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The principle of minimum chemical distance (PMCD) is derived from the general 
theory of the BE- and R-matrices, and makes precise the vague classical •'principle of 
minimum structure change". In fact, the PMCD may be seen as the principle of minimum 
structure change in mathematical terms. It provides a quantitative measure of chemical 
similarity of isomeric molecular systems. Its applications lie in the fields of correlations 
of substructures, elucidation of reaction mechanisms, and evaluation of synthetic path-
ways as is illustrated by examples. The mathematical foundations of the computer 
assisted application of the PMCD are presented. 

1. Introduction 
The 'principle of minimum structure change [1J is 

an old and widely used heuristic rule in organic 
chemistry. Since it has intuitive appeal, and neither 
its content nor its scope have been explicitly 
defined, its validity has never been questioned. 
Some of its more recent corollaries [2, 3] are. 
however, still under critical discussion [4|. 

The change in structure which takes place through 
a chemical reaction involves breaking and making 
of covalent bonds and a change in the placement of 
the free valence electrons. The total number d (E, B) 
of valence electrons which must be shifted in order 
to achieve the conversion of an ensemble of mole-
cules EM(B) into an isomeric ensemble EM(E) [5. 6] 
is given by the expression 

d(E,B) = <-»c(B) + ( + )c(E) + 
±[( -»f (B) + '+»f(E)]. 

Here ( - ) c (B) and ( + )c(E) are the numbers of the 
bonds broken in EM(B) and bonds made in EM(E), 

Abbreviations: BE-matrix = bond and electron 
matrix; CD = chemical distance; EM = ensemble of 
molecules; MCD = minimum chemical distance; 
PMCD = principle of minimum chemical distance; 
R-matrix = reaction matrix. 
+ Present address: Department of Chemistry BG-10, 

University of Washington, Seattle, WA, 98 195, 
USA. 

* Reprint requests to Prof. Dr. I. Ugi. 
0340-5087/82/0900-1205/S 01.00/0 

while ( - ) f (B) and <+)f(E) are the numbers of free 
electrons which are removed from atomic cores in 
EM (B) and added to atomic cores in EM (E), respec-
tively. Thus d(E,B) appears to be well suited as a 
quantitative measure for the constitutional changes 
that occur in a chemical reaction EM(B) - » EM(E), 
and the minimum of d(B.E) corresponds to mini-
mum structure change. The number of valence 
electrons which are redistributed during a reaction 
whose beginning EM(B) and end EM(E) are given 
depends on the correlation of the atoms in the 
participating EM. When the atoms in EM(B) and 
EM(E) are identified by indices, this correlation 
involves stating for each indexed atom in EM(B) its 
index in EM(E). 

For EM with n atoms, the atoms in each EM can 
be indexed in up to n! different ways. Thus with 
arbitrary indices the atoms in EM(B) and EM(E) 
may be correlated in up to (n!)2 different ways. 
Without guiding theory the trial- and error-search 
for that correlation of the atoms which corresponds 
to the minimum d(E,B), and thus minimum struc-
ture change, would require the determination of 
d (E,B) for up to (n!)2 atom onto atom bijections of 
EM(B) and EM(E). 

In Section 2 it will be outlined how an algebraic 
theory of constitutional chemistry may serve to 
guide the search for those interconversions of iso-
meric EM which involve the redistribution of a 
minimum number of valence electrons. This leads to 
an algorithm (see Section 3) for determining those 
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atom onto atom bijections of isomeric EM which 
correspond to their interconversion by redistribution 
of a minimum number of valence electrons. The 
above algorithm has been shown to be useful for the 
solution of a wide variety of problems in organic 
chemistry in fields like substructure correlation, the 
elucidation of reaction mechanisms and the design 
of syntheses. Examples are discussed in Section 4. 

2. 3Iathematical Framework 
Within the framework of a recently published 

theory of constitutional chemistry [5], ensembles of 
molecules (EM) are represented by their BE-ma-
trices. The n atomic cores Ai An in a given EM 
are indexed arbitrarily, and the indices of the atomic 
cores are used as the row/column indices of an n x n 
matrix. The entries bjj = bji (i j) of a BE-matrix 
are the formal orders of the covalent bonds between 
the atomic cores Ai and Aj and the entries bu are 
the numbers of the free valence electrons belonging 
to the atomic cores Ai. 

