#2 : Program Execution

Computer Architecture 2019/2020

Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

Slides based on the book
‘Computer Organization and Design, The Hardware/Software Interface, 5th Edition
David Patterson and John Hennessy, Morgan Kaufmann’

Sections 2.12 and A.1 - A.4

Translating and Starting a Program

We can consider four hierarchical steps when transforming a C program
in a file on disk into a process running on a computer:

® Compiler step

® Assembler step

® Linker step

® Loader step

Some systems combine these steps to reduce translation time, but these
are the logical four steps that programs go through.

Computer Architecture 2019/2020 #2 : Program Execution

Translating and Starting a Program

The compiler transforms the high-level language program to an assembly
language program, a symbolic form of what the machine understands.

The assembler turns the assembly language program into an object file,
which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

The linker combines independently assembled object files and resolves
all undefined labels into an executable file.

The loader places an executable file in main memory so that it is ready to
execute.

Computer Architecture 2019/2020 #2 : Program Execution

Translating and Starting a Program

C program

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Executable: Machine language program

Memory

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use
linking loaders that perform the last two steps. To identify the type of file, UNIX follows a suffix convention
for files: C source files are named X . C, assembly files are X . S, object files are named X . 0, statically linked
library routines are X. a, dynamically linked library routes are X. S0, and executable files by default are
called a . out. MS-DOS uses the suffixes . C, . ASM, .0BJ, . LIB, .DLL, and . EXE to the same effect.

Computer Architecture 2019/2020 #2 : Program Execution

Translating and Starting a Program

Source A bl Object
file [DOSSMREL = e
Source Object —> _ Executable
: —| Assembler —— . —_ Linker — :
file file . file
Source A bl Object Program
file [| ASSEMPIEL > g library

FIGURE A.1.1 The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an executable file.

Computer Architecture 2019/2020 #2 : Program Execution

Assembly Language

High-level language program

| L,
Program J—» Compiler ——| Assembler —| Linker ——

] [
!

Assembly language program

FIGURE A.1.6 Assembly language either is written by a programmer or is the output of
a compiler.

Computer Architecture 2019/2020 #2 : Program Execution

From C to Machine Code

ffinclude <stdio.h>

int
Tain (int argc, char *argv[])
int 1;
int sum = 0;
for (i = 0; 1 <= 100; i =1 + 1) sum = sum + i * 7;
printf (“The sum from 0 .. 100 is %d\n”, sum);
}

FIGURE A.1.5 The routine in Figure A.1.2 written in the C programming language.

High-level C program: code is short and clear -
variables have mnemonic names and the loop is
explicit rather than constructed with branches.

Computer Architecture 2019/2020 #2 : Program Execution

From C to Machine Code

.text
.align 2

main: 200 " Assembly program I: code more
S S T e
G 50! 32(s5p) difficult to follow, because many
Sw , sp

toop: S P simple operations are required to
W , sp . .
Moot satisp) accomplish simple tasks and
s e, 24(ssp) because assembly language’s lack
ple 3100 100 Foop of control flow constructs
Tw $al, 24($sp) . .
a1 printf provides few hints about the
Tw $ra, 20($sp) .
oo g3p] $3p. 2 program’s operation.
.data

. .align 0
S .asciiz "The sum from 0 .. 100 is %d\n"

FIGURE A.1.4 The same routine as in Figure A.1.2 written in assembly language with
labels, but no comments. The commands that start with periods are assembler directives (see pages
A-47-49). . text indicates that succeeding lines contain instructions. .data indicates that they contain
data. .align n indicates that the items on the succeeding lines should be aligned on a 2" byte boundary.
Hence, .align 2 means the next item should be on a word boundary. . glob1 main declares thatmain is
a global symbol that should be visible to code stored in other files. Finally, . asci iz stores a null-terminated
string in memory.

Computer Architecture 2019/2020 #2 : Program Execution

From C to Machine Code

addiu $29, $29, -32

SW $31, 20(%$29)

SW $4, 32(%$29)

SW $5, 36(%$29)

SW $0, 24(%$29) o

o 0.) Assemb.ly. program ll: code even
m m, gigiga more difficult to follow because
mg]ﬁ“ iéfl,ﬂﬂft 1 memory locations are named by
d U s s

SIti 81, 88,101 their address rather than by a
SW . .

nflo 15 symbolic label.

addu $25, $24, $15

bne $1, $0, -9

SW $25, 24(%$29)

Tui $4, 4096

Tw $5, 24(%$29)

jal 10488172

addiu $4, $4, 10772

Tw $31, 20(%29)

addiu $29, $29, 32

jr $31

move $2, $0

FIGURE A.1.3 The same routine as in Figure A.1.2 written in assembly language. However,
the code for the routine does not label registers or memory locations or include comments.

Computer Architecture 2019/2020 #2 : Program Execution

From C to Machine Code

00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100

10101111101000000000000000011000 e . :
10101111101000000000000000011100 MaChIne COde° Wlth
10001111101011100000000000011100 -
10001111101110000000000000011000 ConSIderable Effort’ we COUId

00000001110011100000000000011001 g g
00100101110010000000000000000001 use the OPCOde and instruction

00101001000000010000000001100101

10101111101010000000000000011100 format tables to translate the
00000000000000000111100000010010 instructions into a symbolic
00000011000011111100100000100001

00010100001000001111111111110111 program similar to the
10101111101110010000000000011000 .
00111100000001000001000000000000 previous one.

