# Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2013 (TAN1301)

New Zealand Fisheries Assessment Report 2014/02

D. W. Stevens

R. L. O'Driscoll

J. Oeffner

S. L. Ballara

P. L. Horn

ISSN 1179-5352 (online) ISBN 978-0-478-42336-5 (online)

January 2014



Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <a href="mailto:brand@mpi.govt.nz">brand@mpi.govt.nz</a>
Telephone: 0800 00 83 33
Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at:

http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports

© Crown Copyright - Ministry for Primary Industries

## **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY                                         | 1    |
|-----------------------------------------------------------|------|
|                                                           |      |
| 1. INTRODUCTION                                           | 7    |
| 1.1 Project objectives                                    |      |
| 1.11 Tojout objectivos                                    | 5    |
|                                                           |      |
| 2. METHODS                                                |      |
| 2.1 Survey area and design                                |      |
| 2.2 Vessel and gear specifications                        |      |
| 2.3 Trawling procedure                                    |      |
| 2.4 Fine-mesh midwater trawling                           |      |
| 2.5 Acoustic data collection                              |      |
| 2.6 Hydrology                                             |      |
| 2.7 Catch and biological sampling                         |      |
| 2.8 Estimation of relative biomass and length frequencies |      |
| 2.9 Estimation of numbers at age                          |      |
| 2.10 Acoustic data analysis                               |      |
| 2.10.1 Comparison of acoustics with bottom trawl catches  |      |
| 2.10.2 Time-series of relative mesopelagic fish abundance | C    |
|                                                           |      |
| 3. RESULTS                                                | 7    |
| 3.1 2013 survey coverage                                  |      |
| 3.2 Gear performance                                      |      |
| 3.3 Hydrology                                             | 8    |
| 3.4 Catch composition                                     |      |
| 3.5 Relative biomass estimates                            |      |
| 3.5.1 Core strata (200–800 m)                             |      |
| 3.5.2 Deep strata (800–1300 m)                            |      |
| 3.6 Catch distribution                                    |      |
| 3.7 Biological data                                       |      |
| 3.7.1 Species sampled                                     | . 10 |
| 3.7.2 Length frequencies and age distributions            |      |
| 3.7.3 Reproductive status                                 |      |
| 3.8 Acoustic data quality                                 |      |
| 3.8.1 Description of acoustic mark types                  |      |
| 3.8.2 Comparison of acoustics with bottom trawl catches   |      |
| 3.8.3 Time-series of relative mesopelagic fish abundance  | . 12 |
|                                                           |      |
| 4. CONCLUSIONS                                            | . 13 |
|                                                           |      |
|                                                           |      |
| 5. ACKNOWLEDGMENTS                                        | . 14 |
|                                                           |      |
| 6. REFERENCES                                             | . 14 |

#### **EXECUTIVE SUMMARY**

Stevens, D.W.; O'Driscoll, R.L.; Oeffner, J.; Ballara, S.L.; Horn, P.L. (2014). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2013 (TAN1301).

## New Zealand Fisheries Assessment Report 2014/02. 110 p.

The twenty-second trawl survey in a time series to estimate the relative biomass of hoki and other middle depth species on the Chatham Rise was carried out from 2 to 26 January 2013. A random stratified sampling design was used, and 123 bottom trawls were successfully completed. These comprised 89 core (200–800 m) phase one biomass tows, 2 core phase two tows, and 32 deep (800–1300 m) tows.

Estimated relative biomass of all hoki in core strata was 124 112 t (CV 15.3%), an increase of 42% from January 2012. This increase was largely driven by the biomass estimate for 1+ year old hoki of 50 943 t, the highest in the time series for this age class of fish. The relative biomass of recruited hoki (ages 3+ years and older) was the highest since 1998. The relative biomass of hake in core strata increased by 38% to 1793 t (CV 15.3%) in 2013, but this estimate was low compared to those from the early 1990s. The relative biomass of ling was 8714 t (CV 10.1%), 7.6% higher than in January 2012, but the time-series for ling shows no overall trend.

While the 2011 hoki year-class at age 1+ was estimated to be the strongest in the trawl time series, the 2010 year-class at age 2+ was estimated to be the weakest in the time series. The age frequency distribution for hake was broad, with most fish aged between 3 and 12 years. The age distribution for ling was also broad, with most fish aged between 3 and 19 years.

Acoustic data were also collected during the trawl survey. The total acoustic backscatter in 2013 was similar to that recorded in 2012, but the proportion of backscatter attributed to mesopelagic fish was lower and the index of mesopelagic fish abundance on the Chatham Rise decreased by 18%. Hoki liver condition was positively correlated with indices of mesopelagic fish scaled by hoki abundance ("food per fish") from 2004–13. As in previous surveys, there was a positive correlation between acoustic backscatter from bottom marks and trawl catch rates in 2013.

#### 1. INTRODUCTION

In January 2013, the twenty-second in a time series of annual random trawl surveys on the Chatham Rise was completed. This and all previous surveys in the series were carried out from RV *Tangaroa* and form the most comprehensive time series of relative species abundance at water depths of 200 to 800 m in New Zealand's 200-mile Exclusive Economic Zone. Previous surveys in this time series were documented by Horn (1994a, 1994b), Schofield & Horn (1994), Schofield & Livingston (1995, 1996, 1997), Bagley & Hurst (1998), Bagley & Livingston (2000), Stevens et al. (2001, 2002, 2008, 2009a, 2009b, 2011, 2012, 2013), Stevens & Livingston (2003), Livingston et al. (2004), Livingston & Stevens (2005), and Stevens & O'Driscoll (2006, 2007). Trends in relative biomass, and the spatial and depth distributions of 142 species or species groups, were reviewed for the surveys from 1992–2010 by O'Driscoll et al. (2011b).

The main aim of the Chatham Rise surveys is to provide relative biomass estimates of adult and juvenile hoki. Although the TACC for hoki (total of 130 000 t in 2011–12) was still lower than the high value in earlier years (250 000 t in 2000–01), hoki is still New Zealand's largest finfish fishery. Hoki is assessed as two stocks, western and eastern. The hypothesis is that juveniles from both stocks mix on the Chatham Rise and recruit to their respective stocks as they approach sexual maturity. The Chatham Rise is also thought to be the principal residence area for the hoki that spawn in Cook Strait and off the east coast South Island in winter (eastern stock). Annual catches of hoki on the Chatham Rise peaked at over 75 000 t in 1997–98 and 1998–99 but decreased to 31 000 to 34 000 t from 2003–04 to 2005–06. The Chatham Rise catch has increased again over the past seven years. The catch from the Chatham Rise in 2011–12 was 39 200 t, making this the second largest hoki fishery in the EEZ (behind the west coast South Island), contributing about 30% of the total New Zealand hoki catch (Ballara & O'Driscoll in press).

The hoki fishery is strongly recruitment driven and therefore affected by large fluctuations in stock size. To manage the fishery and minimise potential risks, it is important to have some predictive ability concerning recruitment into the fishery. Extensive sampling throughout the EEZ has shown that the Chatham Rise is the main nursery ground for hoki aged 2 to 4 years. Abundance estimation of 2+ hoki on the Chatham Rise provides the best index of potential recruitment to the adult fisheries.

Other middle depth species are also monitored by this survey time series (O'Driscoll et al. 2011b). These include important commercial species such as hake and ling, as well as a wide range of non-commercial fish and invertebrate species. For most of these species, the trawl survey is the only fisheries-independent estimate of abundance on the Chatham Rise, and the survey time-series fulfils an important "ecosystem monitoring" role (e.g., Tuck et al. 2009), as well as providing inputs into single-species stock assessment.

Since 2010, the Chatham Rise survey has been extended into deeper waters (to 1300 m) to provide fishery independent relative biomass indices for pre-recruit (20–30 cm) and dispersed adult orange roughy, as well as providing improved information for species like ribaldo and pale ghost shark, which are known to occur deeper than the core survey depth boundary (800 m).

Acoustic data were recorded during tows and while steaming between stations on all trawl surveys on the Chatham Rise since 1995, except for in 2004. Data from previous surveys were analysed to describe mark types (Cordue et al. 1998, Bull 2000, O'Driscoll 2001a, Livingston et al. 2004, Stevens & O'Driscoll 2006, 2007, Stevens et al. 2008, 2009a, 2009b, 2011, 2012, 2013), to provide estimates of the ratio of acoustic vulnerability to trawl catchability for hoki and other species (O'Driscoll 2002, 2003), and to estimate abundance of mesopelagic fish (McClatchie & Dunford 2003, McClatchie et al. 2005, O'Driscoll et al. 2009, 2011a, Stevens et al. 2009b, 2011, 2012, 2013). Acoustic data also provide qualitative information on the amount of backscatter that is not available to the bottom trawl, either through being off the bottom, or over areas of foul ground.

Other work carried out concurrently with the trawl survey included sampling and preservation of unidentified organisms caught in the trawl.

The continuation of the time series of trawl surveys on the Chatham Rise is a high priority to provide information required to update the assessment of hoki and other middle depth species. In the 10-year Deepwater Research Programme, the survey is scheduled to be carried out in eight of the ten years from 2011–2020.

## 1.1 Project objectives

The trawl survey was carried out under contract to the Ministry for Primary Industries (project HOK2010/05B).

The specific objectives for the project were as follows.

- 1. To continue the time series of relative abundance indices of recruited hoki (eastern stock) and other middle depth species on the Chatham Rise using trawl surveys and to determine the relative year class strengths of juvenile hoki (1, 2 and 3 year olds), with target CV of 20 % for the number of 2 year olds.
- 2. To collect data for determining the population age and size structure and reproductive biology of hoki, hake and ling.
- 3. To collect acoustic and related data during the trawl survey.
- 4. To sample deeper strata for orange roughy using a random trawl survey design.
- 5. To collect and preserve specimens of unidentified organisms taken during the trawl survey.

#### 2. METHODS

## 2.1 Survey area and design

As in previous years, the survey followed a two-phase random design (after Francis 1984). The main survey area of 200–800 m depth (Figure 1) was divided into 27 strata. Twenty five of these strata are the same as those used in 2003–11 (Livingston et al. 2004, Livingston & Stevens 2005, Stevens & O'Driscoll 2006, 2007, Stevens et al. 2008, 2009a, 2009b, 2011, 2012, 2013). In 2012, stratum 7 was divided into strata 7A and 7B at 175° 30'E to more precisely assess the biomass of hake which appeared to be spawning northeast of Mernoo Bank (in Stratum 7B). Station allocation for phase 1 was determined from simulations based on catch rates from all previous Chatham Rise trawl surveys (1992–2012), using the 'allocate' procedure of Bull et al. (2000) as modified by Francis (2006). This procedure estimates the optimal number of stations to be allocated in each stratum to achieve the Ministry for Primary Industries target CV of 20% for 2+ hoki, and CVs of 15% for total hoki and 20% for hake. The initial allocation of 89 core stations in phase 1 (Table 1) was similar to that used in the 2012 survey, when the CV for 2+ hoki was 16.6% (Stevens et al. 2013). Phase 2 stations for core strata were allocated at sea, largely to improve the CV for 2+ hoki and total hoki biomass.

As in the 2010–12 surveys, the survey area included deep strata from 800–1300 m on the north and east Chatham Rise. Deeper areas on the southwest Chatham Rise, surveyed in 2010 (Stevens et al. 2011), were not included in the 2011–13 surveys due to limited time and large steaming distances. The station allocation for the deep strata was determined based on catch rates of orange roughy from the 2010–12 surveys, using the 'allocate' programme (Francis 2006) to estimate the optimal number of stations per stratum to achieve a target CV of 15% for both total orange roughy and orange roughy less than 30 cm SL. There was no allowance for phase 2 trawling in deeper strata.

## 2.2 Vessel and gear specifications

*Tangaroa* is a purpose-built, research stern trawler of 70 m overall length, a beam of 14 m, 3000 kW (4000 hp) of power, and a gross tonnage of 2282 t.

The bottom trawl was the same as that used on previous surveys of middle depth species by *Tangaroa*. The net is an eight-seam hoki bottom trawl with 100 m sweeps, 50 m bridles, 12 m backstrops, 58.8 m groundrope, 45 m headline, and 60 mm codend mesh (see Hurst & Bagley (1994) for net plan and rigging details). The trawl doors were Super Vee type with an area of 6.1 m<sup>2</sup>. Measurements of doorspread (from a Scanmar 400 system) and headline height (from a Furuno net monitor) were recorded every five minutes during each tow and average values calculated.

## 2.3 Trawling procedure

Trawling followed the standardised procedures described by Hurst et al. (1992). Station positions were selected randomly before the voyage using the Random Stations Generation Program (Version 1.6) developed at NIWA. To maximise the amount of time spent trawling in the deep strata (800–1300 m) at night, the time spent searching for suitable core (200–800 m) tows at night was reduced significantly by using the nearest known successful tow position to the random station. Care had to be taken to ensure that the survey tows were at least 3 n. miles apart. For deep strata, there was often insufficient bathymetric data and few known tow positions, so these tows followed the standard survey methodology described by Hurst et al. (1992). If a station was found to be on foul ground, a search was made for suitable ground within 3 n. miles of the station position. If no suitable ground could be found, the station was abandoned and another random position was substituted. Core biomass tows were carried out during daylight hours (as defined by Hurst et al. (1992)), with all trawling between 0515 h and 1834 h NZST.

At each station the trawl was towed for 3 n. miles at a speed over the ground of 3.5 knots. If foul ground was encountered, or the tow hauled early due to reducing daylight, the tow was included as valid only if at least 2 n. miles was covered. If time ran short at the end of the day and it was not possible to reach the last station, the vessel headed towards the next station and the trawl gear was shot in time to ensure completion of the tow by sunset, as long as 50% of the steaming distance to the next station was covered.

Towing speed and gear configuration were maintained as constant as possible during the survey, following the guidelines given by Hurst et al. (1992). The average speed over the ground was calculated from readings taken every five minutes during the tow.

#### 2.4 Fine-mesh midwater trawling

Where time permitted at night, we also aimed to conduct additional fine-meshed midwater trawls to obtain mesopelagic specimens for trophic and taxonomic studies. The midwater mesopelagic trawl had a 10 mm cod-end mesh and a headline height of 12–15 m, with a door spread of approximately 140–160 m. The trawl was towed obliquely from within 50 m of the seabed to the surface at an ascent rate of about 20 m per minute and vessel speed of 3.0 knots.

#### 2.5 Acoustic data collection

Acoustic data were collected during trawling and while steaming between trawl stations (both day and night) with the *Tangaroa* multi-frequency (18, 38, 70, 120, and 200 kHz) Simrad EK60 echosounders with hull-mounted transducers. All frequencies were regularly calibrated following standard procedures (Foote et al. 1987), with the most recent calibration on 21 July 2012 Tasman Bay. The system and calibration parameters are given in Appendix 1 of O'Driscoll et al. (in press).

#### 2.6 Hydrology

Temperature and salinity data were collected using a calibrated Seabird SM-37 Microcat CTD datalogger mounted on the headline of the trawl. Data were collected at 5 s intervals throughout the trawl, providing vertical profiles. Surface values were read off the vertical profile at the beginning of each tow at a depth of about 5 m, which corresponded to the depth of the hull temperature sensor used in previous surveys. Bottom values were from about 7.0 m above the seabed (i.e., the height of the headline).

## 2.7 Catch and biological sampling

At each station all items in the catch were sorted into species and weighed on Marel motion-compensating electronic scales accurate to about 0.04 kg. Where possible, fish, squid, and crustaceans were identified to species and other benthic fauna to species or family. Unidentified organisms were collected and frozen at sea. Specimens were stored at NIWA for later identification.

An approximately random sample of up to 200 individuals of each commercial, and some common non-commercial, species from every successful tow was measured and the sex determined. More detailed biological data were also collected on a subset of species and included fish weight, sex, gonad stage, and gonad weight. Otoliths were taken from hake, hoki, and ling for age determination. Additional data on liver condition were also collected from a subsample of 20 hoki by recording gutted and liver weights.

## 2.8 Estimation of relative biomass and length frequencies

Doorspread biomass was estimated by the swept area method of Francis (1981, 1989) using the formulae in Vignaux (1994) as implemented in NIWA custom software SurvCalc (Francis 2009). Biomass and coefficient of variation (CV) were calculated by stratum for 1+, 2+, and 3++ (a plus group of hoki aged 3 years or more) age classes of hoki, and for 10 other key species: hake, ling, dark ghost shark, pale ghost shark, giant stargazer, lookdown dory, sea perch, silver warehou, spiny dogfish, and white warehou. These species were selected because they are commercially important, and the trawl survey samples the main part of their depth distribution (O'Driscoll et al. 2011b). Doorspread swept-area biomass and CVs were also calculated by stratum for a subset of 8 deepwater species: orange roughy (fish less than 20 cm, fish less than 30 cm, and all fish), black oreo, smooth oreo, spiky oreo, ribaldo, shovelnosed dogfish, Baxter's dogfish, and longnosed velvet dogfish.

The catchability coefficient (an estimate of the proportion of fish in the path of the net which are caught) is the product of vulnerability, vertical availability, and areal availability. These factors were set at 1 for the analysis, the assumptions being that fish were randomly distributed over the bottom, that no fish were present above the height of the headline, and that all fish within the path of the trawl doors were caught.

Scaled length frequencies were calculated for the major species with SurvCalc, using length-weight data from this survey.

## 2.9 Estimation of numbers at age

Hoki, hake, and ling otoliths were prepared and aged using validated ageing methods (hoki, Horn & Sullivan (1996) as modified by Cordue et al. (2000); hake, Horn (1997); ling, Horn (1993)).

Subsamples of 645 hoki otoliths and 611 ling otoliths were selected from those collected during the trawl survey. Subsamples were obtained by randomly selecting otoliths from 1 cm length bins covering the bulk of the catch and then systematically selecting additional otoliths to ensure that the tails of the length distributions were represented. The numbers aged approximated the sample size necessary to produce mean weighted CVs of less than 20% for hoki and 30% for ling across all age classes. All 185 hake otoliths collected were prepared.

Numbers-at-age were calculated from observed length frequencies and age-length keys using customised NIWA catch-at-age software (Bull & Dunn 2002). For hoki, this software also applied the "consistency scoring" method of Francis (2001), which uses otolith ring radii measurements to improve the consistency of age estimation.

# 2.10 Acoustic data analysis

Acoustic analysis generally followed the methods applied to recent Chatham Rise trawl surveys (e.g., Stevens & O'Driscoll 2007, Stevens et al. 2008, 2009a, 2009b, 2011, 2012, 2013) and generalised by O'Driscoll et al. (2011a).

All acoustic recordings made during the trawl survey were visually examined. Marks were classified into seven main categories based on the relative depth of the mark in the water column, mark orientation (surface- or bottom-referenced), mark structure (layers or schools) and the relative strength of the mark on the five frequencies. Most of the analyses in this report are based on the 38 kHz data as this frequency was the only one available (along with uncalibrated 12 kHz data) for all previous surveys that used the old CREST acoustic system (Coombs et al. 2003). We did not attempt to do a full multifrequency analysis of mark types for this report.

Descriptive statistics were produced on the frequency of occurrence of the seven different mark types: surface layers, pelagic layers, pelagic schools, pelagic clouds, bottom layers, bottom clouds, and bottom schools. Descriptions of the marks types are provided in previous reports (e.g., Stevens et al. 2008, 2009a, 2009b, 2011), and an example multifrequency echogram is shown in Stevens et al. (2009b). Other example (38 kHz) echograms are in Cordue et al. (1998), Bull (2000), O'Driscoll (2001a, 2001b), and Stevens et al. (2008, 2011).

As part of the qualitative description, the quality of acoustic data recordings was subjectively classified as 'good', 'marginal', or 'poor' (see appendix 2 of O'Driscoll & Bagley (2004) for examples). Only good or marginal quality recordings were considered suitable for quantitative analysis.

## 2.10.1 Comparison of acoustics with bottom trawl catches

A quantitative analysis was carried out on daytime trawl and night steam recordings using custom Echo Sounder Package (ESP2) software (McNeill 2001). Estimates of the mean acoustic backscatter per km<sup>2</sup> from bottom referenced marks (bottom layers, clouds, and schools) were calculated for each recording based on integration heights of 10 m, 50 m, and 100 m above the detected acoustic bottom. Total acoustic backscatter was also integrated throughout the water column in 50 m depth bins. Acoustic density estimates (backscatter per km<sup>2</sup>) from bottom-referenced marks were compared with trawl catch rates (kg per km<sup>2</sup>). No attempt was made to scale acoustic estimates by target strength, correct for differences in catchability, or carry out species decomposition (O'Driscoll 2002, 2003).

## 2.10.2 Time-series of relative mesopelagic fish abundance

O'Driscoll et al. (2009, 2011a) developed a time series of relative abundance estimates for mesopelagic fish on the Chatham Rise based on that component of the acoustic backscatter that migrates into the upper 200 m of the water column at night (nyctoepipelagic backscatter). Because some of the mesopelagic fish migrate very close to the surface at night, they move into the surface 'deadzone' (shallower than 14 m) where they are not detectable by the vessel's downward looking hull-mounted transducer. Consequently, there is a substantial negative bias in night-time acoustic estimates. To correct for this bias, O'Driscoll et al. (2009) used night estimates of demersal backscatter (which remains deeper than 200 m at night) to correct daytime estimates of total backscatter.

We updated the mesopelagic time series to include data from 2013. The methods were the same as those used by O'Driscoll et al. (2011a) and Stevens et al. (2013). Day estimates of total backscatter

were calculated using total mean area backscattering coefficients estimated from each trawl recording. Night estimates of demersal backscatter were based on data recorded while steaming between 2000 h and 0500 h NZST. Acoustic data were stratified into four broad sub-areas (O'Driscoll et al. 2011a). Stratum boundaries were:

```
Northwest – north of 43^{\circ} 30'S and west of 177^{\circ} 00'E;
Northeast – north of 43^{\circ} 30'S and east of 177^{\circ} 00'E;
Southwest – south of 43^{\circ} 30'S and west of 177^{\circ} 00'E;
Southeast – south of 43^{\circ} 30'S and east of 177^{\circ} 00'E.
```

The amount of mesopelagic backscatter at each day trawl station was estimated by multiplying the total backscatter observed at the station by the estimated proportion of night-time backscatter in the same sub-area that was observed in the upper 200 m corrected for the estimated proportion in the surface deadzone:

$$sa(meso)_i = p(meso)_s * sa(all)_i$$

where  $sa(meso)_i$  is the estimated mesopelagic backscatter at station i,  $sa(all)_i$  is the observed total backscatter at station i, and  $p(meso)_s$  is the estimated proportion of mesopelagic backscatter in the same stratum s as station i.  $p(meso)_s$  was calculated from the observed proportion of night-time backscatter observed in the upper 200 m in stratum s ( $p(200)_s$ ) and the estimated proportion of the total backscatter in the surface deadzone,  $p_{sz}$ .  $p_{sz}$  was estimated as 0.2 by O'Driscoll et al (2009) and was assumed to be the same for all years and strata:

$$p(meso)_s = p_{sz} + p(200)_s * (1 - p_{sz})$$

#### 3. RESULTS

## 3.1 2013 survey coverage

The trawl survey was successfully completed. The deepwater trawling objective meant that trawling was carried out both day (core and some deep tows) and night (deep tows only). The weather during the survey was generally good, although 41.5 hours were lost due to rough weather, and a further 7 hours were lost for net repairs.

In total, 123 successful biomass tows were completed, comprising 89 core (200–800 m) phase 1 tows, 2 core phase 2 tows, and 32 deep (800–1300 m) phase 1 tows (Tables 1 and 2, Figure 2, Appendix 1). Ten tows were excluded from relative biomass calculations. These included a single core tow in stratum 3 which came fast and nine deep tows: 4 came fast, 4 had excessive headline heights, and one tow was aborted due to rough bottom. Due to the number of unsuccessful deep tows and rough weather only 4 of 5 planned tows were completed in each of strata 23 and 25. An additional 7 fine-meshed mesopelagic tows were carried out at night. Station details for all tows are given in Appendix 1.

Core station density ranged from 1:288 km² in stratum 17 (200–400 m, Veryan Bank) to 1:3722 km² in stratum 4 (600–800 m, south Chatham Rise). Deepwater station density ranged from 1:416 km² in stratum 21a (800–1000 m, NE Chatham Rise) to 1:3155 km² in stratum 28 (1000–1300 m, SE Chatham Rise). Mean station density was 1:1 477 km² (see Table 1).

#### 3.2 Gear performance

Gear parameters are summarised in Table 3. A headline height value was obtained for all 123 successful tows, but doorspread readings were not available for 7 tows. Mean headline heights by 200 m depth intervals ranged from 6.5 to 7.1 m, averaged 6.7 m, and were consistent with previous surveys and within

the optimal range (Hurst et al. 1992) (Table 3). Mean doorspread measurements by 200 m depth intervals ranged from 115.1 to 125.9 m, and averaged 121.8 m.

## 3.3 Hydrology

The surface temperatures (Figure 3, top panel) ranged from 13.9 to 17.9  $^{\circ}$ C. Bottom temperatures ranged from 3.1 to 10.7  $^{\circ}$ C (Figure 3, bottom panel).

As in previous years, higher surface temperatures were associated with subtropical water to the north. Lower temperatures were associated with Sub-Antarctic water to the south. Higher bottom temperatures were generally associated with shallower depths to the north of the Chatham Islands and on and to the east of the Mernoo Bank.

## 3.4 Catch composition

The total catch from all 123 valid biomass stations was 135.2 t, of which 51.4 t (38.0%) was hoki, 3.7 t (2.7%) was ling, and 1.0 t (0.8%) was hake (Table 4). Of the 337 species or species groups identified at sea, 166 were teleosts, 34 were elasmobranchs, 2 were agnathans, 31 were crustaceans, and 19 were cephalopods. The remainder consisted of assorted benthic and pelagic invertebrates. A full list of species caught in biomass tows, and the number of stations at which they occurred, is given in Appendix 2. Of interest was the capture of the third known specimen of a new pointy nosed toadfish species (*Ebinania* sp.).

A full list of species caught in fine meshed midwater tows, and the number of stations at which they occurred, is given in Appendix 3.

Twenty benthic invertebrate taxa were formally identified after the voyage (Appendix 4).

## 3.5 Relative biomass estimates

## 3.5.1 Core strata (200-800 m)

Relative biomass in core strata was estimated for 45 species (Table 4). The CVs achieved for hoki, hake, and ling from core strata were 15.3%, 15.3%, and 10.1% respectively. The CV for 2+ hoki (2010 year class) was 43.6%, well above the target CV of 20%, however there were very few 2+ hoki captured. High CVs (over 30%) generally occurred when species were not well sampled by the gear. For example, barracouta, and slender mackerel are not strictly demersal and exhibit strong schooling behaviour. Others, such as hapuku, bluenose, tarakihi, and rough skate have high CVs as they are mainly distributed outside the core survey depth range (O'Driscoll et al. 2011b).

The combined relative biomass for the top 31 species in the core strata that are tracked annually (Livingston et al. 2002) was higher than in 2011–12, similar to 2009–2010, and among the higher estimates for the time series (Figure 4, top panel). As in previous years, hoki was the most abundant species caught (Table 4, Figure 4, lower panel), with a similar relative biomass to 2012. The next most abundant QMS species were alfonsino, dark ghost shark, black oreo, ling, sea perch, lookdown dory, silver warehou, spiny dogfish, pale ghost shark, spiky oreo, giant stargazer, and white warehou, each with an estimated relative biomass of over 2000 t (Table 4). The most abundant non-QMS species were javelinfish, big-eye rattail, shovelnose dogfish, oblique banded rattail, Oliver's rattail, banded bellowsfish, Baxter's dogfish, and longnose spookfish (Table 4).

Estimated relative biomass of hoki in the core strata was 124 112 t, 42% higher than January 2012 (Table 5, Figure 5). This was largely driven by a biomass estimate for 1+ hoki of 50 943 t, the highest in the time

series. The relative biomass of 3++ (recuited) hoki was also 29% higher than in 2012, and the highest since 1998. The biomass of 2+ hoki (2010 year-class) was only 1034 t, the lowest in the time series (Table 6).

The relative biomass of hake in core strata was 1793 t, 38.8% higher than 2012, but was still low compared to the early 1990s (see Table 5, Figure 5). Catches were higher than average in the recently created stratum 7b to the northeast of Mernoo Bank, where high catches of hake were observed in 2009 and 2010.

The relative biomass of ling was 8714 t, 7.6% higher than in January 2012. The time series for ling shows no overall trend (Figure 5).

The relative biomass estimates for giant stargazer, lookdown dory, sea perch, and spiny dogfish were higher than 2012 estimates, while the estimates for dark ghost shark, pale ghost shark, and silver warehou were lower (Figure 5). The relative biomass estimate for white warehou was about the same as those in 2011–12 (Figure 5).

## 3.5.2 Deep strata (800-1300 m)

Relative biomass and CVs in deep strata were estimated for 18 of 45 core strata species (Table 4). The estimated relative biomass of orange roughy in deep strata was 2776 t (CV 32.4%), which was 24.4% of the total biomass for core strata species in deep strata (Table 4). The relative biomass of orange roughy in all strata in 2013 was 2779 t, which was 46% lower than the estimate of 5205 t in 2012.

The estimated relative biomass of smooth oreo in deep strata was 1532 t, 9.1% of the total biomass for core strata species in deep strata (Table 4), but precision was poor with a CV of 84.9%. Only 6.8% of the relative biomass of spiky oreo in all strata and 0.05% of the relative biomass of black oreo in all strata were estimated to occur in the deep strata (Table 4). However, in the 2010 survey, 47% of the relative biomass of black oreo was from stratum 27 on the southeast Rise (Stevens et al. 2011), an area which has not been included in the survey since then. Deepwater sharks were abundant in deep strata, with 29%, and 40% of the total survey biomass of shovelnose dogfish and Baxter's dogfish occurring in deep strata.

The deep strata contained 4.3% of total survey hake biomass, 1.4% of the total survey hoki biomass, and 0.5% of total survey ling biomass. This indicates that the core survey strata is likely to have sampled most of the hoki and ling biomass available to the trawl survey method on the Chatham Rise, but missed some hake (Table 4).

#### 3.6 Catch distribution

#### Hoki

In the 2013 survey, hoki were caught at 89 of 91 core biomass stations, with the highest catch rates mainly at 400–600 m depths (Table 7a, Figure 6). The highest individual catch rate of hoki in 2013 occurred on the southwest Chatham Rise in stratum 16 close to the Mernoo Bank, and comprised 1+ and recruited hoki (3+ and older) (Figure 6). Other high individual catch rates of hoki were around the Mernoo (strata 18 and 7b), Reserve (strata 19 and 20), and Veryan Banks (stratum 17). As in previous surveys, 1+ hoki were largely confined to the Mernoo, Veryan, and Reserve Banks (Figure 6a). Although relatively uncommon in 2013, 2+ hoki were found over much of the Rise at 200–600 m depths (Figure 6b). The distribution of 3++ hoki was similar to that of 2+ fish but extended into deeper water (Figure 6c).

#### Hake

Catches of hake were consistently low throughout much of the survey area. The highest catch rates were in stratum 7b on the southwest Chatham Rise, where high catches of hake were observed in 2009 and 2010, and on the northeast Chatham Rise in strata 10a, 11a, and 13 (Figure 7).

#### Ling

As in previous years, catches of ling were evenly distributed throughout most strata in the survey area (Figure 8). The highest catch rates were mainly on the north Chatham Rise in 400–600 m (strata 7B, 11B, 11D), although the largest catch rate was on the Reserve Bank (stratum 20) in 370–390 m. Ling distribution was consistent, and catch rates relatively stable, over the time series (Figure 8).

## Other species

As with previous surveys, lookdown dory, sea perch and spiny dogfish were widely distributed throughout the survey area at 200–600 m depths, although the largest catch rates were taken on the east Rise (Figure 9). Dark ghost shark was mainly caught at 200–400 m depths, and was particularly abundant on the Veryan Bank; while pale ghost shark was mostly caught in deeper water at 400–800 m depth, with higher catch rates to the west. Giant stargazer was mainly caught in shallower strata, with the largest catch taken around the Mernoo Bank (stratum 18). Silver warehou and white warehou were patchily distributed at depths of 200–600 m, with the largest catches in the west (Figure 9).

Orange roughy was widespread on the north and east Rise at 800–1300 m depths, with the largest catch of 325 kg taken on the northeast Rise in stratum 21b (Figure 9). Black oreo, predominantly juveniles, were almost entirely caught on the southwest Rise at 600–800 m depths, in strata 4 and 6 (Table 7b), while smooth oreo was mainly caught in stratum 6 and on the north Rise at 1000–1300 m depths (strata 23). Spiky oreo was more widespread and most abundant on the northeast rise at 500–800 m (strata 2b, 11d, 10a, and 12) (Table 7b, Figure 9).

## 3.7 Biological data

## 3.7.1 Species sampled

The number of species and the number of samples for which length and length-weight data were collected are given in Table 8.

#### 3.7.2 Length frequencies and age distributions

Length-weight relationships used in the SurvCalc program to scale length frequencies and calculate relative biomass and catch rates are given in Table 9.

#### Hoki

Length and age frequencies were dominated by 1+ year (less than 47 cm) fish (Figures 10 and 11). There were very few 2+ (47–55 cm) fish and few longer than 80 cm (Figure 10) or older than 7 years (Figure 11). The sex ratio was equal (ratio of 1.04 female: 1 male).

#### Hake

Scaled length frequencies and calculated numbers at age (Figures 12 and 13) were relatively broad, with most male fish aged between 3 and 10 years and female fish between 3 and 12 years. Since 2004 a cohort from the 2002 year-class has been tracked by the survey. This cohort was 11+ in 2013, but was not abundant: possibly indicating a reduction in the proportion of this year-class, ageing error, or that these fish were not well sampled in 2013. Females were more abundant than males (2.24 female: 1 male).

## Ling

Scaled length frequencies and calculated numbers at age (Figures 14 and 15) indicated a wide range of ages, with most fish aged between 3 and 19. There is evidence of a period of good recruitment from 1999–2006 (Figure 15). Females were slightly less abundant than males (0.90 female: 1 male).

## Other species

Length frequency distributions for key core and deepwater commercial species are shown in Figure 16. Clear modes are apparent in the size distribution of white warehou, which may correspond to cohorts. Length frequencies of lookdown dory, giant stargazer, spiny dogfish, and dark and pale ghost sharks

indicate that females grow larger than males. Length frequency distributions of males and females of sea perch, silver warehou, orange roughy, black oreo, smooth oreo, and spiky oreo are similar. The length frequency distribution for orange roughy was broad, with a mode at 29–36 cm, but included fish as small as 7 cm (Figure 16). As with previous years, the catch of spiny dogfish was dominated by females (3.8 female: 1 male). Sex ratios were about even for most other species (Figure 16).

## 3.7.3 Reproductive status

Gonad stages of hake, hoki, ling, and a number of other species are summarised in Table 10. Almost all hoki were recorded as either resting or immature. About 21% of male ling were maturing or ripe, but few females were showing signs of reproductive activity. About 40% of male hake were ripe, running ripe, or partially spent, but most females were immature or resting (52%) or maturing (37%) (Table 10). Most other species for which reproductive state was recorded showed no sign of reproductive activity, except some deepwater sharks (Table 10).

## 3.8 Acoustic data quality

Over 71 GB of acoustic data were collected with the multi-frequency (18, 38, 70, 120, and 200 kHz) hull-mounted EK60 ecosounder systems during the trawl survey. Weather and sea conditions during the survey was good to average and 76% of files were suitable for quantitative analysis. Only 18 of the 107 daytime trawl files were considered too poor to be analysed quantitatively.

Acoustic data showed some electrical background noise in deeper water (Figure 17) which did not exist in previous years. A noise recording was performed in deep water (980–1200 m bottom depth) on 12 January 2013. The Simrad EK60 transducers were switched into 'passive mode' to measure the ambient background noise over the whole water column. Data from the entire echogram were integrated in 50 m vertical bins. Noise results were plotted against the average acoustic backscatter for the day and night to show the contribution to the overall acoustic backscatter (Figure 18). The contribution of the noise was only marginal, with the main affect at depths greater than 1000 m, so no noise correction was applied in our analyses. The source of the electrical noise was subsequently diagnosed as a fault with the shielding of the transducer cable and was rectified.

Expanding symbol plots for the distribution of total acoustic backscatter from good and adequate quality recordings observed during daytime trawls and night transects are shown in Figure 19. As noted by O'Driscoll et al. (2011a), there was a consistent spatial pattern in total backscatter on the Chatham Rise, with higher backscatter in the west.

