
#### DEVELOPMENT OF AN EDYS ECOLOGICAL MODEL FOR GOLIAD COUNTY, TEXAS

FINAL REPORT



#### **PREPARED FOR:**

#### SAN ANTONIO RIVER AUTHORITY

#### AND

# TEXAS STATE SOIL AND WATER CONSERVATION BOARD

Terry McLendon<sup>1</sup>, Jon D. Booker<sup>1</sup>, Cade L. Coldren<sup>2</sup>, and Cindy R. Pappas<sup>1</sup>

TEXAS TECH UNIVERSITY<sup>1</sup> US ARMY CORPS OF ENGINEERS<sup>2</sup>

August 2016

# **TABLE OF CONTENTS**

|      | ECUTIVE SUMMARY                                        |     |
|------|--------------------------------------------------------|-----|
| 1.0  | INTRODUCTION                                           | 8   |
| 2.0  | SPATIAL FOOTPRINT                                      | 9   |
| 3.0  | TOPOGRAPHY                                             | 10  |
| 4.0  | PRECIPITATION                                          | 12  |
|      | 4.1 Temporal Variability                               | 12  |
|      | 4.2 Spatial Variability                                | 16  |
| 5.0  | SOILS                                                  |     |
| 0.0  | 5.1 Soils Map                                          |     |
|      | 5.2 Profile Descriptions                               |     |
| 60   | VEGETATION                                             |     |
| 0.0  | 6.1 Plant Species                                      |     |
|      | 6.2 Vegetation Formations                              |     |
|      | 6.3 Plant Communities                                  |     |
|      | 6.4 Spatial Heterogeneity of Vegetation                | 10  |
|      | 6.5 Plant Parameter Variables                          | 40  |
| 7.0  | ANIMALS                                                |     |
|      | CALIBRATION                                            |     |
| 8.0  | 8.1 Vegetation                                         |     |
|      | 8.1 Vegetation                                         |     |
|      |                                                        |     |
|      | 8.1.2 Examples                                         |     |
|      | 8.2 Ecohydrology                                       |     |
|      | 8.2.1 Evapotranspiration                               |     |
|      | 8.2.2 Surface Runoff                                   |     |
|      | 8.2.3 Sediment Loadings                                |     |
|      | 8.2.4 Flow Rates                                       |     |
| 9.0  | SCENARIOS                                              |     |
|      | 9.1 Vegetation                                         |     |
|      | 9.1.1 Baseline                                         |     |
|      | 9.1.2 Dry Cycle                                        |     |
|      | 9.1.3 Wet Cycle                                        |     |
|      | 9.1.4 Brush Management                                 | 91  |
|      | 9.2 Ecohydrology                                       | 98  |
|      | 9.2.1 Water Balance: Average Rainfall                  |     |
|      | 9.2.2 Runoff                                           | 100 |
|      |                                                        | 103 |
|      | 9.2.4 Groundwater Use by Vegetation                    | 105 |
|      | 9.2.5 Change in Water Balance                          |     |
|      | 9.2.6 Water Balance by Watershed                       | 108 |
|      | 9.2.7 Maximum Effect of Brush Control on Water Balance | 112 |
| 10.0 | ) LITERATURE CITED                                     |     |
| API  | PENDIX A: PRECIPITATION                                | 142 |
| API  | PENDIX B: SOILS                                        | 143 |
|      | PENDIX C: VEGETATION                                   | -   |
|      | PENDIX D: ANIMALS                                      |     |
|      | PENDIX E: PLANT PARAMETERS                             |     |
|      |                                                        |     |

# **EXECUTIVE SUMMARY**

San Antonio River Authority (SARA) is interested in developing an integrated set of ecological simulation models for the San Antonio River system. To accomplish this, EDYS ecological models are being developed for each county along the San Antonio River. The first two models of this project were developed for Karnes County and Wilson County. This report presents the description of the third model in the series, Goliad County, along with the calibration process and ecological and hydrological results from ten land management simulation scenarios.

Texas State Soil and Water Conservation Board (TSSWCB) is also interested in the development of county-wide simulation models. In particular, TSSWCB is interested in these models being used to evaluate potential enhanced water yields from control of woody species. Goliad County is one of the counties selected by TSSWCB to have a model available to evaluate enhanced water yield and has co-operated with SARA in the development of the Goliad County EDYS model.

#### **Description of the Models**

Goliad County covers about 859 mi<sup>2</sup> (549,984 acres) located along the boundary between South Texas and the Texas Coastal Prairies. The San Antonio River flows through the center of Goliad County, flowing in an approximately NNW to SSE direction.

The basic spatial unit of the EDYS model is the cell. The cell size for the San Antonio River models is  $40 \text{ m} \times 40 \text{ m} (0.40 \text{ acre})$ . This results in the Goliad County model containing about 1.4 million cells. Each cell contains data on topography, soil, depth to groundwater, vegetation, and land use.

Surface topography in the model is defined by an average elevation for each cell, with slope and aspect determined by differences in elevation among adjacent cells. The elevation data used in the Goliad County model are USGS 10-m DEM. Each cell also has an average depth to groundwater value, from which a depth to groundwater grid is defined for the county.

The spatial domain is divided into four precipitation zones, with separate precipitation files used for the cells in each zone. The model simulates rainfall on a daily basis. For each of the four zones, a 122-year (1893-2014) daily precipitation record was created based on statistical relationships among recorded precipitation data from 30 stations in a 12-county region surrounding Goliad County.

A detailed soil profile description was assigned to each of the 1.4 million cells in the model. These profiles were developed from NRCS soil survey descriptions of Goliad County soils and from additional data available in the literature. A total of 24 soil types are included in the Goliad County model and each cell is assigned to one of the 24 types based on the location of the cell on the spatial landscape. Each of the 24 soil types is divided into 35 layers, with the thickness and physical and chemical characteristics of each layer varying among the types. Some of the soil variables remain constant throughout a simulation (e.g., soil texture) while values of other variables (e.g., soil moisture) change by layer on a daily basis depending on environmental factors such as amount of rainfall received and amount of water and nutrients extracted by plants.

The number of plant species included in a specific EDYS application is flexible. A total of 84 species are included in the Goliad County model. Dynamics of each species are modeled by use of 346 parameter variables, with each variable having different values for each species. Changes in vegetation are modeled in EDYS on a plant species (or plant part) basis by simulating differential responses, defined by the different parameter values, to changes in environmental factors (e.g., rainfall, grazing, season).

The spatial footprint of the model was initially divided into plant communities and land management units (e.g., cultivated, urban, road) by assigning each cell type to one of 34 plot types (vegetation and land-use types). The locations of the vegetation types were based on NRCS soil survey maps and the locations of land-use types were based on 2012 NAIP aerial photographs. Each vegetation type was further divided based on amount of woody plant cover present, with these values visually estimated from the 2012 NAIP aerial photographs. Initial (i.e., start of a simulation) biomass values were entered for each plant species in each plot type, based on species composition for each type. Biomass (above- and belowground) values change for each plant species and each plant part (e.g., fine roots, trunks, leaves) per species at each time step (daily) during an EDYS simulation.

The animal component in EDYS models consists of the effects of herbivory by different types of animals, both domestic and wildlife, on the vegetation. Herbivory is modeled as a plant-part and plant-species specific process, where selection of plant parts and plant species varies by animal species. Densities of each animal species are entered and the model calculates the quantity of plant material the animals would consume daily and then determines how much of each species is removed based on selectivity, accessibility, and competitiveness among the animals. Four animal species (or groups) are included in the Goliad County model: cattle, deer, rabbits, and insects. An average white-tailed deer density of 1 deer per 15 acres was used in the model. Cattle stocking rates were calculated for each vegetation type and averaged 14.7 acres/AU for native rangeland. Horses and feral hogs can be added but were not included in the model because of lack of information on densities and distributions of these two species.

#### Calibration

Calibration in EDYS consists of making adjustments of parameter values, if needed, to achieve target values for the output variables under consideration. Target values are taken from independent validation data, either experimental validation studies or existing field data, if these data are available. In the absence of independent validation data, values from the literature and values based on professional judgement are used.

Only very limited independent validation data are currently available for Goliad County. Therefore, data from published studies in South Texas and the Central Texas Coast and professional judgement were used to calibrate the vegetation and hydrologic dynamics of the model. Ten-year simulations for six plot types (plant communities) were used in the vegetation calibration process. Results of simulated vegetation change in response to fluctuations in rainfall, grazing, and time (succession) were compared to published results from 23 studies and to our professional experience in the region. The simulation results compared favorably to the patterns and levels expected from these studies and regional experience. Under the moderate rainfall regime and with livestock grazing, there was a 10% increase in overall biomass on the clay loam type at the end of the 10-year simulation. Huisache increased by 12% and there was an increase in major shrubs (whitebrush, granjeno, prickly pear). Midgrasses increased 20% and shortgrasses decreased by 50%. Plains bristlegrass and silver bluestem were the midgrasses that increased the most. Under moderate grazing by cattle, midgrasses decreased by 43% compared to the ungrazed scenario and shortgrasses increased by 155%. Forage production in the simulations (tenth year) was 237, 262, and 552 g/m<sup>2</sup> on the clay loam, sandy loam, and cordgrass types compared to 164, 252, and 543 g/m<sup>2</sup> on similar sites reported in literature studies in South Texas.

Twenty-five year calibration simulations were used for the hydrologic variables. The longer period used to include greater fluctuations in rainfall. Simulated amounts of evapotranspiration (ET) and surface runoff were compared to literature values for the region and for similar types of vegetation. The simulated ET values corresponded well with reported values in the literature. On the clay loam type (38% average woody plant cover), ET averaged 2.3 mm/day, compared to 2.6 mm/day on a mesquite-granjeno site in South Texas. The simulated ET was equal to 96% of annual rainfall compared to 94-97% on sites with similar vegetation reported in the literature.

Simulated runoff values also compared favorably with published values. For example, annual runoff on the clay loam type used in the calibration averaged 0.85 inch compared to 0.6 inch on a USGS gauged clay rangeland site in San Patricio County. The average annual runoff for the seven vegetation types used in the calibration was 1.85 inches, or 5.5% of annual rainfall. Average annual runoff from three USGS gauged sites in San Patricio County was 1.86 inches, or 3.1% of annual rainfall.

Averaged over the entire county over the 25-year calibration simulation at the moderate rainfall regime, annual sediment load was 47 g/m<sup>2</sup> (0.208 tons per acre). This value corresponds well with published values for rangeland systems in the western Edwards Plateau (33 g/m<sup>2</sup>), northern Edwards Plateau (34 g/m<sup>2</sup>), and the Rolling Plains of North Texas (83 g/m<sup>2</sup>).

There are two gauge stations in Goliad County that were used to compare measured flow rates with estimated flow from the EDYS simulations. The gauge station at Goliad measures flow of the San Antonio River at near Goliad. That flow includes flow entering from Karnes County plus runoff and subsurface flow in 33 watersheds in, or partially in, Goliad County. The difference in average monthly flow rate between the Goliad gauge and the next upstream gauge (at Runge) was 7,419 acre-feet for the period June 2011-March 2016. About half that amount likely entered the river between Runge and the Goliad-Karnes County line. Surface runoff plus maximum lateral subsurface seepage in the EDYS simulations for the Goliad portion of the watershed accounted for 1,064 acre-feet, or 28% of the expected increase in flow.

The second gauge used in the calibration is located on the Perdido Creek and its associated watershed is entirely within Goliad County. Comparison of gauged data to EDYS simulation of surface runoff over a seven-year simulation period indicated that the EDYS simulation accounted

for 85% of the total flow recorded at the gauge. However, the EDYS runoff and peak flows at the gauge often did not coincide on a monthly basis. Part of the reason for this difference in monthly patterns was likely because of the timing of water movement. EDYS runoff tended to enter the creek soon after a rainfall event and there was often a lag-time before the flow was recorded at the gauge.

#### Results

Ten 25-year scenarios were simulated as examples of how the models can be used. Three scenarios were included to illustrate the response to fluctuations in rainfall patterns. Only rainfall was varied in these three scenarios. One was baseline, which used the rainfall data from the 25 continuous years (1928-1952) which had a mean nearest the long-term mean. The second scenarios used the rainfall data from the driest 25 continous years (1915-1939) and the third scenario used the rainfall data from the wettest 25 continuous years (1957-1981). Five scenarios illustrated responses to brush management. In Scenario 4, 100% of the woody biomass (except for live oak) was removed from areas with 30% or more woody cover and had less than 12% slope. Brush removal was simulated in the first year only and this scenario used the baseline (moderate) rainfall regime (1928-1952). Scenario 5 was similar to Scenario 4 except that 50% of the live oak was also removed. Scenario 6 was similar to Scenario 5 except the dry rainfall regime (1915-1939) was used. Scenario 7 was similar to Scenario 5 except the wet rainfall regime (1957-1981) was used. Scenario 10 (maximum woody plant removal) was similar to Scenario 5 except the woody species were removed from all non-urban areas. The remaining two scenarios illustrated the impact of increased area in cultivation. In Scenario 8, 6.5% of the total land area of the county was placed under cultivation by removing the native vegetation and replacing it with cultivation of grain sorghum under the moderate rainfall regime. Scenario 9 was similar to Scenario 8 except the amount of cultivated land was increased to 21% of the total area of the county. The report presents the results of each of these ten scenarios on vegetation and hydrology.

#### Vegetation Changes

Vegetation change in the simulation scenarios varied by plot type and management scenario. Two of the major plot types were clay loam and loamy sand. Under the baseline scenario (average rainfall, moderate grazing by cattle, no brush control), there was a slight increase in woody species on the clay loam type overall but major changes in species composition. Huisache, whitebrush, granjeno, and prickly pear increased (13%, 47%, 6%, and 4%; respectively) while blackbrush, baccharis, and wolfberry decreased. On the loamy sand type, there was a 10% decrease in woody plant cover. Midgrasses increased on both types but much more so on the loamy sand type. Silver bluestem was the major midgrass that increased on the clay loam site and sideoats grama, sliver bluestem, and little bluestem increased on the loamy sand site. Shortgrasses also increased substantially on both sites, with most of increase coming from purple threeawn and buffalograss.

Under the dry regime (11% lower rainfall), woody species decreased by about 1% compared to baseline and herbaceous species decreased by 11%. Grass production was strongly affected by the dry regime, with lower production especially for the midgrasses. Under the wet regime (15%

higher rainfall), woody species increased 3% overall compared to baseline and herbaceous production increased 21%.

Brush control substantially reduced woody plant cover. Under most of the brush control scenarios, woody plant biomass was only 10% of initial values at the end of 25 years. This assumed an initial removal of 100% of most woody species in the first year. A 95% rate would be more likely under field conditions. At 95% initial removal, the regrowth would likely be around 15-25% after 25 years, rather than the 10% at 100% initial removal.

Brush control substantially increased herbaceous production on some sites but not on others. On the clay loam site, grass production increased by 62% over baseline at the end of 25 years and 33% on the loamy bottomland site, but did not increase on the loamy sand site. These differences in responses were primarily the result of differences in soils and soil moisture responses. On clay loams, there was a substantial increase in silver bluestem, plains bristlegrass, and buffalograss following brush control. On the loamy bottomlands, Johnsongrass was the primary species that benefited, and on the loamy sand sites brownseed paspalum and little bluestem benefited the most from brush control.

#### Ecohydrology

Averaged over the entire county and under the moderate rainfall regime, an average of 1.3% of annual rainfall entered the creeks and river as surface runoff under the baseline scenario and ET accounted for an average of 116% of annual rainfall. This high ET rate was the result of high groundwater use by vegetation. There was also high annual variability in runoff and ET because of variability in annual rainfall. In the 25-year moderate rainfall regime, annual rainfall varied between 17.0 and 44.9 inches and annual surface runoff varied between less than 1000 acre-feet to more than 50,000 acre-feet and annual ET varied between 1.3 million acre-feet (93% of annual rainfall) and 2.2 million acre-feet (146% of annual rainfall). Annual groundwater use by vegetation varied between 130,000 and 424,000 acre-feet, with an annual average of 172,000 acre-feet (3.8 inches per year).

Under the dry regime, surface runoff decreased by an average of 64% compared to baseline and it increased by an average of 72% over baseline under the wet regime. The brush control scenarios had little effect on surface runoff under any of the rainfall regimes primarily because herbaceous vegetation was slow to recover following brush control. Increasing the amount of cultivated land decreased the amount of surface runoff, but not substantially (decrease of 820 acre-feet per year when 21% of the area was in cultivation).

Evapotranspiration (ET) averaged 38.0 inches per year (116% of annual rainfall) under baseline conditions, or an annual average of about 1,726,000 acre-feet. Brush control reduced this to an annual average of 1,620,000 acre-feet (35.7 inches per year), or an annual reduction of about 106,000 acre-feet. Under the 25-year dry regime, annual reduction in ET from brush control was even greater (132,000 acre-feet). An increase in cultivated acres also decreased ET. When 6.5% of the area was cultivated, annual ET was reduced by 50,600 acre-feet and when 21% of the area was cultivated annual ET was reduced by 155,000 acre-feet.

Under most of the scenarios, there was a negative annual water balance. This was the result of high groundwater use and depletion of stored soil moisture. A negative annual water balance cannot be maintained indefinitely. Either more groundwater will be used or water use by the vegetation will decrease, the later of which will lead to a reduction in vegetation structure and production. Much of this negative balance is likely the result of an increase in woody species over the past 25-50 years. The two exceptions to the negative balances were 1) brush control under the wet regime and 2) the 21% of area under cultivation scenario. Under the wet rainfall regime with brush control, there was an average annual surplus of almost 41,000 acre-feet, or slightly under 1 inch per year. Under the moderate rainfall regime, an annual surplus could probably be achieved if woody species were reduced substantially in 40-50% of the county. When area under cultivation was increased to 21%, there was an average annual surplus of 32,800 acre-feet under the moderate rainfall regime. This is about twice the amount of area under cultivation as was under cultivation around 1950.

A maximum brush control scenario was run to estimate the upper limit to what could theoretically be achieved in water yield enhancement from brush control. This scenario removed all woody species (except pecan and 50% of live oak) from all non-urban areas. As such, it is not a practical scenario, but was used to estimate maximum potential yield. Maximum potential enhanced water yield from this scenario averaged 287,000 acre-feet per year, 47% of which was from reduced groundwater use by deep-rooted species and 53% was from reduced ET use of annual rainfall.

#### Summary

The Goliad County EDYS model provides a tool that is useful for quantifying vegetation and hydrologic responses to various environmental and management changes, especially for quantifying relative differences. Vegetation dynamics, changes in both production and species composition, are simulated in an ecologically reasonable manner, with results comparable with those from published research studies. Flow, surface runoff, and sediment load dynamics fit both patterns and amounts indicated by gauged data and published literature values. Evapotranspiration values are compatable with published values and responses to changes in rainfall and vegetation management are ecologically reasonable and consistent with published values.

#### **1.0 INTRODUCTION**

The San Antonio River begins in Bexar County and flows southeastward through five counties before merging with the Guadalupe River and then flowing into San Antonio Bay on the central Texas Coast. Goliad is the middle county through which the San Antonio River flows (Fig. 1.1).

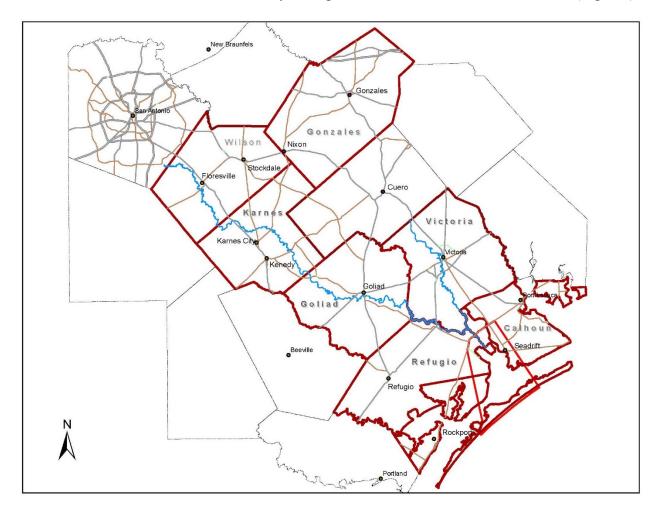



Figure 1.1 Map of the region of the San Antonio River watershed.

The San Antonio River Authority (SARA) has the dual responsibility of managing water quality and water quantity in the San Antonio River and its tributaries. The quality and quantity of river water are affected by both in-stream factors and characteristics of the respective watershed. SARA recognizes the importance of understanding the effects of in-stream responses and watershed ecohydrology to making good management decisions relative to the San Antonio River system.

Natural and anthropogenic changes across the landscape can have major impacts on the water quality and quantity of the river. Management tools that integrate spatial and temporal ecological dynamics at multi-species and multi-scale levels provide valuable support to the environmental decision-making process. Ecological simulation modeling is a tool that allows

complex hydrologic, ecological, and management responses to be integrated in a practical and scientifically valid manner, the results of which can substantially improve land-use planning and decision making.

SARA is interested in developing an integrated set of ecological models for the entire San Antonio River system for the purpose of supporting their decision-making process related to the management of the San Antonio River. In June 2011, SARA began the application of the EDYS model to San Antonio Bay as the first step in developing this set of integrated ecological models. EDYS is a mechanistic, spatially-explict, dynamic ecosystem simulation model that has been widely applied to land management decision making (Ash and Walker 1999; Childress and McLendon 1999; Childress et al. 1999a, 2002; USAFA 2000; McLendon et al. 2000, 2012e, 2015; MWH 2003; Chiles and McLendon 2004; Price et al. 2004; McLendon and Coldren 2005, 2011; Naumburg et al. 2005; Amerikanuak, Inc. 2006; Johnson and Coldren 2006; Johnson and Gerald 2006; Mata-Gonzalez et al. 2007, 2008; Coldren et al. 2011a, 2011b; HDR 2015; Broad et al. 2016). In June 2013, SARA began the expansion of this model development to include upriver segments of the linked river-bay system. Karnes and Wilson Counties were selected as the first two counties to be included in the integrated model complex. These two models were completed in December 2014 (McLendon et al. 2015). In September 2013, SARA expanded work on the linked-model complex to include Goliad, Refugio, and Victoria Counties.

Texas State Soil and Water Conservation Board (TSSWCB) is also interested in the development of county-wide simulation models. In particular, TSSWCB is interested in the development and application of simulation models to be used to evaluate potential enhanced water yields from control of woody species. TSSWCB previously supplied funding for the development of EDYS models for Gonzales County (McLendon et al. 2012e; McLendon 2013) and most of Edwards, Kimble, Real, and Sutton Counties. In August 2013, TSSWCB provided funds to supplement those provided by SARA to develop EDYS models for Goliad and Victoria Counties.

This document reports on the results of the development of an EDYS model for Goliad County. It provides an overview of the model and presents results of a set of simulation scenarios.

# 2.0 SPATIAL FOOTPRINT

Goliad County covers 859.35 mi<sup>2</sup> (549,984 acres), located along the boundary between South Texas (South Texas Plains, Hatch et al. 1990) and the Texas Coastal Prairies (Diamond and Smeins 1984). The San Antonio River flows through the center of Goliad County, flowing in an approximately NNW to SSE direction.

In EDYS, the spatial footprint is divided into cells. A cell is the smallest unit that EDYS simulates in a particular application and it can be of any size, determined by the requirements of the application. EDYS averages values for each variable across an individual cell, therefore the cell size selected is a balance between 1) the largest size for which average values are acceptable and 2) reasonable simulation run times and memory requirements. The smaller the cell size, the more spatially precise the simulation is. However, smaller cell sizes result in more cells and a larger number of cells results in a slower run time per time step and more memory requirement.

The primary cell size selected for the Goliad model is 40 m x 40 m (0.40 acre), resulting in approximately 1.38 million cells for Goliad County. The following components (discussed in following sections) are included for each cell: topography (elevation, slope, aspect), soil, depth to groundwater, vegetation, and land use.

A practical upper limit for efficient EDYS operation (relative to run time and memory requirement) on appropriate PCs is about 1.5 million cells. Combining multiple counties into a single model and retaining the 40 m x 40 m cell size is impractical because the spatial domain increases to well over 1.5 million cells. The alternative approach is to keep each county model separate and then link the models, where output from one model can be used as input into another model. This has two primary advantages. First, it allows large spatial domains to be included with small cell sizes. Secondly, it allows for separate individual models that can be run either as linked models or separately as individual models. An advantage in having separate models available is that simulations can be run for the separate domains much faster than if there was only one large model. Having separate, but linked, models for each county also allows for the linked model to be easily expanded so that additional counties (e.g., Gonzales, Karnes, and Wilson) can be added.

EDYS has the ability to simulate selected areas at a finer resolution than the primary cell size used in the overall model. This capability is particularly useful for simulating ecological dynamics in critical areas where the smaller scale becomes important (e.g., some aquatic systems, critical habitat areas, urban development patterns). These critical areas have not yet been defined for the needs of SARA and TSSWCB in Goliad County. One of the purposes of developing the current models may be to investigate some of these areas. Once these areas are identified, finer-scale models can be developed for them and then added to the larger-scale model. The fine-scale models (1 m x 1 m cell size) developed for the validation plots in Atascosa, Karnes, and Goliad Counties are examples of this approach.

#### **3.0 TOPGRAPHY**

Surface topography is an important component in EDYS simulations. It controls the flow pattern and velocity of runoff water, inundation depth of flood water, water depth in ponds and lakes, and tidal depths and patterns in coastal wetlands, and it influences movement patterns for some wildlife species, foot and vehicle traffic, some management options (e.g., limitations to mechanical brush control), and fire events.

Elevation, slope, and aspect are the three topographic variables used in EDYS. All three are derived by EDYS from input elevation data. Surface topography is developed in EDYS based on differences in elevations among adjacent cells. Average elevation (USGS DEMs, or LIDAR data if available) is entered for each cell. From these elevations, EDYS determines slope (angle from horizontal) and aspect (direction). Differences in elevation among adjacent cells allow water to move from higher elevations to lower elevations and the greater the difference in elevation between two cells, the higher the velocity the water moves downslope and hence the greater the erosive potential and sediment carrying capacity. Direction of the difference in elevation (i.e., aspect) determines the direction of surface flow.

Initial elevations are entered from DEM or LIDAR data. For the Goliad County model, USGS DEM data are 10-m resolution were used to develop the initial elevation grid (Fig. 3.1). LIDAR data, supplied by SARA, were available for some locations. We tried to use these data where available spatially and fill in the gaps using 10-m DEM data but the fit using these two data sets was not smooth. Therefore, we used the 10-m DEM data throughout the county.

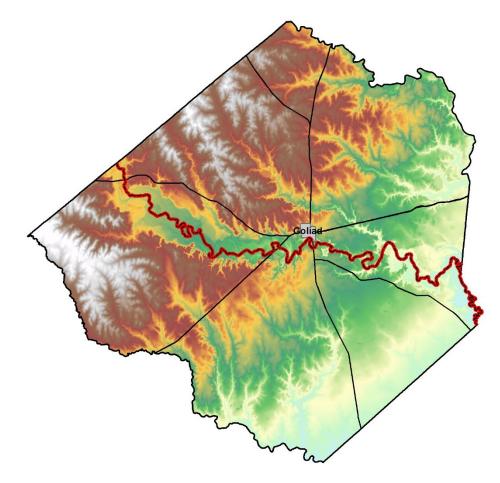



Figure 3.1 Topographic map of Goliad County based on USGS 10-m DEM data.

In EDYS, precipitation is applied to each cell. If that cell has the same elevation as all four adjacent cells (i.e., flat topography), there is no runoff and the water has maximum opportunity for infiltration in the soil profile, the only loss in this case is from evaporation. This condition in EDYS is termed "ponding". If any of the adjacent cells have lower elevations than the central cell, some water flows from the central cell to the adjacent cells that have lower elevations. The amount of water that flows to the lower cells depends on the infiltration rate of the soil in the central cell, the slope between the central cell and each lower-elevation adjacent cell, and the intensity of the rainfall event. If an adjacent cell has a higher elevation than the central cell, water flows from the higher-elevation cell to the central cell, this amount of water is added to the quantity in the central cell that is available for runoff, and the total amount in excess of infiltration is moved to the adjacent lower-elevation cells. This process continues as a

downslope process until all runoff water is moved to the lowest elevation cells or removed from the spatial footprint (surface flow export).

During a simulation run, elevations can change because of erosion or deposition. This process is discussed in more detail in the soils section (Section 5.0).

# 4.0 PRECIPITATION

Precipitation is an important driving variable for many ecological processes. Both temporal and spatial variations are ecologically important.

# 4.1 Temporal Variability

Precipitation varies at different time steps, e.g., minute to hourly during a rainfall event, daily, seasonally, annually, and long-term. EDYS inputs precipitation on a daily basis. Use of shorter-term periods (e.g., hourly) is possible in EDYS and can be used in simulations when necessary. The value of precipitation data in simulation modeling, as in most ecological studies, increases substantially as the length of the period of record increases. Long-term (more than 100 years) precipitation data are not available for most recording stations and the data from most stations are not complete for the reported period of record (i.e., there are missing data). Constructed precipitation data sets (Section 4.3) are used in EDYS models to 1) account for missing data in the recorded data and 2) extend the length of the data set.

Precipitation patterns typically vary on short-, medium-, and long-term scales. Short-term fluctuations include 1) annual variations around a mean, with some years being either drier or wetter than average, and 2) series of below- or above-average precipitation years, the series often lasting 2-5 years but sometimes lasting a decade or more. For example, the long-term (1913-2015) mean annual rainfall recorded at Goliad (excluding years with incomplete data) is 34.84 inches. The driest year on record was 9.73 inches in 1917 (28% of long-term mean) and the wettest year on record was 59.48 inches in 1981 (171% of long-term mean)(Appendix Table A.1). The driest short-term (four continuous years) period on record was 1915-18, during which annual precipitation averaged 20.88 inches (60% of long-term mean) and the wettest short-term (four continuous years) period on record was 1973-76, during which annual precipitation averaged 46.00 inches (132% of long-term mean).

Short-term periodicity at Goliad involves wet-dry cycles of 3-20 years (average of 8 years)(Fig. 4.1). Above-average cycle periods (wet) have an average length of 8.5 years (range = 4-20 years), with average annual means of approximately 35-44 inches (average annual = 39.21 inches). Below-average cycle periods (dry) periods have an average length of 5.6 years (range = 3-10 years), with average annual means of approximately 20-30 inches (average annual = 26.89 inches). There have been six of these dry-wet cycles since 1915 (a seventh cycle began in 2011) and the average difference in annual rainfall between the dry and wet periods is 9.48 inches (Fig. 4.1).

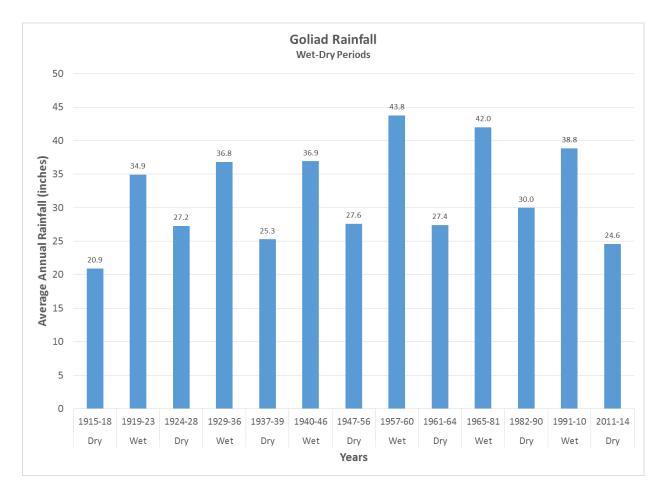



Figure 4.1 Mean annual precipitation (inches) during six consecutive wet-dry periods at Goliad, Texas (1915-2014).

Medium-term changes tend to be on the order of 40-60 years and, in the southwestern United States, are correlated with the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation (Cayan et al. 1999; Hidalgo 2004). These multidecadal cycles result in major shifts in rainfall patterns in the Southwest, including South Texas, which have major impacts on ecological and hydrological systems. For example, average annual rainfall at Goliad during 1915-1956 (42 years) was 30.91 inches (Fig. 4.2). Average annual rainfall during the following 54 years (1957-2010) was 36.00 inches, an increase of 5.1 inches per year (16.4%) for 54 years. Over the last five years (2011-2015), annual rainfall has averaged 29.60 inches. This increase in rainfall following the drought of the 1950s is reflected at locations throughout the region (Table 4.1).

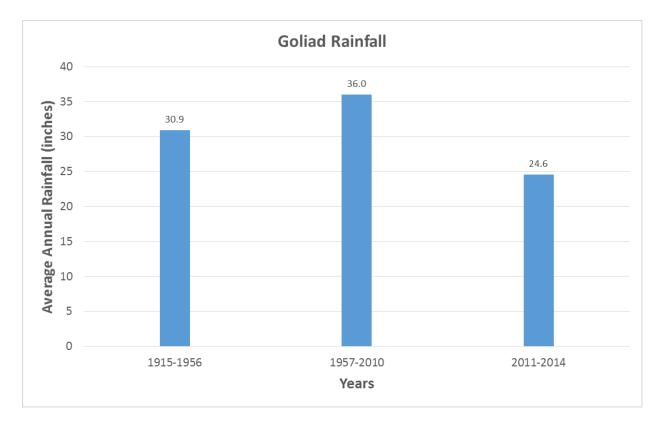



Figure 4.2 Average annual rainfall (inches) at Goliad, Texas, during two multidecadal periods (1915-1956 and 1957-2010) and the most recent four years (2011-2014).

Table 4.1 Average annual precipitation (PPT; inches) at eight sites in South Texas before the end of the drought of the 1950s and following the drought of the 1950s.

| Location    | Mean PPT | Period    | Years <sup>1</sup> | PPT   | Period    | Years <sup>1</sup> | PPT   | After/Before |
|-------------|----------|-----------|--------------------|-------|-----------|--------------------|-------|--------------|
|             | 04.40    | 1000 1050 | 5.4                |       |           |                    |       | 4 95         |
| Beeville    | 31.18    | 1903-1956 | 51                 | 31.88 | 1957-2004 | 46                 | 33.49 | 1.05         |
| Cuero       | 34.48    | 1902-1956 | 54                 | 33.98 | 1957-2004 | 39                 | 35.93 | 1.06         |
| George West | 27.05    | 1916-1956 | 38                 | 26.64 | 1957-2004 | 44                 | 28.40 | 1.07         |
| Goliad      | 34.82    | 1915-1956 | 42                 | 30.91 | 1957-2010 | 54                 | 36.00 | 1.16         |
| Runge       | 30.25    | 1896-1956 | 48                 | 29.09 | 1957-2005 | 48                 | 32.29 | 1.11         |
| San Antonio | 29.12    | 1892-1956 | 65                 | 26.10 | 1957-2004 | 48                 | 32.57 | 1.29         |
| Victoria    | 36.86    | 1898-1956 | 56                 | 34.20 | 1957-2005 | 49                 | 40.04 | 1.17         |
| Mean        |          |           |                    |       |           |                    |       | 1.13         |

<sup>1</sup> Years refers to number of years during the period for which there are no missing data.

These medium-length precipitation fluctuations are not confined to arid or semi-arid regions. Humid regions experience similar cycles. Tree-ring data from North Carolina indicate that region has undergone alternating wet-dry cycles of about 30 years each and that 1956-1984 was one of the five wettest periods of the past 1600 years (Stahle et al. 1988). Oxygen ratios from stalagmites in Belize indicate that major droughts have occurred in the Yucatan at 100-200 year intervals over the past 1800 years and have lasted 50-80 years each occurrence (Kennett et al. 2012).

In addition to these annual and decadal fluctuations, precipitation changes over longer periods, e.g., centuries and millennia. Climatic patterns may be relatively stable for periods on the order of centuries and then, relatively rapidly (e.g., decades), change sufficiently to cause major vegetation shifts. Much of the western United States underwent a 2000-year period of increasing aridity beginning about 2600 years ago, during which many woodlands in the region decreased in extent and shrublands increased (Tausch et al. 2004). Then, about 650 years ago, the Little Ice Age began and conditions became much cooler, resulting in an increase in extent of woodlands and wetlands. During that period, vegetation patterns were very different from current patterns (Tausch et al. 2004). Little Ice Age conditions lasted untial about 150 years ago when climate shifted again, with aridity again increasing. Much of northwestern Iowa was covered in deciduous forest from 9100-5400 BP, then changed to prairie grassland in 5400-3500 BP, and shifted to oak savanna after 3500 BP (Chumbley et al. 1990). These shifts in vegetation correspond to periods of rapid warming (3° C) followed by cooling (4° C)(Dorale et al. 1992). Nielson (1986) suggested that the black grama (Bouteloua eriopoda) desert grasslands encountered in the northern Chihuahuan Desert 100-150 years ago were a vegetation type established under, and adapted to, 300 years of Little Ice Age conditions and are only marginally supported, and perhaps not likely to be re-established, under present climatic conditions.

For 54 years, mean annual rainfall at Goliad was 5.1 inches per year more than in the previous 42 years. That amount of increased rainfall over that long (5 inches per year for 54 years) is likely to have resulted in major shifts in vegetation composition and hydrologic yields. Mid- and tallgrass prairie commonly occurs on areas receiving 20-40 inches of rain annually (Weaver and Clements 1938:517; Weaver 1954:7; Shelford 1963:334; Stoddart et al. 1975:28; Smeins and Diamond 1983; Smeins 1994a; Bailey 1995:46). As average annual precipitation increases above about 30 inches per year, tallgrasses begin to replace midgrasses as the dominant vegetation type. Above about 40 inches of annual precipitation, woodlands and forests begin to replace grasslands (Weaver and Clements 1938:510; Engle 1994; Bailey 1995). Stoddart and Smith (1955:48) suggested 38 inches as the upper precipitation limit of the tallgrass prairie. The upper limit on the Coastal Prairies of Texas is about 36 inches (Drawe 1994). In drier environments, sandy soils tend to support woodlands at lower precipitation levels than can be supported on adjacent clay or loam soils.

Average annual rainfall at Goliad was 36.00 inches from 1957-2010. This is the approximate level where the vegetation would shift from grassland to woodland and 54 years is ample time for trees to respond to this increased moisture. Therefore it is likely that woody vegetation became much more abundant in Goliad County following the drought of the 1950s than was present prior to the drought. That increase in deep-rooted woody species (e.g., mesquite, live oak, huisache) would also have probably increased the amount of groundwater use by the

vegetation and decreased the amount of potential groundwater recharge. This response to change in woody vegetation is discussed in more detail in Section 9.2.

# 4.2 Spatial Variability

Precipitation also varies spatially, often at relatively short distances. For example, there are two stations at Goliad and they are approximately 1 mile apart. For the period of record where data are available for the same years at both locations (37 years) the average annual rainfall at the northern station is 35.83 inches compared to 32.19 inches at the southern station. The difference in average annual rainfall between the two stations is 3.64 inches, or 11% of the annual mean of the southern station. In contrast, the average annual rainfall at Runge for those years in common (35) with the southern Goliad Station is 30.55 inches compared to 32.61 inches for the same years at the southern Goliad station. The difference between these two means is 2.06 inches, or 6% of the mean at the southern Goliad station, although Runge is 26 miles west of the southern Goliad station.

Spatial variations across a landscape can also change over time. Karnes County is the county directly northwest of Goliad County. Karnes City is located near the center of Karnes County and Runge is located 12 miles east of Karnes City. From 1920 through 1958, annual average rainfall was higher in Karnes City than in Runge (31.59 and 28.92 inches, respectively for the 35 common years between the two stations). From 1959 through 2005, annual average rainfall was lower in Karnes City than in Runge (29.31 and 31.67 inches, respectively for the 35 common years). Over those 86 years, the pattern of annual rainfall had reversed.

These spatial differences may be very important in accounting for ecological dynamics across a landscape. In EDYS, precipitation is entered cell by cell across the spatial footprint. Use of precipitation data from a single station may not provide realistic estimates of these patterns. To account for at least some of this spatial variation, the EDYS spatial footprint is divided into precipitation zones, each zone associated with a precipitation station. As a first approximation, all cells within a zone receive precipitation values associated with their respective station. Although this results in sudden changes in values as zone boundaries are crossed (i.e., a step function response), a more realistic pattern is achieved than if data from only one station were used. If precipitation differences between zones seem sufficiently large, a linear difference approach can be used that provides cell-by-cell differences in precipitation based on average differences among adjacent stations. In the Goliad County model, the first approximation approach is currently used.

In determining precipitation zones in EDYS, data were summarized from all available stations in a region, the region consisting of the counties included in the model (Goliad in this case) and surrounding counties (Aransas, Bee, Calhoun, DeWitt, Jackson, Karnes, Lavaca, Matagorda, Refugio, San Patricio, and Victoria in this case). Stations with data for more than 20 years are considered as primary stations (Table 4.2) and stations with data for 20 years or less are considered secondary stations.

| County       | Station Me    | ean Annual Precipitation<br>(inches) | Period of Record | Number of Years With<br>Complete 12-mo Data |
|--------------|---------------|--------------------------------------|------------------|---------------------------------------------|
|              |               |                                      |                  |                                             |
| Goliad       | Goliad        | 34.84                                | 1912-2015        | 95                                          |
| Goliad       | Goliad (1 SE) | 32.40                                | 1949-2005        | 35                                          |
| Aransas      | Aransas NWR   | 38.60                                | 1941-2013        | 66                                          |
| Aransas      | Rockport      | 34.87                                | 1901-2013        | 73                                          |
| Bee          | Beeville      | 31.18                                | 1894-2013        | 105                                         |
| Bee          | Chase NAS     | 30.99                                | 1945-1992        | 37                                          |
| Calhoun      | Point Comfort | 43.35                                | 1957-2013        | 50                                          |
| Calhoun      | Port Lavaca   | 38.33                                | 1901-2013        | 49                                          |
| Calhoun      | Port O'Connor | 39.25                                | 1948-2013        | 39                                          |
| DeWitt       | Cuero         | 34.48                                | 1901-2013        | 100                                         |
| DeWitt       | Yorktown      | 34.14                                | 1940-2013        | 60                                          |
| Jackson      | Edna          | 40.22                                | 1909-2013        | 91                                          |
| Karnes       | Cestohowa     | 27.94                                | 1944-1982        | 21                                          |
| Karnes       | Karnes City   | 30.18                                | 1919-2006        | 72                                          |
| Karnes       | Kenedy        | 30.50                                | 1948-1977        | 24                                          |
| Karnes       | Runge         | 30.25                                | 1895-2013        | 102                                         |
| Lavaca       | Hallettsville | 36.92                                | 1893-2013        | 115                                         |
| Lavaca       | Speaks        | 44.49                                | 1967-2013        | 38                                          |
| Lavaca       | Yoakum        | 38.25                                | 1917-2013        | 75                                          |
| Matagorda    | Bay City      | 45.17                                | 1909-2013        | 61                                          |
| Matagorda    | Matagorda     | 42.61                                | 1910-2013        | 95                                          |
| Matagorda    | Palacios      | 43.13                                | 1943-2013        | 66                                          |
| Refugio      | Austwell      | 33.46                                | 1897-2013        | 53                                          |
| Refugio      | Refugio       | 38.21                                | 1948-2013        | 57                                          |
| Refugio      | Woodsboro     | 31.48                                | 1916-64, 2007-12 | 44                                          |
| San Patricio | Aransas Pass  | 32.41                                | 1897, 1943-71    | 24                                          |
| San Patricio | Mathis        | 31.00                                | 1917-2013        | 48                                          |
| San Patricio | Sinton        | 32.54                                | 1921-2013        | 69                                          |
| San Patricio | Welder WR     | 36.68                                | 1964-2013        | 43                                          |
| Victoria     | Victoria      | 36.86                                | 1893-2013        | 112                                         |

| Table 4.2 Primary precipitation stations, with corresponding data summaries, used in the Goliad | l |
|-------------------------------------------------------------------------------------------------|---|
| County EDYS model.                                                                              |   |

Primary stations are used to define precipitation zones. Distances between Goliad and each primary station were calculated (Table 4.3). The nearest station to Goliad in each direction was noted and lines are drawn connecting each of these nearest stations to Goliad. Mid-points along each line were determined. If a mid-point was near the county line or fell outside Goliad County, the area included in that sector was not separated into a new zone. Instead, it was included in the zone that includes the Goliad station. If the mid-point was located in Goliad County at a sufficient distance from the county line to be considered significant, a new zone was designated for the area from the mid-point to the county line. For example, Victoria is the closest primary station northeast of Goliad. It is approximately 26 miles from Goliad to Victoria and it is about 14 miles from Goliad to the county line in the direction of Victoria. Mid-point along this line would be about one mile in Goliad County. That distance was considered to be too small to separate out a separate precipitation zone in the northeast part of Goliad County. In contrast, the intersection of lines connecting the mid-point between Runge and Beeville (representing the western part of Goliad County) and Goliad fell about 15 miles within Goliad County. Therefore, a separate zone was designated for this southwestern part of Goliad County.

| Relative Direction  | Station       | County        | Distance (mi) | Mean Annual PPT |
|---------------------|---------------|---------------|---------------|-----------------|
|                     |               |               |               |                 |
| North of Goliad     |               |               |               |                 |
|                     | Cuero         | Yoakum        | 31            | 34.48           |
|                     | Yoakum        | Lavaca        | 45            | 38.25           |
| Northeast of Goliad |               |               |               |                 |
|                     | Victoria      | Victoria      | 26            | 36.86           |
|                     | Edna          | Jackson       | 48            | 40.22           |
|                     | Hallettsville | Lavaca        | 57            | 36.92           |
|                     | Speaks        | Lavaca        | 57            | 44.49           |
|                     | Bay City      | Matagorda     | 87            | 45.17           |
| East of Goliad      |               | 2             |               |                 |
| East of Gomu        | Port Lavaca   | Calhoun       | 46            | 38.33           |
|                     | Point Comfort | Calhoun       | 50            | 43.35           |
|                     | Port O'Connor | Calhoun       | 63            | 39.25           |
|                     | Palacios      | Matagorda     | 71            | 43.13           |
|                     | Matagorda     | Matagorda     | 87            | 42.61           |
| Southeast of Goliad | macayorua     | macayorua     | 07            | -2 · U1         |
| Southeast of Gollad |               |               | 4.0           |                 |
|                     | Austwell      | Refugio       | 40            | 33.46           |
|                     | Aransas NWR   | Aransas       | 48            | 38.60           |
|                     | Rockport      | Aransas       | 51            | 34.87           |
|                     | Aransas Pass  | San Patricio  | 57            | 32.41           |
| South of Goliad     |               |               |               |                 |
|                     | Refugio       | Refugio       | 27            | 38.21           |
|                     | Woodsboro     | Refugio       | 33            | 31.48           |
|                     | Welder WR     | San Patricio  | 39            | 36.68           |
|                     | Sinton        | San Patricio  | 45            | 32.54           |
| Southwest of Goliad |               |               |               |                 |
|                     | Beeville      | Bee           | 30            | 31.18           |
|                     | Chase NAS     | Bee           | 33            | 30.99           |
|                     | Mathis        | San Patricio  | 47            | 31.00           |
| West of Goliad      |               | 2411 14011010 |               | 01.00           |
| vi cși di Gunau     | Whiteett      | Time Oak      | 57            | 26.34           |
|                     | Whitsett      | Live Oak      | J /           | 20.34           |
| Northwest of Goliad |               |               |               |                 |
|                     | Yorktown      | DeWitt        | 23            | 34.14           |
|                     | Runge         | Karnes        | 23            | 30.25           |
|                     | Kenedy        | Karnes        | 31            | 30.50           |
|                     | Karnes City   | Karnes        | 37            | 30.18           |
|                     | Cestohowa     | Karnes        | 42            | 27.94           |
|                     | San Antonio   | Bexar         | 84            | 29.12           |

Table 4.3 Distances between Goliad and surrounding primary precipitation stations and mean annual precipitation (PPT; inches) for each station (period of record for each station). Mean annual precipitation at Goliad (1913-2015 = 34.84 inches).

Based on this procedure, Goliad County was divided into four precipitation zones (Fig. 4.3). If a primary precipitation station is located in a precipitation zone, data for that station is used for the precipitation input data (daily) for that entire zone. If no primary station is located in the zone, the precipitation data for that zone is calculated as the average of the nearest surrounding primary stations. Precipitation data for Goliad was used for most of the spatial extent of the Goliad County model but three zones along the northwest, southwest, and south edges of the county used averaged data (Table 4.4).

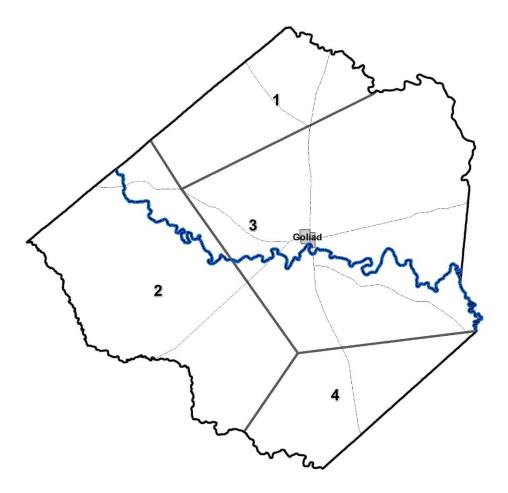



Figure 4.3 Location of the four precipitation zones used in the Goliad County EDYS model.

| Table 4.4 Source of precipitation data for the four precipitation zones of the Goliad EDYS mod | le 4.4 Source of precipitation d | ata for the four precipitation | zones of the Goliad EDYS model. |
|------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------|
|------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------|

| Precipitation Zone        | Station Data Used                   |
|---------------------------|-------------------------------------|
| Zone 1 (Northwest)        | (Goliad + Yorktown + Runge)/3       |
| Zone 2 (Southwest)        | (Goliad + Beeville + Runge)/3       |
| Zone 3 (Central and East) | (Goliad)                            |
| Zone 4 (South)            | (Goliad 1SE + Beeville + Refugio)/3 |

The value of precipitation data in simulation modeling, as in most ecological studies, increases substantially as the length of the period of record increases. Long-term (more than 100 years) precipitation data are available for only three of the six stations used to supply data for the four precipitation zones (Table 4.4) and the periods of record vary substantially among the stations. In addition, none of the six stations or the 24 other primary precipitation stations have complete data sets for their respective period of record (i.e., there are some years with missing data for at least one month of the respective year). Consequently, constructed precipitation data sets were developed for each of the six stations.

Constructed precipitation data sets are long-term data sets that include recorded data for those dates where these data are available for a particular station plus estimated values for dates where recorded data are not available or where the recorded values are strongly suspect. The purposes for using constructed data sets in EDYS models are to 1) extend the length of the data set, 2) account for missing data, 3) adjust for apparent errors in the recorded data, and 4) provide data for all dates over a common period of record so that sites can be more appropriately compared. The estimated values in the constructed precipitation data sets are not presented as precise estimates of the actual amounts received. Instead, they represent reasonable estimates based on the temporal and spatial patterns of the area.

The first step in developing the constructed data sets was to determine the relationships between precipitation patterns at each two-station combination involving the six selected primary stations plus the 24 additional primary stations in the surrounding counties. For each two-station comparison, a conversion ratio was calculated (Table 4.5). This is the ratio of the average annual precipitation at the station being estimated to the average annual precipitation for the same year at the station being used to estimate, with the averages calculated only using years with complete (12-month) data for years in common between the two stations.

| comparison.       |        |            |             |             |       |          |
|-------------------|--------|------------|-------------|-------------|-------|----------|
| Station Data Used |        |            | Station Cal | cluated For |       |          |
| To Calculate From | Goliad | Goliad 1SE | Beeville    | Refugio     | Runge | Yorktown |
|                   |        |            |             |             |       |          |
| Goliad            | 1.000  | 0.899      | 0.895       | 1.046       | 0.863 | 0.926    |
| Goliad 1SE        | 1.112  | 1.000      | 0.956       | 1.181       | 0.946 | 1.036    |
| Aransas NWR       | 0.938  | 0.860      | 0.811       | 0.961       | 0.790 | 0.854    |
| Aransas Pass      | 1.029  | 0.886      | 0.857       | 1.071       | 0.906 | 0.963    |
| Austwell          | 0.939  | 0.880      | 0.880       | 1.000       | 0.837 | 0.911    |
| Bay City          | 0.755  | 0.680      | 0.661       | 0.786       | 0.641 | 0.703    |
| Beeville          | 1.118  | 1.046      | 1.000       | 1.210       | 0.958 | 1.059    |
| Cestohowa         | 1.291  | 1.199      | 1.070       | 1.340       | 1.063 | 1.160    |
| Chase NAS         | 1.193  | 1.137      | 1.037       | 1.283       | 0.999 | 1.099    |
| Cuero             | 0.994  | 0.932      | 0.901       | 1.079       | 0.871 | 0.970    |
| Edna              | 0.857  | 0.757      | 0.789       | 0.888       | 0.762 | 0.814    |
| Hallettsville     | 0.909  | 0.823      | 0.827       | 0.971       | 0.791 | 0.867    |
| Karnes City       | 1.143  | 1.093      | 1.036       | 1.298       | 0.995 | 1.136    |
| Kenedy            | 1.111  | 0.965      | 0.954       | 1.214       | 0.970 | 1.043    |
| Matagorda         | 0.811  | 0.749      | 0.720       | 0.874       | 0.701 | 0.756    |
| Mathis            | 1.194  | 1.005      | 1.051       | 1.281       | 1.007 | 1.143    |
| Palacios          | 0.835  | 0.769      | 0.723       | 0.878       | 0.706 | 0.773    |
| Point Comfort     | 0.862  | 0.767      | 0.745       | 0.906       | 0.714 | 0.793    |
| Port Lavaca       | 0.875  | 0.786      | 0.783       | 0.910       | 0.747 | 0.800    |
| Port O'Connor     | 0.903  | 0.853      | 0.778       | 0.963       | 0.782 | 0.836    |
| Refugio           | 0.956  | 0.847      | 0.826       | 1.000       | 0.804 | 0.887    |
| Rockport          | 1.025  | 0.908      | 0.901       | 1.068       | 0.878 | 0.954    |
| Runge             | 1.158  | 1.057      | 1.044       | 1.244       | 1.000 | 1.103    |
| Sinton            | 1.088  | 0.960      | 0.965       | 1.144       | 0.923 | 1.013    |
| Speaks            | 0.861  | 0.785      | 0.744       | 0.890       | 0.707 | 0.782    |
| Victoria          | 0.942  | 0.881      | 0.846       | 1.000       | 0.825 | 0.876    |
| Welder WR         | 1.033  | 0.973      | 0.900       | 1.051       | 0.860 | 0.950    |
| Woodsboro         | 1.023  | 0.915      | 0.923       | 1.085       | 0.894 | 0.930    |
| Yoakum            | 0.942  | 0.890      | 0.918       | 0.998       | 0.797 | 0.890    |
| Yorktown          | 1.080  | 0.965      | 1.031       | 1.127       | 0.907 | 1.000    |

Table 4.5 Conversion ratios for the calculation of values for missing annual precipitation (PPT) data for the six primary stations (columns) used to estimate precipitation in the four precipitation zones in the Goliad County EDYS model. Ratios were calculated from means of annual precipitation using only values from common years with complete data for both stations of a comparison.

To calculate an estimated value for one of the six primary sites the recorded value from another station for that date is multiplied by the conversion factor. For example, if data from Beeville were being used to estimate a value for Goliad, the Beeville value for that date would be multiplied by 1.118 (Table 4.5). Conversely, if data from Goliad were being used to estimate a value for that date would be multiplied by 0.895.

Which station to use to estimate a missing value for another station is determined by a substitution list (Table 4.6), which is based on distance from the primary station (Table 4.3) and average difference between monthly values for common years. For a specific date with a missing value for one of the six stations used to determine precipitation zone values (Goliad, Goliad 1SE, Beeville, Refugio, Runge, Yorktown) the first station in the substitution list is checked to determine if that station had a value for that date. If so, that value is multiplied by the appropriate conversion ratio (Table 4.5) and the product is entered as the estimated value for the missing value. If the first station in the list does not have a recorded value for that date, the next station in the list is checked. This process continues until a station is found that does have a value. These estimated values are used only for dates with missing data. When a recorded value is available for the particular station, the recorded value is used.

| Primary Station | Selection Order (Substitution List)                                                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Goliad          | Goliad 1SE, Victoria, Runge, Yorktown, Refugio, Cuero, Beeville, Kenedy, Chase NAS,<br>Woodsboro, Karnes City, Austwell, Cestohowa, Sinton, Yoakum, Mathis, Port Lavaca, Aransas<br>NWR, Edna, Point Comfort, Rockport, Hallettsville, Speaks, Aransas Pass, Whitsett, Port<br>O'Connor, Palacios, San Antonio, Matagorda, Bay City                                         |
| Goliad 1SE      | Same as for Goliad, except Goliad substituted for Goliad 1SE                                                                                                                                                                                                                                                                                                                |
| Beeville        | Chase NAS, Goliad, Goliad 1SE, Kenedy, George West, Karnes City, Runge, Three Rivers,<br>Sinton, Mathis, Welder WR, Woodsboro, Falls City, Cestohowa, Yorktown, Refugio, Rockport,<br>Aransas Pass, Victoria, Cuero, Floresville, Whitsett, Austwell, Aransas NWR, Yoakum, San<br>Antonio, Port Lavaca, Port O'Connor, Point Comfort, Edna, Hallettsville, Speaks, Palacios |
| Refugio         | Woodsboro, Welder WR, Sinton, Rockport, Goliad, Austwell, Chase NAS, Beeville, Aransas<br>NWR, Aransas Pass, Victoria, Mathis, Port Lavaca, Runge, Yorktown, Kenedy, Point Comfort,<br>Cuero, Port O'Connor, Karnes City, Edna, Palacios, Cestohowa, Yoakum, Speaks, Matagorda,<br>Hallettsville, Bay City, San Antonio                                                     |
| Runge           | Kenedy, Karnes City, Yorktown, Cestohowa, Goliad, Goliad 1SE, Falls City, Nixon, Cuero,<br>Stockdale, Beeville, Floresville, Whitsett, Three Rivers, Yoakum, George West, Gonzales,<br>Jourdanton, Seguin, Poteet, San Antonio                                                                                                                                              |
| Yorktown        | Runge, Yoakum, Nixon, Cuero, Goliad, Goliad 1SE, Stockdale, Kenedy, Karnes City,<br>Cestohowa, Falls City, Gonzales, Halletttsville, Speaks, Victoria, San Antonio, Edna, Beeville,<br>Chase NAS, Seguin, Woodsboro, Austwell, Aransas NWR, Rockport, Port Lavaca, Point<br>Comfort, Port O'Connor, Bay City, Palacios, Matagorda                                           |

| Tabl       | e 4.6 Selection order for st | ations to select for precipitation data to be used to estimate missing |
|------------|------------------------------|------------------------------------------------------------------------|
| valu       | es for the primary stations. |                                                                        |
| <b>D</b> ' |                              |                                                                        |

Some stations in the Selection Order are not listed in Table 4.5. Those values were calculated for the Karnes-Wilson models (McLendon et al. 2015).

Victoria is the station with the longest period of record for rainfall data in the region. The Victoria data date back to 1893 (Table 4.2) and that year was selected as the starting date for the constructed precipitation data sets used in the Goliad County model. A constructed data set was developed for each of the six primary stations (annual totals presented in Appendix Table A.2) and from these six data sets daily constructed rainfall amounts were calculated for each of the four precipitation zones used in the Goliad County model. The annual totals for the four zones are presented in Table 4.7. Although constructed annual precipitation values are presented in Table 4.7, the precipitation input data used in EDYS are daily values.

| Year | Zone 1    | Zone 2    | Zone 3  | Zone 4 | Year | Zone 1    | Zone 2    | Zone 3  | Zone 4 |
|------|-----------|-----------|---------|--------|------|-----------|-----------|---------|--------|
|      | Northwest | Southwest | Central | South  |      | Northwest | Southwest | Central | South  |
| 1893 | 16.87     | 16.70     | 16.75   | 16.52  | 1954 | 15.32     | 15.09     | 16.11   | 16.97  |
| 1894 | 24.01     | 25.79     | 26.49   | 28.20  | 1955 | 22.84     | 21.58     | 25.22   | 20.21  |
| 1895 | 30.14     | 29.47     | 24.78   | 28.47  | 1956 | 17.30     | 18.74     | 19.47   | 21.55  |
| 1896 | 28.77     | 28.18     | 24.43   | 27.73  | 1957 | 46.19     | 44.88     | 51.45   | 44.70  |
| 1897 | 13.76     | 14.36     | 11.45   | 13.43  | 1958 | 40.21     | 37.17     | 42.97   | 40.42  |
| 1898 | 23.85     | 23.56     | 24.26   | 24.34  | 1959 | 32.46     | 31.42     | 32.31   | 36.14  |
| 1899 | 28.92     | 28.55     | 34.72   | 34.26  | 1960 | 45.49     | 45.00     | 48.17   | 50.24  |
| 1900 | 44.34     | 43.64     | 57.34   | 49.50  | 1961 | 25.36     | 24.49     | 28.96   | 24.44  |
| 1901 | 23.31     | 22.26     | 21.67   | 20.00  | 1962 | 29.37     | 29.91     | 31.64   | 28.16  |
| 1902 | 37.74     | 33.86     | 30.14   | 31.12  | 1963 | 20.43     | 20.20     | 23.56   | 20.28  |
| 1903 | 50.08     | 49.90     | 55.60   | 52.91  | 1964 | 25.82     | 25.06     | 25.14   | 24.99  |
| 1904 | 31.25     | 29.66     | 31.96   | 33.89  | 1965 | 40.67     | 39.43     | 43.93   | 35.87  |
| 1905 | 37.77     | 38.75     | 42.67   | 42.98  | 1966 | 30.83     | 30.80     | 37.57   | 31.21  |
| 1906 | 25.39     | 27.24     | 25.42   | 28.37  | 1967 | 46.34     | 43.45     | 44.00   | 43.42  |
| 1907 | 29.92     | 27.23     | 41.43   | 31.65  | 1968 | 37.11     | 35.00     | 42.03   | 40.71  |
| 1908 | 34.86     | 35.08     | 37.84   | 37.89  | 1969 | 37.11     | 35.25     | 35.40   | 33.18  |
| 1909 | 24.05     | 27.35     | 32.32   | 34.01  | 1970 | 29.27     | 28.96     | 30.15   | 32.85  |
| 1910 | 29.23     | 28.54     | 28.47   | 28.97  | 1971 | 36.66     | 38.54     | 39.56   | 44.86  |
| 1911 | 30.97     | 28.55     | 34.31   | 28.20  | 1972 | 40.31     | 39.54     | 52.80   | 43.87  |
| 1912 | 26.37     | 27.08     | 29.13   | 30.38  | 1973 | 53.05     | 49.75     | 51.07   | 53.10  |
| 1913 | 32.92     | 32.55     | 34.16   | 38.27  | 1974 | 33.41     | 32.24     | 38.20   | 34.72  |
| 1914 | 42.49     | 43.01     | 42.12   | 45.53  | 1975 | 31.14     | 31.55     | 39.33   | 35.58  |
| 1915 | 21.64     | 18.27     | 21.44   | 20.40  | 1976 | 50.25     | 47.99     | 55.28   | 47.89  |
| 1916 | 19.22     | 20.58     | 19.97   | 21.31  | 1977 | 35.75     | 34.15     | 38.51   | 33.05  |
| 1917 | 12.77     | 11.80     | 9.72    | 10.02  | 1978 | 31.24     | 32.50     | 29.45   | 35.66  |
| 1918 | 32.32     | 30.86     | 32.28   | 28.89  | 1979 | 40.81     | 38.44     | 40.70   | 38.76  |
| 1919 | 47.83     | 46.80     | 47.17   | 50.62  | 1980 | 30.84     | 33.63     | 35.52   | 36.59  |
| 1920 | 26.05     | 24.05     | 24.27   | 22.86  | 1981 | 49.97     | 48.84     | 59.38   | 56.49  |
| 1921 | 31.46     | 29.61     | 31.17   | 34.50  | 1982 | 26.90     | 23.49     | 26.61   | 24.22  |
| 1922 | 29.36     | 31.13     | 26.30   | 30.78  | 1983 | 32.62     | 32.97     | 36.50   | 43.27  |
| 1923 | 47.97     | 45.91     | 45.72   | 42.92  | 1984 | 26.30     | 25.94     | 28.36   | 29.63  |
| 1924 | 22.03     | 21.63     | 22.66   | 22.78  | 1985 | 38.19     | 35.44     | 38.02   | 35.01  |
| 1925 | 20.80     | 25.52     | 29.95   | 29.96  | 1986 | 33.11     | 33.52     | 35.69   | 38.26  |
| 1926 | 33.98     | 32.64     | 34.05   | 33.40  | 1987 | 32.00     | 32.32     | 29.04   | 32.82  |
| 1927 | 23.10     | 21.76     | 22.42   | 22.37  | 1988 | 19.14     | 19.13     | 19.75   | 16.45  |
| 1928 | 25.91     | 29.76     | 29.56   | 34.15  | 1989 | 23.17     | 20.74     | 22.61   | 21.36  |
| 1929 | 39.30     | 39.27     | 44.53   | 39.77  | 1990 | 27.92     | 29.69     | 33.76   | 37.61  |
| 1930 | 20.52     | 23.25     | 25.88   | 28.56  | 1991 | 44.36     | 41.00     | 47.35   | 41.07  |
| 1931 | 38.94     | 38.09     | 40.00   | 40.34  | 1992 | 37.91     | 40.64     | 40.88   | 46.16  |
| 1932 | 30.62     | 34.93     | 35.11   | 37.68  | 1993 | 31.35     | 33.12     | 37.89   | 39.57  |
| 1933 | 28.35     | 28.89     | 31.62   | 33.04  | 1994 | 40.02     | 39.55     | 43.20   | 41.68  |
| 1934 | 39.54     | 36.82     | 41.86   | 37.18  | 1995 | 26.30     | 25.69     | 33.54   | 28.71  |
| 1935 | 45.00     | 39.42     | 39.81   | 38.21  | 1996 | 22.84     | 25.78     | 23.89   | 23.28  |
| 1936 | 34.15     | 33.85     | 36.49   | 39.13  | 1997 | 47.54     | 44.62     | 53.75   | 48.89  |
| 1937 | 22.75     | 23.25     | 26.74   | 27.17  | 1998 | 45.47     | 43.00     | 51.44   | 40.54  |
| 1938 | 20.40     | 21.48     | 27.25   | 28.30  | 1999 | 21.15     | 20.70     | 22.92   | 24.15  |
| 1939 | 20.70     | 19.23     | 21.63   | 18.73  | 2000 | 38.61     | 34.76     | 37.05   | 32.82  |
| 1940 | 42.48     | 39.38     | 38.23   | 33.53  | 2001 | 41.45     | 41.58     | 45.84   | 41.19  |
| 1941 | 41.91     | 42.31     | 37.99   | 46.64  | 2002 | 41.40     | 39.91     | 42.33   | 36.62  |

 Table 4.7 Long-term (122 years) constructed annual precipitation data (inches) for the four precipitation zones used in the Goliad County EDYS model.

| Year | Zone 1    | Zone 2    | Zone 3  | Zone 4 | Year | Zone 1    | Zone 2    | Zone 3  | Zone 4 |
|------|-----------|-----------|---------|--------|------|-----------|-----------|---------|--------|
|      | Northwest | Southwest | Central | South  |      | Northwest | Southwest | Central | South  |
|      |           |           |         |        |      |           |           |         |        |
| 1942 | 35.41     | 36.09     | 41.02   | 43.06  | 2003 | 34.66     | 33.91     | 34.43   | 37.13  |
| 1943 | 30.09     | 31.69     | 33.44   | 33.12  | 2004 | 45.11     | 46.84     | 47.87   | 44.46  |
| 1944 | 31.79     | 30.83     | 32.02   | 32.14  | 2005 | 31.40     | 31.29     | 28.87   | 31.47  |
| 1945 | 25.00     | 25.76     | 29.38   | 29.33  | 2006 | 28.80     | 29.12     | 32.71   | 30.64  |
| 1946 | 45.34     | 42.81     | 45.89   | 45.49  | 2007 | 46.85     | 48.61     | 51.77   | 52.80  |
| 1947 | 27.46     | 29.88     | 30.87   | 30.51  | 2008 | 20.38     | 19.36     | 22.51   | 21.65  |
| 1948 | 24.83     | 23.90     | 26.70   | 24.22  | 2009 | 37.06     | 33.46     | 35.92   | 32.56  |
| 1949 | 38.33     | 36.39     | 35.39   | 36.73  | 2010 | 37.04     | 40.10     | 41.33   | 44.93  |
| 1950 | 16.49     | 15.79     | 18.65   | 14.96  | 2011 | 18.86     | 16.83     | 17.24   | 17.64  |
| 1951 | 30.18     | 29.94     | 37.44   | 29.69  | 2012 | 24.14     | 24.61     | 28.99   | 28.45  |
| 1952 | 35.97     | 34.17     | 37.15   | 34.76  | 2013 | 24.71     | 25.70     | 27.76   | 29.78  |
| 1953 | 24.96     | 23.48     | 28.43   | 24.79  | 2014 | 26.41     | 22.10     | 25.63   | 23.85  |

Table 4.7 (Cont.)

Annual rainfall (constructed values) varied spatially across the county (Table 4.7). Averaged over the 122 years, there was an average maximum annual difference among the four zones of 5.10 inches (Table 4.8). This average spatial variability (5.10 inches) is equal to about 55% of the temporal variability between dry and wet periods (9.48 inches; Fig. 4.1). Although there were differences in mean annual rainfall among the four zones when averaged over the 122 years, there was no consistent pattern as to which zone was wetter or drier than the others in any particular year.

| Year | Difference | Year D       | oifference   | Year D | ifference | Year D | Difference   | Year I | Difference | Year D | ifference |
|------|------------|--------------|--------------|--------|-----------|--------|--------------|--------|------------|--------|-----------|
| 1893 | 0.35       | 1914         | 3.41         | 1935   | 6.79      | 1955   | 5.01         | 1975   | 8.19       | 1995   | 7.85      |
| 1894 | 4.19       | 1914         | 3.37         | 1935   | 5.28      | 1955   | 4.25         | 1975   | 7.39       | 1995   | 2.94      |
| 1895 | 5.36       | 1915         | 2.09         | 1930   | 4.42      | 1950   | 4.2J<br>6.75 | 1970   | 5.46       | 1990   | 2.94      |
| 1895 |            | 1916<br>1917 | 2.09<br>3.05 | 1937   | 4.42      | 1957   | 6.75<br>5.80 | 1977   |            | 1997   | 9.13      |
|      | 4.34       |              |              |        |           |        |              |        | 6.21       |        |           |
| 1897 | 2.91       | 1918         | 3.43         | 1939   | 2.90      | 1959   | 4.72         | 1979   | 2.37       | 1999   | 3.45      |
| 1898 | 0.78       | 1919         | 3.82         | 1940   | 8.95      | 1960   | 5.24         | 1980   | 5.75       | 2000   | 5.79      |
| 1899 | 6.17       | 1920         | 3.19         | 1941   | 8.65      | 1961   | 4.52         | 1981   | 10.54      | 2001   | 4.65      |
| 1900 | 13.70      | 1921         | 4.89         | 1942   | 7.65      | 1962   | 3.48         | 1982   | 3.41       | 2002   | 5.71      |
| 1901 | 3.31       | 1922         | 4.83         | 1943   | 3.35      | 1963   | 3.36         | 1983   | 10.65      | 2003   | 3.22      |
| 1902 | 7.60       | 1923         | 5.05         | 1944   | 1.31      | 1964   | 0.83         | 1984   | 3.69       | 2004   | 3.41      |
| 1903 | 5.70       | 1924         | 1.15         | 1945   | 4.38      | 1965   | 8.06         | 1985   | 3.18       | 2005   | 2.60      |
| 1904 | 4.23       | 1925         | 9.16         | 1946   | 3.08      | 1966   | 6.77         | 1986   | 5.15       | 2006   | 3.91      |
| 1905 | 5.21       | 1926         | 1.41         | 1947   | 3.41      | 1967   | 2.92         | 1987   | 3.78       | 2007   | 5.95      |
| 1906 | 2.98       | 1927         | 1.34         | 1948   | 2.80      | 1968   | 7.03         | 1988   | 3.30       | 2008   | 3.15      |
| 1907 | 14.20      | 1928         | 8.24         | 1949   | 2.94      | 1969   | 3.95         | 1989   | 2.43       | 2009   | 4.50      |
| 1908 | 3.03       | 1929         | 5.26         | 1950   | 3.69      | 1970   | 3.89         | 1990   | 9.69       | 2010   | 7.89      |
| 1909 | 9.96       | 1930         | 8.04         | 1951   | 7.75      | 1971   | 8.20         | 1991   | 6.35       | 2011   | 2.03      |
| 1910 | 0.76       | 1931         | 2.25         | 1952   | 2.98      | 1972   | 13.26        | 1992   | 8.25       | 2012   | 4.85      |
| 1911 | 6.11       | 1932         | 7.06         | 1953   | 4.95      | 1973   | 3.30         | 1993   | 8.22       | 2013   | 5.07      |
| 1912 | 4.01       | 1933         | 4.69         | 1954   | 1.88      | 1974   | 5.96         | 1994   | 3.65       | 2014   | 4.31      |
| 1913 | 5.72       | 1934         | 5.04         |        |           |        |              |        |            |        |           |
| MEAN | 5.27       | MEAN         | 4.32         | MEAN   | 4.75      | MEAN   | 5.37         | MEAN   | 5.88       | MEAN   | 5.07      |

 Table 4.8 Maximum difference among constructed annual rainfall (inches) for the four precipitation zones (Table 4.7) in the Goliad County EDYS model.