10001111101001010000000000011000
00001100000100000000000011101100
00100100100001000000010000110000
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

FIGURE A.1.2 MIPS machine language code for a routine to compute and print the sum
of the squares of integers between 0 and 100.

Computer Architecture 2019/2020 #2 : Program Execution

Address Binding

Addresses are represented in different ways at different stages of a
program’s life:
® Source code addresses are usually symbolic (e.g., variable xpto)

* Compiler/fassembler binds symbolic addresses to relocatable addresses (e.g., 604
bytes from the beginning of this module)

* Linker/loader binds relocatable addresses to absolute addresses (e.g., address
0x0FFF0904)

® Each binding maps one address space into another

Computer Architecture 2019/2020 #2 : Program Execution

Object File

The object file for UNIX systems typically contains six distinct pieces:
® Object file header describes the size and position of the other 5 pieces
®* Textsegment contains the machine language code
® Static data segment contains data allocated for the life of the program

® Relocation information identifies instructions and data words that depend on
absolute addresses when the program is loaded into memory

* Symbol table contains the remaining labels that are not defined, such as global
definitions and external references

* Debugging information contains a concise description of how the modules were
compiled so that a debugger can associate machine instructions with C source
files and make data structures readable

Object file Text Data Relocation Symbol Debugging
header segment segment information table information

FIGURE A.2.1 Object file. A UNIX assembler produces an object file with six distinct sections.

Computer Architecture 2019/2020 #2 : Program Execution

Linking Object Files

Object file
sub:

Obiject file . Executable file

Instructions | main: main:

jal 7727 jal printf

E— ° j °

jal 7727 jal sub
. printf:

. call, sub ’ Linker .
Relocation call, printf .
records .

sub:
C library | .
print: i

FIGURE A.3.1 The linker searches a collection of object files and program libraries to
find nonlocal routines used in a program, combines them into a single executable file, and
resolves references between routines in different files.

Computer Architecture 2019/2020 #2 : Program Execution

Linking Object Files

The linker produces an executable file that has the same format as an
object file, except that it contains no unresolved references or
relocation information.

The linker typically includes three steps:
® Find library routines used by the program

®* Merge segments by placing code and data modules symbolically in memory and
relocate its instructions by adjusting absolute references

® Resolve references among files

Computer Architecture 2019/2020 #2 : Program Execution

Linking Object Files

The linker uses the relocation information and symbol table in each
object module to resolve all undefined labels.

® Suchreferences occurin branch instructions, jump instructions, and data
addresses, so the job of this program is much like that of an editor - it finds the
old addresses and replaces them with the new addresses

® (Could leave location dependencies for fixing by a relocating loader, but with
virtual memory there is no need to do this since a program can be loaded into
absolute location in virtual memory space

Computer Architecture 2019/2020 #2 : Program Execution

Loading a Program

The loader typically includes six steps to load an executable file into
memory:

Read file header to determine size of the text and data segments
Create address space large enough for the text and data segments

Copy the instructions and data from the executable file into memory (or set
page table entries so they can be faulted in)

Copy the program’s arguments (if any) onto the stack
Initialize the machine registers and set the stack pointer to the top of the stack

Jump to startup routine, which copies the program’s arguments into the
argument registers and calls the main routine of the program. When the main
routine returns, the startup routine terminates the program with an exit()
system call

Computer Architecture 2019/2020 #2 : Program Execution

Dynamic Linking

Although static linking is the fastest way to call library routines, it has a
few disadvantages:

* The library routines become part of the executable code (if a new version of the
library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version)

® [tloads all routines in the library that are called anywhere in the executable,
even if those calls are not executed (the library can be large relative to the
program - for example, the standard Clibrary is 2.5 MB)
These disadvantages lead to dynamically linked libraries (DLLs), where
each library routine is linked and loaded only after it is called, i.e., linking
is postponed until execution time.

® Requires procedure code to be relocatable

® Automatically picks up new library versions and avoids linking all referenced
libraries/routines

Computer Architecture 2019/2020 #2 : Program Execution

Dynamic Linking

With dynamic linking, a routine is loaded only when it is needed:
® Allroutines are kept on disk in a relocatable load format
® [nitially, the main routine is loaded into memory and executed

®* When a routine calls another routine, the calling routine first checks to see
whether the other routine has been loaded and, if not, the relocatable linking
loader is called to load the desired routine into memory

® Astubisincluded in the binary program for each library routine reference that
indicates how to locate the appropriate library routine and load it

Computer Architecture 2019/2020 #2 : Program Execution

Dynamic Linking

Text Text
Jal .—‘l | Jo | .——I
i L] w LH W
Indirection table Data | \A Data
- ® —
Stub: loads routine ID Text
and jumps to linker/loader | . ®
Linker/loader code L Text
Dynamic linker/loader
Remap DLL routine
| e
DLL COde Data/Text Text
DLL routine - DLL routine
ir | @ ir O

a. First call to DLL routine b. Subsequent calls to DLL routine

Computer Architecture 2019/2020

#2 : Program Execution

Dynamic Linking

Dynamic linking allows for a better memory-space utilization

* Although the total program size may be large, the portion that is used (and
hence loaded) may be much smaller

* Particularly useful for system libraries (without this facility, each program must
include a copy of the library in the executable image) and when large amounts
of code handle infrequently occurring cases (such as error routines)

® Processes that use the same library execute only one copy of the library code

Computer Architecture 2019/2020 #2 : Program Execution