## 3.8.1 Description of acoustic mark types

The frequency of occurrence of each of the seven mark categories is given in Table 11. Often several types of mark were present in the same echogram. The occurrence of acoustic mark types on the Chatham Rise in 2013 was different to that observed in previous surveys. Notably, the percentage of daytime surface layers halved whereas percentages of pelagic and bottom cloud increased by a third (Table 11). Some of these changes might be explained by differences in subjective classification between analysts (Johannes Oeffner in 2013 and Richard O'Driscoll previously), but cross-validation checks on a subset of echograms indicated that the decline in occurrence of daytime surface layers in 2013 was real. Mesopelagic trawling on voyages funded as part of the Coasts and Oceans outcome-based-investment programme for the former Ministry of Science and Innovation in May–June 2008 and November 2011 suggest that daytime surface layers often contain euphausiids, mesopelagic fish, and gelatinous zooplankton (NIWA, unpublished data). Surface layers were observed in almost all (96%) night files (Table 11).

Pelagic layers were the most common daytime mark types in 2013 (Table 11). Midwater trawling on previous Chatham Rise surveys suggested that pelagic layers contained mesopelagic fish species, such as pearlsides (*Maurolicus australis*) and myctophids (McClatchie & Dunford 2003, Stevens et al. 2009a). These mesopelagic species vertically migrate, rising in the water column and dispersing during the night, turning into pelagic clouds and merging with surface layers. Pelagic schools were observed in 34% of day trawl files, 20% of day steam files and 14% of night files (Table 11). Trawling on Coasts and Oceans voyages found that small pelagic schools were often dominated by the myctophids *Lampanyctodes hectoris* and *Symbolophorus* spp., or by pearlside *Maurolicus australis* (NIWA, unpublished data).

Bottom layers were observed in 76% of day steam files, 72% of day trawl files, and 51% of night files (Table 11). Like pelagic layers, bottom layers tended to be dispersed at night, to form bottom clouds. Bottom layers and clouds were usually associated with a mix of demersal fish species, but probably also contained mesopelagic species when they were close to the bottom (O'Driscoll 2003). There was often mixing of bottom layers and pelagic layers. Bottom-referenced schools were present in 13% of daytime trawl echograms but only in 8% of daytime steam recordings in 2013, and were most abundant at 250–450 m water depth. Bottom schools and layers 10–70 m off the bottom were sometimes associated with catches of 1+ and 2+ hoki, but also with other species such as alfonsino and silver warehou (Stevens et al. 2008, 2009a, 2009b, 2011). Strong bottom schools observed during trawl 72 in 2013 (Figure 20) were associated with a catch of 17.6 t of alfonsino.

## 3.8.2 Comparison of acoustics with bottom trawl catches

Acoustic data from 76 trawl files were integrated and compared with trawl catch rates (Table 12). Data from the other 31 daytime trawl recordings were not included in the analysis because the acoustic data were too noisy (18 files), or because the trawl was outside the 200–800 m core survey area (11 files) or were foul trawls (2 files). Average acoustic backscatter values from bottom-referenced marks and from the entire water column in 2013 were at similar levels to those observed in 2012 (Table 12).

There was a moderate positive correlation (Spearman's rank correlation, rho = 0.50, p < 0.001) between acoustic backscatter in the bottom 100 m during the day and trawl catch rates (Figure 21). This is the highest correlation since the start of the acoustic time series in 2001. In Chatham Rise surveys from 2001-11, rank correlations between trawl catch rates and acoustic density estimates ranged from 0.15 (in 2006) to 0.46 (in 2001). The correlation between acoustic backscatter and trawl catch rates (Figure 21) is not perfect (rho = 0.5) because large catches were sometimes made when there were only weak marks observed acoustically, and conversely, relatively little was caught in some trawls where dense marks were present. O'Driscoll (2003) suggested that bottom-referenced layers on the Chatham Rise may also have contained a high proportion of mesopelagic "feed" species, which contribute to the acoustic backscatter, but which were not sampled by the bottom trawl. Comparison of paired day and night acoustic recordings from the same location indicates that, on average, 35–50% of the bottom-referenced backscatter observed during the day migrated more than 50 m away from the bottom at night, suggesting that this component is not demersal fish (O'Driscoll et al. 2009). This result combined with the diverse composition of demersal species sampled by trawling, means that it is unlikely that acoustics will provide an alternative biomass estimate for hoki on the Chatham Rise.

#### 3.8.3 Time-series of relative mesopelagic fish abundance

In 2013, most acoustic backscatter was between 200 and 600 m depth during the day, and migrated into the surface 200 m at night (see Figure 18). The vertical distribution was similar to the pattern observed in 2001–10 (O'Driscoll et al. 2011a) and 2012 (Stevens et al. 2013), except that a higher proportion of backscatter occurred between 450 and 700 m at night in 2013 compared to previous surveys. An example of this night-time deep scattering layer is given in Figure 22. In 2011, there was a different daytime distribution of backscatter, with a concentration of backscatter between 150 and

350 m, no obvious peak at 350–400 m, and smaller peaks centred at around 550 and 750 m (Stevens et al. 2012).

The vertically migrating component of acoustic backscatter was assumed to be dominated by mesopelagic fish (see McClatchie and Dunford, 2003 for rationale and caveats). In 2013, between 34 and 66% of the total backscatter in each of the four sub-areas was in the upper 200 m at night and was estimated to be from vertically migrating mesopelagic fish (Table 13). These values are the lowest since the start of the time series in 2001. The lower proportion of backscatter in the upper 200 m at night in 2013 was due to the occurrence of a higher proportion of the night-time backscatter occurring in deep scattering layers from 450–700 m (see Figures 18 and 22).

Day estimates of total acoustic backscatter over the Chatham Rise were consistently higher than night estimates (Figure 23) because of the movement of fish into the surface deadzone (shallower than 14 m) at night (O'Driscoll et al. 2009). The only exception to this was in 2011, when night estimates were higher than day estimates (Figure 23). However, there was relatively little good quality acoustic data available from the southeast Chatham Rise in 2011 due to poor weather conditions (Stevens et al. 2012). Daytime backscatter in 2013 was similar to that observed in 2012. Backscatter within 50 m of the bottom during the day decreased since the start of the time series, but increased in 2012 and 2013 (Figure 23). Backscatter close to the bottom at night remained at consistently low levels throughout the time-series but increased slightly over the past four years (Figure 23).

The 'best' estimate of mesopelagic fish abundance was calculated by multiplying estimates of the total daytime backscatter by the estimated proportion of night-time backscatter in the same sub-area observed in the upper 200 m, corrected for the estimated proportion in the surface deadzone. This effectively subtracts the backscatter which was deeper than 200 m at night (i.e., the bathypelagic and demersal components) from day estimates of total backscatter (O'Driscoll et al. 2011a). The estimated acoustic indices calculated using this method are summarised in Table 14 and plotted in Figure 24 for the entire Chatham Rise survey area and for the four sub-areas. The overall mesopelagic estimate for the Chatham Rise decreased by 18% from 2012 and the 2013 estimate was the second lowest of the time series (the lowest was in 2009). The 2013 mesopelagic index increased on the northwest Chatham Rise, but decreased in the other three sub-areas (Table 14, Figure 24).

#### Hoki condition

Liver condition (defined as liver weight divided by gutted weight) on the Chatham Rise decreased from 2012 to 2013, but the condition of fish in 2013 was higher than in 2010 and 2011 (Figure 25). O'Driscoll et al. (2011a) found no evidence for a link between hoki condition and mesopelagic fish indices between 2004 and 2010. However, in the 2013 analysis, we calculated a new index of "food per fish" from the ratio of the acoustic estimate of mesopelagic fish abundance (see Table 14) divided by the trawl estimate of hoki abundance (see Table 7a). This index takes account of density dependence of hoki on food availability. There was a significant positive correlation between liver condition and food per fish (Pearson's correlation coefficient, r = 0.73, n = 12, p = 0.005) (Figure 25).

#### 4. CONCLUSIONS

The 2013 survey successfully extended the January Chatham Rise time series into its twenty-second year and provided abundance indices for hoki, hake, and ling.

The estimated relative biomass of hoki in core strata was 42% higher than in 2012, largely due to a high relative biomass estimate of 1+ hoki, the highest in the time series. The relative biomass of 3++ hoki (recuited) hoki was 29% higher than in 2012, and the highest since 1998. The estimated biomass of 2+ hoki (2010 year class) was the lowest in the time series.

The relative biomass of hake in core strata was 39% higher in 2013 than 2012, but remains at historically low levels compared to the early 1990s. The relative biomass of ling in core strata was 8% higher in 2013, but the time series for ling shows no overall trend.

The deep strata were successfully completed providing relative biomass indices for pre-recruit and recruited orange roughy. The estimated relative biomass of orange roughy in all strata was 46% lower in 2013 compared to 2012. There was no trend in the orange roughy relative biomass time series for the deep component (4 surveys) suggesting that additional surveys in the series are required. The deep strata contained only a small proportion of the total survey relative biomass for hake, hoki, and ling, confirming that the core survey area is appropriate for these species.

#### 5. ACKNOWLEDGMENTS

We thank the scientific staff and the master, officers, and crew of *Tangaroa* who contributed to the success of this voyage. Thanks to the scientific staff involved with the preparation, reading, and calculation of catch at age data for hoki, hake, and ling otoliths from this survey, and NIWA National Invertebrate Collection staff and Kathrin Bolstad (AUT) for identification of invertebrates. A draft of this report was reviewed by Peter McMillan. This work was carried out by NIWA under contract to the Ministry for Primary Industries (Project HOK2010/05B).

## 6. REFERENCES

- Bagley, N.W.; Hurst, R.J. (1998). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1998 (TAN9801). *NIWA Technical Report 44*. 54 p.
- Bagley, N.W.; Livingston, M.E. (2000). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999 (TAN9901). *NIWA Technical Report 81*. 52 p.
- Ballara, S.L.; O'Driscoll, R.L. (in press). Catches, size, and age structure of the 2011–12 hoki fishery, and a summary of input data used for the 2013 stock assessment. *New Zealand Fisheries Assessment Report 2014/xx*.
- Bull, B. (2000). An acoustic study of the vertical distribution of hoki on the Chatham Rise. *New Zealand Fisheries Assessment Report 2000/5*. 59 p.
- Bull, B.; Bagley, N.W.; Hurst, R.J. (2000). Proposed survey design for the Southern Plateau trawl survey of hoki, hake and ling in November-December 2000. Final Research Report to the Ministry of Fisheries for Project MDT1999/01 Objective 1. 31 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
- Coombs, R.F.; Macaulay, G.J.; Knol, W.; Porritt, G. (2003). Configurations and calibrations of 38 kHz fishery acoustic survey systems, 1991–2000. *New Zealand Fisheries Assessment Report 2003/49*. 24 p.
- Cordue, P.L.; Ballara, S.L.; Horn, P.L. (2000). Hoki ageing: recommendation of which data to routinely record for hoki otoliths. Final Research Report to the Ministry of Fisheries for Project MOF1999/01 (Hoki ageing). 24 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- Cordue, P.L.; Macaulay, G.J.; Ballara, S.L. (1998). The potential of acoustics for estimating juvenile hoki abundance by age on the Chatham Rise. Final Research Report for Ministry of Fisheries Research Project HOK9702 Objective 3. 35 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. *ICES Cooperative Research Report* 144, 68 p.
- Francis, R.I.C.C. (1981) Stratified random trawl surveys of deep-water demersal fish stocks around New Zealand. *Fisheries Research Division Occasional Publication 32*. 28 p.
- Francis, R.I.C.C. (1984) An adaptive strategy for stratified random trawl surveys. *New Zealand Journal of Marine and Freshwater Research 18*: 59–71.

- Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)
- Francis, R.I.C.C. (2001). Improving the consistency of hoki age estimation. *New Zealand Fisheries Assessment Report* 2001/12. 18 p.
- Francis, R.I.C.C. (2006). Optimum allocation of stations to strata in trawl surveys. *New Zealand Fisheries Assessment Report* 2006/23. 50 p.
- Francis, R.I.C.C. (2009). SurvCalc User Manual. 39 p. (Unpublished report held at NIWA, Wellington.)
- Horn, P.L. (1993). Growth, age structure, and productivity of ling, *Genypterus blacodes* (Ophididae), in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research* 27: 385–397.
- Horn, P.L. (1994a). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1991-January 1992 (TAN9106). *New Zealand Fisheries Data Report No. 43*. 38 p.
- Horn, P.L. (1994b). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1992-January 1993 (TAN9212). *New Zealand Fisheries Data Report No. 44*. 43 p.
- Horn, P.L. (1997). An ageing methodology, growth parameters and estimates of mortality for hake (*Merluccius australis*) from around the South Island, New Zealand. *Marine and Freshwater Research* 48: 201–209.
- Horn, P.L.; Sullivan, K.J. (1996). Validated aging methodology using otoliths, and growth parameters for hoki (*Macruronus novaezeelandiae*) in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research 30*: 161–174.
- Hurst, R.J.; Bagley, N.W. (1994). Trawl survey of middle depth and inshore bottom species off Southland, February-March 1993 (TAN9301). *New Zealand Fisheries Data Report No. 52*. 58 p.
- Hurst, R.J.; Bagley, N.; Chatterton, T.; Hanchet, S.; Schofield, K.; Vignaux, M. (1992). Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report No. 194. 89 p. (Unpublished report held in NIWA library, Wellington.)
- Livingston, M.E.; Bull, B.; Stevens, D.W.; Bagley, N.W. (2002). A review of hoki and middle depth trawl surveys of the Chatham Rise, January 1992–2001. *NIWA Technical Report 113*. 146 p.
- Livingston, M.E.; Stevens, D.W. (2005). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2004 (TAN0401). *New Zealand Fisheries Assessment Report 2005/21*. 62 p.
- Livingston, M.E.; Stevens, D.W.; O'Driscoll, R.L.; Francis, R.I.C.C. (2004). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2003 (TAN0301). *New Zealand Fisheries Assessment Report* 2004/16. 71 p.
- McClatchie, S.; Dunford, A. (2003). Estimated biomass of vertically migrating mesopelagic fish off New Zealand. *Deep-Sea Research Part I 50*: 1263–1281.
- McClatchie, S.; Pinkerton, M.; Livingston, M.E. (2005). Relating the distribution of a semi-demersal fish, *Macruronus novaezelandiae*, to their pelagic food supply. *Deep-Sea Research Part I* 52: 1489–1501.
- McNeill, E. (2001). ESP2 phase 4 user documentation. NIWA Internal Report 105. 31 p. (Unpublished report held in NIWA library, Wellington.)
- O'Driscoll, R.L. (2001a). Analysis of acoustic data collected on the Chatham Rise trawl survey, January 2001 (TAN0101). Final Research Report for Ministry of Fisheries Research Project HOK2000/02 Objective 3. 26 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- O'Driscoll, R.L. (2001b). Classification of acoustic mark types observed during the 2000 Sub-Antarctic trawl survey (TAN0012). Final Research Report for Ministry of Fisheries Research Project MDT2000/01 Objective 3. 28 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- O'Driscoll, R.L. (2002). Estimates of acoustic:trawl vulnerability ratios from the Chatham Rise and Sub-Antarctic. Final Research Report for Ministry of Fisheries Research Projects HOK 2001/02 Objective 3 and MDT2001/01 Objective 4. 46 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
- O'Driscoll, R.L. (2003). Determining species composition in mixed species marks: an example from the New Zealand hoki (*Macruronus novaezelandiae*) fishery. *ICES Journal of Marine Science* 60: 609–616.

- O'Driscoll, R.L.; Bagley, N.W. (2004). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November–December 2003 (TAN0317). *New Zealand Fisheries Assessment Report* 2004/49. 58 p.
- O'Driscoll, R.L.; Bagley N.W.; Ballara, S.L. (in press). Trawl and acoustic survey of hoki and middle depth fish abundance on the west coast South Island, July–August 2012 (TAN1210). *New Zealand Fisheries Assessment Report 2014/xx*.
- O'Driscoll, R.L.; Gauthier, S.; Devine, J. (2009). Acoustic surveys of mesopelagic fish: as clear as day and night? *ICES Journal of Marine Science* 66: 1310–1317.
- O'Driscoll, R.L.; Hurst, R.J.; Dunn, M.R.; Gauthier, S.; Ballara, S.L. (2011a). Trends in relative biomass using time series of acoustic backscatter data from trawl surveys. *New Zealand Aquatic Environment and Biodiversity Report* 76. 99 p.
- O'Driscoll, R.L.; MacGibbon, D.; Fu, D.; Lyon, W.; Stevens, D.W. (2011b). A review of hoki and middle depth trawl surveys of the Chatham Rise, January 1992–2010. *New Zealand Fisheries Assessment Report 2011/47*. 72 p. + CD.
- Schofield, K.A.; Horn, P.L. (1994). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1994 (TAN9401). *New Zealand Fisheries Data Report No. 53.* 54 p.
- Schofield, K.A.; Livingston, M.E. (1995). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1995 (TAN9501). *New Zealand Fisheries Data Report No. 59*. 53 p.
- Schofield, K.A.; Livingston, M.E. (1996). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1996 (TAN9601). *New Zealand Fisheries Data Report No. 71.* 50 p.
- Schofield, K.A.; Livingston, M.E. (1997). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1997 (TAN9701). *NIWA Technical Report* 6. 51 p.
- Stevens, D.W.; Livingston, M.E. (2003). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2002 (TAN0201). *New Zealand Fisheries Assessment Report 2003/19*. 57 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2001). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2000 (TAN0001). *NIWA Technical Report 104*. 55 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2002). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2001 (TAN0101). *NIWA Technical Report 116*. 61 p.
- Stevens, D.W.; O'Driscoll, R.L. (2006): Trawl survey of hoki and middle depth species on the Chatham Rise, January 2005 (TAN0501) *New Zealand Fisheries Assessment Report 2006/13*. 73 p.
- Stevens, D.W.; O'Driscoll, R.L. (2007): Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601) *New Zealand Fisheries Assessment Report 2007/5*. 73 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; Ballara, S.L.; Horn, P.L. (2012). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2011 (TAN1101). *New Zealand Fisheries Assessment Report 2012/10.* 98 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; Ballara, S.L.; Horn, P.L. (2013). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2012 (TAN1201). *New Zealand Fisheries Assessment Report 2013/34*. 103 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; MacGibbon, D.; Horn, P.L.; Gauthier, S. (2011). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2010 (TAN1001). *New Zealand Fisheries Assessment Report 2011/10*. 112 p.
- Stevens, D.W.; O'Driscoll, R.L.; Gauthier, S (2008). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2007 (TAN0701) *New Zealand Fisheries Assessment Report 2008/52*. 81 p.
- Stevens, D.W.; O'Driscoll, R.L.; Horn, P.L. (2009a). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2008 (TAN0801). *New Zealand Fisheries Assessment Report* 2009/18. 86 p.
- Stevens, D.W.; O'Driscoll, R.L.; Horn, P.L. (2009b). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2009 (TAN0901). *New Zealand Fisheries Assessment Report* 2009/55. 91 p.
- Tuck, I.; Cole, R.; Devine, J. (2009). Ecosystem indicators for New Zealand fisheries. *New Zealand Aquatic Environment and Biodiversity Report 42*. 188 p.
- Vignaux, M. (1994). Documentation of Trawlsurvey Analysis Program. MAF Fisheries Greta Point Internal Report No. 225. 44 p. (Unpublished report held in NIWA library, Wellington.)

Table 1: The number of completed valid biomass tows (200-1300 m) by stratum during the 2013 Chatham Rise trawl survey.

| Stratum<br>number | Depth<br>range<br>(m) | Location        | Area (km²) | Phase 1 allocation | Phase 1 stations | Phase 2 stations | Total stations | Station density (1: km²) |
|-------------------|-----------------------|-----------------|------------|--------------------|------------------|------------------|----------------|--------------------------|
| 1                 | 600-800               | NW Chatham Rise | 2 439      | 3                  | 3                |                  | 3              | 1: 813                   |
| 2A                | 600-800               | NW Chatham Rise | 3 253      | 3                  | 3                |                  | 3              | 1: 1 084                 |
| 2B                | 600-800               | NE Chatham Rise | 8 503      | 5                  | 5                |                  | 5              | 1: 1 701                 |
| 3                 | 200-400               | Matheson Bank   | 3 499      | 3                  | 3                |                  | 3              | 1: 1 166                 |
| 4                 | 600-800               | SE Chatham Rise | 11 315     | 3                  | 3                |                  | 3              | 1: 3 772                 |
| 5                 | 200-400               | SE Chatham Rise | 4 078      | 3                  | 3                |                  | 3              | 1: 1 359                 |
| 6                 | 600-800               | SW Chatham Rise | 8 266      | 3                  | 3                |                  | 3              | 1: 2 755                 |
| 7A                | 400-600               | NW Chatham Rise | 4 333      | 5                  | 5                |                  | 5              | 1: 866                   |
| 7B                | 400-600               | NW Chatham Rise | 894        | 3                  | 3                |                  | 3              | 1: 298                   |
| 8A                | 400-600               | NW Chatham Rise | 3 286      | 3                  | 3                |                  | 3              | 1: 1 095                 |
| 8B                | 400–600               | NW Chatham Rise | 5 722      | 3                  | 3                |                  | 3              | 1: 1 907                 |
| 9                 | 200-400               | NE Chatham Rise | 5 136      | 3                  | 3                |                  | 3              | 1: 1712                  |
| 10A               | 400-600               | NE Chatham Rise | 2 958      | 3                  | 3                |                  | 3              | 1: 986                   |
| 10B               | 400–600               | NE Chatham Rise | 3 363      | 3                  | 3                |                  | 3              | 1: 1 121                 |
| 11A               | 400–600               | NE Chatham Rise | 2 966      | 3                  | 3                |                  | 3              | 1: 989                   |
| 11B               | 400–600               | NE Chatham Rise | 2 072      | 3                  | 3                |                  | 3              | 1: 691                   |
| 11C               | 400–600               | NE Chatham Rise | 3 342      | 3                  | 3                |                  | 3              | 1: 1 114                 |
| 11D               | 400–600               | NE Chatham Rise | 3 368      | 3                  | 3                |                  | 3              | 1: 1 123                 |
| 12                | 400–600               | SE Chatham Rise | 6 578      | 3                  | 3                |                  | 3              | 1: 2 193                 |
| 13                | 400–600               | SE Chatham Rise | 6 681      | 3                  | 3                |                  | 3              | 1: 2 227                 |
| 14                | 400–600               | SW Chatham Rise | 5 928      | 3                  | 3                |                  | 3              | 1: 1 976                 |
| 15                | 400–600               | SW Chatham Rise | 5 842      | 3                  | 3                |                  | 3              | 1: 1 947                 |
| 16                | 400–600               | SW Chatham Rise | 11 522     | 3                  | 3                | 2                | 5              | 1: 2 304                 |
| 17                | 200–400               | Veryan Bank     | 865        | 3                  | 3                |                  | 3              | 1: 288                   |
| 18                | 200–400               | Mernoo Bank     | 4 687      | 3                  | 3                |                  | 3              | 1: 1 562                 |
| 19                | 200–400               | Reserve Bank    | 9 012      | 5                  | 5                |                  | 5              | 1: 1 802                 |
| 20                | 200–400               | Reserve Bank    | 9 584      | 5                  | 5                |                  | 5              | 1: 1 916                 |
| Core              | 200-800               |                 | 139 492    | 89                 | 89               | 2                | 91             | 1: 1 533                 |
| 21A               | 800-1000              | NE Chatham Rise | 1 249      | 3                  | 3                |                  | 3              | 1: 416                   |
| 21B               | 800-1000              | NE Chatham Rise | 5 819      | 3                  | 3                |                  | 3              | 1: 1 940                 |
| 22                | 800-1000              | NW Chatham Rise | 7 357      | 12                 | 12               |                  | 12             | 1: 613                   |
| 23                | 1000-1300             | NW Chatham Rise | 7 014      | 5                  | 4                |                  | 4              | 1: 1 754                 |
| 24                | 1000-1300             | NE Chatham Rise | 5 672      | 3                  | 3                |                  | 3              | 1: 1 891                 |
| 25                | 800-1000              | SE Chatham Rise | 5 596      | 5                  | 4                |                  | 4              | 1: 1 399                 |
| 28                | 1000–1300             | SE Chatham Rise | 9 494      | 3                  | 3                |                  | 3              | 1: 3 155                 |
| Deep              | 800-1300              |                 | 42 201     | 34                 | 32               | 0                | 32             | 1: 1319                  |
| Total             | 200-1300              |                 | 181 693    | 123                | 121              | 2                | 123            | 1: 1 477                 |

Table 2: Survey dates and number of valid core (200–800 m depth) biomass tows in surveys of the Chatham Rise, January 1992–2013.  $\dagger$ , years where the deep component of the survey was carried out.

| Trip code | Start date  | End date    | No. of valid core biomass tows |
|-----------|-------------|-------------|--------------------------------|
| TAN9106   | 28 Dec 1991 | 1 Feb 1992  | 184                            |
| TAN9212   | 30 Dec 1992 | 6 Feb 1993  | 194                            |
| TAN9401   | 2 Jan 1994  | 31 Jan 1994 | 165                            |
| TAN9501   | 4 Jan 1995  | 27 Jan 1995 | 122                            |
| TAN9601   | 27 Dec 1995 | 14 Jan 1996 | 89                             |
| TAN9701   | 2 Jan 1997  | 24 Jan 1997 | 103                            |
| TAN9801   | 3 Jan 1998  | 21 Jan 1998 | 91                             |
| TAN9901   | 3 Jan 1999  | 26 Jan 1999 | 100                            |
| TAN0001   | 27 Dec 1999 | 22 Jan 2000 | 128                            |
| TAN0101   | 28 Dec 2000 | 25 Jan 2001 | 119                            |
| TAN0201   | 5 Jan 2002  | 25 Jan 2002 | 107                            |
| TAN0301   | 29 Dec 2002 | 21 Jan 2003 | 115                            |
| TAN0401   | 27 Dec 2003 | 23 Jan 2004 | 110                            |
| TAN0501   | 27 Dec 2004 | 23 Jan 2005 | 106                            |
| TAN0601   | 27 Dec 2005 | 23 Jan 2006 | 96                             |
| TAN0701   | 27 Dec 2006 | 23 Jan 2007 | 101                            |
| TAN0801   | 27 Dec 2007 | 23 Jan 2008 | 101                            |
| TAN0901   | 27 Dec 2008 | 23 Jan 2009 | 108                            |
| TAN1001†  | 2 Jan 2010  | 28 Jan 2010 | 91                             |
| TAN1101†  | 2 Jan 2011  | 28 Jan 2011 | 90                             |
| TAN1201†  | 2 Jan 2012  | 28 Jan 2012 | 100                            |
| TAN1301†  | 2 Jan 2013  | 26 Jan 2013 | 91                             |

Table 3: Tow and gear parameters by depth range for valid biomass tows (TAN1301). Values shown are sample size (n), and for each parameter the mean, standard deviation (s.d.), and range.

|                         | n   | Mean  | s.d. | Range       |
|-------------------------|-----|-------|------|-------------|
| Core tow parameters     |     |       |      |             |
| Tow length (n. miles)   | 91  | 2.8   | 0.35 | 2.0-3.1     |
| Tow speed (knots)       | 91  | 3.5   | 0.04 | 3.4-3.7     |
| All tow parameters      |     |       |      |             |
| Tow length (n. miles)   | 123 | 2.8   | 0.33 | 2.0-3.1     |
| Tow speed (knots)       | 123 | 3.5   | 0.05 | 3.4-3.7     |
| Gear parameters         |     |       |      |             |
| 200–400 m               |     |       |      |             |
| Headline height         | 25  | 6.7   | 0.33 | 6.2-7.3     |
| Doorspread              | 25  | 122.1 | 7.45 | 109.4-122.1 |
| 400–600 m               |     |       |      |             |
| Headline height         | 49  | 6.5   | 0.20 | 6.1-6.9     |
| Doorspread              | 48  | 125.9 | 5.48 | 113.5–135.5 |
| 600–800 m               |     |       |      |             |
| Headline height         | 17  | 6.7   | 0.28 | 6.3-7.4     |
| Doorspread              | 16  | 117.8 | 6.69 | 108.4–117.8 |
| 800–1000 m              |     |       |      |             |
| Headline height         | 22  | 7.0   | 0.28 | 6.4-7.7     |
| Doorspread              | 21  | 117.0 | 5.29 | 108.3-127.7 |
| 1000–1300 m             |     |       |      |             |
| Headline height         | 10  | 7.1   | 0.39 | 6.7-7.8     |
| Doorspread              | 6   | 115.1 | 8.16 | 104.2-124.8 |
| Core stations 200–800 m |     |       |      |             |
| Headline height         | 91  | 6.6   | 0.28 | 6.1 - 7.4   |
| Doorspread              | 89  | 123.4 | 6.96 | 108.4–135.5 |
| All stations 200–1300 m |     |       |      |             |
| Headline height         | 123 | 6.7   | 0.34 | 6.1-7.8     |
| Doorspread              | 116 | 121.8 | 7.30 | 104.2–135.5 |

Table 4: Catch (kg) and total relative biomass (t) estimates (also by sex) with coefficient of variation (CV) for QMS species, other commercial species, and major non-commercial species for valid biomass tows in the 2013 survey core strata (200-800 m); and biomass estimates (not catch) for deep strata (800-1300 m). Total biomass includes unsexed fish. (–, no data.). Arranged in descending relative biomass estimates for the core strata. –, no data.

| ,                         |            |           |             |         |             | Core         | strata 200– | 800m     | 800-13   | 300 m    |
|---------------------------|------------|-----------|-------------|---------|-------------|--------------|-------------|----------|----------|----------|
| Common name               | Code       |           | Biomass n   |         | Biomass fer | <u>nales</u> | Total bion  | nass     | Deep bio | omass    |
|                           |            | kg        | t           | %       | t           | %            | t           | %        | t        | %        |
| 03.50                     |            |           |             | CV      |             | CV           |             | CV       |          | CV       |
| QMS species               | пои        | 50.105    | 55.605      | 15.5    | 60.216      | 12.0         | 104 110     | 150      | 1.704    | 20.0     |
| Hoki                      | HOK        | 50 185    | 55 695      | 17.5    | 68 316      | 13.9         | 124 112     | 15.3     | 1 794    | 29.0     |
| Alfonsino                 | BYS        | 17 813    | 11 181      | 97.7    | 33 595      | 99.2         | 44 779      | 98.8     | _        |          |
| Dark ghost shark          | GSH        | 5 700     | 4 915       | 12.0    | 6 776       | 12.7         | 11 723      | 11.6     | -<br>-   | c2 4     |
| Black oreo                | BOE        | 2 081     | 5 879       | 43.0    | 4 883       | 43.7         | 10 779      | 43.3     | 5        | 63.4     |
| Ling                      | LIN        | 3 674     | 3 629       | 12.7    | 5 085       | 10.5         | 8 714       | 10.1     | 48       | 72.1     |
| Sea perch                 | SPE        | 3 031     | 3 055       | 19.6    | 3 296       | 21.5         | 7 785       | 12.5     | 6        | 67.8     |
| Lookdown dory             | LDO        | 2 961     | 2 391       | 15.9    | 4 734       | 9.6          | 7 141       | 11.0     | 6        | 66.3     |
| Silver warehou            | SWA        | 2 593     | 3 428       | 34.5    | 3 506       | 25.2         | 6 945       | 29.3     | _        |          |
| Spiny dogfish             | SPD        | 2 748     | 951         | 22.7    | 5 870       | 15.7         | 6 864       | 15.3     | 122      | 22.4     |
| Pale ghost shark          | GSP        | 1 444     | 1 771       | 16.1    | 1 776       | 25.4         | 4 270       | 18.0     | 123      | 33.4     |
| Spiky oreo                | SOR        | 1 946     | 2 101       | 37.2    | 1 894       | 34.4         | 4 045       | 35.2     | 295      | 49.2     |
| Giant stargazer           | GIZ        | 824       | 471         | 61.6    | 1 610       | 28.6         | 2 108       | 34.3     | _        |          |
| White warehou             | WWA        | 1 091     | 1 054       | 36.3    | 953         | 29.3         | 2 030       | 32.7     | _        | 250      |
| Hake                      | HAK        | 962       | 262         | 20.2    | 1 532       | 16.4         | 1 793       | 15.3     | 81       | 35.9     |
| Smooth oreo               | SSO        | 277       | 778         | 84.0    | 754         | 85.9         | 1 532       | 84.9     | 1 035    | 23.4     |
| Smooth skate              | SSK        | 682       | 749         | 25.5    | 744         | 28.4         | 1 494       | 19.6     | 19       | 74.7     |
| Barracouta                | BAR        | 265       | 281         | 63.3    | 699         | 90.3         | 980         | 82.2     | _        |          |
| Southern Ray's bream      | SRB        | 285       | 439         | 37.7    | 472         | 40.4         | 922         | 38.4     | _        |          |
| School shark              | SCH        | 177       | 152         | 68.3    | 190         | 45.6         | 531         | 48.5     | _        |          |
| Ribaldo                   | RIB        | 232       | 178         | 17.6    | 241         | 24.1         | 428         | 15.7     | 207      | 25.1     |
| Red cod                   | RCO        | 246       | 221         | 31.5    | 185         | 18.7         | 406         | 23.7     | _        |          |
| Arrow squid               | NOS        | 152       | 127         | 14.7    | 174         | 18.3         | 308         | 14.1     | _        |          |
| Hapuku                    | HAP        | 80        | 88          | 40.7    | 138         | 53.5         | 225         | 37.3     | _        |          |
| Bluenose                  | BNS        | 48        | 28          | 67.9    | 52          | 50.5         | 80          | 47.6     | _        |          |
| Deepsea cardinalfish      | EPT        | 70        | 46          | 33.0    | 26          | 39.7         | 75          | 31.1     | _        |          |
| Lemon sole                | LSO        | 30        | 20          | 42.0    | 42          | 26.5         | 75          | 19.7     | _        |          |
| Frostfish                 | FRO        | 20        | _           |         | 36          | 60.5         | 72          | 39.6     | _        |          |
| Bass                      | BAS        | 11        | _           |         | _           |              | 42          | 100      | _        |          |
| Rough skate               | RSK        | 15        | 9           | 76.1    | 29          | 100          | 38          | 78.5     | _        |          |
| Slender mackerel          | JMM        | 8         | 11          | 70.9    | 5           | 100          | 29          | 43.8     | _        |          |
| Tarakihi                  | NMP        | 7         | 17          | 50.7    | 9           | 51.7         | 25          | 41.2     | _        |          |
| Banded stargazer          | BGZ        | 4         | 16          | 100     | _           |              | 16          | 100      | _        |          |
| Scampi                    | SCI        | 7         | 8           | 22.7    | 4           | 25.4         | 13          | 17.0     | _        |          |
| Jack mackerel             | JMD        | 2         | _           |         | _           |              | 5           | 73.8     | _        |          |
| Orange roughy             | ORH        | 2         | 1           | 100     | 2           | 100          | 3           | 75.1     | 2 776    | 32.4     |
| Ray's Bream               | RBM        | 1         | _           |         | _           |              | 3           | 100      | _        |          |
| Rubyfish                  | RBY        | 2         | 3           | 100     | _           |              | 3           | 100      | _        |          |
| Commercial non-QMS        | anagina (v | vhore cor | o biomoss   | > 20 4) |             |              |             |          |          |          |
| Shovelnose dogfish        | SND        | 3 710     | 2 333       |         | 5 757       | 37.1         | 8 100       | 34.4     | 3 254    | 29.6     |
| •                         |            |           |             |         | 0 707       | 0,11         | 0 100       | <i>.</i> | 0 20 .   | _,.0     |
| Non-commercial specie     |            |           | ass > 800 t | t)      |             |              | 15 410      | 120      | 7.50     | 70.0     |
| Javelinfish               | JAV        | 6 352     | _           | _       | _           | -            | 15 418      | 13.9     | 752      | 78.8     |
| Bollons's rattail         | CBO        | 5 731     | _           | _       | _           | _            | 13 447      | 10.3     | 11       | 59.8     |
| Oblique banded rattail    | CAS        | 1 284     | _           | _       | _           | _            | 2 110       | 14.6     | _        | <b>.</b> |
| Oliver's rattail          | COL        | 640       | _           | _       | _           | -            | 1 618       | 18.6     | 16       | 54.3     |
| Banded bellowsfish        | BBE        | 561       | _           | _       | _           | -            | 1 294       | 26.1     | _        |          |
| Baxter's dogfish          | ETB        | 214       | _           | _       | _           | -            | 1 011       | 33.0     | 673      | 25.6     |
| Longnose spookfish        | LCH        | 326       | _           | -       | _           | _            | 832         | 20.1     | 265      | 31.9     |
| Total (above)             |            | 118 494   |             |         |             |              |             |          |          |          |
| Grand total (all species) |            | 122 292   |             |         |             |              |             |          |          |          |
| ···· ( <b>F</b>           |            | -, -      |             |         |             |              |             |          |          |          |