The conversion of an EM(B) into an EM(E) by a 
chemical reaction (or sequence of chemical reactions) 
is represented by a matrix equation 

E = B + R 

where B, E are the BE-matrices of EM(B) and 
EM(E), and R is a reaction matrix which describes 
the redistribution of valence electrons during the 
reaction EM(B) -*EM(E); the matrix R is a sym-
metric n x n natrix with integer entries and with 
sum over all entries equal to zero. Representing the 
matrices E, B by points in Rn2, the function 

di(E.B) = 2|ei , j — bij| = 2 l r ü l 

has the properties of a distance, and is called the 
chemical distance between EM(E) and EM(B) 
because it is twice the number d(E.B) of valence 
electrons that are redistributed in the conversion of 
B to E. 

Closely related to this distance, is the ordinary 
Euclidean distance in R"2, 

d2(E,B) = j/Zley—bij|2 = j / v jr..|2 

which does not have the same chemical meaning as 
the di-distance; but there is the relation 

d2(E,B) < di(E,B) < n • d2(E.B), 

the first inequality coming from the observation 
that 

Z l r . 1 2 < { 2 | r i j | } 2 

and the second from the Schwarz inequality 

rul = 1 • lrul < 
• S|rij|2 = n • y X ru 2. 

Since the n atomic cores of an EM can be indexed 
in up to n! distinct ways, an EM consisting of n 
atoms is representable in up to n! distinct ways by 
BE-matrices; any two of these differ by row/column 
permutations which correspond to the permutations 
of the atomic core indices. Thus, the BE-matrices 
are determined by the EM only up to a permutation, 
in that two matrices B, B' represent the same EM if 
there is a permutation matrix P such that B' = P lBP. 
We shall call the set {P lBP} the cluster determined 
by B; as we have remarked, all the matrices in a 
cluster represent the same EM, but with different 
labellings of the atoms in that EM. 

Let EM(B) be convertible into an EM(E); now 
the minimum chemical distance accomplishing this 
conversion is to be determined. Due to the non-
uniqueness of the representation of EM by BE-
matrices, this corresponds to the problem: Find 
matrices P4BP and Q4BQ as close as possible 
according to their distance; their difference will be 
a reaction matrix and will fit [6] Q lBQ. That this 
search requires permuting the row/columns of only 
one matrix, and that it has at least one solution 
follows from 

Theorem: Let di (resp. dz) be the di (resp. d2) 
distance between the clusters {P lEP} and {Q lBQ}. 
Given i = 1 or 2, and any member Y of one cluster, 
there is at least one member Xi of the other cluster 
such that di(Xi, Y) = 

Proof: Let d (resp. <5) denote di (resp. <5i). Since the 
clusters are finite sets, there is at least one pair 
P lEP and Q*BQ such that d(P*EP, Q4BQ) = <5. The 
definition of the distance functions di, d2 shows that 
they are invariant under row/column permutations 
so, recalling that Q1 = Qr1 for permutation matrices, 
we find 

<5 = d [QP-1 EPQ"1, B] 

and. since PQ_1 = L is a permutation matrix 
with inverse QP"1 = L"1 = L* this shows that 
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6 = d(L lEL,B). Using the invariance once again, 
the assertion follows. 

In particular, one can keep B fixed and permute E 
alone, to find a minimum reaction matrix. 

It is immediate from the relation between di and 
d2 that 

< d2 < n2di. 

It need not be true, in general, that <5i = Ö2, or even 
that an element with minimum di-distance to B is 
to be found among the elements with minimum 
do-distance (see Fig. 1); the possibility <<52 could 
be interpreted as saying that the minimum chemical 
distance is not necessarily that of lowest energy. 

Fig. 1. For a cluster C the point with minimum di 
distance to E may be different from the point with the 
minimum d2 distance. 