Overall, Zone 3 (central) was the wettest, with an annual average of 34.02 inches, and Zone 2 (southwest) was the driest (mean = 31.46 inches). Zone 1 (northwest) had a similar mean to that of Zone 2 (31.97 inches) and Zone 4 was intermediate (mean = 33.31 inches). Based on recorded precipitation data (in contrast to constructed data), which do not include all of the same years or the same period of record, the highest annual precipitation occurs toward the southeast (Gulf of Mexico direction) and decreases in both the southeast to northwest and northeast to southwest directions (Fig. 4.4). The constructed precipitation data are consistent with this regional pattern.

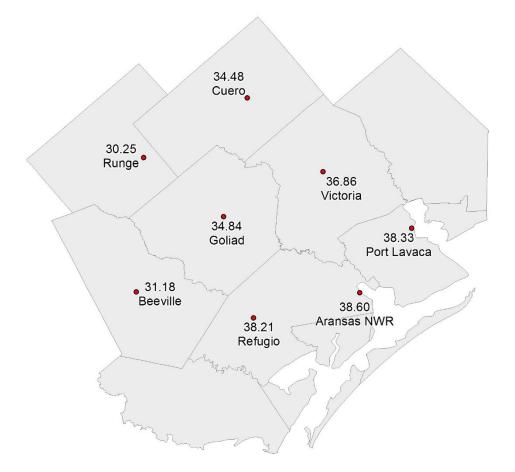



Figure 4.4 Average annual precipitation (inches) pattern across the Goliad County region. Values are annual means based on recorded data for periods of record at each station. Periods of record and years with complete (12-month) data vary among stations.

#### 5.0 SOILS

Two soil components are included in an EDYS model. First, a soils map is constructed that indicates the spatial location of each soil unit (soil series or soil type) included in the spatial footprint of the model. Second, profile descriptions are developed for each of the soil units.

# 5.1 Soils Map

A total of 78 soil units are defined and mapped by the Natural Resource Conservation Service (NRCS) as occurring in Goliad County (Wiedenfeld 2010). Many of these are sub-divisions of soil series based on differences in slope, frequency of flooding, or thickness of an upper soil horizon. For example, the soil unit BsA is Buchel clay, 0-1% slope, occasionally flooded, whereas BuA is Buchel clay, 0-1% slope, frequently flooded; CrA is Clareville sandy clay loam, 0-1% slopes, rarely flooded and CrB is Clareville sandy clay loam, 1-3% slopes, rarely flooded. As such, these differences likely have little significance in affecting ecological responses. This is attested to by the fact that most of the sub-divisions have the same ecological site assigned to them (Wiedenfeld 2010).

In order to keep the number of cell types in the Goliad County EDYS model within practical limits, similar soil units were combined. The primary criteria used was whether or not the differences between the soil units were likely to result in measurable and ecologically significant differences in vegetation, hydrology, or management responses. Based on this criteria, the 78 soil units were reduced to 24 soil types (Table 5.1). This set of 24 soil types provided a unique soil to be assigned to each NRCS ecological site.

| Musym | Soil Type | Surface Texture    | Surface Horizon<br>Depth (inches) | Ecological Site     |
|-------|-----------|--------------------|-----------------------------------|---------------------|
| AnB   | Ander     | fine sandy loam    | 12                                | Tight Sandy Loam    |
| BsA   | Buchel    | clay               | 7                                 | Clayey Bottomland   |
| CnA   | Cieno     | loam               | 7                                 | Lowland Coastal     |
| CyB   | Cov       | clav loam          | 6                                 | Rolling Blackland   |
| EdA   | Edroy     | clay               | 7                                 | Lakebed Coastal     |
| GrA   | Greta     | fine sandy loam    | 5                                 | Salty Prairie       |
| КуВ   | Kuy       | fine sand          | 12                                | Deep Sand           |
| LaA   | Laewest   | clay               | 12                                | Blackland Coastal   |
| MoA   | Monteola  | clay               | 6                                 | Blackland RG Plains |
| NuC   | Nusil     | fine sand          | 5                                 | Sandy               |
| OmD   | Olmedo    | very gravelly loam | 6                                 | Shallow Ridge       |
| PrB   | Parrita   | sandy clay loam    | 6                                 | Shallow Sandy Loam  |
| PtC   | Pernitas  | sandy clay loam    | 11                                | Gray Sandy Loam     |
| PuC   | Pettus    | loam               | 11                                | Gravelly Ridge      |
| RaB   | Raisin    | loamy fine sand    | 5                                 | Loamy Sand          |
| RoA   | Realitos  | clay               | 6                                 | Lakebed RG Plains   |
| ScB   | Sarco     | coarse sand        | 5                                 | Claypan Savannah    |
| StC   | Schattel  | sandy clay loam    | 13                                | Sloping Clay Loam   |
| SwA   | Sinton    | sandy clay loam    | 17                                | Loamy Bottomland    |
| TeA   | Telferner | fine sandy loam    | 9                                 | Loamy Prairie       |
| WcC   | Weesatche | fine sandy loam    | 5                                 | Sandy Loam          |
| WeB   | Weesatche | sandy clay loam    | 5                                 | Clay Loam           |
| WyA   | Wyick     | fine sandy loam    | 6                                 | Claypan Prairie     |
| ZaA   | Zalco     | sand               | 10                                | Sandy Bottomland    |

# Table 5.1 Soil types included in the Goliad County EDYS model, along with their corresponding ecological site types.

The NRCS mapped soil units were displayed on an aerial photograph (Fig. 5.1) and each 40 m x 40 m EDYS cell was then assigned one of the 78 original soil units based on the location of the

cell in relation to the spatial locations of the soil units. This 78-unit classification was then converted to the 24-type (Table 5.1) classification by combining units as appropriate.

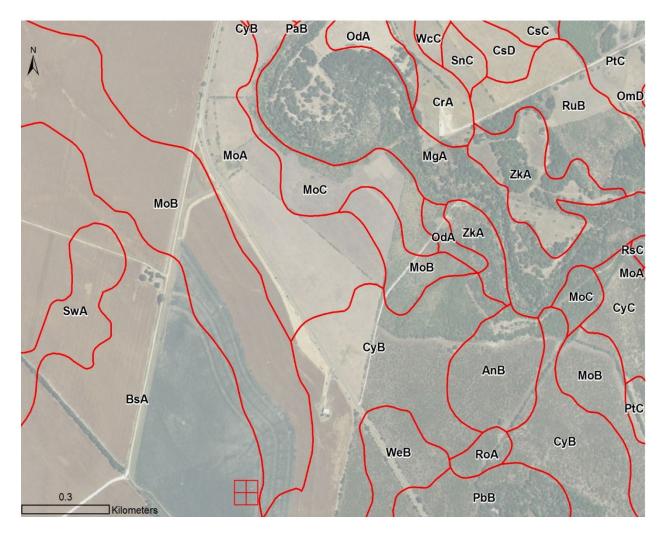



Figure 5.1 Example of the spatial distribution of NRCS soil units on a portion of the Goliad County landscape. The four red squares in the lower portion represent 40 m x 40 m cells in EDYS.

#### 5.2 Profile Descriptions

A soil profile is a vertical section of a particular soil. Soils are composed of layers, called horizons, each horizon differing in some major physical or chemical variable from the layer above and the layer below it. Horizons are designated by capital letters (e.g., A, B, C) in a top-down order. Horizons are often subdivided and these subdivisions are designated by lower-case letters (e.g., Ap, Bk, Bt), the letters referring to specific types of soil conditions, and/or numbers (e.g., A1, A2, Bt1, Bt2), with the number designating vertical order within the horizon (capital letter). General profile descriptions of each soil occurring in a particular county are provided in the NRCS Soil Survey for that county. The Weesatche sandy clay loam, the soil covering the most area in Goliad County, is presented as an example (Table 5.2).

| Horizon | Depth (cm) | Texture         | Color       | Structure                  | Alkalinity |
|---------|------------|-----------------|-------------|----------------------------|------------|
| 2       | 000 010    |                 |             |                            | . 1        |
| A       | 000-013    | sandy clay loam | dark brown  | weak subangular blocky     | slight     |
| Bt1     | 013-031    | sandy clay loam | dark gray   | moderate prismatic         | slight     |
| Bt2     | 031-070    | sandy clay      | brown       | moderate prismatic         | slight     |
| Btk     | 070-094    | clay loam       | light brown | moderate prismatic         | moderate   |
| Bk1     | 094-154    | silt loam       | light brown | weak prismatic             | moderate   |
| Bk2     | 154-203    | clay loam       | brown       | moderate subangular blocky | moderate   |

 Table 5.2 NRCS profile description of the Weesatche sandy clay loam (Wiedenfeld 2010).

EDYS soil profiles are based on the NRCS profiles, but differ in two primary ways. First, EDYS profiles contain more layers and extend to greater depths than their respective NRCS profiles. The usual time step in EDYS simulations is daily. Daily changes in belowground processes that affect plant growth (e.g., available soil moisture, root growth, availability of soil nutrients) occur at fine spatial scales (soil depths) than those designated for NRCS soil horizons. For example, many precipitation events supply only small amounts of water. The median summer rainfall event in many drier regions is less than 5 mm (Schwinning and Sala 2004). In many soils, a 5-mm rainfall event will supply water to only the top 5 cm (2 inches) of the soil and at that depth most of the rainfall-supplied water will be extracted by evaporation before it can be used by plants in transpiration. In contrast, a 10-mm rainfall event on the same soil might supply some moisture to a depth of 10 cm or more and, and at that depth, some of the water would be extracted by evaporation and some by transpiration. Only that water used in transpiration would be available to support plant growth. Therefore, small differences in soil depth can substantially affect plant growth responses. For this reason, thinner soil layers are used in EDYS.

The number of soil layers is flexible in EDYS, but commonly 35 layers are used per soil. This is the case for the Goliad County model. Although there are 35 soil layers in each of these EDYS soil profiles, the thickness (depth) and characteristics of each layer vary among soils. EDYS soil layers are subdivisions of NRCS horizons and subhorizons, with each NRCS horizon or subhorizon divided into one or more EDYS layers. However, no EDYS layer combines parts of more than one NRCS horizon or subhorizon. For example, no EDYS layer would include the 010-015 cm depth of the Weesatche sandy clay loam (Table 5.2) because that would combine different horizons (lower part of A and upper part of Bt1). There could however be EDYS horizon and the second from the Bt1 horizon.

NRCS profile descriptions do not include the subsoil material. Most NRCS profiles extend to only 203 cm (80 inches). EDYS profiles extend much deeper, the lower depth based on the maximum potential rooting depth of the deepest-rooted plant species included in the particular EDYS application (Appendix Table E.9). These deeper depths are included in EDYS because plant roots extend into these zones and those zones contain moisture and nutrients that can be accessed by the plants. The thickness and other characteristics of the lower EDYS soil layers are estimated from parent material information provided in the NRCS soil surveys and from other literature sources. These lower EDYS layers are thicker than the upper soil layers because daily changes in moisture inputs and root dynamics are not as dynamic as those in the upper layers and because less information is available about the characteristics of the lower layers.

The second primary way in which EDYS profiles differ from NRCS profiles is that some soil variables are included in the EDYS profiles that are not included in the NRCS profiles and some NRCS soil variables are not included in the EDYS profiles. Variables included in the NRCS profiles are largely descriptive variables, i.e., those useful in classifying soils. Variables included in EDYS profiles are functional variables, i.e., variables that affect ecological processes. For example, soil color is a major classification variable in NRCS profile descriptions (Table 5.2) but soil color has little direct impact on ecological or hydrological responses and is therefore not included in EDYS profiles. Conversely, total available moisture content is a very important variable influencing plant growth but is not useful in classifying a soil because it changes rapidly and frequently. Hence, it is included in EDYS profile descriptions but not in NRCS profile descriptions. Data used to provide values for the EDYS soil variables are taken from NRCS soil surveys, other literature sources, and estimates based on existing information.

Eleven soil variables are included, by soil layer, for each EDYS soil profile (Table 5.3). EDYS simulates belowground dynamics based on these 11 variables and the changes in their values that occur during a simulation. Five variables (soil texture, bulk density, maximum moisture content at saturation, field moisture capacity level, permanent wilting moisture level) remain constant during a simulation. Five variables (moisture content, nutrient content, organic matter content, salinity levels, and contents of any contaminants) change during a simulation as resources enter or exit the various soil layers. Thickness of each layer remains constant unless erosion or deposition occurs. If deposition occurs, the thickness of the top layer increases by the corresponding amount. If erosion is sufficient to remove all the top layer, then the process shifts to the second layer and this process continues as long as erosion continues.

| Variable                                  | Unit              | Comment                                                                                                                         |
|-------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Layer thickness                           | cm                | Initial values entered as inputs.                                                                                               |
| Soil texture (sand, silt, clay)           | %                 | Not directly used as an input variable. Used to calculate soil water holding capacities and infiltration and percolation rates. |
| Bulk density                              | g/cm <sup>3</sup> | Not directly used as an input variable. Used to calculate pore space.                                                           |
| Maximum moisture content<br>at saturation | g/layer           | Calculated from (pore space – organic matter content).                                                                          |
| Field capacity level                      | g/layer           | Calculated from soil texture, unless specific laboratory data are available.                                                    |
| Permanent wilting level                   | g/layer           | Calculated from soil texture unless specific laboratory data are available.                                                     |
| Available moisture content                | g/layer           | Calculated: (amount of water in layer – amount held at permanent wilting)                                                       |
| Nutrient levels (e.g., N, P)              | g/layer           | Initial values entered as inputs.                                                                                               |
| Organic matter content                    | g/layer           | Initial values entered as inputs.                                                                                               |
| Salinity levels                           | ppm               | Initial values entered as inputs.                                                                                               |
| Contaminant levels                        | ppm               | Initial values entered as inputs.                                                                                               |
|                                           |                   |                                                                                                                                 |

| Table 5.3 | Soil variables | used in EDYS | simulations. |
|-----------|----------------|--------------|--------------|
|-----------|----------------|--------------|--------------|

Water is the major factor controlling belowground dynamics. Terrestrial plants uptake the water they need for maintenance and growth from the soil (including groundwater in the subsoil). The location (depth) of water stored in the soil (i.e., soil moisture) in relation to root architecture of the various plant species is an important factor controlling the competition among the species. Nutrients and contaminants become available for plant uptake as they enter into soil solution and their concentrations vary as amounts are moved among layers by water movement. Organic matter is also moved among layers by water movement and the decomposition and mineralization rates of organic matter are controlled, in part, by the moisture content of the soil.

In EDYS, water can arrive at the surface of a spatial cell in two ways, by a precipitation event and by surface movement from a surrounding cell (i.e., run-on). Some of this water can enter the soil profile (infiltration) and some exits the cell as runoff. Litter on the soil surface has the first opportunity for absorption of water in EDYs. If litter is present and is at less than its maximum moisture content, it can absorb sufficient water to bring it up to maximum moisture content. The remaining water is available for infiltration into the soil profile and runoff from the cell.

In EDYS, the amount of water than can potentially enter into the soil profile during a rainfall event is modeled as a step function. The amount of rain in each rainfall event is divided into five parts (10%, 20%, 40%, 20%, and 10% of the total amount). The amount of water in Step 1 (10% of the rainfall event) is compared to the available storage capacity (saturation capacity minus current moisture content) of the first layer. If the amount of water is less than or equal to the available storage capacity, all that quantity of water (10% of the event) is moved into the first layer. If the amount is in excess of available storage capacity, the excess amount is moved to adjacent cells as runoff. This process is repeated through each of the next four steps, with the number of layers used to calculate available storage capacity increasing by one layer at each step (e.g., Step 3 = 40% of rainfall event compared to available storage capacity of top three layers).

Once water moves into a soil layer it is moved downward using a "tipping bucket" algorithm. Any water in excess of field capacity of the first layer moves into the second layer. Any water in excess of field capacity of the second layer is moved into the third layer. This process continues in a top-down manner until the amount of water is stored in the various soil layers, or if some remains once the wetting front reaches saturated soil (groundwater), the surplus amount is added to groundwater. If the groundwater is unconstrained (i.e., groundwater lateral flow can occur), this amount of added water is removed as "export". If the groundwater is constrained, then the water content of the layer immediately above the saturated layer increases above field capacity. This increase can continue until the saturation level is reached for that entire layer, at which time the process continues in an upward manner into the next unstaturated layer.

As water moves downward by percolation, soluable materials (nutrients, contaminants, organic matter) are moved with the water. As water moves into the next layer at each time step, the concentrations of the soluable materials in that layer are recalculated based on the amount of those materials in the layer prior to entry of the new water and the new concentration resulting from all the surplus water (not just field capacity) that at least temporarily moves into that layer. Then if some water continues to move downward out of that layer, that water transports with it the amount of nutrients, contaminants, and organic matter corresponding to its relative concentration.

Soil water (including groundwater) is extracted from each layer at each time step by plant uptake (transpiration). The amount removed from each layer is determined by the amount of roots of

each plant species in that layer, the depth of the layer (root uptake is modeled as a top-down process), and the amount of water transpired by each species. Soil water can also be extracted by evaporation. However, evaporation occurs directly only from the surface soil layer. Stored soil moisture can be moved from a maximum of the next three soil layers upward to the surface soil layer and then lost by evaporation, but this is a time-step controlled process and plant roots get first priority use of the water as it moves upward from the second, third, and fourth layers.

In addition to movement by water, organic matter can be added to a soil layer by death of plant material (roots) in that particular layer and by some movement of surface litter into the upper soil layer. The deposition of this material is based on root death rates specific to each plant species and decomposition rates that are influenced by moisture content and nitrogen availability.

#### 6.0 VEGETATION

#### 6.1 Plant Species

The number of plant species included in a specific EDYS application is flexible. How many and which species to be included depends on the requirements of the application and the level of complexity desired. The inclusion of more species increases the potential for the model to simulate the complexity common to most landscapes, but it also increases run times and memory requirements.

The EDYS data base includes ecological data on over 250 species, not all of which occur in South Texas and not all of which have data for all plant parameter variables used in EDYS. In each EDYS application, a subset of all species occurring in the spatial domain is used. Several factors are considered in the selection of this subset.

- The subset should include the major species of the area, based on both ecological and management importance. Ecological importance includes dominant and sub-dominant species for each of the included plant communities, as well as species important successionally and threatened and endangered species if they are present.
- There must be sufficient ecological data available for the included species such that the required parameter variable values can be determined or reasonably estimated. Data for all parameter variables may not be available for a major species. In such cases, reasonable estimates can often be made based on available data for closely-related or ecologically similar species.
- For species where a substantial amount of their parameter values are estimated, care must be taken that the estimates are not based largely on data from species used to estimate values for other included species. Otherwise, little new information is actually included in the model by adding another species.
- The inclusion of the species should be expected to sufficiently increase the ability of the model to simulate ecological responses to justify any associated increase in run time, memory requirements, or time required to interpret results.
- The inclusion of the species should not unduly increase unaccounted error (i.e., "noise") into the model output.

Based on these factors, 84 plant species are included in the model (Table 6.1).

| Lifeform                           | Scientific Name                                       | Common Name                        |
|------------------------------------|-------------------------------------------------------|------------------------------------|
| Lifeform                           | Scientific Name                                       | Common Name                        |
| Trac                               | Laggia famosiana                                      | huiseaha                           |
| Tree                               | Acacia farnesiana                                     | huisache                           |
| Tree                               | Carya illinioensis                                    | pecan                              |
| Tree                               | Celtis laevigata                                      | sugar hackberry                    |
| Tree                               | Prosopis glandulosa                                   | mesquite                           |
| Tree                               | Quercus stellata                                      | post oak                           |
| Tree                               | Quercus virginiana                                    | live oak                           |
| Shrub                              | Acacia berlandieri                                    | guajillo                           |
| Shrub                              | Acacia rigidula                                       | blackbrush                         |
| Shrub                              | Aloysia lycioides                                     | whitebrush                         |
| Shrub                              | Baccharis texana                                      |                                    |
| Shrub                              |                                                       | prairie baccharis                  |
|                                    | Borrichia frutescens                                  | sea oxeye                          |
| Shrub                              | Celtis pallida                                        | granjeno                           |
| Shrub                              | Lycium carolinianum                                   | wolfberry                          |
| Shrub                              | Mahonia trifoliolata                                  | agarito                            |
| Shrub                              | Rosa bracteata                                        | McCartney rose                     |
| Shrub                              | Sesbania drummondii                                   | rattlepod                          |
| Vine                               | Vitis mustangensis                                    | mustang grape                      |
| Cacti                              | Opuntia lindheimeri                                   | prickly pear                       |
| Perennial grass                    | Andropogon gerardii                                   | big bluestem                       |
| Perennial grass                    | Andropogon glomeratus                                 | bushy bluestem                     |
| Perennial grass                    | Aristida purpurea                                     | purple threeawn                    |
| Perennial grass                    | Bothriochloa ischaemum                                | King Ranch bluestem                |
| Perennial grass                    | Bothriochloa saccharoides                             | silver bluestem                    |
| Perennial grass                    | Bouteloua curtipendula                                | sideoats grama                     |
| Perennial grass                    | Bouteloua hirsuta                                     | hairy grama                        |
| Perennial grass                    | Bouteloua trifida                                     | red grama                          |
| Perennial grass                    | Buchloe dactyloides                                   | buffalograss                       |
| Perennial grass                    | Cenchrus incertus                                     | sandbur                            |
|                                    |                                                       |                                    |
| Perennial grass<br>Perennial grass | <i>Chloris cucullata</i><br><i>Chloris pluviflora</i> | hooded windmillgrass<br>trichloris |
| U                                  | Chloris pluriflora                                    |                                    |
| Perennial grass                    | Cynodon dactylon                                      | bermudagrass                       |
| Perennial grass                    | Digitaria californica                                 | Arizona cottontop                  |
| Perennial grass                    | Distichlis spicata                                    | saltgrass                          |
| Perennial grass                    | Elymus virginicus                                     | Virginia wildrye                   |
| Perennial grass                    | Eriochloa sericea                                     | Texas cupgrass                     |
| Perennial grass                    | Leptochloa dubia                                      | green sprangletop                  |
| Perennial grass                    | Panicum coloratum                                     | kleingrass                         |
| Perennial grass                    | Panicum maximum                                       | guineagrass                        |
| Perennial grass                    | Panicum obtusum                                       | vine-mesquite                      |
| Perennial grass                    | Panicum virgatum                                      | switchgrass                        |
| Perennial grass                    | Paspalum lividum                                      | longtom                            |
|                                    |                                                       |                                    |

| Table 6.1 | <b>Plant</b> species | included in | the Goliad | <b>County EDYS model.</b> |
|-----------|----------------------|-------------|------------|---------------------------|
|           | I faile species      | menaaca m   | une Gomaa  |                           |

# Table 6.1 (Cont.)

| Table 0.1 (Cont. | ·                           |                       |
|------------------|-----------------------------|-----------------------|
| Lifeform         | Scientific Name             | Common Name           |
|                  |                             |                       |
| Perennial grass  | Paspalum plicatulum         | brownseed paspalum    |
| Perennial grass  | Paspalum setaceum           | thin paspalum         |
| Perennial grass  | Phragmites australis        | common reed           |
| Perennial grass  | Schizachyrium scoparium     | little bluestem       |
| Perennial grass  | Setaria geniculata          | knotroot bristlegrass |
| Perennial grass  | Setaria leucopila           | plains bristlegrass   |
| Perennial grass  | Setaria texana              | Texas bristlegrass    |
| Perennial grass  | Sorghastrum nutans          | indiangrass           |
| Perennial grass  | Sorghum halepense           | Johnsongrass          |
| Perennial grass  | Spartina spartinae          | gulf cordgrass        |
| Perennial grass  | Sporobolus asper            | tall dropseed         |
| Perennial grass  | Sporobolus cryptandrus      | sand dropseed         |
| Perennial grass  | Sporobolus indicus          | smutgrass             |
| Perennial grass  | Stipa leucotricha           | Texas wintergrass     |
| e                | *                           | -                     |
| Annual grass     | Sorghum bicolor             | milo                  |
| Annual grass     | Triticum aestivum           | wheat                 |
| Annual grass     | Zea mays                    | corn                  |
| C                | ,                           |                       |
| Grass-like       | Carex microdonta            | littletooth sedge     |
| Grass-like       | Cyperus odoratus            | flatsedge             |
| Grass-like       | Typha latifolia             | cattail               |
|                  |                             |                       |
| Perennial forb   | Ambrosia psilostachya       | ragweed               |
| Perennial forb   | Aphanostephus ramossissimus | lazydaisy             |
| Perennial forb   | Aster spinosus              | spiny aster           |
| Perennial forb   | Baptistia leucophaea        | wild indigo           |
| Perennial forb   | Clematis drummondii         | old-mans beard        |
| Perennial forb   | Desmanthus velutinus        | bundleflower          |
| Perennial forb   | Phyla nodiflora             | frogfruit             |
| Perennial forb   | Ratibida columnifera        | prairie coneflower    |
| Perennial forb   | Rhynchosia americana        | snoutbean             |
| Perennial forb   | Ruellia nodiflora           | ruellia               |
| Perennial forb   | Rumex crispus               | curly dock            |
| Perennial forb   | Sagittaria falacata         | bulltongue            |
| Perennial forb   | Salicornia virginica        | glasswort             |
| Perennial forb   | Simsia calva                | bush sunflower        |
| Perennial forb   | Smilax bona-nox             | greenbriar            |
| Perennial forb   | Verbena halei               | Texas verbena         |
| Perennial forb   | Zexmenia hispida            | orange zexmenia       |
|                  | _ennenna mspiaa             | oren.De Dermiterine   |
| Annual forb      | Ambrosia trifida            | giant ragweed         |
| Annual forb      | Amphiachyris dracunculoides | annual broomweed      |
| Annual forb      | Chamaecrista fasciculata    | partridge pea         |
| Annual forb      | Croton texensis             | Texas doveweed        |
| Annual forb      | Helianthus annuus           | sunflower             |
| Annual forb      | Thymophylla tenuiloba       |                       |
|                  | тнуторпуна тепинова         | dogweed               |

#### 6.2 Vegetation Formations

A vegetation formation is a subdivision of a biome (McLendon 1991), with the subdivision based on either a general environmental factor (e.g., sandy prairie, riparian woodland) or the dominant genus or species (e.g., oak woodland). Twelve major vegetation formations occur in Goliad County (Table 6.2), with several to numerous plant communities in each formation.

#### Table 6.2 Major vegetation formations in Goliad County, Texas.

| ¥                                                                               | 0                                       |                                          |                             |                       |
|---------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----------------------|
| Woodlands                                                                       | Shrublands                              | Grasslands                               | Aquatic                     | Agricultual           |
| Huisache woodlands<br>Mesquite woodlands<br>Oak woodlands<br>Riparian woodlands | Mesquite shrublands<br>Xeric shrublands | Clay/clay loam prairies<br>Sand prairies | Lakes/ponds<br>River/creeks | Cultivated<br>Pasture |

#### 6.2.1 Woodlands

Riparian woodlands occur along the banks of the San Antonio River and banks of the larger creeks. These woodlands commonly have a continuous or nearly continuous canopy cover of trees. The trees tend to be medium-sized to large and of mixed composition. The width of the community generally increases as the size and flow of the associated drainage increases. This bottomland community can extend outward 100-200 m, or more, from each bank of the San Antonio River in some areas, or be as narrow as 10-20 m along some areas of the mid-sized creeks.

Huisache (*Acacia farnesiana*) is a small- to medium-sized tree that can form dense stands on frequently flooded sites, recently disturbed areas, and grassland sites (both native and pasture). It is an aggressive, mid-seral colonizer. Huisache is particularly well-adapted to relatively wet sites, where the surface is frequently flooded and the water table is near the surface. However, it also forms extensive, but less dense, stands on drier sites. On drier, especially clay loam, sites huisache has a competitive advanatage over mesquite (*Prosopis glandulosa*) earlier in succession but mesquite tends to have the competitive advantage over time.

In Goliad County, mesquite woodlands are particularly well-developed on clay loam sites with relatively deep soils that are not frequently flooded. Mesquite woodlands often occur as strips along the drier edges of the riparian woodlands and along the edges of oak woodlands. In these areas, the mesquite can become large (1-m diameter trunks) and form nearly continuous canopies. Many former grassland sites now support mesquite woodland because of long-term overgrazing by livestock.

Oak woodlands occur on sites where the soils are moderate to deep sands. Some oak, especially live oak (*Quercus virginiana*), are common components of the riparian woodlands. But as the soils become sandier, oaks tend to become the dominant species on wooded sites. Post oak (*Q. stellata*) woodlands tend for form somewhat continouous stands across the landscape, whereas

live oak woodlands tend to form mottes, some of which can be extensive. However, both species can occur in relatively extensive stands or in large clusters.

# 6.2.2 Shrublands

There are two primary shrubland formations in Goliad County, mesquite shrublands and xeric shrublands. Mesquite shrublands occur mostly on clay and loam sites that are either drier than those supporting mesquite woodlands or have been more recently or more frequently disturbed. The drier nature of these sites often occurs because there is either a deeper water table or a caliche layer nearer the surface, as compared to soils supporting mesquite woodlands. The mesquite on these shrubland sites tend to be smaller than those in the woodlands, although they can obtain tree size (e.g., 3-8 m tall). Shrubs are abundant in this formation, often forming dense stands under the canopies of scattered mequite. Granjeno (*Celtis pallida*), prickly pear (*Opuntia lindheimeri*), whitebrush (*Aloysia lycioides*), and brasil (*Condalia hookeri*) are common in the shrub component, but mixtures of 10-20 species are common (McLendon 1991).

The xeric shrublands occur mostly on shallow, limestone (caliche) sites. These sites are scattered throughout the county but are most common in the central and western parts. The soils are thin (5-40 cm) over a generally fractured limestone substrate, the upper portion of which varies between somewhat soft to dense, indurated caliche. The vegetation on theses sites tends to be short (2-4 m tall), dense shrublands. Blackbrush (*Acacia rigidula*) is the most common dominant and often occurs as very dense, almost monoculture, stnds with little understory (Dodd and Holtz 1972; McLendon 1991). Numerous other xeric shrubs occur in this formation, along with small, scattered mesquite.

#### 6.2.3 Grasslands

Native grasslands were probably extensive in Goliad County in the past, but cultivation, conversion to improved pastures, and increases in woody species have reduced their extent. There is relatively little area in native clay or clay loam grasslands remaining. In the past, these were concentrated in the western part of the county. Those that do currently exist have mostly been restored, either from previously cultivated land or from brush control. These clay/clay loam grasslands were midgrass prairie, dominated mostly by silver bluestem (*Bothriochloa saccharoides*) and little bluestem (*Schizachyrium scoparium*), with substantial amounts of other midgrass species such as sideoats grama (*Bouteloua curtipendula*), trichloris (*Chloris pluriflora*), plains bristlegrass (*Setaria leucopila*), Arizona cottontop (*Digitaria californica*), and Texas cupgrass (*Eriochloa sericea*). More mesic sites such as low-lying areas and ecotones to the riparian woodlands also contained large amounts of tallgrasses such as big bluestem (*Andropogon gerardii*), indiangrass (*Sorghastrum nutans*), switchgrass (*Sorghum halepense*) and guineagrass (*Panicum maximum*) are now abundant on many of these sites.

Sand prairies in Goliad County have also been reduced in area over time but there are still substantial amounts remaining, primarily in the southeast part of the county (Goliad and McFaddin Prairies) and mixed in strips and mottes of the oak woodlands in the eastern and northern part of the county. The sand prairies are also midgrass prairies, typically dominated by

little bluestem (in the north), seascoast bluestem (*Schizachyrium scoparium* var. *littoralis*; in the south), and tall dropseed (*Sporobolus asper*). Other important midgrasses are arrowfeather threeawn (*Aristida purpurescens*), Pan-American balsamscale (*Elyonurus tripsacoides*), tanglehead (*Heteropogon contortus*), brownseed paspalum (*Paspalum plicatulum*), and thin paspalum (*P. setaceum*). Forbs are common in these prairies and, when moisture is sufficient, extensive stand of bluebonnets (*Lupinus texensis*), Indian paintbrush (*Castilleja indivisa*), coreopsis (*Coreopsis tinctoria*), and Indian blanket (*Gaillardia pulchella*) can be spectacular.

# 6.2.4 Aquatic Systems

The only major lake in Goliad County is the Coleto Creek Reservoir along the eastern edge of the county. There are abundant ponds and small lakes, mostly man-made, throughout the county. The vegetation associated with these, including stock tanks, varies by size, depth, and perennial water-holding capability of the pond or lake, but is typical of this type of wetland vegetation in the region. There is commonly an open water surface with little emergent or surface vegetation. As water depth decreases, floating species may occur if the pond has permanent water. Next is a zone of emergent vegetation, typically cattails (*Typha* spp.) and bulrushes (*Scirpus* spp.), then a zone of wetland species including cutgrass (*Leersia hexandra*), sedges (*Carex* spp.), spikerushes (*Eleocharis* spp.), flatsedges (*Cyperus* spp.), longtom (*Paspalum lividum*), and rattlepod (*Sesbania drummondii*). These zones can be narrow (25-50 cm) or wider (e.g., 10 m) depending on the size, structure, and permanency of the pond. Heavy use by livestock often reduces the size and diversity of these zones.

The San Antonio River flows through the center of the county and numerous small to mediumsized creeks flow into the river. Vascular plant development in the river and larger creeks is limited because of high turbidity. In most sections of the river, it is relatively slow moving. Therefore, vegetation along the edges of the river, and similarly along the edges of the larger creeks, is similar to that along the edges of the ponds when the river and creek banks have a gradual slope. Where the river and creek banks drop abruptly into the river, the aquatic vegetation is limited to a thin strip of wetland species. In many of these abrupt areas, the canopies of the riparian trees overhang much of the river. Upslope from the river and creek banks, the vegetation transitions to riparian or mesquite woodland, a wetland, or a shrubland depending on conditions adjacent to the bank.

Many of the mid-sized and smaller creeks are ephemeral streams. Along these creeks, the banks generally support mesquite or huisache woodlands, the widths of which may vary from 10-100 m. The streambeds are often bare of vegetation if water flows fairly frequently, but most of these streambeds are covered with forbs and grasses during dry periods. Giant ragweed (*Ambrosia trifida*), also known as bloodweed, is the most common of these species and often forms dense stands 2-3 m tall.

#### 6.2.5 Agricultural

Approximately 8,500 acres (1.5%) in Goliad County are under cultivation, with an additional 19,000 acres in improved pasture (Wiendenfeld 2010). The major crops are corn, cotton, grain sorghum, wheat, and soybeans. Major improved pasture species are kleingrass (*Panicum*)

*coloratum*), bermudagrass (*Cynodon dactylon*), King Ranch bluestem (*Bothriochloa ischaemum*), and Johnsongrass. Larger portions of the county were in cultivation in the past, but were either abandoned to cultivation and reverted to native, often woody, vegetation or were converted to improved pasture. Improved pastures in Goliad County are subject to invasion by woody species, especially huisache and mesquite. Woody plant invasion is slower in pastures that are routinely hayed, but woody species still tend to invade over time, especially huisache which has the ability to spread low-growing branches horizontally beneath the cutting height for hay production. Because of invasion by woody plants, improved pastures must be routinely maintained or they will evert to savannas (open stand of small trees with grass understory) in 10-20 years and woodlands in 20-40 years.

# 6.3 Plant Communities

In EDYS, each cell is assigned an initial vegetation composition based on some combination of the plant species included in the application (Table 6.1). Because species composition field data are not available for each cell in the spatial footprint, initial vegetation assignments are made on the basis of plant communities. A first-approximation of species composition of each plant community, as well as their spatial distribution, is made using NRCS soil survey maps (Wiedenfeld 2010). Each soil series is assigned an initial plant community based on NRCS ecological site descriptions (Table 5.1), other available literature (Appendix C), and professional experience. NRCS ecological site descriptions are largely based on late-successional conditions, which seldom occur on site. Instead, the sites are generally in a lower successional stage and often have some level of woody plant cover. Estimates of lower successional conditions and amounts of woody plant cover (estimated from aerial photographs) are used to adjust the literature data to arrive at initial estimates of species composition and biomass levels for each plant community.

An initial plant community may closely coincide spatially with its associated soil type. However, in some cases the plant communities associated with two or more soil types may be very similar and therefore was pooled. Conversely, visual observations from the aerial photographs may indicate that two or more areas in the same soil type have very different woody plant coverage, in which case they were separated into two or more plant communities.

Once all plant communities have been defined and mapped, all cells within a particular plant community are given the same initial species composition data. Although each cell in a vegetation polygon (initial plant community) has the same initial species composition, it does not necessarily remain the same during a simulation. Differences in topographic features, precipitation zones, depths to groundwater, natural disturbances (e.g., fire), and management impacts (e.g., livestock grazing intensity, brush control) often result in some cells in the same initial vegetation type changing sufficiently that they for a separate vegetation type.

In addition to literature data and aerial photographs, some ground truthing of the initial spatial distribution of the vegetation is generally conducted. The level of this field mapping depends on the needs of the project and is defined in the scope of work. Once the initial spatial footprint, including vegetation patterns, has been developed and initial simulations conducted, it may be deemed desirable to conduct additional field surveys to increase the detail of the spatial mapping. This can be done and updates incorporated into EDYS with a reasonable amount of effort.

Twenty-four initial native plant communities were identified for the Goliad County model (Table 6.3). These 24 communities were derived from the NRCS range sites and modified on the basis of information from the literature and from amounts of woody plant coverage (Appendix Table C.2). Woody plant coverage was estimated from NAIP aerial photographs and averaged 36.6% for Goliad County overall (Appendix Table C.28). Literature data used to modify the NRCS range site descriptions of the vegetation (Appendix C) were taken from Archer (1990), Archer et al. (1988), Bovey et al. (1970, 1972), Box (1961), Box and White (1969), Buckley and Dodd (1969), Diamond and Smeins (1984), Dodd and Holtz (1972), Drawe (1994), Drawe and Box (1969), Drawe et al. (1978), Garza et al. (1994), Johnston (1963), McLendon (1991, 1994, 2015), McLendon and Dahl (1983), McLendon and DeYoung (1976), McLendon et al. (2012a. 2012b, 2012c, 2012d, 2013a, 2013b), Powell and Box (1967), Scifres et al. (1980), Smeins (1994a, 1994b), and Smeins and Diamond (1983).

| Plant Community                                                                                                                                                                                                                                | Range Site                                                                                             | Primary Soil Type                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clay Soils                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                               |
| Mesquite-hackberry-ragweed<br>Huisache-mesquite-purple threeawn<br>Huisache-mesquite-buffalograss                                                                                                                                              | Clayey Bottomland<br>Blackland RG Plains<br>Blackland Coastal                                          | Buchel clay<br>Laewest clay<br>Monteola clay                                                                                                                  |
| Clay Loam Soils                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                               |
| Mesquite-silver bluestem-buffalograss<br>Live oak-little bluestem-trichoris<br>Mesquite-huisache-buffalograss<br>Mesquite-huisache-silver bluestem<br>Mesquite-silver bluestem-little bluestem                                                 | Rolling Blackland<br>Loamy Bottomland<br>Sloping Clay Loam<br>Clay Loam<br>Shallow Sandy Loam          | Coy clay loam<br>Sinton sandy clay loam<br>Schattel sandy clay loam<br>Weesatche sandy clay loam<br>Parrita sandy clay loam                                   |
| Loam Soils                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                               |
| Huisache-seacoast bluestem-longtom                                                                                                                                                                                                             | Lowland Coastal                                                                                        | Cieno loam                                                                                                                                                    |
| Sandy Loam Soils                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                                                               |
| Mesquite-huisache-hooded windmillgrass<br>Huisache-mesquite-little bluestem<br>Huisache-little bluestem-knotroot bristlegrass<br>Huisache-gulf cordgrass-sea oxeye<br>Mesquite-live oak-silver bluestem<br>Mesquite-silver bluestem-trichloris | Gray Sandy Loam<br>Loamy Prairie<br>Claypan Prairie<br>Salty Prairie<br>Sandy Loam<br>Tight Sandy Loam | Pernitas snady clay loam<br>Telferner fine sandy loam<br>Wyick fine sandy loam<br>Greta fine sandy loam<br>Weesatche fine sandy loam<br>Ander fine sandy loam |
| Sandy Soils                                                                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                               |
| Live oak-little bluestem-Virginia wildrye<br>Post oak-mesquite-little bluestem<br>Live oak-mesquite-little bluestem<br>Mesquite-live oak-little bluestem<br>Live oak-little bluestem-ragweed                                                   | Sandy Bottomland<br>Claypan Savannah<br>Loamy Sand<br>Sandy<br>Deep Sand                               | Zalco sand<br>Sarco coarse sand<br>Raisin loamy fine sand<br>Nusil fine sand<br>Kuy fine sand                                                                 |
| Shallow Soils                                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                                               |
| Blackbrush-purple threeawn-buffalograss<br>Blackbrush-ragweed-Texas wintergrass                                                                                                                                                                | Gravelly Ridge<br>Shallow Ridge                                                                        | Pettus loam<br>Olmedo very gravelly loam                                                                                                                      |
| Wetland Sites                                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                                               |
| Huisache-longtom-knotroot bristlegrass<br>Huisache-longtom-flatsedge                                                                                                                                                                           | Lakebed RG Plains<br>Lakebed Coastal                                                                   | Realitos clay<br>Edroy clay                                                                                                                                   |

# Table 6.3 Initial native plant communities used in the Goliad County EDYS model, with their associated NRCS range sites and primary associated soil type.

Ten land-use types were also included in the model (Table 6.4). These include urban areas, industrial sites, mineral developments, disturbed areas, cultivation, improved pastures, and areas subjected to brush control. They are treated in EDYS in a manner similar to vegetation types.

| Land-Use Type        | Vegetation                            | Comment                                                                                 |
|----------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| Urban houses         | mesquite-live oak-bermudagrass        | 50% of area vegetated (lawns)                                                           |
| Buildings/industrial | mesquite-huisache-baccharis           | % woody plant cover from aerial photographs                                             |
| Disturbed area       | mesquite-huisache-bacchairs           | % woody plant cover from aerial photographs                                             |
| Oil/drill pad        | mesquite-huisache                     | % woody plant cover from aerial photographs                                             |
| Caliche pit          | huisache-blackbrush-baccharis         | % woody plant cover from aerial photographs                                             |
| Road                 | none                                  |                                                                                         |
| Tilled (cultivated)  | milo (grain sorghum)                  |                                                                                         |
| Orchard              | pecan                                 |                                                                                         |
| Improved pasture     | bermudagrass-huisache-mesquite        | % woody plant cover from aerial photographs                                             |
| Brush control        | mesquite-silver bluestem-buffalograss | % woody plant cover from aerial photographs;<br>grasses = 10% of rolling blackland type |

Table 6.4 Land-use types included in the Goliad County EDYS model.

The urban houses type was considered to be 50% of the spatial area covered with buildings and pavement and 50% in yard. The grass component of the yards was considered to be bermudagrass and the woody plants were considered to be 75% mesquite and 25% live oak, with the amount of canopy cover estimated from aerial photographs.

Woody plant cover in cells that were classified as buildings/industrial, disturbed areas, caliche pits, or oil/drill pads was considered to consist of combinations of mesquite, huisache, blackbrush, and baccharis (*Baccharis texana*). This vegetation was considered to be either on areas not cleared when the sites were disturbed or the plants were the result of re-invasion. Amount of canopy cover was estimated from aerial photographs.

Crops grown on individual cultivated fields vary throughout the county. No effort was made to distinguish different crops from the aerial photographs. Instead, all cultivated areas were assumed to be planted each year to milo (grain sorghum). All orchards were assumed to be pecan orchards.

There are several improved pasture species that are common in Goliad County. Most common are coastal bermudagrass, kleingrass, King Ranch bluestem, Kleberg bluestem (*Dichanthium annulatum*), Johnsongrass, and various types of forage sorghums (*Sorghum* spp.). Wheat is sometimes planted as a winter forage crop. Regardless of the species planted, other species tend to invade these improved pastures over time. Common invading woody species include huisache, mesquite, hackberry, and baccharis. Common invading herbaceous species include Johnsongrass, King Ranch bluestem, ragweed (*Ambrosia psilostachya*), and sunflower (*Helianthus annuus*).

The initial forage species planted in the improved pastures, the potential productivity of the pasture, and the most common invading species all vary by soil type, the pre-planting vegetation,

and the surrounding vegetation (Appendix Table C.22). Determining what the current composition is for each of the improved pasture polygons would require a substantial effort. As a first approximation, only one improved pasture type (sandy loam, Appendix Table C.22) was used for the initial biomass estimates for all improved pasture polygons. Even though they were all initially set with the same biomass values, changes in these improved pastures can occur during model simulation runs because of differences in precipitation zones and management.

Brush control is a management option in the model. However, it was apparent from the aerial photographs that some areas had been subjected to mechanical brush control without being converted to improved pastures. This was most often the case where brush had been removed in strips, with other strips or blocks left brush. This is a common practice in South Texas, used especially to improve wildlife habitat. The brush strips are left to provide wildlife shelter and the cleared strips are used to provide food, in particular forbs, for wildlife, along with clearing viewing areas for hunting.

In small-scale EDYS applications, these brush strips and adjacent cleared strips can be treated as separate plot types and the composition of both brush and cleared strips can be varied across the landscape. On large-scale applications, such as Goliad County, this effort becomes too complex. Therefore, average values were used for the vegetation in these brush control polygons. The initial vegetation data was based on that for the Rolling Blackland Range Site (Appendix Table C.2). The same woody plant composition was used for the brush control plots as for the Rolling Blackland Site, along with the same amounts and composition of forbs. However, grass biomass was reduced by 90% with composition remaining the same. The amount of woody plant cover in these polygons was estimated from the aerial photographs.

These brush control polygons were previously-treated areas. These are different from areas receiving brush control treatments in the simulation scenarios (Section 9). In the areas receiving the brush control treatment in the scenarios, the existing vegetation is treated in the first year of the simulation.

### 6.4 Spatial Heterogeneity of Vegetation

Simulation run times and memory requirements increase as the complexity of the model application increases. Model application complexity is determined by a number of factors. Of these, spatial heterogeneity has the greatest effect. Spatial heterogeneity includes several components. One component is number of cells, which is determined by cell size (40 m x 40 m in the Goliad County model) and the size of the overall spatial footprint of the model. A practical upper limit is about 1.5 million cells (Section 2.0).

Although EDYS can keep track of changes in condition in all 1.5 million cells at each time step, that is too many cells on which to simulate all ecological and hydrologic dynamics. Instead, EDYS simulates these dynamics for plot types and then applies the resulting value, at each time step, to all cells containing that particular plot type. For example, an area of mesquite-granjeno shrubland might contain 100 cells, each with the same vegetation and the same soil. Instead of making 100 sets of calculations for that area (polygon) at each time step, EDYS makes one set of calculations and then applies the results of those calculations to all 100 cells.

A plot type is a unique combination of soil, vegetation type (including land-use types), amount of woody plant cover, and precipitation zone. The Goliad County model contains 24 soil-vegetation types (Table 5.1) plus 10 land-use types (Table 6.4). There are seven potential woody plant coverage categories (0-1%, 1-10%, 10-25%, 25-50%, 50-75%, 75-90%, 90-100%), but all coverage categories do not occur in all vegetation types. Accounting for woody plant coverage, there are 154 vegetation-coverage types (Appendix C.27). There are four precipitation zones. This results in a potential for 616 initial plot types (154 x 4), although not all soil-vegetation-landuse types occur in all precipitation zones.

Plot types often become subdivided during EDYS simulations. This happens when some disturbance or treatment factor (e.g., fire, sediment deposition, brush control, cross fencing, placement of water facilities) affects one part of the plot type but not another part. The affected part, including all cells in it, then becomes a different plot type (e.g., root-plowed mesquite-granjeno community). Depending on the length of the simulation run and the number of management options applied, this plot proliferation can increase the number of plot types during the simulation run by a factor of 4-5. The use of different precipitation zones (Fig. 4.3) also increases the number of plot types. Two areas with the same initial plot type but that occur in different precipitation zones will function as different plot types because they receive different amounts of precipitation.

Because of plot type proliferation, the number of potential plot types in the Goliad County model may increase from about 600 at the beginning of the simulation run to 3,000 or more at the end of the run. The upper limit to number of plot types in an EDYS application that has about a million cells (e.g., the Goliad County model) is approximately 1700.

There are two approaches that can be taken to account for plot proliferation. One approach is to not allow it. This approach fixes the number of plot types at the original number. The advantage in using this approach is that greater initial ecological spatial heterogeneity can be included. The disadvantage is that no spatial changes can occur during a simulation. The vegetation can change within a polygon but the polygon cannot be subdivided as a result of disturbance or management.

The alternative approach is to reduce the number of initial plot types and then allow proliferation to occur during the simulation. The advantage of this approach is that the landscape becomes spatially dynamic as well as temporally dynamic. The disadvantage is that less ecological spatial heterogeneity can be included at the beginning of the simulation.

Which approach is selected depends on the relative importance of spatial dynamics versus increased spatial ecological complexity. For the Goliad County model, the second approach was selected. Spatial changes across the landscape, resulting from both natural and anthropogenic factors, were considered of high importance. In addition, much of the increased spatial complexity in ecological factors was considered to be of lesser importance. For example, differences in over two-thirds of the NRCS soil units (54 out of 78) were relatively minor variations based on slope and frequency of flooding (Section 5.1). Likewise, much of the fine-

scale changes in plant species composition among vegetation types cannot be determined without substantial on-site vegetation mapping.

The 616 potential plot types used in the Goliad County model allows for an average of almost three subdivisions per plot type during a simulation run. This seems to be a reasonable balance between initial ecological spatial heterogeneity and spatial dynamics during the simulation.

#### 6.5 Plant Parameter Variables

EDYS is a mechanistic model. It simulates ecological dynamics by modeling how the various ecological components function. For plants, this is accomplished by using mathematical algorithms to model how plants grow and respond to various environmental stressors, such as drought, fire, and herbivory.

There are a large number of algorithms associated with plant dynamics in the EDYS model (Childress et al. 1999b; Coldren et al. 2011a). Each algorithm is applied to each plant species at each time step during a simulation to simulate the change in that plant or plant part from one time step to the next. Each algorithm contains one or more plant response variables (parameters). Differential responses among plant species are achieved in EDYS by assigning species-specific values to each of these plant parameters. For example, one of the algorithms is plant growth, more specifically, increase in plant biomass. This algorithm contains a number of parameters, one of which is "water to production". This parameter (water to production) is the amount of water (in kilograms) required to produce one gram of new plant biomass and it is species specific (i.e., the water-use efficiency varies by species). Two of the major perennial grasses in the Goliad County model are little bluestem and buffalograss (*Buchloe dactyloides*). The water-to-production value for little bluestem in 0.90 and the value for buffalograss is 0.74. Buffalograss is the more xeric of the two grasses and indeed has a higher water-use efficiency.

There are 346 plant parameter variables in EDYS and each one of these has a specifc value for each species in an application (84 species in the case of the Goliad County model). These variables are arranged into 37 matrices (Coldren et al. 2011a). Selected examples are presented in Appendix E, along with corresponding values for each of the species included in the Goliad County model.

General characteristics of each species are presented in Appendix Table E.1. Appendix Tables E.2-E.4 are the tissue allocation matrices. At each time step, EDYS calculates the amount of new biomass produced by each species. This amount is based on 1) amount of current photosynthetically active biomass, 2) potential growth rate, and 3) amount of required resources available to the species (function of amount of each resource available in the system and the competitive ability of the specific species to secure this resource). The amount of new biomass produced by each species is then allocated to the various plant parts based on the values in the allocation matrices.

Appendix Table E.2 provides the information that EDYS uses to allocate the beginning biomass values (Appendix Table C.2) to the various plant parts to begin a simulation. During a simulation, new biomass production is allocated during each time step to the various plant parts

based on the values in Appencix Table E.3. For example, if 10 g of new biomass is produced by huisache, 0.8 g would be coarse roots, 2.0 g would be fine roots, 0.9 g would be added to the trunk, 2.2 g would be added to stems, and 4.1 g would be added to leaves. These ratios are used throughout the growing season, except in months when the species flowers or undergoes greenout. Green-out occurs following winter dormancy, drought dormancy, or following severe defoliation. For months when green-out occurs, the values from Appendix Table E.4 are used instead of the values from Appendix Table E.3.

Root architecture varies substantially among plant species and these variations are important in determining competitive responses among species for belowground resources (e.g., water and nutrients). Two components of root architecture of primary importance are distribution of roots by soil depth and maximum potential rooting depth. Appendix Table E.9 provides the values for these two parameters for each of the species included in the model. These values are used in EDYS to determine the initial spatial distribution of root biomass.

The amount of roots for a particular species at the beginning of a simulation is determined by multiplying the coarse and fine root allocation values (Appendix Table E.2) by the initial biomass value for that species in a given plot type (Appendix Table C.2). The values in Appendix Table E.9 are then used to allocate this root biomass (coarse and fine) by soil depth. This is calculated as the product of:

(total root biomass)(% in a portion of the rooting depth)(maximum potential rooting depth).

For example, 4% of the roots of huisache are assumed to be located in the first 1% of the rooting depth of huisache, which is 12.62 m (Appendix Table E.9). Therefore, 4% of the initial root biomass of huisache is located in the upper 126 mm of the soil. If the maximum depth of a soil in a particular plot type is less than the maximum potential rooting depth, the maximum soil depth is used instead.

The values in Appendix Table E.9 are used to calculate the initial distribution of roots in an EDYS simulation. At each time step during a simulation, new root biomass is added (e.g., Appendix Table E.3). This new root biomass is allocated to the current root biomass in those soil depths where active root uptake of water and nutrients is taking place. This results in potential changes in root distribution during a simulation caused by resource distribution.

Appendix Table E.11 provides values used to determine when specified physiological processes occur. These processes are 1) green-out (breaking of winter dormancy), 2) beginning of winter dormancy, 3) those months in which flowering and seed production can occur, and 4) those months in which seed germination can occur.

Appendix Table E.13 provides values used to determine water requirements of each species for maintenance and production of new biomass. Maintenance water requirements (old and new growth) refers to the amount of water used each month to support existing biomass. Water to production is the amount of water required to produce 1 g of new biomass (i.e., water-use efficiency). Green-out requirement is the amount of water required to support the production of new biomass during green-out.

At each time step during the growing season for a particular species (Appendix Table E.11), EDYS calculates the amount of water that species would require if it produced at its maximum potential rate (Appendix Table E.14) plus the amount required for maintenance of existing tissue. EDYS then calculates how much soil moisture is available to that species at that time step, as determined by the distribution of moisture in the soil at that time and the competition for that water among all species with roots in each particular soil layer. If the amount of water available is equal to or greater than the amount required, the plant produces that much new biomass and that quantity of water is removed from the respective soil layers. If the amount of water available is less than the amount required, maintenance requirements are met first and any remaining water is used to produce new biomass, the amount of which is proportional to what can be produced on the remaining amount of water (water to production).

EDYS also determines nutrient requirements in a manner similar to water requirements. If nutrients are more limiting to plant growth than water requirements at that time step, the amount of new growth produced in determined by the amount of nutrients available rather the amount of water available, and the amount of water used in reduced proportionately.

Appendix Table E.14 provides values used to determine maximum potential growth rate, size of the plants, and the maximum rate of tissue loss from drought. Maximum potential growth rate is the maximum rate that new biomass can be produced, under optimum conditions for that species. Maximum potential growth rate is genetically determined for each species. Actual growth rate is most often less than this value because of resource limitations and tissue loss (e.g., herbivory, trampling). The values in Appendix Table E.14 are multiplied by the amount of photosynthetically-active tissue (Appendix Table E.16) present in that species at that time step. The product in the maximum amount of new tissue that species can produce in that particular month. The actual amount produced is generally less than this maximum amount, based on resource limitations (water, nutrients, light, temperature).

Maximum aboveground biomass is the maximum amount of standing crop biomass  $(g/m^2)$  that is possible for that species. This variable limits the accumulation of biomass to realistic levels for the species. Maximum old biomass drought loss is the maximum amount (proportion of existing biomass) that can be lost in one month from drought.

Appendix Table E.15 provides a seasonal growth function for each species. A value of 1.00 indicates that the species can potentially grow at its maximum rate (Appendix Table E.14) during that month. Values less than 1.00 result in proportional decreases in the maximum potential growth rate during those months. The values in the table are estimates based on responses to both temperature and photoperiod.

Maximum potential growth rates (Appendix Table E.14) are based on photosynthetically-active tissue. For most species, the tissue with the highest potential photosynthetic rate are the leaves. Cacti are an exception. Cacti leaves are their thorns. Cacti stems are the photosynthetically-active tissue in cacti. Roots and trunks of most species are structural tissues and do not contribute directly to photosynthesis, although there are exceptions (e.g., trunks of retama and paloverde trees). Stems of many species contribute somewhat to photosynthesis, but generally at

a lower rate than leaves. Appendix Table E.16 provides values for the photosynthetic potential of each plant part for each species. The values are proportions of maximum rates for that species (leaves for most species).

Green-out in plants, whether as spring green-up or recovery from defoliation, requires an energy source. Carbohydrates stored in various tissues are used to produce the new biomass. Some storage is in areas near the meristematic regions (e.g., bud zones) whereas other storage is in more distant tissues (e.g., coarse roots, bases of trunks) and must be translocated to the points of new growth. In both cases, there is a loss of biomass (weight) in some tissue because of the loss of stored carbohydrates. Appendix Table E.17 provides values used to determine how much current biomass (stored carbohydrates) can be used to produce new tissue during green-out. A value of 1.00 indicates that the amount of tissue in that plant part can be doubled during a green-out month. A value of 0.10 indicates that 10% of the biomass in that plant part can be transformed into new biomass during one month of green-out. During a green-out month, that amount of biomass is removed from the supplying plant part and transferred to new biomass and allocated according to the ratios in Appendix Table E.4.

Appendix Table E.18 contains values for four physiological control variables. These variables are used in EDYS to assure that plant structure does not become unbalanced and that the conversion from seeds to new plant biomass occurs properly. Each species has a characteristic root:shoot ratio (Appendix Table E.9). This is the relative amount of roots and shoots for that species. However, these ratios change during the growth season as new aboveground biomass is added and over years as perennial tissues accumulate belowground. Growing season maximum root:shoot ratio is a control to keep too much root biomass accumulating over time. If this value is exceeded during a growing season, no new biomass is allocated to roots until the value drops below this maximum value. Growing season green-out shoot:root ratio has a similar function. Maximum 1-month seed germination limits the amount of the seed bank that can germinate in any one month. Maximum first-month seedling growth provides the value to convert germinated seed biomass to new plant biomass. The amount of germinated seed biomass is multiplied by this value and the product becomes new plant tissue for that species.

At the end of the growing season (Appendix Table E.11), plants enter winter dormancy (or summer dormancy for cool-season species) and loose some of their tissue. An obvious example is deciduous trees shedding their leaves in the fall. But other tissue losses also occur. Some stems die. There can be some loss of trunk biomass. Root death occurs. Appendix Table E.19 provides the values used to calculate these losses.

A major factor in competition among plant species in many areas is shading, i.e., competition for light. Tall plants have a shading effect on shorter plants. Appendix Table E.20 provides for this competitive response. The values listed are a reduction in maximum potential growth rate of the **shaded** species resulting from 100% canopy cover of the **shading** species. The values are estimates based on 1) relative heights of the species, 2) canopy foliage characteristics, and 3) shade-tolerance of the understory species. The values in Appendix Table E.20 do not represent the competitive effect of overstory species on understory species, only the direct effect of shading. Overstory species also affect the growth of understory species in other ways, e.g.,

competition for light and nutrients. Those competitive effects are simulated in EDYS using other parameters. The shading parameter only reflects competition for light.

In EDYS, values are averaged within a cell (Section 2.0), which are 40 m x 40 m in the Goliad County model. Within each cell, estimates are made of the amount of woody plant cover (e.g., 10-25%) based on aerial photographs (Section 6.4). A 25% cover of woody plants could result from various combinations of clusters (mottes) of trees and shrubs. In effect, the cell would consist of at least two vegetation types, one associated with the woody species clusters and distributed over 25% of the surface of the cell and the other associated with herbaceous vegetation in the interspaces and distributed over the remaining 75% of the cell. However, the EDYS routine is to average the two types across the cell because the cell is the smallest subdivision in an EDYS application. In effect, this reduces the size of the woody plants (25% of actual size in this example) and assumes that biomass is average (uniform) across the cell. If the shading factor is ignored, this averaging does not substantially alter the vegetation and hydrologic dynamics of the cell. But with shading, the effect is to reduce herbaceous understory vegetation across the entire cell instead of just under the woody plant clusters which cover 25% of the cell.

We are working on an update that will account for this spatial heterogeneity within a cell. However, that update is not complete and cannot be included in the initial version of the Goliad County model. In the interim, the shading factor is utilized in this version for the effect of woody species on other woody species (i.e., under the woody plant canopy) but not for the shading effect of woody species on herbaceous species. The shading factor is included to simulate the shading effect of herbaceous species on other herbaceous species (e.g., midgrasses shading shortgrasses). This dual-component approach allows dynamics of herbaceous species to be simulated in the portion not covered by woody species, while maintaining the major aspect of shading within the area covered by woody plants. This dual pattern is a major characteristic of the shrub and woodland mosaics of South Texas, which have little herbaceous vegetation under the woody canopies but relatively abundant grasses and forbs in the interspaces (Drawe et al. 1978; McLendon 1991). In addition, reduction in herbaceous species under woody plant canopies may not occur until cover of woody species increases above 30-50% (Scifres et al. 1982; Fuhlendorf et al. 1997).

### 7.0 ANIMALS

The animal component of EDYS consists of herbivory by different types of animals, both domestic and wildlife. Population dynamics and habitat requirements are not currently included in most applications, but can be included if required. Four types of herbivores are included in the Goliad County model (cattle, deer, rabbits, insects) and others can be added as needed.

Herbivory in EDYS is simulated using three matrices for each animal species included in the model. Examples are provided in Appendix E for cattle. The first matrix is the preference matrix (Appendix Table E.21). Each plant part (live and standing dead) are listed for each plant species in the model. For each part-species combination, a preference ranking is assigned for

each animal species. A ranking of 1 indicates that the plant part of that plant species is among the highest preferred foods for that particular animal. A low ranking (30 in the case of cattle) indicates the material is largely avoided by that animal.

The second matrix is the competition matrix (Appendix Table E.22). The values in this matrix indicate the order that animal (cattle in the case of Appendix Table E.22) has access to that plant part (whether they actually prefer it or not). In general, insects are considered to have first access (value = 1). The third matrix is the utilization matrix (Appendix Table E.23). These values indicate how much (percent) of that plant material the animal species could utilize if it desired that plant part. For example, cattle cannot consume 100% of the basal portions of most grasses because of their mouth structure. On the other hand, horses and deer can harvest this material to ground level.

Actual consumption of plant material in EDYS is a three-step process. First the amount of daily consumption is calculated by multiplying the amount of the animal species (either biomass or number, depending on the species) by a daily consumption value. The second step is to determine what the animal species consumes that day. That is accomplished by use of the preference, competition, and utilization matrices. If 100% of the daily consumption is available to that species (competition and utilization matrices) in the most highly preferred plant parts and plant species (preference matrix), the animal consumes that amount of the most preferred plant part and then selects from the next most-preferred plant parts and plant species. This process continues until the daily consumption amount is achieved. The third step is to subtract the quantity consumed from the standing crop biomass of that plant species and plant part.

# 7.1 Insects

Insect herbivory is modeled in the Goliad County model as consumption by grasshoppers. An average density of 3 grasshoppers/m<sup>2</sup> is used, with an average consumption rate of 0.1 g/m<sup>2</sup>/day.

### 7.2 Rabbits

Rabbits are considered to be eastern cottontails in the Goliad County model. An average density of about 0.3/ha (1 cottontail per 8 acres) was used. Rabbits are assumed to consume an amount of plant material equivalent to 5.4% of their body weight each day (Kanable 1977), or about 73 g per cottontail per day. This equals about 0.0022 g forage/m<sup>2</sup>/day.

### 7.3 Deer

Daily food intake (dry-weight basis) by white-tailed deer in South Texas is equal to about 3.23% of their live body weight for high-quality feed (Wheaton 1981). Daily intake in the western portion of the Edwards Plateau has been estimated to be 2.2% of live body weight (Bryant et al. 1979). Mature white-tailed does average about 43 kg (95 lbs) on the Welder Wildlife Refuge (central Texas Coast) and mature bucks average about 63 kg (139 lbs)(Knowlton et al. 1979), and mature does in the western part of the Edwards Plateau weight about 45 kg (Bryant et al.

1979). Deer in the central portion of South Texas tend to be larger than deer along the central Texas Coast and deer in the Edwards Plateau.

An average stocking rate of 0.164 deer/ha (1 deer/15 acres) was used in the Goliad County model. Using an average deer weight of 53 kg and a daily feed intake of 2.7% of body weight, this corresponds to an average daily feed intake of 1.43 kg/deer, or about 0.235 g/m<sup>2</sup> (2.1 lbs/ac).

In South Texas, deer consume a combination of shrubs, forbs, and grasses, with the specific combinations dependent on vegetation conditions of the site. In a mixed shrubland in Kleberg County, diets of free-ranging white-tailed deer (bite count method) consisted of 45% shrubs, 34% forbs, and 21% grasses (Graham 1982). In that study, a total of 141 plant species were consumed by deer over an 18-month period, with 22 plant species comprising a total of 80% of the diet. On the Welder Wildlife Refuge in San Patricio County, deer consumed 70-90% forbs, 10-20% grasses, and 3-10% shrubs (Chamrad et al. 1979; Kie et al. 1980). Based on preference ratings, deer on the Welder Wildlife Refuge selected mostly for forbs (69%), then for grasses (18%) and browse (13%)(Drawe and Box 1968). In Jim Hogg County, deer were found to consume 37% forbs, 33% browse, 18% cacti, and 2% grasses, with 10% of their rumen contents consisting on unidentifiable material (Everitt and Drawe 1974). White-tailed deer on the Sonora Experiment Station in the southwestern part of the Edwards Plateau were found to consume 61% shrubs, 31% forbs, and 8% grasses (Bryant et al. 1979).

# 7.4 Cattle

Cattle are primarily grazers (consumers of herbaceous species) instead of browsers (consumers of leaves and twigs of woody species)(Stoddart et al. 1975:257). In many systems, grasses make up 85-99% of the diets of cattle (Sanders 1975; Durham and Kothmann 1977; Frasure et al. 1979), although the proportion of grasses may be lower (75%) in South Texas (Drawe and Box 1968; Everitt et al. 1981). They consume some forbs, especially during seasons when grasses are dormant and the forbs are growing. Cattle also consume some shrubs, especially as a source of additional protein (Dalrymple et al. 1965; Herbel and Nelson 1966) or during the winter (Everitt et al. 1981). Cattle diets in South Texas often contain higher proportions of shrubs (6-10%: Drawe and Box 1968; Frasure et al. 1979; Smith and McLendon 1981; McLendon et al. 1982) than cattle diets in many other areas because of the abundance and diversity of shrubs in South Texas.

The amount of forage intake by cattle depends on a number of factors, including type of forage, size of the animal, and reproductive state. Of particular importance are protein content, moisture content, and digestibility of the forage species. A general rule for herbivores is that their daily intake, expressed on a dry-weight basis, equals about 3% of their body weight. Using this rule, a 1000-lb cow would consume about 30 lbs of forage per day. Published results from six grazing studies indicate a range in daily forage intake of 20 lbs/AUD in a desert grassland in New Mexico to 59 lbs/AUD on fertilized sand prairie on the Texas Coast, with an average of 34.9 lbs/AUD (Table 7.1). An average of 34 lbs/AUD was used as the estimated forage requirement in the Goliad County model.

| Vegetation                         | Location  | Amoı  | int/AUD | Reference               |
|------------------------------------|-----------|-------|---------|-------------------------|
|                                    |           | lbs   | grams   |                         |
| Bluestem prairie, upland           | Kansas    | 45.33 | 20,580  | Anderson et al. 1970    |
| Bluestem prairie, limestone breaks | Kansas    | 24.59 | 11,164  | Anderson et al. 1970    |
| Bluestem prairie, upland           | Kansas    | 56.09 | 25,465  | Owensby & Anderson 1967 |
| Bluestem prairie, limestone breaks | Kansas    | 30.28 | 13,747  | Owensby & Anderson 1967 |
| Bluestem prairie, medium stocking  | Louisiana | 34    | 15,436  | Duvall & Linnartz 1967  |
| Bluestem prairie, heavy stocking   | Louisiana | 26    | 11,804  | Duvall & Linnartz 1967  |
| Bluestem coastal sand prairie      | Texas     | 27.29 | 12,390  | Drawe & Box 1969        |
| Pasture, coastal Bermuda           | Texas     | 32.25 | 14,642  | McCawley 1978           |
| Pasture, kleingrass                | Texas     | 36.11 | 16,394  | McCawley 1978           |
| Pasture, Bell rhodesgrass          | Texas     | 28.09 | 12,753  | McCawley 1978           |
| Mean                               |           | 34.00 | 15,438  |                         |

 Table 7.1 Forage consumption rate (forage disappearance) by cattle in selected studies reported in the literature.

AUD = animal unit day = amount of forage (dry weight) consumed by a 1000-lb cow in one day.

Long-term moderate stocking rates under good management are often based on removal of 40-60% of annual forage production (Paulsen and Ares 1962; Duvall and Linnartz 1967; Owensby and Anderson 1967; Drawe and Box 1969; Anderson et al. 1970). Average annual forage production for each ecological type, under late-seral condition, for Goliad County is presented in the NRCS Soil Survey (Wiedenfeld 2010). Average current forage production, accounting for the fact that most rangelands in South Texas are not in late-seral condition, was estimated at 70% of the values presented in the Soil Surveys (Appendix Table C.2). Proper management stocking rates were assumed to be based on 50% havest of average available forage (Appendix Table C.22). These amounts were further reduced on the basis of amount of woody plant cover present (Appendix Table C.27).