Table 5: Estimated core relative biomass (t) with coefficient of variation below (%) for hoki, hake, and ling sampled by annual trawl surveys of the Chatham Rise, January 1992–2013. stns, stations; CV, coefficient of variation.). See also Figure 5.

|      |                     |          | Cor                    | re strata 20          | 0–800 m              |
|------|---------------------|----------|------------------------|-----------------------|----------------------|
| Year | Survey              | No. stns | Hoki                   | Hake                  | Ling                 |
| 1992 | TAN9106             | 184      | 120 190                | 4 180                 | 8 930                |
| 1993 | CV<br>TAN9212       | 194      | 7.7<br>185 570         | 14.9<br>2 950         | 5.8<br>9 360         |
| 1994 | CV<br>TAN9401<br>CV | 165      | 10.3<br>145 633<br>9.8 | 17.2<br>3 353<br>9.6  | 7.9<br>10 129<br>6.5 |
| 1995 | TAN9501<br>CV       | 122      | 9.8<br>120 441<br>7.6  | 3 303<br>22.7         | 7 363<br>7.9         |
| 1996 | TAN9601<br>CV       | 89       | 152 813<br>9.8         | 2 457<br>13.3         | 8 424<br>8.2         |
| 1997 | TAN9701<br>CV       | 103      | 157 974<br>8.4         | 2 811<br>16.7         | 8 543<br>9.8         |
| 1998 | TAN9801<br>CV       | 91       | 86 678<br>10.9         | 2 873<br>18.4         | 7 313<br>8.3         |
| 1999 | TAN9901<br>CV       | 100      | 109 336<br>11.6        | 2 302<br>11.8         | 10 309<br>16.1       |
| 2000 | TAN0001<br>CV       | 128      | 72 151<br>12.3         | 2 152<br>9.2          | 8 348<br>7.8         |
| 2001 | TAN0101<br>CV       | 119      | 60 330<br>9.7          | 1 589<br>12.7         | 9 352<br>7.5         |
| 2002 | TAN0201             | 107      | 74 351                 | 1 567                 | 9 442<br>7.8         |
| 2003 | CV<br>TAN0301       | 115      | 11.4<br>52 531         | 15.3<br>888           | 7 261                |
| 2004 | CV<br>TAN0401       | 110      | 11.6<br>52 687         | 15.5<br>1 547         | 9.9<br>8 248         |
| 2005 | CV<br>TAN0501       | 106      | 12.6<br>84 594         | 17.1<br>1 048         | 7.0<br>8 929         |
| 2006 | CV<br>TAN0601       | 96       | 11.5<br>99 208         | 18.0<br>1 384         | 9.4<br>9 301         |
| 2007 | CV<br>TAN0701       | 101      | 10.6<br>70 479         | 19.3<br>1 824         | 7.4<br>7 907         |
| 2008 | CV<br>TAN0801       | 101      | 8.4<br>76 859          | 12.2<br>1 257         | 7.2<br>7 504         |
| 2009 | CV<br>TAN0901       | 108      | 11.4<br>144 088        | 12.9<br>2 419         | 6.7<br>10 615        |
| 2010 | CV<br>TAN1001       | 91       | 10.6<br>97 503         | 20.7<br>1 701         | 11.5<br>8 846        |
| 2011 | CV<br>TAN1101       | 90       | 14.6<br>93 904         | 25.1<br>1 099         | 10.0<br>7 027        |
| 2012 | CV<br>TAN1201       | 100      | 14.0<br>87 505         | 14.9<br>1 292         | 13.8<br>8 098        |
| 2013 | CV<br>TAN1301<br>CV | 91       | 9.8<br>124 112<br>15.3 | 14.7<br>1 793<br>15.3 | 7.4<br>8 714<br>10.1 |

Table 6: Relative biomass estimates (t in thousands) for hoki, 200-800 m depths, Chatham Rise trawl surveys January 1992–2013 (CV coefficient of variation; 3++ all hoki aged 3 years and older; (see Appendix 5 for length ranges of age classes.). See also Figure 5.

|        |                  |      | 1+ hoki |               |      | 2+ hoki | 3     | ++ hoki | To    | <u>tal hoki</u> |
|--------|------------------|------|---------|---------------|------|---------|-------|---------|-------|-----------------|
| Survey | 1+ year<br>class | t    | % c.v   | 2+ year class | t    | % c.v   | t     | % c.v   | t     | % c.v           |
| 1992   | 1990             | 2.8  | (27.9)  | 1989          | 1.2  | (18.1)  | 116.1 | (7.8)   | 120.2 | (9.7)           |
| 1993   | 1991             | 32.9 | (33.4)  | 1990          | 2.6  | (25.1)  | 150.1 | (8.9)   | 185.6 | (10.3)          |
| 1994   | 1992             | 14.6 | (20.0)  | 1991          | 44.7 | (18.0)  | 86.2  | (9.0)   | 145.6 | (9.8)           |
| 1995   | 1993             | 6.6  | (13.0)  | 1992          | 44.9 | (11.0)  | 69.0  | (9.0)   | 120.4 | (7.6)           |
| 1996   | 1994             | 27.6 | (24.0)  | 1993          | 15.0 | (13.0)  | 106.6 | (10.0)  | 152.8 | (9.8)           |
| 1997   | 1995             | 3.2  | (40.0)  | 1994          | 62.7 | (12.0)  | 92.1  | (8.0)   | 158.0 | (8.4)           |
| 1998   | 1996             | 4.5  | (33.0)  | 1995          | 6.9  | (18.0)  | 75.6  | (11.0)  | 86.7  | (10.9)          |
| 1999   | 1997             | 25.6 | (30.4)  | 1996          | 16.5 | (18.9)  | 67.0  | (9.9)   | 109.3 | (11.6)          |
| 2000   | 1998             | 14.4 | (32.4)  | 1997          | 28.2 | (20.7)  | 29.5  | (9.3)   | 71.7  | (12.3)          |
| 2001   | 1999             | 0.4  | (74.6)  | 1998          | 24.2 | (17.8)  | 35.7  | (9.2)   | 60.3  | (9.7)           |
| 2002   | 2000             | 22.4 | (25.9)  | 1999          | 1.2  | (21.2)  | 50.7  | (12.3)  | 74.4  | (11.4)          |
| 2003   | 2001             | 0.5  | (46.0)  | 2000          | 27.2 | (15.1)  | 20.4  | (9.3)   | 52.6  | (8.7)           |
| 2004   | 2002             | 14.4 | (32.5)  | 2001          | 5.5  | (20.4)  | 32.8  | (12.9)  | 52.7  | (12.6)          |
| 2005   | 2003             | 17.5 | (23.4)  | 2002          | 45.8 | (16.3)  | 21.2  | (11.4)  | 84.6  | (11.5)          |
| 2006   | 2004             | 25.9 | (21.5)  | 2003          | 33.6 | (18.8)  | 39.7  | (10.3)  | 99.2  | (10.6)          |
| 2007   | 2005             | 9.1  | (27.5)  | 2004          | 32.6 | (12.8)  | 28.8  | (8.9)   | 70.5  | (8.4)           |
| 2008   | 2006             | 15.6 | (31.6)  | 2005          | 23.8 | (15.5)  | 37.5  | (7.8)   | 76.9  | (11.4)          |
| 2009   | 2007             | 25.2 | (28.8)  | 2006          | 65.2 | (17.2)  | 53.7  | (7.8)   | 144.1 | (10.6)          |
| 2010   | 2008             | 19.3 | (30.7)  | 2007          | 28.6 | (15.4)  | 49.6  | (16.3)  | 97.5  | (14.6)          |
| 2011   | 2009             | 26.9 | (36.9)  | 2008          | 26.3 | (14.1)  | 40.7  | (7.8)   | 93.9  | (14.0)          |
| 2012   | 2010             | 2.6  | (30.1)  | 2009          | 29.1 | (16.6)  | 55.9  | (8.0)   | 87.5  | (9.8)           |
| 2013   | 2011             | 50.9 | (24.5)  | 2010          | 1.0  | (43.6)  | 72.1  | (12.8)  | 124.1 | (15.3)          |

Table 7a: Estimated relative biomass (t) and coefficient of variation (% CV) for hoki, hake, ling, and 8 other key species by stratum for the 2013 survey. See Table 4 for species common names. Core, total biomass from valid core tows (200-800 m); Deep, total biomass from valid deep tows (800-1300 m); Total, total biomass from all valid tows (200-1300 m); –, no data. 0, less than 0.5 t.

|         | Species |     |        |     |       |     |        |     |       | code |       |     |
|---------|---------|-----|--------|-----|-------|-----|--------|-----|-------|------|-------|-----|
| •       |         | HOK |        | GSH |       | LIN |        | SPE |       | LDO  |       | SWA |
| Stratum | t       | CV  | t      | CV  | t     | CV  | t      | CV  | t     | CV   | t     | CV  |
| 1       | 394     | 45  | _      | _   | 77    | 63  | 15     | 94  | 43    | 48   | _     | _   |
| 2a      | 554     | 19  | _      | _   | 67    | 80  | 46     | 46  | 25    | 5    | _     | _   |
| 2b      | 2 098   | 22  | _      | _   | 165   | 17  | 65     | 22  | 83    | 30   | _     | _   |
| 3       | 4 574   | 68  | 788    | 24  | 298   | 29  | 164    | 35  | 238   | 33   | 168   | 42  |
| 4       | 3 126   | 41  | _      | _   | 941   | 61  | 146    | 75  | 237   | 73   | _     | _   |
| 5       | 1 555   | 19  | 1 425  | 31  | 409   | 19  | 82     | 18  | 385   | 23   | 328   | 51  |
| 6       | 2 127   | 43  | 8      | 100 | 483   | 56  | 3      | 100 | 85    | 100  | 20    | 100 |
| 7a      | 2 601   | 19  | 61     | 95  | 410   | 21  | 100    | 56  | 98    | 26   | 91    | 55  |
| 7b      | 2 539   | 35  | 51     | 42  | 118   | 23  | 105    | 40  | 89    | 73   | 17    | 51  |
| 8a      | 1 866   | 28  | 32     | 26  | 196   | 45  | 196    | 17  | 35    | 16   | 2     | 100 |
| 8b      | 2 914   | 52  | 56     | 50  | 249   | 16  | 308    | 39  | 319   | 32   | 12    | 51  |
| 9       | 1 549   | 22  | 821    | 39  | 227   | 50  | 99     | 86  | 155   | 54   | 410   | 61  |
| 10a     | 1 001   | 20  | _      | _   | 100   | 56  | 42     | 18  | 62    | 24   | _     | _   |
| 10b     | 958     | 11  | 6      | 100 | 96    | 45  | 34     | 11  | 93    | 13   | 3     | 100 |
| 11a     | 1 709   | 60  | 466    | 70  | 359   | 11  | 53     | 21  | 500   | 26   | 31    | 71  |
| 11b     | 657     | 16  | _      | _   | 136   | 81  | 19     | 38  | 45    | 5    | 6     | 100 |
| 11c     | 908     | 5   | 186    | 98  | 123   | 56  | 28     | 9   | 162   | 21   | 23    | 100 |
| 11d     | 2 174   | 11  | 61     | 55  | 379   | 49  | 69     | 44  | 123   | 52   | 131   | 53  |
| 12      | 3 536   | 35  | 439    | 87  | 436   | 11  | 51     | 13  | 365   | 10   | 88    | 63  |
| 13      | 6 745   | 24  | 601    | 73  | 723   | 24  | 292    | 49  | 823   | 29   | 484   | 80  |
| 14      | 5 189   | 4   | 23     | 100 | 558   | 14  | 233    | 38  | 702   | 16   | 251   | 100 |
| 15      | 4 880   | 28  | _      | _   | 690   | 20  | 86     | 8   | 571   | 54   | 6     | 100 |
| 16      | 25 989  | 57  | 335    | 82  | 541   | 23  | 446    | 77  | 417   | 19   | 172   | 69  |
| 17      | 1 542   | 87  | 890    | 53  | 18    | 81  | 5      | 86  | 23    | 72   | 173   | 41  |
| 18      | 6 570   | 64  | 787    | 64  | 134   | 100 | 477    | 57  | 175   | 52   | 1 792 | 64  |
| 19      | 16 039  | 42  | 1 414  | 38  | 190   | 53  | 2 105  | 21  | 162   | 78   | 1 244 | 58  |
| 20      | 20 318  | 36  | 3 273  | 14  | 590   | 68  | 2 517  | 28  | 1 125 | 50   | 1 492 | 94  |
| Core    | 124 112 | 15  | 11 723 | 12  | 8 714 | 10  | 7 785  | 13  | 7 141 | 11   | 6 945 | 29  |
| 21a     | 100     | 19  | _      | _   | _     | _   | _      | _   | 0     | 100  | _     | _   |
| 21b     | 243     | 40  | _      | _   | _     | _   | _      | _   | _     | _    | _     | _   |
| 22      | 658     | 22  | _      | _   | 19    | 100 | 6      | 68  | 6     | 71   | _     | _   |
| 23      | 24      | 74  | _      | _   | _     | _   | _      | _   | _     | _    | _     | _   |
| 24      | 9       | 100 | _      | _   | _     | _   | _      | _   | _     | _    | _     | _   |
| 25      | 571     | 79  | _      | _   | 29    | 100 | _      | _   | _     | _    | _     | _   |
| 28      | 191     | 100 | _      | _   | _     | _   | _      | _   | _     | _    | _     | _   |
| Deep    | 1 794   | 29  | _      | -   | 48    | 72  | 6      | 68  | 6     | 66   | _     | -   |
| Total   | 125 906 | 15  | 11 723 | 12  | 8 763 | 10  | 7 7 91 | 13  | 7 148 | 11   | 6 945 | 29  |

Table 7a (continued)

|         | Species code |     |       |     |       |     |       |            |       |     |
|---------|--------------|-----|-------|-----|-------|-----|-------|------------|-------|-----|
| -       |              | SPD |       | GSP |       | GIZ |       | <u>WWA</u> |       | HAK |
| Stratum | t            | CV  | t     | CV  | t     | CV  | t     | CV         | t     | CV  |
| 1       | _            | _   | 143   | 40  | 17    | 50  | 4     | 100        | 32    | 52  |
| 2a      | _            | _   | 136   | 54  | 11    | 100 | _     | _          | 24    | 64  |
| 2b      | _            | _   | 115   | 24  | _     | _   | _     | _          | 175   | 51  |
| 3       | 589          | 33  | 3     | 100 | _     | _   | 21    | 21         | 38    | 52  |
| 4       | _            | _   | 721   | 33  | 60    | 100 | 64    | 100        | 172   | 31  |
| 5       | 1207         | 25  | _     | _   | 168   | 28  | 33    | 29         | _     | _   |
| 6       | 14           | 100 | 392   | 35  | _     | _   | 100   | 51         | 101   | 100 |
| 7a      | 64           | 77  | 211   | 39  | 26    | 41  | 16    | 84         | 76    | 38  |
| 7b      | 12           | 56  | 11    | 100 | 38    | 43  | 191   | 98         | 105   | 44  |
| 8a      | 32           | 51  | 27    | 53  | 19    | 100 | _     | _          | 128   | 28  |
| 8b      | _            | _   | 230   | 34  | _     | _   | 4     | 100        | 8     | 100 |
| 9       | 1482         | 56  | 269   | 100 | 138   | 60  | 8     | 86         | _     | _   |
| 10a     | _            | _   | 25    | 56  | _     | _   | 16    | 63         | 110   | 86  |
| 10b     | 40           | 24  | 14    | 51  | _     | _   | _     | _          | 16    | 100 |
| 11a     | 682          | 39  | 74    | 61  | 87    | 48  | 63    | 69         | 115   | 67  |
| 11b     | 20           | 59  | 45    | 7   | 7     | 100 | 3     | 100        | 11    | 18  |
| 11c     | 5            | 100 | 9     | 100 | 37    | 100 | 10    | 89         | 34    | 50  |
| 11d     | _            | _   | 15    | 44  | 8     | 100 | 105   | 92         | 29    | 100 |
| 12      | 8            | 100 | 128   | 68  | 15    | 100 | 28    | 54         | 107   | 100 |
| 13      | 493          | 22  | 266   | 26  | 201   | 96  | 15    | 65         | 351   | 35  |
| 14      | 111          | 84  | 226   | 14  | _     | _   | 1     | 100        | _     | _   |
| 15      | 78           | 56  | 682   | 86  | 98    | 43  | 73    | 41         | 16    | 100 |
| 16      | 452          | 66  | 527   | 47  | 190   | 24  | 873   | 68         | 119   | 61  |
| 17      | 31           | 12  | 1     | 100 | 37    | 21  | 14    | 61         | _     | -   |
| 18      | 652          | 26  | _     | _   | 705   | 96  | _     | _          | _     | _   |
| 19      | 546          | 38  | _     | _   | 136   | 32  | 18    | 100        | 20    | 100 |
| 20      | 346          | 35  | _     | _   | 110   | 44  | 369   | 47         | 5     | 100 |
| Core    | 6 864        | 15  | 4 270 | 18  | 2 108 | 34  | 2 030 | 33         | 1 793 | 15  |
| 21a     | _            | _   | 2     | 74  | _     | _   | _     | _          | 1     | 100 |
| 21b     | _            | _   | 15    | 54  | _     | _   | _     | _          | 14    | 100 |
| 22      | _            | _   | 59    | 29  | _     | _   | _     | _          | 32    | 27  |
| 23      | _            | _   | _     | _   | _     | _   | _     | _          | 17    | 100 |
| 24      | _            | _   | _     | _   | _     | _   | _     | _          | _     | _   |
| 25      | _            | _   | 46    | 79  | _     | _   | _     | _          | 17    | 100 |
| 28      | _            | _   | _     | -   | _     | -   | _     | _          | _     | _   |
| Deep    | _            | -   | 123   | 33  | _     | -   | _     | -          | 81    | 36  |
| Total   | 6 864        | 15  | 4 393 | 18  | 2 108 | 34  | 2 030 | 33         | 1 874 | 15  |

Table 7b: Estimated relative biomass (t) and coefficient of variation (% CV) for pre-recruit (nominally < 20 cm SL), recruited (nominally > 30 cm SL), and total orange roughy and 7 other key deep strata species by stratum for the 2013 survey. See Table 4 for species common names. Core, total biomass from valid core tows (200–800 m; Deep, total biomass from valid deep tows (800–1300 m); Total, total biomass from all valid tows (200–1300 m); –, no data. 0, less than 0.5 t.

|         | Species |     |        |     |       |     |            | code  |        |     |
|---------|---------|-----|--------|-----|-------|-----|------------|-------|--------|-----|
| •       | <20 cm  | ORH | <30 cm | ORH | total | ORH |            | BOE   |        | SND |
| Stratum | t       | CV  | t      | CV  | t     | CV  | t          | CV    | t      | CV  |
| 1       |         |     |        |     | 2     | 100 |            |       | 024    | 20  |
| 1       | _       | 100 | _      | 100 | 2     | 100 | _          | 100   | 924    | 38  |
| 2a      | 1       | 100 | 1      | 100 | 1     | 100 | _          | 100   | 1 100  | 7   |
| 2b      | _       | _   | _      | -   | _     | _   | _          | _     | 4 768  | 56  |
| 3       | _       | _   | _      | _   | _     | _   | -<br>- 470 | 70    | 740    | -   |
| 4       | _       | _   | _      | _   | _     | _   | 5 479      | 70    | 748    | 96  |
| 5       | _       | _   | _      | -   | _     | _   | -<br>5 250 | _<br> | - 24   | 100 |
| 6       | _       | _   | _      | _   | _     | _   | 5 258      | 51    | 24     | 100 |
| 7a      | _       | _   | _      | _   | _     | _   | _          | _     | 109    | 48  |
| 7b      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 8a      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 8b      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 9       | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 10a     | _       | _   | _      | _   | _     | _   | _          | _     | 121    | 41  |
| 10b     | _       | _   | _      | _   | _     | _   | _          | _     | 72     | 51  |
| 11a     | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 11b     | _       | _   | _      | _   | _     | _   | _          | _     | 75     | 45  |
| 11c     | _       | _   | _      | _   | _     | _   | _          | _     | 8      | 100 |
| 11d     | _       | _   | _      | _   | _     | _   | _          | _     | 76     | 100 |
| 12      | _       | _   | _      | _   | _     | _   | _          | _     | 65     | 100 |
| 13      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 14      | _       | _   | _      | _   | _     | _   | 16         | 100   | 10     | 100 |
| 15      | _       | _   | _      | _   | _     | _   | 25         | 100   | _      | _   |
| 16      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 17      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 18      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 19      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| 20      | _       | _   | _      | _   | _     | _   | _          | _     | _      | _   |
| Core    | 1       | 100 | 1      | 100 | 3     | 75  | 10 779     | 43    | 8 100  | 34  |
| 21a     | 3       | 71  | 16     | 82  | 26    | 88  | _          | _     | 32     | 24  |
| 21b     | 4       | 53  | 214    | 29  | 1 393 | 60  | _          | _     | 1 448  | 56  |
| 22      | 20      | 27  | 102    | 24  | 282   | 28  | 1          | 59    | 126    | 24  |
| 23      | 1       | 58  | 27     | 55  | 177   | 13  | _          | _     | _      | _   |
| 24      | 0       | 100 | 48     | 51  | 467   | 52  | 1          | 100   | 24     | 100 |
| 25      | 55      | 91  | 189    | 83  | 342   | 61  | 3          | 100   | 1 624  | 32  |
| 28      | _       | _   | 17     | 59  | 89    | 59  | _          | _     | _      | _   |
| -       |         |     |        |     |       |     |            |       |        |     |
| Deep    | 84      | 59  | 614    | 28  | 2 776 | 32  | 5          | 63    | 3 254  | 30  |
| Total   | 85      | 59  | 615    | 28  | 2 778 | 32  | 10 784     | 43    | 11 353 | 26  |

Table 7b (continued)

|         |       |     |       |     |       |     |       |     | Species | code |
|---------|-------|-----|-------|-----|-------|-----|-------|-----|---------|------|
| -       |       | SOR |       | SSO |       | ETB |       | CYP |         | RIB  |
| Stratum | t     | CV  | t     | CV  | t     | CV  | t     | CV  | t       | CV   |
| 1       | 159   | 50  | 5     | 100 | 0     | 100 | 173   | 45  | 86      | 22   |
| 2a      | 44    | 30  | 4     | 100 | 14    | 100 | 286   | 87  | 112     | 14   |
| 2b      | 2 328 | 52  | 4     | 100 | 6     | 100 | 34    | 100 | 31      | 35   |
| 3       | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 4       | 50    | 64  | _     | _   | 389   | 44  | _     | _   | 58      | 85   |
| 5       | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 6       | 2     | 100 | 1 519 | 86  | 309   | 65  | 3     | 100 | 8       | 100  |
| 7a      | 22    | 100 | _     | _   | 5     | 100 | 1     | 100 | 10      | 41   |
| 7b      | _     | _   | _     | _   | _     | _   | _     | _   | 5       | 100  |
| 8a      | _     | _   | _     | _   | _     | _   | _     | _   | 3       | 100  |
| 8b      | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 9       | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 10a     | 450   | 55  | _     | _   | _     | _   | _     | _   | 2       | 100  |
| 10b     | _     | _   | _     | _   | _     | _   | _     | _   | 18      | 52   |
| 11a     | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 11b     | _     | _   | _     | _   | _     | _   | _     | _   | 13      | 33   |
| 11c     | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 11d     | 690   | 92  | _     | _   | _     | _   | _     | _   | 1       | 100  |
| 12      | 297   | 100 | _     | _   | _     | _   | _     | _   | 20      | 59   |
| 13      | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 14      | 3     | 100 | _     | _   | 7     | 100 | _     | _   | 14      | 100  |
| 15      | _     | _   | _     | _   | 255   | 79  | _     | _   | _       | _    |
| 16      | _     | _   | _     | _   | 25    | 58  | _     | _   | 45      | 62   |
| 17      | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 18      | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 19      | _     | _   | _     | _   | _     | _   | _     | _   | _       | _    |
| 20      | _     | -   | _     | _   | _     | _   | _     | _   | _       | -    |
| Core    | 4 045 | 35  | 1 532 | 85  | 1 011 | 33  | 497   | 53  | 428     | 16   |
| 21a     | 9     | 99  | 2     | 27  | 14    | 65  | 124   | 20  | 9       | 54   |
| 21b     | 160   | 87  | 15    | 33  | 8     | 56  | 795   | 17  | 86      | 41   |
| 22      | 79    | 44  | 12    | 56  | 2     | 62  | 244   | 22  | 50      | 33   |
| 23      | 2     | 100 | 722   | 30  | 115   | 27  | 22    | 58  | _       | _    |
| 24      | _     | _   | 64    | 90  | 80    | 14  | 3     | 100 | _       | _    |
| 25      | 43    | 48  | 65    | 49  | 86    | 81  | 578   | 78  | 63      | 54   |
| 28      | 2     | 100 | 156   | 53  | 367   | 42  | _     | _   | _       | _    |
| Deep    | 295   | 49  | 1 035 | 23  | 673   | 26  | 1 766 | 27  | 207     | 25   |
| Total   | 4 340 | 33  | 2 567 | 52  | 1 684 | 22  | 2 263 | 24  | 635     | 13   |

Table 8: Total numbers of fish, squid and scampi measured for length frequency distributions and biological samples from all tows (TAN1301). The total number of fish measured is sometimes greater than the sum of males and females because some fish were unsexed.

|                           | Species | Number       | Number      | Number       | Number of      |
|---------------------------|---------|--------------|-------------|--------------|----------------|
|                           | code    | measured     | measured    | measured     | biological     |
| Alfonsino                 | BYS     | Males<br>408 | Females 505 | Total<br>916 | samples<br>445 |
| Banded bellowsfish        | BBE     | 408          | 303<br>94   | 1 823        | _              |
|                           | CFA     | 128          | 94<br>160   | 359          | 13<br>61       |
| Banded rattail            |         |              |             |              |                |
| Banded stargazer          | BGZ     | 1            | 0           | 1            | 1              |
| Barracouta                | BAR     | 33           | 63          | 96<br>492    | 37             |
| Basketwork eel            | BEE     | 215          | 159         | 482          | 0              |
| Baxters lantern dogfish   | ETB     | 222          | 186         | 408          | 333            |
| Bigeye cardinalfish       | EPL     | 28           | 38          | 67           | 0              |
| Big-scale pomfret         | BSP     | 0            | 1           | 1            | 1              |
| Bigscaled brown slickhead | SBI     | 332          | 541         | 873          | 116            |
| Black ghost shark         | HYB     | 1            | 0           | 1            | 0              |
| Black oreo                | BOE     | 514          | 416         | 932          | 142            |
| Black javelinfish         | BJA     | 80           | 63          | 150          | 143            |
| Black slickhead           | BSL     | 73           | 119         | 482          | 20             |
| Blobfish                  | PSY     | 1            | 1           | 4            | 0              |
| Bluenose                  | BNS     | 6            | 6           | 12           | 11             |
| Bollons's rattail         | CBO     | 1 557        | 1 430       | 3 203        | 965            |
| Brown chimaera            | CHP     | 23           | 22          | 45           | 0              |
| Cape scorpionfish         | TRS     | 2            | 3           | 5            | 0              |
| Carpet shark              | CAR     | 1            | 2           | 3            | 3              |
| Common halosaur           | HPE     | 0            | 2           | 2            | 0              |
| Common roughy             | RHY     | 12           | 6           | 18           | 0              |
| Crested bellowsfish       | CBE     | 11           | 3           | 14           | 0              |
| Deepsea cardinalfish      | EPT     | 112          | 47          | 192          | 179            |
| Electric ray              | ERA     | 0            | 1           | 1            | 1              |
| Finless flounder          | MAN     | 0            | 0           | 1            | 0              |
| Four-rayed rattail        | CSU     | 33           | 108         | 1 731        | 0              |
| Frostfish                 | FRO     | 0            | 5           | 5            | 5              |
| Ghost shark               | GSH     | 1 438        | 1 551       | 2 997        | 867            |
| Giant stargazer           | GIZ     | 95           | 132         | 228          | 133            |
| Hairy conger              | HCO     | 6            | 12          | 23           | 0              |
| Hake                      | HAK     | 73           | 112         | 185          | 185            |
| Hapuku                    | HAP     | 6            | 6           | 12           | 11             |
| Hoki                      | HOK     | 7 785        | 10 204      | 18 022       | 2 174          |
| Humpback rattail          | CBA     | 0            | 14          | 16           | 9              |
| Javelin fish              | JAV     | 1 019        | 4 607       | 6 308        | 1 467          |
| Johnson's cod             | HJO     | 664          | 674         | 1 372        | 45             |
| Kaiyomaru rattail         | CKA     | 7            | 4           | 11           | 11             |
| Leafscale gulper shark    | CSQ     | 8            | 25          | 33           | 31             |
| Lemon sole                | LSO     | 19           | 36          | 64           | 34             |
| Ling                      | LIN     | 651          | 652         | 1 303        | 1 285          |
| Longfinned beryx          | BYD     | 2            | 1           | 3            | 3              |
| Longnose velvet dogfish   | CYP     | 391          | 444         | 836          | 706            |
| Longnose spookfish        | LCH     | 235          | 188         | 424          | 122            |
| Longnose deepsea skate    | PSK     | 0            | 2           | 2            | 0              |
| Lookdown dory             | LDO     | 1 584        | 1 604       | 3 209        | 1 516          |
| Lucifer dogfish           | ETL     | 117          | 140         | 270          | 83             |
| Mahia rattail             | CMA     | 59           | 66          | 131          | 53             |

# Table 8 (continued)

|                             | Species    | Number            | Number              | Number            | Number of    |
|-----------------------------|------------|-------------------|---------------------|-------------------|--------------|
|                             | code       | measured<br>Males | measured<br>Females | measured<br>Total | biological   |
| McMillan's rattail          | CMX        | 0                 | remaies 0           | 10tai             | samples<br>0 |
| Murray's rattail            | CMU        | 0                 | 0                   | 16                | 0            |
| Nezumia namatahi            | NNA        | 1                 | 2                   | 4                 | 3            |
|                             | NSD        | 21                | 0                   | 21                | 21           |
| Northern spiny dogfish      | CIN        |                   |                     |                   |              |
| Notable rattail             |            | 7                 | 34<br>143           | 335               | 0            |
| NZ southern arrow squid     | NOS        | 143               |                     | 307               | 35           |
| Oblique banded rattail      | CAS        | 124               | 1 384               | 1 979             | 1 349        |
| Oliver's rattail            | COL<br>OPE | 157<br>113        | 256<br>99           | 1 151<br>212      | 66<br>23     |
| Orange perch                | OPE        | 774               | 780                 | 1 617             | 543          |
| Orange roughy               |            |                   | 780<br>45           |                   |              |
| Owston's dogfish            | CYO        | 73                |                     | 118               | 96<br>512    |
| Pale ghost shark            | GSP        | 490               | 443                 | 950               | 513          |
| Pale toadfish               | TOP        | 0                 | 0                   | 2                 | 0            |
| Plunkets shark              | PLS        | 5                 | 2                   | 7                 | 5            |
| Prickly dogfish             | PDG        | 1                 | 6                   | 7                 | 7            |
| Red cod                     | RCO        | 224               | 140                 | 364               | 198          |
| Redbait                     | RBT        | 1                 | 0                   | 1                 | 1            |
| Ribaldo                     | RIB        | 134               | 70                  | 205               | 141          |
| Ribbonfish                  | AGR        | 0                 | 1                   | 1 120             | 0            |
| Ridge scaled rattail        | MCA        | 57                | 79                  | 138               | 59           |
| Roughhead rattail           | CHY        | 3                 | 2                   | 6                 | 6            |
| Rough skate                 | RSK        | 2                 | 1                   | 3                 | 2            |
| Ruby fish                   | RBY        | 1                 | 0                   | 1                 | 1            |
| Rudderfish                  | RUD        | 20                | 9                   | 29                | 24           |
| Scampi                      | SCI        | 41                | 23                  | 64                | 0            |
| School shark                | SCH        | 4                 | 1 205               | 10                | 10           |
| Sea perch                   | SPE        | 1 275             | 1 305               | 3 238             | 1 308        |
| Seal shark                  | BSH        | 33                | 35                  | 68                | 56           |
| Serrulate rattail           | CSE        | 73                | 32                  | 323               | 24           |
| Shovelnose spiny dogfish    | SND        | 560               | 838                 | 1 398             | 963          |
| Silver dory                 | SDO        | 37                | 27                  | 95<br>70          | 0            |
| Silver roughy               | SRH        | 18                | 8                   | 70                | 0            |
| Silver warehou              | SWA        | 496               | 597                 | 1 094             | 517          |
| Silverside                  | SSI        | 29                | 6                   | 382               | 0            |
| Slender jack mackerel       | JMM        | 2                 | 1                   | 4                 | 3            |
| Small-headed cod            | SMC        | 6                 | 2                   | 9                 | 0            |
| Smallscaled brown slickhead | SSM        | 256               | 234                 | 490               | 26           |
| Smooth oreo                 | SSO        | 353               | 367                 | 720               | 297          |
| Smooth skate                | SSK        | 21                | 21                  | 42                | 35           |
| Southern blue whiting       | SBW        | 58                | 48                  | 227               | 130          |
| Southern rays bream         | SRB        | 113               | 111                 | 227               | 161          |
| Spiky oreo                  | SOR        | 733               | 672                 | 1 433             | 314          |
| Spineback                   | SBK        | 42                | 393                 | 524               | 0            |
| Spiny dogfish               | SPD        | 250               | 1 001               | 1 259             | 554          |
| Spotty faced rattail        | CTH        | 22                | 39                  | 61                | 61           |
| Striate rattail             | CTR        | 0                 | 0                   | 5                 | 0            |
| Swollenhead conger          | SCO        | 3                 | 9                   | 27                | 0            |
| Tarakihi                    | NMP        | 4                 | 2                   | 6                 | 6            |
| Thin tongue cardinalfish    | EPM        | 9                 | 10                  | 102               | 0            |

# Table 8 (continued)

|                             | Species code | Number<br>measured | Number<br>measured | Number<br>measured | Number of biological |
|-----------------------------|--------------|--------------------|--------------------|--------------------|----------------------|
|                             | code         | Males              | Females            | Total              | samples              |
| Two saddle rattail          | CBI          | 65                 | 94                 | 240                | 111                  |
| Unicorn rattail             | WHR          | 28                 | 44                 | 72                 | 72                   |
| Velvet dogfish              | ZAS          | 1                  | 0                  | 1                  | 1                    |
| Violet cod                  | VCO          | 0                  | 0                  | 4                  | 0                    |
| Warty oreo                  | WOE          | 59                 | 53                 | 112                | 9                    |
| Warty squid (Onykia ingens) | MIQ          | 2                  | 1                  | 3                  | 0                    |
| White cardinalfish          | EPD          | 0                  | 5                  | 68                 | 0                    |
| White rattail               | WHX          | 247                | 233                | 488                | 78                   |
| White warehou               | WWA          | 312                | 218                | 541                | 363                  |
| Pacific spookfish           | RCH          | 42                 | 19                 | 61                 | 14                   |
| Total                       |              | 25 497             | 34 405             | 68 236             | 19 481               |

Table 9: Length-weight regression parameters\* used to scale length frequencies (all data from TAN1301).

| Species                 | a (intercept) | b (slope) | $r^2$ | n     | Length range (cm) |
|-------------------------|---------------|-----------|-------|-------|-------------------|
| Baxter's dogfish        | 0.004123      | 3.059520  | 0.98  | 322   | 25–77             |
| Black oreo              | 0.053393      | 2.706913  | 0.90  | 140   | 22-38             |
| Dark ghost shark        | 0.003747      | 3.119359  | 0.95  | 699   | 29–69             |
| Giant stargazer         | 0.014663      | 3.037573  | 0.99  | 127   | 10-81             |
| Hake                    | 0.001558      | 3.343141  | 0.99  | 180   | 39-129            |
| Hoki                    | 0.003099      | 2.987576  | 0.99  | 2 156 | 36–114            |
| Ling                    | 0.001105      | 3.323368  | 0.99  | 1 204 | 28-178            |
| Longnose velvet dogfish | 0.002363      | 3.148041  | 0.99  | 588   | 31–95             |
| Lookdown dory           | 0.024052      | 2.968930  | 0.99  | 1 343 | 11–57             |
| Orange roughy           | 0.055987      | 2.838198  | 0.99  | 541   | 9-41              |
| Pale ghost shark        | 0.005420      | 3.014748  | 0.98  | 488   | 32-89             |
| Ribaldo                 | 0.012288      | 2.968697  | 0.93  | 140   | 35–73             |
| Sea perch               | 0.012654      | 3.060484  | 0.99  | 1 052 | 11–48             |
| Silver warehou          | 0.022491      | 2.955869  | 0.91  | 516   | 35–56             |
| Smooth oreo             | 0.038374      | 2.836293  | 0.98  | 256   | 16-50             |
| Spiny dogfish           | 0.000699      | 3.435752  | 0.95  | 526   | 55–97             |
| Spiky oreo              | 0.022260      | 3.003344  | 0.98  | 308   | 11–42             |
| White warehou           | 0.015363      | 3.096525  | 0.99  | 363   | 16–60             |

<sup>\*</sup> W =  $aL^b$  where W is weight (g) and L is length (cm);  $r^2$  is the correlation coefficient, n is the number of samples.