Although a member of the cluster of E having 
minimum di-distance to B is required for the chemi-
cal problem, the computational techniques are 
better adapted to finding members of the cluster 
having minimum d^-distance to B. Notice that 
finding d2 does provide a rough bound for <5i (from 
which it is frequently possible to determine <5i) and. 
for the sake of completeness, we present two known 
techniques for computing d2. 

Let •) denote the inner product in Rn 2 . All the 
points P l EP lie on a d2-spheres (which is a convex 
set). 

Theorem 
|jB—Po'EPoll = inf j|B—Q'EQH i fandonlvi f 

Q 
<B — Po 'EPcQtEQ—Po t EPo)<Oforal lQtEQ 

Proof 

||B — Q'EQH* = 
= 11 (B—P 0 l EPo) — (Ql EQ—Po1 EPo) i |2 

= ||(B—Po'EPo)!!2 — 
— 2 <B—Po'EPo, QtEQ—PotEPo) 
+ HQtEQ—PotEPoll2 

> ||B—Po'EPoll2 

so ||B—P0tEPo| | is indeed minimum. Ii 5 5 . => . 
For every 0 <?. < 1 and every Q l EQ we have 

||B—PotEPoll2 < 
||B —[(1—/)P0tEP0 + /QtEQ]||2 = 
j | (B—P0t EPo) — 2 (Ql EQ—Po4 EPt) 112 

so 
0 < — 2/<B—PotEPo.QtEQ—PotEPo> + 
A2||QlEQ—Po'EPoli2. 

Since this must hold for all I > 0, the required con-
clusion follows. 

For the computational solution of the problem 
the following theorem is particularly important. 

Theorem 
11B—Pol EPo| | = inf 11B—Qt E Q 11 if and only if 

Q 
<B. Po'EPo) = max 

Proof 
By the law of cosines 

||B—QtEQH = ||Bj|2 + HQtEQII — 
— 2 <B, Q lEQ> 

so that since HQ'EQH is constant for all Q, the 
distance will be minimum whenever the inner prod-
uct is maximum. 

3. The Algorithmic Solution of the MCD Problem 
3.1. Different approaches 

We formulate the minimization of the chemical 
distance di as a nonlinear minimization problem G: 

G (P, Q) = di (PEPT, QBQT) = min (1) 

Permutation matrices P, Q must be found such that 
the chemical distance between the starting and 
target molecule B and E with permuted atomic 
indices becomes minimal. 

As shown in Section 2, it is, however, sufficient to 
seek the minimum of the function 

F (P) = di (PEPT , B) = min (2) 

The only direct way known so far to solve (2) is a 
trial and error search (complete enumeration), i.e., 
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to determine F for all possible n! permutation 
matrices P. Since (10!) is already 3,628,800, this 
method is limited to very small MCD-problems and 
thus is in general not applicable. 

It is also possible to consider the MCD-problem 
from a graph theoretical point of view. The graphs 
of B and E must be matched with minimum breaking 
and making of bonds, i.e. one must find a common 
indexing of the atoms in B and E such that in the 
graphs of B and of E a minimum number of bonds 
must be broken in order to obtain isomorphic 
graphs. 

This implies that we have to match the atoms of 
as many as possible common largest substructures 
of B and E. This is however not equivalent to the 
process consisting of matching the atoms of the 
largest substructure of B and E. then the atoms of 
the next largest substructure and so forth. This is 
demonstrated by the following example: 

largest substructures. Thus we had to reformulate 
the problem for obtaining an optimum solution: 

Fig. 2. 
first and second largest common sub-

N^V structure of B and E (CD = 8); 
substructures which occur at an assignment 

V ^ of the atoms according to MCD (CD = 4). 

Thus, for the problem at hand, common sub-
structure search algorithms alone do not suffice to 
determine that correspondence of the atoms of B 
and those of E which yields the MCD. 

The approaches described above are applicable 
only either to MCD problems of small EM or for 
generating suboptimum solutions by matching the 

Let H be the problem: 

H(P) = d2 (PEPT, B) = min (3) 

The minimization of H is equivalent to the maximi-
zation of H or the minimization of — H (see Sec-
tion 2) 

H (P) = PEPT • B = max (4) 
— H ( P ) = —PEPT • B = min 

Here • denotes the scalar multiplication of two 
matrices. 