The estimated amount of annual available forage was used to arrive at an estimated stocking rate for each EDYS plot type (Appendix Tables D.1 and D.2). Daily forage consumption rate (34 lbs/AUD, Table 6.1) was multiplied by 365 to arrive at an annual animal unit (AU) forage requirement. This value (12,410 lbs/AU) was divided by the estimated amount of annual available forage for each plot type (50% of forage production, Table 7.2). The medium stocking rates were used as the default values in the model. Averaged over all types, the mean stocking rates was 9.7 acres/AU for areas devoid of trees and shrubs (Table 7.2). This increased to 14.7 acres/AU when adjusted for woody plant cover.

| Table 7.2 Cattle stocking rates, initial forage estimates, and mean woody plant cover used |
|--------------------------------------------------------------------------------------------|
| in the Goliad County EDYS model. Values are averages over various woody plant cover        |
| values per type.                                                                           |

| Range or Land Use Type | An  | nual For | age Produ | ction     | Stockin  | g Rates       | Woody Cover |
|------------------------|-----|----------|-----------|-----------|----------|---------------|-------------|
|                        |     |          |           | ody Cover | No Woody |               | Mean (%)    |
|                        |     | (lbs/ac) |           | (lbs/ac)  |          | Cover (ac/AU) |             |
|                        |     |          |           |           |          |               |             |
| Blackland, RG Plains   | 261 | 2331     | 136       | 1212      | 10.63    | 20.33         | 60.1        |
| Blackland, Coastal     | 522 | 4661     | 426       | 3803      | 5.33     | 6.53          | 23.0        |
| Clayey Bottomland      | 286 | 2554     | 140       | 1251      | 9.73     | 19.84         | 66.3        |
| Clay Loam              | 286 | 2554     | 190       | 1696      | 9.73     | 14.63         | 42.0        |
| Claypan Prairie        | 379 | 3384     | 345       | 3079      | 7.33     | 8.06          | 11.3        |
| Claypan Savanna        | 306 | 2733     | 191       | 1708      | 9.10     | 14.53         | 46.9        |
| Deep Sand              | 243 | 2170     | 163       | 1452      | 11.41    | 17.09         | 41.4        |
| Gravelly Ridge         | 178 | 1590     | 116       | 1035      | 15.64    | 23.98         | 43.6        |
| Gray Sandy Loam        | 260 | 2322     | 143       | 1279      | 10.71    | 19.41         | 56.1        |
| Lakebed RG Plains      | 276 | 2465     | 187       | 1674      | 10.09    | 14.83         | 40.2        |
| Lakebed Coastal        | 350 | 3126     | 285       | 2545      | 7.95     | 9.75          | 23.3        |
| Loamy Bottomland       | 431 | 3849     | 237       | 2113      | 6.94     | 11.75         | 56.4        |
| Loamy Prairie          | 410 | 3661     | 323       | 2881      | 6.79     | 8.62          | 26.6        |
| Loamy Sand             | 295 | 2634     | 219       | 1957      | 9.41     | 12.68         | 32.1        |
| Lowland Coastal        | 447 | 3992     | 345       | 3078      | 6.21     | 8.06          | 28.6        |
| Rolling Blackland      | 260 | 2322     | 144       | 1289      | 10.71    | 19.26         | 55.7        |
| Salty Prairie          | 520 | 4644     | 478       | 4272      | 5.35     | 5.81          | 10.1        |
| Sandy                  | 297 | 2652     | 208       | 1859      | 9.34     | 13.35         | 37.4        |
| Sandy Bottomland       | 369 | 3295     | 203       | 1816      | 7.52     | 13.67         | 56.1        |
| Sandy Loam             | 342 | 3054     | 290       | 2593      | 8.14     | 9.58          | 18.9        |
| Shallow Ridge          | 134 | 1197     | 96        | 858       | 20.78    | 28.93         | 35.4        |
| Shallow Sandy Loam     | 210 | 1875     | 100       | 889       | 13.26    | 27.92         | 65.8        |
| Sloping Clay Loam      | 186 | 1661     | 140       | 1247      | 14.97    | 19.90         | 31.1        |
| Tight Sandy Loam       | 285 | 2545     | 204       | 1822      | 9.73     | 13.62         | 35.5        |
| Improved Pasture       | 566 | 5054     | 560       | 4998      | 4.92     | 4.97          | 1.4         |
| Mean                   | 324 | 2893     | 235       | 2096      | 9.67     | 14.68         |             |

The range or land-use types are divided in the model on the basis of amount of woody plant coverage, and stocking rates are adjusted proportionately. No woody cover = forage production and stocking rates without woody plants coverage (Appendix Table C.2). Mean woody plant cover = values averaged (weighted by number of cells) over all woody coverage classes for that type (Appendix Table C.27), i.e., reduced forage production because of woody plants.

The moderate stocking rates used in the model (Table 7.2) compare well with rates reported in published research studies in the coastal region. Light stocking rate (32% forage utilization) on a sandy loam site on the Welder Wildlife Refuge in San Patricio County was 15 acres/AU (Drawe and Box 1969), which compares with a moderate stocking rate of 8.1 acres/AU on sandy loam and 11.4 acres/AU on deep sand sites in the model (Table 7.2). A moderate stocking rate (46% utilization) on silt loam bluestem sites in central Louisiana was 8.1 acres/AU (Duvall and Linnartz 1967). The stocking rate used in the model on clay loam sites was 9.7 acres/AU. A moderate to heavy stocking rate (61% utilization) on a seacoast bluestem clay prairie in Calhoun County, Texas, was 4.5 acres/AU (Durham and Kothmann 1977). The moderate stocking rate on coastal blackland sites in the model was 5.3 ac/AU. The average stocking rate in these three published studies was 9.2 acres/AU, with a corresponding average utilization of 46%. The corresponding values in the model are 8.3 acres/AU with an average utilization of 50%.

#### 7.5 Horses

The model has the capability of including horses in the grazing options. However, at the present they are not included because of lack of information on stocking rates and locations. Although there are a substantial number of horses in Goliad County, most of these do not consume most of their feed from range vegetation. Instead, substantial portions are provided as hay and concentrates. In addition, their numbers are not distributed evenly across the landscape. Most horses in Goliad County are maintained for pleasure and are confined to areas near urban areas or farmsteads. These uneven distribution and supplemental feed factors make it likely that uniform modeling assumptions will lead to more inaccurate estimates in the simulations than if horses are excluded at this point in the modeling effort. When included in the model, horses are considered to have the grazing equivalent of 1.25 AU (Stoddart et al. 1975), i.e., one horse consumes an equivalent amount of forage as 1.25 1000-lb cows.

# 7.6 Feral Hogs

Feral hogs are a major species of concern throughout Texas. They are physically destructive to many habitats, especially wetlands, they compete with native wildlife and domestic livestock for food and habitat space, and their numbers are increasing. Modeling the impacts of feral hogs at large landscape scales, such as the Goliad County model, is difficult and perhaps counter-productive for the same reasons that modeling the impacts by horses is difficult on a landscape basis. The density and distribution patterns of feral hogs are not documented on a county-wide scale. Therefore, any scenarios including these estimates would be subject to substantial speculation. A more productive approach would be to model a specific scenario without feral hogs included and then compare those results to results from the same scenario except with specific spatial and density assumptions made relative to feral hog populations. This was the approach taken, for example, in EDYS modeling of feral hog impacts in the Upper Llano River Watershed Protection Plan (Broad et al. 2016). No such scenarios were included in the ten scenarios simulated for the Goliad County report.

### **8.0 CALIBRATION**

Calibration in EDYS consists of adjustments of parameter values, if needed, to achieve target values for the output variables under consideration. Target values are from independent validation data, either from experimental validation studies or from existing field data, if these data are available. In the absence of independent validation data, values based on literature data and professional judgement are used.

### 8.1 Vegetation

Independent validation data are being collected in Goliad County, as well as Karnes and Wilson Counties, but these data were not available in time to be used in the development of the Goliad County model. Field validation studies were established in August 2014 and those data will be

used to validate the model. Because field validation data were not available, reasonable ecological estimates were used as target values for calibration comparisons.

# 8.1.1 General Procedure

The approach used in the calibration process is to begin with one vegetation type, obtain reasonable results for that type, and then add a second type, the second type having a substantially different combination of species. Once acceptable calibration results are obtained for both types in combination, then a third type is added. This interative process is continued until a sufficient number of types are included that, in combination, include all the major species included in the model. In addition to adding types, variations in woody plant cover and differences in rainfall regimes are included in the calibration process.

EDYS contains a large number of variables (parameters; Section 6.5), the values of any combination of which can be adjusted during the calibration process. The following general procedure is used to determine which parameters area adjusted and to what extent.

Prior experience has shown vegetation responses in EDYS to be more sensitive to changes in some parameters than others. We start the calibration process with those parameters we expect the model to be more sensitive to changes in. Examples include water-use efficiency, root architecture, potential growth rate, allocation of current production, and end of growing season dieback. For most of these variables, we have a range in values in our data base that have been compiled from various literature references and from our own field and greenhouse studies. For example, we have root architecture data for little bluestem (Schizachyrium scoparium) from 13 profiles taken from nine published studies (Sperry 1935; Weaver and Zink 1946; Weaver 1947, 1950, 1954, 1958; Weaver and Darland 1949; Coupland and Bradshaw 1953; Jurena and Archer 2003). We begin the calibration process using the mean of these 13 profiles. If necessary, we can change the values of initial root biomass in each layer (Appendix Table E.9) to provide a better fit with expected little bluestem biomass values changes in the model simulations. However, whatever changes are made in the root architecture parameters for little bluestem must not exceed the range of values in our data base (i.e., the parameter values remain consistent with reported values in the literature). A second example is water-use efficiency. Siver bluestem is another major perennial grass species in the Goliad County model. McGinnies and Arnold (1939) reported an average water-use efficiency in production of new biomass for silver bluestem of 685 g water/g aboveground biomass. However, they reported a range over a twoyear period of 337-1221, depending on season and amount of water available. Our calibration converged on a value of 760 (Appendix Table E.13), which is very near the mean (765) of the values reported by McGinnies and Arnold (1939) for the period May-September in their study and well within the overall range of values they reported.

By comparing changes in biomass of various species within a vegetation type and changes in biomass of the same species among vegetation types between calibration runs, as parameter values are modified, it can be determined which variables are controlling the changes (sensitivity analysis). Values in these parameter sets can be changed and the results compared in the next simulation. Once the values of the major plant species have stabilized near their target values, the vegetation calibration process is considered to be complete. It should be emphasized that the

completed calibration process results in single values for each of the parameters, i.e., the same value is used for that particular species for the respective parameter for all vegetation types in the model. The benefit of this approach is that simulated responses are consistent across vegetation types throughout the spatial landscape.

## 8.1.2 Examples

Six vegetation types were used to calibrate the model. Ten-year simulations were conducted for each calibration run. For each calibration run, initial composition and associated standing crop biomass values were defined for all vegetation types in the model (Section 6.3) and the entire model was run of a 10-year simulation. This allowed for surface hydrology interactions among all the vegetation types over time. Standing crop biomass values for each species were downloaded for each of the calibration types at the end of October (approximate end of growing season for most species in the model) of each year of the simulation.

Calibration was first conducted without grazing by livestock for two reasons. First, studies of vegetation change over time (especially successional studies) generally utilize grazing exclosures. This is done in order to determine natural patterns of secondary succession. Likewise, the calibration process must first determine if changes in species composition in the simulations are proceeding in a realistic ecological manner (e.g., trees and midgrasses increase during periods of higher rainfall and xeric shrubs and shortgrasses increase during periods of lower rainfall, forbs decrease as midgrasses increase and increase as midgrasses decrease). The second reason for excluding livestock grazing during calibration is that the actual level of livestock grazing is unknown for most, and perhaps all, the various spatial units (e.g., pastures, ranches) in a county-wide model. Therefore, if grazing was included the calibration the results would most likely reflect the effects of the grazing levels entered into the model rather than successional effects and responses to rainfall variations. Once the models were calibrated without livestock grazing, livestock grazing was included and the calibration simulations re-run to affirm that the response of grazing was reasonable.

Four calibration scenarios were conducted for each of the six vegetation types. The first scenario utilized a moderate precipitation regime (1940-49 daily rainfall data, annual mean = 35.14 inches) without livestock grazing. The second scenario used a 10-year dry precipitation regime (1947-56 daily rainfall data, annual mean = 27.59 inches) without livestock grazing. The third scenario used a 10-year wet precipitation regime (1972-81 daily rainfall data, annual mean = 44.08 inches). The fourth scenario utilized the moderate precipitation regime (1940-49) but included cattle grazing at moderate stocking rates (Table 7.2).

### 8.1.2.1 Clay Loam

Calibration began with Plot Type 137 (NRCS type = clay loam; Appendix Table C.2), with 25-50% (38% mean) woody plant cover, using the moderate precipitation regime. The clay loam type is the most common vegetation type in northeastern South Texas (Drawe et al. 1978; McLendon 1991) and is the most abundant type in the Goliad County model footprint, containing 24% of the area within the spatial footprint (Appendix Table C.28). It also contains 38 of the 84 (45%) plant species included in the model. Much of this type was probably once midgrass prairie with scattered shrub mottes, but now it commonly supports moderate to dense shrublands unless recently cleared by brush control.

This type is a clay loam grassland with scattered mottes (clusters) of woody species covering 25-50% of the surface. The mottes are characterized by a mixture of mesquite trees with understory shrubs and scattered to moderately dense stands of huisache. Total initial aboveground biomass was initially set at 2,487 g/m<sup>2</sup>, of which 49% was tree biomass (mesquite and huisache) and 39% was shrub biomass (mostly granjeno, blackbrush, whitebrush, and prickly pear). The remaining 12% (308 g/m<sup>2</sup>; 2744 lbs/ac) was from grasses and forbs, which primarily occurred the interspaces between the woody mottes. The herbaceous biomass consisted mostly of shortgrasses (hooded windmillgrass [*Chloris cucullata*], buffalograss, purple threeawn [*Aristida purpurea*]), with lesser amounts of midgrasses (plains bristlegrass, silver bluestem) and forbs (mostly ragweed).

Under the moderate rainfall regime (1940-49; mean annual rainfall = 35.14 inches) and without livestock grazing, there was a moderate increase (10.2%) in total aboveground biomass (Table 8.1). This increase suggests that the system has not reached overall equilibrium with precipitation. This was not an unexpected result because the initial herbaceous biomass was set at about 70% of the amount hypothesized by the NRCS for excellent range condition (Appendix Table C.2). The absence of livestock grazing combined with some increase in woody species easily accounts for the 10% increase in the calibration simulation value.

| Lifeform/Species          | Initial | Year   | 10, No G | razing  | Year 10, Grazed |  |
|---------------------------|---------|--------|----------|---------|-----------------|--|
| 1                         |         |        |          | Wet PPT | Moderate PPT    |  |
|                           |         |        |          |         |                 |  |
| Trees                     | 1221    | 1298   | 1240     | 1311    | 1278            |  |
| Shrubs                    | 958     | 1178   | 1045     | 1167    | 1040            |  |
| Midgrasses                | 90      | 109    | 62       | 192     | 62              |  |
| Shortgrasses              | 150     | 124    | 77       | 214     | 316             |  |
| Forbs                     | 68      | 32     | 16       | 45      | 17              |  |
| Total                     | 2487    | 2741   | 2440     | 2929    | 2713            |  |
| Huisache                  | 351     | 428    | 417      | 475     | 399             |  |
| Mesquite                  | 870     | 870    | 823      | 836     | 879             |  |
| Blackbrush                | 191     | 179    | 164      | 177     | 120             |  |
| Whitebrush                | 190     | 276    | 228      | 257     | 302             |  |
| Baccharis                 | 101     | 160    | 126      | 165     | 50              |  |
| Granjeno                  | 276     | 310    | 271      | 296     | 331             |  |
| Wolfberry                 | 270     | 20     | 18       | 18      | 14              |  |
| Agarito                   | 4       | 20     | 4        | 3       | 5               |  |
| Prickly pear              | 175     | 230    | 234      | 251     | 218             |  |
|                           | ~ .     |        |          |         | - ^             |  |
| Silver bluestem           | 24      | 34     | 19       | 53      | 50              |  |
| Sideoats grama            | 4       | 3      | 2        | 6       | 3               |  |
| Trichloris                | 6       | 2      | 2        | 4       | 6               |  |
| Arizona cottontop         | 2       | 1      | 1        | 1       | *               |  |
| Little bluestem           | 6       | 3      | 2        | 6       | 2               |  |
| Plains bristlegrass       | 34      | 56     | 32       | 101     | 0               |  |
| Indiangrass               | 1       | *      | *        | *       | *               |  |
| Johnsongrass              | 9       | 8      | 3        | 18      | 0               |  |
| Tall dropseed             | 4       | 2      | 1        | 3       | 1               |  |
| Purple threeawn           | 23      | 30     | 9        | 61      | 131             |  |
| Hairy grama               | 3       | 1      | 1        | 1       | 1               |  |
| Buffalograss              | 39      | 50     | 26       | 56      | 111             |  |
| Hooded windmillgrass      | 68      | 23     | 28       | 42      | 73              |  |
| Vine-mesquite             | 1       | *      | *        | 1       | *               |  |
| Brownseed paspalum        | 10      | 15     | 9        | 28      | 0               |  |
| Knotroot bristlegrass     | 3       | *      | *        | *       | *               |  |
| Texas wintergrass         | 3       | 5      | 4        | 25      | *               |  |
| Ragweed                   | 13      | 6      | 2        | 8       | 9               |  |
| Wild indigo               | 4       | 6      | 4        | 7       | 0               |  |
| Old-man's beard           | 5       | 15     | 9        | 23      | 2               |  |
| Bundleflower              | 2       | *      | *        | *       | ے<br>*          |  |
| Froqfruit                 | 3       | 1      | *        | 1       | 1               |  |
| Prairie coneflower        | 3       | ⊥<br>* | *        | ⊥<br>*  | 0               |  |
| Snoutbean                 | 4       | *      | *        | 1       | 0               |  |
|                           | 4       | *      | *        | _       | •               |  |
| Ruellia<br>Ruch cunflourn | -       |        |          | 1       | 0<br>4          |  |
| Bush sunflower            | 9       | 3      | 1<br>*   | 3       |                 |  |
| Orange zexmenia           | 7       | 1      |          | 1       | 1               |  |
| Annual broomweed          | 7       | 0      | 0        | 0       | 0               |  |
| Sunflower                 | 7       | 0      | 0        | 0       | 0               |  |

Table 8.1 Calibration results for 10-year simulations for the clay loam, 25-50% woody cover, vegetation type (Plot Type 137), Goliad County EDYS model. Values are total aboveground biomass (g/m<sup>2</sup>) in October (end of growing season) under three precipitation (PPT) regimes.

An asterick (\*) indicates a trace amount ( $< 0.5 \text{ g/m}^2$ ).

Aboveground biomass of trees increased by 6.3%, with all of this increase coming from huisache. Huisache increased by 12% over the ten years. In comparison, huisache increased by 46% on mesquite-mixed grass communities of the Welder Wildlife Refuge over a period of 16 years (Box et al. 1979). Shrub aboveground biomass also increased (23%) during the 10-year simulation, with whitebrush and baccharis increasing the most (45% and 58%, respectively).

Both of these species are aggressive invading species under moist conditions. Prickly pear and granjeno also increased (31% and 12%, respectively), but there was a decrease in blackbrush. A decrease of blackbrush over a 15-year period following the end of the drought of the 1950s was also reported for the chaparral-mixed grass community on the Welder Wildlife Refuge (Drawe et al. 1978).

There was an increase in midgrasses with a corresponding decrease in shortgrasses over the 10year simulation. This is the expected pattern under conditions of moderate rainfall and no livestock grazing. Midgrasses increase during secondary succession on the coastal prairies and shortgrasses during periods of lower rainfall or under heavy grazing (Drawe et al. 1978). In the central Great Plains, replacement of shortgrasses by midgrasses following drought takes about 8-12 years (Weaver 1954). Plains bristlegrass and silver bluestem were the primary midgrasses that increased (65% and 42%, respectively). Both of these species are mid-seral grasses that are among the first midgrasses to respond to a reduction in grazing pressure (Box 1961; Powell and Box 1967; Drawe et al. 1978). Of the three major shortgrass species on this type at the beginning of the simulation, two increased (purple threeawn and buffalograss) and one decreased (hooded windmillgrass). Hooded windmillgrass is the earliest seral species of the three and would therefore be expected to decrease first once the midgrasses increased.

There was an overall decrease in forbs over the 10 years, which would also be expected as secondary succession proceeded from earlier to later stages (Drawe et al. 1978). Forb abundance is less in late seral conditions in bluestem prairie and greater in earlier (weedy) stages. Ragweed is an early-seral species and it decreased by 46%. Conversely, old-man's beard (*Clematis drummondii*) increased in abundance, which is consistent with results reported for the Welder Wildlife Refuge (Drawe et al. 1978).

Changing the rainfall regime affected the vegetation dynamics (Table 8.1), which was the expected result. Under the dry regime (1947-56, mean = 27.59 inches), there was an increase in huisache but at a slower rate than under the moderate rainfall regime and there was a decrease (5.4%) in mesquite. Mesquite decreases in cover during drought periods in South Texas (Archer et al. 1988). Compared to their respective values under the moderate rainfall regime, all shrub species had lower values after 10 years except for prickly pear. Prickly pear is well-adapted to drought conditions and was also benefited by the decrease in competition from other woody species. Compared to their respective values under the moderate rainfall regime, all herbaceous species except hooded windmillgrass had equal or lower values under the dry regime. Hooded windmillgrass is a relatively xeric seral-seral species that was benefited by the lower level of competition from the other herbaceous species. The two midgrasses that maintained their biomass levels under the dry regime were trichloris and Arizona cottontop, both of which are relatively xeric midgrasses.

Under the wet regime (1972-81, mean = 44.08 inches), huisache increased more than it did under the moderate regime and mesquite decreased slightly (Table 8.1). A decrease in mesquite cover following the return of relatively high rainfall levels following the drought of the 1950s was reported on clay and clay loam soils on the Welder Wildlife Refuge (Drawe et al. 1978). There was little overall difference in shrub biomass between moderate and wet rainfall regimes, and this was also true for most individual shrub species. This lack of shrub increase under the wet

regime was likely the result of increased competition from the herbaceous component and from huisache. Almost all herbaceous species increased in biomass under the wet regime compared to the moderate regime. There were substantial increases in most midgrasses, which is typical of successional dynamics in bluestem grasslands (Weaver 1954; Jensen and Schumacher 1969). In particular, there were substantial increases (percentage-wise) in silver bluestem, sideoats grama, plains bristlegrass, and little bluestem. These are species that increased in abundance on the Welder Wildlife Refuge during the relatively wet period of the 1960s and early 1970s (Drawe et al. 1978). The shortgrass species that had the greatest increase percentage-wise under the wet regime was Texas wintergrass (*Stipa leucotricha*). This is the only shortgrass species specifically mentioned as increasing significantly on clay loam sites of the Welder Wildlife Refuge following the drought of the 1950s (Drawe et al. 1978).

Livestock grazing also had an impact on vegetation change in the calibration simulation (Table 8.1). The major difference between grazed and ungrazed was a decrease in midgrasses and an increase in shortgrasses under the grazing regime. Compared to ungrazed conditions at the end of 10 years, midgrass biomass was 43% lower and shortgrass biomass was 155% higher. This is what would be expected to occur. Most of the midgrasses are more preferred forage species by cattle than most of the shortgrasses. Therefore, the midgrasses receive a higher proportion of the grazing pressure. Two midgrass species, plains bristlegrass and Johnsongrass, decreased the most. Both of these species are highly palatable to cattle. Silver bluestem and trichloris both increased under grazing. Both of these species are less preferred by cattle than most of the other midgrasses, hence they would be expected to increase as the more preferred midgrasses decreased. Most shortgrasses increased under the grazing scenario which should be expected because of less competition from the midgrasses. The two exceptions were brownseed paspalum and Texas wintergrass. Brownseed paspalum is a more highly preferred forage species by cattle than most shortgrasses and Texas wintergrass is heavily utilized by cattle during winter months when it is one of the few forage species providing green forage.

Huisache biomass decreased slightly under the grazing scenario, compared to the ungrazed scenario, whereas mesquite increased. Huisache is a palatable browse species whereas mesquite leaves are relatively unpalatable. The decrease in huisache was the result of greater browsing pressure, from cattle in early spring and during drier periods but especially from increased browsing from deer. As cattle removed more of the herbaceous material by their grazing, deer shifted more to browse. This also explains most of the differential responses of the shrub species to the grazing scenario. Blackbrush, wolfberry (*Lycium carolinianum*), and prickly pear decreased compared to the ungrazed scenario and all three of these species are important browse species to deer. Whitebrush increased substantially under cattle grazing and it is a relatively unpalatable browse species. Baccharis decreased under grazing and it is not a particularly preferred browse species but it is similar in ecological and successional status to whitebrush. Therefore the decrease in baccharis under the grazing scenario was likely the result of increased competition from whitebrush. Granjeno is an important browse species and it increased in biomass under the grazing scenario. This was most likely the result of lower competition from other woody species.

Total aboveground biomass of herbaceous species was 395  $g/m^2$  in the tenth year with livestock grazing (Table 8.1). Total aboveground biomass in EDYS simulations includes the basal crown

(trunk) biomass that is rarely sampled in clipping studies. Trunk biomass accounts for about 40% of total aboveground biomass of herbaceous species in EDYS simulations. Adjusting total aboveground herbaceous biomass to account only for clippable biomass results in a value of 237 g/m<sup>2</sup> of clippable biomass. This compares with 164 g/m<sup>2</sup> on a moderately grazed pasture on the Welder Wildlife Refuge 10 years after drought and heavy grazing (Box and White 1969) and 141 g/m<sup>2</sup> on a heavily-grazed pasture in Goliad County (Dodd and Holtz 1972).

## 8.1.2.2 Other Types

Five other vegetation plot types were used in the calibration process (Table 8.2). Combined with the area included in the clay loam type, the six types include 61% of the area included in the spatial footprint of the model and 63 of the 84 (75%) plant species. Although all four calibration scenarios were run for each of the five additional types, only results of the moderate-rainfall no grazing scenarios are presented (Table 8.2) and discussed.

Woody species (trees and shrubs) decreased over the ten years on all these sites except the loamy bottomland. Live oak decreased the most, followed by mesquite and with huisache least. Live oak is experiencing a decline on many sites in South Texas and the results of the calibration scenarios suggest that at least part of the reason may be that live oak requires above average rainfall to maintain or increase in abundance. This supports the suggestion that much of the larger live oak type in South Texas may be a relict of past climatic conditions (Drawe et al. 1978). There has also been a slight decrease in mesquite canopy on many sites on the Welder Wildlife Refuge (Drawe et al. 1978) and Archer et al. (1988) suggested that mesquite will likely decrease along drainages in central South Texas under average or above average rainfall as larger species with more dense canopies increase in abundance. On the loamy bottomland site in the calibration simulations, pecan (*Carya illinioensis*) and huisache increased while mesquite, hackberry (*Celtis laevigata*), and live oak decreased.

Shrub biomass varied by species and by vegetation type (Table 8.2). Blackbrush and whitebrush remained relatively stable and prickly pear decreased, especially on the sand and sandy loam types. This is consistent with what has been reported on the Welder Wildlife Refuge (Drawe et al. 1978). Granjeno and baccharis decreased in the loamy bottomland type, perhaps in response to the increase in huisache. Granjeno also decreased on the blackland type but increased on the sand and sandy loam types. The blackland type occurs on Monteola clay soils (Table 6.3) and these soils are more droughty than sands and loams except during wetter periods. Biomass of all lifeforms decreased on this type over the 10-year simulation. This may suggest that the initial biomass values were set too high to begin the simulations (i.e., the site cannot support as high a grassland productivity as suggested by the NRCS under moderate rainfall).

| (ungrazed, mode                    |            |           | 0          | • •        |            |            | 0          |            | -         | -          |  |
|------------------------------------|------------|-----------|------------|------------|------------|------------|------------|------------|-----------|------------|--|
| Lifeform/Species                   |            | 046       | Plot       | ,          | 0          | 004        | Plot       |            | Plot      |            |  |
| r                                  |            | kland,    |            | mland,     |            | Sandy      | Loamy      |            |           | Prairie    |  |
|                                    |            |           |            | 50-75%     |            | 25-50%     |            | 50%        | -         | 10%        |  |
|                                    | 00         | 10        | 00         | 10         | 00         | 10         | 00         | 10         | 00        | 10         |  |
|                                    | 0.4.6      | 0.01      | 6.604      | 21 2 0     | 2460       | 2006       | 5044       | 5004       | 215       | 201        |  |
| Trees                              | 246<br>73  | 231<br>58 | 6684       | 7178       | 3469       | 3286       | 5344       | 5084       | 315<br>96 | 301        |  |
| Shrubs<br>Midgrasses               | 203        | 93        | 853<br>154 | 709<br>142 | 650<br>128 | 717<br>212 | 384<br>123 | 427<br>302 | 587       | 101<br>815 |  |
| Shortgrasses                       | 412        | 327       | 69         | 37         | 96         | 164        | 134        | 82         | 68        | 86         |  |
| Grass-likes                        | 0          | 0         | 33         | 57         | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Forbs                              | 184        | 79        | 70         | 69         | 61         | 26         | 73         | 53         | 19        | 19         |  |
| Total                              | 1118       | 788       | 7863       | 8192       | 4404       | 4405       | 6058       | 5948       | 1085      | 1322       |  |
| Huisache                           | 126        | 121       | 582        | 1268       | 0          | 0          | 0          | 0          | 277       | 263        |  |
| Pecan                              | 0          | 0         | 801        | 824        | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Hackberry                          | 7          | 6         | 1232       | 1179       | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Mesquite                           | 99         | 91        | 481        | 432        | 1305       | 1302       | 1015       | 921        | 38        | 38         |  |
| Live oak                           | 14         | 13        | 3588       | 3475       | 2164       | 1984       | 4329       | 4163       | 0         | 0          |  |
| Blackbrush                         | 13         | 8         | 0          | 0          | 287        | 287        | 0          | 0          | 0         | 0          |  |
| Whitebrush                         | 15         | 10        | 158        | 162        | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Baccharis                          | 0<br>0     | 0         | 168        | 79         | 0          | 0          |            | 0          | 0         |            |  |
| Sea oxeye                          | 22         | 0<br>18   | 0<br>153   | 0<br>117   | 0<br>276   | 368        | 0<br>184   | 0<br>256   | 96<br>0   | 101<br>0   |  |
| Granjeno<br>Agarito                | ∠∠<br>*    | ±8<br>*   | 153        | 0          | 276        | 308<br>0   | 184        | 256        | 0         | 0          |  |
| Mustang grape                      | 0          | 0         | 374        | 351        | 0          | 0          | 113        | 112        | 0         | 0          |  |
| Prickly pear                       | 23         | 22        | 0          | 0          | 87         | 62         | 87         | 59         | 0         | 0          |  |
| Big bluestem                       | 4          | 2         | 6          | 2          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Bushy bluestem                     | 0          | 0         | 3          | 6          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Silver bluestem                    | 27         | 23        | 7          | 2          | 49         | 124        | 13         | 21         | 0         | 0          |  |
| Sideoats grama                     | 5          | 2         | 16         | 13         | 14         | 34         | 26         | 143        | 0         | 0          |  |
| Trichloris                         | 6          | 1         | 28         | 4          | 52         | 47         | 0          | 0          | 0         | 0          |  |
| Arizona cottontop                  |            | 0         | 0          | 0          | 2          | *          | 2          | 1          | 0         | 0          |  |
| Virgnia wildrye                    | 0          | 0         | 9          | 1<br>*     | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Texas cupgrass                     | 0          | 0         | 2          |            | 0          | 0          | 0          | 0          | 0         | 0<br>*     |  |
| Switchgrass                        | 12<br>0    | 3<br>0    | 16<br>0    | 6<br>0     | 0<br>0     | 0          | 7<br>0     | 7<br>0     | 1<br>5    | 7          |  |
| Common reed<br>Little bluestem     | 36         | 12        | 35         | 21         | 0          | 0          | 69         | 119        | 5         | 1          |  |
| Plains bristle                     | 52         | 33        | 14         | 15         | 11         | 7          | 6          | 119        | 0         | 0          |  |
| Indiangrass                        | 8          | 1         | 0          | 0          | 0          | 0          | 0          | 0          | 2         | *          |  |
| Johnsongrass                       | 31         | 10        | 18         | 72         | 0<br>0     | 0          | 0          | Õ          | 0         | 0          |  |
| Gulf cordgrass                     | 0          | 0         | 0          | 0          | 0          | 0          | 0          | 0          | 574       | 807        |  |
| Tall dropseed                      | 22         | 6         | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Purple threeawn                    | 62         | 46        | 0          | 0          | 27         | 151        | 17         | 23         | 0         | 0          |  |
| Hairy grama                        | 14         | 3         | 0          | 0          | 10         | 2          | 8          | 2          | 0         | 0          |  |
| Red grama                          | 0          | 0         | 0          | 0          | 5          | *          | 0          | 0          | 0         | 0          |  |
| Buffalograss                       | 179        | 201       | 18         | 1          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Sandbur                            | 0          | 0         | 0          | 0          | 16         | 5          | 13         | 6          | 0         | 0          |  |
| Hooded windmill                    | 55         | 12        | 0          | 0          | 38         | 6          | 19         | 3          | 0         | 0          |  |
| Bermudagrass                       | 0          | 0         | 4          | 1          | 0          | 0          | 0          | 0          | 7         | 2          |  |
| Saltgrass                          | 0          | 0         | 0          | 0          | 0          | 0          | 0          | 0          | 18        | 11         |  |
| Vine-mesquite                      | 5          | 1         | 6          | 2          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Longtom<br>Brownsood paspalu       | 0          | 0<br>27   | 0          | 0<br>30    | 0          | 0          | 0<br>52    | 0          | 16<br>0   | 3<br>0     |  |
| Brownseed paspalu<br>Thin paspalum | 1m 37<br>0 | 27        | 16<br>0    | 30         | 0          | 0          | 52<br>25   | 45<br>3    | 0         | 0          |  |
| Knotroot bristle                   | 22         | 2         | 11         | 1          | 0          | 0          | 25         | 0          | 27        | 70         |  |
| Texas wintergrass                  |            | 35        | 14         | 2          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Littletooth sedge                  | e 0        | 0         | 14         | 1          | 0          | 0          | 0          | 0          | 0         | 0          |  |
| Flatsedge                          | 0          | 0         | 19         | 56         | 0          | 0          | 0          | 0          | 0         | 0          |  |
|                                    |            |           |            |            |            |            |            |            |           |            |  |

Table 8.2 Initial (00) and tenth-year (10) values (aboveground biomass, g/m<sup>2</sup>) for lifeforms and major plant species in six of the vegetation types used in the vegetation calibration process (ungrazed, moderate rainfall scenario). Percentages refer to amount of woody plant cover.

| Lifeform/Species |      | cland,<br>1-10% | Bottomland,<br>Loamy, 50-75% |    | Tight Sandy<br>Loam 25-59% |    | Loamy Sand<br>25-50% |    | Salty Prairie<br>1-10% |    |  |
|------------------|------|-----------------|------------------------------|----|----------------------------|----|----------------------|----|------------------------|----|--|
| Ragweed          | 37   | 5               | 14                           | 3  | 16                         | 14 | 28                   | 40 | 0                      | 0  |  |
| Spiny aster      | 0    | 0               | 6                            | 1  | 0                          | 0  | 0                    | 0  | 7                      | 1  |  |
| Wild indigo      | 63   | 33              | 0                            | 0  | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |
| Old-man's beard  | 31   | 40              | 10                           | 30 | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |
| Bundleflower     | 4    | *               | 1                            | *  | 1                          | *  | 2                    | *  | 0                      | 0  |  |
| Frogfruit        | 0    | 0               | 2                            | *  | 0                          | 0  | 0                    | 0  | 6                      | 14 |  |
| Prairie coneflow | er O | 0               | 0                            | 0  | 2                          | *  | 3                    | *  | 0                      | 0  |  |
| Snoutbean        | 0    | 0               | 4                            | 1  | 6                          | 0  | 6                    | 0  | 0                      | 0  |  |
| Ruellia          | 11   | 1               | 4                            | 1  | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |
| Bush sunflower   | 0    | 0               | 0                            | 0  | 20                         | 12 | 16                   | 13 | 0                      | 0  |  |
| Greenbriar       | 0    | 0               | 15                           | 34 | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |
| Giant ragweed    | 0    | 0               | 7                            | 0  | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |
| Partridge pea    | 0    | 0               | *                            | 0  | 2                          | 0  | 1                    | 0  | 0                      | 0  |  |
| Texas doveweed   | 0    | 0               | 0                            | 0  | 4                          | 0  | 17                   | 0  | 0                      | 0  |  |
| Sunflower        | 38   | 0               | 7                            | 0  | 10                         | 0  | 0                    | 0  | 0                      | 0  |  |
| Glasswort        | 0    | 0               | 0                            | 0  | 0                          | 0  | 0                    | 0  | 0                      | 0  |  |

Table 8.2 (Cont.)

An asterick (\*) indicates a trace amount ( $< 0.5 \text{ g/m}^2$ ).

Biomass of midgrasses increased on the tight sandy loam, loamy sand, and salty prairie types (Table 8.2), as would be expected under conditions of moderate rainfall and no grazing. Biomass of shortgrasses also increased on the tight sandy loam and salty prairie types, but decreased on the loamy sand type. The decrease on the loamy sand type was likely the result of increased competition from the substantial increase in midgrasses (146%) and the increase in granjeno. Most of the increase in midgrasses came from silver bluestem (tight sandy loam), sideoats grama and little bluestem (loamy sand), and gulf cordgrass (Spartina spartinae; salty prairie). These are major mid- or late-seral dominants on these grasslands (Drawe et al. 1978; Scifres et al. 1980; Diamond and Smeins 1984; McLendon 1991; Garza et al. 1994) and therefore should increase in abundance under moderate-rainfall conditions with no livestock grazing. Purple threeawn was the only shortgrass species to increase on the tight sandy loam and loamy sand sites. It is a vigorous mid-seral species that would be expected to decrease over time as the midgrasses continue to increase. However, threeawns are also important components of late-seral sandy prairies in South Texas and the Texas Coast (Diamond and Smeins 1984; McLendon 1991). Knotroot bristlegrass (Setaria geniculata) was the shortgrass that increased in the salty prairie type and this species is a common secondary species in gulf cordgrass communities (Scifres et al. 1980). Johnsongrass was the major grass species to increase on the loamy bottomland site and this species can form dense stands on these mesic sites in the absence of livestock grazing.

Aboveground forage production (adjusted to reflect clippable biomass) was 241 g/m<sup>2</sup> on the tight sandy loam type, 262 g/m<sup>2</sup> on the loamy sand type, and 552 g/m<sup>2</sup> on the salty prairie type. These compare favorably with values reported in the literature for South Texas and the Texas Coast (Table 8.3).

| communities in South Texas a                                                                | communities in South Texas and the Texas Coast.                                                |                            |                                                                           |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Туре                                                                                        | Location                                                                                       | Biomass                    | Reference                                                                 |  |  |  |  |  |  |  |  |
| Seacoast bluestem community<br>Seacoast bluestem community<br>Fine sandy loam<br>Sandy loam | Aransas National Wildlife Refuge<br>Dimmit County<br>Welder Wildlife Refuge<br>Victoria County | : 380<br>187<br>238<br>203 | McLendon 2014<br>McLendon 1977<br>Drawe and Box 1969<br>Bovey et al. 1972 |  |  |  |  |  |  |  |  |
| Gulf cordgrass community                                                                    | Welder Wildlife Refuge                                                                         | 543                        | Garza et al. 1994                                                         |  |  |  |  |  |  |  |  |

Table 8.3 Aboveground biomass (g/m<sup>2</sup>, clippable) on sandy grassland and gulf cordgrass communities in South Texas and the Texas Coast.

#### 8.2 Ecohydrology

Three ecohydrological components were assessed in the model calibration: 1) evapotranspiration, 2) surface runoff and sedimentation, and 3) groundwater use by vegetation. These components were also combined to develop several basic water balances. Direct field data were not available for use in these calibrations. Instead, literature values and professional judgment were used.

#### **8.2.1** Evapotranspiration

In EDYS, evapotranspiration (ET) is separated into its two components: evaporation (E) and transpiration (T). Evaporation is the conversion of liquid water to water vapor, with the subsequent movement of the water vapor into the atmosphere. Transpiration is the process of water loss from plants by evaporation through their stomates. In EDYS, transpiration is accounted for as a function of water use by individual plant species. Evaporation is subdivided into interception and evaporated and evaporation is the amount of water evaporated from the soil (including bare ground, litter, and rocks and other bare surfaces) and open water surfaces.

The amount of ET varies widely among plant communities, regions, seasons, and years. Three primary variables determining the amount of ET are 1) temperature, 2) available moisture, and 3) vegetation. Warmer regions, or warmer seasons, have higher ET rates than cooler regions or seasons, other factors held constant. Under the same temperature regime, an increase in available moisture results in an increase in ET. Conversely, as conditions become drier, less water is available for evaporation and transpiration and therefore ET decreases. However, drier regions are often warmer than mesic regions and this increase in temperature also has an effect on ET rates. Potential evaporation rates are often estimated for a locale from measurement of evaporation from a free-water surface. Evaporation rates from exposed surfaces (e.g., leaf surfaces, rocks, surface of the litter) may approximate this rate. Evaporation from a soil surface is generally less than the maximum potential rate because the water is being translocated to the surface from which evaporation actually occurs and this translocation process slows the rate of evaporation. If the soil surface is shaded, for example by vegetation cover, the lower temperature also reduces the evaporation rate.

Plants move water from various soil depths, into their roots, through the plant, and into stomatal cavities whre the evaporation actually occurs. This movement of water is in response to a water

potential gradient between the various soil layers and the atmosphere at the leaf surface. The largest gradient occurs when the atmosphere is very dry and the soil is very wet. Very little transpiration occurs when the atmosphers is moist (high relative humidity) or when the soil is very dry. In the first case, the water potential gradient is too weak to result in much water movement. In the second case, there is too little water to move.

Therefore the transpiration **rate** is largely dependent on the water potential gradient and the amount of water available to the roots. However, the **amount** of transpiration is largely dependent on the amount, and type, of vegetation present and the amount of water available to the plants. As the amount of transpiring surface (primarily leaf surface area) increases, the amount of water transpired increases, provided there is sufficient moisture available in the rooting zone of the particular vegetation. For example, ET in mesquite-shrublands at a site in South Texas was about 37% higher than on bare soil in wet years, but only about 30% higher on adjacent shortgrass sites than on bare soil (Table 8.4). In dry years, ET from bare soil decreased by almost 68% compared to wet years and ET decreased by about 64% on vegetated sites.

Table 8.4 Evapotranspiration (ET; mm) and rainfall (PPT; mm) in dry and wet years on the La Copita Experiment Station in South Texas (data from Weltz and Blackburn 1995).

| Vegetation                   |     | Dry Y | ear    | Wet Year |     |        |  |  |
|------------------------------|-----|-------|--------|----------|-----|--------|--|--|
|                              | PPT | ĒΤ    | ET/PPT | PPT      | ET  | ET/PPT |  |  |
| Mesquite-granjeno shrubland  | 310 | 330   | 1.06   | 887      | 881 | 0.99   |  |  |
| Red grama-threeawn grassland | 310 | 298   | 0.96   | 887      | 833 | 0.94   |  |  |
| Bare soil                    | 310 | 208   | 0.67   | 887      | 643 | 0.72   |  |  |

The ET from the bare soil was all from evaporation (E) and evaporation from a soil surface is limited to the upper soil layers. Therefore, any moisture that percolates past these surface layers is largely protected from loss by evaporation. Red grama (*Bouteloua trifida*) and threeawn are relatively shallow-rooted grass species, but they can extract soil moisture from deeper soil depths than can be extracted by evaporation alone. Consequently, the ET values on the grassland were higher than ET values on the bare soil (Table 8.4). Mesquite and granjeno are woody species that have deeper root systems than red grama and threeawn. Therefore, there is additional soil moisture available to them than is available to the shortgrasses. Consequently, the ET values on the shrubland was higher than on the grassland.

Under conditions of limited available moisture, the effect of plant species on ET rates is primarily a function of different rooting depths among species. In dry years, the mesquitegranjeno community ET exceeded the amount of rainfall received that year (Table 8.4), indicating the use of deeper soil moisture that had been stored during previous wetter years. Conversely, the ET of the shallower-rooted grasses was less than the annual rainfall. In the wet year, the amount of rainfall received exceeded the annual ET capacity of both the shrubland and the grasses, resulting in a net storage of soil moisture in the deeper soil layers.

Differences in root architecture can also have a substantial effect on ET when deeper soil layers contain higher soil moisture. On an arid site in eastern California, a saltgrass (*Distichlis spicata*)

community containing some rabbitbrush (*Chrysothamnus nauseosus*) had an annual ET of 47.2 cm (18.6 inches) and a nearby rabbitbrush-sacaton community had an annual ET of 60.5 cm (23.8 inches)(Duell 1990). Both communities had similar depth to groundwater (3.3 and 3.2 m, respectively). The reason for the higher ET in the rabbitbrush-sacaton community was because of the abundance of the deeper-rooted rabbitbrush shrubs and alkali sacaton (*Sporobolus airoides*), which is a deep-rooted perennial grass. In a similar study in southern Arizona, a big sacaton (*Sporobolus wrightii*) community had an ET of less than half that of an adjacent deeper-rooted mesquite community at similar depths to groundwater (Table 8.5).

 Table 8.5
 Evaporation (ET) and depth to groundwater for two communities on the San Pedro

 River floodplain in southern Arizona (data from Scott et al. 2000, 2006).

|                             | Big sacat | on grassland | Mesquite woodland |      |  |
|-----------------------------|-----------|--------------|-------------------|------|--|
| Depth to groundwater (m)    | 2.5       | 3.0          | 2.0               | 10.0 |  |
| Evapotranspiration (cm)     | 40.6      | 27.2         | 84.8              | 63.8 |  |
| Evapotranspiration (inches) | 16.0      | 10.7         | 33.4              | 25.1 |  |

In arid regions, evaporation often comprises the greater portion of ET because vegetative cover is low. In more mesic regions, transpiration comprises the greater portion of ET because of higher vegetative cover, less bare ground, and cooler soil surfaces because of shading. In the Owens Valley of eastern California, a part of the Mojave Desert with a high water table, ET for three species of grasses with an average canopy cover of 37% had an average E:T ratio of 55:45, with a range of 40-69% evaporation (Evans et al. 2013; Mata-Gonzalez et al. 2014). A desert site in North Africa had an average E:T ratio of 57:43, with a range of 38-78% evaporation (Floret et al. 1982).

#### 8.2.1.1 Clay Loam

The clay loam (Plot Type 137) is a mixed grass community with moderate amounts (average of 38% cover) of woody species, mostly mesquite and huisache (Table 8.1). Annual rainfall used in a 25-year calibration simulation varied between 15.79 and 42.81 inches, with an annual average of 31.49 inches. Simulated annual ET averaged 33.50 inches, or 106% of annual precipitation. This equates to an ET rate of 3.5 mm/day for a 245-day growing season (March-October) or an annual (365-day) ET rate of 2.3 mm/day. These are reasonable rates based on literature values. An average daily rate for a mesquite-granjeno community on a sandy loam site in South Texas was 2.6 mm (Weltz and Blackburn 1995) and 2.5 mm for a mesquite riparian community in southern Arizona (Scott et al. 2000, 2006). The simulated ET equivalent of 106% of annual precipitation is higher than the 97% value reported for mesquite-grasslands in the Rolling Plains of Texas (Carlson et al. 1990), 95% for oak-grasslands in the Edwards Plateau (Thurow et al. 1988), and 94% on bluestem prairie in Kansas (Bremer et al. 2001). However, the EDYS simulations indicated that an annual average of 3.36 inches of groundwater were transpired on the clay loam type. Reducing the simulated total average annual ET (33.50 inches) by this amount results in a rainfall-supported average ET of 30.14 inches, or 96% of annual rainfall.

The ratio of annual ET to annual rainfall fluctuates among years, in part because the supply of soil water is not entirely dependent on the amount of rainfall received in the particular year. Some soil water may be carried over from a previous year and late-season rainfall may not be fully utilized by plants in the year the rainfall was received (Table 8.6). ET exceeded annual rainfall in one-third of the years in the Rolling Plains study (Table 8.6). By comparison, ET exceeded annual rainfall in 60% of the years of the calibration simulations (Table 8.7). The higher rate in the calibration simulations was because of groundwater usage by the vegetation on the clay loam sites in Goliad County.

 Table 8.6 Annual rainfall and evapotranspiration (ET) at sites in the Rolling Plains (Carlson et al.

 1990) and in South Texas (Weltz and Blackburn 1995) in wet and dry years.

|               |      |         | South Texas |       |        |         |      |        |          |          |
|---------------|------|---------|-------------|-------|--------|---------|------|--------|----------|----------|
|               | (    | Grassla | nd          | Mesqu | ite-Gr | assland | Gra  | ssland | Mesquite | Granjeno |
| Rainfall (mm) | 769  | 677     | 629         | 769   | 677    | 629     | 310  | 887    | 310      | 887      |
| ET (mm)       | 644  | 804     | 555         | 658   | 756    | 511     | 298  | 833    | 330      | 881      |
| Balance (mm)  | +125 | -127    | + 74        | - 79  | +118   | + 12    | + 12 | + 54   | - 20     | + 6      |
| ET/Rainfall   | 0.86 | 1.19    | 0.88        | 0.86  | 1.12   | 0.81    | 0.96 | 0.94   | 1.06     | 0.99     |

 Table 8.7 Annual rainfall (inches) and evapotranspiration (ET) variables (inches) for the 25-year baseline calibration simulation for the clay loam type, Goliad County EDYS model.

| РРТ  | Rainfall | Interception | Evaporation | Total       | Transpiration | ET    | Balance         | ET/Rainfall |
|------|----------|--------------|-------------|-------------|---------------|-------|-----------------|-------------|
| Year |          | 1            | 1           | Evaporation | -             |       | (Rainfall – ET) |             |
|      |          |              |             | 1           |               |       | ( )             |             |
| 1928 | 29.76    | 1.36         | 6.25        | 7.61        | 17.64         | 25.25 | 4.51            | 0.848       |
| 1929 | 39.27    | 1.68         | 1.75        | 3.43        | 35.51         | 38.94 | 0.33            | 0.992       |
| 1930 | 23.25    | 1.78         | 1.57        | 3.35        | 27.21         | 30.56 | - 7.31          | 1.314       |
| 1931 | 38.09    | 1.86         | 2.29        | 4.15        | 34.09         | 38.24 | - 0.15          | 1.004       |
| 1932 | 34.93    | 2.10         | 2.28        | 4.38        | 34.69         | 39.07 | - 4.14          | 1.119       |
| 1933 | 28.89    | 2.39         | 1.86        | 4.25        | 29.62         | 33.87 | - 4.98          | 1.172       |
| 1934 | 36.82    | 1.74         | 2.32        | 4.06        | 29.25         | 33.31 | 3.51            | 0.905       |
| 1935 | 39.42    | 3.04         | 2.54        | 5.58        | 40.58         | 46.16 | - 6.74          | 1.171       |
| 1936 | 33.85    | 3.73         | 2.97        | 6.70        | 34.20         | 40.90 | - 7.05          | 1.209       |
| 1937 | 23.25    | 1.56         | 1.00        | 2.56        | 18.58         | 21.14 | 2.11            | 0.914       |
| 1938 | 21.48    | 1.64         | 1.84        | 3.48        | 24.89         | 28.37 | - 6.89          | 1.321       |
| 1939 | 19.23    | 1.61         | 1.12        | 2.73        | 21.88         | 24.61 | - 5.38          | 1.280       |
| 1940 | 39.38    | 2.52         | 1.16        | 3.68        | 30.89         | 34.57 | 4.81            | 0.878       |
| 1941 | 42.31    | 4.89         | 3.46        | 8.35        | 41.56         | 49.91 | - 7.60          | 1.180       |
| 1942 | 36.09    | 3.31         | 4.24        | 7.55        | 30.08         | 37.63 | - 1.54          | 1.043       |
| 1943 | 31.69    | 2.37         | 4.09        | 6.46        | 23.66         | 30.12 | 1.57            | 0.950       |
| 1944 | 30.83    | 2.93         | 3.22        | 6.15        | 29.79         | 35.94 | - 5.11          | 1.166       |
| 1945 | 25.76    | 2.79         | 2.41        | 5.20        | 23.36         | 28.56 | - 2.80          | 1.109       |
| 1946 | 42.81    | 4.55         | 3.17        | 7.72        | 34.85         | 42.57 | 0.24            | 0.994       |
| 1947 | 29.88    | 3.74         | 2.60        | 6.34        | 26.10         | 32.44 | - 2.56          | 1.086       |
| 1948 | 23.90    | 3.08         | 2.33        | 5.41        | 24.21         | 29.62 | - 5.72          | 1.239       |
| 1949 | 36.39    | 3.61         | 2.40        | 6.01        | 28.34         | 34.35 | 2.04            | 0.944       |
| 1950 | 15.79    | 1.87         | 2.18        | 4.05        | 17.95         | 22.00 | - 6.21          | 1.393       |
| 1951 | 29.94    | 2.56         | 1.81        | 4.37        | 24.52         | 28.89 | 1.05            | 0.965       |
| 1952 | 34.17    | 2.19         | 3.13        | 5.32        | 25.03         | 30.35 | 3.82            | 0.888       |
| MEAN | 31.49    | 2.60         | 2.56        | 5.16        | 28.34         | 33.50 | - 2.01          | 1.0641      |

<sup>1</sup>Calculated on the basis of (Mean ET)/(Mean Rainfall) instead of 25-year mean of ET/Rainfall.

The clay loam vegetation intercepted an annual average of 2.60 inches of rainfall in the calibration simulations (Table 8.7), or an average of 8% of annual rainfall. This is comparable with values reported in the literature for various vegetation types: 4% for shadscale shrubland in Utah (West and Gifford 1976), 8% for California grasslands (Corbett and Crouse 1968), 8% for huisache woodlands in Nuevo Leon (Carlyle-Moses 2004), and 11% for curly mesquite (*Hilaria belangeri*) and 18% for sideoats grama in the Edwards Plateau (Thurow et al. 1987). Transpiration accounted for 85% of total ET in the simulations, compared to 15% for evaporation (Table 8.7).

#### 8.2.1.2 Other Vegetation Types

Average annual ET varied between 27.9 and 48.4 inches per year on the seven types evaluated in the calibration (Table 8.8). The highest average annual ET was on the loamy bottomland type where there was an abundance of mature trees and groundwater was near the surface. Average annual groundwater use by vegetation on this type was 16.80 inches, or 35% of total annual ET. Substantial use of shallow groundwater by trees has been reported in the literature. Ashe juniper (Juniperus ashei) has been reported to utilize up to 25% of its transpirational water from groundwater in some areas of the Edwards Plateau (Jackson et al. 2000), mature sugar maple (Acer saccharum) trees utilized groundwater almost exclusively when groundwater was at 3 m (Dawson 1996), and ET in mesquite riparian woodlands in southern Arizona was 33% higher when depth to groundwater was 2 m rather than 10 m (Scott et al. 2000, 2006). During drier periods of the year, velvet mesquite (Prosopis velutina) in southern Arizona primarily used groundwater (70% of transpiration)(Snyder and Williams 2003). In shallow groundwater semiarid woodlands in Australia, trees utilized primarly groundwater 50-70% (depending on species) of the year in lower rainfall sites and 25-40% for the same species in higher rainfall areas (Cramer et al. 1999). In the dry season in the Northern Territory of Australia, riparian woodlands utilize 50% or more of the water they transpire from groundwater (Lamontagne et al. 2005) and during the drier portions of summers in wet forests of coastal British Columbia, Douglas fir (Pseudotsuga menziesii) trees extracted 15% of their transpired water from their deepest rooting depth (Nnyamah and Black 1977).

| Table 8.8 Average annual rainfall (inches) and evapotranspiration (ET) variables (inches) for the |
|---------------------------------------------------------------------------------------------------|
| 25-year calibration simulations for seven vegetation plot types, Goliad County EDYS model.        |

| Туре             | Rainfall | Interception | Evaporation | Total     | Transpiration | ЕТ    | ET/Rainfall |
|------------------|----------|--------------|-------------|-----------|---------------|-------|-------------|
|                  |          |              | Ē           | vaporatio | n             |       |             |
| Clay loam        | 31.49    | 2.60         | 2.56        | 5.16      | 28.34         | 33.50 | 1.064       |
| Blackland        | 33.79    | 2.02         | 3.18        | 5.20      | 22.69         | 27.89 | 0.825       |
| Tight sandy loam | 33.79    | 1.98         | 3.10        | 5.08      | 29.30         | 34.38 | 1.017       |
| Loamy sand       | 33.79    | 2.17         | 2.74        | 4.88      | 29.41         | 34.29 | 1.015       |
| Loamy bottomland | 33.79    | 2.49         | 2.41        | 4.90      | 43.51         | 48.41 | 1.433       |
| Salty prairie    | 33.79    | 1.88         | 3.09        | 4.97      | 24.37         | 29.34 | 0.868       |
| Shallow ridge    | 31.49    | 5.38         | 1.00        | 6.38      | 28.88         | 35.26 | 1.120       |
| Mean             | 33.13    | 2.65         | 2.58        | 5.23      | 29.50         | 34.73 | 1.049       |

The clay loam, tight sandy loam, and loamy sand types were grasslands with substantial amounts of woody species (25-50% canopy cover). Annual ET on these sites averaged 33.5-34.4 inches (Table 8.8). These values are typical ET values for mesquite shrublands in South Texas. Weltz and Blackburn (1995) reported an average annual ET of 33.7 inches in mesquite shrubland in South Texas. The salty prairie type had a simulated average annual ET of 29.3 inches, which compares to 24.5-32.3 inches reported for salt meadows in eastern California with depth to water of 1.8-2.4 m (Duell 1990). The simulated annual ET rate of 29.3 inches equates to an average daily ET rate of 2.0 mm, which compares favorably with daily ET rates of 2.2 mm for saltgrass in Nevada (Grosz 1972) and 2.4 mm for sacaton grasslands in Arizona and New Mexico (Weeks et al. 1987; Scott et al. 2006).

Excluding the bottomland type, the remaining six types utilized an average of 98.5% of annual rainfall in ET (Table 8.8). This is a similar value to those reported in the literature for similar vegetation types: 94% for bluestem grassland (Bremer et al. 2001), 95% for oak-grassland (Thurow et al. 1988), and 97% for mesquite grasslands in the Rolling Plains (Carlson et al. 1990) and 98% for mesquite shrublands in South Texas (Weltz and Blackburn 1995).

The average canopy interception rate for the seven types was 8% of average annual rainfall (Table 8.8). This compares favorably with reported rates of 8% for huisache woodlands in northeast Mexico (Carlyle-Moses 2004) and chaparral communities in southern California (Hamilton and Rowe 1949), 13% for *Acacia* woodlands in Australia (Pressland 1973), 8% for bluestem prairie in the Great Plains (Corbett and Crouse 1968), and 11-18% for grasslands in the Edwards Plateau (Thurow et al. 1987).

### 8.2.2 Surface Runoff

Surface runoff (overland flow) occurs when the rate at which the supply of water exceeds the infiltration rate of the soil. This most commonly occurs during intense rainfall events or when soils become saturated because of an extended rainfall period. As runoff water flows downslope, it can increase in quantity as runoff water from adjacent loctions are added to the flow or the quantity can decrease if the runoff water flows across a drier soil or a fractured surface. In addition to the supply rate of incoming water, the amount of runoff is affected by slope (as slope increases, amount of runoff increases), soil texture (related to infiltration rate), and surface roughness. Surface roughnes refers to the microtopography of the soil surface, including the presence of objects at the soil surface (e.g., rocks, litter, and plant stems, crowns, and trunks). Other factors held constant, runoff decreases as surface roughness increases.

There are both spatial and temporal aspects to the dynamics of runoff. Runoff changes spatially across a landscape in response to differences in topography and soils. Ockerman (2002) reported runoff from a loamy sand range site and a nearby clay range site on the Welder Wildlife Refuge. Both sites received approximately the same amount and intensity of rainfall at the same dates. Surface runoff averaged 2.7 inches/year on the loamy sand site but only 0.6 inch/year on the clay site. Wright et al. (1976) reported runoff from adjacent sites on the northern edge of the Edwards Plateau, one site with 3% slope and one with 13% slope. Runoff averaged 0.5 inch/year on the 3% slope and 2.7 inches on the 13% slope.

Temporal changes in runoff occur for a variety of reasons. Intensity of the rainfall event is a primary factor influencing the amount of runoff from a site. Most rainfall events do not result in measurable runoff. Along the central Texas Coast, rainfall events measuring less than two inches generally do not result in runoff (Ockerman and Petri 2001; Ockerman 2002) and in the Edwards Plateau the threshold level is about 0.7 inch (Thurow et al. 1988). In San Patricio County, there were only nine runoff events recorded over a two-year period and five of these were minor (0.07 inch or less; Ockerman 2002). Even at the lower threshold level in the Edwards Plateau (0.7 inch), there was an average of only nine runoff events per year over a six-year period (Thurow et al. 1988).

Amount of runoff is also affected by antecendent soil moisture conditions. A specific rainfall event is likely to result in much different runoff amounts when the event occurs following a dry period than when the soil is near field capacity. A 4.7-inch rainfall event in October 2000 resulted in less than 0.02 inch of runoff at a site in San Patricio County, compared to 0.34 inch of runoff from a 4.2-inch rain in November of the following year (Ockerman 2002). The October 2000 event was preceded by a very dry period and the November 2001 event occurred 10 weeks after a 7.5-inch rainfall event. A 4.6-inch rainfall event in early October 1998 resulted in 1.0 inch of runoff from an agricultural watershed in Kleberg and Nueces Counties in South Texas and a 5.5-inch rainfall event later that month produced 2.7 inches of runoff from the same, but now rain-soaked, watershed (Ockerman and Petri 2001).

A third important factor affecting landscape-level runoff dynamics is vegetation, and vegetation is itself dynamic. Carlson et al. (1990) compared runoff from nearby locations in the Rolling Plains of Texas where the vegetation had been manipulated. Annual runoff, averaged over three years, was 1.2 inches on sites with mesquite overstory plus a grass understory, 0.4 inch where the mesquite had been removed but the grasses remained, and 3.8 inches where both mesquite and grasses were removed. Grazing management can also have a substantial impact on runoff. Runoff on the Sonora Experiment Station located on the western edge of the Edwards Plateau averaged 2.9% of annual precipitation on a continuously-grazed pasture and 3.5% on a nearby site grazed under a four-pasture rotation system (Thurow et al. 1988). Both sites were moderately-stocked. Brush control methoeds can also affect amount of runoff. Wright et al. (1976) measured runoff on plots in the northern Edwards Plateau that had been previously bulldozed to reduce juniper density. Plots that were burned to remove the juniper slash and regrowth had 10% less runoff than on plots where the slash and regrowth had not been removed.

### 8.2.2.1 Clay Loam

Simulated annual runoff varied between 0.0 and 3.4 inches for the clay loam plot type (Table 8.9). Annual runoff averaged 0.85 inch in the simulations, compared to 0.6 inch on a gauged clay rangeland watershed on the Welder Wildlife Refuge over a two-year period (Ockerman 2002). The clay loam plot type in Goliad County had more rolling topography than the clay site on the Welder Wildlife Refuge, therefore runoff might be expected to be higher in Goliad County. The ratio of annual runoff to annual rainfall in the simulations varied from 0.000 to 0.088 and averaged 0.025 (2.5% of annual rainfall)(Table 8.9). This compares favorably with values reported in the literature of 1.1% for clay rangeland in San Patricio County, 2.9% for

continuously grazed oak-mixed grass sites in the western Edwards Plateau, and 4.2% for mesquite-grassland in the Rollings Plains (Table 8.10).

| Rainfall | C        | lay Loam | Туре            | L        | oamy San | d Type          |
|----------|----------|----------|-----------------|----------|----------|-----------------|
| Year     | Rainfall | Runoff   | Runoff/Rainfall | Rainfall | Runoff   | Runoff/Rainfall |
| 1928     | 29.76    | 0.53     | 0.018           | 29.56    | 1.37     | 0.046           |
| 1929     | 39.27    | 1.29     | 0.033           | 44.53    | 4.01     | 0.090           |
| 1930     | 23.25    | 0.00     | 0.000           | 25.88    | 0.00     | 0.000           |
| 1931     | 38.09    | 3.36     | 0.088           | 40.00    | 3.48     | 0.087           |
| 1932     | 34.93    | 1.70     | 0.048           | 35.11    | 2.44     | 0.069           |
| 1933     | 28.89    | 0.08     | 0.003           | 31.62    | 1.46     | 0.046           |
| 1934     | 36.82    | 1.32     | 0.036           | 41.86    | 3.89     | 0.093           |
| 1935     | 39.42    | 0.58     | 0.015           | 39.81    | 0.88     | 0.022           |
| 1936     | 33.85    | 0.02     | 0.001           | 36.49    | 1.51     | 0.041           |
| 1937     | 23.25    | 0.35     | 0.016           | 26.74    | 0.58     | 0.022           |
| 1938     | 21.48    | 0.66     | 0.031           | 27.25    | 2.84     | 0.104           |
| 1939     | 19.23    | 0.25     | 0.013           | 21.63    | 1.00     | 0.046           |
| 1940     | 39.38    | 1.44     | 0.036           | 38.23    | 1.31     | 0.034           |
| 1941     | 42.31    | 0.37     | 0.009           | 37.99    | 0.45     | 0.012           |
| 1942     | 36.09    | 2.92     | 0.081           | 41.02    | 5.41     | 0.132           |
| 1943     | 31.69    | 0.20     | 0.006           | 33.44    | 0.56     | 0.017           |
| 1944     | 30.83    | 0.21     | 0.007           | 32.02    | 0.87     | 0.027           |
| 1945     | 25.76    | 0.00     | 0.000           | 29.38    | 0.22     | 0.007           |
| 1946     | 42.81    | 0.47     | 0.011           | 45.89    | 2.18     | 0.048           |
| 1947     | 29.88    | 0.00     | 0.000           | 30.87    | 1.69     | 0.055           |
| 1948     | 23.90    | 0.00     | 0.000           | 26.70    | 0.00     | 0.000           |
| 1949     | 36.49    | 0.57     | 0.016           | 35.39    | 0.07     | 0.002           |
| 1950     | 15.79    | 0.00     | 0.000           | 18.65    | 0.45     | 0.024           |
| 1951     | 29.94    | 2.06     | 0.069           | 37.44    | 5.68     | 0.152           |
| 1952     | 34.17    | 2.88     | 0.084           | 37.15    | 1.82     | 0.049           |
| Mean     | 31.49    | 0.85     | 0.025           | 33.79    | 1.77     | 0.049           |

| Table 8.9 Annual rainfall (inches), surface runoff (inches), and ratio of runoff to rainfall on clay |
|------------------------------------------------------------------------------------------------------|
| loam and loamy sand types for the 25-year calibration simulation, Goliad County EDYS model.          |

Table 8.10 Examples of average annual runoff values (inches) in Texas reported in the literature, with corresponding runoff:precipitation ratios (RO/PPT).

| Vegetation Type                                                                        | Location                                                       | Runoff       | RO/PPT                                                         | Reference                                                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|----------------------------------------------------------------|-------------------------------------------------------------------------|
| Mesquite-grassland                                                                     | Rolling Plains                                                 | 1.22         | 0.042(0.021-0.081)                                             | Carlson et al. 1990                                                     |
| Grassland (mesquite removed)<br>Bare soil                                              | Rolling Plains<br>Rolling Plains                               | 0.43<br>3.82 | 0.015(0.004-0.036)<br>0.141(0.087-0.195)                       | Carlson et al. 1990<br>Carlson et al. 1990                              |
| Grassland, nearly level<br>Grassland, 13% slope                                        | N Edwards Plateau<br>N Edwards Plateau                         | 0.24         | 0.008                                                          | Wright et al. 1976<br>Wright et al. 1976                                |
| Oak-mixed grass (HILF)                                                                 | W Edwards Plateau                                              |              | 0.050                                                          | Thurow et al. 1988                                                      |
| Oak-mixed grass (4-pasture)<br>Oak-mixed grass (continuous)                            | W Edwards Plateau                                              |              | 0.035                                                          | Thurow et al. 1988<br>Thurow et al. 1988                                |
| Rangeland + cultivated<br>Loamy sand rangeland                                         | San Patricio Co.<br>San Patricio Co.                           | 2.40<br>2.56 | 0.039(0.001-0.148)<br>0.041(0.000-0.174)                       | Ockerman 2002<br>Ockerman 2002                                          |
| Clay rangeland                                                                         | San Patricio Co.                                               | 0.63         | 0.011(0.000-0.042)                                             | Ockerman 2002                                                           |
| Cultivated (PPT = 12.9 in)<br>Cultivated (PPT = 26.7 in)<br>Cultivated (PPT = 38.1 in) | Kleberg-Nueces Cos<br>Kleberg-Nueces Cos<br>Kleberg-Nueces Cos | 4.06         | 0.004(0.000-0.042)<br>0.152(0.012-0.488)<br>0.167(0.003-0.502) | Ockerman & Petri 2001<br>Ockerman & Petri 2001<br>Ockerman & Petri 2001 |

RO/PPT values outside parentheses are annual mean, values inside parentheses are ranges for individual PPT events. HILF = high-intensity low-frequency grazing system; 4-pasture = 4-pasture rotation grazing system.

### 8.2.2.2 Loamy Sand

Simulated annual runoff varied between 0.0 and 5.7 inches for the loamy sand plot type (Table 8.9). Annual runoff averaged 1.77 inches over the 25-year simulations, compared to 2.56 inches on a gauged loamy sand rangeland watershed on the Welder Wildlife Refuge over a two-year period (Ockerman 2002). The ratio of annual runoff to annual rainfall in the simulations varied from 0.000 to 0.152 and averaged 0.049 (4.9% of annual rainfall). These values compare favorably with values reported from a gauged watershed on a loamy sand site in San Patricio County (0.000-0.174 of annual rainfall, with a mean of 0.041; Table 10). The simulations therefore produced results that are reasonable, based on comparisons to gauged data from a similar loamy sand type.

#### 8.2.2.3 Other Vegetation Types

Annual runoff in the calibration simulations, averaged over seven vegetation types and over 25 years, was 1.85 inches or 5.5% of annual rainfall (Table 8.11). Annual runoff from gauged field studies on uncultivated sites typically range between 0.2 and 3.8 inches (Table 8.10), with an average of 1.43 inches. The average for three range sites in San Patricio County was 1.86 inches (Table 8.10). Annual runoff averaged 3.1% of annual rainfall on uncultivated sites in the measurement studies (Table 8.10) and varied between 0.8 and 5.0%.

| Table 8.11 Average annual rainfall (inches), surface runoff (inches), and ratio of runoff to rainfall |  |
|-------------------------------------------------------------------------------------------------------|--|
| for seven vegetation types for the 25-year calibration simulation, Goliad County EDYS model.          |  |

|                    | Blackland<br>Coastal | Clay<br>Loam  | Loamy<br>Bottomland | Loamy<br>Sand | Salty<br>Prairie | Shallow<br>Ridge | Tight Sandy<br>Loam | Mean          |
|--------------------|----------------------|---------------|---------------------|---------------|------------------|------------------|---------------------|---------------|
| Runoff<br>Rainfall | 5.56<br>33.79        | 0.85<br>31.49 | 1.78<br>33.79       | 1.77<br>33.79 | 1.74<br>33.79    | 0.32<br>31.49    | 0.94<br>33.79       | 1.85<br>33.13 |
| Runoff/Rainfall    | 0.164                | 0.027         | 0.053               | 0.052         | 0.051            | 0.010            | 0.028               | 0.055         |

The runoff/rainfall values for clay loam and loamy sand differ slightly from the mean values in Table 8.10. The values in Table 8.11 were calculated as the ratio of the two means whereas the values in Table 8.10 were calculated as the mean of 25 annual ratios.

In summary, the runoff values in the simulations corresponded well with measured values from similar sites in Texas, especially sites in South Texas. These results indicate that the EDYS runoff values, both amount and proportional to rainfall, are reasonable.

### 8.2.3 Sediment Loadings

The amount of sediments transported in runoff water is of major importance in watershed management. Sediment loadings tend to increase as the amount and intensity of rainfall events increase and as surface roughness, especially vegetation cover, decreases. For example, typical sediment loadings at the Sonora Experiment Station are 25-50 g/m<sup>2</sup>/yr (Thurow et al. 1988), but following a high-intensity event (0.8 inch in 30 minutes) increased to 387 g/m<sup>2</sup>/yr (McCalla et al. 1984), a ten-fold increase. Similarly, annual sediment loadings on a mesquite-grassland in the

Rolling Plains of Texas averaged 140 g/m<sup>2</sup> compared to 2,337 g/m<sup>2</sup> on nearby bare soil (Carlson et al. 1990).

Type, as well as amount, of vegetation cover also affects the amount of sedimentation. Grass cover tends to decrease both soil erosion (dislodging of soil particles) and sediment transport (movement of water-borne particles), compared to cover by woody species. Mesquite-grasslands in the Rolling Plains had annual sediment loadings of 140 g/m<sup>2</sup> compared to 25 g/m<sup>2</sup> on adjacent grassland sites where the mesquite had been removed. Sediment loadings on sites at the Sonora Experiment Station supporting midgrasses (e.g., sideoats grama and bluestems) were less than 40% the loadings on adjacent sites supporting shortgrasses (e.g., curly mesquite and hairy grama)(McCalla et al. 1984).

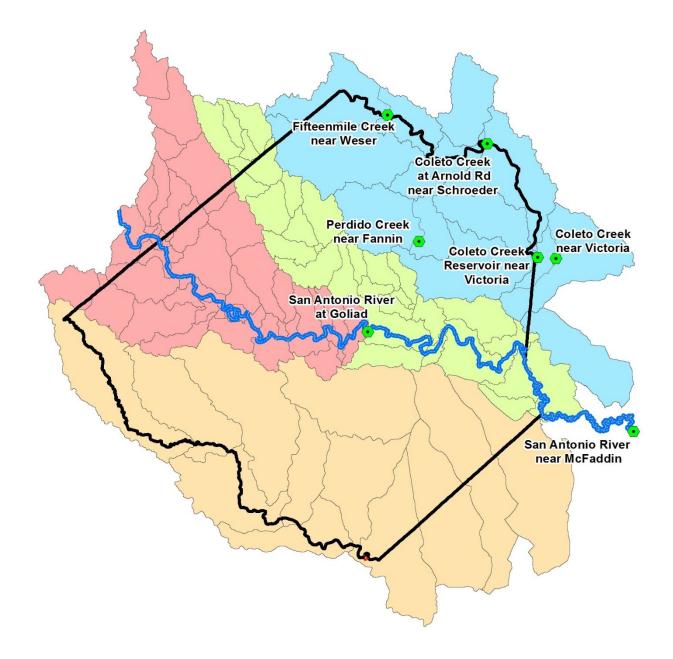
Typical sediment loadings from rangelands in Texas vary between about 2 and 140 g/m<sup>2</sup>/yr, or an equivalent of 0.03-2.13 g/m<sup>2</sup>/cm of annual precipitation (Table 8.12). A sediment loading of 2 g/m<sup>2</sup>/yr is equivalent to about 5 g/m<sup>2</sup>/inch of rainfall or about 50 lbs/ac/inch of rainfall.