Table 10: Numbers of fish measured at each reproductive stage. MD, middle depths staging method; SS, Cartilagenous fish gonad stages - see footnote below table for staging details. –, no data.

| Common name            | Sex            | Staging |        |        |        |         | Reprod | uctive s | stage |         |
|------------------------|----------------|---------|--------|--------|--------|---------|--------|----------|-------|---------|
|                        |                | method  | 1      | 2      | 3      | 4       | 5      | 6        | 7     | Total   |
| Alfonsino              | Male           | MD      | 5      | 9      | _      | _       | _      | _        | _     | 14      |
|                        | Female         |         | _      | 16     | 1      | _       | _      | _        | _     | 17      |
| Barracouta             | Male           | MD      | _      | 1      | 1      | _       | _      | _        | _     | 2       |
|                        | Female         |         | _      | _      | _      | 1       | _      | _        | _     | 1       |
| Baxter's dogfish       | Male           | SS      | 57     | 63     | 52     | _       | _      | _        | _     | 172     |
|                        | Female         |         | 28     | 74     | 16     | 5       | 22     | 7        | _     | 152     |
| Black oreo             | Male           | MD      | 40     | 20     | 3      | _       | 1      | 1        | _     | 65      |
|                        | Female         |         | 30     | 6      | 19     | _       | _      | _        | _     | 55      |
| Carpet shark           | Male           | SS      | _      | _      | 1      | _       | _      | _        | _     | 1       |
|                        | Female         |         | 2      | _      | _      | _       | _      | _        | _     | 2       |
| Dark ghost shark       | Male           | SS      | 140    | 109    | 128    | _       | _      | _        | _     | 377     |
|                        | Female         |         | 173    | 98     | 43     | 18      | _      | _        | _     | 332     |
| Giant stargazer        | Male           | MD      | _      | 1      | _      | _       | _      | _        | _     | 1       |
|                        | Female         |         | 1      | 5      | 1      | _       | _      | 6        | 1     | 14      |
| Hake                   | Male           | MD      | 29     | 9      | 5      | 9       | 19     | 1        | 1     | 73      |
|                        | Female         |         | 17     | 41     | 41     | 2       | 1      | 1        | 9     | 112     |
| Hapuku                 | Male           | MD      | 1      | _      | _      | _       | _      | _        | _     | 1       |
|                        | Female         |         | 1      | 1      | _      | _       | _      | _        | _     | 2       |
| Hoki                   | Male           | MD      | 366    | 376    | 1      | 1       | _      | 1        | _     | 745     |
| TT 1 1 44 "1           | Female         | MD      | 515    | 899    | _      | _       | _      | _        | 1     | 1415    |
| Humpback rattail       | Male           | MD      | _      | _      | _      | _       | _      | _        | _     | _       |
| IZ . '                 | Female         | MD      | 2      | 4      | 1      | _       | _      | _        | _     | 7       |
| Kaiyomaru rattail      | Male           | MD      | 1      | 6      | _      | _       | _      | _        | _     | 7       |
| I andonala audum       | Female<br>Male | SS      | 3      | -<br>1 | 4 3    | _       | _      | _        | _     | 4<br>7  |
| Leafscale gulper shark | Female         | သ       | 3      | 11     | 3<br>7 | _       | 1      | _        |       | 22      |
| Ling                   | Male           | MD      | 258    | 234    | 56     | -<br>71 | _      | _        | _     | 619     |
| Ling                   | Female         | MID     | 273    | 345    | 6      | 3       | _      | _        | _     | 627     |
| Longnose spookfish     | Male           | SS      | 17     | 14     | 26     | _       | _      | _        | _     | 47      |
| Longhose spooknish     | Female         | dd      | 24     | 7      | 5      | 11      | _      | _        |       | 47      |
| Longnose velvet        | Male           | SS      | 149    | 66     | 55     | _       | _      | _        | _     | 270     |
| dogfish                | Female         | 22      | 180    | 99     | 46     | 7       | 3      | 1        | _     | 336     |
| Lookdown dory          | Male           | MD      | 2      | 2      | 7      | 19      | _      | _        | _     | 30      |
|                        | Female         |         | 20     | 2      | 42     | _       | _      | _        | 12    | 76      |
| Lucifer dogfish        | Male           | SS      | 11     | 22     | 15     | _       | _      | _        | _     | 48      |
| <b>U</b>               | Female         |         | 12     | 14     | 7      | 1       | _      | _        | _     | 34      |
| Mahia rattail          | Male           | MD      | _      | 5      | _      | _       | _      | _        | _     | 5       |
|                        | Female         |         | 5      | 9      | _      | _       | _      | _        | _     | 14      |
| Nezumia namatahi       | Male           | MD      | _      | _      | _      | _       | _      | _        | _     | _       |
|                        | Female         |         | _      | 1      | 1      | _       | _      | _        | _     | 2       |
| Northern spiny         | Male           | SS      | _      | 21     | _      | _       | _      | _        | _     | 21      |
| dogfish                | Female         |         | _      | _      | _      | _       | _      | _        | _     | _       |
| Orange roughy          | Male           | MD      | 127    | 90     | 17     | _       | _      | _        | _     | 234     |
|                        | Female         |         | 99     | 54     | 142    | _       | _      | _        | _     | 295     |
| Pale ghost shark       | Male           | SS      | 126    | 25     | 137    | _       | _      | _        | _     | 288     |
|                        | Female         | ~~      | 101    | 50     | 30     | 29      | 1      | _        | _     | 211     |
| Plunket's shark        | Male           | SS      | 3      | _      | _      | _       | _      | _        | _     | 3       |
| Dai alder de c'i de    | Female         | aa      | 1      | _      | _<br>1 | 1       | _      | _        | _     | 2       |
| Prickly dogfish        | Male           | SS      | _      | _      | 1      | -       | _      | _        | _     | 1       |
| Red cod                | Female<br>Male | MD      | -<br>1 | 2<br>8 | -<br>1 | 2       | _      | _        | _     | 4<br>10 |
| Neu Cou                | Female         | MID     | 1      | 6      | 1<br>_ | _       | _      | 1        | 3     | 10      |
|                        | Temate         |         | 1      | U      | _      | _       | _      | 1        | 3     | 11      |

Table 10 (continued)

| Common name         | Sex    | Staging |     |     |     |    | Reprod | uctive s | stage | Total |
|---------------------|--------|---------|-----|-----|-----|----|--------|----------|-------|-------|
|                     |        | method  | 1   | 2   | 3   | 4  | 5      | 6        | 7     |       |
|                     |        |         |     |     |     |    |        |          |       |       |
| Ribaldo             | Male   | MD      | 1   | 9   | 9   | _  | _      | _        | _     | 19    |
|                     | Female |         | 2   | 6   | 1   | _  | _      | _        | 1     | 10    |
| Roughhead rattail   | Male   | MD      | _   | 8   | 2   | _  | _      | _        | _     | 10    |
| (C. acanthiger)     | Female |         | 2   | 16  | 4   | _  | _      | _        | _     | 22    |
| Rough skate         | Male   | SS      | 2   | _   | _   | _  | _      | _        | _     | 2     |
|                     | Female |         | _   | _   | _   | _  | _      | _        | _     | 0     |
| Rudderfish          | Male   | MD      | 1   | _   | 1   | 1  | _      | _        | _     | 3     |
|                     | Female |         | _   | 1   | _   | _  | _      | _        | _     | 1     |
| School shark        | Male   | SS      | _   | 1   | 1   | _  | _      | _        | _     | 2     |
|                     | Female |         | _   | _   | _   | _  | _      | 3        | _     | 3     |
| Sea perch           | Male   | MD      | _   | 6   | 2   | _  | _      | _        | _     | 8     |
|                     | Female |         | 1   | 5   | _   | _  | _      | _        | _     | 6     |
| Seal Shark          | Male   | SS      | 19  | 2   | 5   | _  | _      | _        | _     | 26    |
|                     | Female |         | 24  | 2   | _   | _  | _      | 2        | _     | 28    |
| Serrulate rattail   | Male   | MD      | _   | 8   | _   | _  | _      | _        | _     | 8     |
|                     | Female |         | _   | 2   | 1   | _  | _      | _        | _     | 3     |
| Shovelnose dogfish  | Male   | SS      | 90  | 95  | 152 | _  | _      | _        | _     | 337   |
|                     | Female |         | 174 | 310 | 39  | 8  | 1      | 1        | _     | 533   |
| Silver warehou      | Male   | MD      | _   | 31  | _   | _  | _      | _        | _     | 31    |
|                     | Female |         | _   | 37  | 14  | _  | _      | _        | _     | 51    |
| Smooth oreo         | Male   | MD      | 81  | 15  | 18  | 12 | 15     | 7        | 3     | 151   |
|                     | Female |         | 81  | 18  | 32  | 2  | _      | _        | 8     | 141   |
| Smooth skate        | Male   | SS      | 10  | 3   | 5   | _  | _      | _        | _     | 18    |
|                     | Female |         | 10  | 4   | 1   | _  | _      | _        | _     | 15    |
| Smooth skin dogfish | Male   | SS      | 3   | 14  | 42  | _  | _      | _        | _     | 59    |
| C                   | Female |         | 11  | 17  | 6   | 2  | 1      | _        | _     | 37    |
| Spiky oreo          | Male   | MD      | 7   | 13  | 1   | 2  | _      | _        | 6     | 29    |
| 1 7                 | Female |         | 6   | 2   | 26  | 1  | _      | _        | 15    | 50    |
| Spiny dogfish       | Male   | SS      | 1   | 84  | 28  | _  | _      | _        | _     | 113   |
| 1 7 0               | Female |         | 35  | 124 | 25  | 84 | 157    | 3        | _     | 428   |
| Tarakihi            | Male   | MD      | _   | _   | _   | _  | _      | _        | _     | _     |
|                     | Female |         | 1   | _   | _   | _  | _      | _        | _     | 1     |
| Unicorn rattail     | Male   | MD      | 6   | 13  | 9   | _  | _      | _        | _     | 28    |
|                     | Female |         | 2   | 6   | 36  | _  | _      | _        | _     | 44    |
| Velvet dogfish      | Male   | SS      | _   | _   | 1   | _  | _      | _        | _     | 1     |
|                     | Female |         | _   | _   | _   | _  | _      | _        | _     | _     |
| Warty oreo          | Male   | MD      | _   | _   | _   | _  | 1      | _        | _     | 1     |
| , are or or or      | Female | 1,12    | _   | 1   | 2   | _  | _      | _        | _     | 3     |
| White warehou       | Male   | MD      | 1   | 13  | _   | _  | _      | _        | _     | 14    |
|                     | Female | 1,110   | _   | 2   | 3   | _  | _      | _        | _     | 5     |
| Pacific spookfish   | Male   | SS      | 4   | 2   | 7   | _  | _      | _        | _     | 13    |
| i deine spooknish   | Female | 55      | _   | 1   | ,   | _  | _      | _        | _     | 13    |
|                     | Temate |         | _   | 1   | _   | _  | _      | _        | _     | 1     |

Middle depths gonad stages: 1, immature; 2, resting; 3, ripening; 4, ripe; 5, running ripe; 6, partially spent; 7, spent. (after Hurst et al. 1992).

Cartilaginous fish gonad stages: male: 1, immature; 2, maturing; 3, mature: female: 1, immature; 2, maturing; 3, mature; 4, gravid I; 5, gravid II; 6, post-partum.

Table 11: Percent occurrence of seven mark types during the 2013 Chatham Rise trawl survey compared to results from previous surveys.

|               |      |     |               |        |       | Pelagic marks | Bottom marks |       |        |  |
|---------------|------|-----|---------------|--------|-------|---------------|--------------|-------|--------|--|
| Acoustic file | Year | n   | Surface Layer | School | Layer | Cloud         | Layer        | Cloud | School |  |
| Day trawl     | 2003 | 123 | 64            | 41     | 85    | 55            | 47           | 47    | 22     |  |
|               | 2005 | 111 | 57            | 37     | 93    | 31            | 60           | 42    | 23     |  |
|               | 2006 | 102 | 59            | 40     | 88    | 44            | 67           | 36    | 16     |  |
|               | 2007 | 112 | 71            | 42     | 77    | 45            | 46           | 46    | 8      |  |
|               | 2008 | 110 | 63            | 39     | 83    | 56            | 58           | 41    | 9      |  |
|               | 2009 | 110 | 63            | 40     | 78    | 53            | 75           | 33    | 13     |  |
|               | 2010 | 111 | 59            | 32     | 73    | 59            | 73           | 41    | 6      |  |
|               | 2011 | 102 | 61            | 37     | 71    | 61            | 50           | 50    | 6      |  |
|               | 2012 | 115 | 82            | 31     | 79    | 64            | 82           | 41    | 5      |  |
|               | 2013 | 107 | 41            | 34     | 92    | 83            | 72           | 57    | 13     |  |
| Day steam     | 2003 | 66  | 80            | 55     | 97    | 49            | 83           | 35    | 24     |  |
|               | 2005 | 78  | 71            | 45     | 95    | 37            | 76           | 45    | 35     |  |
|               | 2006 | 79  | 76            | 47     | 95    | 42            | 87           | 37    | 16     |  |
|               | 2007 | 81  | 78            | 44     | 91    | 40            | 69           | 43    | 15     |  |
|               | 2008 | 82  | 67            | 46     | 91    | 48            | 77           | 28    | 20     |  |
|               | 2009 | 99  | 63            | 56     | 80    | 45            | 81           | 42    | 21     |  |
|               | 2010 | 109 | 71            | 50     | 79    | 63            | 82           | 37    | 8      |  |
|               | 2011 | 100 | 80            | 32     | 79    | 76            | 59           | 60    | 4      |  |
|               | 2012 | 130 | 92            | 38     | 91    | 68            | 86           | 44    | 14     |  |
|               | 2013 | 127 | 44            | 20     | 93    | 90            | 76           | 60    | 8      |  |
| Night steam   | 2003 | 44  | 100           | 14     | 18    | 93            | 30           | 96    | 2      |  |
| and trawl     | 2005 | 30  | 100           | 33     | 53    | 77            | 57           | 83    | 7      |  |
|               | 2006 | 33  | 94            | 15     | 48    | 88            | 45           | 85    | 6      |  |
|               | 2007 | 51  | 100           | 10     | 25    | 92            | 20           | 80    | 4      |  |
|               | 2008 | 46  | 100           | 2      | 20    | 83            | 24           | 87    | 2      |  |
|               | 2009 | 93  | 96            | 11     | 18    | 78            | 40           | 68    | 4      |  |
|               | 2010 | 117 | 97            | 6      | 19    | 86            | 43           | 77    | 5      |  |
|               | 2011 | 125 | 97            | 6      | 26    | 90            | 26           | 74    | 2      |  |
|               | 2012 | 121 | 99            | 5      | 20    | 93            | 39           | 74    | 2      |  |
|               | 2013 | 94  | 96            | 14     | 64    | 94            | 51           | 66    | 5      |  |

Table 12: Average trawl catch (excluding benthic organisms) and acoustic backscatter from daytime core tows where acoustic data quality was suitable for echo integration on the Chatham Rise, 2001–13.

|      |            |                              |             |             | Average acoustic backscatter (m <sup>2</sup> km <sup>-2</sup> ) |                 |  |  |  |  |
|------|------------|------------------------------|-------------|-------------|-----------------------------------------------------------------|-----------------|--|--|--|--|
| Year | No. of     | Average trawl                | Bottom 10 m | Bottom 50 m | All bottom marks                                                | Entire echogram |  |  |  |  |
|      | recordings | catch (kg km <sup>-2</sup> ) |             |             | (to 100 m)                                                      |                 |  |  |  |  |
| 2001 | 117        | 1 858                        | 3.63        | 22.39       | 31.80                                                           | 57.60           |  |  |  |  |
| 2002 | 102        | 1 849                        | 4.50        | 18.39       | 22.60                                                           | 49.32           |  |  |  |  |
| 2003 | 117        | 1 508                        | 3.43        | 19.56       | 29.41                                                           | 53.22           |  |  |  |  |
| 2005 | 86         | 1 783                        | 2.78        | 12.69       | 15.64                                                           | 40.24           |  |  |  |  |
| 2006 | 88         | 1 782                        | 3.24        | 13.19       | 19.46                                                           | 48.86           |  |  |  |  |
| 2007 | 100        | 1 510                        | 2.00        | 10.83       | 15.40                                                           | 41.07           |  |  |  |  |
| 2008 | 103        | 2 012                        | 2.03        | 9.65        | 13.23                                                           | 37.98           |  |  |  |  |
| 2009 | 105        | 2 480                        | 2.98        | 15.89       | 25.01                                                           | 58.88           |  |  |  |  |
| 2010 | 90         | 2 205                        | 1.87        | 10.80       | 17.68                                                           | 44.49           |  |  |  |  |
| 2011 | 73         | 1 997                        | 1.79        | 8.72        | 12.94                                                           | 34.79           |  |  |  |  |
| 2012 | 85         | 1 793                        | 2.60        | 15.96       | 26.36                                                           | 54.77           |  |  |  |  |
| 2013 | 76         | 2 323                        | 3.74        | 15.87       | 27.07                                                           | 56.89           |  |  |  |  |

Table 13: Estimates of the proportion of total day backscatter in each stratum and year on the Chatham Rise which is assumed to be mesopelagic fish (p(meso)s). Estimates were derived from the observed proportion of night backscatter in the upper 200 m corrected for the proportion of backscatter estimated to be in the surface acoustic deadzone.

|      |           |           |           | Stratum   |
|------|-----------|-----------|-----------|-----------|
| Year | Northeast | Northwest | Southeast | Southwest |
| 2001 | 0.64      | 0.83      | 0.81      | 0.88      |
| 2002 | 0.58      | 0.78      | 0.66      | 0.86      |
| 2003 | 0.67      | 0.82      | 0.81      | 0.77      |
| 2005 | 0.72      | 0.83      | 0.73      | 0.69      |
| 2006 | 0.69      | 0.77      | 0.76      | 0.80      |
| 2007 | 0.67      | 0.85      | 0.73      | 0.80      |
| 2008 | 0.61      | 0.64      | 0.84      | 0.85      |
| 2009 | 0.58      | 0.75      | 0.83      | 0.86      |
| 2010 | 0.48      | 0.64      | 0.76      | 0.63      |
| 2011 | 0.63      | 0.49      | 0.76      | 0.54      |
| 2012 | 0.40      | 0.52      | 0.68      | 0.79      |
| 2013 | 0.34      | 0.50      | 0.54      | 0.66      |

Table 14: Mesopelagic indices for the Chatham Rise. Indices were derived by multiplying the total backscatter observed at each daytime trawl station by the estimated proportion of night-time backscatter in the same sub-area observed in the upper 200 m (see Table 13) corrected for the estimated proportion in the surface deadzone (from O'Driscoll et al. 2009). Unstratified indices for the Chatham Rise were calculated as the unweighted average over all available acoustic data. Stratified indices were obtained as the weighted average of stratum estimates, where weighting was the proportional area of the stratum (northwest 11.3% of total area, southwest 18.7%, northeast 33.6%, southeast 36.4%).

|         |      |              |    |           |    |       |           |      |           | Acoustic index (m <sup>2</sup> km <sup>-2</sup> ) |           |      |            |  |
|---------|------|--------------|----|-----------|----|-------|-----------|------|-----------|---------------------------------------------------|-----------|------|------------|--|
| Survey  | Year | Unstratified |    | Northeast |    | North | Northwest |      | Southeast |                                                   | Southwest |      | Stratified |  |
|         | _    | Mean         | CV | Mean      | CV | Mean  | CV        | Mean | CV        | Mean                                              | CV        | Mean | CV         |  |
| TAN0101 | 2002 | 47.1         | 8  | 21.8      | 11 | 61.1  | 13        | 36.8 | 12        | 92.6                                              | 16        | 44.9 | 8          |  |
| TAN0201 | 2003 | 35.8         | 6  | 25.1      | 11 | 40.3  | 11        | 29.6 | 13        | 54.7                                              | 13        | 34.0 | 7          |  |
| TAN0301 | 2004 | 40.6         | 10 | 30.3      | 23 | 32.0  | 12        | 52.4 | 19        | 53.9                                              | 11        | 42.9 | 10         |  |
| TAN0501 | 2005 | 30.4         | 7  | 28.4      | 12 | 44.5  | 21        | 25.2 | 8         | 29.5                                              | 23        | 29.3 | 7          |  |
| TAN0601 | 2006 | 37.0         | 6  | 30.7      | 10 | 47.9  | 12        | 38.1 | 12        | 36.7                                              | 19        | 36.4 | 7          |  |
| TAN0701 | 2007 | 32.4         | 7  | 23.0      | 10 | 43.3  | 12        | 27.2 | 13        | 35.9                                              | 20        | 29.2 | 7          |  |
| TAN0801 | 2008 | 29.1         | 6  | 17.8      | 5  | 27.9  | 19        | 38.1 | 10        | 36.2                                              | 12        | 29.8 | 6          |  |
| TAN0901 | 2009 | 44.7         | 10 | 22.4      | 22 | 54.3  | 12        | 39.3 | 16        | 84.8                                              | 18        | 43.8 | 9          |  |
| TAN1001 | 2010 | 27.0         | 8  | 16.5      | 11 | 33.4  | 11        | 35.1 | 17        | 34.0                                              | 24        | 28.5 | 10         |  |
| TAN1101 | 2011 | 21.4         | 9  | 23.4      | 15 | 27.2  | 14        | 12.6 | 23        | 15.8                                              | 17        | 18.5 | 9          |  |
| TAN1201 | 2012 | 30.8         | 8  | 17.6      | 13 | 41.1  | 34        | 33.5 | 11        | 51.1                                              | 12        | 32.3 | 8          |  |
| TAN1301 | 2013 | 28.8         | 7  | 15.5      | 15 | 45.9  | 12        | 27.3 | 13        | 31.7                                              | 13        | 26.3 | 7          |  |

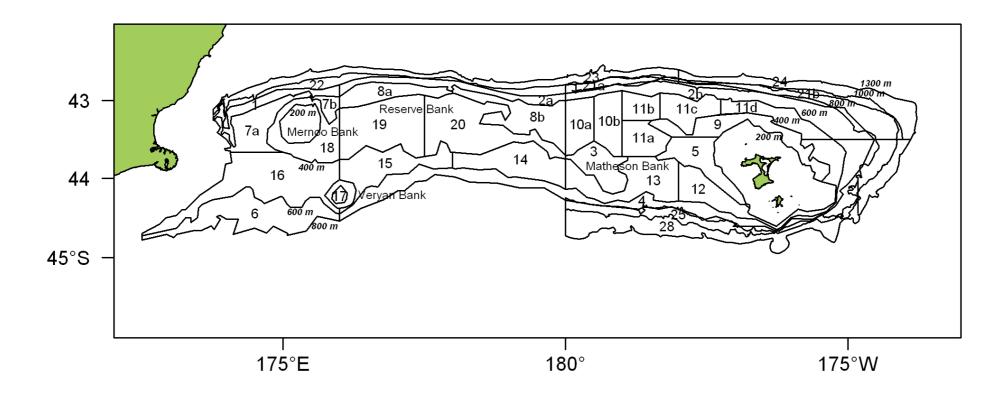



Figure 1: Chatham Rise trawl survey area showing stratum boundaries.

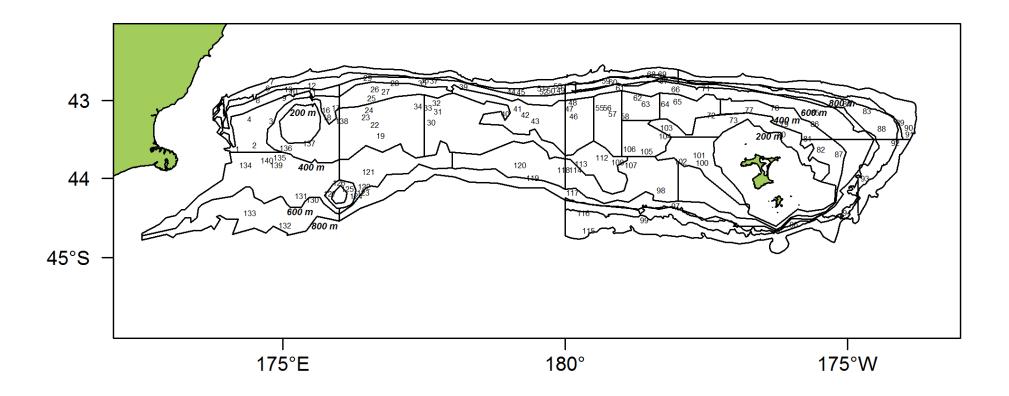



Figure 2: Trawl survey area showing positions of valid biomass stations (n = 123 stations) for TAN1301. In this and subsequent figures actual stratum boundaries are drawn for the deepwater strata. These boundaries sometimes overlap with existing core survey stratum boundaries.

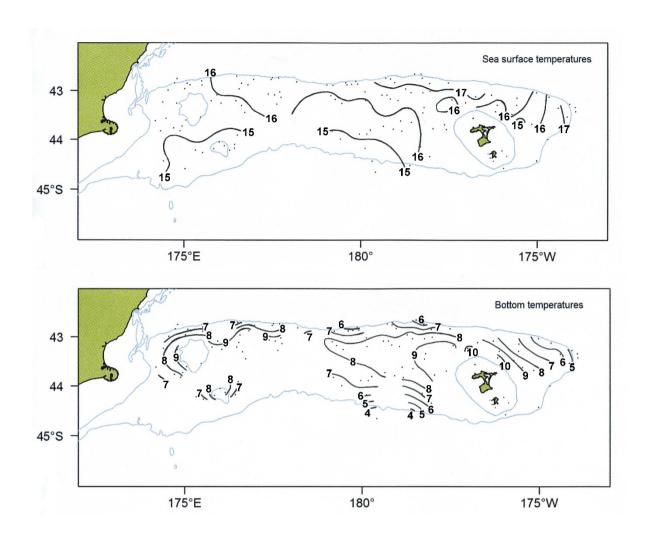
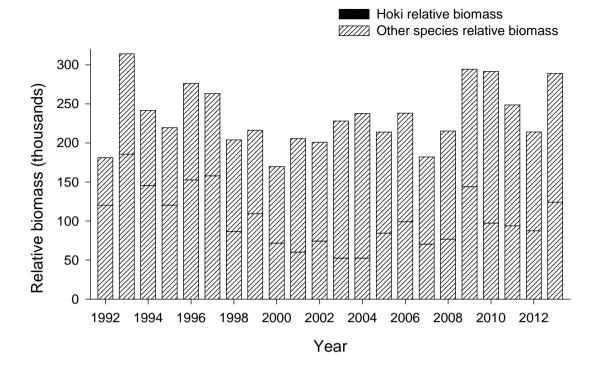




Figure 3: Positions of sea surface and bottom temperature recordings and approximate location of isotherms ( $^{\circ}$ C) interpolated by eye for TAN1301. The temperatures shown are from the calibrated Seabird CTD recordings made during each tow.



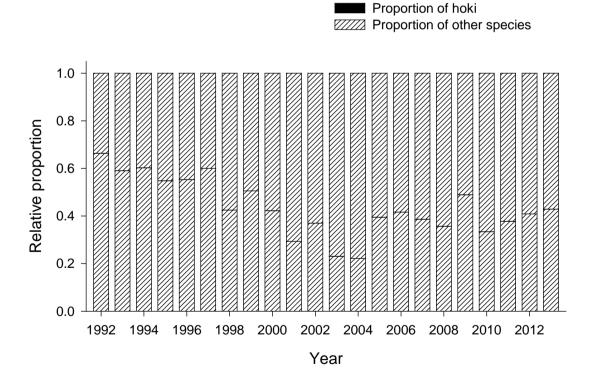



Figure 4: Relative biomass (top panel) and relative proportions of hoki and 30 other key species (lower panel) from trawl surveys of the Chatham Rise, January 1992–2013 (core strata only).

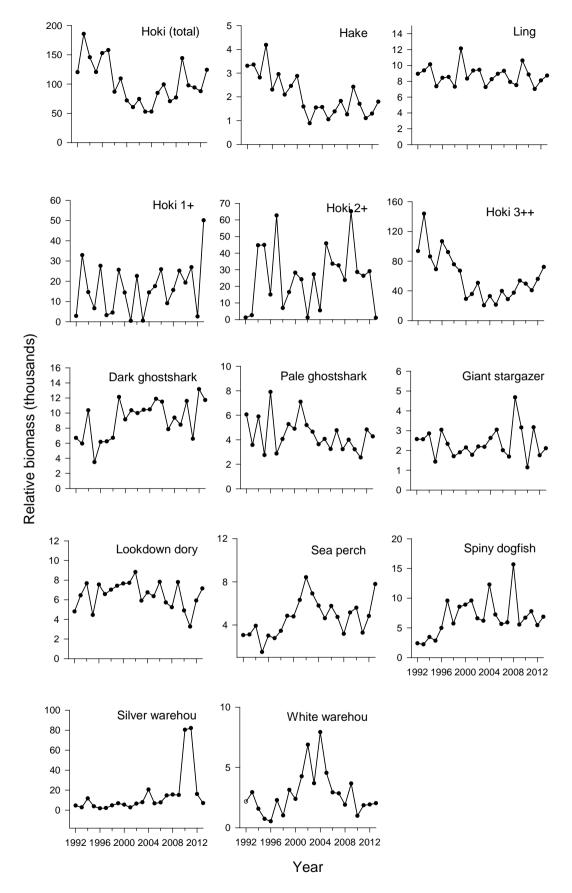



Figure 5: Relative biomass estimates (thousands of tonnes) of important species sampled by annual trawl surveys of the Chatham Rise, January 1992–2013 (core strata only).

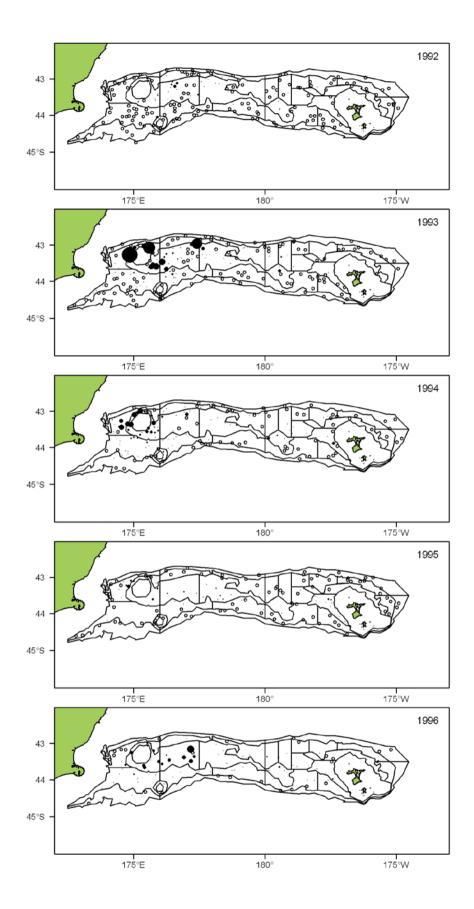



Figure 6a: Hoki 1+ catch distribution 1992–2013. Filled circle area is proportional to catch rate (kg.km $^2$ ). Open circles are zero catch. Maximum catch rate in series is 30 850 kg.km $^2$ .

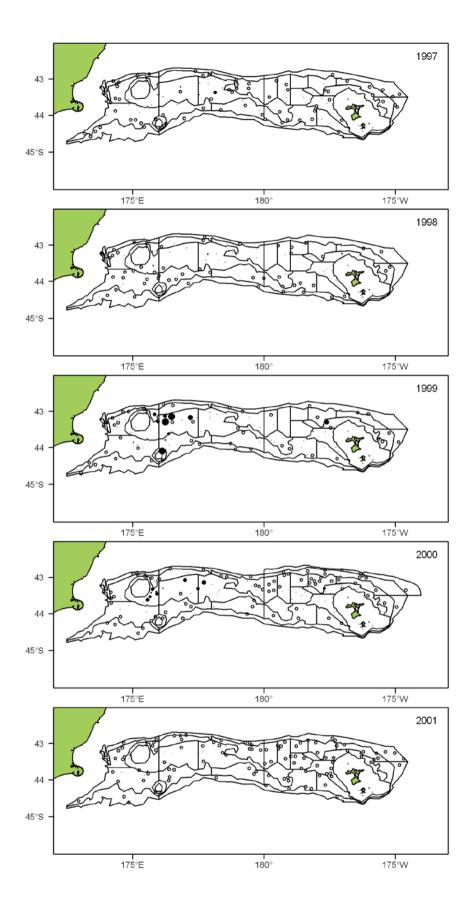



Figure 6a (continued)

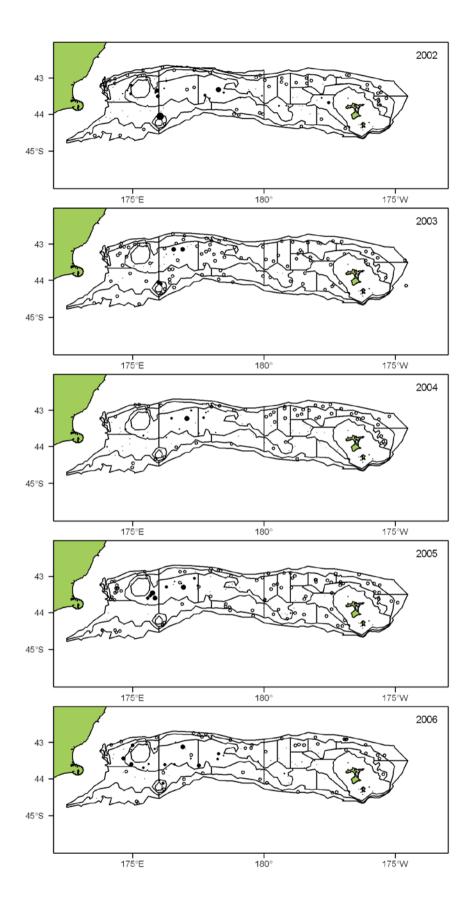



Figure 6a (continued)

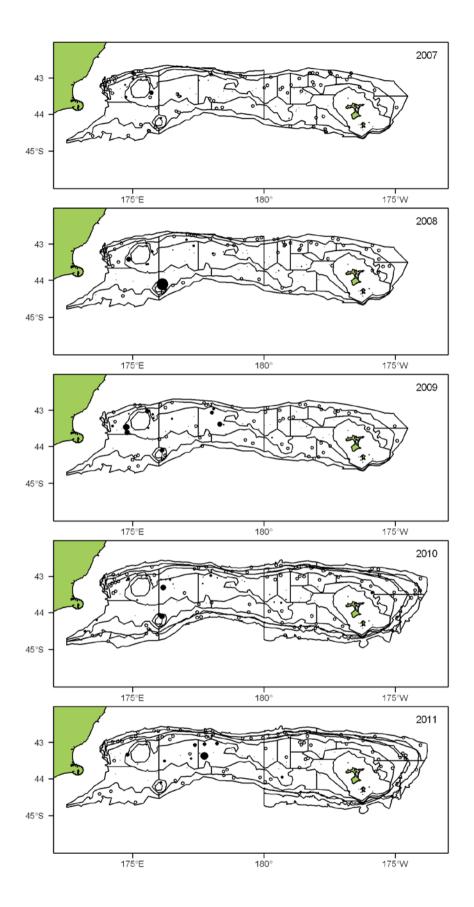
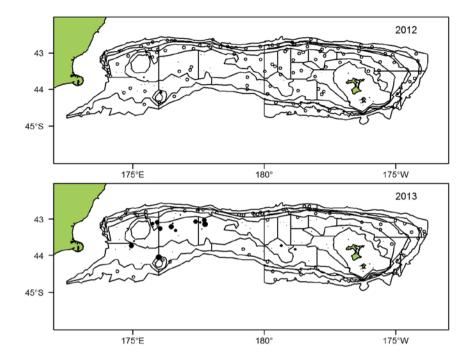




Figure 6a (continued)



## Figure 6a (continued)

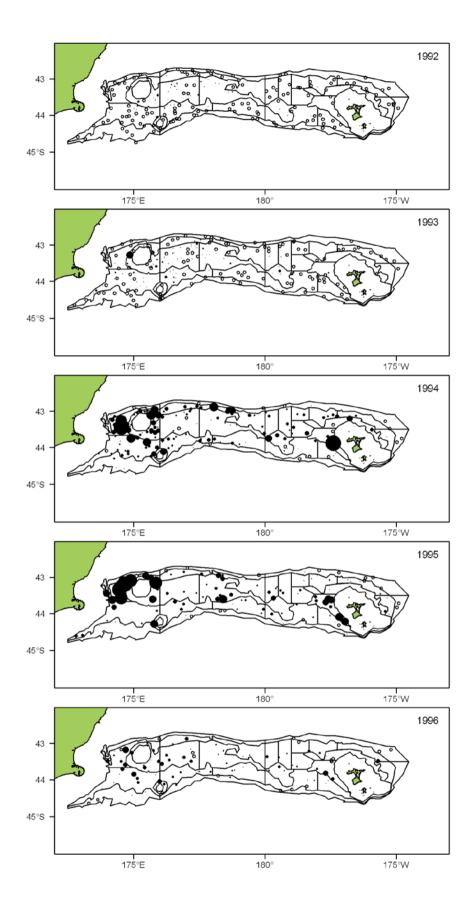



Figure 6b: Hoki 2+ catch distribution 1992–2013. Filled circle area is proportional to catch rate (kg.km $^2$ ). Open circles are zero catch. Maximum catch rate in series is 6791 kg.km $^2$ .