According to Section 2, the set of optimum solu-
tions of (2) is a subset of the set of optimum solutions 
of (3) and (4), respectively. Since we are able to 
detect the optimum solutions of (4), we only need 
scan these (normally very few) permutation matrices 
for satisfying condition (2). 

There exist several algorithms for the minimiza-
tion of (3). They all were originally developed for 
problems of operations research like the optimum 
assignment or the backboard wiring problem [7]. 
All of these algorithms are non-iterative and work as 
branch-and-bound algorithms. They vary mainly in 
the determination of upper and lower bounds for 
the optimum solution of H. 

We decided to use the perturbation method 
recently developed by R. E. Burkard [8, 9] which is 
probably the most powerful approach. We modified 
this branch and bound algorithm to suit our 
chemical applications. 

3.2. The MCD-algorithm 

To describe the algorithm, we change from the o " o 
matrix notation of a permutation matrix P to the 
automorphism notation ti of a permutation: 

{1, . . . , n } -> {1, , n } 

The optimization problem (5) then presents itself in 
the following form: 

H(.T) = ^ e„ (i,B(1)bij = max (5) 
,j = i 

A branch-and-bound algorithm partitions the origi-
nal problems into several subproblems("branching") 
and attempts to close in on the optimum solution 
by determining upper and lower bounds of these 
subproblems. 
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3.2.1. The b r a n c h i n g 

For describing the algorithm in more detail, we 
introduce a partial permutation JTM : 

Let X = {1, . . . , n}. For any set Iv <;N we define 
nu-. = {i, Jr(i))} i e M 

Then the subproblems comprize the determination 
of permutations jim. with certain fixed assignments 
ik —jk- Thus a decision tree is generated: 

71 0 - level 

Fig. 3. Decision tree of the MCD-algorithm. Each node 
corresponds to a subproblem. The higher the level of 
the tree, the smaller the subproblem. For each node 
of the tree (which corresponds to a specific subproblem 
and partial permutation, respectively) a lower and 
upper bound for all solutions including this partial, 
permutation can be calculated. 

For any particular node of the tree (according to 
Fig. 3) we can calculate an upper and lower bound 
for all subproblems having this node as a root. The 
lowest upper bound is stored away during a run. If 
a lower bound of a given problem at some node hap-
pens to be higher than the lowest upper bound thus 
far detected all branches starting from this node to 
higher levels can be cut off from the decision tree 
since they cannot lead to an optimum solution. It 
is therefore essential to have a method which finds 
rather precise lower and upper bounds at low levels 
(first or second) in order not to be forced to work 
"deep" into the decision tree. 

3.2.2. D e t e c t i o n o f b o u n d s 

The detection of the bounds is illustrated by the 
original problem (4) (root of the decision tree) but 
applies in the same way to any other node of the 
decision tree except that the dimension has to be 
changed. 

From the bond matrices B, E so-called [9, 10] cost 
matrices C ip are constructed according to 

C ip = (eipbiq) i,q = i n i , p = l , . . . , n 

These symmetric cost matrices are arranged in a 
block matrix (C1'))i,p=i, ...,n. It can be shown [8], 
that the diagonal elements C u of this block matrix 
can be considered as a linear assignment problem 
[10] whose solution forms a lower bound to all those 
nodes of the decision tree, starting from this problem 
to lower levels. The other matrix elements are 
considered to be "pertubations", and it is at-
tempted to delete them by matrix transformations 
before solving the linear assignment problem. Since 
the solution of this linear assignment problem does 
not only give a numerical value, the lower bound, 
but also a permutation belonging to this value, an 
upper bound for all nodes starting from this problem 
can be evaluated by calculating 

n 
e7i(i)n(j) "i j . 

i.j =1 

The constitutional symmetry [11] of B and E 
allows the cutting off of additional branches of the 
decision tree, thereby avoiding redundant treatment 
of permutations which are equivalent due to con-
stitutional symmetry. The determination of sym-
metry has to be repeated on each level since the 
partial permutations (i.e. the fixed assignment) can 
prohibit the free choice of an arbitrary assignment 
from among originally symmetrical assignments. 
With highly symmetrical molecules this technique 
provides a powerful tool for rapidly progressing 
through the decision tree by avoiding symmetry 
equivalent solutions. After working through the 
decision tree, the lowest upper bound is the optimum 
solution. 