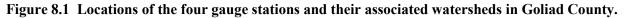
 Table 8.12 Examples of measured sediment loadings on sites in the Edwards Plateau and the Rolling Plains of Texas.

| Vegetation                     | Location          | Amount<br>(g/m²/yr) | Sediments/Rainfall<br>(g/m <sup>2</sup> /cm PPT) | Reference           |  |  |
|--------------------------------|-------------------|---------------------|--------------------------------------------------|---------------------|--|--|
| Oak-mixed grass (rotation)     | W Edwards Plateau | 41                  | 0.74                                             | Thurow et al. 1988  |  |  |
| Oak-mixed grass (continuous)   | W Edwards Plateau | 25                  | 0.45                                             | Thurow et al. 1988  |  |  |
| Grassland (level, unburned)    | N Edwards Plateau | 2                   | 0.03                                             | Wright et al. 1976  |  |  |
| Grassland (level, burned)      | N Edwards Plateau | 2                   | 0.03                                             | Wright et al. 1976  |  |  |
| Grassland (13% slope unburned) | N Edwards Plateau | 17                  | 0.23                                             | Wright et al. 1976  |  |  |
| Grassland (18% slope, burned)  | N Edwards Plateau | 51                  | 0.61                                             | Wright et al. 1976  |  |  |
| Mesquite-grassland             | Rolling Plains    | 140                 | 2.13                                             | Carlson et al. 1990 |  |  |
| Grassland (mesquite removed)   | Rolling Plains    | 25                  | 0.38                                             | Carlson et al. 1990 |  |  |
| Bare soil                      | Rolling Plains    | 2337                | 35.52                                            | Carlson et al. 1990 |  |  |

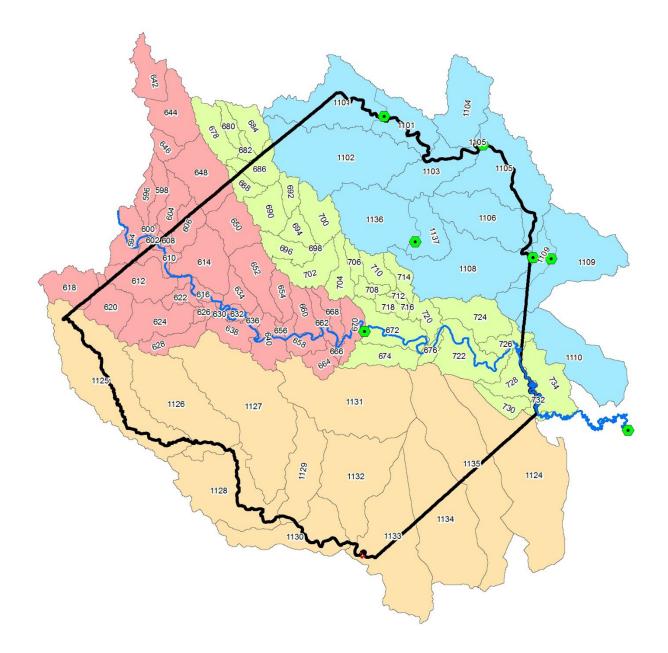
Annual sediment loadings, averaged over the entire county and over the 25-year simulation period under the moderate rainfall regime, were 46.73 g/m<sup>2</sup> (0.208 tons per acre). This is a weighted average (total sediments divided by total acres), adjusting for differences in sizes of the various watersheds. An annual sediment loss of 47 g/m<sup>2</sup> is similar to values reported for mixed woodland-grassland systems in the Edwards Plateau and about one-third of the value for mesquite-grasslands in the Rolling Plains of North Texas (Table 8.12).

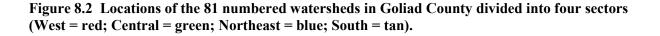
Sediment loss was highest in the north and west parts of Goliad County and least in the central and southern portions (Table 8.13). Across the entire county, average annual sediment loss ranged from 0-216 g/m<sup>2</sup>, with most watersheds having losses of 10-100 g/m<sup>2</sup>. These values are consistent with reported values in other areas of Texas (Table 8.12). Although site specific values for sediment loss are not available for Goliad County, the EDYS values appear to be reasonable based on comparisons to values resported for other regions.


| Nor  | theast Se | ector            | W    | /est Sect | or      | C    | entral Sec | ctor    | S    | outh Sect | or               |
|------|-----------|------------------|------|-----------|---------|------|------------|---------|------|-----------|------------------|
| WSHD |           | g/m <sup>2</sup> | WSHD | T/acre    | $g/m^2$ | WSHD | T/acre     | $g/m^2$ | WSHD |           | g/m <sup>2</sup> |
|      |           | 05 50            | 504  |           |         | 650  | 0 614      |         |      |           |                  |
| 1101 | 0.382     | 85.70            | 594  | 0.000     | 0.04    | 672  | 0.611      | 136.94  | 1124 | 0.020     | 4.56             |
| 1102 | 0.811     | 181.89           | 602  | 0.033     | 7.45    | 674  | 0.029      | 6.45    | 1125 | 0.160     | 35.91            |
| 1103 | 0.352     | 78.85            | 604  | 0.006     | 1.39    | 676  | 0.066      | 14.70   | 1126 | 0.181     | 40.59            |
| 1105 | 0.158     | 35.43            | 606  | 0.196     | 43.97   | 686  | 0.093      | 20.88   | 1127 | 0.152     | 34.14            |
| 1106 | 0.202     | 45.20            | 608  | 0.008     | 1.80    | 688  | 0.123      | 27.51   | 1128 | 0.333     | 74.69            |
| 1108 | 0.130     | 29.07            | 610  | 0.218     | 48.77   | 690  | 0.259      | 58.05   | 1129 | 0.007     | 1.60             |
| 1136 | 0.812     | 182.10           | 612  | 0.111     | 24.80   | 692  | 0.080      | 17.87   | 1130 | 0.045     | 10.16            |
| 1137 | 0.191     | 42.71            | 614  | 0.221     | 49.53   | 694  | 0.165      | 37.08   | 1131 | 0.067     | 14.94            |
|      |           |                  | 616  | 0.291     | 65.23   | 696  | 0.090      | 20.25   | 1132 | 0.009     | 1.95             |
|      |           |                  | 618  | 0.006     | 1.27    | 698  | 0.001      | 0.25    | 1133 | 0.020     | 4.52             |
|      |           |                  | 620  | 0.216     | 48.41   | 700  | 0.147      | 32.90   | 1134 | 0.017     | 3.84             |
|      |           |                  | 622  | 0.044     | 9.79    | 702  | 0.098      | 22.03   | 1135 | 0.020     | 4.55             |
|      |           |                  | 624  | 0.354     | 79.42   | 704  | 0.097      | 21.81   |      |           |                  |
|      |           |                  | 626  | 0.033     | 7.50    | 706  | 0.083      | 18.69   |      |           |                  |
|      |           |                  | 628  | 0.185     | 41.36   | 708  | 0.034      | 7.71    |      |           |                  |
|      |           |                  | 630  | 0.001     | 0.20    | 710  | 0.077      | 17.20   |      |           |                  |
|      |           |                  | 632  | 0.011     | 2.51    | 712  | 0.016      | 3.55    |      |           |                  |
|      |           |                  | 634  | 0.205     | 45.96   | 714  | 0.016      | 3.60    |      |           |                  |
|      |           |                  | 636  | 0.114     | 25.57   | 716  | 0.005      | 1.03    |      |           |                  |
|      |           |                  | 638  | 0.110     | 24.60   | 718  | 0.012      | 2.60    |      |           |                  |
|      |           |                  | 640  | 0.593     | 133.03  | 720  | 0.066      | 14.63   |      |           |                  |
|      |           |                  | 648  | 0.051     | 11.48   | 722  | 0.108      | 24.10   |      |           |                  |
|      |           |                  | 650  | 0.384     | 85.97   | 724  | 0.028      | 6.32    |      |           |                  |
|      |           |                  | 652  | 0.272     | 61.03   | 726  | 0.018      | 3.95    |      |           |                  |
|      |           |                  | 654  | 0.103     | 23.03   | 728  | 0.009      | 1.98    |      |           |                  |
|      |           |                  | 656  | 0.035     | 7.79    | 730  | 0.019      | 4.15    |      |           |                  |
|      |           |                  | 658  | 0.966     | 216.48  | 732  | 0.001      | 0.26    |      |           |                  |
|      |           |                  | 660  | 0.126     | 28.16   | 734  | 0.000      | 0.00    |      |           |                  |
|      |           |                  | 662  | 0.192     | 43.08   |      | 0.000      | 0.00    |      |           |                  |
|      |           |                  | 664  | 0.037     | 8.31    |      |            |         |      |           |                  |
|      |           |                  | 666  | 0.023     | 5.03    |      |            |         |      |           |                  |
|      |           |                  | 668  | 0.632     | 141.67  |      |            |         |      |           |                  |
|      |           |                  | 670  | 0.384     | 86.08   |      |            |         |      |           |                  |
| MEAN | 0.380     | 85.12            | MEAN | 0.187     | 41.87   | MEAN | 0.084      | 18.80   | MEAN | 0.086     | 19.29            |


| Table 8.13 Average annual sediment loadings (tons per acre and g/m <sup>2</sup> ) by watershed (WSHD) |
|-------------------------------------------------------------------------------------------------------|
| under the moderate rainfall regime, per Goliad County EDYS model simulations (25-year means).         |

Means in Table 8.13 are simple arithmetic means and do not account for differences in areas within each watershed.


#### 8.2.4 Flow Rates


Flow data are available for two gauge stations in Goliad County (8177300, 8188500; Fig. 8.1). There are two additional gauge stations (8176900, 8177400) but the watersheds associated with these two stations are only partially in the spatial footprint of the Goliad County model. Therefore, they cannot be used for calibration purposes.





There are 81 numbered watersheds in Goliad County (Fig. 8.2). Of these, 33 flow into the San Antonio River above the Goliad gauge station. This group of watersheds is designated as the West Sector for reporting purposes. Twenty-eight watersheds flow into the San Antonio River below the Goliad gauge station. This group is designated as the Central Sector. Eight watersheds (Northeast Sector) are in the northeast part of Goliad County and do not flow directly into the San Antonio River within Goliad County. The remaining 12 watersheds (South Sector) drain to the south and southeast.





Gauge Station 8188500 is located on the San Antonio River. Water measured at the station includes both the San Antonio River flow entering Goliad County from Karnes County and the addition of runoff and subsurface flow from 33 subwatersheds located between the gauge station and the Karnes County line. Twenty-three of the subwatersheds are located entirely in Goliad County, and therefore modeled by the Goliad County model, and ten are only partially located in Goliad County (Fig. 8.2). The portions of those ten subwatersheds that are located in Goliad County are included in the Goliad County model. Gauge Station 8177300 receives flow from

one subwatershed (1136) and it is located entirely in Goliad County. Only data from stations 8177300 and 8188500 were used in the calibration process.

8.2.4.1 Gauge 8188500, San Antonio River at Goliad

There are two components to the flow at this gauge: 1) San Antonio River flow entering from Karnes County and 2) water entering the San Antonio River from the assocated watershed in Goliad County. There is no gauge on the San Antonio River at the Goliad-Karnes county line. The nearest upstream gauge is the station near Runge. It is about 10 miles along the river between this station and the Goliad County line and about 25 miles along the river between the Goliad County line and the gauge station at Goliad.

Monthly flow data from June 2011 through March 2016 were used to compare flows between the Runge and Goliad stations. Over this period, the average monthly flow at Goliad exceeded the average monthly flow at Runge by 7,419 acre-feet (Table 8.14). About 51% of the watershed monitored by the Goliad gauge (i.e., the combined Karnes-Goliad portion between the Runge and Goliad gauge stations) is located in Goliad County, the remaining 49% being in Karnes County. Assuming a linear relationship between watershed area and increased flow between Runge and Goliad, 49% of this increased flow may have originated in Karnes County, leaving 3,784 acre-feet that originated in the Goliad County part of the watershed.

| June 2011 th | ugn m    | ar ch 201 | 0.               |                  |                 |                 |                 |            |
|--------------|----------|-----------|------------------|------------------|-----------------|-----------------|-----------------|------------|
| Period       | Rainfall | (inches)  |                  | Total Flow       |                 | Avera           | ige Monthl      | y Flow     |
|              | Goliad   | Runge     | Goliad           | Runge            | Difference      | Goliad          | Runge           | Difference |
|              |          |           |                  |                  |                 |                 |                 |            |
| Jun-Dec 2011 | 10.28    | 8.39      | 97 <b>,</b> 987  | 74 <b>,</b> 152  | 23,835          | 13,998          | 10,593          | 3,405      |
| Jan-Dec 2012 | 29.00    | 15.49     | 407 <b>,</b> 560 | 338 <b>,</b> 332 | 69 <b>,</b> 228 | 33 <b>,</b> 963 | 28,194          | 5,769      |
| Jan-Dec 2013 | 27.77    | 12.96     | 308,695          | 234,787          | 73,908          | 25,725          | 19 <b>,</b> 566 | 6,159      |
| Jan-Dec 2014 | 25.63    | 17.72     | 267 <b>,</b> 053 | 208,997          | 58,056          | 22,254          | 17,416          | 4,838      |
| Jan-Dec 2015 | 28.17    | 28.17     | 781 <b>,</b> 535 | 574,458          | 207,077         | 65 <b>,</b> 128 | 47,872          | 17,256     |
| Jan-Mar 2016 | 5.11     | 5.11      | 97,155           | 98,987           | - 1,832         | 32,385          | 32,996          | - 611      |
| Overall      | 125.96   | 87.84     | 1,959,985        | 1,529,713        | 430,272         | 33,793          | 26,374          | 7,419      |

 Table 8.14
 Total and average monthly flow (acre-feet) at the Runge and the Goliad gauge stations,

 June 2011 through March 2016.

EDYS simulation of surface runoff averaged 362 acre-feet per month for the Goliad County portion of this watershed for the period Jun 2011-Mar 2016, or about 9.6% of the increase in river flow. The EDYS simulations also accounted for a monthly average of an additional 702 acre-feet entering the watershed soils during the runoff process, a portion of which would move laterally into the river as seepage. Combining surface runoff with maximum seepage results in a total of 1,064 acre-feet per month flowing into the river, or about 28% of the estimated increase in flow within Goliad County. This leaves 72% of the increase in river flow (2,720 acre-feet per month) unaccounted for (Fig. 8.3).

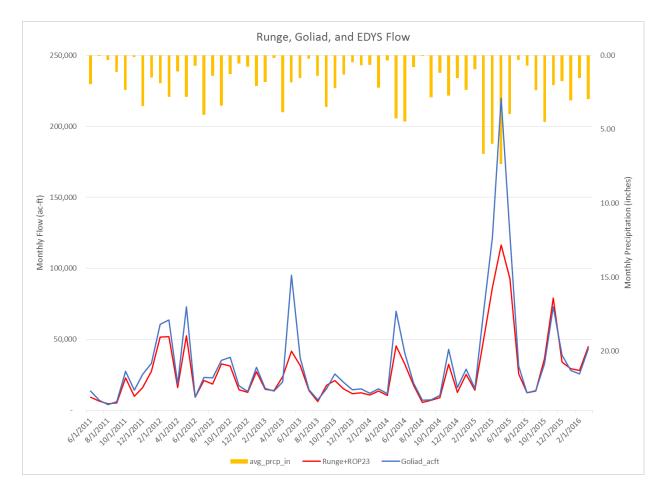



Figure 8.3 Comparison of gauged (blue) and simulated (red) monthly flows (acre-feet) at the Goliad station on the San Antonio River, June 2011-March 2016.

#### 8.2.4.2 Gauge 8177300, Perdido Creek

The Perdido watershed (Watershed 1136) is a gauged watershed completely within Goliad County (Fig. 8.1). Therefore it provides a good example to use to estimate how well the EDYS simulations are matching gauged flows. Creek flow is measured at the USGS gauge. Flow is partially estimated from EDYS output by using runoff. However, runoff is not the only contribution to flow. Flow also includes lateral seepage and any spring flows plus some water that EDYS calculates as recharge (export = water infiltrating below the root zone or to groundwater, whichever is shallower). Without accounting for this lateral movement (seepage, spring flow, groundwater lateral flow), EDYS estimates of flow will likely be less than recorded flow. This is the case for the Perdido watershed. When summed over the seven-year period of record, EDYS runoff accounted for 85% of the recorded flow (Table 8.15). The remaining 15% is a first-approximation of subsurface lateral flow into the creek.

| Period        | Goliad Rainfall<br>(inches) | USGS Flow<br>(ac-ft/yr) | EDYS Runoff<br>(ac-ft/yr) | EDYS/USGS |
|---------------|-----------------------------|-------------------------|---------------------------|-----------|
| an-Dec 2008   | 22.51                       | 2.56                    | 62.09                     |           |
| Jan-Dec 2009  | 35.90                       | 942.31                  | 882.32                    |           |
| Jan-Dec 2010  | 41.32                       | 2,000.06                | 678.59                    |           |
| Jan-Dec 2011  | 17.24                       | 263.95                  | 101.66                    |           |
| Jan-Dec 2012  | 29.00                       | 73.38                   | 111.47                    |           |
| Jan-Dec 2013  | 27.77                       | 22.08                   | 836.85                    |           |
| Jan-Dec 2014  | 25.63                       | 34.21                   | 175.75                    |           |
| Iotal 2008-14 | 199.37                      | 3,338.55                | 2,848.73                  | 0.853     |

Table 8.15 Annual flow at USGS Gauge 8177300 and simulated surface runoff for the same watershed using the Goliad County EDYS model, 2008-2014.

Summed over the seven years, the EDYS surface runoff values gave a reasonable estimate (85%) of USGS gauged flow. However when viewed on a monthly or annual basis, there was a poor match between EDYS runoff and gauged flow (Fig. 8.4). In general, EDYS indicated surface runoff to the creek more often than flow was recorded at the gauge, although gauged flow was greater than EDYS runoff overall. EDYS recorded runoff in 55 of the 84 months of 2008-14 while there were only 23 months with gauged flow (Table 8.16).




Figure 8.4 Comparison of gauged (blue) and simulated (red) monthly flows (acre-feet) at the Perdido Creek gauge station, Goliad County, 2008-14, and monthly rainfall (inches; vertical bars).

| monu                 | Rainfall     | Gauged           | EDYS          | Month Rainfall                 | Gauged        | EDYS           |  |
|----------------------|--------------|------------------|---------------|--------------------------------|---------------|----------------|--|
|                      |              | Flow             | Runoff        |                                | Flow          | Runoff         |  |
| Tam 2000             | 2.52         | 0.00             | 1.03          | Jul 2011 0.03                  | 0.00          | 0.00           |  |
| Jan 2008             | 2.52         | 0.00             |               |                                |               |                |  |
| Feb 2008             |              | 0.00             | 0.00          |                                | 0.00<br>2.20  | 0.00<br>0.07   |  |
| Mar 2008<br>Apr 2008 | 1.65<br>2.70 | 0.00             | 0.00<br>29.90 | Sep 2011 1.04<br>Oct 2011 3.35 | 2.20<br>9.87  | 83.54          |  |
| May 2008             | 0.30         | 0.00             | 0.00          | Nov 2011 0.15                  | 9.87          | 0.00           |  |
| May 2008<br>Jun 2008 | 2.24         | 0.00             | 8.98          | Dec 2011 0.13                  | 0.00          | 0.00           |  |
| Jul 2008             | 4.47         | 2.57             | 0.70          | Jan 2012 1.80                  | 0.00          | 0.79           |  |
| Aug 2008             | 2.57         | 0.00             | 0.36          | Feb 2012 2.29                  | 7.28          | 0.66           |  |
| Sep 2008             | 1.18         | 0.00             | 0.00          | Mar 2012 2.29                  | 14.53         | 1.89           |  |
| Oct 2008             | 2.21         | 0.00             | 21.20         | Apr 2012 5.13                  | 0.00          | 0.06           |  |
| Nov 2008             | 1.29         | 0.00             | 0.01          | May 2012 3.17                  | 0.00          | 92.26          |  |
| Dec 2008             | 0.88         | 0.00             | 0.00          | Jun 2012 1.31                  | 0.00          | 0.00           |  |
| Jan 2009             | 0.33         | 0.00             | 0.00          | Jul 2012 6.38                  |               | 10.38          |  |
| Feb 2009             | 0.14         | 0.00             | 0.00          | Aug 2012 1.91                  |               | 2.03           |  |
| Mar 2009             | 2.28         | 0.00             | 12.64         | Sep 2012 1.91                  | 0.00          | 2.03           |  |
| Apr 2009             | 2.20         | 20.35            | 59.95         | Oct 2012 4.22                  | 0.00          | 0.00           |  |
| May 2009             | 5.23         | 18.02            | 485.11        | Nov 2012 0.97                  |               | 0.00           |  |
| May 2009<br>Jun 2009 | 0.37         | 0.00             | 0.00          | Dec 2012 0.97                  | 0.00          | 0.53           |  |
| Jul 2009             | 1.26         | 0.00             | 0.03          | Jan 2013 2.74                  | 0.00          | 7.07           |  |
| Aug 2009             | 1.20         | 0.00             | 0.03          | Feb 2013 2.14                  | 0.00          | 2.84           |  |
| -                    | 1.34<br>7.58 |                  | 276.01        | Mar 2013 0.22                  |               |                |  |
| Sep 2009             |              | 22.09            |               |                                | 0.00          | 0.00           |  |
| Oct 2009             | 6.81         | 183.17           | 4.66          | Apr 2013 5.85                  | 22.10         | 790.27         |  |
| Nov 2009             | 5.11<br>2.81 | 360.18<br>339.62 | 43.73<br>1.23 | May 2013 1.79<br>Jun 2013 2.44 | 0.00          | 0.29           |  |
| Dec 2009             |              |                  |               |                                | 0.00          | 0.01           |  |
| Jan 2010             | 2.36<br>3.70 | 164.48<br>665.99 | 5.54          | Jul 2013 0.01<br>Aug 2013 2.25 | 0.00          | 0.00           |  |
| Feb 2010             |              |                  | 2.44          |                                | 0.00          | 1.15           |  |
| Mar 2010             | 1.64         | 6.96             | 0.05          | Sep 2013 4.80                  | 0.00          | 20.32          |  |
| Apr 2010             | 3.43         | 62.38            | 121.67        | Oct 2013 3.25                  | 0.00          | 15.84          |  |
| May 2010             | 3.82         | 0.00             | 182.40        | Nov 2013 1.69                  | 0.00          | 0.06           |  |
| Jun 2010             | 3.85         | 3.99             | 3.32          | Dec 2013 0.62                  | 0.00          | 0.00           |  |
| Jul 2010             | 8.53         | 218.88           | 3.21          | Jan 2014 1.04                  | 0.00          | 0.00           |  |
| Aug 2010             | 0.58         | 0.00             | 0.00          | Feb 2014 0.83                  |               | 0.00           |  |
| Sep 2010             | 11.19        | 879.75           | 360.74        | Mar 2014 2.21                  | 0.00          | 0.22           |  |
| Oct 2010             | 0.00<br>1.38 | 0.00             | 0.00          | Apr 2014 0.49<br>May 2014 5.03 | 0.00<br>34.25 | 0.00<br>172.05 |  |
| Nov 2010             |              | 0.00             | 0.01          |                                |               |                |  |
| Dec 2010             | 0.84         | 0.00             | 0.00          | Jun 2014 3.72<br>Jul 2014 0.96 | 0.00          | 0.46           |  |
| Jan 2011             | 5.00         | 216.73           | 13.25         |                                | 0.00          | 0.00           |  |
| Feb 2011             | 0.37         | 0.00             | 0.00          | Aug 2014 0.08                  | 0.00          | 0.00           |  |
| Mar 2011             | 0.04         | 0.00             | 0.00          | Sep 2014 4.05                  |               | 1.05           |  |
| Apr 2011             | 0.00         | 0.00             | 0.00          | Oct 2014 1.92                  | 0.00          | 0.00           |  |
| May 2011             | 1.55         | 0.00             | 0.74          | Nov 2014 3.43                  |               | 1.86           |  |
| Jun 2011             | 1.68         | 35.47            | 4.19          | Dec 2014 1.87                  | 0.00          | 0.32           |  |

| Table 8.16 Monthly gauged flow for the Perdido Watershed and EDYS surface runoff. Ra | ainfall is |
|--------------------------------------------------------------------------------------|------------|
| in inches and flow and runoff are in acre-feet.                                      |            |

Gauged flow and EDYS runoff were both minimal (less than 0.1 acre-foot) when rainfall was less than 1.5 inches (Table 8.15), with one exception for each (Sep 2011 for gauged; Dec 2012 for EDYS). This is consistent with results from experimental studies in the area. For example, rainfall events of less than two inches produced little or no runoff on gauged watersheds in San Patricio, Kleberg, and Nueces Counties (Ockerman and Petri 2001; Ockerman 2002).

As rainfall increased above 1.5 inches, both runoff and flow increased as would be expected. However, there were a number of inconsistencies in the relationship between rainfall and both flow and runoff. There were eight months when monthly flow was greater than 100 acre-feet (Table 8.17). Three of these months received less than 5 inches of rainfall, and rainfall in the previous month was greater than 2.3 inches in each case. However, there were 22 months with rainfall between 2.4 and 5.0 inches that had less than 100 acre-feet of flow, and 17 of these

months had less than 10 acre-feet of flow. Of the 22 months, 5 received more than 2.3 inches of rainfall in the previous month. The second highest flow month was Feb 2010, with 666 acre-feet of flow. That month received 3.70 inches of rainfall and the previous month received 2.36 inches. In contrast, 3.72 inches of rainfall was received in Jun 2014 and 5.03 inches were received in the previous month, but there was no flow (0.00 acre-feet) that month. Ten months received 5 inches or more of rainfall. In those ten months, flow exceeded 180 acre-feet in 5 months and was less than 52 acre-feet in each of the other 5 months.

| Table 8.17 Comparison of monthly rainfall (inches; months > 1.5 inches) to monthly flow (acre- |
|------------------------------------------------------------------------------------------------|
| feet) at the USGS gauge station and monthly runoff (acre-feet) simulated by the EDYS Goliad    |
| County model for the Perdido watershed.                                                        |

| Month     | Rainfall | Gauged | EDYS   |          |                | Month Rainfall + 50%    |
|-----------|----------|--------|--------|----------|----------------|-------------------------|
|           |          | Flow   | Runoff | Rainfall | Month Rainfall | Previous Month Rainfall |
| Mar. 0011 | 1        | 0.00   | 0 74   | 0.00     | 1 55           | 1 55                    |
| May 2011  | 1.55     | 0.00   | 0.74   | 0.00     | 1.55           | 1.55                    |
| Mar 2010  | 1.64     | 6.96   | 0.05   | 3.70     | 5.34           | 3.49                    |
| Mar 2008  | 1.65     | 0.00   | 0.00   | 0.50     | 2.15           | 1.90                    |
| Jun 2011  | 1.68     | 35.47  | 4.19   | 1.55     | 3.23           | 2.46                    |
| Nov 2013  | 1.69     | 0.00   | 0.06   | 3.25     | 4.94           | 3.32                    |
| May 2013  | 1.79     | 0.00   | 0.29   | 5.85     | 7.64           | 4.72                    |
| Jan 2012  | 1.80     | 0.00   | 0.79   | 3.41     | 5.21           | 3.51                    |
| Dec 2014  | 1.87     | 0.00   | 0.32   | 3.43     | 5.30           | 3.59                    |
| Aug 2012  | 1.91     | 0.00   | 2.03   | 6.38     | 8.29           | 5.10                    |
| Oct 2014  | 1.92     | 0.00   | 0.00   | 4.05     | 5.97           | 3.95                    |
| Feb 2013  | 2.11     | 0.00   | 2.84   | 2.74     | 4.85           | 3.48                    |
| Oct 2008  | 2.21     | 0.00   | 21.20  | 1.18     | 3.39           | 2.80                    |
| Mar 2014  | 2.21     | 0.00   | 0.22   | 0.83     | 3.04           | 2.63                    |
| Jun 2008  | 2.24     | 0.00   | 8.98   | 0.30     | 2.54           | 2.39                    |
| Aug 2013  | 2.25     | 0.00   | 1.15   | 0.01     | 2.26           | 2.26                    |
| Mar 2009  | 2.28     | 0.00   | 12.64  | 0.14     | 2.42           | 2.35                    |
| Feb 2012  | 2.29     | 7.28   | 0.66   | 1.80     | 4.09           | 3.19                    |
| Jan 2010  | 2.36     | 164.48 | 5.54   | 2.81     | 5.17           | 3.77                    |
| Jun 2013  | 2.44     | 0.00   | 0.01   | 1.79     | 4.23           | 3.34                    |
| Jan 2008  | 2.52     | 0.00   | 1.03   | 0.63     | 3.15           | 2.84                    |
| Aug 2008  | 2.57     | 0.00   | 0.36   | 4.47     | 7.04           | 4.81                    |
| Apr 2008  | 2.70     | 0.00   | 29.90  | 1.65     | 4.35           | 3.53                    |
| Jan 2013  | 2.74     | 0.00   | 7.07   | 1.28     | 4.02           | 3.38                    |
| Dec 2009  | 2.81     | 339.62 | 1.23   | 5.11     | 7.92           | 5.37                    |
| Apr 2009  | 2.83     | 20.35  | 59.95  | 2.28     | 5.11           | 3.97                    |
| Mar 2012  | 3.13     | 14.53  | 1.89   | 2.29     | 5.42           | 4.28                    |
| May 2012  | 3.17     | 0.00   | 92.26  | 1.18     | 4.35           | 3.76                    |
| Oct 2013  | 3.25     | 0.00   | 15.84  | 4.80     | 8.05           | 5.65                    |
| Oct 2011  | 3.35     | 9.87   | 83.54  | 1.04     | 4.39           | 3.87                    |
| Dec 2011  | 3.41     | 0.00   | 0.27   | 0.15     | 3.56           | 3.49                    |
| Apr 2010  | 3.43     | 62.38  | 121.67 | 1.64     | 5.07           | 4.25                    |
| Nov 2014  | 3.43     | 0.00   | 1.86   | 1.92     | 5.35           | 4.39                    |
| Feb 2010  | 3.70     | 665.99 | 2.44   | 2.36     | 6.06           | 4.88                    |
| Jun 2014  | 3.72     | 0.00   | 0.46   | 5.03     | 8.75           | 6.24                    |
| May 2010  | 3.82     | 0.00   | 182.40 | 3.43     | 7.25           | 5.54                    |
| Jun 2010  | 3.85     | 3.99   | 3.32   | 3.82     | 7.67           | 5.76                    |
| Sep 2014  | 4.05     | 0.00   | 1.05   | 0.08     | 4.13           | 4.09                    |
| Sep 2012  | 4.22     | 0.00   | 2.92   | 1.91     | 6.13           | 5.18                    |
| Jul 2008  | 4.47     | 2.57   | 0.70   | 2.24     | 6.71           | 5.59                    |
| Sep 2013  | 4.80     | 0.00   | 20.32  | 2.25     | 7.05           | 5.93                    |
| Jan 2011  | 5.00     | 216.73 | 13.25  | 0.84     | 5.84           | 5.42                    |
| May 2014  | 5.03     | 34.25  | 172.05 | 0.49     | 5.52           | 5.28                    |
| Nov 2009  | 5.11     | 360.18 | 43.73  | 6.81     | 11.92          | 8.52                    |
| May 2009  | 5.23     | 18.02  | 485.11 | 2.83     | 8.06           | 6.65                    |
| Apr 2013  | 5.85     | 22.10  | 790.27 | 0.22     | 6.07           | 5.96                    |
| Jul 2012  | 6.38     | 51.65  | 10.38  | 1.31     | 7.69           | 7.04                    |
| Oct 2009  | 6.81     | 183.17 | 4.66   | 7.58     | 14.39          | 10.60                   |
| Sep 2009  | 7.58     | 22.09  | 276.01 | 1.34     | 8.92           | 8.25                    |
| Jul 2010  | 8.53     | 218.88 | 3.21   | 3.85     | 12.38          | 10.46                   |
| Sep 2010  | 11.19    | 879.75 | 360.74 | 0.58     | 11.77          | 11.48                   |
| Sep 2010  | 11.19    | 8/9./5 | 360.74 | 0.58     | 11.//          | 11.48                   |

79

EDYS runoff values were correlated more closely with monthly rainfall than were gauged flows, but there was also substantial variability in the runoff values (Table 8.17). EDYS runoff values exceeded 100 acre-feet in 7 months and rainfall exceeded 3.4 inches in each of these months. However, rainfall exceeded 3.4 inches in 14 other months and runoff was less than 5 acre-feet in 10 of these 14 months. Runoff exceeded 15 acre-feet in 6 months receiving less than 3.4 inches of rainfall and previous-month rainfall exceeded 1 inch in each of these months. However, previous-month rainfall exceeded 1 inch in 16 months receiving less than 3.4 inches of rainfall and runoff was less than 15 acre-feet in each of these months.

Amount of monthly rainfall is not the only factor affecting amount of monthly runoff. Intensity of the rainfall events is also a major factor. EDYS utilizes daily rainfall amounts as input. These daily amounts are divided into segments, each segment corresponding to a duration of the rainfall event, as a method of estimating rainfall intensity. Another factor affecting landscapelevel runoff is antecedent moisture conditions (e.g., Ockerman and Petri 2001). The same amount of rainfall will result in different amounts of runoff depending on the moisture conditions of the soil at the time of the rainfall event. EDYS accounts for this adequately on the plot (cell) level. On the landscape-level, where surface runoff is moving across a watershed, EDYS appears to be under-estimating flow under high-rainfall conditions. This issue has been identified in other applications and discussed in the respective reports (McLendon et al. 2015; Booker and McLendon 2015, 2016). A modification of the EDYS code is currently being developed to improve this accuracy but these upgrades are not yet available. A mathematical approximation, which forms the basis on which the mechanistic algorithms of the updated code are developed, is available. This approximation is a step function that divides precipitation periods into three groups (dry, medium, wet) and applies a different equation to calculate accumulated runoff under each respective precipitation group. In effect, this results in lower landscape runoff in drier periods and higher runoff in wetter periods than the respective values using the current algorithms. Whereas the current approach results in total surface runoff being equal to 85% of the gauged flow along the Perdido Creek (Table 8.15), the application of the mathematical approximation equations results in total runoff being equal to gauged flow when totaled over the seven years (although values still differ on a monthly basis).

Flow is also affected by factors other than amount of rainfall received in a particular month or previous month. There is often a lag time between a rainfall event, or series of events, and flow being recorded at a gauge station. Flow is composed of both runoff and subsurface movement of water into the drainage. The Perdido watershed gauge recorded 340 acre-feet of flow in Dec 2009, a month receiving 2.81 inches of rain (Table 8.17). That gauge recorded 20 acre-feet of flow in Apr 2009 when 2.83 inches of rainfall occurred. The difference in flows could be attributed to differences in previous month rainfall. In Nov 2009 there was 5.11 inches of rain compared to 2.28 inches in Mar 2009. Part of the Dec 2009 flow was likely from subsurface lateral movement of water that originated as rainfall in the previous month.

The high flow from October 2009 through February 2010 was the result of five consecutive months of relatively high rainfall (Table 8.16). The monthly flows during that time were undoubtedly a function of both rainfall and subsurface lateral flow. Rainfall-to-flow relationships in other months, where there was not such a series of wet months, are more erratic. For example, there were four months, excluding Nov 2009, were rainfall was 5.0-6.0 inches

(Table 8.17). Monthly flow was 18-34 acre-feet in three of those months and 217 acre-feet in the other, and the high-flow month did not have high rainfall in the previous month.

In summary, EDYS simulations tended to give reasonable estimates of total flow into the Perdido Creek watershed (85% of gauged flow) but the timing of the events were often different between EDYS and the gauge data. The reason likely being that EDYS moved water more rapidly than what actually occurred because of lateral flow rates (lag-time) into the creek. EDYS did not account as well for change in flow rates between the Runge (Karnes County) and Goliad (Goliad County) gauge stations. Runoff and maximum subsurface flow in the EDYS simulations accounted for only about 28% of the expected increase in river flow.

# 9.0 SCENARIOS

A scenario in EDYS consists of a specific simulation run. Each scenario is defined by a selection of inputs that can include any combination of precipitation, stressor, management, and time factors. The specific combination defining a scenario can be applied across the entire spatial footprint or can be localized. Ten scenarios were defined as examples to be included in this report. A 25-year simulation period was used for each of the 10 scenarios.

**1. Baseline.** No changes in land management options; daily precipitation data from 1928-1952 were used as most indicative of long-term average conditions (1913-2015 annual mean for Goliad = 34.84 inches; 1928-1952 annual mean for Goliad = 33.77 inches).

**2. Dry Cycle.** No changes in land management options; daily precipitation data from 1915-1939; 1915-1939 were the driest 25 consecutive years on record for Goliad (annual mean = 30.96 inches = 0.889 of long-term mean).

**3. Wet Cycle.** No changes in land management options; daily precipitation data from 1957-1981 used; 1957-1981 were the wettest 25 consecutive years on record for Goliad (annual mean = 39.92 inches = 1.146 of long-term mean).

**4. Brush Management, Average Rainfall Pattern.** 100% of aboveground biomass of woody species and 50% of aboveground biomass of herbaceous species removed in Year 1 (root plowing) on all non-urban areas with more than 30% cover of woody species and less than 12% slope; average rainfall pattern (1928-1952); moderate grazing by livestock maintained.

**5. Brush Management, Reduced Live Oak Removal.** Same as Scenario 4 except only 50% of the aboveground biomass of live oak was removed.

**6. Brush Management, Dry Rainfall Pattern.** Same as Scenario 4 except dry rainfall pattern (1915-1939) was applied.

**7. Brush Management, Wet Rainfall Pattern.** Same as Scenario 4 except wet rainfall pattern (1957-1981) was applied.

**8.** Cultivated Land (6.5%). 6.5% of total land in the county placed under cultivation; native vegetation (randomly selected) changed to cultivation; average rainfall pattern (1928-1952).

**9.** Cultivated Land (21%). 21% of total land in the county placed under cultivation; native vegetation (randomly selected) changed to cultivation; average rainfall pattern (1928-1952).

**10. Maximum Potential Water Enhancement from Brush Control.** Same as Scenario 4 except brush control was applied to all non-urban areas.

## 9.1 Vegetation

#### 9.1.1 Baseline

## 9.1.1.1 Clay Loam Type

Under baseline conditions (average rainfall over 25 years, moderate stocking rate of cattle), there was a slight decrease in woody plants (trees and shrubs) in the simulations for the clay loam type overall, but this decrease was not uniform among woody species (Table 9.1). Huisache and whitebrush increased substantially (13% and 47%, respectively) and there were more moderate increases in granjeno (6%) and prickly pear (4%). Huisache and whitebrush are both aggressive invading species, especially under early- and mid-seral conditions. Conversely, there were substantial decreases in blackbrush, baccharis, and wolfberry and a slight decrease (2%) in mesquite. The decreases in these four woody species were most likely the result of competitive from the more aggressive huisache and whitebrush.

In addition to changes in the woody plants (i.e., the overstory species in the shrub and woodland mosaic), there were also changes in both standing crop biomass and species composition of the herbaceous component (Table 9.1). At the beginning of the simulations, the herbaceous component of the clay loam type had an average standing crop biomass of 144 g/m<sup>2</sup> (1284 lbs/ac) at the end of the growing season. This consisted of about 50% shortgrasses (hooded windmillgrass, buffalograss, purple threeawn [*Aristida purpurea*]), 30% midgrasses (silver bluestem, plains bristlegrass), and 20% forbs (mostly ragweed). By the end of the 25-year simulation, herbaceous standing crop had increased to 452 g/m<sup>2</sup> (4032 lbs/ac). This is a realistic level for silver or little bluestem grasslands under moderate grazing by cattle (355-422 g/m<sup>2</sup> = 3167-3764 lbs/ac; Hazell 1967).

Species composition also changed by the end of the simulation period. Shortgrasses increased as the type dominants, with most of this being purple threeawn (Table 9.1). Buffalograss increased in biomass, but not as much proportionately as did purple threeawn. Silver bluestem became the major midgrass, and trichloris also increased. These two species are major midgrasses under mid-seral conditions in the bluestem grasslands of South Texas (Box 1961, Box and White 1969, McLendon 1991). Little bluestem and plains bristlegrass decreased during the 25-year simulation. These changes in composition are consistent with what would be expected under moderate grazing. The more palatable species (little bluestem, Arizona cottontop, plains bristlegrass) received more grazing pressure than the less palatable species (silver bluestem,

trichloris, purple threeawn) and therefore decreased in abundance. Within the shortgrasses, buffalograss is more palatable to cattle than purple threeawn, and therefore purple threeawn increased by a greater amount than buffalograss. All forb species decreased on this type because of browsing pressure by deer and increased competition from the grasses.

| Table 9.1 Aboveground biomass (g/m <sup>2</sup> ), by lifeform and major species, in seven plot types <sup>1</sup> at the |
|---------------------------------------------------------------------------------------------------------------------------|
| end of growing season in the first (01) and last (25) years of a 25-year simulation under the baseline                    |
| scenario, Goliad County EDYS model.                                                                                       |
|                                                                                                                           |

| Lifeform            | Blac | kland    | (    | lay  | L    | oamy  | L    | oamy | S   | alty  | Sha  | llow  | Tight | Sandy |
|---------------------|------|----------|------|------|------|-------|------|------|-----|-------|------|-------|-------|-------|
| or Species          |      | istal    |      | bam  |      | omlan |      | Sand |     | airie |      | idge  | Loa   | •     |
| of species          | 01   | 25       | 01   | 25   | 01   | 25    | u 01 | 25   | 01  | 25    | 01   | 25    |       |       |
|                     | 01   | 25       | 01   | 25   | 01   | 25    | UI   | 25   | 01  | 25    | 01   | 25    | 01    | 25    |
| Trees               | 246  | 213      | 1247 | 1278 | 6623 | 6028  | 5181 | 4695 | 320 | 323   | 444  | 558   | 3402  | 2952  |
| Shrubs              | 72   | 37       | 976  | 898  | 851  | 739   | 394  | 324  | 96  | 138   | 1592 | 1561  | 648   | 397   |
| Midgrasses          | 63   | 62       | 49   | 67   | 52   | 388   | 74   | 471  | 527 | 740   | 17   | 3     | 73    | 547   |
| Shortgrasses        | 229  | 548      | 71   | 383  | 26   | 4     | 38   | 256  | 37  | 55    | 29   | 3     | 37    | 284   |
| Grass-likes         | 0    | 0        | 0    | 0000 | 17   | 230   | 0    | 0    | 0   | 0     | 0    | 0     | 0     | 0     |
| Forbs               | 67   | 1        | 34   | 2    | 32   | 24    | 37   | 5    | 13  | 57    | 14   | 54    | 28    | 4     |
| Total aboveground   | 677  | 861      | 2377 | 2628 | 7601 | 7413  | 5724 | 5751 | 993 | 1313  | 2096 | 2179  | 4188  | 4184  |
| Huisache            | 125  | 116      | 364  | 411  | 620  | 536   |      |      | 281 | 269   |      |       |       |       |
| Pecan               |      |          |      |      | 810  | 820   |      |      |     |       |      |       |       |       |
| Sugar hackberry     | 6    | 4        |      |      | 1228 | 747   |      |      |     |       |      |       |       |       |
| Mesquite            | 101  | 82       | 883  | 867  | 484  | 375   | 1034 | 826  | 39  | 54    | 444  | 558   |       | 1078  |
| -                   |      | 02<br>11 | 003  |      |      | 3550  |      |      |     |       | 444  |       |       | 1078  |
| Live oak            | 14   | 11       |      |      | 3481 | 3000  | 414/ | 3869 |     |       |      |       | 2070  | 18/4  |
| Guajillo            |      |          |      |      |      |       |      |      |     |       | 525  | 165   |       |       |
| Blackbrush          | 11   | 5        | 186  | 76   |      |       |      |      |     |       | 974  | 1349  | 274   | 113   |
| Whitebrush          | 15   | 6        | 198  | 291  | 155  | 343   |      |      |     |       |      |       |       |       |
| Baccharis           |      |          | 99   | 27   | 158  | 45    |      |      |     |       |      |       |       |       |
| Sea oxeye           |      |          |      |      |      |       |      |      | 96  | 138   |      |       |       |       |
| Granjeno            | 22   | 13       | 283  | 300  | 157  | 81    | 192  | 220  |     |       |      |       | 287   | 254   |
| Wolfberry           |      |          | 21   | 8    |      |       |      |      |     |       |      |       |       |       |
| Agarito             | t    | t        | 5    | 4    |      |       |      |      |     |       |      |       |       |       |
| Mustang grape       |      |          |      |      | 381  | 270   | 114  | 66   |     |       |      |       |       |       |
| Prickly pear        | 24   | 13       | 184  | 192  |      |       | 88   | 38   |     |       | 93   | 47    | 87    | 30    |
| Big bluestem        | 1    | 10       |      |      | 1    | 115   |      |      |     |       |      |       |       |       |
| Bushy bluestem      |      |          |      |      | 7    | t     |      |      |     |       |      |       |       |       |
| Purple threeawn     | 27   | 260      | 9    | 255  |      |       | 6    | 254  |     |       | 3    | 1     | 11    | 276   |
| Silver bluestem     | 19   | 42       | 17   | 57   | 3    | 1     | 10   | 40   |     |       |      |       | 40    | 323   |
| Sideoats grama      | 2    | 1        | 2    | 2    | 7    | 162   | 14   | 313  |     |       | 4    | 1     | 6     | 2     |
| Hairy grama         | 8    | 8        | 1    | t    |      |       |      | 1    |     |       | 4    | 1     | 5     | 6     |
| Red grama           |      |          |      |      |      |       |      |      |     |       | 3    | t     | 2     | Õ     |
| Buffalograss        | 140  | 267      | 24   | 92   | 7    | t     |      |      |     |       |      |       |       |       |
| Sandbur             |      |          |      |      |      |       | 1    | 0    |     |       |      |       | 1     | 0     |
| Hooded windmill     | 26   | 6        | 33   | 36   |      |       | 6    | 1    |     |       | 4    | 1     | 18    | 2     |
| Trichloris          | 20   | t        | 2    | 7    | 7    | 2     |      |      |     |       | 1    | t     | 22    | 224   |
| Bermudagrass        |      |          |      |      | 3    | t     |      |      | 6   | t     |      |       |       |       |
| Arizona cottontop   |      |          | 1    | t    |      |       | 1    | t    |     |       | 1    | t     | 1     | t     |
| Saltgrass           |      |          |      |      |      |       |      |      | 6   | 0     |      |       |       |       |
| Virginia wildrye    |      |          |      |      | 2    | t     |      |      |     |       |      |       |       |       |
|                     |      |          |      |      | 1    | t     |      |      |     |       |      |       |       |       |
| Texas cupgrass      |      |          |      |      |      | L     |      |      |     |       |      |       |       |       |
| Green sprangletop   |      |          |      |      |      |       |      |      |     |       | 1    | t<br> |       |       |
| Vine-mesquite       | 3    | 0        | 1    | t    | 3    | 4     |      |      |     |       |      |       |       |       |
| Switchgrass         | 4    | 1        |      |      | 5    | 14    | 3    | 4    | t   | t     |      |       |       |       |
| Longtom             |      |          |      |      |      |       |      |      | 4   | 0     |      |       |       |       |
| Brownseed paspalum  | 4    | 0        | 1    | 0    | 3    | 0     | 10   | 0    |     |       |      |       |       |       |
| Thin paspalum       |      |          |      |      |      |       | 12   | t    |     |       |      |       |       |       |
| Common reed         |      |          |      |      |      |       |      |      | 1   | 0     |      |       |       |       |
| Little bluestem     | 18   | 4        | 3    | 1    | 14   | 94    | 43   | 114  | 2   | t     | 7    | 2     |       |       |
| Knotroot bristle    | 9    | 1        | 1    | t    | 5    | t     |      |      | 21  | 55    |      |       |       |       |
| Plains bristlegrass | 5    | 0        | 20   | 0    | 3    | 0     | 3    | 0    |     |       |      |       | 4     | 0     |
| Texas bristlegrass  |      |          |      |      |      |       |      |      |     |       | 8    | 0     |       |       |
| Indiangrass         | 3    | 1        | t    | t    |      |       |      |      | 1   | t     |      |       |       |       |
|                     |      |          |      |      |      |       |      |      |     |       |      |       |       |       |

| Lifeform<br>or Species |    | kland<br>astal |    | Clay<br>0am |    | amy<br>omland |    | amy<br>and |     | alty<br>airie |    | llow<br>dge | 0  | Sandy<br>Dam |
|------------------------|----|----------------|----|-------------|----|---------------|----|------------|-----|---------------|----|-------------|----|--------------|
|                        | 01 | 25             | 01 | 25          | 01 | 25            | 01 | 25         | 01  | 25            | 01 | 25          | 01 | 25           |
| Johnsongrass           | 2  | 0              | 2  | 0           | 2  | 0             |    |            |     |               |    |             |    |              |
| Gulf cordgrass         |    |                |    |             |    |               |    |            | 523 | 740           |    |             |    |              |
| Tall dropseed          | 7  | 3              | 2  | t           |    |               |    |            |     |               |    |             |    |              |
| Sand dropseed          |    |                |    |             |    |               |    |            |     |               | 4  | t           |    |              |
| Texas wintergrass      | 12 | 6              | 1  | t           | 5  | t             |    |            |     |               | 6  | t           |    |              |
| Littletooth sedge      |    |                |    |             | 6  | t             |    |            |     |               |    |             |    |              |
| Flatsedge              |    |                |    |             | 11 | 230           |    |            |     |               |    |             |    |              |
| Ragweed                | 26 | t              | 11 | 1           | 9  | 2             | 28 | 2          |     |               | 13 | 54          | 16 | 2            |
| Spiny aster            |    |                |    |             | 1  | t             |    |            | 2   | t             |    |             |    |              |
| Wild indigo            | 5  | 0              | 1  | 0           |    |               |    |            |     |               |    |             |    |              |
| Old-mans beard         | 30 | 1              | 6  | t           | 10 | 5             |    |            |     |               |    |             |    |              |
| Bundleflower           | 2  | 0              | 1  | t           | 1  | t             | t  | t          |     |               |    |             | t  | 0            |
| Frogfruit              |    |                | 5  | t           | 2  | t             |    |            | 8   | 55            |    |             |    |              |
| Coneflower             |    |                | 1  | 0           |    |               | t  | t          |     |               |    |             | t  | 0            |
| Snoutbean              |    |                | 1  | 0           | 1  | 0             | 1  | 0          |     |               |    |             | 2  | 0            |
| Ruellia                | 3  | 0              | 1  | 0           | 1  | 0             |    |            |     |               |    |             |    |              |
| Glasswort              |    |                |    |             |    |               |    |            | 3   | 2             |    |             |    |              |
| Bush sunflower         |    |                | 4  | 1           |    |               | 7  | 3          |     |               |    |             | 9  | 2            |
| Greenbriar             |    |                |    |             | 6  | 17            |    |            |     |               |    |             |    |              |
| Orange zexmenia        |    |                | 2  | t           |    |               |    |            |     |               |    |             |    |              |
| Giant ragweed          |    |                |    |             | 1  | 0             |    |            |     |               |    |             |    |              |
| Annual broomweed       |    |                | 1  | 0           |    |               |    |            |     |               | 1  | 0           |    |              |
| Partridge pea          |    |                |    |             | t  | 0             | t  | 0          |     |               |    |             | 1  | 0            |
| Texas doveweed         |    |                |    |             |    |               | 1  | 0          |     |               |    |             |    |              |
| Sunflower              | 1  | 0              | t  | 0           | t  | 0             |    |            |     |               |    |             | t  | 0            |

#### Table 9.1 (Cont.)

Dashes (---) indicate that the species was not included in the simulation for that type.

A trace amount ( $< 0.5 \text{ g/m}^2$ ) is indicated with at "t".

#### 9.1.1.2 Loamy Sand Type

There was a substantial decrease (10%) in woody plant biomass over the 25-year simulation on the loamy sand type, with a corresponding increase (550%) in grass biomass (Table 9.1). Both mesquite and live oak decreased but there was a 14% increase in granjeno. The decrease in tree biomass was likely in response to the amount of rainfall simulated in this scenario. The average annual rainfall in the baseline scenario was 33.77 inches (85.8 cm). This amount of annual rainfall is marginal for support of woodlands. Forty inches of annual rainfall is a general estimate of the level where woodlands dominate over grasslands (Weaver and Clements 1938:510; Engle 1994; Bailey 1995). Stoddart and Smith (1955:48) suggested 38 inches for the transition to tallgrass prairie and Drawe (1994) considered 36 inches to be the transition point on the Coastal Prairies of Texas. Trees are supported at lower moisture levels on sandy soils than on adjacent clay or loamy soils, therefore the transition point on sands in South Texas is probably close to the 36 inches suggested by Drawe (1994). This level is still above the annual mean under the baseline scenario, which would suggest that trees, especially live oak, might be expected to decrease over the 25 years. In contrast, granjeno is a shrub species that is welladapted to annual rainfall regimes of 20-35 inches (McLendon 1991) and therefore might be expected to be favored by the 33-34 inches rainfall regime of the baseline scenario.

The substantial increase in grasses on the loamy sand type over the 25 years of the baseline scenario is likely to have been the result of two primary factors. First, is the rainfall regime. Mid- and tallgrass prairie commonly occurs on areas receiving 20-40 inches of rain annually (Weaver and Clements 1938:517; Weaver 1954:7; Shelford 1963:334; Stoddart et al. 1975:28; Smeins and Diamond 1983; Smeins 1994a; Bailey 1995:46). Consequently, the 33-34 inches average annual rainfall level is near the upper level for grasslands and therefore would favor relatively high production by grasses. Second, the livestock stocking rate was held to a moderate level for the initial conditions (112 g/m<sup>2</sup> of grasses = 1000 lbs/ac). As grass production increased, stocking rate did not increase and therefore the stocking rate became light over time. A low stocking rate combined with abundant moisture resulted in an increase in grasses.

The improved conditions for the grasses also resulted in a change in species composition (Table 9.1). Sideoats grama and purple threeawn were secondary species initially. They had become site dominants by the end of 25 years. Sideoats is a midgrass that can rapidly increase under favorable environmental conditions because of its relatively rapid growth rate, high seed production, and production of rhizomes. Sideoats had become the dominant herbaceous species on this site by Year 25, producing 43% of total aboveground herbaceous biomass. Purple threeawn is a rapidly-growing species characteristic of early mid-seral conditions. It rapidly increases once grazing pressure is reduced, and then begins to decrease once production of midgrasses increases substantially. Purple threeawn contributed 35% of total aboveground herbaceous biomass in Year 25. Little bluestem is a midgrass that is likely to become the dominant species on this site over time. However, it has a slower rate of increase than sideoats. By Year 25, little bluestem production had increased almost two-fold over initial conditions and contributed 16% of total aboveground herbaceous biomass.

Ragweed is a native perennial forb that increases under heavy grazing and other stress disturbances (e.g., drought). Standing crop biomass of ragweed on the loamy sand type was 28 g/m<sup>2</sup> initially, comprising 19% of total aboveground herbaceous biomass (Table 9.1). By Year 25, ragweed produced only 2 g/m<sup>2</sup> and this was less than 0.2% of total aboveground herbaceous biomass. The species was replaced successionally by the grasses, which is the expected response under the conditions of the baseline scenario.

#### 9.1.1.3 Other Types

Results of the simulations for the other selected types also reflect expected ecological responses (Table 9.1). On the loamy bottomland type, tree biomass decreased overall but biomass of the late-seral trees (pecan, live oak) increased. All shrubs decreased except for whitebrush, which is well-adapted to the moderate rainfall conditions of the baseline scenario and is a shrub species that can form dense stands moderate conditions of moderate shading. Big bluestem is a tallgrass adapted to mesic conditions. It increased ten times more on the loamy bottomland type than on the blackland (coastal) type, which would be expected because of higher water availability on the bottomland type. The other herbaceous species that increased substantially on the loamy bottomland site were sideoats grama, little bluestem, and flatsedge (*Cyperus odoratus*). All three of these species would be expected to have substantial increases on this relatively wet site.

The salty prairie type occurs on wet sites that are saline. Gulf cordgrass and sea oxeye (*Borrichia frutescens*) increased substantially on this type and both species are salt-tolerant wetland species. Two other species, knotroot bristlegrass and frogfruit (*Phyla nodiflora*), also increased on this type and both of these are species that tolerate frequent flooding.

The shallow ridge type initially supported a blackbrush-guajillo-mesquite shrubland, with a sparse herbaceous component consisting of 46 g/m<sup>2</sup> of grasses and 14 g/m<sup>2</sup> of forbs (Table 9.1). At the end of the 25-year simulation, total woody plant biomass remained about the same as at the beginning of the simulation but blackbrush and mesquite increased and guajillo (*Acacia berlanderi*) decreased. Guajillo is a relatively palatable shrub for deer, and for cattle during winter and in dry periods. Livestock stocking rate was not decreased during the 25-year simulation and the amount of available grasses was low throughout the simulation. Therefore, grasses were heavily utilized by both cattle and deer, reducing grass production to 6 g/m<sup>2</sup> compared to 46 g/m<sup>2</sup> at the beginning of the simulation. Production of the palatable guajillo also decreased because of browsing by deer and cattle, while production of the less-palatable blackbrush and the unpalatable mesquite increased because of less competition from guajillo. In addition, production of the relatively unpalatable ragweed also increased, from 13 g/m<sup>2</sup> in Year 1 to 54 g/m<sup>2</sup> in Year 25. In summary, the shallow ridge type changed from a blackbrush-guajillo-mesquite community with a weak understory of perennial grasses to a blackbrush-mesquite-guajillo community with a ragweed understory.

# 9.1.2 Dry Cycle

The dry cycle scenario was simulated as the baseline scenario except with the rainfall input changed from that of 1928-1952 (average rainfall cycle, annual mean = 33.77 inches) to that of 1915-1939 (dry rainfall cycle, annual mean = 30.96 inches). Initial conditions, including livestock stocking rates, were the same for both the baseline and dry scenarios.

Overall mean aboveground biomass, averaged over the seven plot types, in Year 25 was 3,372 g/m<sup>2</sup>, of which 2,838 g/m<sup>2</sup> (84%) were from woody species and 534 g/m<sup>2</sup> (16%) were from herbaceous species (Table 9.2). Under the baseline scenario, these values were 3,475 g/m<sup>2</sup> total, 2,877 g/m<sup>2</sup> woody, and 598 g/m<sup>2</sup> herbaceous (Table 9.1). Rainfall for the dry scenario was 8.3% less than under the baseline scenario. The reduction in rainfall resulted in total aboveground biomass decreasing by 3.0%. However, the effect of the reduced rainfall was not uniform over lifeforms. Herbaceous species biomass decreased by 10.7% whereas woody species decreased by only 1.4%.

The smaller effect of the dry cycle on woody species was the result of the greater rooting depth of woody species compared to herbaceous species, with the corresponding ability of woody species to deep moisture, especially groundwater. The relatively large increase in huisache (11%; Table 9.3) was the result of reduced competition by grasses for soil moisture. Within the shrub component, most species were largely unaffected ( $\pm$  5% of baseline) by the dry cycle (Table 9.3). The exceptions were blackbrush and whitebrush. Blackbrush was unaffected by the dry cycle except on the shallow ridge type (Table 9.2), where blackbrush production was about half that under baseline conditions. The shallow ridge type is the most xeric of the types supporting blackbrush, therefore it is logical that production would be most affected on this type.

Whitebrush increased under the dry cycle on most types. This was likely the result of reduced competition from grasses.

| Table 9.2 Aboveground biomass (g/m <sup>2</sup> ), by lifeform and major species, in seven plot types at the |
|--------------------------------------------------------------------------------------------------------------|
| end of the growing season in Year 25 of a 25-year simulation under dry and wet precipitation                 |
| scenarios, Goliad County EDYS model. Average annual rainfall for the dry scenario = 30.96 inches             |
| and for the wet scenario = 39.92 inches.                                                                     |

| or Species<br>Trees<br>Shrubs<br>Midgrasses<br>Shortgrasses<br>Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite | <b>Dry</b><br>213<br>34<br>75<br>580 | 209<br>36 | <b>Dry</b> | am<br>Wet | Botto<br>Dry | mland<br>Wet |      | nd    |      | irie  | Ri   | idge | L    | oam  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|------------|-----------|--------------|--------------|------|-------|------|-------|------|------|------|------|
| Shrubs<br>Midgrasses<br>Shortgrasses<br>Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                        | 213<br>34<br>75<br>580               | 209<br>36 | 1217       |           | Dry          | Wet          |      | *** / |      | *** / |      | 0    | D    |      |
| Shrubs<br>Midgrasses<br>Shortgrasses<br>Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                        | 34<br>75<br>580                      | 36        |            |           |              |              | Dry  | Wet   | Dry  | Wet   | Dry  | Wet  | Dry  | Wet  |
| Midgrasses<br>Shortgrasses<br>Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                  | 75<br>580                            |           |            | 1203      | 6153         | 5528         | 4582 | 4656  | 340  | 326   | 735  | 477  | 2898 | 2910 |
| Shortgrasses<br>Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                                | 580                                  | 001       | 874        | 771       | 1005         | 533          | 353  | 340   | 145  | 135   | 885  | 1993 | 431  | 390  |
| Grass-Likes<br>Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                                                |                                      | 221       | 54         | 187       | 46           | 34           | 501  | 619   | 680  | 769   | t    | 9    | 410  | 446  |
| Forbs<br>Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                                                               |                                      | 660       | 314        | 642       | 1            | 55           | 197  | 270   | 31   | 55    | t    | 3    | 299  | 458  |
| Total aboveground<br>Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                                                                        | 0                                    | 0         | 0          | 0         | 151          | 473          | 0    | 0     | 0    | 0     | 0    | 0    | 0    | 0    |
| Huisache<br>Pecan<br>Sugar hackberry<br>Mesquite                                                                                                             | 3                                    | 2         | 2          | 2         | 31           | 79           | 3    | 3     | 4    | 62    | 355  | 10   | 5    | 4    |
| Pecan<br>Sugar hackberry<br>Mesquite                                                                                                                         | 905                                  | 1128      | 2461       | 2805      | 7387         | 6702         | 5636 | 5888  | 1200 | 1347  | 1975 | 2492 | 4043 | 4208 |
| Sugar hackberry<br>Mesquite                                                                                                                                  | 116                                  | 114       | 411        | 413       | 558          | 596          |      |       | 283  | 268   |      |      |      |      |
| Mesquite                                                                                                                                                     |                                      |           |            |           | 823          | 723          |      |       |      |       |      |      |      |      |
| -                                                                                                                                                            | 4                                    | 4         |            |           | 743          | 741          |      |       |      |       |      |      |      |      |
| Tirro opli                                                                                                                                                   | 82                                   | 80        | 806        | 790       | 373          | 370          | 838  | 817   | 57   | 58    | 735  | 477  | 1100 | 1088 |
| Live oak                                                                                                                                                     | 11                                   | 11        |            |           | 3656         | 3098         | 3744 | 3839  |      |       |      |      | 1798 | 1822 |
| Guajillo                                                                                                                                                     |                                      |           |            |           |              |              |      |       |      |       | 161  | 173  |      |      |
| Blackbrush                                                                                                                                                   | 5                                    | 5         | 76         | 77        |              |              |      |       |      |       | 688  | 1755 | 113  | 114  |
| Whitebrush                                                                                                                                                   | 6                                    | 6         | 298        | 222       | 600          | 155          |      |       |      |       |      |      |      |      |
| Baccharis                                                                                                                                                    |                                      |           | 26         | 28        | 46           | 42           |      |       |      |       |      |      |      |      |
| Sea oxeye                                                                                                                                                    |                                      |           |            |           |              |              |      |       | 145  | 135   |      |      |      |      |
| Granjeno                                                                                                                                                     | 13                                   | 13        | 280        | 272       | 76           | 80           | 248  | 237   |      |       |      |      | 279  | 246  |
| Wolfberry                                                                                                                                                    |                                      |           | 8          | 7         |              |              |      |       |      |       |      |      |      |      |
| Agarito                                                                                                                                                      | t                                    | t         | 5          | 3         |              |              |      |       |      |       |      |      |      |      |
| Mustang grape                                                                                                                                                |                                      |           |            |           | 283          | 256          | 66   | 66    |      |       |      |      |      |      |
| Prickly pear                                                                                                                                                 | 10                                   | 12        | 181        | 162       |              |              | 39   | 37    |      |       | 36   | 65   | 39   | 30   |
| Big bluestem                                                                                                                                                 | 16                                   | 29        |            |           | 7            | 3            |      |       |      |       |      |      |      |      |
| Purple threeawn                                                                                                                                              | 284                                  | 292       | 214        | 285       |              |              | 195  | 269   |      |       | t    | 1    | 290  | 282  |
| Silver bluestem                                                                                                                                              | 53                                   | 165       | 46         | 167       | 1            | 1            | 37   | 65    |      |       |      |      | 239  | 260  |
| Sideoats grama                                                                                                                                               | t                                    | 2         | 1          | 2         | 16           | 10           | 346  | 376   |      |       | 0    | 6    | 5    | 2    |
| Hairy grama                                                                                                                                                  | 35                                   | 48        | t          | 3         |              |              | 1    | t     |      |       | 0    | 1    | 6    | 174  |
| Buffalograss                                                                                                                                                 | 256                                  | 309       | 68         | 278       | t            | t            |      |       |      |       |      |      |      |      |
| Hooded windmill                                                                                                                                              | 5                                    | 6         | 32         | 76        |              |              | 1    | 1     |      |       | 0    | 1    | 3    | 2    |
| Trichloris                                                                                                                                                   | t                                    | 9         | 6          | 17        | 2            | 2            |      |       |      |       | t    | t    | 166  | 184  |
| Vine-mesquite                                                                                                                                                | 0                                    | t         | t          | t         | 1            | 2            |      |       |      |       |      |      |      |      |
| Switchgrass                                                                                                                                                  | 1                                    | 2         |            |           | 5            | 4            | 4    | 4     | t    | t     |      |      |      |      |
| Little bluestem                                                                                                                                              | 3                                    | 4         | 1          | 1         | 15           | 14           | 114  | 174   | t    | t     | 0    | 3    |      |      |
| Knotroot bristle                                                                                                                                             | t                                    | t         | t          | t         | t            | t            |      |       | 31   | 55    |      |      |      |      |
| Indiangrass                                                                                                                                                  | t                                    | 2         | t          | t         |              |              |      |       | t    | t     |      |      |      |      |
| Gulf cordgrass                                                                                                                                               |                                      |           |            |           |              |              |      |       | 680  | 769   |      |      |      |      |
| Tall dropseed                                                                                                                                                | 2                                    | 8         | t          | t         |              |              |      |       |      |       |      |      |      |      |
| Texas wintergrass                                                                                                                                            | t                                    | 5         | t          | t         | t            | 53           |      |       |      |       | 0    | t    |      |      |
| Flatsedge                                                                                                                                                    |                                      |           |            |           | 151          | 473          |      |       |      |       |      |      |      |      |
| Ragweed                                                                                                                                                      | 1                                    | 1         | 1          | 1         | 1            | 2            | 1    | 1     |      |       | 355  | 10   | 2    | 2    |
| Old-mans beard                                                                                                                                               | 2                                    | 1         | t          | t         | 21           | 69           |      |       |      |       |      |      |      |      |
| Frogfruit                                                                                                                                                    |                                      |           | t          | t         | t            | t            |      |       | 3    | 59    |      |      |      |      |
| Glasswort                                                                                                                                                    |                                      |           |            |           |              |              |      |       | 1    | 3     |      |      |      |      |
| Bush sunflower                                                                                                                                               |                                      |           | 1          | 1         |              |              | 2    | 2     |      |       |      |      | 3    | 2    |
| Greenbriar                                                                                                                                                   |                                      |           |            |           | 9            | 8            |      |       |      |       |      |      |      |      |

Grass production was strongly reduced under the dry cycle, and midgrasses more than shortgrasses (Table 9.3). The largest proportional decrease in grasses was for big bluestem. Big bluestem is a tallgrass, adapted to mesic conditions. It is therefore not surprising that it was strongly affected by the lower rainfall regime of the dry cycle. Little bluestem was the secondmost strongly affected and it is the second-most mesic of the midgrass group. Silver bluestem is the most drought-resistant of the midgrasses (e.g., water-use efficiency of 620 g water/g dry biomass compared to 712 for sideoats grama; McGinnes and Arnold 1939) and it was the least affected except for gulf cordgrass. Gulf cordgrass occurs on low-elevation sites which receive surface runoff and have relatively high water tables. Therefore, it would be expected to be less affected than the more upland species.

| Species              | Mean Al | boveground | Biomass | Proportion of Medium-Regime Biomass |        |        |  |  |  |
|----------------------|---------|------------|---------|-------------------------------------|--------|--------|--|--|--|
| -                    | Dry     | Medium     | Wet     | Dry                                 | Medium | Wet    |  |  |  |
| Trees                |         |            |         |                                     |        |        |  |  |  |
| Huisache             | 1368    | 1232       | 1391    | 1.110                               | 1.000  | 1.129  |  |  |  |
| Pecan                | 823     | 820        | 723     | 1.004                               | 1.000  | 0.882  |  |  |  |
| Sugar hackberry      | 747     | 751        | 745     | 0.995                               | 1.000  | 0.992  |  |  |  |
| Mesquite             | 3991    | 3840       | 3680    | 1.039                               | 1.000  | 0.958  |  |  |  |
| Live oak             | 9209    | 9304       | 8770    | 0.990                               | 1.000  | 0.943  |  |  |  |
| Shrubs               |         |            |         |                                     |        |        |  |  |  |
| Blackbrush           | 882     | 1543       | 1951    | 0.572                               | 1.000  | 1.264  |  |  |  |
| Whitebrush           | 904     | 640        | 383     | 1.413                               | 1.000  | 0.598  |  |  |  |
| Sea oxeye            | 145     | 138        | 135     | 1.051                               | 1.000  | 0.978  |  |  |  |
| Granjeno             | 896     | 868        | 848     | 1.032                               | 1.000  | 0.977  |  |  |  |
| Mustang grape        | 349     | 336        | 322     | 1.039                               | 1.000  | 0.958  |  |  |  |
| Prickly pear         | 305     | 320        | 306     | 0.953                               | 1.000  | 0.956  |  |  |  |
| Midgrasses           |         |            |         |                                     |        |        |  |  |  |
| Big bluestem         | 23      | 125        | 32      | 0.184                               | 1.000  | 0.256  |  |  |  |
| Silver bluestem      | 376     | 463        | 658     | 0.812                               | 1.000  | 1.400  |  |  |  |
| Sideoats grama       | 368     | 481        | 398     | 0.765                               | 1.000  | 0.827  |  |  |  |
| Trichloris           | 174     | 233        | 212     | 0.747                               | 1.000  | 0.910  |  |  |  |
| Little bluestem      | 133     | 215        | 196     | 0.619                               | 1.000  | 0.912  |  |  |  |
| Gulf cordgrass       | 680     | 740        | 769     | 0.919                               | 1.000  | 1.039  |  |  |  |
| Shortgrasses         |         |            |         |                                     |        |        |  |  |  |
| Purple threeawn      | 983     | 1046       | 1128    | 0.940                               | 1.000  | 1.078  |  |  |  |
| Hairy grama          | 42      | 16         | 226     | 2.625                               | 1.000  | 14.125 |  |  |  |
| Buffalograss         | 324     | 359        | 587     | 0.903                               | 1.000  | 1.635  |  |  |  |
| Inotroot bristlegras | s 31    | 56         | 55      | 0.554                               | 1.000  | 0.982  |  |  |  |
| Forbs                |         |            |         |                                     |        |        |  |  |  |
| Ragweed              | 361     | 61         | 17      | 5.918                               | 1.000  | 0.279  |  |  |  |
| Old-mans beard       | 23      | 6          | 70      | 3.833                               | 1.000  | 11.667 |  |  |  |

| Table 9.3 Aboveground biomass (g/m <sup>2</sup> ) of major species in seven plot types at end of the 25-year |
|--------------------------------------------------------------------------------------------------------------|
| simulation under three rainfall regimes, Goliad County EDYS model. Values averaged over the                  |
| seven types (Tables 9.1 and 9.2).                                                                            |

Knotroot bristlegrass, a shortgrass, is most commonly found on wet sites or sites with poor drainage. Of the four shortgrasses listed (Table 9.3), it was the species most affected by the dry cycle. Hairy grama is a drought-tolerant shortgrass that is abundant throughout the Southwest United States and northern Mexico. McGinnes and Arnold (1939) reported an average water-use efficiency of 483 (g water/g dry-weight aboveground production) for hairy grama, compared to 620 for silver bluestem and 712 for sideoats grama. In the simulations, hairy grama increased substantially under the dry cycle and this increase can be attributed to reduced competition from the other more drought-sensitive grasses. The dry cycle shifted the moisture conditions to those more similar to areas were hairy grama is most abundant. Similarly, the perennial forbs ragweed and old-mans beard increased substantially under the dry cycle. This was also most likely the result of reduced competition from grasses and the ability of ragweed to tolearate relatively dry conditions.