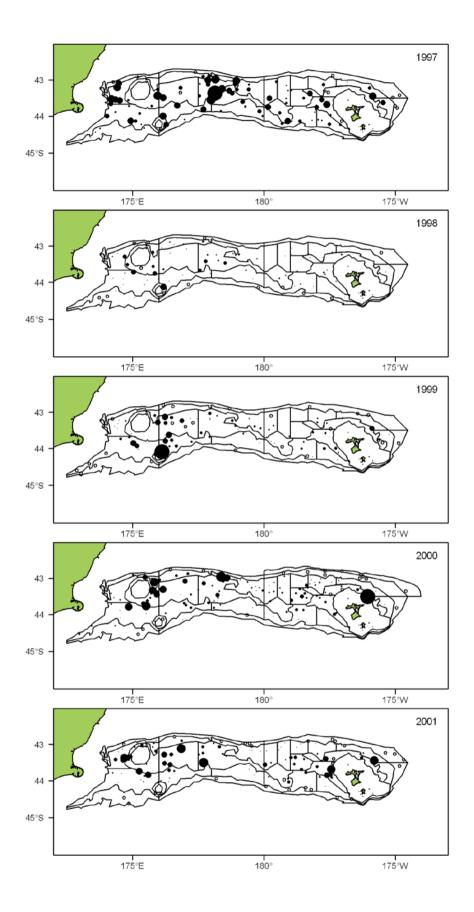



Figure 6b (continued)

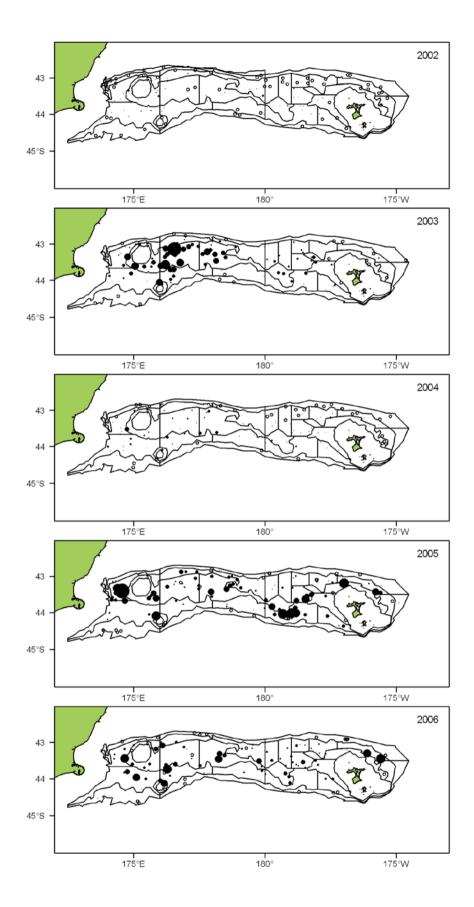



Figure 6b (continued)

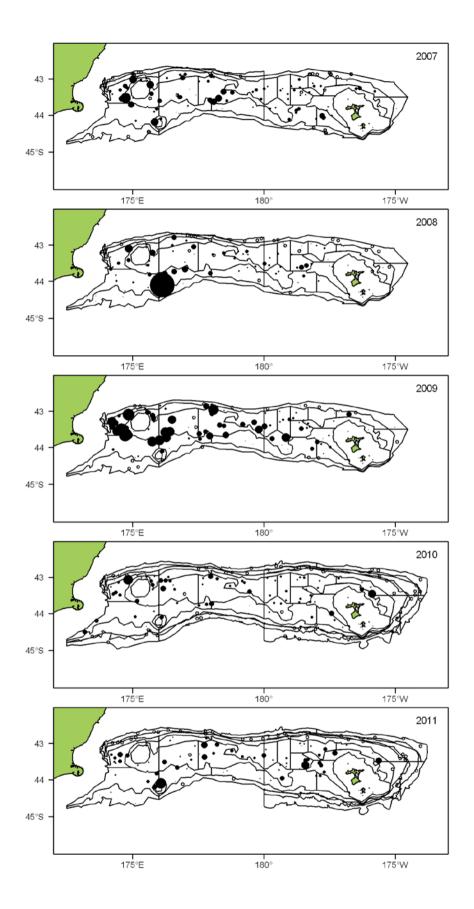
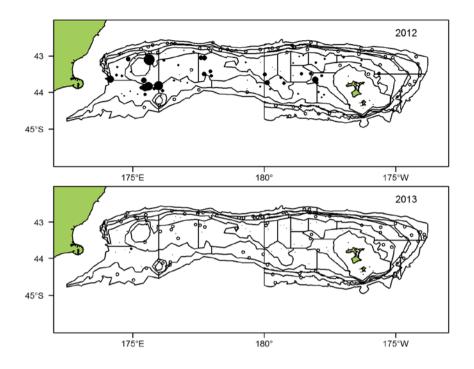




Figure 6b (continued)



## Figure 6b (continued)

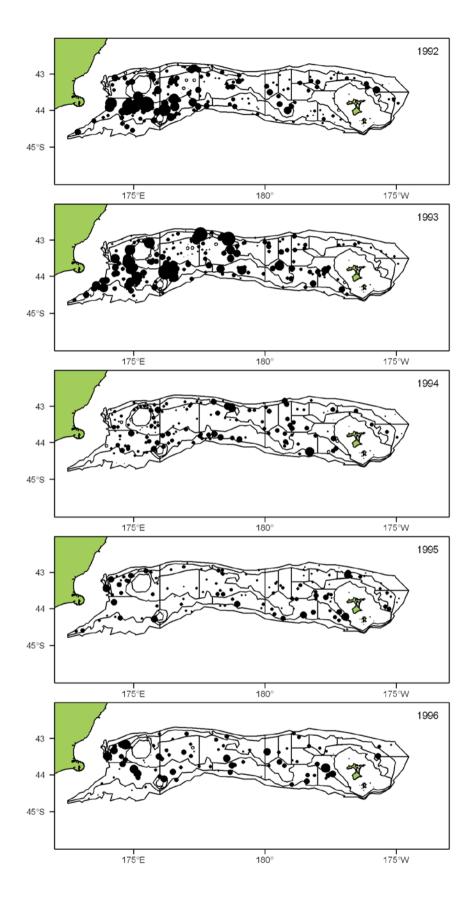



Figure 6c: Hoki 3++ catch distribution. 1992–2013. Filled circle area is proportional to catch rate (kg.km $^2$ ). Open circles are zero catch. Maximum catch rate in series is 11 177 kg.km $^2$ .

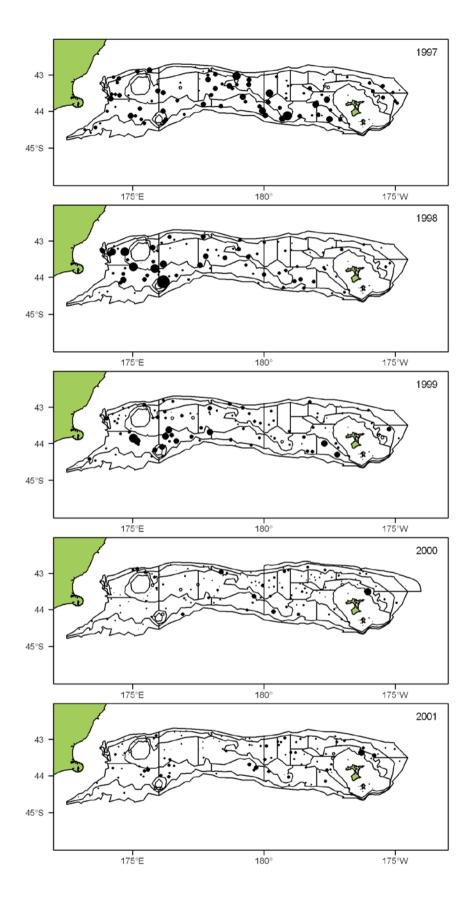



Figure 6c (continued)

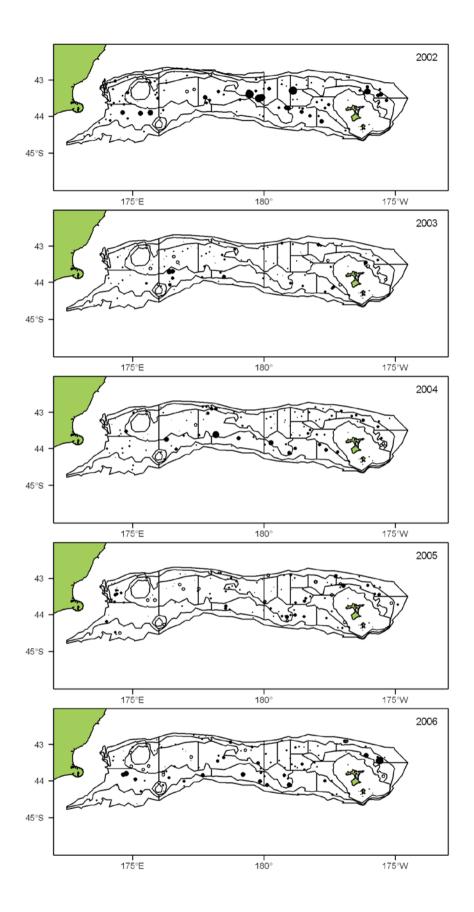



Figure 6c (continued)

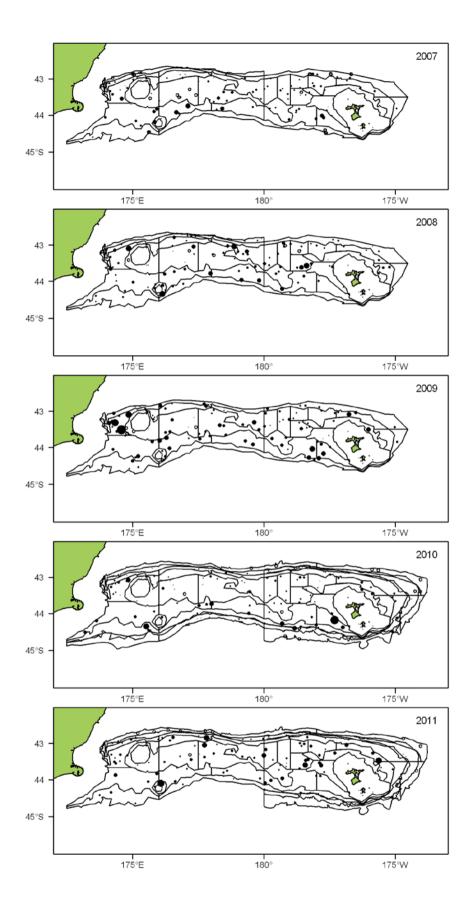



Figure 6c (continued)

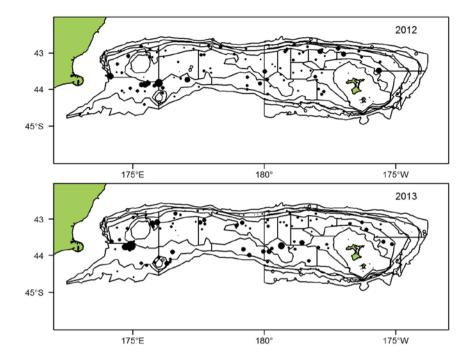



Figure 6c (continued)

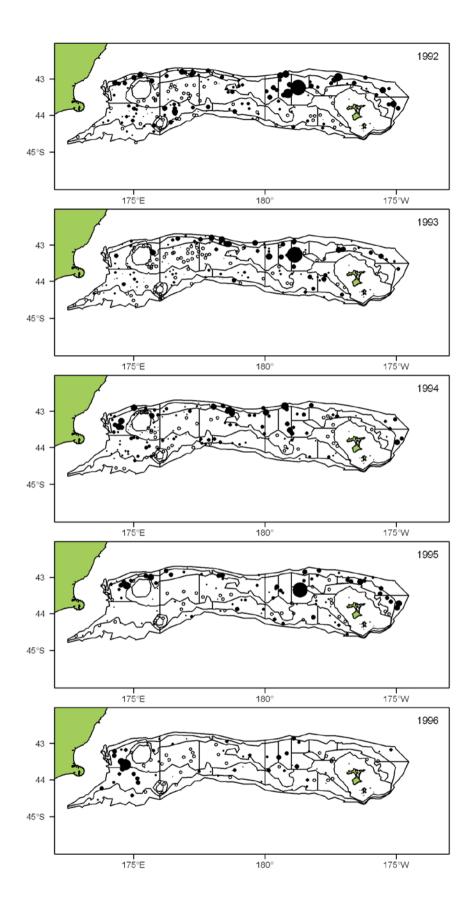



Figure 7: Hake catch distribution 1992–2013. Filled circle area is proportional to catch rate (kg.km $^{-2}$ ). Open circles are zero catch. Maximum catch rate in series is 620 kg.km $^{-2}$ .

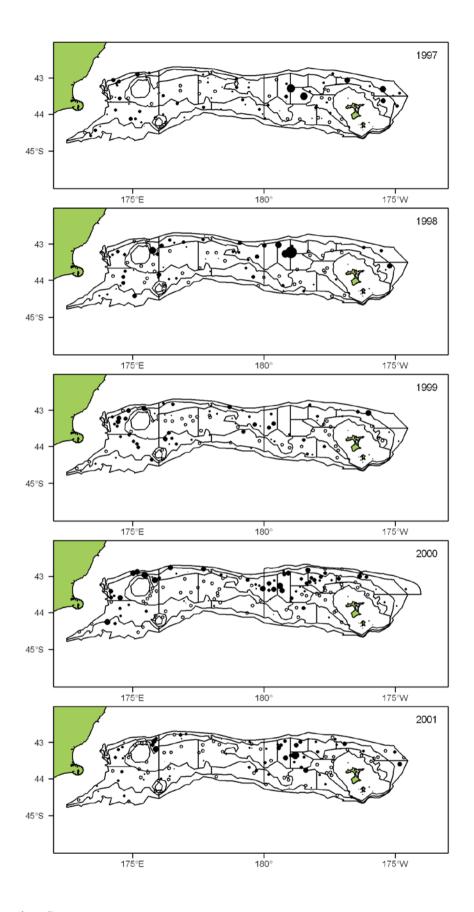



Figure 7 (continued)

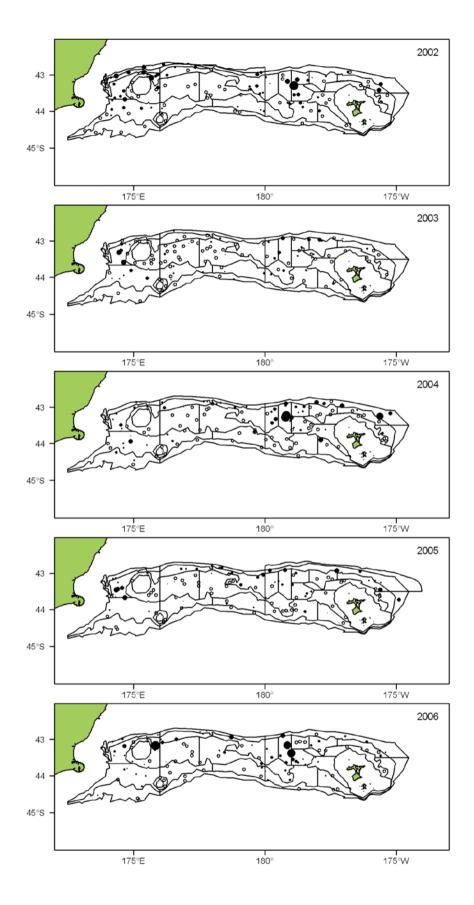



Figure 7 (continued)

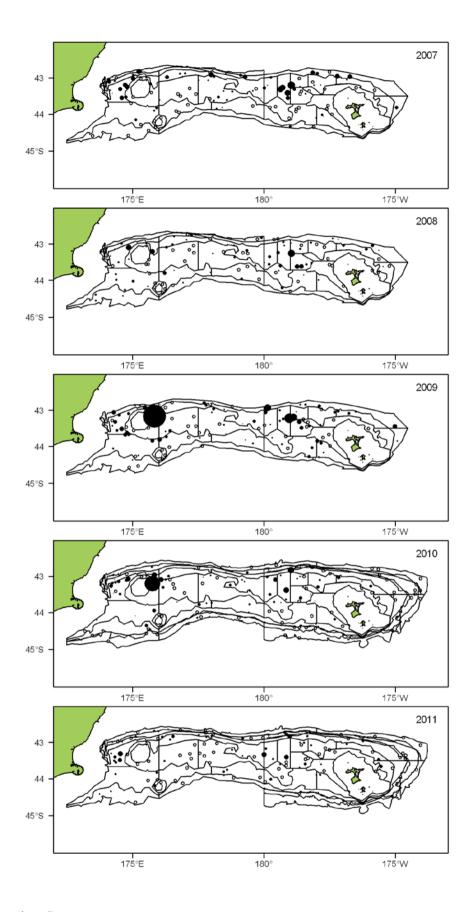



Figure 7 (continued)

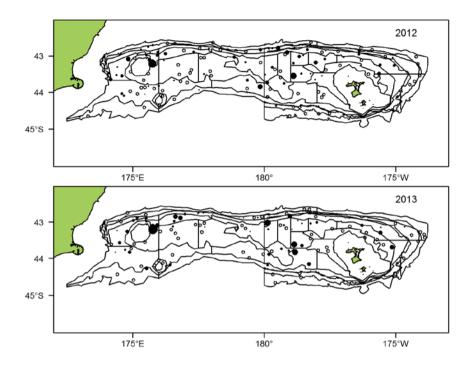



Figure 7 (continued)

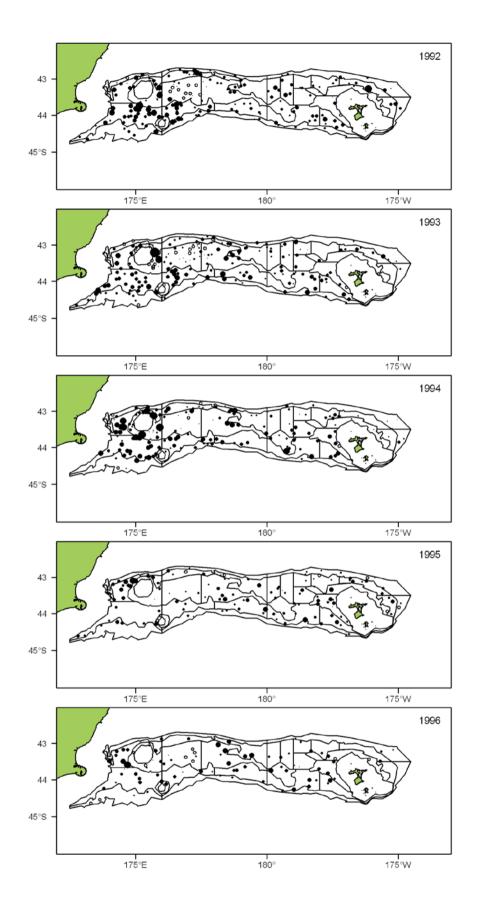



Figure 8: Ling catch distribution 1992–2013. Filled circle area is proportional to catch rate (kg.km $^2$ ). Open circles are zero catch. Maximum catch rate in series is 1786 kg.km $^2$ .

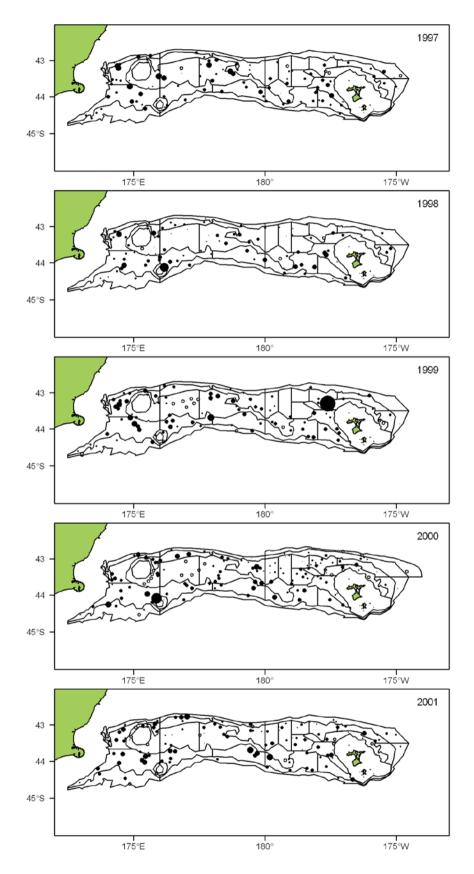



Figure 8 (continued)

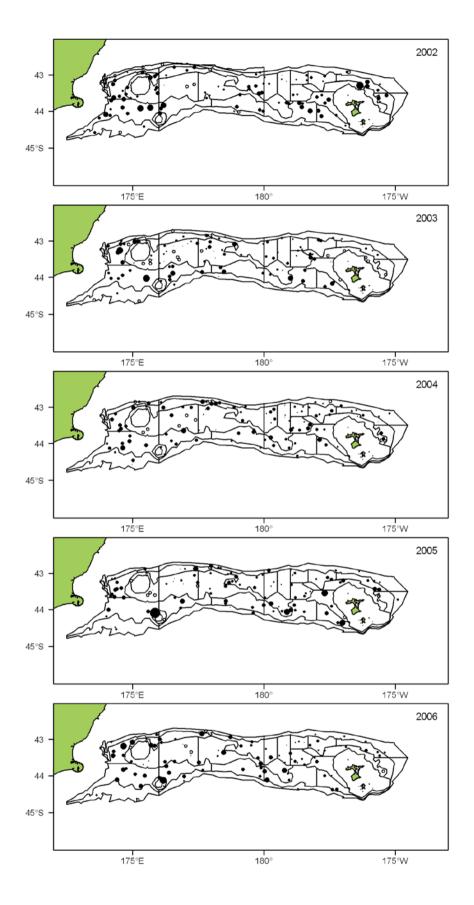



Figure 8 (continued)

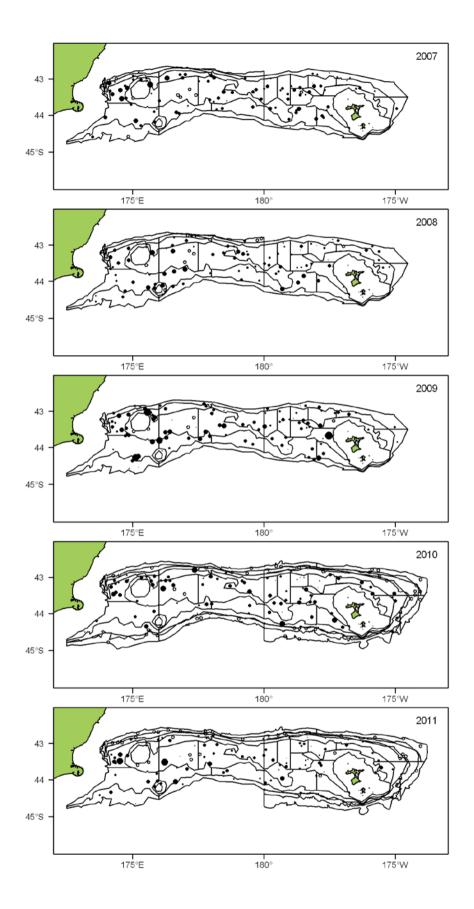



Figure 8 (continued)

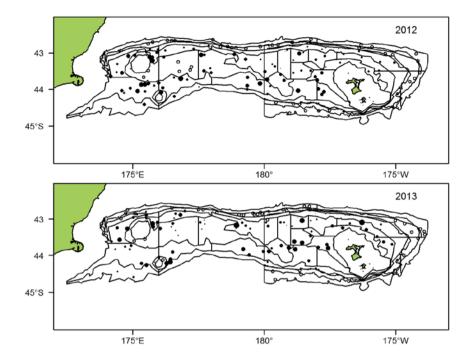



Figure 8 (continued)

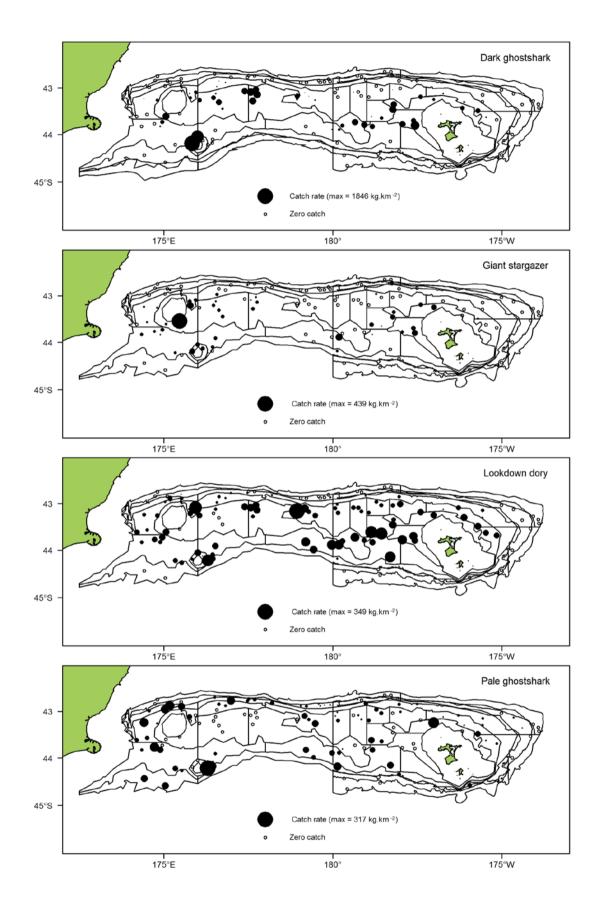



Figure 9: Catch rates (kg.km<sup>-2</sup>) of selected core and deepwater commercial species in 2013. Filled circle area is proportional to catch rate. Open circles are zero catch. (max., maximum catch rate).

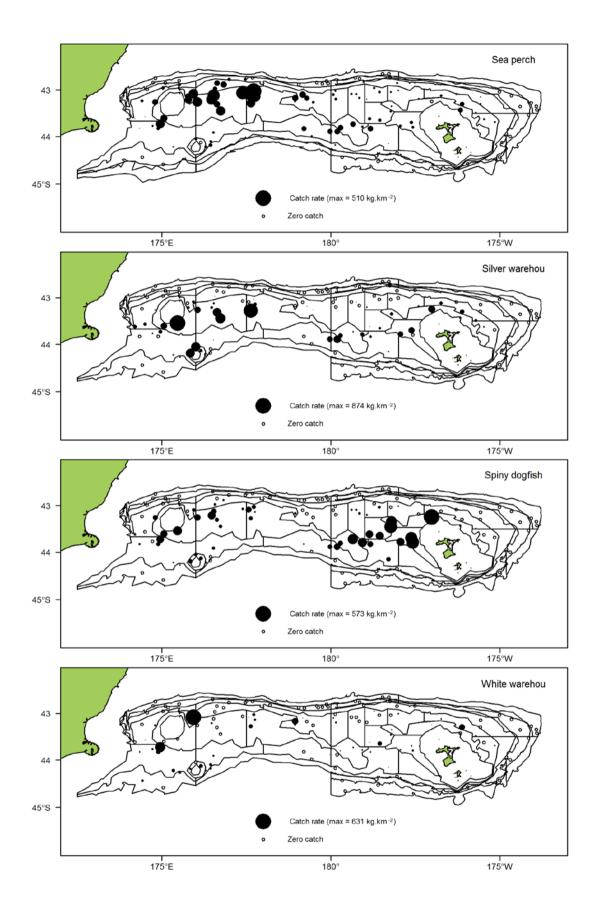



Figure 9 (continued)

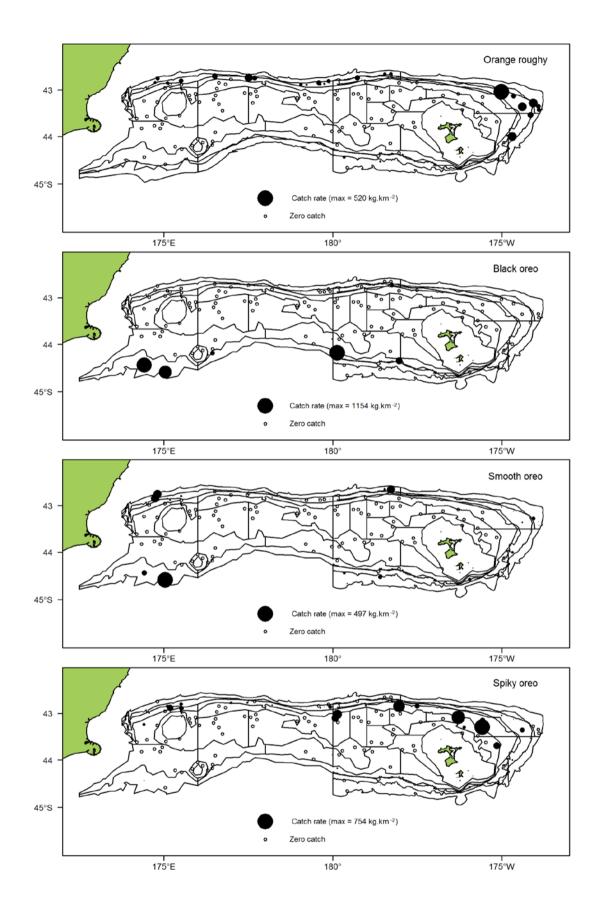



Figure 9 (continued)

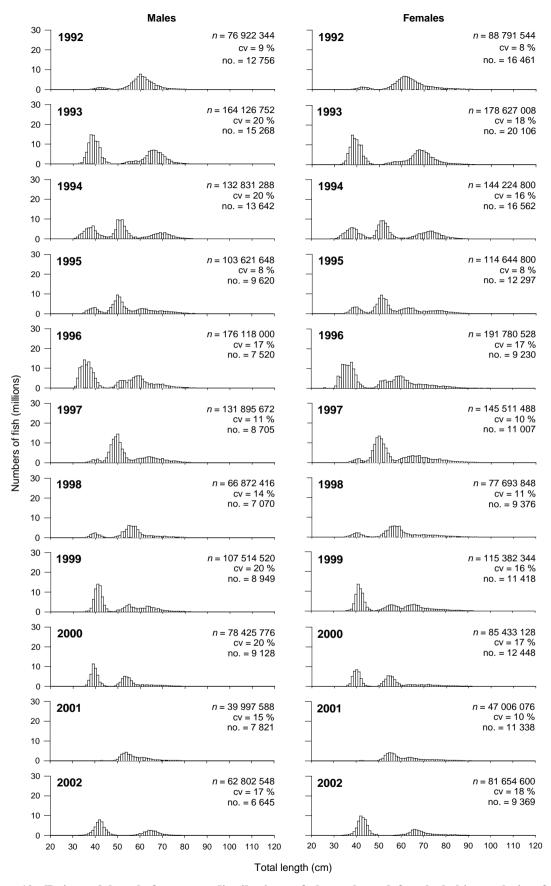



Figure 10: Estimated length frequency distributions of the male and female hoki population from *Tangaroa* surveys of the Chatham Rise, January 1992–2013. CV, coefficient of variation; *n*, estimated population number of male hoki (left panel) and female hoki (right panel); no., numbers of fish measured.

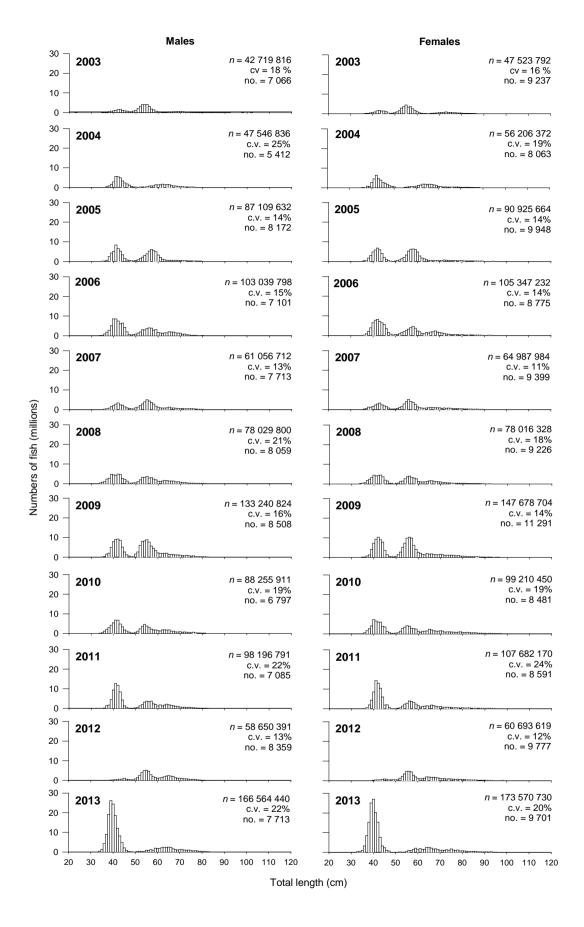



Figure 10 (continued)

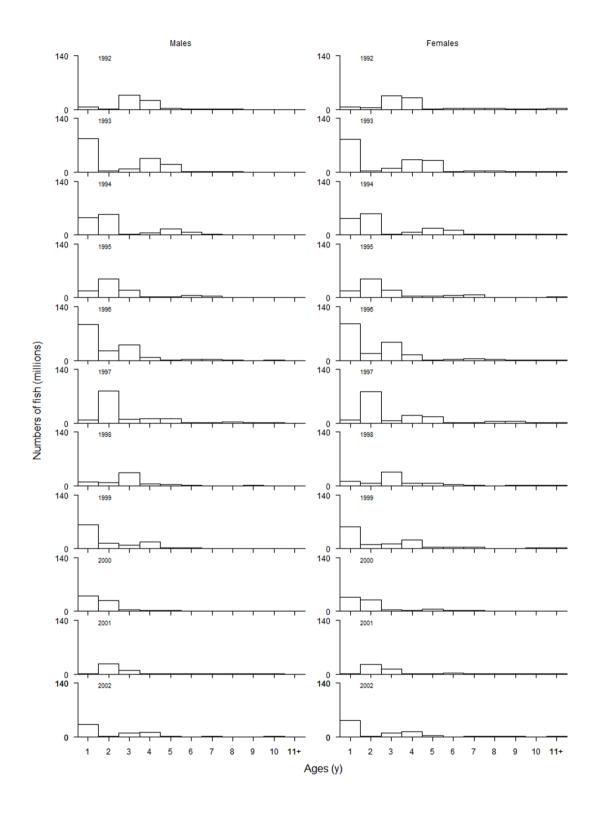



Figure 11: Estimated population numbers at age for hoki from *Tangaroa* surveys of the Chatham Rise, January, 1992–2013. +, indicates plus group of combined ages.

