
#2 : Program Execution

Computer Architecture 2019/2020

Ricardo RochaRicardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto

Slides based on the book

‘Computer Organization and Design, The Hardware/Software Interface, 5th Edition

David Patterson and John Hennessy, Morgan Kaufmann’

Sections 2.12 and A.1 – A.4

Translating and Starting a Program

We can consider four hierarchical steps when transforming a C program

in a file on disk into a process running on a computer:

• Compiler step

• Assembler step

• Linker step

• Loader step

1#2 : Program ExecutionComputer Architecture 2019/2020

• Loader step

Some systems combine these steps to reduce translation time, but these

are the logical four steps that programs go through.

Translating and Starting a Program

The compiler transforms the high-level language program to an assembly

language program, a symbolic form of what the machine understands.

The assembler turns the assembly language program into an object file,

which is a combination of machine language instructions, data, and

information needed to place instructions properly in memory.

2#2 : Program ExecutionComputer Architecture 2019/2020

information needed to place instructions properly in memory.

The linker combines independently assembled object files and resolves

all undefined labels into an executable file.

The loader places an executable file in main memory so that it is ready to

execute.

Translating and Starting a Program

3#2 : Program ExecutionComputer Architecture 2019/2020

Translating and Starting a Program

4#2 : Program ExecutionComputer Architecture 2019/2020

Assembly Language

5#2 : Program ExecutionComputer Architecture 2019/2020

From C to Machine Code

6#2 : Program ExecutionComputer Architecture 2019/2020

High-level C program: code is short and clear –
variables have mnemonic names and the loop is
explicit rather than constructed with branches.

From C to Machine Code

Assembly program I: code more
difficult to follow, because many
simple operations are required to

accomplish simple tasks and
because assembly language’s lack

of control flow constructs

7#2 : Program ExecutionComputer Architecture 2019/2020

of control flow constructs
provides few hints about the

program’s operation.

From C to Machine Code

Assembly program II: code even
more difficult to follow because
memory locations are named by

their address rather than by a
symbolic label.

8#2 : Program ExecutionComputer Architecture 2019/2020

symbolic label.

From C to Machine Code

Machine code: with
considerable effort, we could

use the opcode and instruction
format tables to translate the

instructions into a symbolic

9#2 : Program ExecutionComputer Architecture 2019/2020

instructions into a symbolic
program similar to the

previous one.

Address Binding

Addresses are represented in different ways at different stages of a

program’s life:

• Source code addresses are usually symbolic (e.g., variable xpto)

• Compiler/assembler binds symbolic addresses to relocatable addresses (e.g., 604

bytes from the beginning of this module)

• Linker/loader binds relocatable addresses to absolute addresses (e.g., address

10#2 : Program ExecutionComputer Architecture 2019/2020

• Linker/loader binds relocatable addresses to absolute addresses (e.g., address

0x0FFF0904)

• Each binding maps one address space into another

Object File

The object file for UNIX systems typically contains six distinct pieces:

• Object file header describes the size and position of the other 5 pieces

• Text segment contains the machine language code

• Static data segment contains data allocated for the life of the program

• Relocation information identifies instructions and data words that depend on

absolute addresses when the program is loaded into memory

11#2 : Program ExecutionComputer Architecture 2019/2020

absolute addresses when the program is loaded into memory

• Symbol table contains the remaining labels that are not defined, such as global

definitions and external references

• Debugging information contains a concise description of how the modules were

compiled so that a debugger can associate machine instructions with C source

files and make data structures readable

Linking Object Files

12#2 : Program ExecutionComputer Architecture 2019/2020

Linking Object Files

The linker produces an executable file that has the same format as an

object file, except that it contains no unresolved references or

relocation information.

The linker typically includes three steps:

• Find library routines used by the program

13#2 : Program ExecutionComputer Architecture 2019/2020

• Find library routines used by the program

• Merge segments by placing code and data modules symbolically in memory and

relocate its instructions by adjusting absolute references

• Resolve references among files

Linking Object Files

The linker uses the relocation information and symbol table in each

object module to resolve all undefined labels.

• Such references occur in branch instructions, jump instructions, and data

addresses, so the job of this program is much like that of an editor – it finds the

old addresses and replaces them with the new addresses

14#2 : Program ExecutionComputer Architecture 2019/2020

old addresses and replaces them with the new addresses

• Could leave location dependencies for fixing by a relocating loader, but with

virtual memory there is no need to do this since a program can be loaded into

absolute location in virtual memory space

Loading a Program

The loader typically includes six steps to load an executable file into

memory:

• Read file header to determine size of the text and data segments

• Create address space large enough for the text and data segments

• Copy the instructions and data from the executable file into memory (or set

page table entries so they can be faulted in)

15#2 : Program ExecutionComputer Architecture 2019/2020

page table entries so they can be faulted in)

• Copy the program’s arguments (if any) onto the stack

• Initialize the machine registers and set the stack pointer to the top of the stack

• Jump to startup routine, which copies the program’s arguments into the

argument registers and calls the main routine of the program. When the main

routine returns, the startup routine terminates the program with an exit()

system call

Dynamic Linking

Although static linking is the fastest way to call library routines, it has a

few disadvantages:

• The library routines become part of the executable code (if a new version of the

library is released that fixes bugs or supports new hardware devices, the

statically linked program keeps using the old version)

• It loads all routines in the library that are called anywhere in the executable,

even if those calls are not executed (the library can be large relative to the

16#2 : Program ExecutionComputer Architecture 2019/2020

even if those calls are not executed (the library can be large relative to the

program – for example, the standard C library is 2.5 MB)

These disadvantages lead to dynamically linked libraries (DLLs), where

each library routine is linked and loaded only after it is called, i.e., linking

is postponed until execution time.

• Requires procedure code to be relocatable

• Automatically picks up new library versions and avoids linking all referenced

libraries/routines

Dynamic Linking

With dynamic linking, a routine is loaded only when it is needed:

• All routines are kept on disk in a relocatable load format

• Initially, the main routine is loaded into memory and executed

• When a routine calls another routine, the calling routine first checks to see

whether the other routine has been loaded and, if not, the relocatable linking

loader is called to load the desired routine into memory

•

17#2 : Program ExecutionComputer Architecture 2019/2020

• A stub is included in the binary program for each library routine reference that

indicates how to locate the appropriate library routine and load it

Dynamic Linking

Indirection table

Stub: loads routine ID

18#2 : Program ExecutionComputer Architecture 2019/2020

Stub: loads routine ID
and jumps to linker/loader

Linker/loader code

DLL code

Dynamic Linking

Dynamic linking allows for a better memory-space utilization

• Although the total program size may be large, the portion that is used (and

hence loaded) may be much smaller

• Particularly useful for system libraries (without this facility, each program must

include a copy of the library in the executable image) and when large amounts

of code handle infrequently occurring cases (such as error routines)

• Processes that use the same library execute only one copy of the library code

19#2 : Program ExecutionComputer Architecture 2019/2020

• Processes that use the same library execute only one copy of the library code