## 9.1.3 Wet Cycle

The wet cycle scenario was simulated as the baseline and dry scenarios except with the rainfall input changed to that of 1957-1981. Average annual rainfall during 1957-1981 was 39.92 inches, an increase of 5.25 inches (18.2%) per year.

Overall mean aboveground biomass in Year 25 under the wet cycle scenario was  $3,510 \text{ g/m}^2$  (Table 9.2). This was only slightly higher than as under the baseline scenario  $(3,475 \text{ g/m}^2)$ . Although overall production did not increase much, the composition of the various lifeforms and species changed substantially. Average woody aboveground biomass for woody species was  $2,787 \text{ g/m}^2$  and  $723 \text{ g/m}^2$  for herbaceous species. This was a 3.1% decrease in woody species biomass compared to baseline and a 20.9% increase in herbaceous biomass.

Relatively wet conditions occurred in South Texas beginning in 1957, following the drought of 1950-1956. Despite above-average rainfall mesquite, granjeno, and prickly pear decreased in cover on the Welder Wildlife Refuge in San Patricio County over a 15-year period following the drought while huisache increased (Drawe et al. 1978). These were the same responses as those in the simulations under the wet scenario. Mesquite decreased by 4%, granjeno decreased by 2%, prickly pear decreased by 4%, and huisache increased by 13% (Table 9.3).

Whereas drought-tolerance and water-use efficiency were the primary factors explaining vegetation responses under the dry cycle, growth rate and maximum potential productivity were the major factors under the wet cycle. Herbaceous species decrease more rapidly under dry conditions than do woody species and they increase more rapidly than woody species under wet conditions. The 40-inch average annual rainfall level of the wet cycle is the approximate level at which woodlands replace grasslands as the dominant vegetation type (Section 9.1.1.2). At this rainfall level (i.e., 40 inches per year), the successional pattern beginning with the initial (Year 1; Table 9.1) conditions used in the simulations would likely be an increase in grasses until the maximum production of these species is reached, then an increase in mid-successional woody species, followed by an increase in late-seral species. The transition to mid- and late-successional trees would likely take more than the 25 years of the simulation.

Within the herbaceous component, production by midgrasses was about equal to that under the baseline scenario (362 and 359 g/m<sup>2</sup>, respectively) but production by shortgrasses increased substantially over baseline (314 and 219 g/m<sup>2</sup>, respectively). As rainfall increases, competitive advantage should shift from shortgrasses to midgrasses in the absence of grazing by livestock. Conversely, as grazing intensity increases there is a competitive shift back to shortgrasses. A moderate stocking rate by cattle was simulated under both the baseline and wet scenarios. This level of grazing was sufficient to keep midgrass production at baseline levels while allowing shortgrasses to increase.

Overall grass production (midgrasses + shortgrasses) averaged 676 g/m<sup>2</sup> over the seven vegetation types under the wet scenario (Table 9.2). This amount includes basal crown biomass, which is generally not included in biomass values reported in literature studies of grassland production. Clippable biomass, which is what most literature studies report, for grasses in EDYS simulations varies by species, but it averages about 60% of aboveground biomass. Converting the total aboveground value of 676 g/m<sup>2</sup> to clippable would equal 406 g/m<sup>2</sup> of aboveground biomass of grasses under a precipitation regime that averaged 39.9 inches per year. This compares favorably with published values for bluestem grasslands (Table 9.4).

| Table 9.4 Aboveground production (g/m <sup>2</sup> clippable biomass) and annual precipitation (PPT; |
|------------------------------------------------------------------------------------------------------|
| inches) reported for various bluestem and coastal prairie communities.                               |

| Community                                 | Location  | <b>PPT</b> | Production | Reference               |
|-------------------------------------------|-----------|------------|------------|-------------------------|
| Big bluestem-little bluestem              | Kansas    | 34.4       | 357        | Briggs & Knapp 1995     |
| Big bluestem-little bluestem              | Kansas    | 31.9       | 325        | Owensby & Anderson 1967 |
| Big bluestem-little bluestem              | Oklahoma  | 44.8       | 349        | Brummer et al. 1988     |
| Little bluestem-big bluestem              | Oklahoma  | 32.7       | 422        | Hazell 1967             |
| Tall dropseed-silver bluestem             | Oklahoma  | 32.7       | 355        | Hazell 1967             |
| Sandhill bluestem-splitbeard bluestem     | Louisiana | 57.9       | 340        | Duvall & Linnartz 1967  |
| Sandhill bluestem-splitbeard bluestem     | Louisiana | 57.9       | 377        | Grelen & Epps 1967      |
| Little bluestem-tall dropseed             | Texas     | 31.5       | 208        | McLendon et al. 2001    |
| Buffalograss-silver bluestem              | Texas     | 28.3       | 164        | Box & White 1969        |
| Knotroot bristlegrass-plains bristlegrass | Texas     | 28.3       | 249        | Box & White 1969        |
| Gulf cordgrass-bermudagrass               | Texas     | 35.0       | 543        | Garza et al. 1994       |
| MEAN                                      |           | 36.9       | 335        |                         |

Of the major species of midgrasses, two increased (silver bluestem, gulf cordgrass) and four decreased under the wet regime when compared to baseline (Table 9.3). Three of the four midgrasses that decreased are decreaser species, i.e., they are among the first species to decrease as grazing intensity increases. The exception, trichloris, is an earlier mid-successional species that would be expected to decrease in response to an incease in other midgrasses (e.g., silver bluestem). Silver bluestem is less preferred by cattle than big bluestem, little bluestem, or sideoats and would therefore increase under moderate grazing before there was an increase in the other three grasses. Silver bluestem was the major midgrass species that increased over a 15-year period following reduction in grazing pressure on the Welder Wildlife Refuge (Drawe et al. 1978).

Gulf cordgrass also increased during the wet regime. This species forms almost monospecific stands in saline depressions in the coastal prairie region. Although average rainfall in the wet

scenario increased 18% over baseline, production of gulf cordgrass increased by only 4% (Table 9.3). The corresponding aboveground biomass value of 769 g/m<sup>2</sup> is probably approaching the upper limit of potential productivity of this species (Garza et al. 1994).

Of the four major species of shortgrasses, three increased (Table 9.3). Purple threeawn has a lower preference rating for cattle than many other grasses and it is not surprising that it increased under more favorable growing conditions. Buffalograss is one of the first species to begin to increase once more favorable conditions return (Box and White 1969).

Of the two major perennial forb species, one decreased and one increased. Ragweed is an upright perennial forb most abundant in lower successional semi-arid grasslands. It decreased under the wet regime, most likely because of competition from the grasses. Old-mans beard is a trailing vine that can form dense stands under mesic conditions (Drawe et al. 1978). This species increased under the wet scenario. The relative importance of these two forb species reversed between the baseline and wet scenarios. Under baseline, ragweed averaged 61 g/m<sup>2</sup> and old-mans beard averaged 6 g/m<sup>2</sup> (Table 9.3). Under the wet scenario, ragweed averaged 17 g/m<sup>2</sup> and old-mans beard averaged 70 g/m<sup>2</sup>.

## 9.1.4 Brush Management

Five brush management scenarios were simulated. In each case, the basic brush treatment was the same: 100% of the aboveground woody biomass and 50% of the aboveground herbaceous biomass were removed from all non-urban areas that initially had 30% or more woody plant cover and less than 12% slope. Brush control was simulated to occur in March of Year 1. Pecan and live oak were excluded from the brush control operation, assuming that these trees would be left as desirable species. The 50% level was selected in order to allow large live oak trees to remain on the landscape. The removal of 50% of herbaceous vegetation was included because the brush management method being simulated was root-plowing, which disturbs the soil surface thereby removing a portion of established herbaceous plants.

The five brush management scenarios were: 1) the basic brush treatment applied under the average rainfall regime (daily rainfall amounts corresponding to 1928-1952), 2) the basic brush treatment applied under average rainfall regime, but removing 50% of oak biomass, 3) the basic brush treatment applied under the dry rainfall regime (daily rainfall amounts corresponding to 1915-1939) and removing 50% of oak biomass, 4) the basic brush treatment applied under the wet rainfall regime (daily rainfall amounts corresponding to 1957-1981) and removing 50% of oak biomass, and 5) the basic brush treatment applied under the moderate rainfall regime and removing 100% of woody species from all non-urban sites (i.e., not restricted to >30% woody cover and <12% slopes).

In four of the scenarios, brush management (root-plowing) was applied only to those areas with relatively dense (30% or more cover) stands of woody species. In actual practice, this would not likely be the case on a county-wide basis. In practice, different landowners throughout the county would make brush control decisions based on conditions specific to their particular land and management goals and therefore the density of brush treated would likely vary across the county. However, simulating treatment of the densest stands throughout the county should

provide an estimate of the maximum effect that brush control might have on ecohydrology, given the specific amount of area treated. The actual area treated in each of the four brush management scenarios was 18.4% of the area of Goliad County.

Each of the affected vegetation-soil-precipitation zone cell types responded differently to the brush management scenarios, as would be expected because of the ecological diversity. The ecological responses are integrations of the vegetation and land-use mosaics over each watershed. However, reporting vegetation responses for each vegetation type would be a substantial effort. There were 91 cell types that received brush control in these simulations. Instead of reporting each individually, results of vegetation responses on four major vegetation types are presented to illustrate the effects of the brush management on vegetation (Tables 9.6-9.8).

Brush control substantially reduced woody plant biomass even after 25 years on the clay loam site (Table 9.5). Under most scenarios, mesquite recovered to less than 10% of its initial biomass and huisache was largely eliminated from this site. Recovery of all woody species combined (trees and shrubs, Table 9.5) was 9.5%. This simulation assumed 100% removal of aboveground biomass of these two species from the initial root-plowing operation. In practice, a 95% rate would be more realistic. With a 95% initial removal, mesquite regrowth would likely be at least twice that of a 100% aboveground removal. Therefore, aboveground biomass of mesquite might be 10-20% of initial conditions after 25 years and total woody species perhaps 15-25%. Based on average height of shrub stands, Drawe et al. (1978) reported a 60% recovery of brush in the chaparral-mixed grass community on the Welder Wildlife Refuge in San Patricio County 30-35 years after root-plowing and that only half that increase, or about 30% recovery, occurred in 20-25 years. Based on the data from San Patricio County, the EDYS simulation values for brush recovery seem reasonable, but slightly on the low side. Instead of 10% recovery after 25 years from 100% removal (15-25% from 95% removal), recovery would probably be more on the order of 10-15%.

| Lifeform/Species  | No BC   | 100% BC | 50% Oak | 50% Oak | 50% Oak | All Sites |
|-------------------|---------|---------|---------|---------|---------|-----------|
| 1                 | Mod PPT | Mod PPT | Mod PPT | Dry PPT | Wet PPT | Mod PPT   |
| lrees             | 1278    | 54      | 54      | 16      | 2       | 52        |
| Shrubs            | 898     | 152     | 151     | 143     | 133     | 173       |
| lidgrasses        | 67      | 231     | 231     | 168     | 337     | 274       |
| hortgrasses       | 383     | 499     | 499     | 469     | 552     | 453       |
| orbs              | 2       | 24      | 25      | 26      | 20      | 24        |
| 105               | 2       | 24      | 20      | 20      | 20      | 24        |
| tal Aboveground   | 2628    | 960     | 960     | 822     | 1044    | 976       |
| lsache            | 411     | t       | t       | t       | t       | t         |
| squite            | 867     | 54      | 54      | 16      | 1       | 52        |
| ackbrush          | 76      | t       | t       | t       | t       | t         |
| itebrush          | 291     | 1       | Õ       | 1       | t       | 3         |
| ccharis           | 27      | 5       | 5       | 12      | t       | t         |
| anjeno            | 300     | 3       | 2       | 1       | t       | 4         |
| ickly pear        | 192     | 143     | 144     | 130     | 133     | 166       |
| ver bluestem      | 57      | 174     | 173     | 120     | 250     | 169       |
| deoats grama      | 2       | 14      | 14      | 6       | 16      | 21        |
| chloris           | 7       | 8       | 8       | 11      | 32      | 6         |
| tle bluestem      | 1       | 4       | 4       | 3       | 5       | 6         |
| ins bristlegrass  | 0       | 30      | 30      | 25      | 31      | 60        |
| insongrass        | 0       | 1       | 1       | 1       | 1       | 11        |
| ple threeawn      | 255     | 277     | 277     | 287     | 290     | 276       |
| ffalograss        | 92      | 203     | 204     | 162     | 239     | 163       |
| ded windmillgrass |         | 16      | 16      | 19      | 235     | 105       |
|                   |         |         |         |         |         |           |
| ld indigo         | 0       | 16      | 16      | 16      | 14      | 17        |
| d-man's beard     | t       | 4       | 4       | 6       | 1       | 2         |

Table 9.5 Aboveground biomass (g/m<sup>2</sup>) on the clay loam plot type (38% initial woody plant cover), by lifeform and by major species, at the end of 25 years following brush management in Year 1 under five brush control scenarios<sup>1</sup>, Goliad County EDYS model.

<sup>1</sup> Brush control scenarios: No BC = no brush control (baseline, moderate rainfall); 100% BC = removal of 100% of woody species (except live oak) on sites >30% woody cover and <12% slopes; 50% Oak = removal of 100% of woody species (except 50% of live oak), on sites >30% woody cover and <12% slopes, under moderate (Mod), dry, and wet rainfall regimes; All Sites = removal of 100% of woody species (50% live oak) on all non-urban sites. Dashes (---) indicate that the species was not included in the simulation for that type. A trace amount (< 0.5 g/m<sup>2</sup>) is indicated with a "t".

The brush control scenarios increased herbaceous production substantially. Total herbaceous aboveground biomass was  $452 \text{ g/m}^2$  on the clay loam type under baseline conditions (no brush control, moderate rainfall regime) and 754 g/m<sup>2</sup> with brush control (Table 9.5), or an increase of 67% at the end of 25 years. Total aboveground herbaceous biomass in EDYS simulations includes the basal crown (trunk) biomass that is rarely sampled in clipping studies. Trunk biomass varies by species but in general accounts for about 40% of total aboveground biomass of herbaceous species in EDYS simulations (Appendix Table D.2). Adjusting the total aboveground herbaceous biomass values to clippable biomass results in values of 271 g/m<sup>2</sup> for the clay loam type under the baseline scenario and 452 g/m<sup>2</sup> with brush control, or an increase of 181 g/m<sup>2</sup> (1611 lbs/ac) in clippable biomass.

Production of midgrasses more than tripled following brush control (+ 164 g/m<sup>2</sup> = + 245%) and shortgrasses increased by 30% (+ 116 g/m<sup>2</sup>)(Table 9.5). The major increase in midgrasses was from silver bluestem, with a smaller increase in plains bristlegrass. Buffalograss was the primary

shortgrass that increased. Silver bluestem and buffalograss were two of the major species that increased on the clay and clay loam sites on the Welder Wildlife Refuge over 8 years following reduction in livestock grazing (Box 1961; Box and White 1969) and silver bluestem increases as shrub density decreases on these clay loam sites (Drawe et al. 1978).

Similar patterns occurred in the brush control scenarios under dry and wet rainfall regimes as occurred under the moderate rainfall regime (Table 9.5). Total aboveground biomass was lower under the dry regime than under the moderate regime and was higher under the wet regime. Under the dry regime, there was a smaller increase in biomass for silver bluestem, sideoats grama, plains bristlegrass, and buffalograss than under the moderate regime but a larger increase in trichloris, purple threeawn, and hooded windmillgrass. The last three species are more xeric species than the first four and would therefore be expected to be favored more, in relation to the more mesic species, by drier conditions. Conversely, silver bluestem, sideoats grama, little bluestem, and buffalograss and although more xeric than silver bluestem, it also responded favorably to the increased moisture.

Woody species did not recover as quickly under the wet regime as they did under the moderate rainfall regime. The likely reason was competition for moisture from the herbaceous species. The 100% removal of aboveground parts of the woody species effectively reduced these species to the seedling stage during early recovery. The dense stand of more rapidly growing grasses that then developed largely out-competed the small shrub plants. The trees and shrubs would be expected to continue to slowly grow and over a longer period of time would eventually replace the grasses. However, under the conditions of these simulations it will take longer than 25 years.

On the loamy bottomland site, the brush control operations effectively reduced the target woody species (Table 9.6). Under the 100% brush control scenario, no live oak was removed. Under these conditions, Johnsongrass and greenbriar (*Smilax bona-nox*) dominated the understory community. Production of other herbaceous species, except for the perennial grass brownseed paspalum and the vine-like old-man's beard, was reduced compared to baseline conditions. When 50% of the live oak was removed, Johnsongrass and brownseed paspalum increased even more, greenbriar production remained about the same, but production of old-man's beard decreased. The dry regime favored most of the other grasses at the expense of Johnsongrass, but both greenbriar and old-man's beard increased.

Johnsongrass strongly dominated the herbaceous community under the wet regime, producing 70% of the aboveground biomass of all herbaceous species combined. Plains bristlegrass and old-man's beard also increased under the wet regime, but at a lesser rate than Johnsongrass. The plant community developing under the wet regime consisted of a discontinuous overstory of live oak trees with a dense stand of grasses, mostly Johnsongrass, as an understory. Aboveground biomass of grasses and grass-likes was 740 g/m<sup>2</sup>, or about 440 g/m<sup>2</sup> (4000 lbs/ac) clippable. This level of annual herbaceous production is typical of bluestem grasslands in mesic regions of Kansas, Louisiana, and Oklahoma (340-420 g/m<sup>2</sup>: Grelen and Epps 1967; Hazell 1967; Brummer et al. 1988; Briggs and Knapp 1995) and almost as much as improved pastures on the Coastal Plains (500-1100 g/m<sup>2</sup>; McCawley 1978, Kapinga 1982).

| Lifeform/Species    | No BC   | 100% BC | 50% Oak | 50% Oak | 50% Oak  | All Sites |
|---------------------|---------|---------|---------|---------|----------|-----------|
|                     | Mod PPT | Mod PPT | Mod PPT | Dry PPT | Wet PPT  | Mod PPT   |
| Trees               | 6028    | 3315    | 1670    | 1636    | 1576     | 2435      |
| Shrubs              | 739     | 253     | 249     | 256     | 253      | 2435      |
| Midgrasses          | 388     | 486     | 519     | 450     | 708      | 515       |
| Shortgrasses        | 4       | 34      | 42      | 19      | 31       | 33        |
| Grass-Likes         | 230     | 11      | 42      | 5       | 1        | 1         |
| Forbs               | 230     | 234     | 208     | 289     | 110      | 194       |
| FOLDS               | 24      | 234     | 200     | 209     | 110      | 194       |
| Total Aboveground   | 7413    | 4333    | 2689    | 2655    | 2679     | 3429      |
| Huisache            | 536     | t       | t       | t       | t        | t         |
| Pecan               | 820     | 5       | 6       | 2       | t        | 771       |
| Sugar hackberry     | 747     | 1       | 1       | 1       | t        | 1         |
| Mesquite            | 375     | 3       | 4       | 1       | t        | 3         |
| Live oak            | 3550    | 3308    | 1659    | 1632    | 1575     | 1659      |
| Whitebrush          | 343     | t       | t       | t       | t        | t         |
| Baccharis           | 45      | t       | t       | t       | t        | t         |
| Granjeno            | 81      | t       | t       | t       | t        | t         |
| Mustang grape       | 270     | 253     | 248     | 256     | 253      | 250       |
| Big bluestem        | 115     | 18      | 14      | 31      | 7        | 13        |
| Sideoats grama      | 162     | 50      | 41      | 38      | 6        | 33        |
| Switchgrass         | 14      | 10      | 10      | 10      | 7        | 10        |
| Little bluestem     | 94      | 56      | 49      | 60      | 49       | 44        |
| Plains bristlegrass | 0       | 22      | 22      | 14      | 42       | 21        |
| Johnsongrass        | 0       | 324     | 378     | 291     | 592      | 390       |
| Brownseed paspalum  | 0       | 27      | 32      | 11      | 2        | 28        |
| Texas wintergrass   | t       | t       | t       | t       | 24       | t         |
|                     |         | č       | 6       | 5       | <u> </u> | 5         |
| Flatsedge           | 230     | 11      | 1       | 5       | 1        | 1         |
| Old-man's beard     | 5       | 28      | 6       | 35      | 40       | 13        |
| Greenbriar          | 17      | 204     | 200     | 255     | 69       | 179       |

Table 9.6 Aboveground biomass (g/m<sup>2</sup>) on the loamy bottomland type (63% initial woody plant cover), by lifeform and by major species, at the end of 25 years following brush management in Year 1 under five brush control scenarios<sup>1</sup>, Goliad County EDYS model.

<sup>1</sup> Brush control scenarios: No BC = no brush control (baseline, moderate rainfall); 100% BC = removal of 100% of woody species (except live oak) on sites >30% woody cover and <12% slopes; 50% Oak = removal of 100% of woody species (except 50% of live oak), on sites >30% woody cover and <12% slopes, under moderate (Mod), dry, or wet rainfall regimes; All Sites = removal of 100% of woody species (50% live oak and 0% pecan) on all non-urban areas.

Dashes (---) indicate that the species was not included in the simulation for that type. A trace amount ( $<0.5 \text{ g/m}^2$ ) is indicated with a "t".

Brush control had less of a positive effect on herbaceous production on both the tight sandy loam type (Table 9.7) and the loamy sand type (Table 9.8). When 50% of the oak was removed under the moderate rainfall regime there was only a 3% increase in herbaceous production on the tight sandy loam type and a 4% increase on the loamy sand type. This was likely because the woody species were primarily utilizing deeper soil moisture, rather than shallower moisture that was also in the rooting zone of the herbaceous species. Therefore, removal of the woody species had little effect on the amount of moisture available to the herbaceous species.

| Lifeform/Species  | No BC   | 100% BC | 50% Oak | 50% Oak   | 50% Oak | All Sites |
|-------------------|---------|---------|---------|-----------|---------|-----------|
| 1                 | Mod PPT | Mod PPT | Mod PPT | Dry PPT   | Wet PPT | Mod PPT   |
| Trees             | 2952    | 1947    | 1118    | 942       | 941     | 1010      |
| Shrubs            | 397     | 37      | 39      | 942<br>61 | 41      | 39        |
| Midgrasses        | 547     | 578     | 580     | 493       | 493     | 580       |
| Shortgrasses      | 284     | 277     | 276     | 296       | 493     | 278       |
| Forbs             | 204     | 5       | 278     | 298       | 408     | 278       |
| FULDS             | 4       | 5       | 0       | 0         | 5       | 0         |
| Total Aboveground | 4184    | 2844    | 1919    | 1798      | 1888    | 1913      |
| Mesquite          | 1078    | 18      | 25      | 18        | t       | 9         |
| Live oak          | 1874    | 1929    | 993     | 923       | 941     | 1001      |
| Blackbrush        | 113     | t       | t       | t         | t       | t         |
| Granjeno          | 254     | t       | t       | t         | t       | t         |
| Prickly pear      | 30      | 36      | 38      | 61        | 41      | 38        |
| Silver bluestem   | 323     | 304     | 314     | 248       | 271     | 309       |
| Sideoats grama    | 2       | 66      | 62      | 95        | 55      | 79        |
| Trichloris        | 224     | 207     | 202     | 147       | 166     | 190       |
| Purple threeawn   | 276     | 273     | 272     | 292       | 281     | 273       |
| Hairy grama       | 6       | 2       | 1       | 1         | 125     | 1         |

Table 9.7 Aboveground biomass (g/m<sup>2</sup>) on the tight sandy loam type (38% initial woody plant cover), by lifeform and by major species, at the end of 25 years following brush management in Year 1 under five brush control scenarios<sup>1</sup>, Goliad County EDYS model.

<sup>1</sup> Brush control scenarios: No BC = no brush control (baseline, moderate rainfall); 100% BC = removal of 100% of woody species (except live oak) on sites >30% woody cover and <12% slopes; 50% Oak = removal of 100% woody species (except 50% of live oak), on sites >30% woody cover and <12% slopes, under moderate (mod), dry, and wet rainfall regimes; All Sites = removal of 100% of woody species (50% live oak) on all non-urban areas. Dashes (---) indicate that the species was not included in the simulation for that type.

A trace amount ( $< 0.5 \text{ g/m}^2$ ) is indicated with a "t".

| Lifeform/Species    | No BC   | 100% BC | 50% Oak | 50% Oak | 50% Oak | All Sites |
|---------------------|---------|---------|---------|---------|---------|-----------|
| -                   | Mod PPT | Mod PPT | Mod PPT | Dry PPT | Wet PPT | Mod PPT   |
|                     |         | 1050    | 04.65   | 1000    | 1000    |           |
| Trees               | 4695    | 4056    | 2167    | 1998    | 1998    | 2098      |
| Shrubs              | 324     | 119     | 117     | 121     | 117     | 117       |
| Midgrasses          | 471     | 400     | 460     | 513     | 597     | 426       |
| Shortgrasses        | 256     | 254     | 299     | 215     | 300     | 310       |
| Forbs               | 5       | 4       | 5       | 4       | 1       | 4         |
| Total Aboveground   | 5751    | 4873    | 2968    | 2851    | 3013    | 2955      |
| Mesquite            | 826     | 3       | 5       | 1       | t       | 4         |
| Live oak            | 3869    | 4053    | 2082    | 1997    | 1998    | 2094      |
| Granjeno            | 220     | t       | t       | t       | t       | t         |
| Mustang grape       | 66      | 83      | 81      | 84      | 81      | 81        |
| Prickly pear        | 38      | 36      | 36      | 38      | 36      | 36        |
| Silver bluestem     | 40      | 30      | 32      | 35      | 55      | 34        |
| Sideoats grama      | 313     | 248     | 303     | 351     | 410     | 267       |
| Switchgrass         | 4       | 3       | 4       | 4       | 8       | 4         |
| Little bluestem     | 114     | 115     | 118     | 122     | 123     | 113       |
| Plains bristlegrass | 0       | 3       | 3       | 4       | 2       | 7         |
| Purple threeawn     | 254     | 250     | 255     | 169     | 275     | 250       |
| Brownseed paspalum  | 0       | 41      | 41      | 44      | 23      | 55        |

Table 9.8 Aboveground biomass (g/m<sup>2</sup>) on the loamy sand type (38% initial woody plant cover), by lifeform and by major species, at the end of 25 years following brush management in Year 1 under five brush control scenarios<sup>1</sup>, Goliad County EDYS model.

<sup>1</sup> Brush control scenarios: No BC = no brush control (baseline, moderate rainfall); 100% BC = removal of 100% of woody species (except live oak) on sites >30% woody cover and <12% slopes; 50% Oak = removal of 100% of woody species (except 50% live oak) on sites >30% woody cover and <12% slope, under moderate (Mod), dry, and wet rainfall regimes; All Sites = removal of 100% woody species (50% live oak) on all non-urban sites. Dashes (---) indicate that the species was not included in the simulation for that type.

A trace amount ( $< 0.5 \text{ g/m}^2$ ) is indicated with a "t".

Under most of the brush control scenarios, herbaceous production was higher on the tight sandy loam type (Table 9.7) than on the loamy sand type (Table 9.8). This was the result of the higher sand content on the loamy sand type. Conversely, woody plant production was higher on the loamy sand type than on the tight sandy loam type. This was in response to higher soil moisture at deeper soil depths on the sand.

The vegetation relationships mentioned in this section up to this point are comparisons at the end of the 25 years. The model also simulates successional dynamics during the 25 years that occur in each of these types. For example, hooded windmillgrass, plains bristlegrass, and Johnsongrass are early- to mid-seral species on the clay loam type. Their abundance increases following brush control and then begins to decrease as other species become more abundant. Conversely, silver bluestem and buffalograss tend to increase later in succession. These were the responses simulated in the brush control scenarios (Fig. 9.1). Likewise, bushy bluestem (*Andropogon glomeratus*) is an early-seral species on the wetter sites. On the bottomland site following brush control, bushy bluestem production was 8 g/m<sup>2</sup> in the first year, increased to 63 g/m<sup>2</sup> by the fifth year, and then decreased to 2 g/m<sup>2</sup> by Year 25.

**FINAL REPORT** 

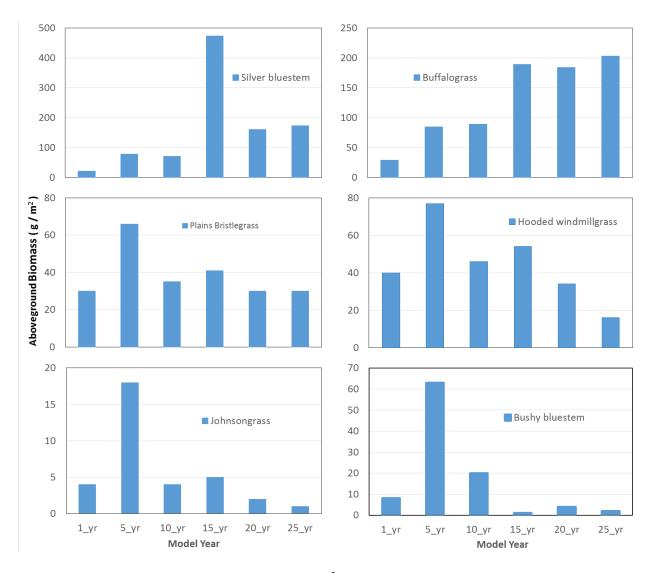



Figure 9.1 Changes in aboveground biomass (g/m<sup>2</sup>) of selected herbaceous species on the clay loam and loamy bottomland (bushy bluestem) type over a 25-year simulation following brush control under a moderate rainfall regime, Goliad County EDYS model.

#### 9.2 Ecohydrology

#### 9.2.1 Water Balance: Average Rainfall

Rainfall averaged 32.76 inches per year over the 25-year simulation under the average rainfall regime (Table 9.9). The difference in this amount from the 33.77 inches in the stated average rainfall scenario (Section 9.0) was the result of spatial variability across the County (Section 4.2). An average of 1.3% of annual rainfall left the landscape as surface runoff. This is about half as much as reported from gauged watersheds in San Patricio County (Ockerman 2002). The gauged watersheds in San Patricio County were much smaller than the area included in the Goliad County simulations and runoff would be expected to decrease across large landscapes because of increased surface roughness and longer transport distances. Evapotranspiration (ET)

was 16% more than rainfall when averaged over the 25 years (Table 9.9). This was possible because of a relatively high amount of groundwater use by the vegetation and by extraction of stored soil moisture. Groundwater use equaled almost 12% of annual rainfall and thus accounted for almost 75% of the amount that ET exceeded rainfall (12 out of 16 percentage points).

| Table 9.9 Annual fluctuations in simulated hydrologic variables averaged over the entire Goliad |
|-------------------------------------------------------------------------------------------------|
| County under the baseline (average rainfall regime) conditions.                                 |

| Year | Rainfall | Rainfall  | Runoff          | Runoff/  | ET        | ET/      | GW Use           | GW Use/ | Net Soil        |
|------|----------|-----------|-----------------|----------|-----------|----------|------------------|---------|-----------------|
|      | (inches) | (ac-ft)   | (ac-ft)         | Rainfall | (ac-ft)   | Rainfall | (ac-ft)          | ET      | Storage (ac-ft) |
|      |          | 1 050 050 |                 |          | 1 600 010 |          |                  |         |                 |
| 01   | 30.36    | 1,378,370 | 13,188          | 0.010    | 1,682,213 | 1.248    | 424,164          | 0.252   | + 107,133       |
| 02   | 41.64    | 1,889,942 | 37,880          | 0.020    | 2,007,592 | 1.062    | 197,197          | 0.098   | + 41,667        |
| 03   | 24.70    | 1,120,559 | 794             | 0.001    | 1,637,262 | 1.461    | 228 <b>,</b> 397 | 0.138   | - 289,100       |
| 04   | 39.34    | 1,784,981 | 50 <b>,</b> 335 | 0.028    | 1,893,274 | 1.061    | 176 <b>,</b> 053 | 0.094   | + 17,425        |
| 05   | 33.79    | 1,578,504 | 27,986          | 0.018    | 1,887,143 | 1.196    | 193,431          | 0.103   | - 143,194       |
| 06   | 30.54    | 1,385,587 | 10,384          | 0.007    | 1,783,913 | 1.287    | 196 <b>,</b> 237 | 0.110   | - 212,473       |
| 07   | 39.46    | 1,790,059 | 37,024          | 0.021    | 1,672,730 | 0.934    | 179 <b>,</b> 817 | 0.107   | + 260,122       |
| 08   | 40.24    | 1,825,392 | 15 <b>,</b> 577 | 0.009    | 2,153,829 | 1.180    | 154,269          | 0.072   | - 189,475       |
| 09   | 35.71    | 1,620,658 | 12,128          | 0.007    | 2,047,857 | 1.264    | 168,963          | 0.083   | - 270,364       |
| 10   | 25.20    | 1,143,483 | 6,861           | 0.006    | 1,214,303 | 1.062    | 170,726          | 0.141   | + 93,045        |
| 11   | 24.70    | 1,120,640 | 25,690          | 0.023    | 1,523,016 | 1.359    | 159,143          | 0.104   | - 268,923       |
| 12   | 20.42    | 926,631   | 8,687           | 0.009    | 1,321,310 | 1.426    | 161,881          | 0.123   | - 241,485       |
| 13   | 38.61    | 1,751,956 | 18,797          | 0.011    | 1,660,962 | 0.948    | 143,372          | 0.086   | + 215,569       |
| 14   | 40.94    | 1,858,033 | 5,374           | 0.003    | 2,187,408 | 1.177    | 130,144          | 0.060   | - 204,605       |
| 15   | 39.02    | 1,770,682 | 61,625          | 0.035    | 1,947,041 | 1.100    | 142,871          | 0.073   | - 95,113        |
| 16   | 32.43    | 1,471,614 | 5,668           | 0.004    | 1,605,112 | 1.091    | 139,490          | 0.087   | + 324           |
| 17   | 31.66    | 1,436,587 | 7,400           | 0.005    | 1,775,597 | 1.236    | 144,795          | 0.082   | - 201,615       |
| 18   | 27.70    | 1,256,563 | 2,128           | 0.002    | 1,537,608 | 1.224    | 140,001          | 0.091   | - 143,172       |
| 19   | 44.86    | 2,035,293 | 22,274          | 0.011    | 2,114,782 | 1.039    | 143,689          | 0.068   | + 41,936        |
| 20   | 30.08    | 1,364,976 | 11,949          | 0.009    | 1,648,704 | 1.208    | 145,033          | 0.088   | - 150,644       |
| 21   | 25.30    | 1,147,991 | 284             | 0.000    | 1,607,639 | 1.400    | 157,903          | 0.098   | - 302,029       |
| 22   | 36.29    | 1,646,512 | 4,994           | 0.003    | 1,757,201 | 1.067    | 152,776          | 0.087   | + 37,093        |
| 23   | 17.04    | 773,153   | 3,110           | 0.004    | 1,279,204 | 1.655    | 158,559          | 0.124   | - 350,602       |
| 24   | 33.23    | 1,507,469 | 54,365          | 0.036    | 1,567,823 | 1.040    | 148,307          | 0.095   | + 33,588        |
| 25   | 35.81    | 1,624,816 | 33,199          | 0.020    | 1,642,890 | 1.011    | 148,522          | 0.090   | + 97,249        |
| Mean | 32.76    | 1,487,218 | 19,094          | 0.013    | 1,726,256 | 1.161    | 172,230          | 0.100   | - 85,902        |

Rainfall Year is the year from which the annual rainfall data were taken.

ET = evapotranspiration. GW Use = groundwater used by vegetation in transpiration (included as part of ET). Net Soil Storage = Rainfall + GW Use – ET - Runoff.

The remaining amount of ET in excess of rainfall came from extraction of stored soil moisture. On average, there was an annual deficit of 85,900 acre-feet of soil moisture per year (Table 9.9). EDYS begins a simulation with a specified amount of soil moisture in each soil layer. This amount can be set at any level but is commonly set at 50% of field capacity for each layer. The amount of water corresponding to this level of soil moisture in each soil layer is available to plants for those layers within the rooting zone of each particular species. In this baseline scenario for the Goliad County model, there was soil moisture recharge in 11 years and an annual deficit in 14 years (Table 9.9). Both the direction and magnitude of this annual dynamic is dependent on a number of factors, including amount of rainfall, when the rainfall occurred, and vegetation composition and production.

In the baseline simulation, there was a net deficit over the 25 years and a deficit cannot be continued indefinitely. Over a sufficiently long period, soil moisture would eventually be

depleted and vegetation would adjust to a level and composition that could be supported by rainfall and groundwater only. The 85,900 acre-feet of annual deficit simulated in the baseline scenario for the entire County equals an average of 1.58 inches of soil water per year. At a 20% average field capacity, this equals to a dewatering rate of 7-8 inches per year. In 10-15 years, this rate would effectively dewater the rooting zone of most grasses and therefore make them dependent only on annual rainfall in most years. Deeper rooted woody species would continue to have access to deeper soil moisture for several decades longer and on groundwater as long as the water table did not decrease substantially.

Annual rainfall varied between 17.04 and 44.86 inches in the simulation and this variation resulted in substantial hydrologic variability (Table 9.9). Runoff was less than 1000 acre-feet county-wide in two years and was more than 50,000 acre-feet in three years. ET varied from less than 1.3 million acre-feet to almost 2.2 million acre-feet and from 93% of annual rainfall to 146% of annual rainfall. Groundwater use by vegetation varied between 130,000 acre-feet and 424,000 acre-feet.

## 9.2.2 Runoff

Runoff varied by year (Table 9.9) and under the different scenarios (Table 9.10). Annual variation resulted in large part because of 1) changes in amount of rainfall, 2) timing of the rainfall, and 3) changes in vegetation.

| Scenario                  | Annual Runoff | Runoff/Acre/Yr | Annual Rainfall | Runoff/Rainfall |
|---------------------------|---------------|----------------|-----------------|-----------------|
|                           | (ac-ft)       | (inches)       | (inches)        |                 |
| Baseline                  | 19,094        | 0.42           | 32.76           | 0.013           |
| Dry Regime                | 15,900        | 0.35           | 29.80           | 0.012           |
| Wet Regime                | 34,477        | 0.76           | 37.99           | 0.020           |
| Brush Control             |               |                |                 |                 |
| 100% Oak; Ave PPT         | 19,101        | 0.42           | 32.76           | 0.013           |
| 50% Oak; Ave PPT          | 19,121        | 0.42           | 32.76           | 0.013           |
| 50% Oak; Dry PPT          | 15,923        | 0.35           | 29.80           | 0.012           |
| Brush Control, No Grazing |               |                |                 |                 |
| 50% Oak; Ave PPT          | 19,043        | 0.42           | 32.76           | 0.013           |
| Maximum Brush Control     |               |                |                 |                 |
| All non-urban areas       | 19,149        | 0.42           | 32.76           | 0.013           |
| Cultivation 6.5% of Area  | 18,897        | 0.41           | 32.76           | 0.013           |
| Cultivation 21% of Area   | 18,281        | 0.40           | 32.76           | 0.013           |

Table 9.10 Annual rainfall (inches) and annual runoff (acre-feet) averaged over the entire GoliadCounty under various 25-year EDYS simulations.

Brush Control scenarios include 100% removal of all woody species except live oak. The amount of live oak removed is either 100% or 50%.

Cultivation scenarios replaced 6.5% or 21% of current vegetation in the County with cultivated land.

Average annual rainfall amounts in Table 9.10 do not equal those listed for the scenarios because of spatial variation over the County. The amounts listed for the scenarios are for the Goliad station.

Runoff decreased in drier years and increased in wetter years (Table 9.11). On average, runoff in dry years (average rainfall = 24 inches) decreased by 64% compared to runoff in moderate-rainfall years when rainfall averaged 40% more (mean = 33 inches). Runoff in wet years averaged 72% more than runoff in moderate-rainfall years. Rainfall increased by an average of 23% in these wet years compared to moderate rainfall years. By comparison, a 43% increase in annual rainfall resulted in a 57% increase in runoff on cultivated clay sites in Kleberg and Nueces Counties (Ockerman and Petri 2001). On average in the Goliad model simulations, one inch of annual rainfall resulted in 228 acre-feet of runoff in dry years, 549 acre-feet in moderate-rainfall years.

| Table 9.11 Annual runoff (acre-feet, county-wide), annual rainfall (inches), and previous-year  |
|-------------------------------------------------------------------------------------------------|
| rainfall (inches) in EDYS simulations for dry, moderate, and high rainfall years, Goliad County |
| EDYS model.                                                                                     |

| nnual<br>infall<br>7.04<br>0.42<br>4.70<br>4.70 | y Years (<<br>Annual<br>Runoff<br>3,110<br>8,687<br>794<br>25,690 | Previous<br>Rainfall<br>36.29<br>24.70<br>41.64<br>25.20 | Annual<br>Rainfall<br>30.08<br>30.36<br>30.54 | lerate (29-3<br>Annual<br>Runoff<br>11, 949<br>13, 188<br>10, 384 | Previous<br>Rainfall<br>44.86<br><br>33.79  | Annual<br>Rainfall<br>38.61<br>39.02<br>39.34   | Annual<br>Runoff<br>18,797<br>61,625                 | Previous<br>Rainfall<br>20.42<br>40.94                     |
|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|
| 7.04<br>0.42<br>4.70                            | 3,110<br>8,687<br>794                                             | 36.29<br>24.70<br>41.64                                  | 30.08<br>30.36<br>30.54                       | 11,949<br>13,188                                                  | 44.86                                       | 38.61<br>39.02                                  | 18,797<br>61,625                                     | 20.42                                                      |
| ).42<br>4.70                                    | 8,687<br>794                                                      | 24.70<br>41.64                                           | 30.36<br>30.54                                | 13,188                                                            |                                             | 39.02                                           | 61 <b>,</b> 625                                      |                                                            |
| ).42<br>4.70                                    | 8,687<br>794                                                      | 24.70<br>41.64                                           | 30.36<br>30.54                                | 13,188                                                            |                                             | 39.02                                           | 61 <b>,</b> 625                                      |                                                            |
|                                                 |                                                                   |                                                          |                                               | 10,384                                                            | 33 79                                       | 20 24                                           |                                                      |                                                            |
| 4.70                                            | 25,690                                                            | 25 20                                                    |                                               |                                                                   | 55.15                                       | 39.34                                           | 50,335                                               | 24.70                                                      |
|                                                 |                                                                   | 23.20                                                    | 31.66                                         | 7,400                                                             | 32.43                                       | 39.46                                           | 37,024                                               | 30.54                                                      |
| 5.20                                            | 6,861                                                             | 35.71                                                    | 32.43                                         | 5,668                                                             | 39.02                                       | 40.24                                           | 15 <b>,</b> 577                                      | 39.46                                                      |
| 5.30                                            | 284                                                               | 30.08                                                    | 33.23                                         | 54,365                                                            | 17.04                                       | 40.94                                           | 5,374                                                | 38.61                                                      |
| 7.70                                            | 2,128                                                             | 31.66                                                    | 33.79                                         | 27,986                                                            | 39.34                                       | 41.64                                           | 37,880                                               | 30.36                                                      |
|                                                 |                                                                   |                                                          | 35.71                                         | 12,128                                                            | 40.24                                       | 44.86                                           | 22,274                                               | 27.70                                                      |
|                                                 |                                                                   |                                                          | 35.81                                         | 33,199                                                            | 33.23                                       |                                                 |                                                      |                                                            |
|                                                 |                                                                   |                                                          | 36.29                                         | 4,994                                                             | 25.30                                       |                                                 |                                                      |                                                            |
| 3.58                                            | 6,793                                                             | 32.18                                                    | 32.99                                         | 18,126                                                            | 33.92                                       | 40.50                                           | 31,111                                               | 31.59                                                      |
|                                                 |                                                                   |                                                          |                                               | 35.71<br>35.81<br>36.29                                           | 35.71 12,128<br>35.81 33,199<br>36.29 4,994 | 35.7112,12840.2435.8133,19933.2336.294,99425.30 | 35.7112,12840.2444.8635.8133,19933.2336.294,99425.30 | 35.7112,12840.2444.8622,27435.8133,19933.2336.294,99425.30 |

Although there was a strong relationship between runoff and average annual rainfall, there was high variation among years (Table 9.11). The four lowest runoff years occurred in the dry rainfall group, as would be expected. However, one dry year that received 24.7 inches of rainfall had as much runoff as a moderate-rainfall year that received 33.8 inches and more runoff than four of the high-rainfall years. Three of the high-rainfall years that received about the same amount of rainfall (40.2, 40.9, and 41.6 inches) had annual runoff that varied between 5,374 and 37,880 acre-feet. This among-year variability in runoff was not likely to have been the result of antecedent rainfall because average previous-year rainfall was similar among the three categories (dry, moderate, wet) and there was no consistent relationship among amount of runoff, previous-year rainfall, and annual rainfall.

The factors that most likely affected runoff on an annual basis were timing of the rainfall and vegetation condition at the time of rainfall. For example, annual rainfall was similar in Years 16 (1943 = 32.4 inches) and 24 (1951 = 33.2 inches), but annual runoff in Year 16 was 5,668 acrefeet compared to 54,365 acrefeet in Year 24 (Table 9.9). Monthly rainfall in Year 16 (1943) was less than 5 inches, except for May when it was about 6 inches. In Year 24 by contrast, nearly 9 inches was received in May and over 13 inches was received in September. Vegetation cover in Year 24 (1951) was low because of the beginning of the dought of the 1950s. Therefore, Year 24 received high rainfall in two months and had relatively low herbaceous

cover, resulting in high runoff. Rainfall in Year 16 (1943) was more uniform and herbaceous cover was higher because the three previous years received above average rainfall. Consequently, runoff in Year 16 was low.

Under the dry scenario (29.80 inches average annual rainfall), annual runoff decreased by about 3,100 acre-feet compared to baseline (32.76 inches average annual rainfall; Table 9.10). This was a 17% decrease in runoff corresponding to a 9% decrease in average annual rainfall. This response ratio to decreased rainfall over a 25-year period (17% decrease in runoff/9% decrease in rainfall = 1.9) is similar to the ratio indicated in the dry vs. moderate periods of the baseline scenario (64%/29% = 2.2; Table 9.11). Therefore, surface runoff may be expected to decrease at a rate (% basis) equal to twice that of the decrease in rainfall.

Under the wet scenario (37.99 inches average annual rainfall), annual runoff increased by about 15,500 acre-feet compared to baseline (Table 9.10). This was an 81% increase in runoff corresponding to a 16% increase in rainfall sustained over 25 years. This equals a 5.1 response ratio (81% increase in runoff/16% increase in rainfall = 5.06). The corresponding numbers for the moderate and wet years within the baseline scenario (Table 9.11) are a 61% increase in runoff at a 23% increase in rainfall, or a response ratio of 2.7 (61%/23%). The higher response ratio under the wet scenario was because there were more extreme events in the wet scenario. The wet scenario had 10 years (40%) receiving more than 42 inches per year, whereas only one year in eight (13%) exceeded 42 inches in the wet-year grouping under baseline conditions (Table 9.11), and five of the 25 years (20%) under the wet scenario received more than 50 inches of rainfall. Under rangeland conditions on the central Texas Coast, rainfall events of more than 4 inches produced six times as much surface runoff as moderate events (1.9-2.6 inches; Ockerman 2002). The response ratio in that study was 2.5 over a period of two years. That was very similar to the 2.7 response ratio for the EDYS simulations over the eight wet years of the baseline scenario.

Brush control had very little impact on surface runoff, under either average or dry rainfall scenarios (Table 9.10). This result was because herbaceous vegetation did not increase substantially following brush control. Woody plants have a substantial impact on ET and groundwater use, but herbaceous cover has a greater impact on influencing surface runoff. To achieve an increase in herbaceous cover following brush control, it is necessary to decrease livestock grazing for a long enough period (1-3 years) to allow the grasses to recover from the root plowing and to respond to the decrease in woody species. Without this rest period, livestock will consume the new growth before the plants can develop increased perennial structures. In many areas, reseeding of grasses is also required to achieve an increase in grass production in a reasonable period (e.g., less than 10 years).

Another brush control scenario was run to determine the effect of livestock grazing on hydrology following brush control. This scenario (Brush Control, No Grazing: Table 9.10) was the same as the 50% oak, average rainfall brush control scenario except that all livestock grazing was eliminated from the treated areas. It would not be practical to eliminate all livestock grazing for 25 years, but this scenario was run to determine what the maximum effect would be. Runoff decreased by almost 90 acre-feet per year (Table 9.10).

The brush control treatments were applied to about 102,400 acres county-wide (18% of the area) and these treated areas formed a mosaic throughout the county. Part of any increase in runoff from treated acreage can be reduced as it moves onto an adjacent untreated area, thereby reducing the overall effect of brush control on runoff. This also likely contributed to the minor effect of brush control on surface runoff.

There is relatively little cultivated land in Goliad County (8,527 acres; Wiedenfeld 2010). The normal scenarios used in EDYS applications to evaluate potential impacts from cultivation are to increase or decrease cultivation by a specified percentage, usually 25 or 50%. However, with such a small acreage of cultivated land included in baseline, increasing or decreasing this amount by 50% was not likely to have a noticeable effect on county-wide hydrology. Instead, two cultivation scenarios were run for Goliad County to evaluate potential impacts of cultivation on hydrology. In both scenarios, native vegetation was replaced by cultivated land (grain sorghum as a crop). In one scenario, cultivated land was increased to equal 6.5% of the total area in the county and in the other scenario 21% of the area of the county was placed into cultivation.

More land in Goliad County was under cultivation in the past. In 1954, 43,334 acres were under cultivation, mostly in corn, cotton, and milo (Dallas Morning News 1958), or about 7.9% of the area of the County. Cultivated acreage decreased substantially during and following the drought of the 1950s. Between 1950 (first year of the drought) and 1954, cultivated acreage had decreased by almost 10%. Therefore, the 6.5% area under cultivation scenario approximates the amount of cultivated land in Goliad County in the mid-1950s. The maximum potential amount of cultivated land in Goliad County, based on the USDA prime farmland classification (Wiedenfeld 2010:107), is 392,735 acres or nearly 71% of the County. Therefore, the 21% area under cultivation scenario would include about 30% of the maximum potential.

An increase in cultivation decreased surface runoff on a county-wide basis, but only by a small amount (Table 9.10). When cultivation was increased to 6.5% of the county (about 36,000 acres under cultivation), average annual runoff decreased by about 200 acre-feet. When cultivation was increased to 21% of the county (about 114,400 acres), average runoff decreased by about 820 acre-feet, compared to baseline. Surface runoff is generally lower from cultivated land than from areas covered in native vegetation because cultivation increases the porosity of the surface soil, thereby increasing infiltration, and cultivation generally reduces average slope. Furrowing also decreases runoff to be substantially lower on cultivated subwatersheds in Kleberg and Nueces Counties of South Texas, compared to adjacent rangeland subwatersheds.

#### 9.2.3 Evapotranspiration

Evapotranspiration (ET) averaged 38.0 inches over the 25-year simulation period under baseline conditions, or about 116% of annual rainfall, but varied substantially from year to year (Table 9.9). In dry years (annual rainfall less than 29 inches), ET averaged 31.9 inches, 38.4 inches in moderate-rainfall years, and 43.1 inches in wet years (more than 38 inches)(Table 9.12). Although ET increased as rainfall increased, the ratio of annual ET:annual rainfall decreased (1.37 in dry years, 1.17 in moderate, and 1.06 in wet years; Table 9.12). This decrease was the

result of rainfall becoming increasingly sufficient to supply the moisture requirements of the vegetation, i.e., less groundwater was required.

Table 9.12 Annual evapotranspiration (ET; acre-feet, county-wide), annual rainfall (inches), and previous-year rainfall (inches) in EDYS simulations for dry, moderate, and high rainfall years, Goliad County EDYS model.

|      | Dı       | y Years | (< 29 i  | n)       | Ν        | /loderat | e (29-38 | in)      | Wet      | Years (> | 38 in)  |            |
|------|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|---------|------------|
|      | Annual   | Annual  | ET/      | Previous | Annual   | Annua    | I ET/    | Previous | Annual   | Annual   | ET/     | Previous   |
|      | Rainfall | ET 1    | Rainfall | Rainfall | Rainfall | ET       | Rainfall | Rainfall | Rainfall | ET I     | Rainfal | l Rainfall |
|      |          |         |          |          |          |          |          |          |          |          |         |            |
|      | 17.04    | 28.20   | 1.66     | 36.29    | 30.08    | 36.36    | 1.21     | 44.86    | 38.61    | 36.60    | 0.95    | 20.42      |
|      | 20.42    | 29.16   | 1.43     | 24.70    | 30.36    | 37.08    | 1.25     |          | 39.02    | 42.95    | 1.10    | 40.94      |
|      | 24.70    | 33.60   | 1.36     | 41.64    | 30.54    | 39.36    | 1.29     | 33.79    | 39.34    | 41.63    | 1.06    | 24.70      |
|      | 24.70    | 36.12   | 1.46     | 25.20    | 31.66    | 39.12    | 1.24     | 32.43    | 39.46    | 36.84    | 0.93    | 30.54      |
|      | 25.20    | 26.76   | 1.06     | 35.71    | 32.43    | 35.39    | 1.09     | 39.02    | 40.24    | 47.39    | 1.18    | 39.46      |
|      | 25.03    | 35.40   | 1.40     | 30.08    | 33.23    | 34.56    | 1.04     | 17.04    | 40.94    | 48.23    | 1.18    | 38.61      |
|      | 27.70    | 33.84   | 1.22     | 31.66    | 33.79    | 41.63    | 1.20     | 39.34    | 41.64    | 44.29    | 1.06    | 30.36      |
|      |          |         |          |          | 35.71    | 45.12    | 1.26     | 40.24    | 44.86    | 46.56    | 1.04    | 27.70      |
|      |          |         |          |          | 35.81    | 36.23    | 1.01     | 33.23    |          |          |         |            |
|      |          |         |          |          | 36.29    | 38.75    |          | 25.30    |          |          |         |            |
| Mean | 23.58    | 31.87   | 1.37     | 32.18    | 32.99    | 38.36    | 1.17     | 33.92    | 40.50    | 43.06    | 1.06    | 31.59      |

When groundwater is too depth for any significant use by vegetation, vegetation is dependent on precipitation, both current-year and stored soil moisture unused from previous years. This effectively limits maximum ET to an average of about 1.00 of annual precipitation when averaged over several years. Annual ET can exceed annual precipitation is some years because of use of stored moisture. For example, ET in a mesquite-granjeno shrubland in South Texas was 1.06 of annual rainfall in a dry year (13.0 inches ET) compared to 0.99 in a wet year (ET = 34.6 inches)(Weltz and Blackburn 1995). In the Rolling Plains of Texas, the annual ET:rainfall ratio varied over a three-year study period between 0.81 and 1.12 on a mesquite-grassland site and between 0.86 and 1.19 on an adjacent grassland site (Carlson et al. 1990).

Conversely, when groundwater is within reach of the vegetation root systems ET generally exceeds annual precipitation. The amount that it exceeds annual precipitation is dependent on depth to groundwater and the maximum productivity (and therefore maximum water requirement) of the vegetation. Mesquite woodland in southeastern Arizona had 33.4 inches of annual ET when depth to groundwater (DTW) was 6.5 feet, compared to 25.1 inches when DTW was at 32.6 feet (Scott et al. 2000, 2006).

Under simulated current conditions (baseline, no brush control), average annual ET was 38.04 inches, which was equal to 1,726,256 acre-feet of water removed county-wide (Table 9.13). The brush control scenario reduced that to 35.71 inches, or an average of 1,620,937 acre-feet per year. This was a reduction in water lost to ET of 105,319 acre-feet per year. In the dry-regime scenario, brush control reduced water lost to ET by 132,484 acre-feet per year. The maximum brush control scenario (removing all woody plants in non-urban areas) reduced ET substantially. This scenario is discussed in detail in Section 9.2.7.

| Scenario                 | Annual Rainfall | Annual ET |           | ET/Rainfall | Annual Groundwater Use |         |  |
|--------------------------|-----------------|-----------|-----------|-------------|------------------------|---------|--|
|                          | (inches)        | (inches)  | (ac-ft)   |             | (inches)               | (ac-ft) |  |
| Baseline, Average PPT    | 32.76           | 38.04     | 1,726,256 | 1.16        | 3.79                   | 172,230 |  |
| Baseline, Dry PPT        | 29.80           | 35.40     | 1,640,361 | 1.19        | 3.67                   | 166,383 |  |
| Brush Control            |                 |           |           |             |                        |         |  |
| 50% Oak; Ave PPT         | 32.76           | 35.71     | 1,620,937 | 1.09        | 2.68                   | 121,510 |  |
| 50% Oak; Dry PPT         | 29.80           | 33.23     | 1,507,877 | 1.12        | 2.63                   | 118,991 |  |
| Maximum; Ave PPT         | 32.76           | 31.71     | 1,439,006 | 0.97        | 0.80                   | 36,326  |  |
| Cultivation 6.5% of Area | 32.76           | 36.92     | 1,675,645 | 1.13        | 3.48                   | 157,674 |  |
| Cultivation 21% of Area  | 32.76           | 34.42     | 1,561,468 | 1.05        | 2.76                   | 125,343 |  |
|                          |                 |           |           |             |                        |         |  |

Table 9.13 Effect of brush control and cultivation on annual evapotranspiration (ET) and annual groundwater use by vegetation averaged over 25-year simulations of the Goliad County EDYS model.

An increase in cultivation also reduced ET (Table 9.13). When cultivation was increased to include 6.5% of the area of the county, ET was 50,611 acre-feet less than under baseline conditions (average rainfall regime). When cultivation was increased to 21% of the area, ET was 154,893 acre-feet less than under baseline conditions.

#### 9.2.4 Groundwater Use by Vegetation

The baseline scenario indicated that present vegetation in Goliad County was utilizing an average of 172,230 acre-feet of groundwater per year, or an equivalent of 3.79 inches per year. This groundwater use was primarily by deep-rooted woody species such as mesquite, live oak, hackberry, and pecan. Brush control reduced this useage by an average of 50,720 acre-feet per year under the baseline rainfall regime and by an average of 57,392 acre-feet per year under the dry regime (Table 9.13). This reduction was because of the removal of most of the deep-rooted woody species.

Cultivation also had an effect on groundwater use by vegetation (Table 9.13). Under baseline conditions (average rainfall regime), groundwater use was reduced by 14,556 acre-feet per year when 6.5% of the area was under cultivation and by 46,887 acre-feet when cultivation increased to 21% of the area.

#### 9.2.5 Change in Water Balance

In the most basic form, a landscape water balance compares water inputs, exports, and storage across the landscape. For the terrestrial component (i.e., excluding river and stream flows) of the Goliad County model, inputs are from rainfall and groundwater use. Exports are ET, surface runoff, and groundwater recharge (if any). Storage refers to moisture stored in the soil profile. The basic water balance equation is therefore given by:

rainfall + groundwater use = ET + runoff + groundwater recharge + soil storage,

where the soil storage factor is a change (+ or -) in annual amount.

All scenarios except brush control under the wet regime and 21% of County in cultivation resulted in an average net water deficit over the 25-year simulation period (Table 9.14). The deficit increased under the dry regime as compared to the moderate rainfall regime and decreased under the wet regime. In the baseline scenarios (no brush control and no increase in cultivation), the wet regime (18% increase in average annual rainfall compared to the moderate regime), which used the daily rainfall data from 1957-1981, resulted in conditions where water losses were almost offset by water inputs. However, there was an average net annual deficit even under this wet regime. This suggests that under the present vegetation conditions, especially the amount of woody species present, it is unlikely that any consistent recharge will occur in Goliad County as a whole.

 Table 9.14 Effect of moisture regime, brush control, and cultivation on average annual water

 balance components (acre-feet) simulated for 25-year scenarios using the Goliad County EDYS

 model.

| Scenario                                                                      | Rainfall                                         | Groundwater<br>Use                       | Runoff                               | ET                                               | Net Storage                                  |
|-------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------------|----------------------------------------------|
| Moisture Regime                                                               |                                                  |                                          |                                      |                                                  |                                              |
| Baseline, Ave PPT<br>Baseline, Dry PPT<br>Baseline, Wet PPT                   | 1,487,218<br>1,365,762<br>1,723,842              | 172,230<br>166,383<br>155,747            | 19,094<br>15,900<br>34,477           | 1,726,256<br>1,604,361<br>1,855,027              | - 75,902<br>- 88,116<br>- 9,915              |
| Brush Control                                                                 |                                                  |                                          |                                      |                                                  |                                              |
| 100% Oak; Ave PPT<br>50% Oak; Ave PPT<br>50% Oak; Dry PPT<br>50% Oak; Wet PPT | 1,487,218<br>1,487,218<br>1,365,762<br>1,723,842 | 131,096<br>121,510<br>118,991<br>111,476 | 19,101<br>19,121<br>15,923<br>34,498 | 1,641,010<br>1,620,939<br>1,507,877<br>1,759,930 | - 41,797<br>- 31,332<br>- 39,047<br>+ 40,890 |
| Cultivation                                                                   |                                                  |                                          |                                      |                                                  |                                              |
| 6.5% of County Area<br>21% of County Area                                     | 1,487,218<br>1,487,218                           | 157,674<br>125,343                       | 18,897<br>18,281                     | 1,675,645<br>1,561,468                           | - 49,650<br>+ 32,812                         |

Baseline = no brush control or change in amount of cultivated land.

Brush Control: all woody species oak and pecan removed from all areas with >30% woody plant cover and less than 12% slope. In 100% oak scenario, all oak also removed. In 50% oak scenarios, only 50% oak removed. Cultivation scenarios are at the moderate (baseline) rainfall regime.

Negative net soil water storage cannot be maintained indefinitely. In the model scenarios, the initial soil moisture condition throughout the soil profile was set at 50% of field capacity in each layer. Once this stored water is depleted by plants, the vegetation will either 1) utilize more groundwater or 2) adjust to the lower amount of available moisture by reducing the amount of vegetation present and its productivity. The model scenarios were for 25-year simulations. The 75,900 acre-feet deficit under the baseline, average rainfall scenario (Table 9.14) equals an average annual deficit of about 1.5 inches of water per year, averaged over the entire County. This corresponds to dewatering about 15-20 inches of soil per year (at 8-10% available water holding capacity), or about 30-40 feet over the 25-year simulation. The actual depth of

dewatering varies from year to year as more moisture is added from the top during wet periods and greater amounts are transpired from lower levels during dry periods. In addition, dewatering patterns are very different on wooded sites than on adjacent sites supporting mostly grasses.

The brush control scenarios decreased by annual water deficits by 50-60%, reducing the annual deficit to about 31,000 acre-feet in moderate-rainfall years and 39,000 acre-feet in dry years (Table 9.14). This reduction was achieved by reductions in vegetation biomass and in groundwater use. Under the 50% oak, 100% other woody species scenario reduced ET by 105,000 acre-feet per year, of which 45,000 acre-feet were from less transpiration of groundwater. The remaining 60,000 acre-feet resulted from a lower amount of transpired soil moisture because of lower vegetation demands. Under the dry regime, brush control reduced ET by 96,000 acre-feet per year, of which 47,000 acre-feet were from reduced transpiration of groundwater and 49,000 acre-feet were from reduced use of soil moisture.

When the wet regime (rainfall corresponding to 1957-81) was used in conjunction with brush control, there was a positive net storage of almost 41,000 acre-feet per year (Table 9.14). This amount of increased soil moisture storage equals about 0.9 inches of soil moisture per year, or a re-wetting of about 10 inches of the soil profile per year (assuming 8-10% available water-holding capacity). If this moisture regime continued sufficiently long to bring the soil profile above the water table up to field capacity, then this amount of water (41,000 acre-feet) would be added to groundwater or lateral flow to creeks and the river each year. In addition, 34,500 acre-feet would be added directly to creeks and the river each year from surface runoff (Table 9.14).

Only about 18% of the area of the County was treated in each of the brush control scenarios. Although these areas supported the densest stands of woody species, brush control on additional acres would reduce the annual water deficit even more. If woody species were substantially reduced on 40-50% of the area of the County, it is likely that there would be a water surplus in most years. This surplus would first recharge the soil profile and once the profile reached field capacity, additional water would likely move into groundwater recharge.

Cultivation had a similar effect on water balance as did brush control, for much the same reason (i.e., removal of deep-rooted woody species). When 6.5% of the County was modeled as cultivated land, annual water deficit was reduced to 50,000 acre-feet, or a reduction of about 35% compared to baseline (Table 9.14). This was equal about 60% of the reduction accomplished by applying brush control to 18% of the County. The increased effectiveness of water storage under cultivation compared to brush control is the result of the cultivated land being fallow for a large part of the year. And much of the fallow period is when the area receives much of its annual rainfall.

When cultivation was increased to 21% of the area, there was an annual surplus of moisture when averaged over the 25 years (Table 9.14). The annual surplus (32,812 acre-feet) is equal to about 0.72 inch per year averaged over the entire County, or 3.5 inches per acre of cultivated land, under the moderate rainfall regime. Around 1950, about 9% of the area of Goliad County was under cultivation. Under a moderate rainfall regime, that level of cultivation might result in a county-wide deficit of about 30,000 acre-feet per year, compared to a deficit under current

conditions of 76,000 acre-feet. Under a wet regime, the deficit might shift to a 5,000-10,000 acre-feet surplus.

## 9.2.6 Water Balance by Watershed

The water balance information presented previously was, for the most part, averaged over the entire county. However, landscape hydrology varies widely across the county because of differences in topography, soil, vegetation, and depth to groundwater. There are 81 watersheds delineated in Goliad County (Table 9.15), some of which have part of their area outside Goliad County (Fig. 9.2). The watersheds vary in size from less than 100 acres to more than 38,000 acres (Table 9.15).

| Table 9.15       Average annual water balance components by watershed simulated for 25-year baseline |
|------------------------------------------------------------------------------------------------------|
| scenario, expressed as watershed totals and per-acre averages, using the Goliad County EDYS          |
| model.                                                                                               |

| Watershed   | Area    | Rainfall    |        | d Totals (ac     |        |        | Acre (inc |        |
|-------------|---------|-------------|--------|------------------|--------|--------|-----------|--------|
|             | (acres) | (acre-feet) | GW-Use | ET               | Runoff | GW-Use | ET        | Runoff |
| Northeast S | ector   |             |        |                  |        |        |           |        |
| 1101        | 10,392  | 27,109      | 2,365  | 29,710           | 340    | 2.73   | 34.31     | 0.39   |
| 1102        | 28,956  | 75,549      | 4,690  | 79,890           | 632    | 1.94   | 33.11     | 0.26   |
| 1103        | 9,076   | 25,112      | 3,139  | 29,263           | 381    | 4.15   | 38.69     | 0.54   |
| 1105        | 11,398  | 31,730      | 3,517  | 36,043           | 535    | 3.70   | 37.95     | 0.56   |
| 1106        | 14,382  | 40,039      | 3,696  | 43,932           | 418    | 3.09   | 36.66     | 0.35   |
| 1108        | 24,500  | 68,207      | 8,584  | 78,853           | 1,488  | 4.20   | 38.62     | 0.73   |
| 1136        | 18,068  | 49,876      | 4,893  | 56,046           | 690    | 3.25   | 37.22     | 0.46   |
| 1137        | 7,321   | 20,380      | 1,790  | 22,161           | 299    | 2.93   | 36.32     | 0.49   |
| SUM         | 124,093 | 338,002     | 32,674 | 375 <b>,</b> 898 | 4,783  | 3.16   | 36.35     | 0.46   |
| West Sector |         |             |        |                  |        |        |           |        |
| 594         | 62      | 162         | 20     | 195              | 1      | 3.87   | 37.74     | 0.18   |
| 602         | 295     | 765         | 153    | 1,019            | 27     | 6.22   | 41.45     | 1.10   |
| 604         | 277     | 719         | 136    | 956              | 9      | 5.89   | 41.42     | 0.39   |
| 606         | 3,567   | 9,263       | 755    | 10,268           | 80     | 2.54   | 34.54     | 0.27   |
| 608         | 224     | 582         | 88     | 728              | 7      | 4.71   | 39.00     | 0.33   |
| 610         | 2,452   | 6,361       | 887    | 7,725            | 140    | 4.34   | 37.81     | 0.69   |
| 612         | 7,502   | 19,465      | 2,649  | 23,624           | 190    | 4.50   | 37.79     | 0.30   |
| 614         | 9,962   | 25,873      | 1,646  | 27,625           | 239    | 1.98   | 33.28     | 0.29   |
| 616         | 2,930   | 7,603       | 1,652  | 10,475           | 139    | 6.77   | 42.90     | 0.53   |
| 618         | 358     | 930         | 65     | 1,023            | 9      | 2.18   | 34.29     | 0.30   |
| 620         | 6,606   | 17,138      | 2,127  | 20,441           | 135    | 3.86   | 37.13     | 0.24   |
| 622         | 2,089   | 5,420       | 849    | 6,853            | 57     | 4.83   | 39.36     | 0.32   |
| 624         | 9,236   | 23,964      | 3,258  | 29,328           | 200    | 4.23   | 38.10     | 0.26   |
| 626         | 1,188   | 3,081       | 235    | 3,398            | 63     | 2.37   | 34.32     | 0.64   |
| 628         | 4,600   | 11,935      | 1,534  | 14,480           | 99     | 4.00   | 31.25     | 0.26   |
| 630         | 366     | 950         | 173    | 1,257            | 11     | 5.67   | 42.21     | 0.36   |
| 632         | 982     | 2,547       | 718    | 3,828            | 72     | 8.77   | 46.78     | 0.89   |
| 634         | 3,298   | 8,662       | 604    | 9,186            | 208    | 2.20   | 33.42     | 0.76   |
| 636         | 1,262   | 3,292       | 478    | 3,982            | 98     | 4.55   | 37.87     | 0.93   |
| 638         | 4,362   | 11,316      | 1,252  | 13,202           | 109    | 3.44   | 36.32     | 0.30   |
| 640         | 5,490   | 14,359      | 1,657  | 16,918           | 175    | 3.62   | 36.98     | 0.38   |
| 648         | 1,766   | 4,607       | 422    | 5,135            | 63     | 2.87   | 34.89     | 0.43   |
| 650         | 7,860   | 20,502      | 2,383  | 24,164           | 169    | 3.64   | 36.89     | 0.26   |
| 652         | 8,127   | 22,474      | 2,734  | 26,371           | 256    | 4.04   | 38.94     | 0.38   |
| 654         | 3,235   | 9,005       | 884    | 10,192           | 100    | 3.28   | 37.81     | 0.37   |
| 656         | 548     | 1,522       | 572    | 2,542            | 32     | 12.45  | 55.67     | 0.70   |
| 658         | 3,792   | 10,552      | 2,551  | 14,771           | 267    | 8.07   | 46.74     | 0.84   |
| 660         | 3,922   | 10,919      | 1,118  | 12,394           | 128    | 3.42   | 37.92     | 0.39   |

| Watershed    | Area            | Rainfall       |                | hed Totals (a    |        | Per-Acre (inches) |       |       |  |
|--------------|-----------------|----------------|----------------|------------------|--------|-------------------|-------|-------|--|
|              | (acres)         | (acre-feet)    | GW-Use         | ET               | Runoff | GW-Use            | ET    | Runof |  |
| 660          | 0 EC1           | 7 1 2 0        | 0.4.0          | 0 404            | 21.0   | 4 40              | 20 75 | 1 0 2 |  |
| 662          | 2,561           | 7,130          | 940            | 8,484            | 219    | 4.40              | 39.75 | 1.03  |  |
| 664          | 3,194           | 8,835          | 1,122          | 10,430           | 123    | 4.22              | 39.19 | 0.46  |  |
| 666          | 448             | 1,246          | 266            | 1,689            | 45     | 7.13              | 45.24 | 1.20  |  |
| 668          | 2,771           | 7,714          | 656            | 8,424            | 111    | 2.84              | 36.48 | 0.48  |  |
| 670          | 4,449           | 12,385         | 1,936          | 15,180           | 303    | 5.22              | 40.94 | 0.82  |  |
| SUM          | 109,781         | 291,278        | 36,520         | 346,287          | 3,884  | 3.99              | 37.85 | 0.42  |  |
| Central Sect | or              |                |                |                  |        |                   |       |       |  |
| 672          | 8,866           | 24,681         | 3,389          | 29,133           | 627    | 4.59              | 39.43 | 0.84  |  |
| 674          | 5,916           | 16,470         | 997            | 16 <b>,</b> 973  | 265    | 2.01              | 34.43 | 0.54  |  |
| 676          | 1,709           | 4,758          | 875            | 6,081            | 147    | 6.14              | 42.70 | 1.03  |  |
| 686          | 3,546           | 9,249          | 587            | 9,817            | 90     | 1.99              | 33.22 | 0.30  |  |
| 688          | 2,327           | 6,071          | 362            | 6,361            | 59     | 1.87              | 32.80 | 0.30  |  |
| 690          | 5,852           | 15,265         | 960            | 16,173           | 141    | 1.97              | 33.16 | 0.29  |  |
| 692          | 2,598           | 6,778          | 441            | 7,228            | 65     | 2.04              | 33.38 | 0.30  |  |
| 694          | 3,105           | 8,413          | 435            | 8,650            | 94     | 1.68              | 33.43 | 0.36  |  |
|              | 4,316           | 11,898         | 1,336          | 13,826           |        | 3.71              |       |       |  |
| 696          |                 |                |                |                  | 148    |                   | 36.12 | 0.41  |  |
| 698          | 254             | 706            | 45             | 750              | 35     | 2.13              | 35.43 | 1.65  |  |
| 700          | 6 <b>,</b> 717  | 18,071         | 1,429          | 19,714           | 192    | 2.55              | 35.22 | 0.34  |  |
| 702          | 6 <b>,</b> 518  | 18,147         | 1,572          | 20,025           | 207    | 2.89              | 36.87 | 0.38  |  |
| 704          | 4,420           | 12,304         | 887            | 13,093           | 162    | 2.39              | 35.55 | 0.44  |  |
| 706          | 2,007           | 5 <b>,</b> 587 | 383            | 5,844            | 90     | 2.24              | 34.94 | 0.54  |  |
| 708          | 1,997           | 5,560          | 773            | 6,603            | 74     | 4.64              | 39.78 | 0.48  |  |
| 710          | 3,423           | 9,530          | 723            | 10,196           | 129    | 2.53              | 35.74 | 0.45  |  |
| 712          | 787             | 2,190          | 205            | 2,408            | 35     | 3.13              | 36.72 | 0.53  |  |
| 714          | 2,870           | 7,990          | 860            | 9,110            | 117    | 3.60              | 38.09 | 0.49  |  |
| 716          | 128             | 355            | 59             | 438              | 10     | 5.53              | 40.28 | 0.86  |  |
| 718          | 2,056           | 5,724          | 420            | 6,075            | 94     | 2.45              | 35.46 | 0.55  |  |
| 720          | 3,563           | 9,919          |                | 11,726           | 206    | 4.65              | 39.49 | 0.69  |  |
|              |                 |                | 1,380          |                  |        |                   |       |       |  |
| 722          | 11,834          | 32,945         | 5,957          | 41,622           | 851    | 6.04              | 42.04 | 0.86  |  |
| 724          | 8,813           | 24,534         | 1,538          | 25,449           | 362    | 2.09              | 34.65 | 0.49  |  |
| 726          | 2,747           | 7,648          | 1,115          | 9,143            | 179    | 4.87              | 39.94 | 0.78  |  |
| 728          | 5 <b>,</b> 131  | 14,285         | 6 <b>,</b> 738 | 26,442           | 289    | 15.76             | 61.86 | 0.68  |  |
| 730          | 3,322           | 9,246          | 1,899          | 12,327           | 247    | 6.86              | 44.53 | 0.89  |  |
| 732          | 699             | 1,943          | 700            | 3,183            | 201    | 12.02             | 54.64 | 3.45  |  |
| 734          | 2               | 4              | 2              | 9                | 0      | 12.00             | 54.00 | 0.00  |  |
| SUM          | 105,523         | 290,271        | 36,067         | 338,399          | 5,116  | 4.10              | 38.48 | 0.58  |  |
| South Sector |                 |                |                |                  |        |                   |       |       |  |
| 1124         | 9,166           | 25,397         | 5,794          | 35,328           | 457    | 7.59              | 46.25 | 0.60  |  |
| 1125         | 15,479          | 40,161         | 4,976          | 48,298           | 503    | 3.85              | 37.45 | 0.39  |  |
| 1126         | 23,007          | 59,692         | 4,634          | 66,168           | 405    | 2.42              | 34.51 | 0.21  |  |
| 1127         | 38,674          | 100,340        | 7,308          | 109,605          | 602    | 2.27              | 34.01 | 0.19  |  |
| 1128         | 6,165           | 15,996         | 1,036          | 17,258           | 237    | 2.05              | 33.59 | 0.40  |  |
| 1120         | 12,817          |                |                | 35,691           |        |                   |       |       |  |
|              |                 | 33,458         | 2,325          |                  | 176    | 2.18              | 33.42 | 0.17  |  |
| 1130         | 6,277           | 17,304         | 2,739          | 21,437           | 122    | 5.24              | 40.98 | 0.23  |  |
| 1131         | 32,660          | 89,311         | 8,299          | 98,361           | 973    | 3.05              | 36.14 | 0.36  |  |
| 1132         | 22,357          | 61,283         | 9,975          | 77,177           | 365    | 5.40              | 41.42 | 0.19  |  |
| 1133         | 12 <b>,</b> 795 | 35,273         | 2,429          | 38,025           | 320    | 2.28              | 35.68 | 0.30  |  |
| 1134         | 12,322          | 33,981         | 6,357          | 44,699           | 391    | 4.57              | 43.53 | 0.38  |  |
| 1135         | 20,021          | 55,474         | 11,095         | 73,624           | 760    | 6.65              | 44.13 | 0.45  |  |
| SUM          | 211,740         | 567,670        | 66,967         | 665 <b>,</b> 671 | 5,311  | 3.32              | 37.73 | 0.30  |  |
| County Tota  | ls              |                |                |                  |        |                   |       |       |  |
|              | 551 137         | 1,487,221      | 172.228        | 1,726,255        | 19.094 | 3.75              | 37.54 | 0.42  |  |

# Table 9.15 (Cont.)

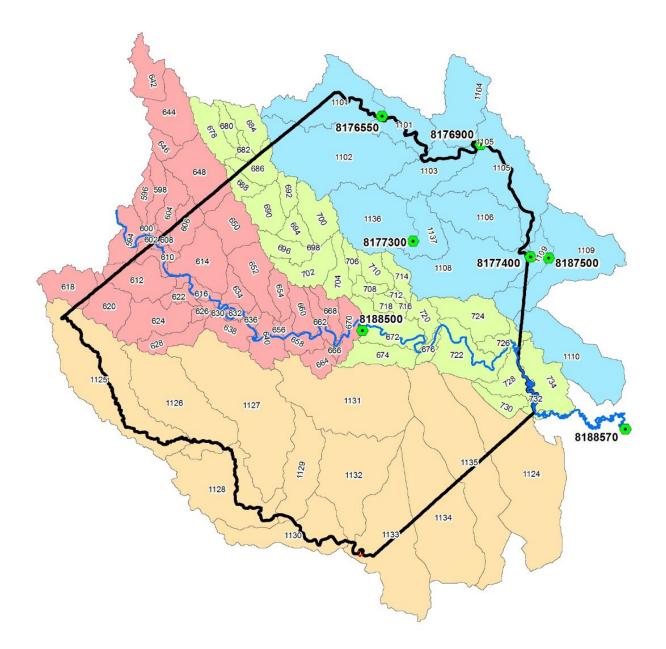



Figure 9.2 Locations of the 81 watersheds delineated in Goliad County, along with the locations of the gauge stations (circles with 7-digit numbers) for each sector of watersheds.