3.2.3. T h e p r o g r a m 

The PMCD program is written in FORTRAN and 
consists of about 2000 statements. It can handle 
chemical systems with up to 36 multivalent atoms 
each for starting and target EM. For ensembles 
with not more than 15 to 20 multivalent atoms of 
the same chemical element optimum solutions (com-
plete work through the decision tree) can be found 
with reasonable CPU time ( < 5 min on a Cyber 175). 
For example a problem with 10 C- and 10 O-atoms 
can be solved much faster than a problem where 
only 15 C atoms are considered since the latter 
problem involves working through a decision tree 
with 15! nodes while the first problem involves only 
2 x 10! nodes. This also shows that the CPU time 
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increases very fast for bigger problems since the many chemical problems such as the search for 
algorithm is of class NP. i.e. it works with polynomi substructures, the elucidation of reaction medi-
ally increasing time on nondeterministic Turing anisms and the evaluation of synthetic pathways. 
machines [12, 20]. 

4. Applications of the PMCD 

The application of the principle of minimum 
chemical distance will be illustrated by a few 
examples which are chosen from the field of mech-

An atom by atom correlation of isomeric en- anistic studies and synthesis [13]. The correlation of 
sembles of molecules is useful for the solution of the atoms in the starting materials and products of 

Table I. The minimum CD between the carbonium ions of tetrahydrodicyclopentadiene (1) and the carboniums 
of adamantane (2) (bonds broken and made in bold face). 

1) 

2) 

3) 

16 17 

16 17 
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a reaction depends on the mechanism, and conclu-
sions can be drawn about a reaction mechanism if 
one knows for each atom in the products the cor-
responding atom in the starting materials. This is 
the basis for isotopic labelling experiments in the 
study of reaction mechanisms. With the PMCD 
program all involved atoms may be traced according 
to MCD. 

The MCD of a reaction is a measure for its mech-
anistic complexity because it is twice the minimum 
number of electron shifting arrows which are needed 
to achieve the result of a chemical reaction. For a 
given overall reaction more than one mechanistic 
pathway may exist with the same CD. 

Chemical reactions as sequences of elementary 
steps are treated here as overall processes and their 



1212 C. Jochum et al. • The Principle of Minimum Chemical Distance 

CD corresponds to an overall displacement of 
electrons. The number of valence electrons which 
have participated in a chemical process may be 
larger than is seen in the chemical change deter-
mining the CD. The higher the number of elementary 
steps the more the reaction may deviate from 
pathways of MCD. However, even then the number 
of valence electrons shifted deviates only slightly 
from the MCD. 

In some cases a reaction pathway with MCD may 
not be feasible due to energetic reasons, e.g. stereo-
chemical constraints. Then, a non-minimum path-

way will be followed with a preference for low 
chemical distances. 

The conversion of tetrahydrodicj'clopentadiene 
(1) to adamantane (2) proceeds directly from the 
starting material to the product [14] although 
undoubtedly a multistep sequence of rearrange-
ments must take place. The mechanism of this 
reaction is still under investigation. Whitlock et al. 
[15] proposed a network of conceivable pathways 
which consists of 1.2-shifts only. One of these 
pathways was given preference by Schleyer on the 
basis of molecular mechanics calculations [16]. The 
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Table I (continued). 

10) 

11 

11) 

12) 

1 0 

"shortest" paths of Iizuka et al. [17] are not the The PMCD provides a new way of looking at this 
shortest according to MCD but they involve the problem. Beginning with an arbitrary indexing of 
minimum number of specified steps the atoms of tetrahydrodicyclopentadiene (1) the 

indexing of adamantane (2) corresponds to an MCD 
of eight. Thus if the reaction proceeded from hydro-
carbon to hydrocarbon, the bonds indicated in bold 
face in 1 would be broken and the one in 2 would be 

26 made. In comparison the sum of the CD of the 
individual steps of the shortest pathway which 
has been previously considered by Schleyer [16] 
is 20. 

