Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 23, 2019

The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3

  • Natalia V. Zubkova EMAIL logo , Igor V. Pekov , Evgeny V. Sereda , Vasiliy O. Yapaskurt and Dmitry Yu. Pushcharovsky

Abstract

The crystal structure of hibbingite, natural γ-Fe2+2Cl(OH)3, a mineral of the atacamite group, was studied on a sample from the Oktyabr’sky mine, Norilsk district, Siberia, Russia. The structure was solved by direct methods based on single crystal X-ray diffraction data and refined to R=2.07% [520 reflections with I>2σ(I)]. The mineral is isostructural with atacamite and is orthorhombic, Pnma, a=6.3373(2), b=6.9892(2), c=9.3457(3) Å, V=413.95(3) Å3, Z=4. The structure contains Fe(1)(OH)4Cl2 octahedra which share Cl–O(1) edges to form chains running along the b axis and cross-linked by the chains of Fe(2)(OH)5Cl octahedra sharing O(2)–O(2) edges and running along the a axis.


Corresponding author: Dr. Natalia V. Zubkova, Faculty of Geology, Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia, Fax: 007-495-9328889

Award Identifier / Grant number: 14-17-00048

Funding statement: We thank Gerald Giester and anonymous referee for valuable comments and Evgeny Antipov for the editorial work. This study was supported by the Russian Science Foundation, grant no. 14-17-00048.

References

[1] B. Saini-Eidukat, H. Kucha, H. Keppler, Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for oxidation of Fe-bearing compounds and transport of metals. Am. Mineral. 1994, 79, 555.Search in Google Scholar

[2] P. Williams, P. Downes, J. Grice, D. Hibbs, A. Kampf, P. Leverett, T. Malcherek, J. Schlüter, M. Sciberras, M. Welch, A nomenclature for the Atacamite Family. 21st General Meeting of the International Mineralogical Association, Johannesburg, 2014, 376.Search in Google Scholar

[3] B. Saini-Eidukat, N. S. Rudashevsky, A. G. Polozov, Evidence for hibbingite – kempite solid solution. Mineral. Mag. 1998, 62, 251.10.1180/002646198547602Search in Google Scholar

[4] H. Brasseur, J. Toussaint, Structure cristalline de l’atacamite. Bull. Soc. R. Sci. Liege1942, 11, 555.Search in Google Scholar

[5] A. F. Wells, The crystal structure of atacamite and the crystal chemistry of cupric compounds. Acta Crystallogr. 1949, 2, 175.10.1107/S0365110X49000461Search in Google Scholar

[6] J. B. Parise, B. G. Hyde, The structure of Atacamite and its relationships to spinel. Acta Crystallogr.1986, C42, 1277.10.1107/S0108270186092570Search in Google Scholar

[7] X. G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, H. Yamada, K. Nishikubo, C. N. Xu, Antiferromagnetic transitions in polymorphous minerals of the natural cuprates atacamite and botallackite Cu2Cl(OH)3. Phys. Rev. Ser. 3. B – Condensed Matter2005, 71, 174404-1.10.1103/PhysRevB.71.174404Search in Google Scholar

[8] B. P. Onac, H. S. Effenberger, N. C. Collins, J. B. Kearns, R. C. Breban, Revisiting three minerals from Cioclovina Cave (Romania). Int. J. Speleol. 2011, 40, 99.10.5038/1827-806X.40.2.2Search in Google Scholar

[9] H. Kubozono, X.-G. Zheng, H. Yamada, C.-N. Xu, Structural analysis for novel materials exhibiting exotic properties. II. A structural study of new geometrically frustrated spin systems M2Cl(OH)3. Reports of the faculty of science and engineering, Saga University, 2006, 35, 13.Search in Google Scholar

[10] Agilent Technologies. CrysAlisPro Software system, version 1.171.37.35, Agilent Technologies UK Ltd, Oxford, UK, 2014.Search in Google Scholar

[11] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[12] O. C. Gagné, F. C. Hawthorne, Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562.10.1107/S2052520615016297Search in Google Scholar PubMed PubMed Central

[13] N. E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192.10.1107/S0108768190011041Search in Google Scholar

[14] T. Malcherek, J. Schlüter, Cu3MgCl2(OH)6 and the bond-valence parameters of the OH–Cl bond. Acta Crystallogr. 2007, B63, 157.10.1107/S0108768106053870Search in Google Scholar PubMed

[15] P. C. Burns, F. C. Hawthorne, Mixed-ligand Cu2+Φ6 octahedra in minerals: observed stereochemistry and Hartree–Fock calculations. Can. Mineral. 1995, 33, 1177.Search in Google Scholar

[16] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr.2011, 44, 1272.10.1107/S0021889811038970Search in Google Scholar

[17] M. E. Fleet, The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallogr. 1975, B31, 183.10.1107/S0567740875002324Search in Google Scholar

[18] J. D. Bernal, D. R. Dasgupta, A. L. Mackay, The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals1959, 4, 15.10.1180/claymin.1959.004.21.02Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2124).


Received: 2018-08-18
Accepted: 2019-02-12
Published Online: 2019-02-23
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2018-2124/html
Scroll to top button