Per-acre annual ET averaged 37.54 inches county-wide (Table 9.15), but ranged between 31.25 inches per acre on Watershed 628 about mid-way between Charco and Berclair in the west-central part of the county and 55.67 inches per acre on Watershed 656 on the San Antonio River about 6 miles west of Goliad. The lower ET rates occurred in watersheds with shallower soils and therefore less dense vegetation. Higher ET rates occurred in watersheds along the river, where vegetation was dense and with high water tables, which resulted in high groundwater

useage. Runoff averaged 0.42 inch county-wide (Table 9.15), and averaged less than one inch per year in all but six watersheds.

The simulations indicated that groundwater was utilized by vegetation in all watersheds in the county, however the amounts varied substantially (Table 9.15). Most watersheds (61 = 75%) had average annual groundwater use by vegetation of 2-6 inches (Fig. 9.3). Average annual groundwater use was less than 2 inches in six watersheds (8%), 6-10 inches per year in ten (12%), and more than 10 inches per year in four watersheds (5%). Groundwater use by vegetation was highest in watersheds along the river, especially on the eastern edge of the county, and least in the northwest part of the county.

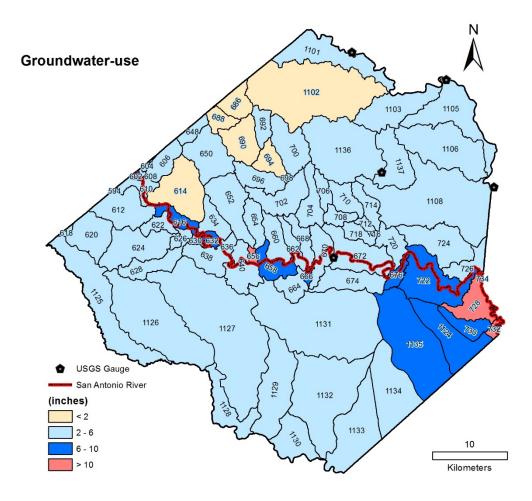



Figure 9.3 Average annual groundwater-use by vegetation (inches/acre) based on 25-year baseline simulations of the Goliad County EDYS model.

The ET values (Table 9.15) include groundwater used by vegetation (GW-Use) because the vegetation uses that water as part of plant transpiration. Net water yield from a specific watershed can be estimated by:

Net yield = Rainfall - ET + Runoff + Recharge.

However, the net yield value provided by this equation does not account for change in soil storage. Therefore, only a portion of this estimated net yield would likely leave the watershed in a particular year. Characteristics of the lower soil profile are not well known for most, if not all, the locations. Those edaphic characteristics have a substantial effect on how much water is stored in lower zones and how much is transferred as groundwater recharge or lateral flow into streams and the river, either in the particular watershed or subsurface lateral transfer to adjacent watersheds. Because of this lack of information on deep vadose zone characteristics, net yield cannot be assigned to a specific spatial location. Better understanding this linkage between soil moisture storage, groundwater usage, and transpiration by vegetation is a major need in ecohydrologic modeling (Maxwell and Condon 2016).

# 9.2.7 Maximum Effect of Brush Control on Water Balance

Vegetation is a major factor affecting the water balance and a vegetation component of primary importance influencing this is the amount of woody plants, particularly deep-rooted species. Vegetation dynamics strongly affect both ET and groundwater use. Vegetation dynamics are controlled by both natural and anthropogenic factors. Brush control and cultivation are two management factors that have substantial impacts on vegetation and therefore on water balance.

The maximum impact of change in woody vegetation, whether from natural (e.g., drought, succession) or anthropogenic causes, on water balance was simulated by applying the brush control option to all non-urban sites throughout the county. In this scenario, all woody species (except pecan and 50% of live oak) were removed in the first year of the simulation and allowed to regrow over the 25 years. This is not a practical scenario from the standpoint of actual landuse because it is unlikely that all areas would be treated, especially in the same year. However, it is a scenario that estimates the maximum potential effect of brush control on water balance and is useful to determine which areas have the highest potential for increased water yield from brush control. The moderate 25-year rainfall regime (baseline) was used and results would likely be somewhat different under other rainfall regimes.

Maximum potential increased yield was determined by comparing the water balance values from this maximum brush control scenario to those from the baseline scenario. Three water balance variables (GW-use, ET, runoff) were compared. Decreases in GW-use and ET were considered to be net increases in water yield although there would likely be a lag-time before decreased ET might result in increases in groundwater or subsurface flows into streams and the river.

Maximum potential enhanced water yield from brush control was simulated to be 287,188 acrefeet per year county-wide (Table 9.16). This was calculated from decreased ET (287,249 acrefeet) minus 61 acre-feet reduced runoff. Of the 287,188 acre-feet, 47% was from reduced groundwater-use by vegetation (135,906 acre-feet; Table 9.16). The remaining 53% was from reduced transpiration of soil moisture and reduced evaporation from rainfall intercepted by the plant canopy. Under this maximum brush control scenario, average annual total ET (including groundwater use) was simulated to be 1,439,006 acre-feet (Table 9.16), or 97% of average annual rainfall (1,487,221 acre-feet; Table 9.15). Averaged over three years, ET/rainfall ratios at a South Texas site were 99% for a mesquite shrubland and 94% for a shortgrass community (Weltz and Blackburn 1995). Similar values have been reported for mesquite-grasslands in the Rolling Plains of Texas (97%; Carlson et al. 1990), oak-grasslands in the Edwards Plateau (95%; Thurow et al. 1988), and bluestem prairie in Kansas (94%; Bremer et al. 2001). The simulated maximum brush control scenario resulted in a relatively sparse grassland in the early part of the 25-year simulation, followed by a mixed shrub-grassland as the shrubs re-established on some sites. Therefore, the 97% ratio from the maximum brush control scenario seems reasonable.

| Table 9.16 Differences in average annual water balance components (acre-feet) between 25-year |
|-----------------------------------------------------------------------------------------------|
| simulations of baseline and maximum brush control, by watershed, under moderate rainfall      |
| regime using the Goliad County EDYS model.                                                    |

| Watershed  | Area    | Baseli | ne Scenai | rio    | Maximum Brush Control |         |        | Difference |        |        |
|------------|---------|--------|-----------|--------|-----------------------|---------|--------|------------|--------|--------|
|            | (acres) | GW-Use | ET        | Runoff | GW-Use                | ET      | Runoff | GW-Use     | ET     | Runoff |
| Northeast  | Sector  |        |           |        |                       |         |        |            |        |        |
| 1101       | 10,392  | 2,365  | 29,710    | 340    | 691                   | 26,351  | 337    | 1,674      | 3,35   | 9 3    |
| 1102       | 28,956  | 4,690  | 79,890    |        | 1,118                 | 72,608  | 628    | 3,572      | 7,282  |        |
| 1103       | 9,076   | 3,139  | 29,263    |        | 985                   | 24,903  |        | 2,154      | 4,360  |        |
| 1105       | 11,398  | 3,517  | 36,043    |        | 1,387                 | 31,543  |        | 2,130      | 4,500  |        |
| 1106       | 14,382  | 3,696  | 43,932    |        | 1,368                 | 38,887  |        | 2,328      | 5,04   |        |
| 1108       | 24,500  | 8,584  | 78,853    |        | 3,196                 | 66,941  |        | 5,388      | 11,912 |        |
| 1136       | 18,068  | 4,893  | 56,046    |        | 1,517                 | 49,125  |        | 3,376      | 6,92   |        |
|            |         |        |           |        |                       |         |        |            |        |        |
| 1137       | 7,321   | 1,790  | 22,161    | 299    | 625                   | 19,729  | 296    | 1,165      | 2,432  | ∠ 3    |
| SUM        | 124,093 | 32,674 | 375,898   | 4,783  | 10,887                | 330,087 | 4,779  | 21,787     | 45,811 | 1 4    |
| West Secto | )r      |        |           |        |                       |         |        |            |        |        |
| 594        | 62      | 20     | 195       | 1      | 3                     | 160     | 1      | 17         | 3      | 5 0    |
| 602        | 295     | 153    | 1,019     | 27     | 36                    | 782     | 27     | 117        | 23     | 7 0    |
| 604        | 277     | 136    | 956       |        | 23                    | 724     |        | 113        | 232    |        |
| 606        | 3,567   | 755    | 10,268    |        | 138                   | 8,993   |        | 617        | 1,27   |        |
| 608        | 224     | 88     | 728       |        | 5                     | 554     | 7      | 83         | 174    |        |
| 610        | 2,452   | 887    | 7,725     |        | 201                   | 6,319   |        | 686        | 1,400  |        |
| 612        | 7,502   | 2,649  | 23,624    |        | 487                   | 19,187  |        | 2,162      | 4,43   |        |
| 614        | 9,962   | 1,646  | 27,625    |        | 304                   | 24,868  | 238    | 1,342      | 2,75   |        |
| 616        | 2,930   | 1,652  | 10,475    |        | 565                   | 8,260   |        | 1,087      | 2,21   |        |
| 618        | 358     | 65     | 1,023     |        | 8                     | 905     |        | 57         | 2,21   |        |
|            |         |        | 20,441    |        | 。<br>178              |         |        | 1,949      | 3,970  |        |
| 620        | 6,606   | 2,127  |           |        |                       | 16,471  |        |            |        |        |
| 622        | 2,089   | 849    | 6,853     |        | 168                   | 5,435   | 58     | 681        | 1,418  |        |
| 624        | 9,236   | 3,258  | 29,328    |        | 314                   | 23,255  | 200    | 2,944      | 6,073  |        |
| 626        | 1,188   | 235    | 3,398     |        | 78                    | 3,061   | 63     | 157        | 33     |        |
| 628        | 4,600   | 1,534  | 14,480    |        | 65                    | 11,429  |        | 1,469      | 3,051  |        |
| 630        | 366     | 173    | 1,257     |        | 57                    | 1,015   | 11     | 116        | 242    |        |
| 632        | 982     | 718    | 3,828     |        | 206                   | 2,789   |        | 512        | 1,039  |        |
| 634        | 3,298   | 604    | 9,186     |        | 189                   | 8,351   |        | 415        | 83     |        |
| 636        | 1,262   | 478    | 3,982     |        | 97                    | 3,213   | 99     | 381        | 76     | 9 - 1  |
| 638        | 4,362   | 1,252  | 13,202    |        | 149                   | 10,921  | 110    | 1,103      | 2,283  |        |
| 640        | 5,490   | 1,657  | 16,918    | 175    | 321                   | 14,181  | 176    | 1,336      | 2,73   | 7 - 1  |
| 648        | 1,766   | 422    | 5,135     | 63     | 53                    | 4,378   | 63     | 369        | 75     | 7 0    |
| 650        | 7,860   | 2,383  | 24,164    | 169    | 160                   | 19,509  | 170    | 2,223      | 4,65   | 5 - 1  |
| 652        | 8,127   | 2,734  | 26,371    |        | 412                   | 21,548  |        | 2,322      | 4,823  |        |
| 654        | 3,235   | 884    | 10,192    |        | 121                   | 8,593   |        | 763        | 1,599  |        |
| 656        | 548     | 572    | 2,542     |        | 158                   | 1,704   |        | 414        | 838    |        |
|            | 3,792   | 2,551  | 14,771    |        | 378                   | 10,278  | 272    | 2,173      | 4,49   |        |

113

| Watershed Area |                  | Ba              | seline Scen      | ario   | Maxim  | um Brush (       | Difference |         |                 |       |
|----------------|------------------|-----------------|------------------|--------|--------|------------------|------------|---------|-----------------|-------|
|                | (acres)          | GW-Use          |                  | Runoff | GW-Use |                  | Runoff     | GW-Use  |                 | Runof |
|                | · /              |                 |                  |        |        |                  |            |         |                 |       |
| 660            | 3,922            | 1,118           | 12,394           | 128    | 190    | 10,438           | 129        | 928     | 1,956           | - 1   |
| 662            | 2,561            | 940             | 8,484            | 219    | 203    | 6,950            | 222        | 737     | 1,534           | - 3   |
| 664            | 3,194            | 1,122           | 10,430           | 123    | 186    | 8,439            | 124        | 936     | 1,991           | - 1   |
| 666            | 448              | 266             | 1,689            | 45     | 67     | 1,273            | 46         | 199     | 416             | - 1   |
| 668            | 2,771            | 656             | 8,424            | 111    | 44     | 7,170            | 110        | 612     | 1,254           | 1     |
| 670            | 4,449            | 1,936           | 15,180           | 303    | 439    | 12,000           | 306        | 1,497   | 3,180           | - 3   |
|                |                  |                 |                  |        |        |                  |            |         |                 |       |
| SUM            | 109,781          | 36,520          | 346,287          | 3,884  | 6,003  | 283 <b>,</b> 151 | 3,911      | 30,517  | 63,136          | - 27  |
| Central Se     | ector            |                 |                  |        |        |                  |            |         |                 |       |
| 672            | 8,866            | 3,389           | 29,133           | 627    | 883    | 23,959           | 625        | 2,506   | 5,174           | 2     |
| 674            | 5,916            | 997             | 16 <b>,</b> 973  | 265    | 263    | 15 <b>,</b> 364  | 263        | 734     | 1,609           | 2     |
| 676            | 1,709            | 875             | 6,081            | 147    | 255    | 4,796            | 147        | 620     | 1,285           | C     |
| 686            | 3,546            | 587             | 9,817            | 90     | 85     | 8,789            | 90         | 502     | 1,028           | C     |
| 688            | 2,327            | 362             | 6,361            | 59     | 78     | 5,801            | 58         | 284     | 560             | 1     |
| 690            | 5,852            | 960             | 16,173           | 141    | 131    | 14,498           | 140        | 829     | 1,675           | 1     |
| 692            | 2,598            | 441             | 7,228            | 65     | 73     | 6,474            | 65         | 368     | 754             | C     |
| 694            | 3,105            | 435             | 8,650            | 94     | 111    | 8,028            | 93         | 324     | 622             | 1     |
| 696            | 4,316            | 1,336           | 13,826           | 148    | 100    | 11,215           | 148        | 1,236   | 2,611           | Ċ     |
| 698            | 254              | 45              | 750              | 35     | 15     | 689              | 35         | 30      | 2,011           | C     |
| 700            | 6,717            | 1,429           | 19,714           | 192    | 288    | 17,353           | 191        | 1,141   | 2,361           | 1     |
| 702            | 6,518            | 1,429           | 20,025           | 207    | 200    | 17,208           | 207        | 1,352   | 2,817           | C     |
|                |                  |                 | 13,093           |        | 194    |                  |            | ,       |                 | 1     |
| 704            | 4,420            | 887             |                  | 162    |        | 11,677           | 161        | 693     | 1,416           |       |
| 706            | 2,007            | 383             | 5,844            | 90     | 118    | 5,311            | 90         | 265     | 533             | C     |
| 708            | 1,997            | 773             | 6,603            | 74     | 178    | 5,381            | 73         | 595     | 1,222           | 1     |
| 710            | 3,423            | 723             | 10,196           | 129    | 242    | 9,212            | 129        | 481     | 984             | C     |
| 712            | 787              | 205             | 2,408            | 35     | 63     | 2,111            | 35         | 142     | 297             | C     |
| 714            | 2,870            | 860             | 9,110            | 117    | 206    | 7,743            | 117        | 654     | 1,367           | C     |
| 716            | 128              | 59              | 438              | 10     | 7      | 332              | 10         | 52      | 106             | C     |
| 718            | 2,056            | 420             | 6 <b>,</b> 075   | 94     | 137    | 5,492            | 93         | 283     | 583             | 1     |
| 720            | 3,563            | 1,380           | 11 <b>,</b> 726  | 206    | 284    | 9,465            | 204        | 1,096   | 2,261           | 2     |
| 722            | 11,834           | 5,957           | 41,622           | 851    | 1,556  | 32,559           | 854        | 4,401   | 9,063           | - 3   |
| 724            | 8,813            | 1,538           | 25,449           | 362    | 560    | 23,310           | 361        | 978     | 2,139           | 1     |
| 726            | 2,747            | 1,115           | 9,143            | 179    | 201    | 7,267            | 179        | 914     | 1,876           | C     |
| 728            | 5,131            | 6,738           | 26,442           | 289    | 1,802  | 16,270           | 299        | 4,936   | 10,172          | - 10  |
| 730            | 3,322            | 1,899           | 12,327           | 247    | 93     | 8,425            | 255        | 1,806   | 3,902           |       |
| 732            | 699              | 700             | 3,183            | 201    | 221    | 2,214            | 205        | 479     | 969             |       |
| 734            | 2                | 2               | 9,105            | 0      | 1      | 6                | 0          | 1       | 3               | C     |
| SUM            | 105,523          | 36,067          | 338,399          | 5,116  | 8,365  | 280,949          | 5,127      | 27,702  | 57 <b>,</b> 450 | - 11  |
| South Sect     | tor              |                 |                  |        |        |                  |            |         |                 |       |
| 1124           | 9,166            | 5,794           | 35,328           | 457    | 280    | 23,465           | 476        | 5,514   | 11,863          | - 19  |
| 1124           | 15,479           | 4,976           | 48,298           | 503    | 519    | 39,156           | 503        | 4,457   | 9,142           |       |
| 1125           | 23,007           | 4,970           | 40,290<br>66,168 | 405    | 691    | 58,061           | 401        | 3,943   | 8,107           |       |
|                |                  |                 |                  |        |        |                  |            |         |                 |       |
| 1127           | 38,674           | 7,308           | 109,605          | 602    | 1,712  | 97,579           | 597        | 5,596   | 12,026          | 5     |
| 1128           | 6,165            | 1,036           | 17,258           | 237    | 212    | 15,394           | 238        | 824     | 1,864           |       |
| 1129           | 12,817           | 2,325           | 35,691           | 176    | 452    | 31,205           | 176        | 1,873   | 4,486           |       |
| 1130           | 6 <b>,</b> 277   | 2,739           | 21,437           | 122    | 1,448  | 18,476           | 120        | 1,291   | 2,961           | 2     |
| 1131           | 32,660           | 8,299           | 98,361           | 973    | 1,168  | 82,481           | 976        | 7,131   | 15,880          |       |
| 1132           | 22 <b>,</b> 357  | 9,975           | 77 <b>,</b> 177  | 365    | 2,587  | 61,523           | 360        | 7,388   | 15,654          | 5     |
| 1133           | 12 <b>,</b> 795  | 2,429           | 38 <b>,</b> 025  | 320    | 812    | 34,566           | 312        | 1,617   | 3,459           | 8     |
| 1134           | 12,322           | 6 <b>,</b> 357  | 44,699           | 391    | 668    | 32,607           | 392        | 5,689   | 12,092          | - 1   |
| 1135           | 20,021           | 11,095          | 73,624           | 760    | 518    | 50,306           | 787        | 10,577  | 23,318          | - 27  |
| SUM            | 211,740          | 66 <b>,</b> 967 | 665 <b>,</b> 671 | 5,311  | 11,067 | 544,819          | 5,338      | 55,900  | 120,852         | - 27  |
| County To      | otals            |                 |                  |        |        |                  |            |         |                 |       |
|                | 551 <b>,</b> 137 | 172,228         | 1,726,255        | 19,094 | 36,322 | 1,439,006        | 19,155     | 135,906 | 287,249         | - 61  |

### Table 9.16 (Cont.)

The maximum brush control scenario resulted in a simulated vegetation consisting of mostly grassland throughout Goliad County, with scattered large live oak trees and low to medium density pecan-oak woodlands along drainages. Under these conditions and with a moderate rainfall regime, there would be a positive net water yield county-wide. A 97% ET/rainfall ratio indicates that the net annual yield would be 3% of annual rainfall, on average, or about 45,000 acre-feet per year (0.3 inch per acre). Once the soil profile was recharged to field capacity, this amount of water would recharge into groundwater or move laterally into creeks and the river. Eventually, the water table would increase (by about 3 inches per year, assuming 50% average pore space) until it reached an approximate elevation equal to the elevation of the waterways, at which point the annual surplus would move into the creeks and rivers as lateral flow.

This 0.3-inch average annual recharge under the maximum brush control scenario compares to a simulated 5.2-inch annual deficit under conditions of current vegetation. Both of these values are based on the county receiving moderate rainfall regime for 25 years. Above average rainfall would produce more recharge under the maximum brush control scenario and less of a deficit under current conditions. Similarly, a dry regime would produce less recharge and a higher deficit. Regardless of which rainfall regime would occur, there would be major fluctuations in recharge or deficit from year to year.

Enhancement of water yield from the maximum brush control scenario would not be uniform across the county. It would be higher in areas with heavier stands of woody species and lower in areas with lighter stands. Enhancement also varies in response to difference in soils (e.g., texture and depth) and species of woody species present in the vegetation (e.g., mesquite and live oak are deep-rooted species, whereas hackberry and blackbrush have shallower root systems; Appendix Table D.9).

Simulated maximum potential water yield enhancement was calculated for each watershed (Table 9.17) as the difference in ET between baseline and maximum brush control scenarios minus difference in runoff between the two scenarios (Table 9.16). It is unlikely that brush control treatments (with or without conversion to improved pasture or cultivated land) would, in practice, be applied to an entire watershed. Instead, applications are likely to be applied to only parts of a particular watershed. Although the enhanced water yield that would occur from a brush control operation will vary even within a watershed because of differences in vegetation, soils, and topography within the watershed, expressing potential water yield enhancement on a per acre basis provides a useful metric to compare potential benefits among watersheds.

| Watershed   | Area           | Watersh      | ned Total | (acre-feet)  | Per Acre Basis | Decrease       | in GW-Use <sup>1</sup> |
|-------------|----------------|--------------|-----------|--------------|----------------|----------------|------------------------|
|             | (acres)        | ET 1         | Runoff    | Net Yield    | (inches/acre)  | (acre-feet)    | (inches/acre)          |
| Northeast S | lector         |              |           |              |                |                |                        |
| theast of   |                |              |           |              |                |                |                        |
| 1101        | 10,392         | 3,359        | 3         | 3,362        | 3.88           | 1,674          | 1.93                   |
| 1102        | 28,956         | 7,282        | 4         | 7,286        | 3.02           | 3,572          | 1.14                   |
| 1103        | 9,076          | 4,360        | - 1       | 4,359        | 5.76           | 2,154          | 2.85                   |
| 1105        | 11,398         | 4,500        | - 1       | 4,499        | 4.74           | 2,130          | 2.24                   |
| 1106        | 14,382         | 5,045        | 2         | 5,047        | 4.21           | 2,328          | 1.94                   |
| 1108        | 24,500         | 11,912       | - 10      | 11,902       | 5.83           | 5,388          | 2.55                   |
| 1136        | 18,068         | 6,921        | 4         | 6,925        | 4.60           | 3,376          | 2.24                   |
| 1137        | 7,321          | 2,432        | 3         | 2,435        | 3.99           | 1,165          | 1.91                   |
| SUM         | 124,093        | 45,811       | 4         | 45,815       | 4.43           | 21,787         | 2.11                   |
| West Sector | r              |              |           |              |                |                |                        |
| 594         | 62             | 35           | 0         | 35           | 6.77           | 17             | 3.29                   |
| 602         | 295            | 237          | 0         | 237          | 9.64           | 117            | 4.76                   |
| 604         | 277            | 232          | 0         | 232          | 10.05          | 113            | 4.90                   |
| 606         | 3,567          | 1,275        | 1         | 1,276        | 4.29           | 617            | 2.08                   |
| 608         | 224            | 174          | 0         | 174          | 9.32           | 83             | 4.45                   |
| 610         | 2,452          | 1,406        | - 2       | 1,404        | 6.87           | 686            | 3.36                   |
| 612         | 7,502          | 4,437        | - 2       | 4,435        | 7.09           | 2,162          | 3.46                   |
| 614         | 9,962          | 2,757        | 1<br>- 2  | 2,758        | 3.32           | 1,342          | 1.62                   |
| 616         | 2,930          | 2,215        |           | 2,213        | 9.06           | 1,087          | 4.45                   |
| 618         | 358            | 118          | 0         | 118          | 3.96           | 57             | 1.91                   |
| 620         | 6,606          | 3,970        | - 1       | 3,969        | 7.06           | 1,949          | 3.54                   |
| 622         | 2,089          | 1,418        | - 1       | 1,417        | 8.14           | 681            | 3.91                   |
| 624         | 9,236          | 6,073        | 0         | 6,073        | 7.89           | 2,944          | 3.83                   |
| 626<br>628  | 1,188          | 337<br>3,051 | 0<br>0    | 337<br>3,051 | 3.40<br>7.96   | 157<br>1,469   | 1.59<br>3.83           |
| 630         | 4,600<br>366   | 242          | 0         | 242          | 7.98           |                | 3.80                   |
| 632         | 982            | 1,039        | - 3       | 1,036        | 12.66          | 116<br>512     | 6.26                   |
| 634         | 3,298          | 835          | - 3       | 835          | 3.04           | 415            | 1.51                   |
| 636         | 1,262          | 769          | - 1       | 768          | 7.30           | 381            | 3.62                   |
| 638         |                | 2,281        | - 1       | 2,280        | 6.27           |                | 3.03                   |
| 640         | 4,362<br>5,490 | 2,201        | - 1       | 2,200        | 5.98           | 1,103<br>1,336 | 2.92                   |
| 648         |                | 2,737        | - 1       | 2,730        | 5.14           | 369            | 2.92                   |
| 650         | 1,766<br>7,860 | 4,655        | - 1       | 4,654        | 7.11           | 2,223          | 3.39                   |
| 652         | 8,127          | 4,833        | - 1       | 4,823        | 7.12           | 2,223          | 3.43                   |
| 654         | 3,235          | 1,599        | 0         | 1,599        | 5.93           | 763            | 2.83                   |
| 656         | 548            | 838          | - 1       | 837          | 18.33          | 414            | 9.07                   |
| 658         | 3,792          | 4,495        | - 5       | 4,490        | 14.21          | 2,173          | 6.88                   |
| 660         | 3,922          | 1,956        | - 1       | 1,955        | 5.98           | 928            | 2.84                   |
| 662         | 2,561          | 1,534        | - 3       | 1,531        | 7.17           | 737            | 3.45                   |
| 664         | 3,194          | 1,991        | - 1       | 1,990        | 7.48           | 936            | 3.52                   |
| 666         | 448            | 416          | - 1       | 415          | 11.12          | 199            | 5.31                   |
| 668         | 2,771          | 1,254        | 1         | 1,255        | 5.44           | 612            | 2.65                   |
| 670         | 4,449          | 3,180        | - 3       | 3,177        | 8.57           | 1,497          | 4.04                   |
| SUM         | 109,781        | 63,136       | - 27      | 63,109       | 6.90           | 30,517         | 3.34                   |
| Central Sec | tor            |              |           |              |                |                |                        |
| 672         | 8,866          | 5,174        | 2         | 5,176        | 7.01           | 2,506          | 3.39                   |
| 674         | 5,916          | 1,609        | 2         | 1,611        | 3.27           | 734            | 1.49                   |
| 676         | 1,709          | 1,285        | 0         | 1,285        | 9.02           | 620            | 4.35                   |
| 686         | 3,546          | 1,028        | 0         | 1,028        | 3.48           | 502            | 1.70                   |
| 688         | 2,327          | 560          | 1         | 561          | 2.89           | 284            | 1.46                   |
| 690         | 5,852          | 1,675        | 1         | 1,676        | 3.44           | 829            | 1.70                   |
| 692         | 2,598          | 754          | 0         | 754          | 3.10           | 368            | 1.70                   |

# Table 9.17 Maximum potential annual water yield enhancement and decrease in groundwater use by vegetation (GW-Use) resulting from the maximum brush control scenario using the Goliad County EDYS model. ET values are average annual decreases and runoff values are average annual increases (net yield = decreased ET + increased runoff).

| Watershed   | Area             | Waters     | hed Total | (acre-feet)     | Per Acre Basis | Decrease    | in GW-Use <sup>1</sup> |
|-------------|------------------|------------|-----------|-----------------|----------------|-------------|------------------------|
|             | (acres)          | ET         | Runoff    | Net Yield       | (inches/acre)  | (acre-feet) | (inches/acre)          |
| <u> </u>    | 2 1 2 5          | <b>COO</b> | 1         | 60.2            | 0 41           | 204         | 1 05                   |
| 694         | 3,105            | 622        | 1         | 623             | 2.41           | 324         | 1.25                   |
| 696         | 4,316            | 2,611      | 0         | 2,611           | 7.26           | 1,611       | 4.48                   |
| 698         | 254              | 61         | 0         | 61              | 2.88           | 30          | 1.42                   |
| 700         | 6,717            | 2,361      | 1         | 2,362           | 4.22           | 1,141       | 2.04                   |
| 702         | 6,518            | 2,817      | 0         | 2,817           | 5.19           | 1,352       | 2.50                   |
| 704         | 4,420            | 1,416      | 1         | 1,417           | 3.85           | 693         | 1.88                   |
| 706         | 2,007            | 533        | 0         | 533             | 3.19           | 265         | 1.58                   |
| 708         | 1,997            | 1,222      | 1         | 1,223           | 7.35           | 595         | 3.58                   |
| 710         | 3,423            | 984        | 0         | 984             | 3.45           | 481         | 1.69                   |
| 712         | 787              | 297        | 0         | 297             | 4.53           | 142         | 2.17                   |
| 714         | 2,870            | 1,367      | 0         | 1,367           | 5.72           | 654         | 3.08                   |
| 716         | 128              | 106        | 0         | 106             | 9.93           | 52          | 4.88                   |
| 718         | 2,056            | 583        | 1         | 584             | 3.40           | 283         | 1.65                   |
| 720         | 3,563            | 2,261      | 2         | 2,263           | 7.62           | 1,096       | 3.69                   |
| 722         | 11,834           | 9,063      | - 3       | 9,060           | 9.19           | 4,401       | 4.46                   |
| 724         | 8,813            | 2,139      | 1         | 2,140           | 2.91           | 978         | 1.33                   |
| 726         | 2,747            | 1,876      | 0         | 1,876           | 8.20           | 914         | 3.99                   |
| 728         | 5,131            | 10,172     | - 10      | 10,162          | 23.74          | 4,936       | 11.54                  |
| 730         | 3,322            | 3,902      | - 8       | 3,894           | 14.07          | 1,806       | 6.52                   |
| 732         | 699              | 969        | - 4       | 965             | 16.58          | 479         | 8.22                   |
| 734         | 2                | 3          | 0         | 3               | 16.50          | 1           | 5.50                   |
| SUM         | 105,523          | 57,450     | - 11      | 57 <b>,</b> 439 | 6.53           | 27,702      | 3.15                   |
| South Secto | or               |            |           |                 |                |             |                        |
| 1124        | 9,166            | 11,863     | - 19      | 11,844          | 15.51          | 5,514       | 7.22                   |
| 1125        | 15,479           | 9,142      | 0         | 9,142           | 7.09           | 4,457       | 3.46                   |
| 1126        | 23,007           | 8,107      | 4         | 8,111           | 4.23           | 3,943       | 2.06                   |
| 1127        | 38,674           | 12,026     | 5         | 12,031          | 3.73           | 5,596       | 1.74                   |
| 1128        | 6,165            | 1,864      | - 1       | 1,863           | 3.63           | 824         | 1.60                   |
| 1129        | 12,817           | 4,486      | 0         | 4,486           | 4.20           | 1,873       | 1.75                   |
| 1130        | 6,277            | 2,961      | 2         | 2,963           | 5.66           | 1,291       | 2.47                   |
| 1131        | 32,660           | 15,880     | - 3       | 15,877          | 5.83           | 7,131       | 2.47                   |
| 1132        | 22,357           | 15,654     | - 5       | 15,659          | 8.40           | 7,388       | 3.97                   |
| 1133        | 12,795           | 3,459      | 8         | 3,467           | 3.25           | 1,617       | 1.52                   |
| 1133        | 12,322           | 12,092     | - 1       | 12,091          | 11.78          | 5,689       | 5.54                   |
| 1134        | 20,021           | 23,318     | - 27      | 23,291          | 13.96          | 10,577      | 6.34                   |
| SUM         | 211,740          | 120,852    | - 27      | 120,825         | 6.85           | 55,900      | 3.17                   |
| County Tot  | als              |            |           |                 |                |             |                        |
|             | 551 <b>,</b> 137 | 287,249    | - 61      | 287,188         | 6.62           | 135,906     | 2.96                   |

#### Table 9.17 (Cont.)

<sup>1</sup> Groundwater use amounts are included in the ET amounts (i.e., groundwater-use is part of the plant transpiration).

Maximum potential enhancement of water yield from brush control was 6.62 inches per acre annually when averaged over the entire county, with a low of 2.41 inches in Watershed 694 in the north-central part of the county and high of 23.74 inches in Watershed 728 along the river in the eastern part of the county (Table 9.17). Potential yields tended to be higher in watersheds located along the river and lower in watersheds located in more upland areas (Fig. 9.4).

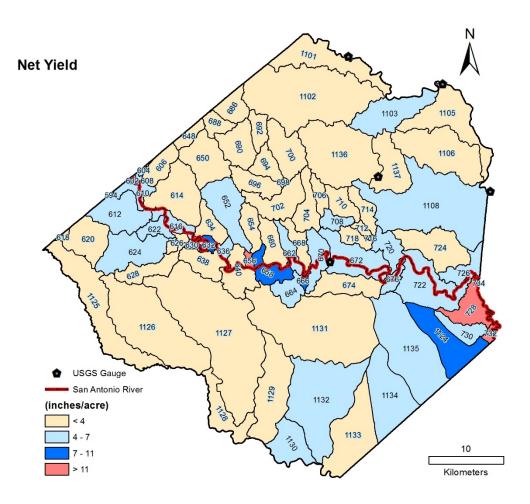



Figure 9.4 Maximum potential increased annual water yield (inches/acre) from brush control based on 25-year simulations of the Goliad EDYS model using the moderate rainfall regime.

Potential increase in water yield from brush control is the result of two primary factors: 1) decreased ET because of less, and different types of, vegetation and 2) lower groundwater use because of a reduction in amount of deep-rooted woody species. Overall, about 45% of the potential increase in water yield in the simulations occurred from lower groundwater use (Table 9.17). Although the proportion of potential increased water yield contributed by reduction in use of groundwater remained fairly constant among the watersheds, the amount of groundwater reduction varied substantially among watersheds (Fig. 9.5).

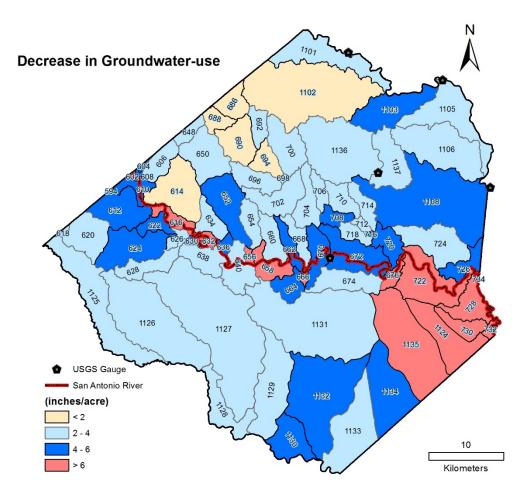



Figure 9.5 Decrease in annual groundwater use by vegetation (inches/acre) from maximum brush control based on 25-year simulations of the Goliad EDYS model using the moderate rainfall regime.

# **10.0 LITERATURE CITED**

Albertson, F.W. 1937. Ecology of mixed prairie in west central Kansas. Ecological Monographs 7:481-547.

Allen, E.B. and D.H. Knight. 1984. The effects of introduced annuals on secondary succession in sagebrush-grassland, Wyoming. Southwestern Naturalist 29:407-421.

Amerikanuak, Inc. 2006. Proposal for the TVX Mineral Hill Mine consolidated closure plan modifications near Gardiner, Montana. Report submitted to the Montana Department of Environmental Quality. Submitted by TVX Mineral Hill, Inc. Toronto, Ontario. 139 p.

Anderson, Jay E. 1982. Factors controlling transpiration and photosynthesis in *Tamarix chinensis* Lour. Ecology 63:48-56.

Anderson, Kling L., Ed F. Smith, and Clenton E. Owensby. 1970. Burning bluestem range. Journal of Range Management 23:81-92.

Andersson, F. 1970. Ecological studies in a Scanian woodland and meadow area, southern Sweden. II. Plant biomass, primary production, and turnover of organic matter. Bot. Notiser 123:8-51.

Archer, Steve. 1990. Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA. Journal of Biogeography 17:453-462.

Archer, Steve, Charles Scifres, C.R. Bassham, and Robert Maggio. 1988. Autogenic succession in a subtropical savanna: conversion of grassland to thorn woodland. Ecological Monographs 58:111-127.

Ash, Andrew and Lynn Walker.1999. Environmental management of military lands. LWRRDC Project CTC19. Constructing decision support tools to evaluate management alternatives. Final Report. CSIRO Tropical Agriculture. Aitkenvale, Queensland. Australia. 37 p.

Bailey, Robert G. 1995. Description of the Ecoregions of the United States. USDA Forest Service Misc. Publication 1391. 108 p.

Barth, R.C. and J.O. Klemmedson. 1982. Amount and distribution of dry matter, nitrogen, and organic carbon in soil-plant systems of mesquite and palo verde. Journal of Range Management 35:412-418.

Beaty, E.R., K.H. Tan, R.A. McCreery, and J.B. Jones. 1973. Root-herbage production and nutrient uptake and retention by bermudagrass and bahiagrass. Journal of Range Management 28:385-389.

Benton, M.W. and D.B. Wester. 1998. Biosolids effects on tobosagrass and alkali sacaton in a Chihuahuan Desert grassland. Journal of Environmental Quality 27:199-208.

Bernard, J.M. and K. Fiala. 1986. Distribution of standing crop of living and dead roots in three wetland *Carex* species. Bulletin of the Torrey Botanical Club 113:1-5.

Biran, I., B. Bravdo, I. Bushkin-Harav, and E. Rawitz. 1981. Water consumption and growth rate of 11 turfgrasses as affected by mowing height, irrigation frequency, and soil moisture. Agronomy Journal 75:85-90.

Biswell, A.T.P. 1935. Effects of environment upon the root habits of certain deciduous trees. Botanical Gazette 9:676-708.

Boggie, R., R.F. Hunter, and A.H. Knight. 1958. Studies of root development of plants in the field using radioactive tracers. Journal of Ecology 46:621-639.

Booker, Jon D. and Terry McLendon. 2015. Methods used to calculate overland sheet-flow: comparison of TxRR and EDYS models. Report submitted to San Antonio River Authority. Texas Tech University. Lubbock. 17 p.

Booker, Jon D. and Terry McLendon. 2016. Methods used to calculate runoff: comparison of HSPF and EDYS models. Report submitted to San Antonio River Authority. Texas Tech University. Lubbock. 54 p.

Bovey, R.W., J.R. Baur, and H.L. Morton. 1970. Control of huisache and associated woody species in South Texas. Journal of Range Management 23:47-50.

Bovey, R.W., R.E. Meyer, and H.L. Morton. 1972. Herbage production following brush control with herbicides in Texas. Journal of Range Management 25:136-142.

Box, Thadis W. 1961. Relationships between plants and soils of four range plant communities in South Texas. Ecology 42:794-810.

Box, Thadis W. and Richard S. White. 1969. Fall and winter burning of South Texas brush ranges. Journal of Range Management 22:373-376.

Box, Thadis W., D. Lynn Drawe, and David K. Mann. 1979. Vegetation change in South Texas – the Welder Wildlife Refuge case study. Proceedings of the First Welder Wildlife Foundation Symposium. Welder Wildlife Foundation Contribution B-7. Sinton, Texas. pp 5-14.

Branson, F.A., R.F. Miller, and I.S. McQueen. 1976. Moisture relationships in twelve northern desert shrub communities near Grand Junction, Colorado. Ecology 57:1104-1124.

Bremer, Dale J., Lisa M. Auren, Jay M. Ham, and Clenton E. Owensby. 2001. Evapotranspiration in a prairie ecosystem: effects of grazing by cattle. Agronomy Journal 93:338-348. Briggs, John M. and Alan K. Knapp. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. American Journal of Botany 82:1024-1030.

Briggs, Lyman J. and H.L. Shantz. 1913. The water requirements of plants. I. Investigations in the Great Plains in 1910 and 1911. USDA Bureau of Plant Industry Bulletin 284. 49 p.

Broad, Tyson, Emily Seldomridge, Tom Arsuffi, and Kevin Wagner. 2016. Upper Llano River Watershed Protection Plan. Developed by the Upper Llano Watershed Coordination Committee. Texas Tech University, Lubbock, and Texas Water Resources Institute, College Station. 178 p.

Brummer, J.E., R.L. Gillen, and F.T. McCollum. 1988. Herbage dynamics of tallgrass prairie under short duration grazing. Journal of Range Management 41:264-267.

Bryant, F.C., M.M. Kothmann, and L.B. Merrill. 1979. Diets of sheep, Angora goats, Spanish goats, and white-tailed deer under excellent range conditions. Journal of Range Management 32:412-417.

Buckley, P.E. and J.D. Dodd. 1969. Heavy precipitation influences saline clay flat vegetation. Journal of Range Management 22:405-407.

Buyanovsky, G.A., C.L. Kucera, and G.H. Wagner. 1987. Comparative analyses of carbon dynamics in nature and cultivated ecosystems. Ecology 68:2023-2031.

Cable, D.R. 1980. Seasonal patterns of soil water recharge and extraction on semidesert ranges. Journal of Range Management 33:9-15.

Caldwell, M.M. and L.B. Camp. 1974. Belowground productivity of two cool desert communities. Oecologia 17:123-139.

Canadell, J., R.B. Jackson, J.R. Ehleringer, H.A. Mooney, O.E. Sala, and E.-D. Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583-595.

Carlson, D.H., T.L. Thurow, R.W. Knight, and R.K. Heitschmidt. 1990. Effect of honey mesquite on the water balance of Texas Rolling Plains rangeland. Journal of Range Management 43:491-496.

Caryle-Moses, D.E. 2004. Throughfall, stemflow, and canopy interception loss fluxes in a semiarid Sierra Madre Oriental matorral community. Journal of Arid Environments 58:180-201.

Cayan, Daniel R., Kelly T. Redmond, and Laurence G. Riddle. 1999. ENSO and hydrologic extremes in the western United States. Journal of Climate 12:2881-2893.

Cergilione, L.J., A.E. Liberta, and R.C. Anderson. 1987. Effects of soil moisture and soil sterilization on vesicular-arbuscular mycorrhizal colonization and growth of little bluestem *(Schizachyrium scoparium)*. Canadian Journal of Botany 66:757-761.

Chamrad, A. Dean, Billie E. Dahl, John G. Kie, and D. Lynn Drawe. 1979. Deer food habits in South Texas – Status, needs, and role in resource management. In: D. Lynn Drawe (ed.) Proceedings of the First Welder Wildlife Foundation Symposium. Welder Wildlife Foundation Contribution B-7. Sinton, Texas. pp 133-142.

Chew, Robert M. and Alice E. Chew. 1965. The primary productivity of a desert-shrub (*Larrea tridentata*) community. Ecological Monographs 35:355-375.

Chiaeb, M., B. Hendri, and M. Bukhris. 1996. Impact of clipping on root systems of 3 grass species in Tunisia. Journal of Range Management 49:336-339.

Childress, W. Michael and Terry McLendon. 1999. Simulation of multi-scale environmental impacts using the EDYS model. Hydrological Science and Technology 15:257-269.

Childress, W. Michael, Terry McLendon, and David L. Price. 1999a. A decision support system for allocation of training activities on U.S. Army installations. In: Jeffrey M. Klopatek and Robert H. Gardner (eds) Landscape Ecological Analysis: Issues, Challenges, and Ideas. Ecological Studies Series. Springere-Verlag. New York. pp 80-108.

Childress, W. Michael, David L. Price, Cade L. Coldren, and Terry McLendon. 1999b. A functional description of the Ecological Dynamics Simulation (EDYS) model, with applications for Army and other Federal land managers. US Army Corps of Engineers CERL Technical Report 99/55. 68 p.

Childress, W. Michael, Cade L. Coldren, and Terry McLendon. 2002. Applying a complex, general ecosystem model (EDYS) in large-scale land management. Ecological Modelling 153:97-108.

Chiles, Gary W. and Terry McLendon. 2004. Sustainable range management system. Federal Facilities Environmental Journal 15:41-49.

Chumbley, C.A., R.G. Baker, and E.A. Bettis III. 1990. Midwestern Holocene paleoenvironments revealed by floodplain deposits in northwestern Iowa. Science 249:272-274.

Coldren, Cade L., Terry McLendon, and W. Michael Childress. 2011a. Ecological DYnamics Simulation Model (EDYS) Users Guide. Version 5.1.0. KS2 Ecological Field Services LLC. Fort Collins, Colorado. 259 p.

Coldren, Cade L., Terry McLendon, W. Michael Childress, David L. Price, and Mark R. Graves. 2011b. Ecological DYnamics Simulation Model – Light (EDYS-L). User's Guide Version 4.6.4. US Army Corps of Engineers. Engineer Research and Development Center. ERDC/EL SR-11-1. 94 p.

Cole, H.E.and A.E. Holch. 1941. The root habits of certain weeds of southeastern Nebraska. Ecology 22:141-147.

Corbett, E.S. and R.P. Crouse. 1968. Rainfall interception by annual grass and chaparral. USDA Forest Service Research Paper PSW-48.

Coupland, R.T. and T.C. Bradshaw. 1953. The fescue grassland in Saskatchewan. Ecology 34:386-405.

Coupland, R.T. and R.E. Johnson. 1965. Rooting characteristics of native grassland species in Saskatchewan. Journal of Ecology 53:475-507.

Cox, Jerry R. 1985. Above-ground biomass and nitrogen quantities in a big sacaton [*Sporobolus wrightii*] grassland. Journal of Range Management 38:273-276.

Coyne, P.I. and J.A. Bradord. 1986. Biomass partitioning in 'Caucasian' and 'WW-Spar' old-world bluestems. Journal of Range Management 39:303-310.

Cramer, Viki A., Peter J. Thorburn, and Grant W. Fraser. 1999. Transpiration and groundwater uptake from farm forest plots of *Casuarina glauca* and *Eucalyptus camaldulensis* in saline areas of southeast Queensland, Australia. Agricultural Water Management 39:187-204.

Daddy, F. 1985. Vegetation and soil water differences in big sagebrush communities. MSc Thesis. Colorado State University. Fort Collins. 56 p.

Dahlgren, R.A., J.H. Ricards, and Z. Yu. 1997. Soil and groundwater chemistry and vegetation distribution in a desert playa, Owens Lake, California. Arid Soil Research and Rehabilitation 11:221-244.

Dallas Morning News. 1958. Texas Almanac 1958-1959. Belo Corporation. Dallas, Texas. 704 p

Dalrymple, R.L., D.D. Dwyer, and J.E. Webster. 1965. Cattle utilization and chemical content of winged elm browse. Journal of Range Management 18:126-128.

Dawson, Todd E. 1993. Hydraulic lift and water use by plants: implications of water balance, performance, and plant-plant interactions. Oecologia 95:565-574.

Dawson, Todd E. 1996. Determining water use by trees and forests from isotopic, energy balance, and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiology 16:263-272.

Diamond, David D. and Fred E. Smeins. 1984. Remnant grassland vegetation and ecological affinities of the Upper Coastal Prairie of Texas. Southwestern Naturalist 29:321-334.

Dittmer, H.J. 1959. A study of the root systems of certain sand dune plants in New Mexico. Ecology 40:265-273.

Dodd, J.D. and S.T. Holtz. 1972. Integration of burning with mechanical manipulation of South Texas grassland. Journal of Range Management 25:130-136.

Donovan, L.A., J.H. Richards, and M.W. Mueller. 1996. Water relations and leaf chemistry of *Chrysothamnus nauseosus* ssp. *consimilis* (Asteraceae) and *Sarcobatus vermiculatus* (Chenopodiaceae). American Journal of Botany 83:1637-1646.

Dorale, Jeffrey A., Luis A. Gonzalez, Mark K. Reagan, David A. Pickett, Michael T. Murrell, and Richard G. Baker. 1992. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa. Science 258:1626-1630.

Dougherty, R.I. 1986. The soil water resource of *Opuntia polyacantha* in semiarid grassland. MSc Thesis. Colorado State University. Fort Collins. 194 p.

Drawe, D. Lynn. 1994. Bluestem-sacahuista prairie. In: Thomas N. Shiflet (ed.) Rangeland Cover Types of the United States. Society for Range Management. Denver, Colorado. pp 91-92.

Drawe, D. Lynn and Thadis W. Box. 1968. Forage ratings for deer and cattle on the Welder Wildlife Refuge. Journal of Range Management 21:225-235.

Drawe, D. Lynn and Thadis W. Box. 1969. High rates of nitrogen fertilization influence coastal prairie range. Journal of Range Management 22:32-36.

Drawe, D. Lynn, A. Dean Chamrad, and Thadis W. Box. 1978. Plant Communities of the Welder Wildlife Refuge. Contribution No. 5, Series B, Revised. Welder Wildlife Foundation. Sinton, Texas. 38 p.

Duell, L.F.W., Jr. 1990. Estimates of evapotranspiration in alkaline scrub and meadow communities of Owens Valley, California, using the Bowen-ratio, eddy-correlation, and Penman-combination methods. USGS Water Supply Paper 2370-E. 39 p.

Duncan, W.H. 1935. Root systems of woody plants of old fields of Indiana. Ecology 16:554-567.

Durham, Albert J., Jr. and M.M. Kothmann. 1977. Forage availability and cattle diets on the Texas Coastal Prairie. Journal of Range Management 30:103-106.

Duvall, Vinson L. and Norwin E. Linnartz. 1967. Influence of grazing and fire on vegetation and soil of longleaf pine-bluestem range. Journal of Range Management 20:241-247.

Duvigneaud, P., P. Kerstemont, and P. Ambroes. 1971. Productivité primaire des forets tempérées d'essence feuilles caducifoliees en Europe occidentale. In: P. Duvigneaud (ed.) Productivity of Forest Ecosystems. UNESCO. Paris.

Dwyer, D.D. and H.C. DeGarmo. 1970. Greenhouse productivity and water-use efficiency of selected desert shrubs and grasses under four soil-moisture levels. New Mexico State University Agricultural Experiment Station Bulletin 570.

Engle, David. 1994. Cross Timbers-Oklahoma. In: Thomas N. Shiflet (ed.) Rangeland Cover Types of the United States. Society for Range Management. Denver, Colorado. pp 90-91.

Evans, T.L., R. Mata-Gonzalez, D.W. Martin, T. McLendon, and J.S. Noller. 2013. Growth, water productivity, and biomass allocation of Great Basin plants as affected by summer watering. Ecohydrology 6:713-721.

Everitt, James H. and D. Lynn Drawe. 1974. Spring food habits of white-tailed deer in the South Texas plains. Journal of Range Management 27:15-20.

Everitt, J.H., C.L. Gonzalez, G. Scott, and B.E. Dahl. 1981. Seasonal food preferences of cattle on native range in the South Texas plains. Journal of Range Management 34:384-388.

Fairbourn, M.L. 1982. Water use by forage species. Agronomy Journal 74:62-66.

Fiala, K. and R. Herrera. 1988. Living and dead belowground biomass and its distribution in some savanna communities in Cuba. Folia Geobotanica et Phylotaxonomica 23:225-237.

Floret, C., R. Pontanier, and S. Rambal. 1982. Measurement and modelling of primary production and water use in a south Tunisian steppe. Journal of Arid Environments 5:77-90.

Forseth, I.N., J.R. Ehleringer, K.S. Werk, and C.S. Cook. 1984. Field water relations of Sonoran Desert annuals. Ecology 65:1436-1445.

Foxx, T.S. and G.D. Tierney. 1986. Rooting patterns in the pinyon-juniper woodland. Pinyon-Juniper Conference. Reno, Nevada. 13-16 January.

Frank, A.B. and J.D. Berdahl. 1999. Soil water use by diploid and tetraploid Russian wildrye. Crop Science 39:1101-1105.

Frasure, James R., Billie E. Dahl, and Gretchen R. Scott. 1979. Effect of range condition, range site, and grazing management on cattle diets in the Texas Coastal Bend. In: D. Lynn Drawe (ed.) Proceedings of the First Welder Wildlife Foundation Symposium. Welder Wildlife Foundation Contribution B-7. Sinton, Texas. pp 44-52.

Fuhlendorf, Samuel D., Fred E. Smeins, and Charles A. Taylor. 1997. Browsing and tree size influences on Ashe juniper understory. Journal of Range Management 50:507-512.

Fulbright, T.E., J.O. Kuti, and A.R. Tipton. 1997. Effects of nurse-plant canopy light intensity on shrub seedling growth. Journal of Range Management 50:607-610.

Gallagher, J.L., F.G. Plumley, and P.L. Wolf. 1977. Underground biomass dynamics and substrate selective properties of Atlantic Coastal salt marsh plants. Final Report prepared for the US Army Corps of Engineers. University of Georgia Maritime Institute. Sapelo Island. 131 p.

Gallagher, John L., Robert J. Reimold, Rick A. Linthrust, and William J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation-export dynamics in *Spartina alterniflora* and *Juncus roemerianus* plant stands in a Georgia salt marsh. Ecology 61:303-312.

Garelkov, D. 1973. Biological productivity of some beech forest types in Bulgaria. International Union of Forestry Research. Organic Biomass Studies. University of Maine. Orono.

Garrot, D.J. and C.F. Mancino. 1994. Consumptive water use of three intensively managed Bermuda grasses growing under arid conditions. Crop Science 34:215-221.

Gary, H.L. 1963. Root distribution of five-stamen tamarisk, seep-willow, and arrowweed. Forest Science 9:311-314.

Garza, Andres, Jr., Terry McLendon, and D. Lynn Drawe. 1994. Herbage yield, protein content, and carbohydrate reserves in gulf cordgrass (*Spartina spartinae*). Journal of Range Management 47:16-21.

Gibbens, R.P. and J.M. Lenz. 2001. Root systems of some Chihuahuan Desert plants. Journal of Arid Environments 49:221-263.

Gile, L.H., R.P. Gibbens, and J.M. Lenz. 1998. Soil induced variability in root systems of creosotebush (*Larrea tridentata*) and tarbush (*Flourensia cernua*). Journal of Arid Environments 39:57-78.

Gill, Richard A., Ingrid C. Burke, Daniel G. Milchunas, and William K. Lauenroth. 1999. Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado: implications for decomposition through a soil profile. Ecosystems 2:226-236.

Giurgevich, J.R. and E.L. Dunn. 1978. Seasonal patterns of CO<sub>2</sub> and water vapor exchange of *Juncus roemerianus* Scheele in a Georgia salt marsh. American Journal of Botany 65:502-510.

Glenn, Edward, Rene Tanner, Seiichi Miyamoto, Kevin Fitzsimmons, and John Boyer. 1998. Water use, productivity, and forage quality of the halophyte *Atriplex nummularia* grown on saline waste water in a desert environment. Journal of Arid Environments 38:45-62.

Graham, Michael W. 1982. Diets of white-tailed deer on a South Texas mesquite shrubland. MSc Thesis. Texas A&I University. Kingsville. 122 p.

Grelen, H.E. and E.A. Epps, Jr. 1967. Herbage responses to fire and litter removal on southern bluestem range. Journal of Range Management 20:403-404.

Grosz, O.M. 1972. Humboldt River Project studies on evapotranspiration of woody phreatophytes and saltgrass. USGS Progress Report. Menlo Park, California. 48 p.

Hamblin, A.P. and D. Tennant. 1987. Root length density and water uptake in cereals and grain legumes: how well are they correlated? Australian Journal of Agricultural Research 38:513-527.

Hamilton, E.L. and P.B. Rowe. 1949. Rainfall interception by chaparral in California. USDA and State of California Department of Natural Resources Division of Forestry. Unnumbered publication.

Hatch, Stephan L., Kancheepuram N. Gandhi, and Larry E. Brown. 1990. Checklist of the Vascular Plants of Texas. Texas Agricultural Experiment Station MP-1655. Texas A&M University. College Station. 158 p.

Hazell, Don B. 1967. Effect of grazing intensity on plant composition, vigor, and production. Journal of Range Management 20:249-252.

HDR, Inc. 2015. Brush management in Gonzales County as a water management strategy. Final Report prepared for Texas State Soil and Water Conservation Board. HDR Inc., Austin. Texas. 90 p.

Heitschmidt, R.K., R.J. Ansley, S.L. Dowhower, P.W. Jacoby, and D.L. Price. 1988. Some observations from the excavation of honey mesquite root systems. Journal of Range Management 41:227-231.

Hellmers, H., J.S. Horton, G. Juhren, and J. O'Keefe. 1995. Root systems of some chaparral plants in southern California. Ecology 36:667-678.

Herbel, Carlton H. and Arnold B. Nelson. 1966. Species preference of Hereford and Santa Gertrudis cattle on a southern New Mexico range. Journal of Range Management 19:177-181.

Hernandez, L. and K. Fiala. 1992. Root biomass dynamics in the savanna community of *Paspalum notatum* in Cuba. Ekologia (CSFR) 11:153-166.

Hidalgo, H.G. 2004. Climate precursors of multi-decadal drought variability in the western United States. California Climate Change Center/California Applications Program Report 16.0. Scripps Institution of Oceanography. La Jolla, California. 21 p.

Holch, A.E., E.W. Hertel, W.O. Oakes, and H.H. Whitwell. 1941. Root habits of certain plants of the foothill and alpine belts of Rocky Mountain National Park. Ecological Monographs 11:327-345.

Hons, F.M., L.R. Hossner, and E.L. Whiteley. 1979. Yield and rooting activity of forage grasses on a surface-mined soil of Texas. Agronomy Journal 71:113-116.

Hopkins, H. 1953. Root development of grasses on revegetated land. Journal of Range Management 6:382-392.

Huang, R.S., W.K. Smith, and R.S. Yost. 1985. Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in *Leucaena leucocephala* (Lam.) de Wit. New Phytologist 99:229-243.

Hunt, J.O. 1962. Water requirments of selected genotypes of *Elymus junceus* Fisch. and *Agropyron intermedium* (Host) Beauv. and their parent progeny relationships. Crop Science 2:97-99.

Jackson, R.B., L.A. Moore, W.A. Hoffmann, W.T. Pockman, and C.R. Linder. 1999. Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences 96:11387-11392.

Jackson, R.B., J.S. Sperry, and T.E. Dawson. 2000. Root water uptake and transport: Using physiological processes in global predictions. Trends in Plant Science 5:482-488.

Jensen, Peter N. and C.M. Schumacher. 1969. Changes in prairie plant composition. Journal of Range Management 22:57-60.

Johnson, Billy E. and Cade L. Coldren. 2006. Linkage of a physically based distributed watershed model and a dynamic plant growth model. ERDC/EL TR-06-17. US Army Corps of Engineers. Engineer Research and Development Center. Vicksburg, Mississippi. 95 p.

Johnson, Billy E. and Terry K. Gerald. 2006. Development of nutrient submodules for use in the gridded surface and subsurface hydrologic analysis (GSSHA) distributed watershed model. Journal of the American Water Resources Association 42:1503-1525.

Johnston, Marshall C. 1963. Past and present grasslands of southern Texas and northeastern Mexico. Ecology 44:456-466.

Jones, R.J. and A.S. Aliyu. 1976. The effect of *Eleusine indica*, herbicides, and activated charcoal of the seedling growth of *Leucaena leucocephala* cv. Peru. Tropical Grasslands 10:195-203.

Jurena, P.N. and Steve Archer. 2003. Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84:907-919.

Kanable, Ann. 1977. Raising Rabbits. Rodale Press. Emmaus, PA. 191 p.

Kapinga, Philibert X. 1982. Seasonal variation in yield and quality of six improved grass species under two levels of fertility and two clipping heights in South Texas. MSc Thesis. Texas A&I University. Kingsville. 79 p.

Kauffman, J.B., A.S. Thorpe, and E.N.J. Brookshire. 2004. Livestock exclusion and belowground ecosystem responses in riparian meadows of eastern Oregon. Ecological Applications 14:1671-1679.

Keim, F.D. and G.W. Beadle. 1927. Relation of time of seeding to root development and winter survival of fall seeded grasses and legumes. Ecology 8:251-264.

Kennett, D.J., S.F.M. Breitenbach, V.V. Aquino, Y. Asmerom, J. Awe, J.U.L. Baldini, P. Barlein, B.J. Culleton, C. Ebert, C. Jazwa, M.J. Macri, N. Marwan, V. Polyak, K.M. Prufer, H.E. Ridley, H. Sodermann, B. Winterhalder, and G.H. Huag. 2012. Development and disintegration of Maya political systems in response to climate change. Science 338:788-791.

Khan, Ch. M. Anwar. 1971. Rainfall pattern and monthly forage yields in Thal ranges of Pakistan. Journal of Range Management 24:66-70.

Kie, John G., D. Lynn Drawe, and Gretchen Scott. 1980. Changes in diet and nutrition with increased herd size in Texas white-tailed deer. Journal of Range Management 33:28-34.

Knowlton, Frederick F., Marshall White, and John G. Kie. 1979. Weight patterns of wild whitetailed deer in southern Texas. In: D. Lynn Drawe (ed.) Proceedings of the First Welder Wildlife Foundation Symposium. Welder Wildlife Foundation Contribution B-7. Sinton, Texas. pp 55-64.

Lamontagne, Sebastien, Peter G. Cook, Anthony O'Grady, and Derek Eamus. 2005. Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology 310:280-293.

Lane, L.J., E.M. Romney, and T.E. Hakonson. 1984. Water balance calculations and net production of perennial vegetation in the northern Mojave Desert. Journal of Range Management 37:12-18.

Larcher, W. 1995. Water Relations. Physiological Plant Ecology, Ecophysiology, and Stress Physiology of Functional Groups. Third Edition. Springer. pp 215-275.

Lawn, R.J. 1982. Response of four grain legumes to water stress in south-eastern Queensland. III. Dry matter production, yield, and water use efficiency. Australian Journal of Agricultural Research 33:511-521.

Lee, C.A. and W.K. Lauenroth. 1994. Spatial distribution of grass and shrub root systems in the shortgrass steppe. American Midland Naturalist 132:117-123.

Lorenz, R.J. and G.A. Rogler. 1967. Grazing and fertilization affect root development of range grasses. Journal of Range Management 20:129-132.

Manning, M.E., S.R. Swanson, and J. Trent. 1989. Rooting characteristics of four intermountain meadow community types. Journal of Range Management 42:309-312.

Marier, M.J., C.A. Zabinski, and R.M. Callaway. 1999. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180-1186.

Mata-Gonzalez, Ricardo, Rachael G. Hunter, Cade L. Coldren, Terry McLendon, and Mark W. Paschke. 2007. Modeling plant growth dynamics in sagebrush steppe communities affected by fire. Journal of Arid Environments 69:144-157.

Mata-Gonzalez, Ricardo, Rachael G. Hunter, Cade L. Coldren, Terry McLendon, and Mark W. Paschke. 2008. A comparison of modeled and measured impacts of resource manipulations for control of *Bromus tectorum* in sagebrush steppe. Journal of Arid Environments 72:836-846.

Mata-Gonzalez, Ricardo, Tracie L. Evans, David W. Martin, Terry McLendon, Jay S. Noller, Changgui Wan, and Ronald E. Sosebee. 2014. Patterns of water use by Great Basin plant species under summer watering. Arid Land Research and Management 28:428-446.

Maxwell, Reed M. and Laura E. Condon. 2016. Connections between groundwater flow and transpiration partitioning. Science 353:377-380.

McCalla, C.R. III, W.H. Blackburn, and L.B. Merrill. 1984. Effects of livestock grazing on sediment production, Edwards Plateau of Texas. Journal of Range Management 37:291-294.

McCawley, Paul F. 1978. An evaluation of three exotic grasses for pasture in the Coastal Bend. MSc Thesis. Texas Tech University. Lubbock. 107 p.

McDaniel, Kirk C., John H. Brock, and Robert H. Haas. 1982. Changes in vegetation and grazing capacity following honey mesquite control. Journal of Range Management 35:551-557.

McDonald, C.C. and G.H. Hughes. 1968. Studies of the consumptive use of water by phreatophytes and hydrophytes near Yuma, Arizona. USGS Professional Paper 486-F. 24 p.

McGinnies, W.G. and Joseph F. Arnold. 1939. Relative water requirements of Arizona range plants. University of Arizona Agricultural Experiment Station Technical Bulletin 80. Tucson. 246 p.

McKell, C.M., M.B. Jones, and E.R. Perrier. 1962. Root production and accumulation of root material on fertilized annual range. Agronomy Journal 54:459-462.

McLendon, Terry. 1977. A study of the potential of hairy pea (*Tephrosia lindheimeri*) in increasing the livestock carrying capacities of South Texas sandy rangeland. Research Report submitted to the King Ranch Inc. Texas A&I University. Kingsville. 26 p.

McLendon, Terry. 1991. Preliminary description of the vegetation of South Texas exclusive of coastal saline zone. Texas Journal of Science 43:13-32.

McLendon, Terry. 1994. Mesquite-granjeno-acacia. In: Thomas N. Shiflet (ed.) Rangeland Cover Types of the United States. Society for Range Management. Denver, Colorado. p. 104. McLendon, Terry. 2001. Revegetation test plot results and validation of EDYS simulations. TVX Mineral Hill Mine Closure. Final Report. Shepherd-Miller Inc. Fort Collins, Colorado. 59 p.

McLendon, Terry. 2008. Report on the Owens Valley plant survivability study. Report prepared for Los Angeles Department of Water and Power. MWH Inc. Fort Collins, Colorado. 44 p.

McLendon, Terry. 2013. Quantification of effects of distances from drainage and from outlet on water yield enhancement from brush control. Report prepared for Texas State Soil and Water Conservation Board. KS2 Ecological Field Services LLC. Anton, Texas. 16 p.