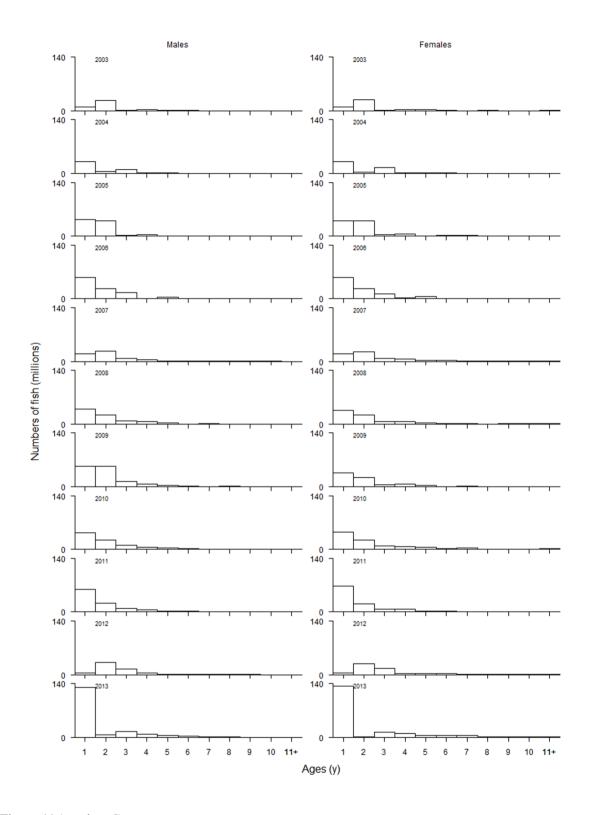



Figure 11 (continued)

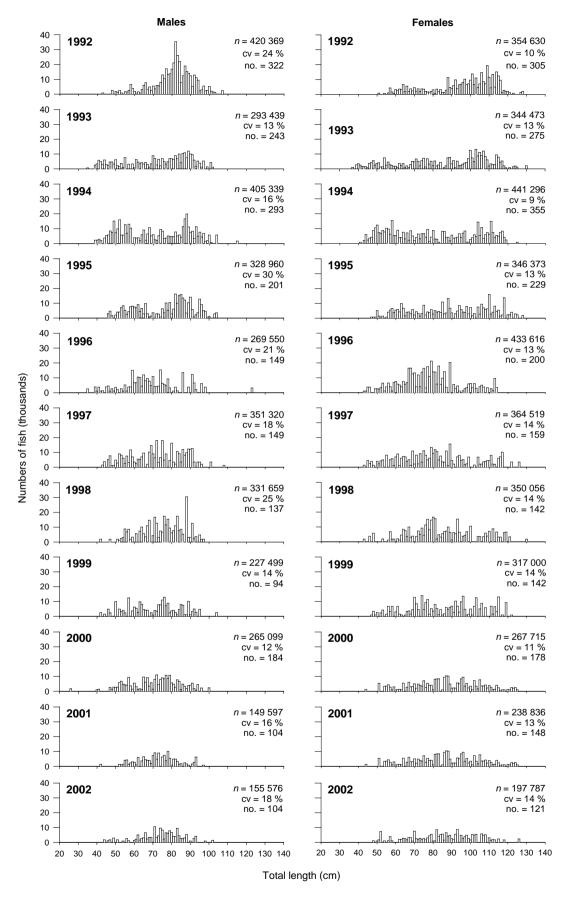



Figure 12: Estimated length frequency distributions of the male and female hake population from Tangaroa surveys of the Chatham Rise, January 1992–2013. CV, coefficient of variation; n, estimated population number of hake; no., numbers of fish measured.

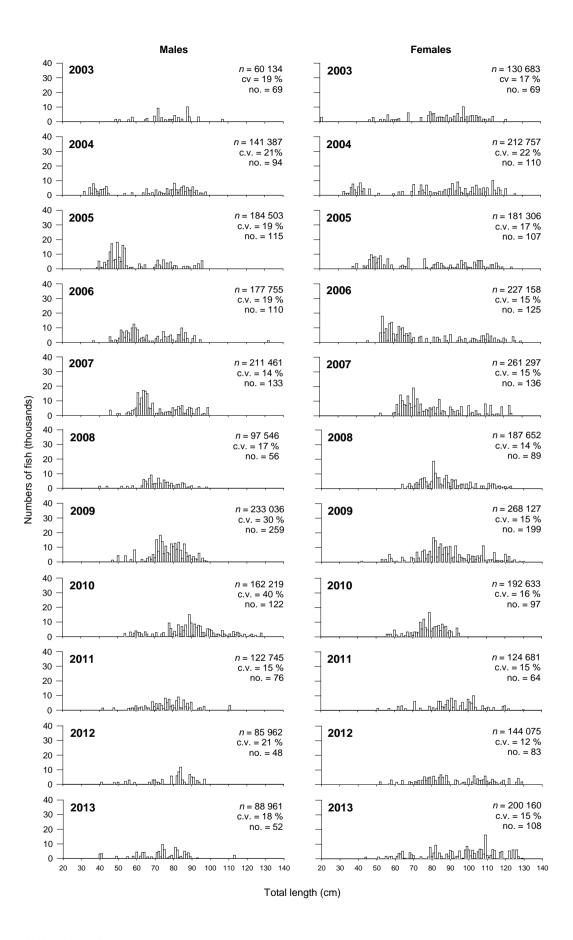



Figure 12 (continued)

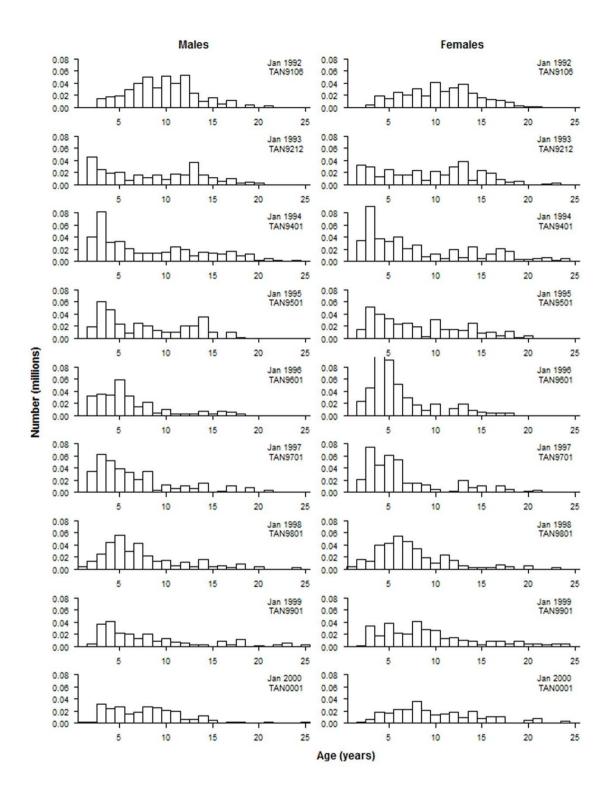



Figure 13: Estimated proportion at age for male and female hake from *Tangaroa* surveys of the Chatham Rise, January, 1992–2013.

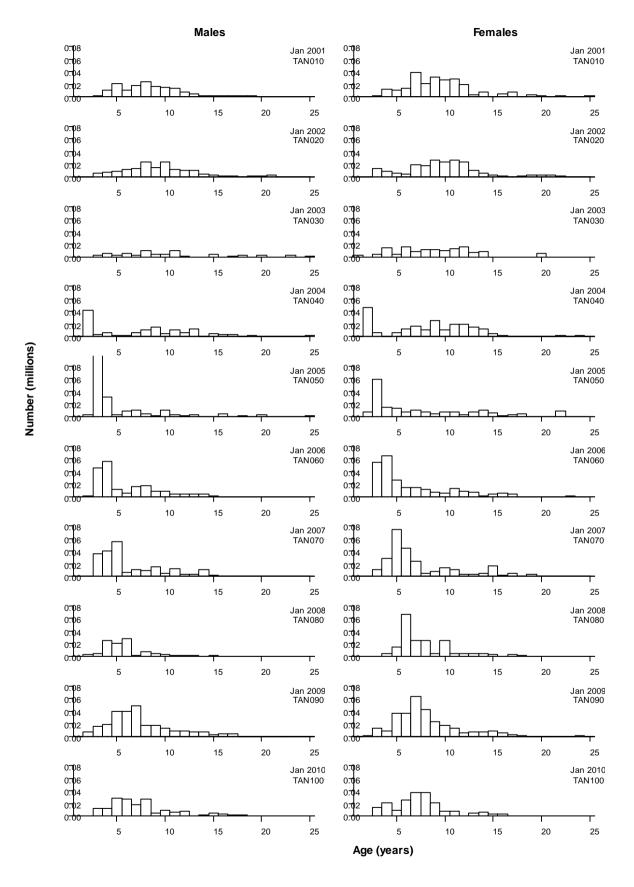



Figure 13 (continued)

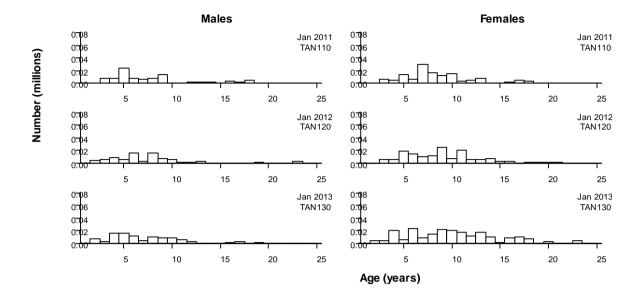



Figure 13 (continued)

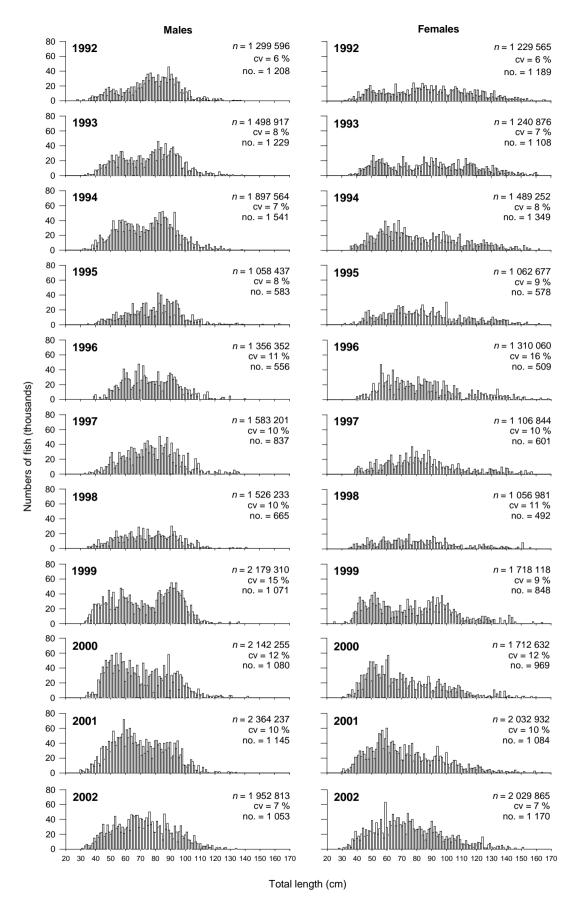



Figure 14: Estimated length frequency distributions of the ling population from *Tangaroa* surveys of the Chatham Rise, January 1992–2013. CV, coefficient of variation; *n*, estimated population number of ling; no., numbers of fish measured.

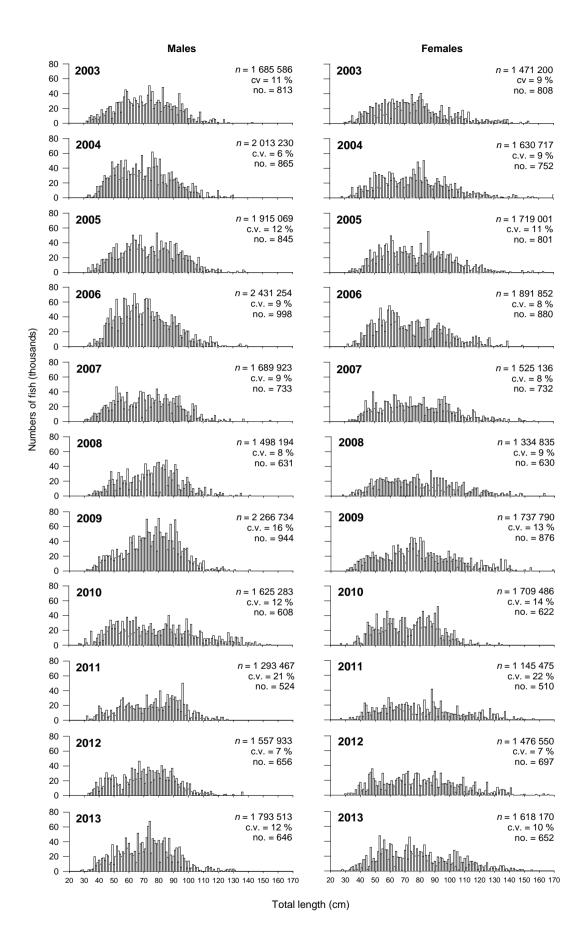



Figure 14 (continued)

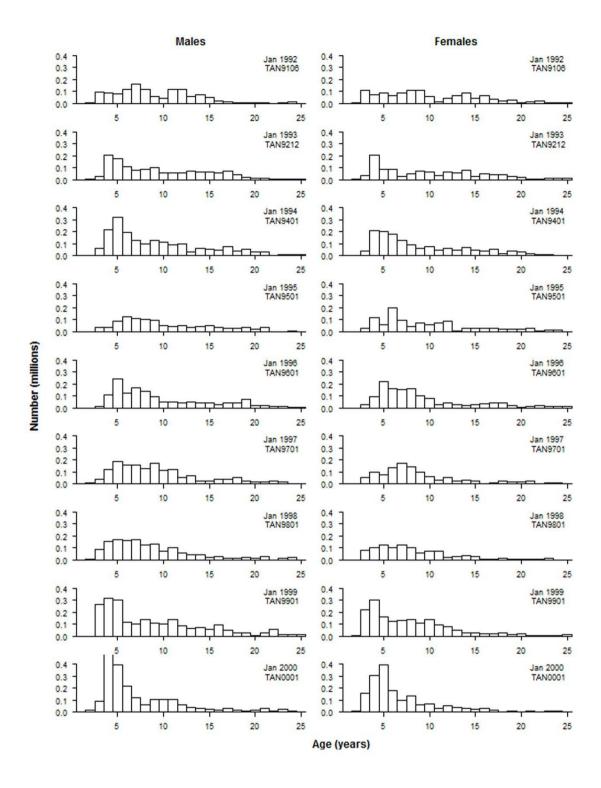



Figure 15: Estimated population numbers at age for male and female ling from *Tangaroa* surveys of the Chatham Rise, January, 1992–2013.

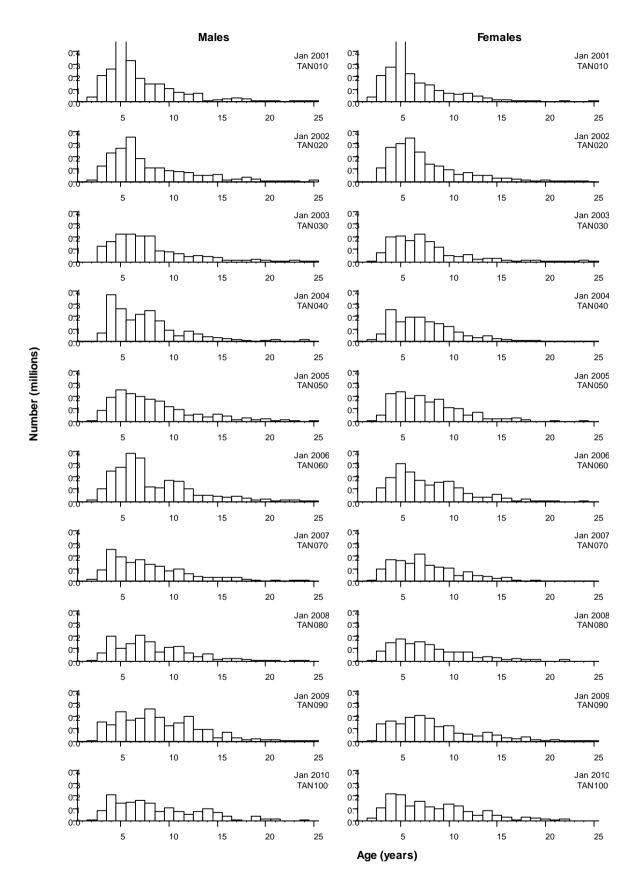



Figure 15 (continued)

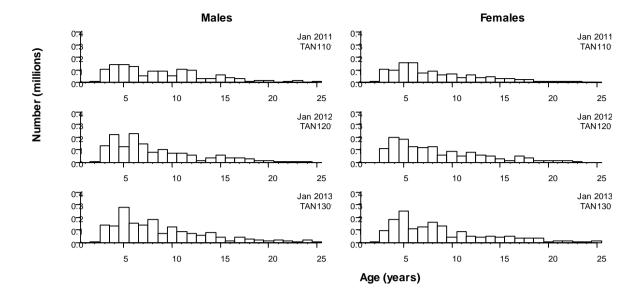



Figure 15 (continued)

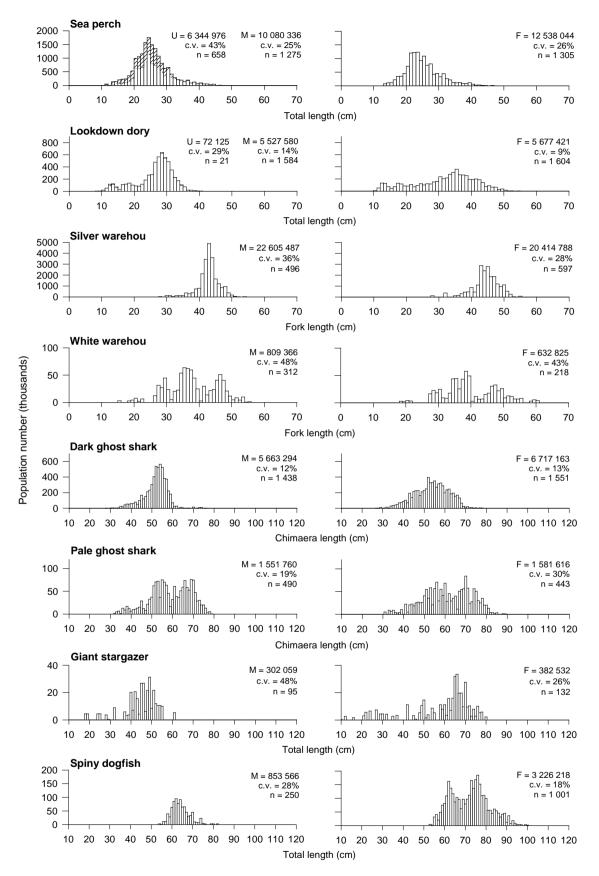



Figure 16a: Length frequencies of selected commercial species on the Chatham Rise 2013, scaled to population size by sex. M, estimated male population; F, estimated female population; U, estimated unsexed population (hatched bars); CV coefficient of variation for the estimated numbers of fish; n, number of fish measured.

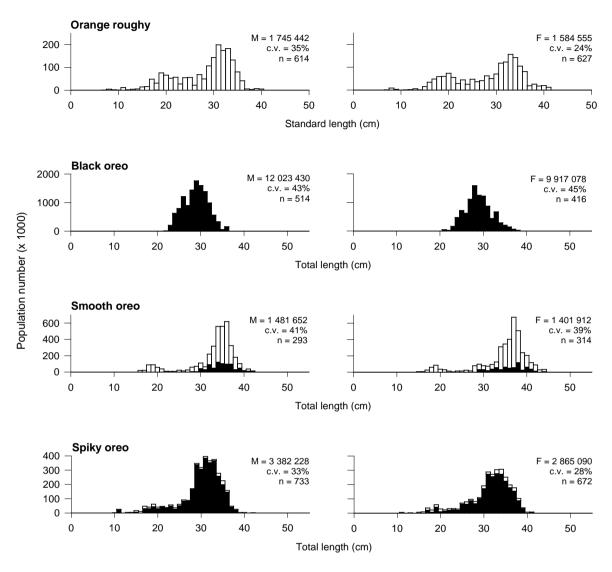



Figure 16b: Length frequencies of orange roughy and oreo species on the Chatham Rise 2013, scaled to population size by sex. M, estimated male population; F, estimated female population; CV coefficient of variation of the estimated numbers of fish; n, number of fish measured. White bars show fish from all (200–1300 m) strata. Black bars show fish from core (200–800 m) strata.

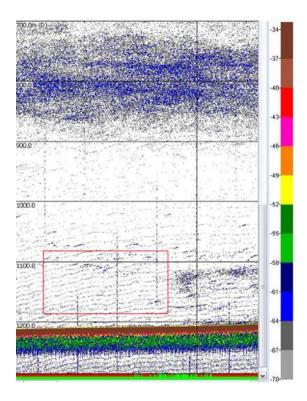



Figure 17: Screenshot of an echogram showing electrical noise interference. Red box highlights the typical appearance of the detected noise with repetitive wavy horizontal lines. Echogram depth range is from 700 to 1300 m only. Colour bar shows acoustic backscattering strength in dB.

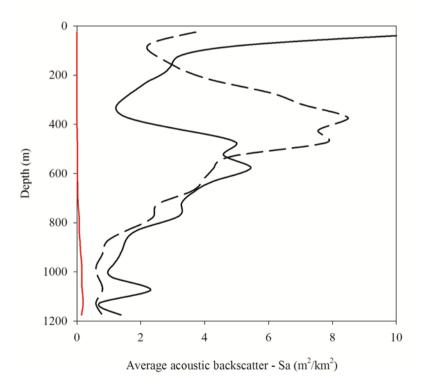



Figure 18: Vertical distribution of the average acoustic backscatter for the day (dashed lines) and at night (solid lines) and the contribution of the observed noise to the acoustic backscatter (red line) for the Chatham Rise survey in 2013.

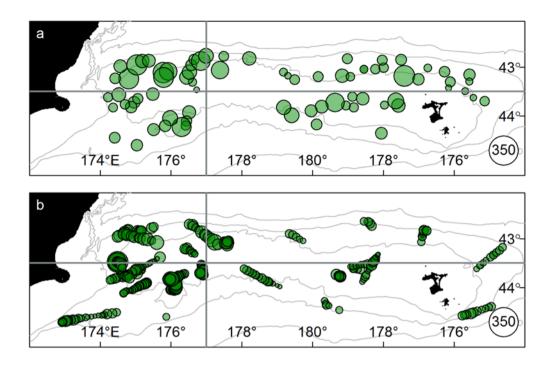



Figure 19: Distribution of total acoustic backscatter (green circles) observed on the Chatham Rise during daytime (a) tows and night-time (b) steams in January 2013. Circle area is proportional to the acoustic backscatter (white circle on bottom right represents maximum symbol size in m².km²). Grey lines separate the four acoustic strata.

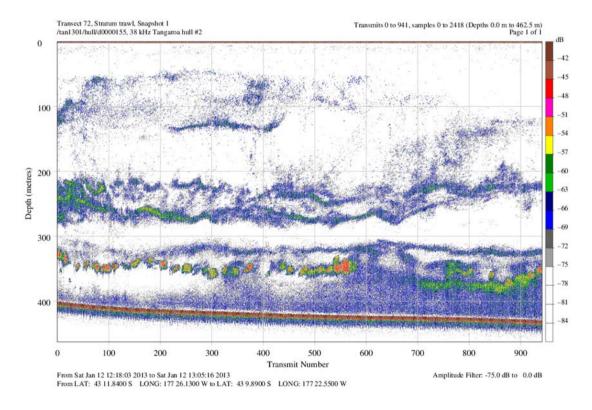



Figure 20: Acoustic echogram recorded during tow 72 on January 12, 2013 showing bottom schools about 70 m above the seabed. This tow caught 17.6 t of alfonsino.

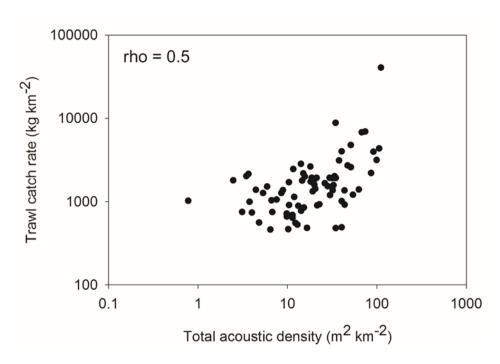



Figure 21: Relationship between total trawl catch rate (all species combined) and bottom-referenced acoustic backscatter recorded during the trawl survey on the Chatham Rise in 2013. Rho value is Spearman's rank correlation coefficient.

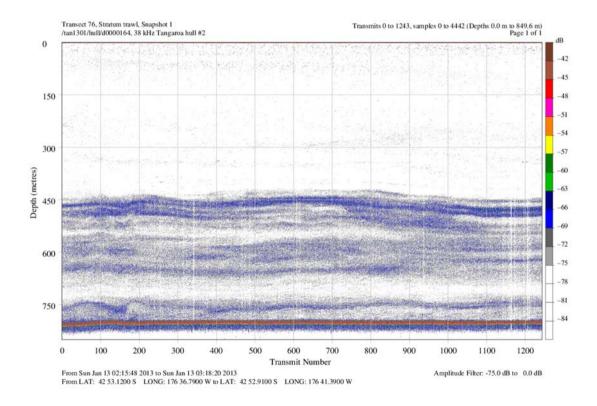



Figure 22: Acoustic echogram recorded at night (02:15 to 03:18 NZDT) on January 12, 2013 showing deep scattering layers at 450-700 m depth.

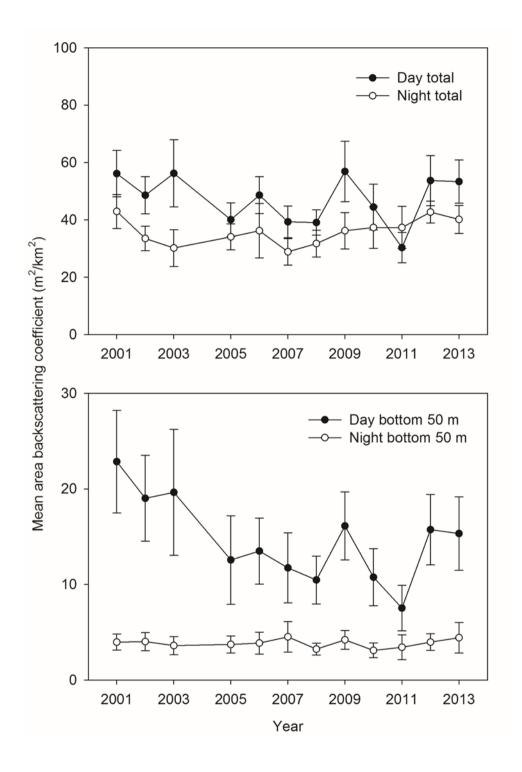



Figure 23: Comparison of relative acoustic abundance indices for the Chatham Rise based on (strata-averaged) mean areal backscatter. Error bars are  $\pm$  2 standard errors.

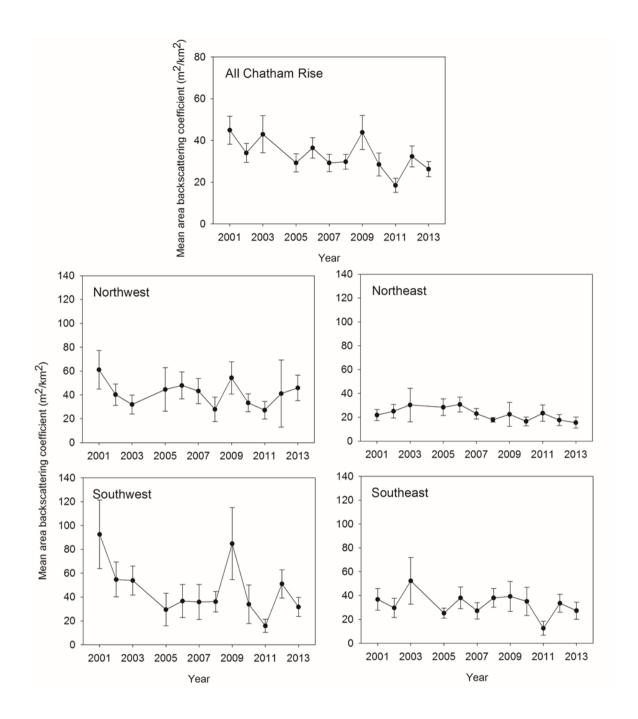



Figure 24: Relative acoustic abundance indices for mesopelagic fish on the Chatham Rise. Indices were derived by multiplying the total backscatter observed at each daytime trawl station by the estimated proportion of night-time backscatter in the same sub-area observed in the upper 200 m corrected for the estimated proportion in the surface deadzone. Panels show indices for the entire Chatham Rise and for four sub-areas. Error bars are approximate 95% confidence intervals from bootstrapping.

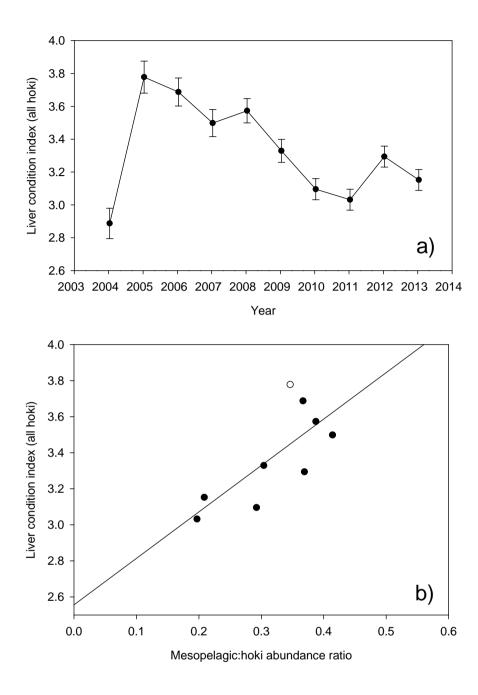



Figure 25: Hoki liver condition index for all hoki on the Chatham Rise from 2004–13 plotted as: a) a time-series, where error bars show  $\pm$  2 standard errors; and b) relationship with ratio of mesopelagic fish abundance estimated by acoustics to hoki abundance from the trawl survey (food per fish ratio).

