamischen Eigenschaften der 

Mehrphotonenprozesse in Sillenitkristallen zu gewinnen. Ebenso sollten Untersuchungen zum 

Einfluss hoher Bündelleistungen auf die photorefraktiven und photochromen Charakteristiken 

von Sillenitkristallen und ihren möglichen Anwendungen fortgesetzt werden.   
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Abbreviations and Variables  

 
  

  A(x,y)  Amplitude of the the electric field in the electro-magnetic wave 

a*  coefficient of the two-photon absorption 

atherm   thermal conductivity coefficient 

b*  coefficient of one-photon absorption 

 BGO  Bi12GeO20 

 BSO  Bi12SiO20 

 BTO  Bi12TiO20  

CB  conducting band 

 D-   filed trap 

d  sample thickness  

D0   excited trap 

 Di  trap of i type located in forbidden band 

DT  deep trap 

e  elementary charge 

Se


  unit vector for spontaneous polarization 

Ea
i  energy of the thermal activation of the donor i 

Ec  energy edge of the conducting band 

ED  donor’s energy level 

Ediff  diffusion field 

EF  equals the distance of the Fermi level to the conducting band 

EG  photovoltaic electrical field 

EI  energy if the ionization 

Ej, Ek   components of an electromagnetic light wave 

Eo  external electrical field 
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Ephv  bulk photovoltaic field  

Epyro  pyroelectric field 

Esc  space charge field 

EU   characteristic energy conforming to the Uhrbach rule  

Eυ  energy edge of the valence band 

 grating period  

ħ  Planck constant 

 I  light intensity 

 I0  background intensity 

IM  intermediate trap 

 Ip  energy of laser pulse 

diffj


  diffusion current 

driftj


  drift current 

phj


.  photovoltaic current   

k  light absorption coefficient 

 K  vector magnitude of grating 

K(E)  “level density” 

k0  coefficient of absorption without the photo-induced effect 

k1, k2  initial coefficients of absorption for long-lived levels 1 and 2 

kB   Boltzmann constant 

kPI  photo-induced absorption 

Lbi  laser beam i at the scheme 

LD  free path 

 m  intensity modulation depth  

 n  refractive index  

N(E)  density of the absorption centers 

 NA  number density of acceptors  

 nb  background refractive index 

 ND  number density of dopants 

 ND
+  number density of ionized dopants 

 Ne  electron concentration 

ne  refractive index of the extraordinary ray 
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Ne(x)   concentration of free carriers 

Nh  density of holes within the conduction and valence bands 

Ni  concentrations of the charge carriers at the level i (i = 1, 2a, 2b, 3) 

a, 2b, 3) 

 of the n-type traps 

inary ray 

reflection from the crystal edge 

 

level i to the lower j 

level i to level j 

ients  

R

 

ni  population of the level i 

Ni
+  concentrations of the ionized centers at the level i (i = 1, 2

Nn(E)  distribution law for the concentration

no  refractive index of the ord

PS   spontaneous polarization 

qM   occupancy factor of the M cations 

R  Fresnel coefficient for 

 R  recombination degree 

reff  effective electro-optic coefficient 

ri,j  recombination coefficients from the upper 

Ri,j  relaxation constants from 

rijk  electrooptic coeffic

OC  attenuation factor 

r


  tensor matrix of the electro-optic coefficients 

pth E 

evel i (i = 1, 2a, 2b, 3) 

ficients 

ve sensitivity 

th of the thermal grating formation 

  

s  cross-section for phohotoionization 

S(E)  cross section of the absorption for centers localized at the de

Si  cross sections of the absorption for l

sijkm  quadratic electro-optic coef

Sph   photorefracti

T  temperature 

T erm  characteristic time 

 ext exposure time 

T   temperature variations in the medium subjected  

 

 

stal and doping elements 

tation 

 β

ficients between levels 

Uλ/2  half-wave voltage

VB  valence band 

x, y, z   coordinate system 

   constant factor characterizing the cry

 β  coefficient of the thermal exci

ijk  photovoltaic coefficients 

i,j   constants defining inner transitions coef
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ude  

 electric constant 

ns 

ability tensor 

e positive charge density 

 

ity  

σh  

γR  coefficient for electron recombination  

Δn  refractive index modulation amplit

ε  low frequency di

µ  charge mobility 

µe  mobility of electro

µh  mobility of holes  

ηhol  diffraction efficiency 

ηij  the imperme

λ  wavelength 

ρ0  average value of th

σ  photoconductivity 

σe  electron conductiv

hole conductivity 

( )t   

een laser beams 

f long-lived levels 1 and 2 

τ

inearity grating 

gation in this medium  

φ(t  

step Heaviside function 

θ  angle betw

τ   lifetime  

τ1, τ2  times of life o

p  pulse length 

therm  relaxation (erasure) time for the thermal nonl

sound  speed of sound propa

Φ  quantum efficiency 

)  time-dependent phase 

   bulk photovoltaic coefficient 

ω(t)  time-dependent frequency 
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