McLendon, Terry. 2014. Sampling of validation plots, San Antonio Bay EDYS model: Task 4 progress report for 2014. Report submitted to the San Antonio River Authority. Texas Tech University. Lubbock. 49 p.

McLendon, Terry. 2015. Validation plot sampling: 2014 results, Atascosa, Karnes, and Goliad Counties. Annual report prepared for San Antonio River Authority. Texas Tech University. Lubbock. 50 p.

McLendon, Terry and Cade L. Coldren. 2005. Validation of the EDYS ecological model using gauged data from the Honey Creek Research Watershed, Texas. Report prepared for US Army Engineer Research and Development Center - Environmental Laboratory. Vicksburg, Mississippi. MWH Inc. Fort Collins, Colorado. 21 p.

McLendon, Terry and Cade L. Coldren. 2011. Effects of plant succession on the functioning of engineered covers and modeling of long-term successional impacts using the EDYS ecological simulation model. Proceedings of the Workshop on Engineered Barrier Performance Related to Low-Level Radioactive Waste, Decommissioning, and Uranium Mill Tailings Facilities. US Nuclear Regulatory Commission. Rockville, Maryland. 3-5 August 2010.

McLendon, Terry and Bill E. Dahl. 1983. A method of mapping vegetation utilizing multivariate statistical techniques. Journal of Range Management 36:457-462.

McLendon, Terry and Charles A. DeYoung. 1976. Report on the effects of possible salt water seepage on vegetation surrounding the Barney M. Davis cooling lake. Submitted to Central Power and Light Company. Texas A&I University. Kingsville. 28 p.

McLendon, Terry, Michael W. Graham, Hugh P. Lieck, and Morgan C. Smith. 1982. Separation of herbivore diets and preference groups by multivariate statistical analysis. Abstracts. 35th Annual Meeting of the Society for Range Management. Calgary, Alberta. p. 8.

McLendon, Terry, Cade L. Coldren, and W. Michael Childress. 2000. Evaluation of the effects of vegetation changes on water dynamics of the Clover Creek watershed, Utah, using the EDYS model. Report prepared for the Natural Resources Conservation Service and the US Army Corps of Engineers. Technical Report SMI-ES-020. Shepherd-Miller Inc. Fort Collins, Colorado. 56 p.

McLendon, Terry, W. Michael Childress, Cade Coldren, and David L. Price. 2001. EDYS experimental and validation results for grassland communities. US Army Corps of Engineers Technical Report ERDC/CERL TR-01-54. 87 p.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, and Jean A. Swinehart. 2012a. Classification and mapping of the vegetation of El Gachupin Ranch, Jim Hogg County, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 23 p. + maps.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, Jean A. Swinehart, Cindy Hindes, and Daryl E. Mergen. 2012b. Classification and mapping of the vegetation of El Ranchito East and El Ranchito West Ranches, Jim Hogg County, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 57 p. + maps.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, Jean A. Swinehart, Cindy Hindes, and Daryl E. Mergen. 2012c. Classification and mapping of the vegetation of the Santa Rosa Ranch, Kenedy County, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 68 p. + maps.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, Jean A. Swinehart, Cindy Hindes, and Daryl E. Mergen. 2012d. Classification and mapping of the vegetation of the Buena Vista Ranch, Jim Hogg and Brooks Counties, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 51 p. + maps.

McLendon, Terry, Cindy R. Pappas, Cade L. Coldren, Ernest B. Fish, Micah J. Beierle, Annette E. Hernandez, Kenneth A. Rainwater, and Richard E. Zartman. 2012e. Application of the EDYS decision tool for modeling of target sites for water yield enhancement through brush control. Report prepared for the Texas State Soil and Water Conservation Board. Water Resources Center. Texas Tech University. Lubbock. 35 p.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, Jean A. Swinehart, Cindy Hindes, and Daryl E. Mergen. 2013a. Classification and mapping of the vegetation of the San Antonio Viejo Ranch, Jim Hogg and Starr Counties, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 184 p. + maps.

McLendon, Terry, M.J. Trlica, Kathie S. Stanley, Kellie D. Stanley, Jennifer Aboaf, Cindy R. Pappas, and Jean A. Swinehart. 2013b. Classification and mapping of the vegetation of the El Sauz Ranch, Kenedy and Willacy Counties, Texas. Report submitted to the East Wildlife Foundation. KS2 Ecological Field Services. Anton, Texas. 103 p. + maps.

McLendon, Terry, Jon D. Booker, Cade L. Coldren, Cindy R. Pappas, and Jean A. Swinehart. 2015. Development of an EDYS ecological model of the central San Antonio River watershed:

Karnes and Wilson Counties. Draft Final Report. Prepared for San Antonio River Authority. Texas Tech University. Lubbock. 223 p.

Meinzer, O.E. 1927. Plants as indicators of ground water. USGS Water-Supply Paper 577. 95 p.

Melgoza, G. and R.S. Nowak. 1991. Competition between cheatgrass and 2 native species after fire: implications from observations and measurements of root distribution. Journal of Range Management 44:27-33.

Montana, C., B. Cavagnaro, and O. Briones. 1995. Soil water use by co-existing shrubs and grasses in the southern Chihuahuan Desert, Mexico. Journal of Arid Environments 31:1-13.

Moore, R.T. and N.E. West. 1973. Distribution of galleta roots and rhizomes in two Utah sites. Journal of Range Management 26:34-36.

Moorhead, D.L., J.F. Reynolds, and P.J. Fonteyn. 1989. Patterns of stratified soil water loss in a Chihuahuan Desert community. Soil Science 148:244-249.

Morison, J.I.L. and R.M. Gifford. 1984. Plant growth and water use with limited water supply in high CO<sub>2</sub> concentrations. II. Plant dry weight, partitioning, and water use efficiency. Australian Journal of Plant Physiology 11:375-384.

Mueller, L.R., A. Behrendt, G. Schalitz, and U. Schindler. 2005. Aboveground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agricultural Water Management 75:117-136.

MWH, Inc. 2003. Taboose-Thibaut Area Local Management Plan. Model Strategy Report. Report prepared for Los Angeles Department of Water and Power. MWH Inc. Pasadena, California. 128 p + appendices.

Nadelhoffer, K.J., A.D. Aber, and J.M. Melillo. 1985. Fine roots, net primary production, and soil nitrogen availability: New hypothesis. Ecology 66:1377-1390.

Naumburg, Elke, Ricardo Mata-Gonzalez, Rachael G. Hunter, Terry McLendon, and David W. Martin. 2005. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem modeling with an emphasis on Great Basin vegetation. Environmental Management 35:726-740.

Neilson, Ronald P. 1986. High-resolution climatic analysis and Southwest biogeography. Science 232:27-34.

Nnyamah, Joe U. and T.A. Black. 1977. Rates and patterns of water uptake in a Douglas-fir forest. Soil Science Society of America Journal 41:972-979.

Nobel, Park S. 1976. Water relations and photosynthesis of a desert CAM plant, *Agave deserti*. Plant Physiology 58:576-582.

Nobel, Park S. and Edward G. Bobich. 2002. Plant frequency, stem and root characteristics, and CO<sub>2</sub> uptake for *Opuntia acanthocarpa*: elevational correlates in the northwestern Sonoran Desert. Oecologia 130:165-172.

Ockerman, Darwin J. 2002. Hydrologic conditions and quality of rainfall and storm runoff in agricultural and rangeland areas in San Patricio County, Texas, 2000-2001. USGS Survey Open-File Report 02-291. 20 p.

Ockerman, Darwin J. and Brian L. Petri. 2001. Hydrologic conditions and water quality in an agricultural area in Kleberg and Nueces Counties, Texas, 1996-98. USGS Water Resources Investigations Report 01-4101. 36 p.

Odum, Eugene P. 1971. Fundamentals of Ecology. Third Edition. W.B. Saunders. Philadelphia. 574 p.

Ogle, K., R.L. Wolpert, and J.F. Reynolds. 2004. Reconstructing plant root area and water uptake profiles. Ecology 85:1967-1978.

Orodho, Apollo B. and M.J. Trlica. 1990. Clipping and long-term grazing effecs on biomass and carbohydrate reserves of Indian ricegrass. Journal of Range Management 43:52-57.

Owensby, Clenton E. and Kling L. Anderson. 1967. Yield responses to time of burning in the Kansas Flint Hills. Journal of Range Management 20:12-16.

Paulsen, Harold A., Jr. and Fred N. Ares. 1962. Grazing values and management of black grama and tobosa grasslands and associated shrub ranges of the Southwest. USDA Forest Service Technical Bulletin 1270. 56 p.

Payne, W.A., C.W. Wendt, and R.J. Lascano. 1990. Root zone water balances of three low-input millet fields in Niger, West Africa. Agronomy Journal 82:813-819.

Peet, Michael S., A. Joshua Leffler, Carolyn Y. Ivans, Ronald J. Ryel, and Martyn M. Caldwell. 2005. Fine root distribution and persistence under field conditions of three co-occurring Great Basin species of different life forms. New Phytologist 165:171-180.

Peng, Shaobiing and Daniel R. Krieg. 1992. Gas exchange traits and their relationship to water use efficiency of grain sorghum. Crop Science 32:386-391.

Pettit, R.D. and C.C. Jaynes. 1971. Use of radiophosphorus and soil-block techniques to measure root development. Journal of Range Management 24:63-65.

Phillips, W.S. 1963. Depth of roots in soil. Ecology 44:424.

Pieper, Rex D. 1968. Vegetation on grazed and ungrazed pinyon-juniper grassland in New Mexico. Journal of Range Management 21:51-53.

Powell, Jeff and Thadis W. Box. 1967. Mechanical control and fertilization as brush management practices affect forage production in South Texas. Journal of Range Management 20:227-236.

Power, J.F. 1985. Nitrogen- and water-use efficiency of several cool-season grasses receiving ammonium nitrate for 9 years. Agronomy Journal 77:189-192.

Pressland, A.J. 1973. Rainfall partitioning by an arid woodland (*Acacia aneura* F. Muell.) in South-West Queensland. Australian Journal of Botany 21:235-245.

Price, David L., Terry McLendon, and Cade L. Coldren. 2004. Application of an ecological model for the Cibolo Creek Watershed. Water Quality Technical Notes Collection. ERDC WQTN-CS-04. U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.

Redente, E.F., M.E. Biondini, and J.C. Moore. 1989. Observations on biomass dynamics of crested wheatgrass and native shortgrass ecosystem in southern Wyoming. Journal of Range Management 43:113-118.

Renz, M.J., J.M. DiTomaso, and J. Schmierer. 1997. Above and belowground distribution of perennial pepperweed biomass and the utilization of mowing to maximize herbicide effectiveness. Proceedings of the California Weed Science Society 49:175.

Robberecht, Ronald, Bruce E. Mahall, and Park S. Nobel. 1983. Experimental removal of intraspecific competitors – effects on water relations and productivity of a desert bunchgrass, *Hilaria rigida*. Oecologia 60:21-24.

Rodin, L.E. and N.I. Basilevich. 1967. Production and Mineral Cycling in Terrestrial Vegetation. Oliver and Boyd. London.

Rodriguez, Ian R., Grady L. Miller, and L.B. McCarty. 2002. Bermudagrass establishment on high sand-content soils using various N-P-K ratios. HortScience 37:208-209.

Samuel, M.J. and R.H. Hart. 1992. Survival and growth of blue grama seedlings in competition with western wheatgrass. Journal of Range Management 45:444-448.

Sanders, Kenneth D. 1975. Continuous vs. short duration grazing on north-central Texas rangeland. PhD Dissertation. Texas Tech University. Lubbock. 148 p.

Schulze, E.-D., H.A. Mooney, O.E. Sala, E. Jobbagy, N. Buchmann, G. Bauer, J. Canadell, R.B. Jackson, J. Loreti, M. Oesterheld, and J.R. Ehleringer. 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503-511.

Schwarzbach, A.E., L.A. Donovan, and L.H. Rieseberg. 2001. Transgressive character expression in a hybrid sunflower species. American Journal of Botany 88:270-277.

Schwinning, Susanne and Osvaldo E. Sala. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211-220.

Scifres, C.J., J.W. McAtee, and D.L. Drawe. 1980. Botanical, edaphic, and water relationships of gulf cordgrass (*Spartina spartinae* [Trin.] Hitchc.) and associated species. Southwestern Naturalist 25:397-410.

Scifres, C.J., J.L. Mutz, R.E. Whitson, and D.L. Drawe. 1982. Interrelationships of huisache canopy cover with range forage on the Coastal Prairie. Journal of Range Management 35:558-562.

Scott, R.L., W.J. Shuttleworth, D.C. Goodrich, and T. Maddox III. 2000. The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology 105:241-256.

Scott, R.L., T.E. Huxman, D.G. Williams, and D.C. Goodrich. 2006. Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biology 12:311-324.

Sears, W.E., C.M. Britton, D.B. Wester, and R.D. Pettit. 1986. Herbicide conversion of a sand shinnery oak (*Quercus havardii*) community: effects on biomass. Journal of Range Management 39:399-403.

Seliskar, D.M. 1983. Root and rhizome distribution as an indicator of upper salt marsh wetland limits. Hydrobiologia 107:231-236.

Seliskar, D.M. and J.L. Gallagher. 2000. Exploiting wild population diversity and somaclonal variation in the salt marsh grass *Distichlis spicata* (Poaceae) for marsh creation and restoration. American Journal of Botany 87:141-146.

Sekiya, N. and K. Yano. 2002. Water acquisition from rainfall and groundwater by legume crops developing deep rooting systems determined with stable hydrogen isotope composition of xylem waters. Field Crops Research 78:133-139.

Shantz, H.L. and L.N. Piemeisel. 1927. The water requirement of plants at Akron, Colorado. Journal of Agricultural Research 34:1093-1190.

Shantz, H.L. and R.L. Piemeisel. 1940. Types of vegetation in Escalanate Valley, Utah, as indicators of soil conditions. USDA Technical Bulletin 713. 46 p.

Sheley, R.L. and L.L. Larson. 1994. Comparative growth and interference between cheatgrass and yellow starthistle seedlings. Journal of Range Management 47:470-474.

Shelford, Victor E. 1963. The Ecology of North America. University of Illinois Press. Urbana. 610 p.

Sims, P.L. and J.S. Singh. 1978. The structure and function of ten North American grasslands. III. Net primary production, turnover, and efficiencies of energy capture and water use. Journal of Ecology 66:573-597.

Smeins, Fred. 1994a. Little bluestem-Indiangrass-Texas wintergrass. In: Thomas N. Shiflet (ed.) Rangeland Cover Types of the United States. Society for Range Management. Denver, Colorado. pp 95-96.

Smeins, Fred. 1994b. Cross timbers-Texas. Little bluestem-post oak. In: Thomas N. Shiflet (ed.) Rangeland Cover Types of the United States. Society for Range Management. Denver, Colorado. pp 107-108.

Smeins, Fred E. and David D. Diamond. 1983. Remnant grasslands of the Fayette Prairie, Texas. American Midland Naturalist 110:1-13.

Smith, Morgan C. and Terry McLendon. 1981. Cattle diets on a South Texas shrub rangeland as determined by bite counts. Abstracts. 34th Annual Meeting of the Society for Range Management. Tulsa, Oklahoma. p. 1.

Snyder, K.A. and D.G. Williams. 2003. Defoliation alters water uptake by deep and shallow roots of *Prosopis velutina* (velvet mesquite). Functional Ecology 17:363-374.

Spence, L.E. 1937. Root studies of important range plants of the Boise River watershed. Journal of Forestry 35:747-754.

Sperry, T.M. 1935. Root systems in Illinois prairie. Ecology 16:178-202.

Stahle, D.W., M.K. Cleaveland, and J.G. Hehr. 1988. North Carolina climate changes reconstructed from tree rings: AD 372 to 1985. Science 240:1517-1519.

Stoddart, Laurence A. and Arthur D. Smith. 1955. Range Management. McGraw-Hill. New York. 433 p.

Stoddart, Laurence A., Arthur D. Smith, and Thadis W. Box. 1975. Range Management. Third Edition. McGraw-Hill. New York. 532 p.

Stone, L., R.D.E. Goodrum, M.N. Jafar, and A.H. Khan. 2001. Rooting front and water depletion depths in grain sorghum and sunflower. Agronomy Journal 93:1105-1110.

Svejcar, T.J. and J.S. Trent. 1995. Gas exchange and water relations of Lemmon's willow and Nebraska sedge. Journal of Range Management 48:121-125.

Tausch, R.J., C.L. Nowak, and S.A. Mensing. 2004. Climate change and associated vegetation dynamics during the Holocene: the paleoecological record. In: J.C. Chambers and J.R. Miller (eds.) Great Basin Riparian Ecosystems: Ecology, Management, and Restoration. Island Press. Covelo, California. pp 24-48.

Taylor, Frank B. 1977. Soil Survey of Wilson County, Texas. USDA Soil Conservation Service. 99 p. + maps.

Thurow, T.L., W.H. Blackburn, S.D. Warren, and C.A. Taylor, Jr. 1987. Rainfall interception by midgrass, shortgrass, and live oak mottes. Journal of Range Management 40:455-460.

Thurow, Thomas L., Wilbert H. Blackburn, and Charles A. Taylor, Jr. 1988. Infiltration and interrill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas. Journal of Range Management 41:296-302.

Tokey, O.P. and R.P. Bisht. 1992. Observations on the rooting patterns of some agroforestry trees in an arid region in northwestern India. Agroforestry Systems 18:245-263.

Tolstead, W.T. 1942. Vegetation in the northern part of Cherry County, Nebraska. Ecological Monographs 12:255-292.

Tomanek, G.W. and F.W. Albertson. 1957. Variations in cover, composition, and roots of vegetation on two prairies in western Kansas. Ecological Monographs 27:267-281.

USAFA. 2000. Environmental assessment analysis of Jack's Valley operations. NEPA Environmental Assessment Report. Environmental Engineering Flight 510 CES/CEV. United States Air Force Academy. Colorado Springs, Colorado.

Vinton, M.A. and I.C. Burke. 1995. Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76:1116-1133.

Von Carlowitz, P.G and G.V. Wolf. 1991. Open-pit sunken planting: a tree establishment technique for dry environments. Agroforestry Systems 15:17-29.

Wallace, A., E.M. Romney, and J.W. Cha. 1980. Depth distribution of roots of some perennial plants in the Nevada Test Site area of the northern Mojave Desert. Great Basin Naturalist 4:201-207.

Watson, M.C. 1990. *Atriplex* species as irrigated forage crops. Agriculture Ecosystems and Environment 32:107-118.

Weaver, D.J. 1941. Water usage of certain native grasses in prairie and pasture. Ecology 22:175-191.

Weaver, J.E. 1919. The Ecological Relations of Roots. Carnegie Institute of Washington Publication 286. 128 p.

Weaver, J.E. 1920. Root Development in the Grassland Formation. Carnegie Institute of Washington Publication 292. 151 p.

Weaver, J.E. 1926. Root Development in Field Crops. McGraw-Hill. New York.

Weaver, J.E. 1947. Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecology 28:221-240.

Weaver, J.E. 1950. Effects of different intensities of grazing on depth and quantity of roots of grasses. Journal of Range Management 3:100-113.

Weaver, J.E. 1954. North American Prairie. Johnsen Publishing. Lincoln, Nebraska. 348 p.

Weaver, J.E. 1958. Summary and interpretation of underground development in natural grassland communities. Ecological Monographs 28:55-78.

Weaver, J.E. and F.W. Albertson. 1943. Resurvey of grasses, forbs, and underground plant parts at the end of the Great Drought. Ecological Monographs 13:63-117.

Weaver, J.E. and F.E. Clements. 1938. Plant Ecology. Second Edition. McGraw-Hill. New York. 601 p.

Weaver, J.E. and R.W. Darland. 1949. Shoot-root relationships of certain native grasses in various soil types. Ecological Monographs 19:303-338.

Weaver, J.E. and T.J. Fitzpatrick. 1934. The prairie. Ecological Monographs 4:109-295.

Weaver, J.E. and E. Zink. 1946. Annual increase of underground materials in three range grasses. Ecology 27:115-127.

Weaver, J.E., J. Kramer, and M. Reed. 1924. Development of root and shoot of winter wheat under field environment. Ecology 5:26-50.

Weeks, Edwin P., Harold L. Weaver, Gaylon S. Campbell, and Bert D. Tanner. 1987. Water use by saltcedar and by replacement vegetation in the Pecos River Floodplain between Acme and Artesia, New Mexico. USGS Professional Paper 491-G. 33 p.

Weltz, Mark A. and Wilbert H. Blackburn. 1995. Water budget for South Texas rangelands. Journal of Range Management 48:45-52.

West, N.E. and G.F. Gifford. 1976. Rainfall interception by cool desert shrubs. Journal of Range Management 29:171-172.

Wheaton, Christopher. 1981. Feed intake and digestive efficiency in South Texas white-tailed deer. MSc Thesis. Texas A&I University. Kingsville. 66 p.

Wiedenfeld, Jonathan K. 2010. Soil Survey of Goliad County, Texas. USDA Natural Resources Conservation Service. Washington DC. 474 p.

Wiedenfeld, Robert P. 1988. Coastal bermudagrass and Renner lovegrass fertilization responses in a subtropical climate. Journal of Range Management 41:7-12.

Wright, C.D. 1928. An ecological study of *Baccharis pilularis*. MSc Thesis. University of California. Berkeley.

Wright, Henry A., Francis M. Churchill, and W. Clark Stevens. 1976. Effect of prescribed burning on sediment, water yield, and water quality from dozed juniper lands in central Texas. Journal of Range Management 29:294-298.

Wright, L. Neal and A.K. Dobrenz. 1970. Water use in relation to management of blue panicgrass (*Panicum antidotale* Retz.). Journal of Range Management 23:193-196.

Wyatt, J.W., D.J. Dolihope, and W.M. Schafer. 1980. Root distribution in 1- to 48-year-old strip mine spoils in southeastern Montana. Journal of Range Management 33:101-104.

Yoder, C.K. and R.S. Nowak. 1999a. Soil moisture extraction by evergreen and droughtdeciduous shrubs in the Mojave Desert during wet and dry years. Journal of Arid Environments 42:81-96.

# APPENDIX A PRECIPITATION DATA

| Year        | PPT    | Year    | PPT           | Year | PPT    | Year                                    | PPT    | Year | PPT            | Year | PPT    |
|-------------|--------|---------|---------------|------|--------|-----------------------------------------|--------|------|----------------|------|--------|
|             |        |         |               | 1920 | 24.30  | 1930                                    | 25.94  | 1940 | 38.30          | 1950 | 18.69  |
|             |        |         |               | 1920 | 31.23  | 1930                                    | 40.06  | 1940 | 38.05          | 1950 | 37.52  |
|             |        |         |               | 1921 | 26.34  | 1931                                    | 35.17  | 1941 | 41.08          | 1951 | 37.32  |
|             |        | 1913    | 34.21         | 1922 | 45.35  | 1932                                    | 31.67  | 1942 | 41.00<br>33.49 | 1952 | 28.50  |
|             |        | 1913    | 42.19         | 1923 | 22.38  | 1933                                    | 41.93  | 1943 | 32.05          | 1953 | 16.14  |
|             |        | 1914    | 21.47         | 1924 | 22.30  | 1934                                    | 38.32  | 1944 | 29.43          | 1954 | 25.27  |
|             |        | 1915    | 19.99         | 1925 | 32.86  | 1935                                    | 36.55  | 1945 | 45.98          | 1955 | 19.49  |
|             |        | 1910    | 19.99<br>9.73 | 1928 | 22.47  | 1930                                    | 26.78  | 1940 | 43.98<br>30.91 | 1950 | 51.52  |
|             |        | 1917    | 32.34         | 1927 | 22.47  | 1937                                    | 20.70  | 1947 | 26.74          | 1957 | 43.05  |
|             |        | 1910    | 47.25         | 1928 | 44.62  | 1930                                    | 27.30  | 1940 | 35.44          | 1950 | 32.35  |
|             |        | 1919    | 47.25         | 1929 | 44.02  | 1929                                    | 21.00  | 1949 | 55.44          | 1929 | 32.33  |
|             |        | SUM     | 207.18        | SUM  | 307.92 | SUM                                     | 325.38 | SUM  | 351.47         | SUM  | 309.75 |
|             |        | MEAN    | 29.60         | MEAN | 30.79  | MEAN                                    | 32.54  | MEAN | 35.15          | MEAN | 30.98  |
| 960         | 48.23  | 1970    | 30.17         | 1980 | 35.59  | 1990                                    | 32.81  | 2000 | 37.11          | 2010 | 41.38  |
| 961         | 29.01  | 1971    | 39.61         | 1981 | 59.48  | 1991                                    | 47.41  | 2000 | 45.91          | 2010 | 17.24  |
| 962         | 31.68  | 1972    | 52.87         | 1982 | 26.22  | 1992                                    | 40.94  | 2002 | 42.40          | 2012 | 28.99  |
| 963         | 23.59  | 1973    | 51.12         | 1983 | 36.56  | 1993                                    | 37.95  | 2003 | 34.47          | 2013 | 27.76  |
| 964         | 25.16  | 1974    | 38.25         | 1984 | 28.39  | 1994                                    | 43.26  | 2004 | 47.94          | 2014 | 25.63  |
| 965         | 44.00  | 1975    | 39.36         | 1985 | 38.08  | 1995                                    | 33.58  | 2005 | 28.92          | 2015 | 49.63  |
| 966         | 37.63  | 1976    | 55.35         | 1986 |        | 1996                                    | 23.93  | 2006 | 32.75          |      |        |
| 967         | 44.08  | 1977    | 38.56         | 1987 |        | 1997                                    | 53.82  | 2007 | 51.84          |      |        |
| 968         | 42.10  | 1978    | 29.48         | 1988 |        | 1998                                    | 51.52  | 2008 | 22.55          |      |        |
| 969         | 35.44  | 1979    | 40.77         | 1989 | 22.66  | 1999                                    | 22.96  | 2009 | 35.98          |      |        |
|             |        | _ , , , |               |      |        | _ , , , , , , , , , , , , , , , , , , , | ,,,    | _000 |                |      |        |
| SUM         | 360.92 | SUM     | 415.54        | SUM  | 246.98 | SUM                                     | 388.18 | SUM  | 379.87         | SUM  | 190.63 |
| <b>IEAN</b> | 36.09  | MEAN    | 41.55         | MEAN | 35.28  | MEAN                                    | 38.82  | MEAN | 37.99          | MEAN | 31.77  |

Overall mean (1913-2015, excluding incomplete years) = 34.84

# APPENDIX B SOILS

# Appendix Table B.1 Soil units occurring in Goliad County (Wiedenfeld 2010) and corresponding composite units used in the Goliad County EDYS model.

| compos | ate units used in the Goliad County EDYS model.           |                           |
|--------|-----------------------------------------------------------|---------------------------|
| Symbol | NRCS Soil Unit                                            | EDYS Soil Unit            |
|        |                                                           |                           |
| AnA    | Ander fine sandy loam, 0-1% slopes                        | Ander fine sandy loam     |
| AnB    | Ander fine sandy loam, 1-3% slopes                        | Ander fine sandy loam     |
| BnB    | Blanconia lomay fine sand, 0-2% slopes                    | Ander fine sandy loam     |
| BsA    | Buchel clay, 0-1% slopes, occasionally flooded            | Buchel clay               |
| BuA    | Buchel clay, 0-1% slopes, frequently flooded              | Buchel clay               |
| CnA    | Cieno loam, 0-1% slopes                                   | Cieno loam                |
| CrA    | Clareville sandy clay loam, 0-1% slopes, rarely flooded   | Weesatche sandy clay loam |
| CrB    | Clareville sandy clay loam, 1-3% slopes, rarely flooded   | Weesatche sandy clay loam |
| CsC    | Colibro sandy clay loam, 3-5% slopes                      | Pernitas sandy clay loam  |
| CsD    | Colibro loam, 5-12% slopes                                | Pernitas sandy clay loam  |
| CyB    | Coy clay loam, 1-3% slopes                                | Coy clay loam             |
| CyC    | Coy clay loam, 3-5% slopes                                | Coy clay loam             |
| DaA    | Dacosta sandy clay loam, 0-1% slopes                      | Laewest clay              |
| DcA    | Dacosta-Contee complex, 0-1% slopes                       | Laewest clay              |
| DeC    | Devine very gravelly fine sandy loam, 1-5% slopes         | Pettus loam               |
| EbA    | Edna fine sandy loam, 0-1% slopes                         | Wyick fine sandy loam     |
| EdA    | Edroy clay, 0-1% slopes                                   | Edroy clay                |
| EnB    | Elmendorf-Denhawken complex, 1-3% slopes                  | Monteola clay             |
| FdA    | Faddin fine sandy loam, 0-1% slopes                       | Telferner fine sandy loam |
| GdB    | Goliad fine sandy loam, 1-3% slopes                       | Weesatche fine sandy loam |
| GoB    | Goliad sandy clay loam, 1-3% slopes                       | Weesatche sandy clay loam |
| GrA    | Greta fine sandy loam, 0-1% slopes                        | Greta fine sandy loam     |
| ImA    | Imogene fine sandy loam, 0-1% slopes                      | Ander fine sandy loam     |
| InA    | Inari fine sandy loam, 0-1% slopes                        | Telferner fine sandy loam |
| InB    | Inari fine sandy loam, 1-3% slopes                        | Telferner fine sandy loam |
| КуВ    | Kuy fine sand, 1-3% slopes                                | Kuy fine sand             |
| LaA    | Laewest clay, 0-1% slopes                                 | Laewest clay              |
| LaB    | Laewest clay, 1-3% slopes                                 | Laewest clay              |
| LaD    | Laewest clay, 3-8% slopes                                 | Laewest clay              |
| LmB    | Leming loamy fine sand, 0-3% slopes                       | Raisin loamy fine sand    |
| MbB    | Milby fine sand, 0-2% slopes                              | Nusil fine sand           |
| MeA    | Meguin silty clay loam, 0-1% slopes, occasionally flooded | Sinton sandy clay loam    |
| MgA    | Meguin silty clay loam, 0-1% slopes, frequently flooded   | Sinton sandy clay loam    |
| MoA    | Monteola clay, 0-1% slopes                                | Monteola clay             |
| MoB    | Monteola clay, 1-3% slopes                                | Coy clay loam             |
| MoC    | Monteola clay, 3-5% slopes                                | Coy clay loam             |
| NuC    | Nusil fine sand, 1-5% slopes                              | Nusil fine sand           |
| OdA    | Odem-Riverwash complex, 0-1% slopes, frequently flooded   | Sinton sandy clay loam    |
| OmD    | Olmedo very gravelly loam, 1-8% slopes                    | Olmedo very gravelly loam |
| OrA    | Orelia fine sandy loam, 0-1% slopes                       | Telferner fine sandy loam |
| PaB    | Papalote loamy sand, 0-3% slopes                          | Raisin loamy fine sand    |
| PbA    | Papalote fine sandy loam, 0-1% slopes                     | Ander fine sandy loam     |
| PbB    | Papalote fine sandy loam, 1-3% slopes                     | Ander fine sandy loam     |
| PrB    | Parrita sandy clay loam, 0-3% slopes                      | Parrita sandy clay loam   |
| PtC    | Pernitas sandy clay loam, 2-5% slopes                     | Pernitas sandy clay loam  |
| PuC    | Pettus loam, 2-5% slopes                                  | Pettus loam               |
| RaB    | Raisin loamy fine sand, 0-3% slopes                       | Raisin loamy fine sand    |
| RaC    | Raisin loamy fine sand, 3-5% slopes                       | Raisin loamy fine sand    |
| RaC2   | Raisin loamy fine sand, 2-5% slopes, moderately eroded    | Raisin loamy fine sand    |
| RnB    | Raisin fine sandy loam, 1-3% slopes                       | Weesatche fine sandy loam |
| RoA    | Realitos clay, 0-1% slopes                                | Realitos clay             |
| RsC    | Rhymes fine sand, 1-5% slopes                             | Nusil fine sand           |
| RuB    | Runge fine sandy loam, 1-3% slopes                        | Weesatche fine sandy loam |
| RyA    | Rydolph silty clay, 0-1% slopes, frequently flooded       | Sinton sandy clay loam    |
| ScB    | Sarco coarse sand, 0-2% slopes                            | Sarco coarse sand         |
| SnC    | Sarnosa fine sandy loam, 1-5% slopes                      | Pernitas sandy clay loam  |
| SnD    | Sarnosa fine sandy loam, 5-8% slopes                      | Pernitas sandy clay loam  |
| StC    | Schattel sandy clay loam, 1-5% slopes                     | Schattel sandy clay loam  |
| SwA    | Sinton sandy clay loam, 0-1% slopes, occasionally flooded | Sinton sandy clay loam    |
| ТеА    | Telferner fine sandy loam, 0-1% slopes                    | Telferner fine sandy loam |
| TeB    | Telferner fine sandy loam, 1-3% slopes                    | Telferner fine sandy loam |
| ToA    | Tiocano clay, 0-1% slopes                                 | Realitos clay             |
| UsB    | Ustarents, loamy, 0-3% slopes                             | Olmedo very gravelly loam |
|        |                                                           |                           |

| Symbol | NRCS Soil Unit                                            | EDYS Soil Unit            |
|--------|-----------------------------------------------------------|---------------------------|
|        |                                                           |                           |
| VdA    | Vidauri fine sandy loam, 0-1% slopes                      | Wyick fine sandy loam     |
| VwA    | Vidauri-Wyick complex, 0-1% slopes                        | Wyick fine sandy loam     |
| WcC    | Weesatche fine sandy loam, 2-5% slopes                    | Weesatche fine sandy loam |
| WeA    | Weesatche sandy clay loam, 0-1% slopes                    | Weesatche sandy clay loam |
| WeB    | Weesatche sandy clay loam, 1-3% slopes                    | Weesatche sandy clay loam |
| WeB2   | Weesatche sandy clay loam, 1-3% slopes, moderately eroded | Weesatche sandy clay loam |
| WeC    | Weesatche sandy clay loam, 3-5% slopes                    | Weesatche sandy clay loam |
| WoA    | Woodsboro loam, 0-1% slopes, rarely flooded               | Greta fine sandy loam     |
| WyA    | Wyick fine sandy loam, 0-1% slopes                        | Wyick fine sandy loam     |
| ZaA    | Zalco sand, 0-1% slopes, occasionally flooded             | Zalco sand                |
| ZcA    | Zalco sand, 0-1% slopes, frequently flooded               | Zalco sand                |
| ZkA    | Zunker fine sandy loam, 0-1% slopes, occasionally flooded | Sinton sandy clay loam    |
| ZnA    | Zunker fine sandy loam, 0-1% slopes, frequently flooded   | Sinton sandy clay loam    |
|        |                                                           |                           |

# APPENDIX C VEGETATION

| Appendix Table C.1 NRCS range sites, associated soils, and corresponding EDYS plant communities |
|-------------------------------------------------------------------------------------------------|
| (mid-seral) used in the Goliad County EDYS model.                                               |

| Range Site           | Soils                        | EDYS Plant Community                      |
|----------------------|------------------------------|-------------------------------------------|
| Blackland, RG Plains | EnB MoA                      | huisache-mesquite-purple threeawn         |
| Blackland, Coastal   | DaA DCA LaA LaB LaD          | huisache-mesquite-buffalograss            |
| ,                    | BsA BuA                      |                                           |
| Clayey bottomland    | Cra CrB GoB Wea WeB WeB2 WeC | mesquite-hackberry-ragweed                |
| Clay loam            |                              | mesquite-huisache-silver bluestem         |
| Claypan prairie      | EbA VdA VwA WyA              | huisache-little bluestem-knotroot bristle |
| Claypan savannah     | ScB                          | post oak-mesquite-little bluestem         |
| Deep sand            | КуВ                          | live oak-little bluestem-ragweed          |
| Gravelly ridge       | DeC PuC                      | blackbrush-purple threeawn-buffalograss   |
| Gray sandy loam      | CsC CsD PtC SnC SnD          | mesquite-huisache-hooded windmillgrass    |
| Lakebed, RG Plains   | RoA ToA                      | huisache-longtom-knotroot bristlegrass    |
| Lakebed, Coastal     | EdA                          | huisache-longtom-flatsedge                |
| Loamy bottomland     | MeA MgA OdA RyA SwA ZkA ZnA  | live oak-little bluestem-trichloris       |
| Loamy prairie        | FdA InA InB OrA TeA TeB      | huisache-mesquite-little bluestem         |
| Loamy sand           | LmB PaB RaB RaC RaC2         | live oak-mesquite-little bluestem         |
| Lowland, Coastal     | CnA                          | huisache-seacoast bluestem-longtom        |
| Rolling blackland    | СуВ СуС МоВ МоС              | mesquite-silver bluestem-buffalograss     |
| Salty prairie        | GrA WoA                      | huisache-gulf cordgrass-sea oxeye         |
| Sandy                | MbB NuC RsC                  | mesquite-live oak-little bluestem         |
| Sandy bottomland     | ZaA ZcA                      | live oak-little bluestem-Virginia wildrye |
| Sandy loam           | GdB RnB RuB WcC              | mesquite-live oak-silver bluestem         |
| Shallow ridge        | OmD                          | blackbrush-ragweed-Texas wintergrass      |
| Shallow sandy loam   | PrB                          | mesquite-silver bluestem-little bluestem  |
| Sloping clay loam    | StC                          | mesquite-huisache-little bluestem         |
| Tight sandy loam     | AnA AnB BnB ImA PbA PbB      | mesquite-silver bluestem-trichloris       |

### Determination of species composition and initial biomass (Appendix Table C.2)

In Appendix Table C.2, species composition under light grazing (late-seral conditions) was taken from data in Appendix Tables C.3-C.6. Species composition under moderate (mid-seral) grazing was based on data from Appendix Tables C.7-C.18.

Total grass aboveground biomass under mid-seral conditions was estimated at 70% of late-seral levels (Appendix Table C.22) and total forb aboveground biomass was estimated at 38% of grass levels (Box 1961, Powell and Box 1967, Box and White 1969, Smeins and Diamond 1983, McLendon and Finch unpublished data, McLendon 2015a, 2015b; Appendix Tables C.7-C.11).

For woody species, the values are relative composition (%) of woody plant cover. Herbaceous standing crop biomass is decreased as woody plant cover increases, using the relationship:

amount = (amount at 0% woody cover)[(1.00 - 0.008(% woody cover)]]

based on data from Appendix Table C.23.

Appendix Table C.2 Adjustment of plant species composition to account for level of livestock grazing in plant communities in Goliad County. Amounts are clippable biomass  $(g/m^2)$  for herbaceous species and relative cover for woody species. Mid-seral herbaceous biomass = 70% of late-seral (Appendix Table C.21).

| Range Type               | Woody R                | elative  | Grasses                             | Bion | nass     | Forbs                        | Biomass |              |
|--------------------------|------------------------|----------|-------------------------------------|------|----------|------------------------------|---------|--------------|
| C 71                     | •                      | over (%) |                                     | Late |          |                              |         | Mid          |
| Disables d. D.C. Distant |                        |          |                                     |      |          |                              |         |              |
| Blackland, RG Plains     | huisache               | 40       | purple threeawn                     |      | 45       | ragweed                      | 3       | 55           |
|                          | hackberry              | 1        | silver bluestem                     | 28   | 30       | wild indigo                  | 7       | 15           |
|                          | mesquite               | 25       | sideoats grama                      | 28   | 2        | old-mans bear                | d       | 5            |
|                          | live oak               | 1        | hairy grama                         |      | 3        | bundleflower                 | 3       | 2            |
|                          | whitebrush             | 6        | buffalograss                        |      | 80       | sunflower                    |         | 15           |
|                          | blackbrush             | 6        | hooded windmill                     |      | 25       | coneflower                   | 3       | 3            |
|                          | granjeno               | 10       | trichloris                          | 73   | 4        | ruellia                      | 3       | 4            |
|                          | agarito<br>prickly pea | 2<br>r 9 | Arizona cottontop<br>Texas cupgrass | 22   | 1<br>2   |                              |         |              |
|                          | prickly pea            | 1 9      | vine-mesquite                       | 20   | 3        |                              |         |              |
|                          |                        |          | little bluestem                     | 73   | 4        |                              |         |              |
|                          |                        |          | plains bristle                      | 22   | 36       |                              |         |              |
|                          |                        |          | indiangrass                         | 45   | 1        |                              |         |              |
|                          |                        |          | Johnsongrass                        |      | 5        |                              |         |              |
|                          |                        |          | tall dropseed                       | 22   | 5        |                              |         |              |
|                          |                        |          | Texas wintergrass                   | 20   | 15       |                              |         |              |
|                          |                        |          | Total grasses                       | 373  | 261      | Total forbs                  | 19      | 99           |
| Blackland, Coastal       |                        |          |                                     |      |          |                              |         | - 0          |
|                          | huisache               | 41       | big bluestem                        | 93   | 3        | ragweed                      | 13      | 50           |
|                          | hackberry              | 1        | purple threeawn                     |      | 52<br>36 | wild indigo<br>old-mans bear | 13      | 44<br>50     |
|                          | mesquite<br>live oak   | 26<br>1  | silver bluestem                     | 75   | 36<br>4  | bundleflower                 | 13      | 50           |
|                          | whitebrush             | 5        | sideoats grama<br>hairy grama       |      | 10       | sunflower                    |         | 40           |
|                          | blackbrush             | 6        | buffalograss                        |      | 151      | ruellia                      |         | 8            |
|                          | granjeno               | 9        | hooded windmill                     |      | 42       | IUCIIIU                      |         | 0            |
|                          | agarito                | 1        | trichloris                          |      | 5        |                              |         |              |
|                          | prickly pea            |          | vine-mesquite                       | 73   | 7        |                              |         |              |
|                          |                        |          | switchgrass                         | 93   | 10       |                              |         |              |
|                          |                        |          | brownseed paspalu                   | m 93 | 30       |                              |         |              |
|                          |                        |          | little bluestem                     | 76   | 30       |                              |         |              |
|                          |                        |          | knotroot bristle                    |      | 16       |                              |         |              |
|                          |                        |          | plains bristle                      | 74   | 47       |                              |         |              |
|                          |                        |          | indiangrass                         | 93   | 7        |                              |         |              |
|                          |                        |          | Johnsongrass                        |      | 26       |                              |         |              |
|                          |                        |          | tall dropseed                       | 75   | 18       |                              |         |              |
|                          |                        |          | Texas wintergrass                   |      | 28       |                              |         |              |
|                          |                        |          | Total grasses                       | 745  | 522      | Total forbs                  | 39      | 198          |
| <b>Clayey Bottomland</b> | huisacha               | 5        | buchy bluestom                      |      | 20       | raguad                       |         | 15           |
|                          | huisache               | 5<br>5   | bushy bluestem                      |      | 30<br>20 | ragweed                      |         | · 15<br>· 40 |
|                          | pecan<br>hackberry     | 5<br>15  | silver bluestem<br>sideoats grama   |      | 20<br>4  | giant ragweed<br>spiny aster |         | · 40<br>· 5  |
|                          | mesquite               | 30       | buffalograss                        | 22   | 44       | wild indigo                  | 20      |              |
|                          | live oak               | 10       | hooded windmill                     |      | 10       | old-mans bear                |         |              |
|                          | whitebrush             | 5        | trichloris                          | 34   | 17       | bundleflower                 | ç       |              |
|                          | baccharis              | 5        | Virginia wildrye                    | 67   | 20       | frogfruit                    |         |              |
|                          | granjeno               | 10       | vine-mesquite                       | 22   | 10       | snoutbean                    | 10      | ) 4          |
|                          | prickly pea            | r 5      | switchgrass                         | 39   | 2        | ruellia                      |         | 0            |
|                          | mustang gra            | pe 10    | brownseed paspalu                   | m 62 | 30       | bush sunflowe                | r       | . 8          |
|                          |                        |          | little bluestem                     | 45   | 15       |                              |         |              |
|                          |                        |          | knotroot bristle                    | 22   | 30       |                              |         |              |
|                          |                        |          | plains bristle                      | 62   | 25       |                              |         |              |
|                          |                        |          | indiangrass<br>Johnsongrass         | 34   | 1<br>28  |                              |         |              |
|                          |                        |          | Total grasses                       | 409  | 286      | Total forbs                  | 39      | 9 109        |
|                          |                        |          |                                     |      |          | 01.00                        | 0.0     |              |

| Range Type      | Woody       | Relative  | Grasses                           | Bior     | nass     | Forbs          | Biom |         |
|-----------------|-------------|-----------|-----------------------------------|----------|----------|----------------|------|---------|
|                 | Species (   | Cover (%) |                                   | Late     | Mid      |                | Late | Mid     |
| lay Loom        |             |           |                                   |          |          |                |      |         |
| Clay Loam       | huisache    | 15        | purple threeawn                   |          | 26       | ragweed        |      | 24      |
|                 | mesquite    | 30        | silver bluestem                   | 90       | 45       | broomweed      |      | 20      |
|                 | blackbrush  | 10        | sideoats grama                    | 22       | -5       | wild indigo    | 5    | 4       |
|                 | whitebrush  | 10        | hairy grama                       |          | 3        | old-mans beard |      | 10      |
|                 | baccharis   | 5         | buffalograss                      | 22       | 45       | bundleflower   | 4    | 3       |
|                 | granjeno    | 15        | hooded windmill                   |          | 72       | sunflower      |      | 10      |
|                 | wolfberry   | 3         | trichloris                        | 67       | 7        | froqfruit      |      | 8       |
|                 | agarito     | 2         | Arizona cottontop                 |          | 4        | coneflower     |      | 4       |
|                 | prickly pea |           | vine-mesquite                     |          | 2        | snoutbean      | 4    | 4       |
|                 | brickih beg | 1 10      | brownseed paspalu                 |          | 5        | ruellia        |      | 4       |
|                 |             |           | little bluestem                   | 67       | 7        | bush sunflower | 5    | 10      |
|                 |             |           | knotroot bristle                  |          | 3        | orange zexmeni |      | 8       |
|                 |             |           | plains bristle                    | 90       | 43       | orange zexment | 4 5  | 0       |
|                 |             |           | indiangrass                       | 11       | 1        |                |      |         |
|                 |             |           | Johnsongrass                      |          | 10       |                |      |         |
|                 |             |           | tall dropseed                     |          | 5        |                |      |         |
|                 |             |           | Texas wintergrass                 |          | 3        |                |      |         |
|                 |             |           | -                                 |          | 0.0.6    |                | 0.0  | 100     |
|                 |             |           | Total grasses                     | 408      | 286      | Total forbs    | 23   | 109     |
| Claypan Prairie | huisache    | 30        | big bluestem                      | 56       | 3        | ragweed        | 7    | 80      |
|                 | live oak    | 10        | bushy bluestem                    |          | 26       | wild indigo    | 8    | 30      |
|                 | baccharis   | 10        | -                                 |          | 36       | Texas doveweed | 7    | 18      |
|                 |             |           | bermudagrass                      | 95       | 4        | bundleflower   | 7    | 10      |
|                 | McCartn ros |           | switchgrass                       |          |          |                |      | 0<br>10 |
|                 | rattlepod   | 5         | longtom                           | 56       | 55       | frogfruit      |      | τu      |
|                 |             |           | brownseed paspalu                 |          | 35       |                |      |         |
|                 |             |           | little bluestem                   | 95       | 85       |                |      |         |
|                 |             |           | knotroot bristle                  | 56       | 50       |                |      |         |
|                 |             |           | indiangrass                       | 78       | 15       |                |      |         |
|                 |             |           | smutgrass                         |          | 30       |                |      |         |
|                 |             |           | littletooth sedge                 | e 50     | 20<br>20 |                |      |         |
|                 |             |           | flatsedge                         |          | 20       |                |      |         |
|                 |             |           | Total grasses                     | 542      | 379      | Total forbs    | 29   | 144     |
| Claypan Savanna |             |           |                                   |          |          |                |      |         |
|                 | mesquite    | 30<br>50  | purple threeawn                   |          | 30       | ragweed        |      | 40      |
|                 | post oak    | 50        | silver bluestem                   | 46       | 50       | broomweed      |      | 28      |
|                 | granjeno    | 15        | sideoats grama                    | 46       | 23       | Texas doveweed |      | 12      |
|                 | prickly pea | r 5       | hairy grama                       |          | 20       | sunflower      |      | 20      |
|                 |             |           | red grama                         |          | 5        | snoutbean      |      | 6       |
|                 |             |           | hooded windmill                   | 22       | 44       | bush sunflower |      | 10      |
|                 |             |           | trichloris                        | 46       | 23       |                |      |         |
|                 |             |           | Arizona cottontop                 |          | 12       |                |      |         |
|                 |             |           | little bluestem                   | 106      | 71       |                |      |         |
|                 |             |           | plains bristle                    | 24       | 18       |                |      |         |
|                 |             |           | indiangrass                       | 101      | 10       |                |      |         |
| Deep Sand       |             |           | Total grasses                     | 437      | 306      | Total forbs    |      | 116     |
| Sold Sand       | mesquite    | 5         | purple threeawn                   |          | 36       | ragweed        |      | 55      |
|                 | post oak    | 25        | silver bluestem                   |          | 2        | partridge pea  |      | 2       |
|                 | live oak    | 50        | hairy grama                       |          | 2        | Texas doveweed | 4    | 10      |
|                 | mustang gra | pe 20     | sandbur                           |          | 18       | bundleflower   | 3    | 3       |
|                 |             |           | hooded windmill                   |          | 5        | sunflower      |      | 10      |
|                 |             |           | brownseed paspalu                 | ım 62    | 29       | coneflower     | 3    | 2       |
|                 |             |           | thin paspalum                     | 57       | 60       | snoutbean      | 3    | 1       |
|                 |             |           |                                   |          |          |                |      |         |
|                 |             |           | little bluestem                   | 83       | 56       | bush sunflower | 4    | 9       |
|                 |             |           | little bluestem<br>plains bristle | 83<br>67 | 56<br>22 | bush sunflower | 4    | 9       |
|                 |             |           |                                   |          |          | bush sunflower | 4    | 9       |
|                 |             |           | plains bristle                    | 67       | 22       | bush sunflower | 4    | 9       |

| Range Type           | Woody<br>Species | Relative<br>Cover (%) | Grasses                         | Biomass<br>Late Mid |          | Forbs          | Bio1<br>Late |     |
|----------------------|------------------|-----------------------|---------------------------------|---------------------|----------|----------------|--------------|-----|
| Crevelly Didge       |                  |                       |                                 |                     |          |                |              |     |
| Gravelly Ridge       | mesquite         | 15                    | purple threeawn                 | 39                  | 46       | ragweed        | 8            | 30  |
|                      | guajillo         | 25                    | silver bluestem                 | 52                  | 26       | broomweed      | 3            | 17  |
|                      | blackbrush       | 40                    | sideoats                        | 52                  | 4        | lazydaisy      | 4            | 6   |
|                      | granjeno         | 10                    | red grama                       | 6                   | 8        | dogweed        | 5            | 15  |
|                      | agarito          | 5                     | buffalograss                    | 34                  | 42       | -              |              |     |
|                      | prickly pea      | r 5                   | hooded windmill                 | 22                  | 28       |                |              |     |
|                      |                  |                       | Arizona cottontop               | 27                  | 2        |                |              |     |
|                      |                  |                       | green sprangletop               | 16                  | 2        |                |              |     |
|                      |                  |                       | Texas bristlegras               | s 6                 | 10       |                |              |     |
|                      |                  |                       | Texas wintergrass               |                     | 10       |                |              |     |
|                      |                  |                       | Total grasses                   | 254                 | 178      | Total forbs    | 20           | 68  |
| Gray Sandy Loam      |                  |                       |                                 |                     |          |                |              |     |
|                      | huisache         | 25                    | purple threeawn                 |                     | 24       | ragweed        |              | 30  |
|                      | mesquite         | 35                    | sideoats grama                  | 38                  | 10       | broomweed      |              | 15  |
|                      | whitebrush       | 5                     | hairy grama                     | 11                  | 15       | partridge pea  | 4            | 4   |
|                      | blackbrush       | 10                    | buffalograss                    | 38                  | 50       | Texas doveweed |              | 17  |
|                      | granjeno         | 15                    | sandbur                         |                     | 10       | bundleflower   | 3            | 1 1 |
|                      | prickly pea      | r 10                  | hooded windmill                 | 36                  | 50       | sunflower      |              | 15  |
|                      |                  |                       | trichloris                      | 91                  | 30       | coneflower     | 3            | 4   |
|                      |                  |                       | Arizona cottontop               |                     | 4        | snoutbean      | 4            | 1   |
|                      |                  |                       | green sprangletop               |                     | 2        | bush sunflower | 6            | 12  |
|                      |                  |                       | thin paspalum                   |                     | 10<br>35 |                |              |     |
|                      |                  |                       | plains bristle                  | 91<br>s             | 35<br>5  |                |              |     |
|                      |                  |                       | Texas bristlegras sand dropseed | 22                  | 15       |                |              |     |
|                      |                  |                       | Total grasses                   | 372                 | 260      | Total forbs    | 20           | 105 |
| Lakebed, RG Plains   |                  |                       |                                 |                     |          |                |              |     |
| Lakebeu, KG I lailis | huisache         | 60                    | bushy bluestem                  | 34                  | 40       | ragweed        | 4            | 44  |
|                      | mesquite         | 30                    | buffalograss                    | 8                   | 16       | spiny aster    |              | 5   |
|                      | rattlepod        | 10                    | bermudagrass                    |                     | 12       | wild indigo    | 3            | 5   |
|                      | racerepea        | 10                    | vine-mesquite                   | 34                  | 15       | bundleflower   | 1            | 1   |
|                      |                  |                       | switchgrass                     | 101                 | 10       | sunflower      |              | 20  |
|                      |                  |                       | longtom                         | 49                  | 75       | frogfruit      | 2            | 8   |
|                      |                  |                       | brownseed paspalu               |                     | 70       | ruellia        | 1            | 2   |
|                      |                  |                       | knotroot bristle                | 34                  | 53       | curly dock     | 2            | 15  |
|                      |                  |                       | Johnsongrass                    |                     | 30       | bulltongue     | 2            | ŗ   |
|                      |                  |                       | littletooth sedge               | 11                  | 15       | -              |              |     |
|                      |                  |                       | flatsedge                       | 22                  | 30       |                |              |     |
|                      |                  |                       | cattail                         | 11                  | 10       |                |              |     |
|                      |                  |                       | Total grasses                   | 394                 | 276      | total forbs    | 15           | 105 |
| Lakebed, Coastal     |                  |                       |                                 |                     |          |                |              |     |
|                      | huisache         | 80                    | bushy bluestem                  |                     | 40       | ragweed        | 3            |     |
|                      | mesquite         | 10                    | buffalograss                    |                     | 5        | broomweed      | 2            | 1(  |
|                      | rattlepod        | 10                    | bermudagrass                    |                     | 15       | spiny aster    |              | 1(  |
|                      |                  |                       | switchgrass                     | 90                  | 2        | wild indigo    | 2            |     |
|                      |                  |                       | longtom                         | 92                  | 80       | bundleflower   | 2            |     |
|                      |                  |                       | brownseed paspalu               |                     | 40       | sunflower      |              | 1   |
|                      |                  |                       | knotroot bristle                | 67                  | 50       | frogfruit      | 2            |     |
|                      |                  |                       | Johnsongrass                    |                     | 40       | ruellia        | 2            |     |
|                      |                  |                       | flatsedge                       | 67                  | 60       | curly dock     | 2            | 1   |
|                      |                  |                       | ., .                            | ~ ~                 | 1 -      | 1 1 1 1        |              |     |
|                      |                  |                       | spikerush<br>cattail            | 22<br>3             | 15<br>3  | bulltongue     | 2            |     |

| Range Type       | •             | ative  | Grasses           | Bion  |     | Forbs          |      | nass |
|------------------|---------------|--------|-------------------|-------|-----|----------------|------|------|
|                  | Species Cove  | er (%) |                   | Late  | Mid |                | Late | Mid  |
| Loamy Bottomland |               |        |                   |       |     |                |      |      |
| Boarny Dottomand | huisache      | 15     | big bluestem      | 78    | 10  | ragweed        | 6    | 36   |
|                  | pecan         | 5      | bushy bluestem    |       | 15  | giant ragweed  |      | 30   |
|                  | hackberry     | 15     | silver bluestem   | 11    | 18  | spiny aster    |      |      |
|                  | mesquite      | 10     | sideoats grama    | 45    | 25  | partridge pea  | 6    |      |
|                  | live oak      | 20     | buffalograss      | 24    | 30  | old-mans beard |      |      |
|                  | whitebrush    | 5      | trichloris        | 78    | 45  | bundleflower   | 5    |      |
|                  | baccharis     | 5      | bermudagrass      |       | 10  | sunflower      |      | 15   |
|                  | granjeno      | 5      | Virginia wildrye  | 34    | 15  | frogfruit      |      | e    |
|                  | mustang grape | 20     | Texas cupgrass    | 6     | 3   | snoutbean      | 6    | 6    |
|                  | 551           |        | vine-mesquite     | 22    | 15  | ruellia        | 5    | e    |
|                  |               |        | switchgrass       | 78    | 25  | greenbriar     | 10   | 15   |
|                  |               |        | brownseed paspalu | ım 22 | 25  |                |      |      |
|                  |               |        | little bluestem   | 90    | 55  |                |      |      |
|                  |               |        | knotroot bristle  | 11    | 15  |                |      |      |
|                  |               |        | plains bristle    | 45    | 25  |                |      |      |
|                  |               |        | Johnsongrass      |       | 30  |                |      |      |
|                  |               |        | Texas wintergrass | 22    | 20  |                |      |      |
|                  |               |        | littletooth sedge | 22    | 20  |                |      |      |
|                  |               |        | flatsedge         | 28    | 30  |                |      |      |
|                  |               |        | Total grasses     | 616   | 431 | Total forbs    | 44   | 164  |
| loamy Prairie    |               |        |                   |       |     |                |      |      |
|                  | huisache      | 30     | big bluestem      | 34    | 4   | ragweed        |      | 80   |
|                  | mesquite      | 30     | bushy bluestem    |       | 16  | wild indigo    | 10   | 20   |
|                  | live oak      | 10     | purple threeawn   |       | 15  | bundleflower   | 10   | 12   |
|                  | McCartn rose  | 30     | bermudagrass      |       | 4   | sunflower      |      | 20   |
|                  |               |        | Virginia wildrye  | 21    | 8   | bush sunflower | 11   | 24   |
|                  |               |        | switchgrass       | 28    | 4   |                |      |      |
|                  |               |        | longtom           | 22    | 28  |                |      |      |
|                  |               |        | brownseed paspalu | ım 22 | 22  |                |      |      |
|                  |               |        | thin paspalum     | 23    | 28  |                |      |      |
|                  |               |        | little bluestem   | 370   | 220 |                |      |      |
|                  |               |        | knotroot bristle  | 20    | 24  |                |      |      |
|                  |               |        | indiangrass       | 28    | 5   |                |      |      |
|                  |               |        | smutgrass         |       | 20  |                |      |      |
|                  |               |        | littletooth sedge | e 17  | 12  |                |      |      |
|                  |               |        | Total grasses     | 585   | 410 | Total forbs    | 31   | 156  |
| Loamy Sand       |               |        |                   |       |     |                |      |      |
|                  | mesquite      | 35     | purple threeawn   |       | 20  | ragweed        | 2    |      |
|                  | live oak      | 40     | silver bluestem   | 17    | 24  | partridge pea  | . 5  | e    |
|                  | granjeno      | 10     | sideoats grama    | 78    | 30  | Texas doveweed |      | 24   |
|                  | prickly pear  | 5      | hairy grama       |       | 8   | bundleflower   | 3    |      |
|                  | mustang grape | 10     | sandbur           |       | 12  | coneflower     | 2    |      |
|                  |               |        | hooded windmill   | 17    | 20  | snoutbean      | 3    |      |
|                  |               |        | Arizona cottontop |       | 4   | bush sunflower | 6    | 18   |
|                  |               |        | switchgrass       | 90    | 8   |                |      |      |
|                  |               |        | brownseed paspalu |       | 58  |                |      |      |
|                  |               |        | thin paspalum     | 17    | 25  |                |      |      |
|                  |               |        | little bluestem   | 90    | 78  |                |      |      |
|                  |               |        | plains bristle    | 17    | 8   |                |      |      |
|                  |               |        | Total grasses     | 421   | 295 | Total forbs    | 21   | 112  |

| Range Type        | Woody<br>Species             | Relative<br>Cover (%) | Grasses                            |            | iomass Forbs<br>te Mid |                       | Bioma<br>Late M |          |
|-------------------|------------------------------|-----------------------|------------------------------------|------------|------------------------|-----------------------|-----------------|----------|
| Lowland Coastal   |                              |                       |                                    |            |                        |                       |                 |          |
| Lowianu Coastai   | huisache                     | 80                    | big bluestem                       | 126        | 8                      | ragweed               |                 | 40       |
|                   | baccharis                    | 15                    | bushy bluestem                     | 28         | 40                     | wild indigo           | 13              | 68       |
|                   | rattlepod                    | 5                     | bermudagrass                       |            | 60                     | bundleflower          | 7               |          |
|                   |                              |                       | switchgrass                        | 127        | 8                      | frogfruit             |                 | 18       |
|                   |                              |                       | longtom<br>brownseed paspalu       | 28<br>m 26 | 62<br>42               | bush sunflower        | 13              | 34       |
|                   |                              |                       | little bluestem                    | 127        | 102                    |                       |                 |          |
|                   |                              |                       | knotroot bristle                   | 26         | 34                     |                       |                 |          |
|                   |                              |                       | indiangrass                        | 126        | 27                     |                       |                 |          |
|                   |                              |                       | smutgrass                          |            | 36                     |                       |                 |          |
|                   |                              |                       | littletooth sedge<br>flatsedge     | 25<br>     | 20<br>8                |                       |                 |          |
|                   |                              |                       | Total grasses                      | 639        | 447                    | Total forbs           | 33              | 170      |
| Rolling Blackland |                              |                       |                                    |            |                        |                       |                 |          |
|                   | huisache<br>mesquite         | 20<br>45              | purple threeawn<br>silver bluestem | <br>40     | 24<br>42               | ragweed<br>broomweed  | 4               | 33<br>20 |
|                   | whitebrush                   | 10                    | sideoats grama                     | 51         | -12                    | wild indigo           | 8               | 12       |
|                   | granjeno                     | 20                    | hairy grama                        |            | 8                      | bundleflower          | 3               | 4        |
|                   | agarito                      | 5                     | buffalograss                       | 29         | 52                     | sunflower             |                 | 12       |
|                   |                              |                       | hooded windmill                    |            | 10                     | frogfruit             |                 | 8        |
|                   |                              |                       | trichloris<br>Arizona cottontop    | 46<br>43   | 37<br>4                | coneflower<br>ruellia | 3<br>3          |          |
|                   |                              |                       | Texas cupgrass                     | 35         | 2                      | raciiia               | 0               | 0        |
|                   |                              |                       | vine-mesquite                      | 46         | 20                     |                       |                 |          |
|                   |                              |                       | plains bristle                     | 46<br>35   | 15<br>40               |                       |                 |          |
|                   |                              |                       | Texas wintergrass<br>Total grasses | 371        | 260                    | Total forbs           | 21              | 99       |
|                   |                              |                       |                                    |            |                        |                       |                 |          |
| Salty Prairie     | huisache                     | 90                    | bermudagrass                       |            | 10                     | spiny aster           |                 | 6        |
|                   | mesquite                     | 10                    | saltgrass                          | 11         | 18                     | sea oxeye             | 39              | 53       |
|                   |                              |                       | switchgrass                        | 8          | 1                      | frogfruit             |                 | 10       |
|                   |                              |                       | longtom                            | 11         | 12                     | glasswort             |                 | 4        |
|                   |                              |                       | common reed<br>little bluestem     | 6<br>7     | 4<br>4                 |                       |                 |          |
|                   |                              |                       | knotroot bristle                   | 12         | 20                     |                       |                 |          |
|                   |                              |                       | indiangrass                        | 7          | 2                      |                       |                 |          |
|                   |                              |                       | gulf cordgrass                     | 683        | 520                    |                       |                 |          |
|                   |                              |                       | Total grasses                      | 745        | 591                    | Total forbs           | 39              | 73       |
| Sandy             | mesquite                     | 30                    | purple threeawn                    |            | 25                     | ragweed               | 6               | 48       |
|                   | live oak                     | 30                    | sandbur                            |            | 15                     | wild indigo           | 6               | 12       |
|                   | baccharis                    | 5                     | hooded windmill                    | 17         | 25                     | partridge pea         | 6               |          |
|                   | granjeno<br>prickly popr     | 10                    | switchgrass                        | 53<br>m 53 | 4                      | Texas doveweed        |                 |          |
|                   | prickly pear<br>mustang grap |                       | brownseed paspalu<br>thin paspalum | m 53<br>18 | 25<br>27               | snoutbean             | 6               | 12       |
|                   | mascand draf                 | 20                    | little bluestem                    | 210        | 160                    |                       |                 |          |
|                   |                              |                       | indiangrass                        | 53         | 4                      |                       |                 |          |
|                   |                              |                       | tall dropseed                      | 20         | 12                     |                       |                 |          |
|                   |                              |                       |                                    |            |                        |                       |                 |          |

| Range Type          | Woody<br>Species     | Relative<br>Cover (%) | Grasses                            |          | mass<br>Mid | Forbs<br>1           |    | nass<br>Mid |
|---------------------|----------------------|-----------------------|------------------------------------|----------|-------------|----------------------|----|-------------|
| San da Datta mlan d |                      |                       |                                    |          |             |                      |    |             |
| Sandy Bottomland    | huisache             | 5                     | big bluestem                       | 90       | 4           | ragweed              |    | 48          |
|                     | hackberry            | 15                    | hairy grama                        |          | 6           | giant ragweed        |    | 30          |
|                     | mesquite             | 5                     | sandbur                            |          | 12          | partridge pea        | 22 | 20          |
|                     | live oak             | 55                    | bermudagrass                       |          | 20          | sunflower            |    | 30          |
|                     | mustang grap         | be 20                 | trichloris                         |          | 10          | snoutbean            | 11 | 12          |
|                     |                      |                       | Virginia wildrye                   | 78       | 53          |                      |    |             |
|                     |                      |                       | guineagrass                        |          | 40          |                      |    |             |
|                     |                      |                       | switchgrass                        | 95       | 8           |                      |    |             |
|                     |                      |                       | thin paspalum                      |          | 20          |                      |    |             |
|                     |                      |                       | little bluestem                    | 96       | 80          |                      |    |             |
|                     |                      |                       | knotroot bristle                   | 78       | 72          |                      |    |             |
|                     |                      |                       | plains bristle                     |          | 8           |                      |    |             |
|                     |                      |                       | indiangrass                        | 90       | 6<br>25     |                      |    |             |
|                     |                      |                       | Johnsongrass<br>tall dropseed      |          | 2J<br>5     |                      |    |             |
|                     |                      |                       | cair dropseed                      |          | 5           |                      |    |             |
|                     |                      |                       | Total grasses                      | 527      | 369         | Total forbs          | 33 | 140         |
| Sandy Loam          |                      | 25                    |                                    |          | 22          |                      | 7  | 27          |
|                     | mesquite<br>live oak | 35<br>30              | purple threeawn<br>silver bluestem | <br>67   | 22<br>90    | ragweed<br>broomweed | 7  | 37<br>62    |
|                     | whitebrush           | 10                    |                                    |          | 90<br>4     | partridge pea        |    | 4           |
|                     | blackbrush           | 5                     | red grama<br>sandbur               |          | 12          | Texas doveweed       |    | 2           |
|                     | granjeno             | 15                    | hooded windmill                    | 54       | 60          | bundleflower         | 1  | 2           |
|                     | prickly pear         |                       | trichloris                         | 119      | 40          | coneflower           | 2  | 3           |
|                     | prionij podi         |                       | Arizona cottontop                  |          | 4           | snoutbean            | 4  | 6           |
|                     |                      |                       | brownseed paspalu                  |          | 18          | bush sunflower       | 7  | 12          |
|                     |                      |                       | little bluestem                    | 120      | 70          |                      |    |             |
|                     |                      |                       | plains bristle                     | 62       | 22          |                      |    |             |
|                     |                      |                       | Total grasses                      | 488      | 342         | Total forbs          | 27 | 128         |
| Shallow Ridge       |                      |                       |                                    |          |             | _                    | _  |             |
|                     | mesquite             | 15                    | purple threeawn                    |          | 14          | ragweed              | 5  | 23          |
|                     | guajillo             | 30                    | sideoats grama                     | 42       | 12          | broomweed            | 4  | 22          |
|                     | blackbrush           | 50                    | hairy grama                        |          | 12          | dogweed              | 2  | 6           |
|                     | prickly pear         | 5                     | red grama                          |          | 6<br>14     |                      |    |             |
|                     |                      |                       | hooded windmill<br>trichloris      | 13       | 6           |                      |    |             |
|                     |                      |                       | Arizona cottontop                  |          | 4           |                      |    |             |
|                     |                      |                       | green sprangletop                  |          | 4           |                      |    |             |
|                     |                      |                       | little bluestem                    | 40       | 18          |                      |    |             |
|                     |                      |                       | Texas bristlegras                  |          | 16          |                      |    |             |
|                     |                      |                       | sand dropseed                      | 12       | 10          |                      |    |             |
|                     |                      |                       | Texas wintergrass                  |          | 18          |                      |    |             |
|                     |                      |                       | Total grasses                      | 191      | 134         | Total forbs          | 11 | 51          |
| Shallow Sandy Loam  |                      |                       |                                    |          |             |                      |    |             |
| •                   | huisache             | 40                    | purple threeawn                    |          | 15          | ragweed              | 10 | 24          |
|                     | mesquite             | 50                    | silver bluestem                    | 68       | 43          | broomweed            | 3  | 20          |
|                     | prickly pear         | r 10                  | hairy grama                        |          | 4           | bundleflower         | 2  | 3           |
|                     |                      |                       | buffalograss                       |          | 12          | sunflower            | 3  | 8           |
|                     |                      |                       | hooded windmill                    | 29       | 32          | coneflower           | 2  | 3           |
|                     |                      |                       | trichloris                         |          | 15          | snoutbean            | 4  | 10          |
|                     |                      |                       | Arizona cottontop                  |          | 5           | bush sunflower       | 12 | 16          |
|                     |                      |                       | little bluestem                    | 67<br>56 | 32          |                      |    |             |
|                     |                      |                       | plains bristle                     | 56<br>30 | 20<br>20    |                      |    |             |
|                     |                      |                       | sand dropseed<br>Texas wintergrass |          | 12          |                      |    |             |
|                     |                      |                       | Total grasses                      | 300      | 210         | Total forbs          | 36 | 80          |
|                     |                      |                       |                                    |          |             |                      | 20 | 50          |

| Range Type        | Woody        | Relative | Grasses           | Biomass |     | Forbs            |      | mass |
|-------------------|--------------|----------|-------------------|---------|-----|------------------|------|------|
|                   | Species      | Cover (% | )                 | Late    | Mid |                  | Late | Mid  |
| Sloping Clay Loam |              |          |                   |         |     |                  |      |      |
| Sloping Clay Loan | huisache     | 20       | purple threeawn   |         | 23  | ragweed          | 5    | 24   |
|                   | mesquite     | 40       | silver bluestem   |         | 18  | broomweed        |      | 17   |
|                   | blackbrush   | 20       | sideoats grama    | 54      | 12  | bundleflower     | 2    | 3    |
|                   | granjeno     | 15       | hairy grama       |         | 10  | sunflower        |      | 8    |
|                   | prickly pear |          | red grama         |         | 4   | coneflower       | 2    | 3    |
|                   | prickly pear |          | buffalograss      | 28      | 40  | snoutbean        | 2    |      |
|                   |              |          | hooded windmill   |         | 12  | ruellia          | 2    | 4    |
|                   |              |          | trichloris        | 54      | 18  | bush sunflower   |      |      |
|                   |              |          | Arizona cottontop | 50      | 5   | bubii buiirrower |      | 0    |
|                   |              |          | plains bristle    | 52      | 14  |                  |      |      |
|                   |              |          | Texas wintergrass | 27      | 30  |                  |      |      |
|                   |              |          | Total grasses     | 265     | 186 | Total forbs      | 15   | 71   |
| Tight Sandy Loam  |              |          |                   |         |     |                  |      |      |
|                   | mesquite     | 45       | purple threeawn   |         | 31  | ragweed          | 6    | 30   |
|                   | live oak     | 20       | silver bluestem   | 82      | 90  | broomweed        |      | 24   |
|                   | blackbrush   | 15       | sideoats grama    | 82      | 16  | partridge pea    | 6    | 6    |
|                   | granjeno     | 15       | hairy grama       |         | 10  | Texas doveweed   | l    | 15   |
|                   | prickly pear | : 5      | red grama         |         | 5   | bundleflower     | 1    | 2    |
|                   |              |          | sandbur           |         | 15  | coneflower       | 1    | 2    |
|                   |              |          | hooded windmill   | 36      | 40  | snoutbean        | 3    | 6    |
|                   |              |          | trichloris        | 82      | 60  | bush sunflower   | 6    | 23   |
|                   |              |          | Arizona cottontop | 80      | 4   |                  |      |      |
|                   |              |          | plains bristle    | 45      | 14  |                  |      |      |
|                   |              |          | Total grasses     | 407     | 285 | Total forbs      | 23   | 108  |

| Species               | Blackland | Blackland | Clayey     | Clay | Loamy      | Rolling   |
|-----------------------|-----------|-----------|------------|------|------------|-----------|
|                       | RG Plains | Coastal   | Bottomland | Loam | Bottomland | Blackland |
| Huisache              | х         | x         | х          | х    |            |           |
| Pecan                 |           |           | 5          |      | 5          |           |
| Hackberry             | 2         | 1         | 10         |      | 5          |           |
| 1esquite              | х         | 1         | х          | 2    | х          | х         |
| Post oak              |           |           |            |      |            |           |
| Live oak              | 3         | 2         | 10         |      | 10         |           |
| Nhitebrush            |           |           |            |      |            | x         |
| Baccharis             |           |           | Х          | x    |            |           |
| Granjeno              | х         | х         |            | 1    |            | х         |
| Volfberry             |           |           |            | 1    |            |           |
| Agarito               | х         | х         |            |      |            | х         |
| Greenbriar            |           |           |            |      | 5          | х         |
| lustang grape         |           |           |            |      | 10         |           |
| Big bluestem          |           | 93        |            |      | 78         |           |
| Bushy bluestem        |           |           | х          |      | x          |           |
| Purple threeawn       | х         | х         |            | х    |            | х         |
| Silver bluestem       | 28        |           |            | 90   | 11         | 40        |
| Sideoats grama        | 28        | 75        |            | 22   | 45         | 51        |
| Hairy grama           | x         | x         |            | X    |            | X         |
| Red grama             |           | x         |            |      |            | X         |
| -                     |           |           | 22         | 22   | 24         | 29        |
| Buffalograss          | X         | ×<br>     |            |      | 24         |           |
| Hooded windmillgrass  | X         |           |            |      |            | X         |
| Trichloris            | 73        |           | 34         | 67   | 78         | 46        |
| Arizona cottontop     | 22        |           |            | 28   |            | 43        |
| 'irginia wildrye      |           |           | 67         |      | 34         |           |
| exas cupgrass         | 20        |           |            |      | 6          | 35        |
| /ine-mesquite         | 20        | 73        | 22         |      | 22         | 46        |
| Switchgrass           |           | 93        | 39         |      | 78         |           |
| Brownseed paspalum    |           | 93        | 62         | 11   | 22         |           |
| Little bluestem       | 73        | 76        | 45         | 67   | 90         |           |
| Knotroot bristlegrass |           |           | 22         |      | 11         |           |
| lains bristlegrass    | 22        | 74        | 62         | 90   | 45         | 46        |
| Indiangrass           | 45        | 93        | 34         | 11   |            |           |
| all dropseed          | 22        | 75        |            | Х    |            |           |
| 'exas wintergrass     | 20        |           |            | Х    | 22         | 35        |
| Littletooth sedge     |           |           |            |      | 22         |           |
| Flatsedge             |           |           |            |      | 28         |           |
| Ragweed               | 3         | 13        | х          | х    | 6          | 4         |
| Annual broomweed      |           |           |            | Х    |            |           |
| Spiny aster           |           |           | Х          |      | Х          |           |
| Vild indigo           | 7         | 13        | 20         | 5    |            | 8         |
| Partridge pea         |           |           |            |      | 6          |           |
| ld-mans beard         |           |           |            |      | 6          |           |
| undleflower           | 3         | 13        | 9          | 4    | 5          | 3         |
| Sumpweed              |           |           | х          |      |            |           |
| rairie coneflower     | 3         |           |            | х    |            | 3         |
| noutbean              |           |           | 10         | 4    | 6          |           |
| Ruellia               | 3         |           |            |      | 5          | 3         |
| Bush sunflower        |           |           |            | 5    |            |           |
| Drange zexmenia       |           |           |            | 5    |            |           |
|                       |           |           |            |      |            |           |

Appendix Table C.3 Species composition (% cover for woody species,  $g/m^2$  annual aboveground production for herbaceous species, average rainfall) on **clay and clay loam** NRCS range sites under late-seral (excellent range condition) conditions in Goliad County (x = species occurs in early- or mid-seral).