Since it is plausible to assume that the reaction 
involves the intermediacy of carbonium ions we 
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compared the minimum CD of the 12 conversions 
which lead from one of the six isomeric carbonium 
ions of 1 to one of the two carbonium ions of 
adamantane. 
J^Intercon version of the hydrocarbons requires the 
involvement of two more bonds than the inter-
conversion of the carboniumions. Thus a minimum 
CD of six for the carboniumions can be expected. 
This minimum is found only for the rearrangements 
1. 4 and 5. It is noteworthy that all pathways with 
a minimum CD of six lead from a secondary 

carboniumion of 1 to a secondary carboniumion 
of 2. In each one of these cases the secondary 
carboniumion center in 2 corresponds to an initially 
tertiary carbon atom in 1. 

Purpurogallin is formed in a quite unusual reac-
tion by oxidation of purpurogallol. A mechanism 
for this reaction has been proposed by Horner [18]. 
The fate of the individual atoms and the breaking 
and making of bonds for the overall conversion 
according to this proposed mechanism is indicated 
in the following scheme: 

Scheme 1. 

+ o=c=o 
15 7 16 

+ H-H + H-H 
18 19 m 25 

The chemical distance for this overall change is 
32 since two free electrons (on the oxygen atom) 
are consumed, seven bonds are broken and eight 
bonds are made. A study of this reaction with the 
PMCD program gave the same results: The atom to 

Scheme 2. 

H3CX .CH3 
X J 

? N A 

C 6 H 5 

0 0 

C H 2 0 C H 3 

N + CH,0-C-CH„-C-CH O-C-NH,, 0 ll || || 
0 0 0 

4 

But - L i / tert-ButOK 

H,C CH, S 
3 x ii 

H3C^ ^H-C-C6H5 

0 0 OH O 

CH^OCH-. 
5 

atom matching is again the one indicated in Scheme 
1 and the CD is 30. Thus the proposed mechanism 
for the formation of purpurogallin proceeds along 
the path of MCD. 

A key step in the synthesis of terramycine by 
Muxfeldt et al. [19] was the condensation of the 
tetracyclic precursors (3) with the /3-ketoester (4) to 
the pentacyclic structure (o) (Scheme 2). 

The condensation was accompanied by a re-
arrangement of the thiazolone ring structure. The 
essential constitutional features of this condensation 
and rearrangement process are contained in 
Scheme 3. 
The chemical distance for this conversion is 24. This 
is also the minimum chemical distance found by the 
MCD program. 

5. Conclusion 
With the PMCD the classical principle of mini-

mum structural change is put on a quantitative 
basis. 

The principle of minimum structural change has 
been successfully used in an intuitive fashion 
throughout the history of chemistry. This intuitive 
approach involves implicitly a correlation of atoms 
and bonds in different molecular systems. Even if 
defined sufficiently precisely the principle of mini-
mum structure change could not be practically 
adapted to a corresponding computer assisted corre-
lation of structures because computers due to their 
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C - 0 V C 13 19 |J 

15 -̂C N T \ 

• c f c ^ 2 1 

3 2 Mk 0 

N 

/lh 
\ r ^ -sS ii n 10 

16 

II 
1 5 N — C 

:> 
v j c 
C' 

1 c-
II N 9 \ / l\ 

' S 1 0 % 
i1 11 0 

C — 0 13 19 

Scheme 3. 

lack of intuition, would be able to solve problems 
only by exhaustive trial and error. This would limit 
application of the principle to fairly small systems 
because computation time would increase factorially 
with the number of atoms involved. 

It is not only the more precise definition of the 
PMCD which makes it work in the computer assisted 
solution of chemical problems but also its mathe-
matical basis, and the metric of the representation 
space in which chemical problems may be embedded 
in order to be solved. Of particular importance is the 

fact that the minimum of CD can be found by the 
minimum of Euclidean distance between the points 
which represent the given ensembles of molecules. 

Furthermore, the solution of such problems has 
become possible through progress in operations 
research, in particular, the development of powerful 
nonlinear integer optimization algorithms. 
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