Appendix 1: Individual station data for all stations conducted during the survey (TAN1301). Stn., station number; P1, phase one trawl survey biomass tow; P2, phase two trawl survey biomass tow; RN, fine-meshed midwater tow; Strat., Stratum number; \*, foul tow.

|          |          |          |                      |              |          | Start tow              | 7   | Gear        | depth       | Dist.        |                 |              | Catch        |
|----------|----------|----------|----------------------|--------------|----------|------------------------|-----|-------------|-------------|--------------|-----------------|--------------|--------------|
| Stn.     | Туре     | Strat.   | Date                 | Time         | Latitude | Longitude              | •   |             | m           | Towed        |                 |              | kg           |
|          |          |          |                      | NZST         | °'S      | 0 1                    | E/W | min.        | max.        | n. mile      | hoki            | hake         | ling         |
| 1        | D1       | 7.       | 2.1. 12              | 0014         | 40.07.05 | 174 11 02              |     | 106         | 520         | 2.00         | 602.2           | 0            | 22.7         |
| 1        | P1       | 7A       | 3-Jan-13             |              |          | 174 11.92              |     | 486         | 520         | 2.98         | 603.3           | 0            | 32.7         |
| 2        | P1       | 7A       | 3-Jan-13             |              |          | 174 30.17              |     | 517         | 541         | 3.02         | 363.9           | 21.2         | 102.0        |
| 3        | P1       | 7A       | 3-Jan-13             |              |          | 174 47.74              |     | 407         | 426         | 3.01         | 525.4           | 24.8         | 110.3        |
| 4<br>*5  | P1<br>P1 | 7A<br>22 | 3-Jan-13             | 1751         |          | 174 24.89              |     | 562<br>858  | 569<br>879  | 2.92<br>1.61 | 147.6<br>46.4   | 2.6<br>2.6   | 51.1<br>3.8  |
|          |          |          | 3-Jan-13             | 2213         |          | 174 44.23              |     |             |             |              |                 |              |              |
| 6<br>7   | P1<br>P1 | 23<br>23 | 4-Jan-13             | 0117         |          | 174 44.52<br>174 48.44 |     | 1030        | 1040        | 3.10<br>3.00 | 2.1             | 6.7<br>0     | 0            |
| 8        | P1       | 23<br>1  | 4-Jan-13<br>4-Jan-13 | 0351<br>0735 |          | 174 48.44              |     | 1206<br>776 | 1207<br>786 | 3.00         | 17.3            | 0            | 0            |
| 9        | P1       | 7A       | 4-Jan-13             | 1130         |          | 174 33.90              |     | 551         | 583         | 3.00         | 486.9           | 15.7         | 44.6         |
|          | P1       | 1 1      |                      |              |          | 175 10.58              |     | 688         | 706         |              | 108.7           | 14.2         | 15.9         |
| 10       | P1       | 1        | 4-Jan-13             | 1328         |          |                        |     | 610         | 622         | 3.01<br>3.01 | 180.2           | 10.5         | 44.6         |
| 11<br>12 | P1       | 22       | 4-Jan-13             | 1602         |          | 175 30.99              |     | 805         | 807         |              | 90.7            | 0            | 19.3         |
| 13       | P1       | 22       | 4-Jan-13<br>4-Jan-13 | 1823         |          | 175 05.97              |     | 824         | 830         | 3.03<br>3.02 | 128.7           | 2.5          | 19.3         |
| *14      | P1       | 22       |                      |              |          | 175 03.97              |     | 963         | 966         | 0.31         | 128.7           | 2.3          | 0            |
| *15      | P1       | 22       | 5-Jan-13             | 0041         |          | 173 00.20              |     | 848         | 870         | 2.89         | 192.6           | 9.8          | 0            |
|          |          |          | 5-Jan-13             | 0224<br>0744 |          |                        |     |             | 471         |              | 2169.3          |              |              |
| 16       | P1<br>P1 | 7B<br>7B | 5-Jan-13             |              |          | 175 45.74<br>175 56.11 |     | 453<br>418  | 471         | 2.99         |                 | 54.6         | 123.9        |
| 17       |          | 7Б<br>7В | 5-Jan-13             | 1012<br>1230 |          |                        |     | 405         | 434         | 3.01         | 3129.9          | 37.1         | 59.2         |
| 18<br>19 | P1<br>P1 | /В<br>19 | 5-Jan-13             |              |          | 175 46.53<br>176 43.78 |     | 249         | 258         | 2.99<br>3.00 | 631.9<br>49.2   | 140.0        | 85.4         |
|          |          | 19       | 5-Jan-13             | 1737         |          |                        |     | 43          |             |              |                 |              | 6.4          |
| 20       | RN       |          | 6-Jan-13             | 0034         |          | 176 40.62              |     | 70          | 70          | 3.74         | 0               | 0            | 0            |
| 21       | RN       | 10       | 6-Jan-13             | 0211         |          | 176 42.42              |     |             | 124         | 6.34         | 0               | 0            | 0            |
| 22       | P1       | 19       | 6-Jan-13             | 0518         |          | 176 38.06              |     | 253         | 268         | 3.01         | 816.5           | 0            | 8            |
| 23       | P1       | 19       | 6-Jan-13             | 0745         |          | 176 27.93              |     | 298<br>327  | 325         | 2.56         | 2267.1          | 0            | 10.5         |
| 24       | P1       | 19       | 6-Jan-13             | 0959         |          | 176 31.59              |     |             | 371         | 3.03         | 398.5           | 7.9          | 46.8         |
| 25       | P1       | 8A       | 6-Jan-13             | 1159         |          | 176 34.00<br>176 37.82 |     | 436         | 441<br>496  | 3.03         | 185.7           | 12.5<br>37.5 | 12.0<br>37.0 |
| 26       | P1<br>P1 | 8A       | 6-Jan-13             | 1344         |          |                        |     | 457         |             | 2.99         | 565.4           |              |              |
| 27<br>28 | P1       | 8A       | 6-Jan-13             | 1551<br>1808 |          | 176 49.35<br>176 58.61 |     | 416<br>645  | 418<br>650  | 2.98         | 430.0           | 31.1<br>11.3 | 74.1<br>35.5 |
| 29       | P1       | 2A<br>22 | 6-Jan-13<br>6-Jan-13 | 2225         |          | 176 38.01              |     | 826         | 830         | 3.00<br>2.96 | 74.1<br>127.6   | 4.5          | 0            |
|          | P1       | 20       | 7-Jan-13             |              |          | 170 30.17              |     | 272         | 278         |              | 213.6           | 4.3          | 7.9          |
| 30<br>31 | P1       | 20       | 7-Jan-13             |              |          | 177 44.76              |     | 313         | 319         | 3.01<br>3.03 | 2895.7          |              |              |
| 32       | P1       | 20       |                      |              |          | 177 44.76              |     | 317         | 330         |              | 2568.7          | 1.9<br>0     | 8.5<br>6.9   |
| 33       | P1       | 20       | 7-Jan-13             |              |          | 177 34.10              |     | 330         | 352         | 3.01         | 1123.0          | 0            | 28.3         |
|          |          |          | 7-Jan-13             |              |          | 177 23.36              |     |             |             | 2.58         |                 |              |              |
| 34       | P1       | 19       | 7-Jan-13             |              |          | 177 28.35              |     | 295         | 303<br>761  | 2.01         | 1527.1<br>155.8 | 0            | 0.2          |
| 35       | P1       | 2A       | 7-Jan-13             |              |          | 177 30.52              |     | 718<br>921  | 952         | 3.02         |                 | 1.9          | 5.9          |
| 36<br>37 | P1<br>P1 | 22<br>22 | 7-Jan-13             |              |          |                        |     | 890         | 903         | 2.09<br>3.03 | 9.8<br>66.5     | 6.8<br>3.9   | 0            |
| *38      | P1       | 23       | 7-Jan-13             |              |          | 177 41.01<br>178 00.42 |     |             | 1207        |              | 00.5            | 3.9          | 0            |
|          |          |          | 8-Jan-13             |              |          | 178 00.42              |     |             |             | 2.01         |                 |              | 0            |
| 39<br>40 | P1<br>P1 | 2A       | 8-Jan-13             |              |          | 178 12.19<br>178 56.40 |     | 745<br>372  | 750<br>389  | 3.12         | 115.7           | 1.7          | 0            |
|          | P1<br>P1 | 20<br>8B | 8-Jan-13             |              |          | 178 36.40              |     | 372<br>422  | 389<br>426  | 3.01         | 532.9           | 0            | 162.5        |
| 41       |          | 8B       | 8-Jan-13             |              |          |                        |     |             |             | 2.52         | 609.1           | 0            | 31.8         |
| 42       | P1       | 8B       | 8-Jan-13             |              |          | 179 17.19              |     | 433         | 437         | 3.00         | 162.1           | 0            | 31.5         |
| 43       | P1       | 8B       | 8-Jan-13             |              |          | 179 28.38              |     | 430         | 430         | 3.01         | 186.6           | 3.0          | 22.4         |
| 44       | P1       | 22       | 8-Jan-13             | 2312         | 42 33.06 | 179 03.05              | 5 E | 873         | 880         | 3.02         | 39.6            | 1.5          | 0            |

| Stn      | Туре     | Strat.     | Data                   | Time | Latituda  | Start tow<br>Longitude | _      | Gear       | depth<br>m | Dist<br>towed |                |             | Catch<br>kg  |
|----------|----------|------------|------------------------|------|-----------|------------------------|--------|------------|------------|---------------|----------------|-------------|--------------|
| Sui.     | Type     | suai.      |                        |      | ° ' S     | •                      | C /XX  | •          |            |               | 1 1            | 1 1         |              |
|          |          |            |                        | NZST | 5         |                        | E/W    | mın.       | max.       | n. mile       | hoki           | hake        | ling         |
| 45       | P1       | 22         | 9-Jan-13               | 0115 | 42 53.54  | 179 13.44              | Е      | 838        | 847        | 3.02          | 58.9           | 1.7         | 0            |
| 46       | P1       | 10A        | 9-Jan-13               | 0626 | 43 11.89  | 179 51.23              | W      | 513        | 515        | 3.00          | 320.7          | 7.8         | 46.2         |
| 47       | P1       | 10A        | 9-Jan-13               | 0846 | 43 05.94  | 179 55.52              | W      | 524        | 535        | 2.99          | 172.0          | 0           | 26.9         |
| 48       | P1       | 10A        | 9-Jan-13               | 1048 | 43 01.03  | 179 52.40              | W      | 568        | 572        | 3.01          | 242.2          | 74.4        | 0            |
| 49       | P1       | 22         | 9-Jan-13               | 1414 | 42 51.64  | 179 55.15              | E      | 866        | 879        | 3.01          | 80.0           | 0           | 0            |
| 50       | P1       | 22         | 9-Jan-13               | 1836 | 42 52.23  | 179 45.23              | E      | 863        | 872        | 2.98          | 26.5           | 3.3         | 0            |
| 51       | P1       | 22         | 9-Jan-13               | 2250 | 42 50.16  | 179 34.83              | E      | 943        | 969        | 3.02          | 12.8           | 4.7         | 0            |
| 52       | P1       | 22         | 10-Jan-13              | 0103 |           | 179 36.96              | E      | 810        | 835        | 2.99          | 29.3           | 0           | 0            |
| 53       | P1       | 22         | 10-Jan-13              | 0419 | 42 48.66  | 179 52.05              | E      | 993        | 996        | 3.01          | 15.8           | 2.6         | 0            |
| *54      | P1       | 23         | 10-Jan-13              |      | 42 44.41  | 179 53.44              | E      | 1183       | 1193       | 2.04          | 0              | 0           | 0            |
| 55       | P1       | 10B        | 10-Jan-13              | 1154 |           | 179 23.33              | W      | 527        | 532        | 3.00          | 181.9          | 0           | 37.6         |
| 56       | P1       | 10B        | 10-Jan-13              | 1354 |           | 179 15.07              | W      | 529        | 533        | 3.03          | 195.1          | 10.6        | 20.3         |
| 57       | P1       | 10B        | 10-Jan-13              | 1601 |           | 179 09.38              | W      | 511        | 518        | 3.01          | 257.5          | 0           | 5.2          |
| 58       | P1       | 11B        | 10-Jan-13              | 1834 |           | 178 56.61              | W      | 486        | 488        | 2.50          | 166.3          | 2.6         | 12.7         |
| 59       | P1       | 21A        | 10-Jan-13              | 2358 |           | 179 16.81              | W      | 938        | 950        | 3.03          | 45.3           | 1.8         | 0            |
| 60       | P1       | 21A        | 11-Jan-13              | 0210 | 42 45.83  | 179 08.73              | W      | 850        | 853        | 3.02          | 72.6           | 0           | 0            |
| 61       | P1       | 2B         | 11-Jan-13              | 0524 | 42 49.87  | 179 01.59              | W      | 694        | 705        | 2.99          | 219.0          | 32.2        | 11.5         |
| 62       | P1       | 11B        | 11-Jan-13              | 0805 |           | 178 43.20              | W      | 523        | 529        | 2.99          | 300.9          | 3.5         | 3.4          |
| 63       | P1       | 11B        | 11-Jan-13              | 0959 |           | 178 34.07              | W      | 524        | 592        | 3.00          | 185.5          | 5.3         | 121.1        |
| 64       | P1       | 11C        | 11-Jan-13              | 1232 |           | 178 14.09              | W      | 529        | 530        | 3.01          | 176.0          | 10.4        | 10.2         |
| 65       | P1       | 11C        | 11-Jan-13              | 1433 |           | 178 00.56              | W      | 514        | 515        | 3.04          | 192.7          | 11.3        | 12.8         |
| 66       | P1       | 2B         | 11-Jan-13              | 1729 |           | 178 02.53              | W      | 620        | 629        | 2.99          | 196.3          | 0           | 4.6          |
| 67       | P1       | 21A        | 11-Jan-13              | 2024 |           | 178 14.77              | W      | 857        | 864        | 3.00          | 42.6           | 0           | 0            |
| 68       | P1       | 23         | 11-Jan-13              | 2344 |           | 178 28.00              | W      | 1111       | 1118       | 3.04          | 6.3            | 0           | 0            |
| 69       | P1       | 23         | 12-Jan-13              | 0204 | 42 38.97  |                        | W      | 1150       | 1184       | 3.03          | 0              | 0           | 0            |
| *70      | P1       | 23         | 12-Jan-13              |      |           | 178 08.99              | W      | 1215       | 1253       | 2.00          | 0              | 0           | 0            |
| 71       | P1       | 2B         | 12-Jan-13              | 0844 |           | 177 30.46              | W      | 779        | 784        | 2.99          | 25.0           | 2.4         | 14.4         |
| 72       | P1       | 11C        | 12-Jan-13              | 1231 |           | 177 24.73              | W      | 412        | 429        | 2.05          | 129.6          | 0           | 34.5         |
| 73       | P1       | 9          |                        |      |           | 177 01.30              | W      | 304        | 308        | 1.97          | 74.0           | 0           | 35.5         |
| 74<br>7. | RN       |            |                        |      |           |                        | W      | 0          | 900        | 1.68          | 0              | 0           | 0            |
| 75       | RN       |            |                        |      |           | 176 38.19              |        | 0          | 950        | 1.83          | 0              | 0           | 0            |
| 76       | RN       | 110        |                        |      |           | 176 39.34              | W      | 0          | 750        | 1.41          | 0              | 0           | 0            |
| 77       | P1       | 11D        |                        |      |           | 176 44.15              | W      | 448        | 451        | 2.98          | 381.8          | 0           | 25.8         |
| 78       | P1       | 11D        |                        |      |           | 176 17.22              | W      | 547        | 554        | 2.99          | 417.6          |             | 142.2        |
| 79       | P1       | 11D        | 13-Jan-13              |      |           | 176 07.35              | W      | 442        | 448        | 3.01          | 574.8          | 0           | 62.5         |
| 80       | P1       | 9          |                        |      |           | 176 10.32              | W      | 321        | 333        | 2.37          | 172.2          | 0           | 5.9          |
| 81       | P1       | 12         |                        |      |           | 175 42.55              | W      | 434        | 444<br>500 | 3.01          | 121.1          | 0           | 45.8         |
| 82       | P1       | 12         |                        |      |           | 175 28.19              | W      | 464        | 500        | 2.65          | 471.7          | 0           | 47.7         |
| 83       | P1<br>P1 | 21B<br>21B | 13-Jan-13              |      |           | 174 39.32<br>175 00.31 | W      | 869        | 871<br>956 | 3.01<br>3.05  | 48.0<br>16.6   | 4.6<br>0    | 0            |
| 84       | P1       |            | 14-Jan-13              |      |           |                        | W      | 946        |            |               |                |             | 0            |
| 85<br>86 | P1<br>P1 | 2B<br>2B   | 14-Jan-13<br>14-Jan-13 |      |           | 175 34.43<br>175 35.07 | W      | 690<br>620 | 701<br>640 | 3.02<br>2.99  | 172.2<br>197.9 | 4.3<br>31.6 | 17.4<br>16.5 |
| 87       | P1       | 2B<br>12   | 14-Jan-13              |      |           | 175 08.81              | W<br>W | 572        | 582        | 3.02          | 441.3          | 33.1        | 36.5         |
| 88       | P1       | 21B        | 14-Jan-13              |      |           | 173 08.81              | W      | 872        | 382<br>876 | 3.02          | 15.3           | 0           | 0            |
| 89       | P1       | 216        |                        |      |           | 174 24.13              |        | 1037       |            | 3.02          | 2.9            | 0           | 0            |
| 90       | P1       |            | 15-Jan-13              |      |           |                        |        |            |            | 3.00          | 0              | 0           | 0            |
| 70       | 11       | ∠¬         | 15 Jun-15              | 0137 | r.J 21.10 | 113 37.70              | **     | 1131       | 11/3       | 5.02          | U              | U           | U            |

| Stn  | Туре | Strat. | Date      | Time | I atitude | Start tow<br>Longitude | -   | Gear | depth<br>m | Dist<br>Towed |        |      | Catch<br>kg |
|------|------|--------|-----------|------|-----------|------------------------|-----|------|------------|---------------|--------|------|-------------|
| om.  | Турс | Strat. | Date      | NZST | ° ' S     | o ,                    | E/W | min. | max.       | n. mile       | hoki   | hake | ling        |
|      |      |        |           |      |           |                        |     |      |            |               |        |      | 8           |
| 91   | P1   | 24     | 15-Jan-13 |      |           | 173 53.88              |     | 1229 | 1258       | 3.01          | 0      | 0    | 0           |
| 92   | P1   | 25     | 15-Jan-13 | 0905 |           | 174 08.93              |     | 988  | 993        | 3.08          | 5.8    | 0    | 0           |
| 93   | P1   | 25     | 15-Jan-13 | 1414 |           | 174 41.16              |     | 903  | 915        | 3.04          | 12.9   | 0    | 0           |
| 94   | P1   | 25     | 15-Jan-13 | 1852 |           | 175 00.44              |     | 902  | 936        | 3.01          | 22.3   | 0    | 0           |
| *95  | P1   | 25     | 16-Jan-13 | 0028 |           | 175 53.28              |     | 901  | 901        | 0.33          | 24.6   | 0    | 0           |
| 96   | P1   | 25     | 16-Jan-13 | 0242 |           | 175 56.83              |     | 810  | 826        | 2.49          | 177.3  | 6.2  | 10.7        |
| 97   | P1   | 4      | 16-Jan-13 | 1307 |           | 178 02.60              |     | 736  | 745        | 3.01          | 34.3   | 3.8  | 20.0        |
| 98   | P1   | 13     | 16-Jan-13 | 1616 |           | 178 18.17              |     | 486  | 488        | 3.01          | 382.0  | 25.7 | 40.9        |
| 99   | P1   | 28     | 17-Jan-13 |      |           | 178 35.71              |     | 1053 | 1074       | 3.01          | 41.9   | 0    | 0           |
| 100  | P1   | 5      | 17-Jan-13 | 1143 |           | 177 34.19              |     | 368  | 370        | 2.94          | 167.4  | 0    | 91.8        |
| 101  | P1   | 5      | 17-Jan-13 |      |           | 177 37.34              |     | 385  | 390        | 3.02          | 261.1  | 0    | 54.4        |
| 102  | P1   | 5      | 17-Jan-13 | 1612 | 43 47.08  | 177 57.28              |     | 370  | 377        | 3.00          | 352.3  | 0    | 57.0        |
| 103  | P1   | 9      | 19-Jan-13 | 0517 |           | 178 12.04              |     | 367  | 385        | 2.32          | 222.1  | 0    | 19.5        |
| 104  | P1   | 11A    | 19-Jan-13 | 0719 |           | 178 13.98              |     | 408  | 421        | 3.00          | 84.2   | 0    | 65.3        |
| 105  | P1   | 11A    | 19-Jan-13 | 1011 | 43 39.07  | 178 33.90              |     | 410  | 430        | 3.01          | 882.9  | 20.2 | 94.9        |
| 106  | P1   | 11A    | 19-Jan-13 | 1234 |           | 178 51.50              |     | 451  | 452        | 3.03          | 249.0  | 61.3 | 93.5        |
| 107  | P1   | 13     | 19-Jan-13 |      |           | 178 50.04              |     | 413  | 424        | 2.44          | 675.4  | 45.9 | 70.6        |
| 108  | P1   | 3      | 19-Jan-13 |      |           | 179 03.98              |     | 392  | 397        | 2.46          | 188.6  | 8.3  | 76.2        |
| *109 | P1   | 28     | 20-Jan-13 | 0005 |           | 179 20.21              |     | 1088 | 1088       | 0.88          | 0      | 0    | 0           |
| *110 | P1   | 28     | 20-Jan-13 | 0157 | 44 29.13  | 179 21.22              |     | 1076 | 1107       | 2.52          | 0.8    | 0    | 0           |
| *111 | P1   | 3      | 20-Jan-13 | 0947 | 43 35.92  | 179 22.76              |     | 272  | 205        | 0.28          | 20.7   | 0    | 0           |
| 112  | P1   | 3      | 20-Jan-13 | 1127 | 43 43.51  | 179 21.16              |     | 373  | 385        | 2.00          | 1419.7 | 8.7  | 39.4        |
| 113  | P1   | 3      | 20-Jan-13 | 1351 | 43 48.88  | 179 43.22              |     | 372  | 383        | 3.01          | 358.4  | 0    | 29.6        |
| 114  | P1   | 13     | 20-Jan-13 | 1552 | 43 53.30  | 179 49.26              |     | 408  | 410        | 2.04          | 563.1  | 15.5 | 62.1        |
| 115  | P1   | 28     | 20-Jan-13 |      |           | 179 34.77              |     | 1229 | 1233       | 3.05          | 0      | 0    | 0           |
| 116  | P1   | 28     | 21-Jan-13 | 0247 |           | 179 40.33              |     | 1051 | 1060       | 2.04          | 0      | 0    | 0           |
| 117  | P1   | 4      | 21-Jan-13 | 0558 |           | 179 52.38              |     | 625  | 634        | 3.04          | 263.6  | 12.1 | 23.1        |
| 118  | P1   | 14     | 21-Jan-13 |      | 43 53.51  | 179 58.46              |     | 431  | 452        | 2.82          | 540.8  | 0    | 46.3        |
| 119  | P1   | 14     | 21-Jan-13 |      |           |                        |     | 573  | 576        | 3.02          | 569.5  | 0    | 62.8        |
| 120  | P1   | 14     | 21-Jan-13 |      |           | 179 12.11              |     | 469  | 485        | 3.02          | 645.3  | 0    | 80.5        |
| 121  | P1   | 15     | 22-Jan-13 |      |           | 176 31.43              |     | 483  | 505        | 3.00          | 763.7  | 0    | 59.1        |
| 122  | P1   | 15     | 22-Jan-13 |      |           | 176 26.30              |     | 557  | 574        | 1.98          | 170.3  | 3.8  | 50.6        |
| 123  | P1   | 4      | 22-Jan-13 |      |           | 176 25.64              |     | 616  | 628        | 3.00          | 256.9  |      | 124.8       |
| 124  | P1   | 15     | 22-Jan-13 |      |           | 176 18.07              |     | 528  | 567        | 2.04          | 475.0  | 0    | 71.7        |
| 125  | P1   | 17     | 22-Jan-13 |      |           | 176 08.77              |     | 244  | 259        | 3.02          | 0      | 0    | 0           |
| 126  | P1   | 17     | 22-Jan-13 |      |           | 175 59.93              |     | 339  | 384        | 2.37          | 2364.2 | 0    | 26.7        |
| 127  | P1   | 17     | 22-Jan-13 |      |           | 175 50.26              |     | 289  | 323        | 2.33          | 237.4  | 0    | 4.2         |
| 128  | RN   |        | 22-Jan-13 |      |           | 175 48.37              |     | 0    | 875        | 1.52          | 0      | 0    | 0           |
| 129  | RN   |        | 23-Jan-13 |      |           | 175 40.94              |     | 0    | 935        | 2.63          | 0      | 0    | 0           |
| 130  | P1   | 6      | 23-Jan-13 |      |           | 175 31.53              |     | 604  | 611        | 3.01          | 336.0  | 25.7 | 85.4        |
| 131  | P1   | 16     | 23-Jan-13 |      |           | 175 19.94              |     | 530  | 556        | 3.01          | 383.5  | 0    | 57.5        |
| 132  | P1   | 6      | 23-Jan-13 |      |           | 175 02.34              |     | 755  | 756        | 2.16          | 69.7   | 0    | 18.8        |
| 133  | P1   | 6      | 23-Jan-13 |      |           | 174 25.49              |     | 710  | 717        | 3.00          | 95.6   | 0    | 8.8         |
| 134  | P1   | 16     | 24-Jan-13 |      |           | 174 20.50              |     | 523  | 549        | 3.00          | 159.9  | 3    | 16.1        |
| 135  | P1   | 16     | 24-Jan-13 |      |           | 174 56.99              |     | 422  | 440        | 2.09          | 3579.3 | 0    | 31.8        |
| 136  | P1   | 18     | 24-Jan-13 | 1101 | 43 36.75  | 175 03.66              | E   | 318  | 327        | 2.01          | 438.1  | 0    | 0           |

## Appendix 1: continued

|      |      | _      |           |      |          | Start tow | _   | Gear | depth | Dist.   |        |      | Catch |
|------|------|--------|-----------|------|----------|-----------|-----|------|-------|---------|--------|------|-------|
| Stn. | Type | Strat. | Date      | Time | Latitude | Longitude | e   |      | m     | towed   |        |      | kg    |
|      |      |        |           | NZST | °'S      | 0 1       | E/W | min. | max.  | n. mile | hoki   | hake | ling  |
| 137  | P1   | 18     | 24-Jan-13 | 1330 | 43 33.27 | 175 27.98 | 8 E | 212  | 229   | 2.01    | 55.6   | 0    | 0     |
| 138  | P1   | 18     | 24-Jan-13 | 1741 | 43 15.52 | 176 03.23 | 3 E | 349  | 360   | 2.10    | 1591.8 | 0    | 43.9  |
| 139  | P2   | 16     | 25-Jan-13 | 0533 | 43 49.51 | 174 53.13 | 3 E | 455  | 465   | 3.02    | 740.4  | 22.4 | 19.5  |
| 140  | P2   | 16     | 25-Jan-13 | 0747 | 43 46.40 | 174 42.91 | E   | 489  | 512   | 3.01    | 1360.9 | 8.8  | 23.9  |

Appendix 2: Scientific and common names of species caught from all valid biomass tows (TAN1301). The occurrence (Occ.) of each species (number of tows caught) in the 123 valid biomass tows is also shown. Note that species codes are continually updated on the database following this and other surveys.

| Scientific name                                                                                  | Common name                                    | Species    | Occ.    |
|--------------------------------------------------------------------------------------------------|------------------------------------------------|------------|---------|
| Algae Phaeophyta (brown seaweed)                                                                 | unspecified seaweed unspecified brown sea weed | SEO<br>PHA | 3 2     |
| Lessoniaceae<br>Ecklonia spp.                                                                    |                                                | ECK        | 1       |
| Porifera Demospongiae (siliceous sponges) Astrophorida (sandpaper sponges) Ancorinidae           | unspecified sponges                            | ONG        | 7       |
| Stellata sp.<br>Geodiidae                                                                        | orange fat finger sponge                       | SLT        | 1       |
| Geodia regina<br>G. vestigifera<br>Pachastrellidae                                               | curling stone sponge<br>ostrich egg sponge     | GRE<br>GVE | 1<br>1  |
| Poecillastra laminaris Thenea novaezelandiae Hadromerida (woody sponges) Suberitidae             | fiberglass cup sponge<br>yoyo sponge           | PLN<br>THN | 1<br>1  |
| Suberites affinis Spirophorida (spiral sponges) Tetillidae                                       | fleshy club sponge                             | SUA        | 8       |
| Tetilla leptoderma Hexactinellida (glass sponges) Lyssacinosida (tubular sponges) Euplectellidae | furry oval sponge                              | TLD        | 2       |
| Euplectella regalis<br>Rossellidae                                                               | basket-weave horn sponge                       | ERE        | 2       |
| Hyalascus sp. Poecilosclerida (bright sponges) Coelosphaeridae                                   | floppy tubular sponge                          | НҮА        | 17      |
| Lissodendoryx bifacialis<br>Crellidae                                                            | floppy chocolate plate sponge                  | LBI        | 3       |
| Crella incrustans<br>Hymedesmiidae                                                               | orange frond sponge                            | CIC        | 2       |
| Phorbas sp.                                                                                      | grey fibrous massive sponge                    | PHB        | 1       |
| Cnidaria<br>Scyphozoa<br>Anthozoa                                                                | unspecified jellyfish                          | JFI        | 16      |
| Corallimorpharia (coral-like anemones)<br>Corallimorphidae<br>Octocorallia                       | coral-like anemones                            | CLM        | 3       |
| Alcyonacea (soft corals) Isididae                                                                | unspecified soft coral                         | SOC        | 6       |
| Keratoisis spp. Lepidisis spp. Primnoidae                                                        | branching bamboo coral<br>bamboo coral         | BOO<br>LLE | 1 2     |
| Thouarella spp. Pennatulacea (sea pens) Pennatulidae                                             | bottle brush coral<br>unspecified sea pens     | THO<br>PTU | 1<br>16 |
| Pennatula spp.                                                                                   | purple sea pens                                | PNN        | 10      |

| Scientific name                                                      | Common name                  | Species    | Occ.     |
|----------------------------------------------------------------------|------------------------------|------------|----------|
| Hexacorallia<br>Zoanthidea (zoanthids)<br>Epizoanthidae              |                              |            |          |
| Epizoanthus sp.<br>Actinaria (anemones)                              | unspecified anemome          | EPZ<br>ANT | 16<br>3  |
| Actiniidae <i>Bolocera</i> spp.                                      | deepsea anemone              | BOC        | 1        |
| Actinostolidae (smooth deepsea anemones)                             |                              | ACS<br>HMT | 33<br>19 |
| Hormathiidae (warty deepsea anemones)<br>Scleractinia (stony corals) |                              | HWH        | 19       |
| Caryophyllidae Goniocorella dumosa                                   | bushy hard coral             | GDU        | 6        |
| Stephanocyathus platypus                                             | solitary bowl coral          | STP        | 5        |
| Flabellidae                                                          | Caladan and                  | COE        | 10       |
| Flabellum spp.                                                       | flabellum coral              | COF        | 12       |
| Tunicata The Process (called)                                        |                              | CAT        | 0        |
| Thaliacea (salps)<br>Salpidae                                        | unspecified salps            | SAL        | 8        |
| Pyrosoma atlanticum                                                  |                              | PYR        | 50       |
| Mollusca                                                             |                              |            |          |
| Gastropoda (gastropods)                                              | unspecified gastropod        | GAS        | 1        |
| Nudibranchia (sea slugs)<br>Buccinidae (whelks)                      |                              | NUD        | 2        |
| Penion chathamensis                                                  |                              | PCH        | 3        |
| Ranellidae (tritons) Fusitriton magellanicus                         |                              | FMA        | 31       |
| Volutidae (volutes)                                                  |                              | 1 1412 1   | 31       |
| Alcithoe wilsonae                                                    | colden valuta                | AWI<br>GVO | 1 3      |
| Provocator mirabilis Bivalvia (bivalves)                             | golden volute                | GVO        | 3        |
| Ostreoida                                                            |                              |            |          |
| Pectinidae (scallops)  Zygochlamys delicatula                        | queen scallop                | QSC        | 1        |
| Cephalopoda                                                          | 4                            |            |          |
| Sepiolida (bobtail squids)<br>Sepiadariidae                          |                              |            |          |
| Sepioloidea spp.                                                     | bobtail squid                | SSQ        | 1        |
| Teuthoidea (squids)<br>Octopoteuthidae                               |                              |            |          |
| Octopoteuthias spp.                                                  |                              | OPO        | 1        |
| Taningia danae                                                       | Dana octopus squid           | TDQ        | 1        |
| Onychoteuthidae Onykia ingens                                        | warty squid                  | MIQ        | 54       |
| O. robsoni                                                           | warty squid                  | MRQ        | 3        |
| Pholidoteuthidae Pholidoteuthis massyae                              | large red scaly squid        | PSQ        | 2        |
| Histioteuthidae (violet squids)                                      | large red scary squid        | уст        | 2        |
| Histioteuthis atlantica                                              | violet squid                 | HAA        | 2        |
| Histioteuthis miranda<br>Histioteuthis spp.                          | violet squid<br>violet squid | HMI<br>VSQ | 1<br>4   |
| Ommastrephidae                                                       | •                            |            | 7        |
| Nototodarus sloanii                                                  | Sloan's arrow squid          | NOS        | 42       |
| Todarodes filippovae                                                 | Todarodes squid              | TSQ        | 29       |

| Scientific name                                     | Common name                                 | Species    | Occ. |
|-----------------------------------------------------|---------------------------------------------|------------|------|
| Chiroteuthidae                                      |                                             |            |      |
| Chiroteuthis veryani                                | squid                                       | CVE        | 2    |
| Mastigoteuthidae                                    |                                             | 3.50.0     |      |
| Mastigoteuthis sp.                                  | squid                                       | MSQ        | 1    |
| Cranchiidae                                         | unspecified cranchiid                       | CHQ        | 3    |
| Teuthowenia pellucida                               | squid                                       | TPE        | 3    |
| Cirrata (cirrate octopus) Opisthoteuthididae        |                                             |            |      |
| Opisthoteuthis spp.                                 | umbrella octopus                            | OPI        | 3    |
| Incirrata (incirrate octopus)                       | umorena octopus                             | OFT        | 3    |
| Octopodidae                                         |                                             |            |      |
| Enteroctopus zealandicus                            | yellow octopus                              | EZE        | 1    |
| Graneledone spp.                                    | deepwater octopus                           | DWO        | 2    |
| 11                                                  | 1                                           |            |      |
| Polychaeta                                          | unspecified polychaete                      | POL        | 2    |
| Eunicida                                            |                                             |            |      |
| Eunicidae                                           |                                             |            |      |
| Eunice spp.                                         | Eunice sea worm                             | EUN        | 1    |
| Onuphidae                                           |                                             |            |      |
| Hyalinoecia tubicola                                | quill worm                                  | HTU        | 1    |
| Phyllodocida                                        |                                             |            |      |
| Aphroditidae                                        |                                             | 4 D.T.     |      |
| Aphrodita spp.                                      | sea mouse                                   | ADT        | 1    |
| Crustacea                                           |                                             |            |      |
| Malacostraca                                        |                                             |            |      |
| Dendrobranchiata/Pleocyemata (prawns)               | unspecified prawn                           | NAT        | 3    |
| Dendrobranchiata                                    | Sample Comment                              |            |      |
| Aristeidae                                          |                                             |            |      |
| Aristaeopsis edwardsiana                            | scarlet prawn                               | PED        | 2    |
| Solenoceridae                                       | •                                           |            |      |
| Haliporoides sibogae                                | jack-knife prawn                            | HSI        | 1    |
| Pleocyemata                                         |                                             |            |      |
| Caridea                                             |                                             |            |      |
| Campylonotidae                                      |                                             | G 13.5     |      |
| Campylonotus rathbunae                              | sabre prawn                                 | CAM        | 1    |
| Oplophoridae                                        | Colo A and a modification land a management | ACA        | 2    |
| Acanthephyra spp.<br>Notostomus auriculatus         | SubAntarctic ruby prawn                     | ACA<br>NAU | 3    |
| Oplophorus spp.                                     | scarlet prawn<br>deepwater prawn            | OPP        | 3 2  |
| Pasiphaeidae                                        | deepwater prawn                             | OH         | 2    |
| Pasiphaea aff. tarda                                | deepwater prawn                             | PTA        | 13   |
| Pasiphaea spp.                                      | deepwater prawn                             | PAS        | 1    |
| Nematocarcinidae                                    | acer mass reams                             |            |      |
| Lipkius holthuisi                                   | omega prawn                                 | LHO        | 29   |
| Achelata                                            |                                             |            |      |
| Astacidea                                           |                                             |            |      |
| Nephropidae (clawed lobsters)                       |                                             |            |      |
| Metanephrops challengeri                            | scampi                                      | SCI        | 33   |
| Palinura                                            |                                             |            |      |
| Polychelidae                                        | 112 111 .                                   | DI V       | -    |
| Polycheles spp.                                     | deepsea blind lobster                       | PLY        | 7    |
| Anomura                                             |                                             |            |      |
| Galatheoidea Galatheidae (galatheid squat lobsters) |                                             |            |      |
| Munida gracilis                                     | squat lobster                               | MGA        | 1    |
| mun graems                                          | squar 1005tor                               | MOA        | 1    |

| Scientific name                              | Common name            | Species | Occ.     |
|----------------------------------------------|------------------------|---------|----------|
| Inachidae                                    |                        |         |          |
| Vitjazmaia latidactyla                       | deepsea spider crab    | VIT     | 4        |
| Lithodidae (king crabs)                      | -                      |         |          |
| Lithodes aotearoa                            | New Zealand king crab  | LAO     | 1        |
| L. robertsoni                                | Robertson's king crab  | LRO     | 1        |
| Neolithodes brodiei                          | Brodie's king crab     | NEB     | 5        |
| Paguroidea (unspecified pagurid & parapag    | gurid hermit crabs)    | PAG     | 11       |
| Paguridae (Pagurid hermit crabs)             |                        |         |          |
| Diacanthurus rubricatus                      | hermit crab            | DIR     | 2        |
| Bathypaguropsis yaldwyni                     | hermit crab            | BYL     | 1        |
| Propagurus deprofundis                       | hermit crab            | PDE     | 2        |
| Parapaguridae (Parapagurid hermit crabs)     |                        |         |          |
| Sympagurus dimorphus                         | hermit crab            | SDM     | 7        |
| Brachyura (true crabs)                       |                        |         |          |
| Atelecyclidae                                | 6 111 1                | TTT: 4  | 10       |
| Trichopeltarion fantasticum                  | frilled crab           | TFA     | 10       |
| Goneplacidae                                 |                        | GT II   | 2        |
| Pycnoplax victoriensis                       | two-spined crab        | CVI     | 3        |
| Majidae (spider crabs)                       | C : 1; 1: 1            | CMC     | 2        |
| Leptomithrax garricki                        | Garrick's masking crab | GMC     | 2        |
| Teratomaia richardsoni                       | spiny masking crab     | SMK     | 14       |
| Portunidae (swimming crabs)                  | arrim min a arab       | OVM     | 1        |
| Ovalipes molleri                             | swimming crab          | OVIVI   | 1        |
| Lophogastrida (lophogastrids)                |                        |         |          |
| Gnathophausiidae Gnathophausia ingens        | giant red mysid        | NEI     | 3        |
| Gnamophausia ingens                          | grant red mysid        | INEI    | 3        |
| Echinodermata                                |                        |         |          |
| Asteroidea (starfish)                        | unspecified starfish   | ASR     | 5        |
| Asteriidae                                   | F                      |         | _        |
| Cosmasterias dyscrita                        | cat's-foot star        | CDY     | 2        |
| Pseudechinaster rubens                       | starfish               | PRU     | 8        |
| Astropectinidae                              |                        |         |          |
| Dipsacaster magnificus                       | magnificent sea-star   | DMG     | 20       |
| Plutonaster knoxi                            | abyssal star           | PKN     | 32       |
| Proserpinaster neozelanicus                  | starfish               | PNE     | 13       |
| Psilaster acuminatus                         | geometric star         | PSI     | 30       |
| Sclerasterias mollis                         | cross-fish             | SMO     | 4        |
| Benthopectinidae                             |                        |         |          |
| Cheiraster monopedicellaris                  | starfish               | CMP     | 2        |
| Brisingida                                   | unspecified Brisingid  | BRG     | 17       |
| Echinasteridae                               |                        |         |          |
| Henricia compacta                            | starfish               | HEC     | 1        |
| Goniasteridae                                |                        | 11000   |          |
| Hippasteria phrygiana                        | trojan starfish        | HTR     | 14       |
| Lithosoma novaezelandiae                     | rock star              | LNV     | 2        |
| Mediaster sladeni                            | starfish               | MSL     | 13       |
| Pillsburiaster aoteanus                      | starfish               | PAO     | 4        |
| Solasteridae Crossastar multioninus          | oun otor               | CJA     | 21       |
| Crossaster multispinus<br>Solaster torulatus | sun star               | SOT     | 21<br>12 |
| Pterasteridae                                | chubby sun-star        | 301     | 12       |
| Diplopteraster sp.                           | starfish               | DPP     | 2        |
| Zoroasteridae                                | 5tai 11511             | DΠ      | 2        |
| Zoroaster spp.                               | rat-tail star          | ZOR     | 37       |
| zerouster spp.                               | and their other        | 2010    | 51       |

| Scientific name                                                           | Common name                                       | Species    | Occ.   |
|---------------------------------------------------------------------------|---------------------------------------------------|------------|--------|
| Ophiuroidea (basket and brittle stars)<br>Ophiurida<br>Ophiuridae         | unspecified brittle star                          | ОРН        | 1      |
| Ophiomusium lymani                                                        | deepsea brittle star                              | OLY        | 1      |
| Euryalina (basket stars)                                                  | 1                                                 |            |        |
| Gorgonocephalidae                                                         |                                                   | COD        | 2      |
| Gorgonocephalus spp. Echinoidea (sea urchins)                             | Gorgon's head basket stars unspecified sea urchin | GOR<br>URO | 3<br>1 |
| Regularia                                                                 | unspectifica sca urcinii                          | OKO        | 1      |
| Cidaridae (cidarid urchins)                                               |                                                   |            |        |
| Goniocidaris parasol                                                      | parasol urchin                                    | GPA        | 5      |
| G. umbraculum Histiocidaridae (cidarid urchins)                           | umbrella urchin                                   | GOU        | 5      |
| Histiocidaria spp.                                                        |                                                   | HIS        | 6      |
| Echinothuriidae/Phormosomatidae                                           | unspecified Tam O'Shanter urchin                  | TAM        | 44     |
| Echinothuriidae                                                           | echinothuriid Tam O'Shanter urchin                | ECT        | 4      |
| Echinidae  Gracilechinus multidentatus                                    | deepsea kina                                      | GRM        | 17     |
| Dermechinus horridus                                                      | deepsea urchin                                    | DHO        | 17     |
| Spatangoida (heart urchins) Spatangidae                                   | are pour areas.                                   | 2110       | -      |
| Paramaretia peloria                                                       | Microsoft mouse                                   | PMU        | 4      |
| Spatangus multispinus                                                     | purple-heart urchin                               | SPT        | 5      |
| Holothuroidea<br>Aspidochirotida                                          |                                                   |            |        |
| Synallactidae                                                             |                                                   |            |        |
| Bathyplotes sp.                                                           | sea cucumber                                      | BAM        | 23     |
| Pseudostichopus mollis                                                    | sea cucumber                                      | PMO        | 37     |
| Elasipodida                                                               |                                                   |            |        |
| Laetmogonidae  Laetmogone sp.                                             | sea cucumber                                      | LAG        | 13     |
| Pannychia moseleyi                                                        | sea cucumber                                      | PAM        | 5      |
| Pelagothuridae                                                            |                                                   |            |        |
| Enypniastes exima                                                         | sea cucumber                                      | EEX        | 4      |
| Psychropotidae  Benthodytes sp.                                           | sea cucumber                                      | BTD        | 1      |
| Beninoayies sp.                                                           | sea cucumber                                      | ыь         | 1      |
| <b>Agnatha</b> (jawless fishes)<br>Myxinidae (hagfishes)                  |                                                   |            |        |
| Eptatretus cirrhatus                                                      | hagfish                                           | HAG        | 2      |
| Neomyxine biniplicata                                                     | slender hagfish                                   | NBI        | 1      |
| Chondrichthyes (cartilagenous fishes)<br>Chlamydoselachidae: frill sharks |                                                   |            |        |
| Chlamydoselachus anguineus                                                | frill shark                                       | FRS        | 1      |
| Squalidae: dogfishes                                                      |                                                   |            |        |
| Squalus acanthias                                                         | spiny dogfish                                     | SPD        | 53     |
| S. griffini<br>Centrophoridae: gulper sharks                              | northern spiny dogfish                            | NSD        | 3      |
| Centrophorus squamosus                                                    | leafscale gulper shark                            | CSQ        | 17     |
| Deania calcea                                                             | shovelnose dogfish                                | SND        | 53     |
| Etmopteridae: lantern sharks                                              | -                                                 |            |        |
| Etmopterus baxteri                                                        | Baxter's dogfish                                  | ETB        | 38     |
| E. lucifer                                                                | lucifer dogfish                                   | ETL        | 61     |

| Scientific name                       | Common name                    | Species    | Occ.     |
|---------------------------------------|--------------------------------|------------|----------|
| Somniosidae: sleeper sharks           |                                |            |          |
| Centroscymnus crepidater              | longnose velvet dogfish        | CYP        | 35       |
| C. owstoni                            | smooth skin dogfish            | CYO        | 28       |
| Proscymnodon plunketi                 | Plunket's shark                | PLS        | 8        |
| Zameus squamulosus                    | velvet dogfish                 | ZAS        | 2        |
| Oxynotidae: rough sharks              |                                |            |          |
| Oxynotus bruniensis                   | prickly dogfish                | PDG        | 5        |
| Dalatiidae: kitefin sharks            |                                |            |          |
| Dalatias licha                        | seal shark                     | BSH        | 33       |
| Scyliorhinidae: cat sharks            |                                |            |          |
| Apristurus spp.                       | catshark                       | APR        | 16       |
| Bythaelurus dawsoni                   | Dawson's catshark              | DCS        | 1        |
| Cephaloscyllium isabellum             | carpet shark                   | CAR        | 3        |
| Triakidae: smoothhounds               |                                |            |          |
| Galeorhinus galeus                    | school shark                   | SCH        | 7        |
| Torpedinidae: electric rays           |                                |            |          |
| Torpedo fairchildi                    | electric ray                   | ERA        | 1        |
| Narkidae: blind electric rays         |                                |            |          |
| Typhlonarke aysoni                    | blind electric ray             | TAY        | 6        |
| T. tarakea                            | oval electric ray              | TTA        | 1        |
| Rajidae: skates                       |                                |            |          |
| Amblyraja hyperborea                  | deepwater spiny (Arctic) skate | DSK        | 1        |
| Bathraja shuntovi                     | longnosed deepsea skate        | PSK        | 7        |
| Brochiraja asperula                   | smooth deepsea skate           | BTA        | 18       |
| B. spinifera                          | prickly deepsea skate          | BTS        | 9        |
| Brochiraja spp.                       | deepsea skates                 | BTH        | 2        |
| Dipturus innominatus                  | smooth skate                   | SSK        | 33       |
| Zearaja nasuta                        | rough skate                    | RSK        | 3        |
| Chimaeridae: chimaeras, ghost sharks  |                                | CHC        | 1        |
| Chimaera lignaria                     | giant chimaera                 | CHG        | 1        |
| C. sp. C                              | brown chimaera                 | CHP        | 2        |
| Hydrolagus bemisi                     | pale ghost shark               | GSP        | 78<br>51 |
| H. novaezealandiae                    | dark ghost shark               | GSH        | 51       |
| H. homonycteris                       | black ghost shark              | HYB        | 2        |
| Rhinochimaeridae: longnosed chimaeras | longnosa anoaktish             | LCU        | 50       |
| Harriotta raleighana                  | longnose spookfish             | LCH<br>RCH | 58<br>22 |
| Rhinochimaera pacifica                | Pacific spookfish              | ксп        | 22       |
| Osteichthyes (bony fishes)            |                                |            |          |
| Halosauridae: halosaurs               |                                |            |          |
| Halosaurus pectoralis                 | common halosaur                | HPE        | 2        |
| Notocanthidae: spiny eels             |                                |            |          |
| Notacanthus chemnitzi                 | giant spineback                | NOC        | 1        |
| N. sexspinis                          | spineback                      | SBK        | 67       |
| Synaphobranchidae: cutthroat eels     | •                              |            |          |
| Diastobranchus capensis               | basketwork eel                 | BEE        | 29       |
| Synaphobranchus affinis               | grey cutthroat eel             | SAF        | 1        |
| Nettastomatidae: duckbill eels        | <i>.</i>                       |            |          |
| Venefica sp.                          | periscope duckbill eel         | VEN        | 1        |
| Congridae: conger eels                |                                |            |          |
| Bassanago bulbiceps                   | swollenhead conger             | SCO        | 53       |
| B. hirsutus                           | hairy conger                   | HCO        | 33       |
| Serrivomeridae: sawtooth eels         |                                |            |          |
| Serrivomer sp.                        | sawtooth eel                   | SAW        | 2        |
| Gonorynchidae: sandfish               |                                |            |          |
| Gonorynchus forsteri & G. greyi       | sandfishes                     | GON        | 4        |
|                                       |                                |            |          |

| Scientific name                                   | Common name                  | Species | Occ. |
|---------------------------------------------------|------------------------------|---------|------|
| Argentinidae: silversides                         |                              |         |      |
| Argentina elongata                                | silverside                   | SSI     | 48   |
| Bathylagidae: deepsea smelts                      |                              |         |      |
| Melanolagus bericoides                            | bigscale blacksmelt          | MEB     | 6    |
| Alepocephalidae: slickheads                       | _                            |         |      |
| Alepocephalus antipodianus                        | smallscaled brown slickhead  | SSM     | 15   |
| A. australis                                      | bigscaled brown slickhead    | SBI     | 19   |
| Rouleina guentheri                                | slickhead                    | RGN     | 2    |
| Xenodermichthys copei                             | black slickhead              | BSL     | 14   |
| Platytroctidae: tubeshoulders                     |                              |         |      |
| Normichthys yahganorum                            | tubeshoulder                 | NOR     | 2    |
| Persparsia kopua                                  | tubeshoulder                 | PER     | 7    |
| Gonostomatidae: lightfishes                       |                              | D.ID    |      |
| Diplophos spp.                                    | twin light dragonfishes      | DIP     | 1    |
| Gonostoma bathyphilum                             | deepsea lightfish            | GBT     | 1    |
| Sternoptychidae: hatchetfishes                    | unspecified hatchetfish      | HAT     | 1    |
| Argyropelecus gigas                               | giant hatchetfish            | AGI     | 3    |
| Photichthyidae: lighthouse fishes                 | Palatana Cal                 | DITO    | 17   |
| Phosichthys argenteus                             | lighthouse fish              | РНО     | 17   |
| Chauliodontidae: viperfishes                      | vinantiah                    | СНА     | 6    |
| Chauliodus sloani                                 | viperfish                    | СПА     | 6    |
| Stomiidae: scaly dragonfishes <i>Stomias</i> spp. |                              | STO     | 1    |
| Melanostomiidae: scaleless black dragonfi         | chas                         | 310     | 1    |
| Melanostomias spp.                                | scaleless black dragonfishes | MEN     | 1    |
| Malacosteidae: loosejaws                          | scarciess black dragomistics | WILLIA  | 1    |
| Malacosteus australis                             | southern loosejaw            | MAU     | 4    |
| Idiacanthidae: black dragonfishes                 | southern rooseja w           | 111110  | •    |
| Idiacanthus spp.                                  | black dragonfish             | IDI     | 3    |
| Chlorophthalmidae: cucumberfishes, tripo          |                              |         |      |
| Bathypterois spp.                                 | tripod fish                  | TRI     | 1    |
| Scopelarchidae: pearleyes                         | 1                            |         |      |
| Scopelarchoides kreffti                           | Krefft's pearleye            | SKR     | 1    |
| Notosudidae: waryfishes                           | •                            |         |      |
| Scopelosaurus spp.                                |                              | SPL     | 2    |
| Paralepididae: barracudinas                       |                              |         |      |
| Macroparalepis macrugeneion                       |                              | MMA     | 2    |
| Myctophidae: lanternfishes                        | unspecified lanternfish      | LAN     | 7    |
| Diaphus danae                                     | Dana lanternfish             | DDA     | 9    |
| D. hudsoni                                        | Hudson's lanternfish         | DHU     | 1    |
| D. ostenfeldi                                     | Ostenfeld's lanternfish      | DOE     | 1    |
| Gymnoscopelus spp.                                |                              | GYM     | 2    |
| Lampadena notialis                                | notal lanternfish            | LNT     | 1    |
| L. speculigera                                    | mirror lanternfish           | LSP     | 2    |
| Lampadena spp.                                    |                              | LPD     | 1    |
| Lampanyctus australis                             | austral lanternfish          | LAU     | 1    |
| L. intricarius                                    | intricate lanternfish        | LIT     | 4    |
| Lampanyctus spp.                                  |                              | LPA     | 19   |
| Metelectrona ventralis                            | flaccid lanternfish          | MVE     | 1    |
| Moridae: morid cods                               |                              |         |      |
| Antimora rostrata                                 | violet cod                   | VCO     | 6    |
| Halargyreus johnsonii                             | Johnson's cod                | HJO     | 39   |
| Lepidion microcephalus                            | small-headed cod             | SMC     | 20   |
| Mora moro                                         | ribaldo                      | RIB     | 46   |
| Notophycis marginata                              | dwarf cod                    | DCO     | 6    |
| Pseudophycis bachus                               | red cod                      | RCO     | 27   |
|                                                   |                              |         |      |

| Scientific name                       | Common name                           | Species | Occ. |
|---------------------------------------|---------------------------------------|---------|------|
| Moridae: morid cods (cont)            |                                       |         |      |
| Physiculus luminosa                   | luminescent cod                       | PLU     | 1    |
| Tripterophycis gilchristi             | grenadier cod                         | GRC     | 4    |
| T. svetovidovi                        | giant grenadier cod                   | GRG     | 2    |
| Melanonidae: pelagic cods             |                                       |         |      |
| Melanonus gracilis                    | small toothed pelagic cod             | MEL     | 1    |
| M. zugmayeri                          | large toothed pelagic cod             | MEZ     | 2    |
| Gadidae: true cods                    |                                       |         |      |
| Micromesistius australis              | southern blue whiting                 | SBW     | 14   |
| Merlucciidae: hakes                   | Č                                     |         |      |
| Macruronus novaezelandiae             | hoki                                  | HOK     | 116  |
| Merluccius australis                  | hake                                  | HAK     | 60   |
| Macrouridae: rattails, grenadiers     |                                       |         |      |
| Coelorinchus acanthiger               | spotty faced rattail                  | CTH     | 8    |
| C. aspercephalus                      | oblique banded rattail                | CAS     | 55   |
| C. biclinozonalis                     | two saddle rattail                    | CBI     | 14   |
| C. bollonsi                           | Bollons's rattail                     | CBO     | 84   |
| C. fasciatus                          | banded rattail                        | CFA     | 43   |
| C. innotabilis                        | notable rattail                       | CIN     | 42   |
| C. kaiyomaru                          | Kaiyomaru rattail                     | CKA     | 7    |
| C. matamua                            | Mahia rattail                         | CMA     | 28   |
| C. oliverianus                        | Oliver's rattail                      | COL     | 71   |
| C. parvifasciatus                     | small banded rattail                  | CCX     | 23   |
| C. trachycarus                        | roughhead rattail                     | CHY     | 9    |
| Coryphaenoides dossenus               | humpback rattail                      | CBA     | 14   |
| C. mcmillani                          | McMillan's rattail                    | CMX     | 2    |
| C. murrayi                            | Murray's rattail                      | CMU     | 2    |
| C. serrulatus                         | serrulate rattail                     | CSE     | 36   |
| C. striaturus                         | striate rattail                       | CTR     | 5    |
| C. subserrulatus                      | four-rayed rattail                    | CSU     | 34   |
| Gadomus aoteanus                      | filamentous rattail                   | GAO     | 1    |
| Lepidorhynchus denticulatus           | javelinfish                           | JAV     | 103  |
| Lucigadus nigromaculatus              | blackspot rattail                     | VNI     | 33   |
| Macrourus carinatus                   | ridge scaled rattail                  | MCA     | 15   |
| Mesobius antipodum                    | black javelinfish                     | BJA     | 8    |
| Nezumia namatahi                      | squashed face rattail                 | NNA     | 8    |
| Odontomacrurus murrayi                | squasirea rave rawair                 | OMU     | 1    |
| Trachonurus gagates                   | velvet rattail                        | TRX     | 2    |
| T. villosus                           |                                       | TVI     | 1    |
| Trachyrincus aphyodes                 | white rattail                         | WHX     | 29   |
| T. longirostris                       | unicorn rattail                       | WHR     | 3    |
| Ophidiidae: cuskeels                  |                                       |         |      |
| Genypterus blacodes                   | ling                                  | LIN     | 87   |
| Carapidae: pearlfishes                | 6                                     |         |      |
| Echiodon cryomargarites               | messmate fish                         | ECR     | 3    |
| Chaunacidae: seatoads                 |                                       |         |      |
| Chaunax sp.                           | pink frogmouth                        | CHX     | 2    |
| Ceratiidae: seadevils                 | p.m. n og.n.oum                       | 01111   | _    |
| Cryptopsaras couesi                   | seadevil                              | SDE     | 3    |
| Regalecidae: oarfishes                |                                       |         |      |
| Agrostichthys parkeri                 | ribbonfish                            | AGR     | 3    |
| Trachichthyidae: roughies, slimeheads |                                       |         | ٥    |
| Hoplostethus atlanticus               | orange roughy                         | ORH     | 33   |
| H. mediterraneus                      | silver roughy                         | SRH     | 44   |
| Paratrachichthys trailli              | common roughy                         | RHY     | 12   |
|                                       | · · · · · · · · · · · · · · · · · · · |         |      |

| Scientific name                       | Common name              | Species | Occ. |
|---------------------------------------|--------------------------|---------|------|
| Diretmidae: discfishes                |                          |         |      |
| Diretmus argenteus                    | discfish                 | DIS     | 1    |
| Anoplogastridae: fangtooth            |                          |         |      |
| Anoplogaster cornuta                  | fangtooth                | ANO     | 1    |
| Berycidae: alfonsinos                 |                          |         |      |
| Beryx decadactylus                    | longfinned beryx         | BYD     | 3    |
| B. splendens                          | alfonsino                | BYS     | 39   |
| Melamphaidae: bigscalefishes          | unspecified bigscalefish | MPH     | 3    |
| Zeidae: dories                        |                          |         |      |
| Capromimus abbreviatus                | capro dory               | CDO     | 14   |
| Cyttus novaezealandiae                | silver dory              | SDO     | 17   |
| C. traversi                           | lookdown dory            | LDO     | 89   |
| Oreosomatidae: oreos                  |                          |         |      |
| Allocyttus niger                      | black oreo               | BOE     | 14   |
| A. verrucosus                         | warty oreo               | WOE     | 3    |
| Neocyttus rhomboidalis                | spiky oreo               | SOR     | 41   |
| Pseudocyttus maculatus                | smooth oreo              | SSO     | 32   |
| Macrorhamphosidae: snipefishes        |                          |         |      |
| Centriscops humerosus                 | banded bellowsfish       | BBE     | 66   |
| Notopogon lilliei                     | crested bellowsfish      | CBE     | 1    |
| Scorpaenidae: scorpionfishes          |                          |         |      |
| Helicolenus spp.                      | sea perch                | SPE     | 88   |
| Trachyscorpia eschmeyeri              | cape scorpionfish        | TRS     | 5    |
| Congiopodidae: pigfishes              |                          |         |      |
| Congiopodus leucopaecilus             | pigfish                  | PIG     | 1    |
| Triglidae: gurnards                   |                          |         |      |
| Lepidotrigla brachyoptera             | scaly gurnard            | SCG     | 8    |
| Hoplichthyidae: ghostflatheads        |                          |         |      |
| Hoplichthys haswelli                  | deepsea flathead         | FHD     | 43   |
| Psychrolutidae: toadfishes            | •                        |         |      |
| Ambophthalmos angustus                | pale toadfish            | TOP     | 23   |
| Ebinania sp. A                        | pointynose toadfish      | PNT     | 1    |
| Psychrolutes microporos               | blobfish                 | PSY     | 8    |
| Percichthyidae: temperate basses      |                          |         |      |
| Polyprion americanus                  | bass                     | BAS     | 1    |
| P. oxygeneios                         | hapuku                   | HAP     | 9    |
| Serranidae: sea perches, gropers      | •                        |         |      |
| Lepidoperca aurantia                  | orange perch             | OPE     | 13   |
| Apogonidae: cardinalfishes            |                          |         |      |
| Epigonus denticulatus                 | white cardinalfish       | EPD     | 10   |
| E. lenimen                            | bigeye cardinalfish      | EPL     | 9    |
| E. machaera                           | thin tongue cardinalfish | EPM     | 17   |
| E. robustus                           | robust cardinalfish      | EPR     | 4    |
| E. telescopus                         | deepsea cardinalfish     | EPT     | 18   |
| Carangidae: trevallies, kingfishes    | •                        |         |      |
| Trachurus declivis                    | greenback jack mackerel  | JMD     | 2    |
| T. murphyi                            | slender jack mackerel    | JMM     | 6    |
| Bramidae: pomfrets                    | J                        |         |      |
| Brama australis                       | southern Ray's bream     | SRB     | 38   |
| B. brama                              | Ray's bream              | RBM     | 1    |
| Pterycombus petersii                  | fanfish                  | FAN     | 1    |
| Taractichthys longipinnis             | big-scale pomfret        | BSP     | 1    |
| Emmelichthyidae: bonnetmouths, rovers |                          |         |      |
| Emmelichthys nitidus                  | redbait                  | RBT     | 5    |
| Plagiogeneion rubiginosum             | rubyfish                 | RBY     | 1    |
| 0 0                                   | •                        |         |      |

| Scientific name                          | Common name      | Species | Occ. |
|------------------------------------------|------------------|---------|------|
| Pentacerotidae: boarfishes, armourheads  |                  |         |      |
| Pentaceros decacanthus                   | yellow boarfish  | YBO     | 1    |
| Cheilodactylidae: tarakihi, morwongs     | <b>,</b>         |         |      |
| Nemadactylus macropterus                 | tarakihi         | NMP     | 4    |
| Uranoscopidae: armourhead stargazers     |                  |         |      |
| Kathetostoma binigrasella                | banded stargazer | BGZ     | 1    |
| K. giganteum                             | giant stargazer  | GIZ     | 46   |
| Pinguipedidae: sandperches, weevers      |                  |         |      |
| Parapercis gilliesi                      | yellow cod       | YCO     | 1    |
| Percophidae: opalfishes                  | •                |         |      |
| Hemerocoetes spp.                        | opalfish         | OPA     | 1    |
| Gempylidae: snake mackerels              |                  |         |      |
| Nesiarchus nasutus                       | black barracouta | BBA     | 1    |
| Thyrsites atun                           | barracouta       | BAR     | 9    |
| Trichiuridae: cutlassfishes              |                  |         |      |
| Lepidopus caudatus                       | frostfish        | FRO     | 4    |
| Centrolophidae: raftfishes, medusafishes |                  |         |      |
| Centrolophus niger                       | rudderfish       | RUD     | 27   |
| Hyperoglyphe antarctica                  | bluenose         | BNS     | 6    |
| Seriolella caerulea                      | white warehou    | WWA     | 50   |
| S. punctata                              | silver warehou   | SWA     | 48   |
| Tubbia tasmanica                         | Tasmanian ruffe  | TUB     | 3    |
| Nomeidae: eyebrowfishes, driftfishes     |                  |         |      |
| Cubiceps spp.                            | cubehead         | CUB     | 1    |
| Tetragonuridae: squaretails              |                  |         |      |
| Tetragonurus cuvieri                     | squaretail       | TET     | 1    |
| Achiropsettidae: southern flounders      |                  |         |      |
| Neoachiropsetta milfordi                 | finless flounder | MAN     | 6    |
| Bothidae: lefteyed flounders             |                  |         |      |
| Arnoglossus scapha                       | witch            | WIT     | 12   |
| Pleuronectidae: righteyed flounders      |                  | * 00    |      |
| Pelotretis flavilatus                    | lemon sole       | LSO     | 13   |

Appendix 3: Scientific and common names of species caught from fine-meshed midwater tows (TAN1301). The occurrence (Occ.) of each species (number of tows caught) in the 7 midwater tows is also shown. Note that species codes are continually updated on the database following this and other surveys.

| Scientific name                                                                                           | Common name                                  | Species    | Occ.   |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|--------|
| Cnidaria<br>Scyphozoa                                                                                     | unspecified jellyfish                        | JFI        | 1      |
| Tunicata Thaliacea (salps)                                                                                | unspecified salps                            | SAL        | 4      |
| manacea (sarps)                                                                                           | unspectified salps                           | SAL        | 4      |
| Mollusca<br>Cephalopoda<br>Sepiolida (bobtail squids)<br>Sepiolidae                                       |                                              |            |        |
| Heteroteuthis dagamensis Teuthoidea (squids)                                                              | bobtail squid<br>unspecified squid           | HES<br>SQX | 1<br>2 |
| Octopoteuthidae Octopoteuthis sp.                                                                         | 1                                            | OCM        | 1      |
| Onychoteuthidae Onychoteuthis sp.                                                                         |                                              | OBA        | 1      |
| Histioteuthidae (violet squids)  Histioteuthis spp.                                                       | violet squid                                 | VSQ        | 3      |
| Brachioteuthidae  Brachioteuthis spp.                                                                     |                                              | SQB        | 2      |
| Ommastrephidae<br><i>Todarodes filippovae</i>                                                             | Todarodes squid                              | TSQ        | 2      |
| Chiroteuthididae Chiroteuthis sp.                                                                         |                                              | CVE        | 1      |
| Cranchiidae<br>Liguriella podophthalma<br>Teuthowenia pellucida                                           |                                              | SQX<br>TPE | 1<br>2 |
| Crustacea                                                                                                 |                                              |            |        |
| Malacostraca Dendrobranchiata/Pleocyemata (prawns) Dendrobranchiata Penaeidae                             | unspecified prawn                            | NAT        | 1      |
| Funchalia spp.                                                                                            | Funchalia prawn                              | FUN        | 1      |
| Sergestidae  Eusergestes arcticus  Pleocyemata                                                            | prawn                                        | SAC        | 3      |
| Caridea<br>Oplophoridae                                                                                   |                                              |            |        |
| Acanthephyra spp. Oplophorus spp.                                                                         | SubAntarctic ruby prawn deepwater prawn      | ACA<br>OPP | 2<br>4 |
| Pasiphaeidae<br>Pasiphaea aff. tarda                                                                      | deepwater prawn                              | PTA        | 1      |
| Achelata<br>Palinuridae (rock lobsters)                                                                   | unspecified phyllosoma                       | PHY        | 1      |
| <b>Chondrichthyes</b> (cartilagenous fishes)<br>Etmopteridae: lantern sharks<br><i>Etmopterus baxteri</i> | Baxter's dogfish                             | ЕТВ        | 2      |
| Osteichthyes (bony fishes)<br>Nemichthyidae: snipe eels                                                   |                                              |            |        |
| Avocettina sp. Bathylagidae: deepsea smelts                                                               | black snipe eel<br>unspecified deepsea smelt | AVO<br>BLG | 1 3    |
|                                                                                                           |                                              |            |        |

| Scientific name                           | Common name                            | Species    | Occ.   |
|-------------------------------------------|----------------------------------------|------------|--------|
| Opisthoproctidae: spookfishes             |                                        |            |        |
| Opisthoproctus grimaldi                   | mirrorbelly                            | MBE        | 1      |
| Platytroctidae: tubeshoulders             |                                        |            |        |
| Persparsia kopua                          |                                        | PER        | 3      |
| Gonostomatidae: lightfishes               |                                        |            |        |
| Margrethia obtusirostra                   | blunthead bristlemouth                 | MOB        | 1      |
| Sternoptychidae: hatchetfishes            | unspecified hatchetfish                | HAT        | 3      |
| Argyropelecus gigas                       | giant hatchetfish                      | AGI        | 2      |
| A. hemigymnus                             | hatchetfish                            | AHE        | 3      |
| Maurolicus australis                      | pearlside                              | MMU        | 4      |
| Polyipnus ruggeri                         | hatchetfish                            | PYP        | 1      |
| Sternoptyx pseudodiaphana                 | hatchetfish                            | STE        | 3      |
| Photichthyidae: lighthouse fishes         |                                        | ****       |        |
| Phosichthys argenteus                     | lighthouse fish                        | РНО        | 3      |
| Chauliodontidae: viperfishes              |                                        | CTT 4      |        |
| Chauliodus sloani                         | viperfish                              | СНА        | 4      |
| Stomiidae: scaly dragonfishes             |                                        | CTIO       | 4      |
| Stomias spp.                              | 1                                      | STO        | 4      |
| Melanostomiidae: scaleless black dragonfi | snes                                   | MST        | 3      |
| Malacosteidae: loosejaws                  |                                        | MAIT       | 2      |
| Malacosteus australis                     | southern loosejaw                      | MAU        | 2      |
| Idiacanthidae: black dragonfishes         | block duo confich                      | IDI        | 2      |
| Idiacanthus spp.                          | black dragonfish                       | IDI        | 3      |
| Scopelarchidae: pearleyes                 | unspecified pearleye                   | PEY        | 1      |
| Notosudidae: waryfishes                   |                                        | CDI        | 2      |
| Scopelosaurus spp.                        | unanacified lantamfish                 | SPL<br>LAN | 2<br>2 |
| Myctophidae: lanternfishes                | unspecified lanternfish                | BOL        | 2      |
| Bolinichthys supralateralis               | stubby lanternfish<br>Dana lanternfish | DDA        | 5      |
| Diaphus danae<br>D. hudsoni               | Hudson's lanternfish                   | DHU        | 4      |
| D. nuasoni<br>D. ostenfeldi               | Ostenfeld's lanternfish                | DOE        | 3      |
| D. ostenjetat<br>Diaphus spp.             | Ostellield's failterinish              | DIA        | 1      |
| Electrona spp.                            |                                        | ELT        | 5      |
| Gymnoscopelus spp.                        |                                        | GYM        | 2      |
| Lampadena notialis                        | notal lanternfish                      | LNT        | 2      |
| L. speculigera                            | mirror lanternfish                     | LSP        | 2      |
| Lampanyctodes hectoris                    | Hector's lanternfish                   | LHE        | 3      |
| Lampanyctus spp.                          | ricetor s fairterninsii                | LPA        | 5      |
| Lampanyens spp.  Lampichthys procerus     |                                        | LPR        | 3      |
| Metelectrona ventralis                    | flaccid lanternfish                    | MVE        | 4      |
| Protomyctophum spp.                       |                                        | PRO        | 5      |
| Symbolophorus boops                       | bogue lanternfish                      | SBP        | 3      |
| Moridae: morid cods                       | 8                                      | ~          | _      |
| Notophycis marginata                      | dwarf cod                              | DCO        | 1      |
| Macrouridae: rattails, grenadiers         |                                        |            |        |
| Mesobius antipodum                        | black javelinfish                      | BJA        | 1      |
| Diretmidae: discfishes                    | ,                                      |            |        |
| Diretmus argenteus                        | discfish                               | DIS        | 1      |
| Melamphaidae: bigscalefishes              |                                        |            |        |
| Sio nordenskjoldii                        |                                        | SNO        | 2      |
| Oreosomatidae: oreos                      |                                        |            |        |
| Allocyttus niger                          | black oreo                             | BOE        | 1      |
| Pseudocyttus maculatus                    | smooth oreo                            | SSO        | 1      |
| Apogonidae: cardinalfishes                |                                        |            |        |
| Epigonus robustus                         | robust cardinalfish                    | EPR        | 1      |
| Howella brodiei                           | pelagic cardinalfish                   | HOW        | 3      |
|                                           |                                        |            |        |

| Scientific name                          | Common name          | Species | Occ. |
|------------------------------------------|----------------------|---------|------|
| Bramidae: pomfrets                       |                      |         |      |
| Brama australis                          | southern Ray's bream | SRB     | 1    |
| Emmelichthyidae: bonnetmouths, rovers    |                      |         |      |
| Emmelichthys nitidus                     | redbait              | RBT     | 1    |
| Centrolophidae: raftfishes, medusafishes |                      |         |      |
| Seriolella caerulea                      | white warehou        | WWA     | 1    |
| S. punctata                              | silver warehou       | SWA     | 2    |
| Tetragonuridae                           |                      |         |      |
| Tetragonurus cuvieri                     | squaretail           | TET     | 1    |

Appendix 4: Scientific and common names of mesopelagic and benthic invertebrates identified following the voyage

| NIWA No. | Cruise/Station_no. | Phylum        | Class        | Order           | Family           | Genus          | Species      |
|----------|--------------------|---------------|--------------|-----------------|------------------|----------------|--------------|
| 86700    | TAN1301/015        | Cnidaria      | Anthozoa     | Gorgonacea      | Isididae         |                |              |
| 89388    | TAN1301/050        | Mollusca      | Cephalopoda  | Oegopsida       | Octopoteuthidae  | Octopoteuthis  | sp.          |
| 89553    | TAN1301/064        | Echinodermata | Asteroidea   | Valvatida       | Goniasteridae    | Hippasteria    | sp.          |
| 89390    | TAN1301/074        | Mollusca      | Cephalopoda  | Oegopsida       | Brachioteuthidae | Brachioteuthis | sp.          |
| 89392    | TAN1301/074        | Mollusca      | Cephalopoda  | Oegopsida       | Histioteuthidae  | Histioteuthis  | sp.          |
| 89391    | TAN1301/074        | Mollusca      | Cephalopoda  | Oegopsida       | Cranchiidae      | Liguriella     | podophthalma |
| 89384    | TAN1301/074        | Mollusca      | Cephalopoda  | Oegopsida       | Octopoteuthidae  | Octopoteuthis  | sp.          |
| 89389    | TAN1301/074        | Mollusca      | Cephalopoda  | Oegopsida       | Onychoteuthidae  | Onychoteuthis  | sp.          |
| 89566    | TAN1301/074        | Arthropoda    | Malacostraca | Amphipoda       | Phronimidae      | Phronima       | sp.          |
| 89386    | TAN1301/075        | Mollusca      | Cephalopoda  | Oegopsida       | Pyroteuthidae    |                |              |
| 89385    | TAN1301/075        | Mollusca      | Cephalopoda  | Sepiolida       | Sepiolidae       | Heteroteuthis  | dagamensis   |
| 89387    | TAN1301/075        | Mollusca      | Cephalopoda  | Oegopsida       | Histioteuthidae  | Histioteuthis  | sp.          |
| 89395    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Cranchiidae      |                |              |
| 89382    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Brachioteuthidae | Brachioteuthis | sp.          |
| 89393    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Chiroteuthidae   | Chiroteuthis   | sp.          |
| 89383    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Histioteuthidae  | Histioteuthis  | sp.          |
| 89394    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Cranchiidae      | Teuthowenia    | pellucida    |
| 89396    | TAN1301/076        | Mollusca      | Cephalopoda  | Oegopsida       | Cranchiidae      | Teuthowenia    | pellucida    |
| 89548    | TAN1301/115        | Echinodermata | Echinoidea   | Echinothurioida | Echinothuriidae  | Araeosoma      | sp.          |
| 89567    | TAN1301/129        | Arthropoda    | Malacostraca | Amphipoda       | Phronimidae      | Phronima       | sp.          |

Appendix 5: Length ranges (cm) used to identify 1+, 2+ and 3++ hoki age classes to estimate relative biomass values given in Table 7a.

| Survey   |      |         | Age group |
|----------|------|---------|-----------|
| _        | 1+   | 2+      | 3++       |
| Jan 1992 | < 50 | 50 - 65 | ≥ 65      |
| Jan 1993 | < 50 | 50 - 65 | ≥ 65      |
| Jan 1994 | < 46 | 46 - 59 | ≥ 59      |
| Jan 1995 | < 46 | 46 - 59 | ≥ 59      |
| Jan 1996 | < 46 | 46 - 55 | ≥ 55      |
| Jan 1997 | < 44 | 44 - 56 | ≥ 56      |
| Jan 1998 | < 47 | 47 - 56 | ≥ 53      |
| Jan 1999 | < 47 | 47 - 57 | ≥ 57      |
| Jan 2000 | < 47 | 47 - 61 | ≥ 61      |
| Jan 2001 | < 49 | 49 - 60 | $\geq 60$ |
| Jan 2002 | < 52 | 52 - 60 | $\geq 60$ |
| Jan 2003 | < 49 | 49 - 62 | ≥ 62      |
| Jan 2004 | < 51 | 51 - 61 | ≥ 61      |
| Jan 2005 | < 48 | 48 - 65 | ≥ 65      |
| Jan 2006 | < 49 | 49 - 63 | ≥ 63      |
| Jan 2007 | < 48 | 48 - 63 | ≥ 63      |
| Jan 2008 | < 49 | 49 - 60 | $\geq 60$ |
| Jan 2009 | < 48 | 48 - 62 | ≥ 62      |
| Jan 2010 | < 48 | 48 - 62 | ≥ 62      |
| Jan 2011 | < 48 | 48 - 62 | ≥ 62      |
| Jan 2011 | < 48 | 48 - 62 | ≥ 62      |
| Jan 2012 | < 49 | 49 - 60 | $\geq 60$ |
| Jan 2013 | < 47 | 47 - 55 | ≥ 55      |