Appendix Table C.4 Species composition (% cover for woody species,  $g/m^2$  annual aboveground production for herbaceous species, average rainfall) on **sandy and sandy loam** NRCS range sites under late-seral (excellent range condition) conditions in Goliad County (x = species occurs in early- or mid-seral).

| Species                         | Gray Sandy<br>Loam | Loamy<br>Sand | Sandy | Sandy<br>Loam |        | Claypan<br>Savannah |       | Deep<br>Sand | Loamy S<br>Prairie Bot | Sandy<br>ttomland |
|---------------------------------|--------------------|---------------|-------|---------------|--------|---------------------|-------|--------------|------------------------|-------------------|
| Huisache                        | х                  |               |       |               |        |                     | x     |              | х                      | х                 |
| Sugar hackberry                 |                    |               |       |               |        |                     |       |              |                        | 5                 |
| Mesquite                        | 5                  | 2             | 2     | х             | 3      | х                   |       |              |                        | Х                 |
| Post oak                        |                    |               |       |               |        | 60                  |       | 5            |                        |                   |
| Live oak                        |                    | 2             | 2     |               |        |                     | х     | 10           | Х                      | 15                |
| Whitebrush                      | 1                  |               |       | х             |        |                     |       |              |                        |                   |
| Blackbrush                      | 1                  |               |       | 5             |        |                     |       |              |                        |                   |
| Baccharis                       |                    |               | x     |               |        |                     | х     |              |                        |                   |
| Granjeno                        | 3                  | х             |       | х             | 2      | х                   |       |              |                        |                   |
| McCartney rose                  |                    |               |       |               |        |                     | х     |              | х                      |                   |
| Rattlepod                       |                    |               |       |               |        |                     | х     |              |                        |                   |
| Mustang grape                   |                    |               |       |               |        |                     |       | 10           |                        |                   |
| Prickly pear                    | 1                  | х             | х     |               |        | х                   |       |              |                        |                   |
| Big bluestem                    |                    |               |       |               |        |                     | 56    |              | 34                     | 90                |
| Bushy bluestem                  |                    |               |       |               |        |                     | х     |              | х                      |                   |
| Purple threeawn                 | х                  | х             |       | х             |        |                     |       | х            |                        |                   |
| Silver bluestem                 |                    | 17            |       | 67            | 82     | 46                  |       |              |                        |                   |
| Sideoats grama                  | 38                 | 78            |       |               | 82     | 46                  |       |              |                        |                   |
| Hairy grama                     | 11                 | x             |       |               | х      | х                   |       |              |                        | Х                 |
| Red grama                       |                    |               |       | х             | х      | х                   |       |              |                        |                   |
| Buffalograss                    | 38                 |               |       |               |        |                     |       |              |                        |                   |
| Sandbur                         | х                  | х             | х     | х             | х      |                     |       |              |                        | х                 |
| Hooded windmill                 | 36                 | 17            | 17    | 54            | 36     | 22                  |       | х            |                        |                   |
| Trichloris                      | 91                 |               |       | 119           | 82     | 46                  |       |              |                        |                   |
| Bermudagrass                    |                    |               |       |               |        |                     | х     |              | х                      |                   |
| Arizona cottontop               | 28                 | 17            |       | 66            | 80     | 46                  |       |              |                        |                   |
| Virginia wildrye                |                    |               |       |               |        |                     |       |              | 21                     | 78                |
| Green sprangletop               | 17                 |               |       |               |        |                     |       |              |                        |                   |
| Switchgrass                     |                    | 90            | 53    |               |        |                     | 95    |              | 28                     | 95                |
| Longtom                         |                    |               |       |               |        |                     | 56    |              | 22                     |                   |
| Brownseed paspalu               |                    | 78            | 53    | х             |        |                     | 56    | 62           | 22                     |                   |
| Thin paspalum                   |                    | 17            | 18    |               |        |                     |       | 57           | 23                     | х                 |
| Little bluestem                 |                    | 90            | 210   | 120           |        | 106                 | 95    | 83           | 370                    | 96                |
| Knotroot bristle                |                    |               |       |               |        |                     | 56    |              | 20                     | 78                |
|                                 |                    | 17            |       | 62            | 45     | 24                  |       | 67           |                        |                   |
| Plains bristlegra               |                    |               | 53    |               | 40     | 101                 | 78    | 78           | 28                     | 90                |
| Indiangrass<br>Tall dropseed    |                    |               | 20    |               |        |                     |       |              |                        |                   |
|                                 |                    |               | 20    |               |        |                     | x     |              | X                      |                   |
| Smutgrass<br>Sand dropseed      | 22                 |               |       |               |        |                     |       |              |                        |                   |
| Littletooth sedge               |                    |               |       |               |        |                     | 50    |              | 17                     |                   |
| Ragweed                         | х                  | 2             | 6     | 7             | 6      |                     | 7     |              |                        |                   |
| Annual broomweed                | x                  |               |       | x             | x      | x                   |       |              |                        |                   |
| Wild indigo                     | ~ ~ ~ ~            |               | 6     |               |        |                     | 8     |              | 10                     |                   |
| -                               |                    |               | 6     | 6             |        |                     | o<br> |              |                        | 22                |
| Partridge pea<br>Texas doveweed | 4<br>X             | x             | x     | 0<br>X        | o<br>X | <br>X               | 7     |              |                        |                   |
|                                 | 3                  | 3             | ×<br> | ×<br>1        | ×<br>1 | ×                   | 7     | 4            | 10                     |                   |
| Bundleflower                    |                    |               |       |               |        |                     |       |              | 10                     |                   |
| Prairie coneflowe               |                    | 2             |       | 2             | 1      |                     |       | 3            |                        |                   |
| Snoutbean                       | 4                  | 3             | 6     | 4             | 3      |                     |       | 3            |                        | 11                |
| Bush sunflower                  | 6                  | 6             |       | 7             | 6      |                     |       | 4            | 11                     |                   |
| Total herbaceous                | 392                | 442           | 448   | 515           | 430    | 437                 | 571   | 364          | 616                    | 560               |

Appendix Table C.5 Species composition (% cover for woody species,  $g/m^2$  annual aboveground production for herbaceous species, average rainfall) on **shallow** NRCS range sites under late-seral (excellent range condition) conditions in Goliad County (x = species occurs in early- or mid-seral).

| Species            | Gravelly | Shallow | Shallow Sandy | Sloping   |
|--------------------|----------|---------|---------------|-----------|
|                    | Ridge    | Ridge   | Loam          | Clay Loam |
| esquite            | х        |         |               | x         |
| lesquite           | ~        |         |               | A         |
| Guajillo           | 10       | 5       |               |           |
| Blackbrush         | 15       | 5       |               | 5         |
| Granjeno           | Х        |         |               |           |
| Agarito            | Х        |         |               |           |
| rickly pear        | Х        |         |               | X         |
| urple threeawn     | 39       | х       |               | х         |
| ilver bluestem     | 52       |         | 68            |           |
| Sideoats grama     | 52       | 42      |               | 54        |
| airy grama         |          | Х       |               | Х         |
| ed grama           | 6        | Х       |               | х         |
| uffalograss        | 34       |         |               | 28        |
| ooded windmill     | 22       | х       | 29            |           |
| richloris          |          | 13      |               | 54        |
| Arizona cottontop  | 27       | 38      | 50            | 50        |
| reen sprangletop   | 16       | 34      |               |           |
| ittle bluestem     |          | 40      | 67            |           |
| lains bristlegrass |          |         | 56            | 52        |
| exas bristlegrass  | 6        | 12      |               |           |
| and dropseed       |          | 12      | 30            |           |
| Cexas wintergrass  |          |         |               | 27        |
| Forbs              | 20       | 11      | 36            | 15        |
| Total herbaceous   | 274      | 202     | 336           | 280       |

Appendix Table C.6 Species composition (% cover for woody species,  $g/m^2$  annual aboveground production for herbaceous species) on **wetland** NRCS range sites under late-seral (excellent range condition) conditions in Goliad County (x = species occurs in early- or mid-seral).

| Species              | Lakebed          | Lakebed | Lowland | Salty   |  |
|----------------------|------------------|---------|---------|---------|--|
|                      | <b>RG Plains</b> | Coastal | Coastal | Prairie |  |
| luisache             | x                | х       | x       | Х       |  |
| lesquite             | Х                |         |         |         |  |
| Baccharis            |                  |         | х       |         |  |
| Sea oxeye            |                  |         |         | 39      |  |
| Rattlepod            | х                |         | х       |         |  |
| Big bluestem         |                  |         | 126     |         |  |
| Bushy bluestem       | 34               |         | 28      |         |  |
| uffalograss          | 8                |         |         |         |  |
| ermudagrass          | Х                |         |         | х       |  |
| Saltgrass            |                  |         |         | 11      |  |
| /ine-mesquite        | 34               |         |         |         |  |
| Switchgrass          | 101              | 90      | 127     | 8       |  |
| longtom              | 49               | 92      | 28      | 11      |  |
| Brownseed paspalum   | 90               | 90      | 26      |         |  |
| common reed          |                  |         |         | 6       |  |
| ittle bluestem       |                  |         | 127     | 7       |  |
| notroot bristlegrass | 34               | 67      | 26      | 12      |  |
| ndiangrass           |                  |         | 126     | 7       |  |
| Gulf cordgrass       |                  |         |         | 683     |  |
| mutgrass             |                  |         | х       |         |  |
| ittletooth sedge     | 11               |         | 25      |         |  |
| Flatsedge            | 22               | 67      |         |         |  |
| Spikerush            |                  | 22      |         |         |  |
| attail               | 11               | 3       |         |         |  |
| Ragweed              | 4                | 3       |         |         |  |
| Annual broomweed     |                  | 2       |         |         |  |
| Spiny aster          | х                |         |         |         |  |
| Nild indigo          | 3                | 2       | 13      |         |  |
| Bundleflower         | 1                | 2       | 7       |         |  |
| rogfruit             | 2                | 2       |         |         |  |
| Ruellia              | 1                | 2       |         |         |  |
| urly dock            | 2                | 2       |         |         |  |
| ulltongue            | 2                | 2       |         |         |  |
| Glasswort            |                  |         |         | х       |  |
| ush sunflower        |                  |         | 13      |         |  |
| Cotal herbaceous     | 409              | 448     | 672     | 784     |  |

| Species                                          |                | te (1969)<br>Absolute | Box (1<br>Victoria |          | Powell &<br>Box 1967 | Buckley<br>& Dodd   | Holtz           | Johnstor<br>(1963) |
|--------------------------------------------------|----------------|-----------------------|--------------------|----------|----------------------|---------------------|-----------------|--------------------|
|                                                  | VETALINE       | ADSOLULE              | VICLOFIA           | orerra   | Box 1967<br>Victoria | & Dodd<br>1969 clay | HOITZ<br>(1972) | (1202)             |
|                                                  |                | Weld                  | ler Wildli:        | fe Refu  | ge                   | Webb                | Goliad          | Kleberg            |
| Acacia farnesiana                                | 10.0           | 4.7                   | 5.5                | 1.3      |                      |                     |                 |                    |
| Acacia rigidula                                  | 9.0            | 4.2                   | 18.4               | 0.5      | x<br>x               |                     |                 |                    |
| Acacia tortuosa                                  | J.U<br>t       |                       | 2.9                | 1.3      | A                    |                     |                 |                    |
| Berberis trifoliolata                            | 4.1            | 1.9                   | 6.4                | t        | х                    |                     |                 |                    |
| Celtis pallida                                   | 5.0            | 2.4                   | 1.2                |          | x                    |                     |                 |                    |
| Condalia obovata                                 | 2.0            | 0.9                   | 0.9                |          | x                    |                     |                 |                    |
| Diospyros texana                                 | 1.0            | 0.5                   |                    |          |                      |                     |                 |                    |
| Gycium berlandieri                               | 1.0            | 0.5                   |                    |          |                      |                     |                 |                    |
| )<br>puntia leptocaulis                          | 4.7            | 2.2                   |                    |          |                      |                     |                 |                    |
| puntia linheimeri                                | 8.4            | 3.7                   | t                  | 52.3     |                      | х                   |                 |                    |
| Parkinsonia aculeata                             |                |                       |                    |          |                      | х                   |                 |                    |
| Prosopis glandulosa                              | 43.2           | 20.3                  | 53.0               | 38.2     | х                    | х                   |                 |                    |
| Prosopis reptans                                 | 4.6            | 2.2                   |                    |          |                      |                     |                 |                    |
| Varilla texana                                   |                |                       |                    |          |                      | х                   |                 |                    |
| anthoxylum fagara                                | 3.8            | 1.8                   | 3.9                | 1.3      | х                    |                     |                 |                    |
| Sizyphus obtusifolia                             | 2.5            | 1.2                   | 7.8                | 5.1      |                      |                     |                 |                    |
|                                                  |                |                       |                    |          |                      |                     |                 |                    |
| otal woody (abs cover)                           |                | 46.5                  | 19.6               | 39.4     | 48.6                 |                     |                 |                    |
| ristida roemeriana                               | 3.3            | 5.4                   | 14.3               | 7.6      | 2.3                  |                     |                 | 2%                 |
| Aristida spp.                                    |                |                       |                    |          |                      |                     | 6.4             |                    |
| Bothriochloa saccharoide                         | e <i>s</i> 8.7 | 14.1                  | 0.6                | 0.5      | 4.5                  |                     |                 |                    |
| Bouteloua curtipendula                           |                |                       |                    |          |                      |                     | 1.7             |                    |
| Bouteloua rigidiseta                             |                |                       |                    |          | 0.3                  |                     | 8.3             |                    |
| Bouteloua trifida                                |                |                       |                    |          |                      | 2.3                 |                 |                    |
| Buchloe dactyloides                              | 24.4           | 39.8                  | 27.6               | 11.3     | 28.6                 |                     |                 | 30%                |
| Cenchrus ciliaris                                |                |                       |                    |          |                      | 4.0                 |                 |                    |
| Cenchrus incertus                                |                |                       | 0.1                | 7.3      |                      | 1.9                 |                 | 2%                 |
| Chloris cucullata                                |                |                       |                    |          |                      |                     | 1.2             |                    |
| Chloris verticillata                             | 1.4            | 2.2                   | 2.5                | 25.0     | 1.6                  |                     |                 | 15%                |
| Cynodon dactylon                                 |                |                       |                    |          | 0.6                  |                     |                 |                    |
| Digitaria californica                            |                |                       | 0.3                | 0.1      |                      |                     |                 |                    |
| Eragrostis lugens                                |                |                       |                    |          | 3.9                  |                     |                 |                    |
| Eriochloa contracta                              |                |                       | 0.4                | t        | 3.9                  | 0.3                 |                 |                    |
| lilaria belangeri                                | t              | t                     | 16.9               | 20.9     | 1.0                  | 27.8                |                 | 20%                |
| eptochloa dubia                                  |                |                       |                    |          |                      | 6.6                 |                 |                    |
| eptochloa nealleyi                               |                |                       |                    |          | 2.2                  |                     |                 |                    |
| eptoloma cognatum                                |                |                       | 0.1                | 0.1      |                      |                     | 0.6             |                    |
| Panicum filipes                                  | 3.0            | 4.8                   | 10.6               | 2.3      | 6.9                  | 50.0                |                 | 5%                 |
| Panicum hallii                                   |                |                       |                    |          |                      | 78.2                |                 |                    |
| Panicum obtusum                                  | 1.4            | 2.2                   | 2.0                | t        | 2.2                  |                     |                 |                    |
| Paspalum pubiflorum                              | 3.9            | 6.4                   | 0.4                | 0.6      | 6.0                  |                     |                 | 0.0                |
| Schedonnardus paniculatu                         | <i>us</i> 0.3  | 0.4                   |                    |          |                      |                     | 1 0             | 2%                 |
| Schizachyrium scoparium                          | 0 0            | 1 5                   | 0 4                | 0 5      | E O                  |                     | 1.2             |                    |
| Setaria geniculata                               | 0.9            | 1.5                   | 0.4                | 0.5      | 5.3                  |                     | 1 0             |                    |
| Setaria leucopila<br>Sporobolus asper            | 0.8<br>2.5     | 1.3<br>4.0            | 17.8               | 15.0     | 20.2<br>1.4          |                     | 1.2             |                    |
|                                                  | 2.5            | 4.0                   |                    |          | 1.4                  |                     | 0.6             |                    |
| Sporobolus cryptandrus<br>Sporobolus pyramidatus | 0.4            | 0.7                   | 0.2                | 4.5      | 1.7                  | 14.4                | 0.0             |                    |
| Stipa leucotricha                                | 0.4<br>5.3     | 8.6                   | 0.2                | 4.5      | 1.7<br>5.8           | 14.4                | 1.7             |                    |
| ridens albescens                                 | 2.1            | 3.5                   | 0.9                | 0.9<br>t | 1.4                  |                     | ±•/             |                    |
| ridens congestus                                 | 1.5            | 2.5                   |                    |          | ±•7                  |                     |                 |                    |
| ridens eragrostoides                             |                | 2.5                   | t                  | 0.5      |                      |                     |                 |                    |
| ridens texensis                                  |                |                       | L                  | 0.0      |                      |                     | 2.3             |                    |
| ther grasses (4)                                 | 0.2            | 0.3                   | 0.2                | 0.2      |                      |                     | 2.J<br>6.4      |                    |
| Carex spp.                                       | v.2            | 0.0                   | v • 2              | v • 2    |                      |                     | 9.9             |                    |
|                                                  |                |                       |                    |          |                      |                     |                 |                    |
| otal grasses (g/m²)                              | 60.1           | 97.7                  |                    |          | 99.8                 | 135.5               | 41.5            |                    |
| otal grasses (% cover)                           |                |                       | 96.0               | 97.3     |                      |                     |                 |                    |
|                                                  |                |                       |                    |          |                      |                     |                 |                    |
| mbrosia psilostachya                             | 4.9            | 8.6                   |                    |          | 20.4                 |                     |                 |                    |
| Cienfuegosa sulphurea                            | 0.3            | 0.4                   |                    |          |                      |                     |                 |                    |

# Appendix Table C.7 Comparison of vegetation data from literature sources for clay and clay loam sites in South Texas.

| Species                    | Box & Wh | lte (1969) | Box (1   | 1961)  | Powell & | Buckley   | Dodd & | Johnston |
|----------------------------|----------|------------|----------|--------|----------|-----------|--------|----------|
|                            | Relative | Absolute   | Victoria | Orelia | Box 1967 | & Dodd    | Holtz  | (1963)   |
|                            |          |            |          |        | Victoria | 1969 clay | (1972) |          |
| Commelina erecta           | 1.6      | 2.7        | 0.1      | t.     |          |           |        |          |
| Croton monanthogynus       | 2.8      | 4.5        | 0.1      | t.     |          |           |        |          |
| Desmanthus virgatus        | 2.0      | 4.J<br>3.5 | 0.9      | L      |          |           |        | 5%       |
| 5                          | 2.1      | 3.0        |          |        |          |           |        |          |
| Euphorbia albomarginata    |          |            |          |        |          |           |        | 2%       |
| Evolvulus sericeus         | 0 1      | 0 0        |          |        |          |           |        | 2%       |
| Lythrum californicum       | 0.1      | 0.2        |          |        |          |           |        |          |
| Malvastrum aurantiacum     | 0.2      | 0.3        |          |        |          |           |        |          |
| Phyla incisa               | 0.5      | 0.9        | t        | t      |          |           |        |          |
| Portulaca pilosa           | 0.5      | 0.9        |          |        |          |           |        |          |
| Ratibida columnaris        | 0.1      | 0.2        | 0.6      | t      |          |           |        |          |
| Ruellia sp.                | 7.6      | 12.3       | 0.8      | t      |          |           |        |          |
| Solanum eleagnifolium      | 1.6      | 2.6        |          |        |          |           |        |          |
| Verbesina microptera       | 2.1      | 3.5        |          |        |          |           |        |          |
| Xanthocephalum texanum     | 15.0     | 24.5       | 0.1      | 0.5    | 20.4     |           |        |          |
| Other forbs (11)           | 0.5      | 0.8        | 1.0      | t      |          |           |        |          |
| Total forbs                | 39.9     | 65.9       | 3.5      | 0.5    | 40.8     |           | 104.   | 2        |
| Total herbaceous $(q/m^2)$ | 100.0    | 163.6      |          |        | 140.6    |           | 145.   | . 7      |
| Total herbaceous (% cove   | r)       |            | 99.5     | 97.8   |          |           |        |          |

Box and White (1969) was a chaparral community on Victoria clay. Box (1961) is % relative basal cover. Victoria communities are an average of mesquite and chaparral communities and Orelia community is a prickly pear site.

| Species                     | Basa     | l Cover | Comp        | osition   |  |
|-----------------------------|----------|---------|-------------|-----------|--|
|                             | Upland   | Lowland | Upland      | Lowland   |  |
| Andropogon gerardii         | 3        | t       | 2.0         | t         |  |
| Bouteloua curtipendula      | 6        | 0       | 3.7         | 0.0       |  |
| Coelorachis cylindrica      | 3        | 0       | 2.0         | 0.0       |  |
| Dichanthelium sphaerocarpon | 2        | 0       | 1.0         | 0.0       |  |
| Eragrostis intermedia       | 1        | 0       | 0.3         | 0.0       |  |
| Eriochloa sericea           | 2        | 0       | 1.0         | 0.0       |  |
| Muhlenbergia capillaris     | 3        | 0       | 1.0         | 0.0       |  |
| Panicum virgatum            | 0        | 18      | 0.0         | 22.0      |  |
| Paspalum floridanum         | 4        | 5       | 2.7         | 6.1       |  |
| Paspalum plicatulum         | 4        | 0       | 4.3         | 0.0       |  |
|                             | 3        | 0       | 4.3         |           |  |
| Paspalum setaceum           | 3<br>59  |         |             | 0.0       |  |
| Schizachyrium scoparium     | 59<br>11 | t<br>10 | 39.0<br>7.3 | t<br>12.2 |  |
| Sorghastrum nutans          |          |         |             |           |  |
| Sporobolus asper            | 4        | 2       | 2.7         | 2.4       |  |
| Stipa leucotricha           | 3        | 0       | 2.0         | 0.0       |  |
| Tripsacum dactyloides       | 12       | 41      | 7.7         | 50.0      |  |
| Carex microdonta            | 4        | t       | 2.7         | t         |  |
| Eleocharis montevidensis    | 2        | 3       | 1.0         | 3.7       |  |
| Fimbristylis puberula       | 2        | 0       | 1.3         | 0.0       |  |
| Scleria ciliata             | 2        | 0       | 1.3         | 0.0       |  |
| Argythamnia humilis         | 2        | 0       | 1.0         | 0.0       |  |
| Biforia americana           | 1        | 0       | 0.7         | 0.0       |  |
| Cacalia plantaginea         | 3        | 0       | 1.7         | 0.0       |  |
| Desmanthus illinoensis      | 0        | 2       | 0.0         | 2.4       |  |
| Dyschoriste linearis        | 2        | 0       | 1.3         | 0.0       |  |
| <br>Echinacea angustifolia  | 1        | 0       | 0.7         | 0.0       |  |
| Krigia occidentalis         | 2        | 0       | 1.3         | 0.0       |  |
| Marshallia caespitosa       | 4        | 0       | 2.7         | 0.0       |  |
| Physotegia intermedia       | 3        | 1       | 1.7         | 1.2       |  |
| Rudbeckia hirta             | 2        | 0       | 1.3         | 0.0       |  |
| Ruellia nudiflora           | 2        | 0       | 1.3         | 0.0       |  |
| Grasses                     |          |         | 79.1        | 92.7      |  |
| Grass-likes                 |          |         | 6.3         | 3.7       |  |
| Forbs                       |          |         | 13.7        | 3.6       |  |
|                             |          |         | /           |           |  |

Appendix Table C.8 Basal cover (%) and composition (% relative basal cover) on late-successional Fayette Prairie clay and clay loam sites (Smeins and Diamond 1983).

| Box (1961) | -                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | McLendon                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Nueces fs  | Box (                                                                                                                                                                                                                                                                                                                                                  | 1969)                                                                                                                                                                                                                                                                    | & Smeins                                                                                                                                                                                                                                                                                                                                                                                                            | et al.                                                                 | &                                                                                   | (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | (1984)                                                                                                                                                                                                                                                                                                                                                                                                              | (1972)                                                                 | DeYoung                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Karne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            | (g/m²                                                                                                                                                                                                                                                                                                                                                  | ) (응)                                                                                                                                                                                                                                                                    | Alfisols                                                                                                                                                                                                                                                                                                                                                                                                            | Katy sl                                                                | (1976)                                                                              | (g/m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (g/m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (g/m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 2.7                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.2                                                                  | 8.6                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 4 3                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| s          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.8        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3.2        | 22.0                                                                                                                                                                                                                                                                                                                                                   | 9.3                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 13.7       | 23.1                                                                                                                                                                                                                                                                                                                                                   | 9.7                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 2.0                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 4.2        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 3.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| n          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 3.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| les        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | 4.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     | x                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 20.7       | 13.8                                                                                                                                                                                                                                                                                                                                                   | 5.7                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 3.4                                                                                 | 388.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | 33.4                                                                                                                                                                                                                                                                                                                                                   | 14.0                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     | х                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                   | х                                                                      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | 40.4                                                                                                                                                                                                                                                                                                                                                   | 16.9                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 78                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 75.8       |                                                                                                                                                                                                                                                                                                                                                        | 67.9                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 48.6                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | 162.7                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     | 184.7                                                                  |                                                                                     | 488.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 235.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 7.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 3.6                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0.8        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 3.4                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1.5        | 9.1                                                                                                                                                                                                                                                                                                                                                    | 3.7                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 5.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | 5.0<br><br>4.4                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|            | Nueces fs               1.2            1.2            1.2            1.2            1.2            1.2            1.2            1.2               3.1         1.2            3.1         1.2            3.1         1.2            2.1            0.4         4.4            0.4         4.4            0.4         4.4               0.4         4.4 | Nueces fs     Box (<br>Zaval<br>(g/m²)               1.2        1.2        1.2        1.3     22.0       13.7     23.1       4.2            3.1     30.0       1.2            3.1     30.0       1.2            3.1     30.0       1.2            3.1     30.0       1.2 | Nueces fs         Box (1969)<br>Zavala fsl<br>(g/m²) (%)                       1.2                1.2                3.1         22.0         9.3           13.7         23.1         9.7           4.2                  3.1         30.0         12.3           1.2                  3.1         30.0         12.3           1.2                  3.1         30.0         12.3           1.2                  2.1 | Nueces fs Box (1969) & Smeins<br>Zavala fsl (1984)<br>Alfisols<br><br> | Nueces fs         Box (1969) & Smeins (1972)<br>(g/m²) (%) Alfisols         Katy sl | Nueces fs         Box (1969) & Smeins<br>Zavala fsl (1984)         et al.<br>(1972)         bevoung<br>Wetoung<br>(g/m²) (%)                     2.7             114.2         8.6             4.3           1.2          6         x             6         x             6         x             4.3           1.2          6         x             4.3           1.2                  1.8             3.2         22.0         9.3              3.0           4          3.0           4.2               3.0             3.0 | Nueces         fs         Dox (1969)         4 Smeins         et al.         6         (2014) $(g/m^3)$ (8)         Alfisols         Katy sl         (1972)         DeYoung         Aransas $(g/m^3)$ (8)         Alfisols         Katy sl         (1976)         (g/m^3) $(g/m^3)$ (8)         Alfisols         Katy sl         (1976)         (g/m^3) $(g/m^3)$ <td< td=""><td>Nueces fs         Eox (1969) é Smeins<br/>Zavala fs1 (1984) (1972) DeYoung<br/>(g/m²) (%) Alfísols         et al. é<br/>(1976) DeYoung<br/>Katy s1 (1976)         (2014) (2015)<br/>Aransas Goliád<br/>(g/m²)              2.7               114.2         8.6             1.2          6         x          27.0            1.2          6         x          27.0            1.2          6         x           27.0            1.2          6         x           27.0            1.3         22.0         9.3           2.0         1.1            3.2         22.0         9.3           3.0             4.2           3.0              3.1         30.0         12.3           3.0         </td></td<> | Nueces fs         Eox (1969) é Smeins<br>Zavala fs1 (1984) (1972) DeYoung<br>(g/m²) (%) Alfísols         et al. é<br>(1976) DeYoung<br>Katy s1 (1976)         (2014) (2015)<br>Aransas Goliád<br>(g/m²)              2.7               114.2         8.6             1.2          6         x          27.0            1.2          6         x          27.0            1.2          6         x           27.0            1.2          6         x           27.0            1.3         22.0         9.3           2.0         1.1            3.2         22.0         9.3           3.0             4.2           3.0              3.1         30.0         12.3           3.0 |  |

Appendix Table C.9 Comparison of vegetation data from literature sources for sandy and sandy loam sites in South Texas. Values are percent composition unless otherwise noted.

| Species                   | Box (1961) | Draw   | e &   | Diamond  | Bovey   | McLendon | I       | McLendon |        |
|---------------------------|------------|--------|-------|----------|---------|----------|---------|----------|--------|
|                           | Nueces fsl | ,      | ,     | & Smeins | et al.  | &        | (2014)  | (2015)   | (2015) |
|                           |            | Zavala | a fsl | (1984)   | (1972)  | DeYoung  | Aransas | Goliad   | Karnes |
|                           |            | (g/m²) | (%)   | Alfisols | Katy sl | (1976)   | (g/m²)  | (g/m²)   | (g/m²) |
|                           |            |        |       |          |         |          |         |          |        |
| Eustoma exaltatum         |            |        |       |          |         | 3.9      |         |          |        |
| Gnaphalium obtusifolium   |            |        |       |          |         |          | 1.7     |          |        |
| Gutierrezia texana        |            |        |       |          |         |          |         |          | 69.8   |
| Heterotheca subaxillaris  | 5          | 49.8   | 21.3  |          |         | 2.3      |         |          |        |
| Ibervillea lindheimeri    |            |        |       |          |         |          |         | 0.5      |        |
| Iva angustifolia          |            |        |       |          |         |          | 22.9    |          |        |
| <i>Liatris</i> spp.       |            |        |       | 3        |         |          |         |          |        |
| Monarda citriodora        |            |        |       |          |         |          | 2.4     |          |        |
| Nama hispidum             | 6.6        |        |       |          |         |          |         |          |        |
| Parthenium hysterophorus  |            |        |       |          |         | 3.5      |         |          |        |
| Phyla incisa              | 0.3        |        |       |          |         |          | 0.7     |          |        |
| Physalis viscosa          |            |        |       |          |         |          | 1.9     |          |        |
| Ratibida columnaris       |            |        |       | 1        |         |          | 6.3     |          |        |
| Rhynchosia americana      |            |        |       |          |         | 2.9      |         |          |        |
| Rhynchosia texana         |            |        |       |          |         | 4.3      |         |          |        |
| Sarcostemma cynanchoides  | 5          |        |       |          |         |          | 1.1     |          |        |
| Schrankia uncinata        |            |        |       | 3        |         |          |         |          |        |
| Sida abutifolia           |            |        |       |          |         |          |         |          | 1.3    |
| Solanum eleagnifolium     |            |        |       |          |         |          |         |          | 0.5    |
| Tragia urticifolia        |            |        |       | 1        |         |          |         |          |        |
| Verbesina enceloides      | 7.8        | 10.0   | 4.0   |          |         |          |         |          |        |
| Verbena halei             |            |        |       |          |         |          | 0.7     |          |        |
| Other forbs               |            | 5.4    | 2.3   |          |         |          |         |          | 3.5    |
| Forbs (% cover)           |            |        |       | 17       |         |          |         |          |        |
| Forbs (relative cover)    | 18.4       |        | 32.0  |          |         | 33.3     |         |          |        |
| Forbs (g/m <sup>2</sup> ) |            | 76.0   |       |          | 18.5    |          | 53.3    | 2.3      | 80.7   |
| Other species             | 5.8        |        |       |          |         |          |         |          |        |

Trace species from Diamond and Smeins (1984): Andropogon gerardii, Aster ericoides, Buchloe dactyloides, Cacalia plantaginea, Carex microdonta, Cirsium undulatum, Eryngium yuccifolium, Hedyotis nigricans, Linum medium, Muhlenbergia capillaris, Oxalis dillenii, Panicum virgatum, Ruellia nudiflora, Sabatia campestris, Scleria ciliata, Silphium laciniatum, Sisyrinchium pruinosum.

| Species                                                                                                                                    | Mesquite-<br>blackbrush-<br>ragweed | Mesquite-<br>blackbrush-<br>knotroot<br>bristlegrass | Mesquite-<br>blackbrush-<br>huisache | Mesquite-<br>huisache-<br>blackbrush | Mesquite-<br>huisache-<br>buffalograss | MEAN                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------|
| Prosopis glandulosa                                                                                                                        | 41                                  | 53                                                   | 37                                   | 59                                   | 46                                     | 47                             |
| Acacia farnesiana<br>Acacia rigidula<br>Celtis pallida                                                                                     | 20                                  | 17                                                   | 13<br>33                             | 15<br>18<br>12                       | 13<br>12                               | 8<br>20<br>2                   |
| Agrostis hiemalis<br>Bothriochloa saccharoides<br>Buchloe dactyloides<br>Chloris verticillata<br>Paspalum plicatulum<br>Setaria geniculata | 10                                  | 10                                                   | 14                                   | 11<br>15<br>11<br>11<br>12           | 11<br>33<br>10                         | 2<br>4<br>14<br>2<br>30        |
| Stipa leucotricha<br>Ambrosia psilostachya<br>Chamaecrista fasciculata<br>Gutierrezia texana<br>Sida ciliaris<br>Oxalis dillenii           | 65<br>25<br>23<br>10                | 10<br>79<br>13                                       | 30<br>34<br>18                       | 17<br>86<br>14<br>29<br>17<br>35     | 23<br>16<br>27<br>27<br>20             | 3<br>57<br>6<br>46<br>17<br>13 |

Appendix Table C.10 Mean frequency (%) of plant communities on Pat Welder Ranch, San Patricio County (McLendon and Dahl 1983).

Appendix Table C.11 Species composition of available forage  $(g/m^2)$  on a grazed coastal prairie site (Lake Charles clay), Green Lake Ranch, Calhoun County, Texas, December 1973-April 1974 (Durham and Kothmann 1977).

| Species                  | 23 Dec | 16 Jan | 13 Feb | 10 Mar | 27 Mar | 10 Apr | Mean |
|--------------------------|--------|--------|--------|--------|--------|--------|------|
| Cynodon dactylon         | 38     | 2.2    | 33     | 58     | 85     | 58     | 49   |
| Paspalum lividum         | 19     | 37     | 63     | 91     | 54     | 60     | 54   |
| Paspalum plicatulum      | 15     | 37     | 31     | 46     | 54     | 36     | 37   |
| Schizachyrium littoralis | 105    | 53     | 75     | 73     | 146    | 83     | 89   |
| Setaria geniculata       | 83     | 31     | 15     | 8      | 8      | 6      | 25   |
| Sorghastrum nutans       | 31     | 30     | 15     | 31     | 34     | 21     | 27   |
| Sporobolus indicus       | 45     | 43     | 24     | 22     | 11     | 14     | 27   |
| Other species            | 42     | 30     | 15     | 24     | 33     | 13     | 26   |
| Total Grasses            | 378    | 283    | 271    | 353    | 425    | 291    | 334  |

Other grasses: *Bouteloua rigidiseta, Dichanthelium oligosanthes, Panicum virgatum, Paspalum dilatatum.* The site was dominated by seacoast bluestem and McCartney rose (*Rosa bracteata*).

| Appendix Table C.12 Mean aboveground biomass (g/m <sup>2</sup> ) in grazed plots and exclusion plots on a |
|-----------------------------------------------------------------------------------------------------------|
| heavily-grazed sandy rangeland in Brooks County, Texas, February-November 1980 (McLendon and              |
| Finch, unpublished data). Values are means of 8 plots per treatment per month for 8 months.               |

| None         Cattle of the | Species                   |      |        | Excluded An | imals |      | Overall        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|--------|-------------|-------|------|----------------|
| Colubria         image: sensis         0.3         image: sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | None | Cattle |             |       |      | Mean           |
| Colubria fexensis         0.3         *          0.6          1.7           Opuntia lindheimeri         1.5         12.5          17.8         1.4           Prosopis glandulosa          *          17.8         1.4           Prosopis glandulosa          *              Aristida purpurescens         25.8         31.8         36.9         31.8         26.1           Bothrisohla saccharoids           0.5         Botelous hirsuta         2.1         2.4         4.5         4.0         5.2           Cenchrus incertus         2.4         2.3         3.2         3.0         2.4         2.3         1.2         1.4           Eracharis ciliatisima         2.1         2.4         4.3         3.0         0.1         1.9           Digitaria patens          0.1         0.2         0.7         0.4         1.2           Eragrostis sessilpica           0.1         4.3         1.0           Acalypha radians         0.8         1.2         0.9         1.0         1.4           Allium runyoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acacia greggii            | 0.9  |        |             |       |      | 0.2            |
| Opuntia leptocaulis           0.6          1.7           Prosopis glandulosa          *          17.8         1.4           Prosopis glandulosa          *          17.8         1.4           Aristida purpurese         25.8         31.8         38.9         31.8         26.1           Bothriochlea saccharoides           0.5         Bochriochlea saccharoides          0.5           Bouteloua hirsuta         1.5         1.2         0.9         1.2         1.4           Bracharia ciliatissima         2.1         2.4         4.5         4.0         5.2           Cenchrus incertus         2.4         2.3         3.2         3.0         2.4           Digitaria patens           0.1         *            Fragrostis secundiflora         0.1         0.2         0.7         0.4         1.2           Papalm setaceum         1.1         10.6         16.9         13.0         10.0           Sporobolus cryptandrus         0.1         0.3         0.1         0.3         1.0           Acalypha radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |      | *      |             |       | *    | 0.1            |
| $\hat{\Gamma}$ cosopis glandulosa        *           Aristida purpuresa       10.3       18.3       12.2       21.0       23.1         Bathriochlos saccharoides         0.5       26.1         Bothriochlos saccharoides         0.5       26.1         Bothelous hirsuta       1.5       1.2       0.9       1.2       1.4         Bracheria collistissima       2.1       2.4       4.5       4.0       5.2         Cenchrus incertus       2.4       2.3       3.2       3.0       2.4         Digitaria patens        0.1       *        Bagalum setaceum       11.1       10.6       19       13.0       10.0         Setaria firmula       4.7       7.6       5.5       2.0       5.3       30       50coblus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4       Allium runyoni          1       0.3       1.0       1.4         Allium runyoni <td></td> <td></td> <td></td> <td>0.6</td> <td></td> <td>1.7</td> <td>0.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |      |        | 0.6         |       | 1.7  | 0.5            |
| Aristide purpures         10.3         18.3         12.2         21.0         23.1           Aristide purpurescens         25.8         31.8         38.9         31.8         26.1           Bothrichchlas saccharoides            0.5           Boulelous hirsuta         1.5         1.2         0.9         1.2         1.4           Cenchrus incertus         2.4         2.3         2.3         0         2.4           Dichanthelium oligosanthes          0.1         *            Ragrostis secundiflora         0.1         0.2         0.7         0.4         1.2           Stragrostis secundiflora         0.1         0.2         0.7         0.4         1.2           Stragrostis secundiflora         0.1         0.2         0.7         0.4         1.2           Sporbolus cryptandrus         0.1         0.3         0.6         0.3         1.0           Acalypha radians         0.8         1.2         0.9         1.0         1.4           Allium runyoni           *             Calliphe involucrate         0.1         0.3         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 1.5  | 12.5   |             | 17.8  | 1.4  | 6.6            |
| Aristida       Durpurescens       25.8       31.8       38.9       31.8       26.1         Bothriochlos asccharoides         0.5       Bothriochlos asccharoides       1.4       Bracharis       1.1       2.4       2.3       3.2       3.0       2.4         Cenchrus incertus       2.4       2.3       3.2       3.0       2.4       1.1         Dichancheilum oligosanthes        0.3       0.5       0.1       1.9       1.1         Eragrostis secundiflora       0.1       0.2       0.7       0.4       1.2       Eragrostis secundiflora       1.1       1.6       16.9       13.0       10.0         Setaria firmula       4.7       7.6       5.5       2.0       5.3       Sporobolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4       Allium runyoni         *       *       *         Aphanostephys kidder       0.1       0.3         *        *          Callirhoe involucrate       0.1       0.3         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prosopis glandulosa       |      | *      |             |       |      | *              |
| Bothicolia       saccharoides         0.5         Boutelous hirsuta       1.5       1.2       0.9       1.2       1.4         Bracharia ciliatissima       2.1       2.4       3.2       3.0       2.4         Dichanthelium Oligosanthes        0.3       0.5       0.1       1.9         Digitaria patens        0.1       *          Bragostis sessilspica        0.1       *          Paspalum staceum       11.1       10.6       16.9       13.0       10.0         Staria firmula       4.7       7.6       5.5       2.0       5.3         Sporobolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allum runyoni         *       *       *         Aphanostephus kidder       0.1       0.3        *       *         Callithe       involucrate       0.1       0.3       *          Carex sp.         *         Cenota argyranthemus <td>Aristida purpurea</td> <td>10.3</td> <td>18.3</td> <td>12.2</td> <td>21.0</td> <td>23.1</td> <td>17.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aristida purpurea         | 10.3 | 18.3   | 12.2        | 21.0  | 23.1 | 17.0           |
| Bourelous hirsuit         1.5         1.2         0.9         1.2         1.4           Bracharia cilatisisma         2.1         2.4         2.3         3.2         3.0         5.2           Cenchrus incertus         2.4         2.3         3.2         3.0         5.4           Dichanthellum oligosanthes          0.3         0.5         0.1         1.9           Dichanthellum oligosanthes          0.1         *            Bragrostis secundifiora         0.1         0.2         0.7         0.4         1.2           Eragrostis secundifiora         0.1         0.2         0.7         0.4         1.2           Sporbolus cryptandrus         0.1         0.3         0.6         0.3         1.0           Acalypha radians         0.8         1.2         0.9         1.0         1.4           Allium runyoni           *         *         *           Callinhoe involucrate         0.1         0.1         0.3         *            Callinhoe involucrate         0.1         0.3          *            Callinhoe involucrate         0.1         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aristida purpurescens     | 25.8 | 31.8   | 38.9        | 31.8  | 26.1 | 30.9           |
| Bracharia ciliatissima       2.1       2.4       4.5       4.0       5.2         Conchrus incertus       2.4       2.3       3.2       3.0       2.4         Dichanthelium oligosanthes        0.3       0.5       0.1       1.9         Digitaria patens        0.1       *          Reagrostis sesuilpica        0.1       *          Bradynotis sessilpica        0.1       *          Sporbolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allium runyoni         *       *         Aphanostephus kidder       0.1       0.3           Carlex sp.             Chamaeorista texana       0.5       0.2       0.2       0.5       1.5         Chamaeorista texana       0.5       0.2       0.2       0.5       1.5         Carlex sp.              Caret sp.        -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bothriochloa saccharoides |      |        |             |       | 0.5  | 0.1            |
| Cenchrus incertus       2.4       2.3       3.2       3.0       2.4         Dichanthelium oligosanthes        0.3       0.5       0.1       1.9         Digitaria patens        0.1       *          Eragrostis secundifiora       0.1       0.2       0.7       0.4       1.2         Eragrostis secsilipica        0.1       *          Paspalum setaceum       0.1       0.3       0.6       0.3       1.0         Sporobolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allium runyoni         *       *       *         Aphanostegnus kidder       0.1       0.3        *       *         Carex sp.        *        *          Chandeerista texana       0.5       0.2       0.2       0.5       1.5         Condescolus texanus              Commelina erecta       0.7       0.3       0.2       0.4       0.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |      |        |             |       |      | 1.2            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |      |        |             |       |      | 3.6            |
| Digitaria patens        0.1       *          Eragrostis secundiflora       0.1       0.2       0.7       0.4       1.2         Eragrostis sessilspica        0.1       *          Paspalum setaceum       11.1       10.6       16.9       13.0       10.0         Setaria firmula       4.7       7.6       5.5       2.0       5.3         Sporobolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allium runyoni         *       *       *         Aphanostephus kidder       0.1       0.3       *          Callirhoe involucrate       0.1       0.3       *          Carex sp.        *            Chadsotis texana       0.5       0.2       0.2       0.5       1.5         Conto argyranthemus       1.5       1.8       3.2       4       1.8         Croton capitatus       7.5       3.3       2.4       1.8       2.2       2.2       1.1      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |      |        |             |       |      | 2.7            |
| Bragrostis secundiflora       0.1       0.2       0.7       0.4       1.2         Eragrostis sessilpica         0.1       *          Pespalum setaceum       11.1       10.6       13.0       10.0         Setaria firmula       4.7       7.6       5.5       2.0       5.3         Sporobolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allium runyoni         *       *       *         Aphanostephus kidder       0.1       0.3        0.1       0.3         Callirhoe involucrate       0.1       0.3        0.1       0.3         Carex sp.         *           Chamaecrista texana       0.5       0.2       0.2       0.5       1.5         Chidoscolus texanus         *           Corton capitatus       7.5       3.3       2.8       3.4       3.3         Erigonum multiflorum       *       1.2       0.9       0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                         |      |        |             |       |      | 0.6            |
| Eragrostis sessilspica0.1*Paspalum setaceum11.110.616.913.010.0Setaria firmula4.77.65.52.05.3Sporobolus cryptandrus0.10.30.60.31.0Acalypha radians0.81.20.91.01.4Allium runyoni**Aphanostephus kidder0.10.10.3*Callirho involucrate0.10.10.3*Carax sp0.10.3*Chamaecrista texana0.50.20.20.51.5Chidoscolus texanus*Chamaecrista texana0.50.20.20.40.4Coron argyranthemus1.51.83.32.41.8Eriogonum multiflorum*1.20.90.60.1Solilardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.21.01.81.40.7Palafoxia texana7.49.07.33.78.2Pilou drummondii0.10.20.60.11.1Eriogonum multiflorum**Monarda punctata19.326.928.825.837.4Denothera sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |      |        |             |       |      | *              |
| Paspalum setaceum       11.1       10.6       16.9       13.0       10.0         Setaria firmula       4.7       7.6       5.5       2.0       5.3         Sporbolus cryptandrus       0.1       0.3       0.6       0.3       1.0         Acalypha radians       0.8       1.2       0.9       1.0       1.4         Allium runyoni         *       *         Ambrosia confertifolia       2.6       7.1       6.1       5.7       3.8         Aphanostephus kidder       0.1       0.3        0.1       0.3         Callirhoe involucrate       0.1       0.3        0.1       0.3         Carex sp.         *          Chamaecrista texana       0.5       0.2       0.5       1.5         Chamaecrista texana       0.7       0.3       0.2       0.4       0.4         Croton argyranthemus       1.5       1.8       3.3       2.4       1.8         Croton capitatus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0.5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                         |      |        |             |       |      | 0.5            |
| Setaria firmula4.77.65.52.05.3Sporobolus cryptandrus0.10.30.60.31.0Acalypha radians0.81.20.91.01.4Allium runyoni**Ambrosia confertifolia2.67.16.15.73.8Aphanostephus kidder0.10.10.3*Callirhoe involucrate0.10.10.3*Cartaurium texense*Chamaecrista texana0.50.20.20.51.5Commelina erecta0.70.30.20.40.4Coton argyranthemus1.51.83.32.41.8Eriogonum multiflorum*1.20.92.43.3Eriogonum multiflorum*1.20.92.43.3Eriogonum multiflorum0.10.20.60.11.4Heterotheca subaxillaris1.51.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris1.62.1424.122.2Lantana horrida0.10.10.20.20.1Linum rigidum**Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5*Calilaria punctata19.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |      |        |             |       |      | *              |
| Sporobolus cryptandrus0.10.30.60.31.0Acalypha radians0.81.20.91.01.4Allium runyoni**Ambrosic confertifolia2.67.16.15.73.8Aphanostephus kidder0.10.10.3*Callirhoe involucrate0.10.10.3*Carex sp**Chamaecrista texana0.50.20.20.51.5Chidoscolus texanus**Corton captatus7.53.32.83.43.3Eriogonum multiflorum*1.20.90.60.1Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.20.11.4Monarda punctata19.326.928.825.837.4Oenothera sp*Chails dillenii2.51.01.81.30.3Phlaod drummondii0.5*Cara sp*Cotto capitatus19.326.928.825.837.4Oenothera sp*Cheridum lasiocarpum0.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |      |        |             |       |      | 12.2           |
| Acalypha radians         0.8         1.2         0.9         1.0         1.4           Allium runyoni           *         *           Ambrosia confertifolia         2.6         7.1         6.1         5.7         3.8           Aphanostephus kidder         0.1         0.3         *            Callirhoe involucrate         0.1         0.3         *            Carax sp.          0.1         0.3            Cartaurium texense          *             Chamaecrista texana         0.5         0.2         0.2         0.5         1.5           Corton argyranthemus         1.5         1.8         3.3         2.4         1.8           Croton capitatus         7.5         3.3         2.8         3.4         3.3           Eriogonum multiflorum         *         1.2         0.9         0.6         0.1           Evolvulus sericeus         0.8         0.4         0.2         *         1.1           Gaillardia pulchella         2.0         1.6             Lepidium lasiocarpum         0.1         0.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |      |        |             |       |      | 5.0            |
| Allium<br>runyoni<br><br>**<br>*<br>Anbrosia<br>confertifolia2.67.16.15.73.8<br>Aphanostephus<br>kidder0.10.3*<br>0.10.3*<br>Callirhoe<br>involucrate0.10.30.10.30.3Carex sp*<br>*<br>Chamaccrista<br>texans0.50.20.20.51.5Condoscolus<br>texanus*<br>Commelina<br>erecta0.70.30.20.40.4Corton argyranthemus1.51.83.32.41.8Corton argyranthemus1.51.83.32.41.8Eriogonum multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gailardia<br>pulchella2.01.81.20.92.4Gaura mokelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lejdium<br>ligidum***Monarda punctata19.326.928.825.837.4Oenothera sp*Phlox drummondii0.5 <tr< td=""><td>Sporobolus cryptandrus</td><td>0.1</td><td>0.3</td><td>0.6</td><td>0.3</td><td>1.0</td><td>0.5</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sporobolus cryptandrus    | 0.1  | 0.3    | 0.6         | 0.3   | 1.0  | 0.5            |
| Ambrosia confertifolia       2.6       7.1       6.1       5.7       3.8         Aphanostephus kidder       0.1       0.1       0.3       *          Callithoe involucrate       0.1       0.3        0.1       0.3         Carex sp.        *        *          Chamaecrista texana       0.5       0.2       0.2       0.5       1.5         Cnidoscolus texanus         *          Corton capitatus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1         Evolvulus sericeus       0.8       0.4       0.2       *       1.1         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.2       0.2       0.1       1.1         Linum rigidum       *       *        *          Okarda punctata       19.3       26.9       28.8       25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |      |        |             |       |      | 1.1            |
| Aphanostephus kidder       0.1       0.1       0.3       *          Callirhoe involucrate       0.1       0.3        0.1       0.3         Carex sp.         *        *          Canax sp.        *        *          Chamaecrista texana       0.5       0.2       0.5       1.5         Cidoscolus texanus        *        *          Corton argyranthemus       1.5       1.8       3.3       2.4       1.8         Coton capitatus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1         Gaillardia pulchella       2.0       1.8       1.2       0.9       2.4         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *        -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |      |        |             |       |      | *              |
| Callirhoeinvolucrate0.10.30.10.3Carex sp*Chamaecrista texana0.50.20.20.51.5Chidoscolus texanus*Commelina erecta0.70.30.20.40.4Coton argyranthemus1.51.83.32.41.8Croton capitatus7.53.32.83.43.3Eriogonum multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gallardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.10.20.20.1Linum rigidum***Valis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phox drummondii0.5Phiza cinerascens0.40.40.81.30.3Plantago rhodosperma0.1Physalis cinerascens0.40.40.81.30.3Plantago rhodosperma0.1*P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |      |        |             |       |      | 5.1            |
| Carex sp*Centaurium texense*Chamaecrista texana0.50.20.20.51.5Chidoscolus texanus*Commelina erecta0.70.30.20.40.4Coton argyranthemus1.51.83.32.41.8Coton capitatus7.53.32.83.43.3Eriogonum multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gailardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.20.11.1Linum rigidum***Monarda punctata19.326.928.825.837.4Ocalis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5Physalis cinerascens0.40.40.81.30.3Plantago rhodosperma0.1*Polygala alba0.1**Ratibida peduncularis2.22.32.32.32.3S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |      |        |             |       |      | 0.1            |
| Containing texense        *            Chamacorista texana       0.5       0.2       0.2       0.5       1.5         Chamacorista texanus         *          Commelina erecta       0.7       0.3       0.2       0.4       0.4         Croton argyranthemus       1.5       1.8       3.3       2.4       1.8         Croton capitatus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1         Evolvulus sericeus       0.8       0.4       0.2       *       1.1         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *           Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |      |        |             |       |      | 0.2            |
| Chamaecrista texana       0.5       0.2       0.2       0.5       1.5         Chamaecrista texanus         *          Commelina erecta       0.7       0.3       0.2       0.4       0.4         Conton argyranthemus       1.5       1.8       3.3       2.4       1.8         Croton argyranthemus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1         Evolvulus sericeus       0.8       0.4       0.2       *       1.1         Gaillardia pulchella       2.0       1.8       1.2       0.9       2.4         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.2       0.6           Linum rigidum       *       *        *       *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *        * <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>*</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                         |      |        |             |       |      | *              |
| Cnidoscolus texanus*Commelina erecta0.70.30.20.40.4Croton argyranthemus1.51.83.32.41.8Croton capitatus7.53.32.83.43.3Eriogonum multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gaillardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lepidium lasiocarpum0.10.10.20.20.1Linum rigidum***Monarda punctata19.326.928.825.837.4Oenothera sp*Oxalis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5Phygala albaPhygala alba0.1**Polygala alba0.1**Ratibida peduncularis2.22.32.01.72.5Rhynchosia americana1.81.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |      |        |             |       |      |                |
| Commelina erecta       0.7       0.3       0.2       0.4       0.4         Croton argyranthemus       1.5       1.8       3.3       2.4       1.8         Croton capitatus       7.5       3.3       2.8       3.4       3.3         Eriogonum multiflorum       *       1.2       0.9       0.6       0.1         Evolvulus sericeus       0.8       0.4       0.2       *       1.1         Gaillardia pulchella       2.0       1.8       1.2       0.9       2.4         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *         *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *            Valis dillenii       2.5       1.0       1.8       1.4       0.7         Plaafoxia texana       7.4       9.0       7.3       3.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |      |        |             |       |      | 0.6            |
| Croton argyranthemus1.51.83.32.41.8Croton capitatus7.53.32.83.43.3Eriogonum multiflorum $*$ 1.20.90.60.1Evolvulus sericeus0.80.40.2 $*$ 1.1Gaillardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lepidium lasiocarpum0.10.10.20.20.1Linum rigidum $*$ $*$ *Monarda punctata19.326.928.825.837.4Oenothera sp $*$ Valis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5Polygala alba0.1 $*$ Polygala alba0.1 $*$ Polygala alba0.1 $*$ Ratibida peduncularis2.22.32.01.72.5Rhynchosia americana1.81.82.22.32.3Sida lindheimeri0.20.20.30.20.2Tephrosia lindheimeri6.37.12.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |      |        |             |       |      | 0.4            |
| Croton capitatus7.53.32.83.43.3Eriogonum multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gailardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lepidium lasiocarpum0.10.10.20.20.1Linum rigidum***Monarda punctata19.326.928.825.837.4Oenothera sp*Valis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5Physalis cinerascens0.40.40.81.30.3Plantago rhodosperma0.1*Polygala alba0.20.30.20.20.2Tephrosia lindheimeri0.20.20.30.20.20.2Tephrosia lindheimeri6.37.12.58.34.3Total Aboveground Biomass135.8175.5171.2181.8176.9Litter89.9101.1150.8110.2133.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |      |        |             |       |      | 2.2            |
| Eriogonum<br>multiflorum*1.20.90.60.1Evolvulus sericeus0.80.40.2*1.1Gaillardia pulchella2.01.81.20.92.4Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lepidium lasiocarpum0.10.10.20.20.1Linum rigidum****Monarda punctata19.326.928.825.837.4Oenothera sp*Oxalis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5Polygala albaPolygala albaPolygala alba0.1*Polygala lindheimeri0.20.20.30.20.2Tephrosia lindheimeri6.37.12.58.34.3Total Aboveground Biomass135.8175.5171.2181.8176.9Litter89.9101.1150.8110.2133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |      |        |             |       |      | 4.1            |
| Evolvulus sericeus       0.8       0.4       0.2       *       1.1         Gaillardia pulchella       2.0       1.8       1.2       0.9       2.4         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.2       0.6           Lepidium lasiocarpum       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *         *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *            Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         +          Physalis cinerascens       0.4       0.8       1.3       0.3         Platago rhodosperma       0.1         +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                         |      |        |             |       |      | 4.1<br>0.6     |
| Gaillardia pulchella       2.0       1.8       1.2       0.9       2.4         Gaura mckelveyae       1.3       2.2       2.5       3.2       1.4         Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.2       0.6           Lepidium lasiocarpum       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *        *       *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *         *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *            Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                         |      |        |             |       |      | 0.0            |
| Gaura mckelveyae1.32.22.53.21.4Heterotheca subaxillaris16.219.621.424.122.2Lantana horrida0.10.20.6Lepidium lasiocarpum0.10.10.20.20.1Linum rigidum***Monarda punctata19.326.928.825.837.4Oenothera sp*Oxalis dillenii2.51.01.81.40.7Palafoxia texana7.49.07.33.78.2Phlox drummondii0.5*Physalis cinerascens0.40.40.81.30.3Plantago rhodosperma0.1*Polygala alba0.1**Ratibida peduncularis2.22.32.01.72.5Rhynchosia americana1.81.82.22.32.3Sida lindheimeri0.20.20.30.20.2Tephrosia lindheimeri6.37.12.58.34.3Total Aboveground Biomass135.8175.5171.2181.8176.9Litter89.9101.1150.8110.2133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |      |        |             |       |      | 1.7            |
| Heterotheca subaxillaris       16.2       19.6       21.4       24.1       22.2         Lantana horrida       0.1       0.2       0.6           Lepidium lasiocarpum       0.1       0.1       0.2       0.2       0.1         Linum rigidum       *       *        *       *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *         *         Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Pysalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1         *          Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       0.2 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                         |      |        |             |       |      | 2.1            |
| Lantana horrida $0.1$ $0.2$ $0.6$ $$ $$ Lepidium lasiocarpum $0.1$ $0.1$ $0.2$ $0.2$ $0.1$ Linum rigidum***Monarda punctata $19.3$ $26.9$ $28.8$ $25.8$ $37.4$ Oenothera sp*Oxalis dillenii $2.5$ $1.0$ $1.8$ $1.4$ $0.7$ Palafoxia texana $7.4$ $9.0$ $7.3$ $3.7$ $8.2$ Phlox drummondii $0.5$ *Physalis cinerascens $0.4$ $0.4$ $0.8$ $1.3$ $0.3$ Plantago rhodosperma $0.1$ *Polygala alba $0.1$ **Ratibida peduncularis $2.2$ $2.3$ $2.0$ $1.7$ $2.5$ Rhynchosia americana $1.8$ $1.8$ $2.2$ $2.3$ $2.3$ Sida lindheimeri $0.2$ $0.2$ $0.3$ $0.2$ $0.2$ Tephrosia lindheimeri $6.3$ $7.1$ $2.5$ $8.3$ $4.3$ Total Aboveground Biomass $135.8$ $175.5$ $171.2$ $181.8$ $176.9$ Litter $89.9$ $101.1$ $150.8$ $110.2$ $133.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |      |        |             |       |      | 20.7           |
| Lepidium lasiocarpum $0.1$ $0.1$ $0.2$ $0.2$ $0.1$ Linum rigidum****Monarda punctata19.3 $26.9$ $28.8$ $25.8$ $37.4$ Oenothera sp*Oxalis dillenii $2.5$ $1.0$ $1.8$ $1.4$ $0.7$ Palafoxia texana $7.4$ $9.0$ $7.3$ $3.7$ $8.2$ Phlox drummondii $0.5$ *Physalis cinerascens $0.4$ $0.4$ $0.8$ $1.3$ $0.3$ Plantago rhodosperma $0.1$ *Polygala alba $0.1$ *Ratibida peduncularis $2.2$ $2.3$ $2.0$ $1.7$ $2.5$ Rhynchosia americana $1.8$ $1.8$ $2.2$ $2.3$ $2.3$ Sida lindheimeri $0.2$ $0.2$ $0.3$ $0.2$ $0.2$ Total Aboveground Biomass $135.8$ $175.5$ $171.2$ $181.8$ $176.9$ Litter $89.9$ $101.1$ $150.8$ $110.2$ $133.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |      |        |             |       |      | 0.2            |
| Linum rigidum       *       *       *         *         Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *            Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |      |        |             |       | 0.1  | 0.1            |
| Monarda punctata       19.3       26.9       28.8       25.8       37.4         Oenothera sp.        *            Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |      |        |             |       |      | *              |
| Oxalis dillenii       2.5       1.0       1.8       1.4       0.7         Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1          *         Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | 19.3 | 26.9   | 28.8        | 25.8  | 37.4 | 27.6           |
| Palafoxia texana       7.4       9.0       7.3       3.7       8.2         Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oenothera sp.             |      | *      |             |       |      | *              |
| Phlox drummondii       0.5         *          Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oxalis dillenii           | 2.5  | 1.0    | 1.8         | 1.4   | 0.7  | 1.5            |
| Physalis cinerascens       0.4       0.4       0.8       1.3       0.3         Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Palafoxia texana          | 7.4  | 9.0    | 7.3         | 3.7   | 8.2  | 7.1            |
| Plantago rhodosperma       0.1             Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phlox drummondii          | 0.5  |        |             | *     |      | 0.1            |
| Polygala alba        0.1       *        *         Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Physalis cinerascens      | 0.4  | 0.4    | 0.8         | 1.3   | 0.3  | 0.6            |
| Ratibida peduncularis       2.2       2.3       2.0       1.7       2.5         Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4         Total Shrubs and Cacti       2.7       12.5       0.6       17.8       3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plantago rhodosperma      | 0.1  |        |             |       |      | *              |
| Rhynchosia americana       1.8       1.8       2.2       2.3       2.3         Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4         Total Shrubs and Cacti       2.7       12.5       0.6       17.8       3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |      |        |             |       |      | *              |
| Sida lindheimeri       0.2       0.2       0.3       0.2       0.2         Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4         Total Shrubs and Cacti       2.7       12.5       0.6       17.8       3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ratibida peduncularis     |      |        |             |       |      | 2.1            |
| Tephrosia lindheimeri       6.3       7.1       2.5       8.3       4.3         Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4         Total Shrubs and Cacti       2.7       12.5       0.6       17.8       3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |      |        |             |       |      | 2.1            |
| Total Aboveground Biomass       135.8       175.5       171.2       181.8       176.9         Litter       89.9       101.1       150.8       110.2       133.4         Total Shrubs and Cacti       2.7       12.5       0.6       17.8       3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |      |        |             |       |      | 0.2            |
| Litter         89.9         101.1         150.8         110.2         133.4           Total Shrubs and Cacti         2.7         12.5         0.6         17.8         3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tephrosia lindheimeri     | 6.3  | 7.1    | 2.5         | 8.3   | 4.3  | 5.7            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |      |        |             |       |      | 168.4<br>117.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Shrubs and Cacti    | 2.7  | 12.5   | 0.6         | 17.8  | 3.1  | 7.4            |
| Total Grasses 58.1 74.4 84.1 76.8 78.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |      |        |             |       |      | 74.3           |
| Total Forbs         75.0         88.6         86.5         87.2         95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |      |        |             |       |      | 86.7           |

Dashed lines (----) indicate zero values. Astericks (\*) indicate trace (< 0.05 g/m<sup>2</sup>) amounts.

| Species                |          | Density  |           | Cover    | Density of Plants  |
|------------------------|----------|----------|-----------|----------|--------------------|
|                        | Clusters | Openings | Drainages | Openings | > 2 m in Drainages |
|                        |          |          |           |          |                    |
| Acacia farnesiana      |          | 70       | 44        | 0.027    | 37                 |
| Aloysia lycioides      |          | 0        | 2189      | 0.000    | 0                  |
| Bumelia spp.           | Х        | 0        | 35        | 0.000    | 9                  |
| Celtis pallida         | Х        | 0        | 775       | 0.000    | 283                |
| Colubrina texensis     |          | 30       | 582       | 0.001    | 0                  |
| Condalia hookeri       | х        | 0        | 462       | 0.000    | 97                 |
| Diospyros texana       | х        | 16       | 1101      | 0.001    | 106                |
| Lantana macropoda      | х        | 0        |           | 0.000    | 0                  |
| Lycium berlandieri     | х        | 0        | 197       | 0.000    | 0                  |
| Mahonia trifoliolata   | х        | 0        | 39        | 0.000    | 0                  |
| Opuntia lindheimeri    | Х        | 100      | 982       |          | 0                  |
| Opuntia leptocaulis    | х        | 30       |           |          | 0                  |
| Prosopis glandulosa    | х        | 350      | 764       | 0.022    | 295                |
| Salvia ballotaeflora   | х        | 0        | 339       | 0.000    | 0                  |
| Schaefferia cuneifolia | х        | 0        | 314       | 0.000    | 0                  |
| Yucca treculeana       |          | 0        |           | 0.000    |                    |
| Zanthoxylum fagara     | х        | 30       | 3229      | 0.003    | 318                |
| Zizyphus obtusifolia   | х        | 0        | 218       | 0.000    | 0                  |
| TOTALS                 |          | 626      | 11270     | 0.054    | 1145               |

Appendix Table C.13 Woody plant density (plants/ha) and basal cover ( $m^2$ /ha) on Miguel and Papalote fine sandy loam soils on La Copita, Jim Wells County (Archer et al. 1988).

Archer et al. (1988) sites were on Miguel and Papalote fine sandy loams on the La Copita, Jim Wells County. #/ha = number of woody plants per hectare, BC = basal cover (%). Density of plants > 2 m in drainages included in the values for drainages overall. Average cluster was 18 m<sup>2</sup>. Woody plant coverage averaged 13.0% in 1940 and 36.4% in 1983. This is an annual increase of 0.55 percentage points per year. At that rate, cover in 2013 would be 52.9% (36.4% + 16.5%).

Appendix Table C.14 Woody plant density (plants/ha) and canopy cover (m<sup>2</sup>/plant) in three plant communities on the Welder Wildlife Refuge, San Patricio County, Texas (Box 1961).

| Species           |          | Density              |      | Cover      |             |      |  |  |
|-------------------|----------|----------------------|------|------------|-------------|------|--|--|
| -                 | Mesquite | Mesquite Chaparral P |      | Mesquite ( | rickly pear |      |  |  |
| cia farnesiana    | 50       | 39                   | 13   |            |             |      |  |  |
| cia rigidula      | 3        | 193                  | 56   | 11.75      | 3.69        | 0.87 |  |  |
| cia tortuosa      | 13       | 34                   | 13   |            |             |      |  |  |
| tis pallida       | t        | 19                   | t    |            |             |      |  |  |
| dalia hookeri     | t        | 15                   | t    |            |             |      |  |  |
| onia trifoliolata | t        | 106                  | t    |            |             |      |  |  |
| ntia lindheimeri  | t        | t                    | 426  |            |             | 4.84 |  |  |
| opis glandulosa   | 364      | 174                  | 2046 | 4.84       | 1.28        | 0.74 |  |  |
| thoxylum fagara   | 3        | 39                   | 13   |            |             |      |  |  |
| yphus obtusifolia | 14       | 116                  | 56   |            |             |      |  |  |
| L                 | 447      | 735                  | 2623 |            |             |      |  |  |

Appendix Table C.15 Vegetation of the Welder Wildlife Refuge, San Patricio County (Drawe et al. 1978).

#### Mesquite-mixed grass community: Victoria clay

Moderate stands of mesquite (12-27% cover), with mottes of mixed brush; huisache is increasing (200-500 trees/ha). Interspaces with dense stands of grass: 17% Texas wintergrass, 8% meadow dropseed, 2% silver bluestem; little

bluestem, plains bristlegrass, Texas cupgrass, lovegrass tridens, sourgrass (*Digitaria insularis*). Forbs (20%): prairie coneflower, western ragweed, ruellia, horsemint, one-seeded doveweed (*Croton* 

*monanthogynus*), bladderpod (*Lesquerella lindheimeri*), Texas broomweed. Depressions: vine-mesquite, pink tridens, white tridens, frogfruit, water clover (*Marsilea mucronata*).

Swales: hackberry, longtom, sumpweed.

#### Chaparral-mixed grass community: drier clay and clay loam sites

Woody plant cover (34-55%): blackbrush (11%), mesquite, huisache, twisted acacia, agarito, creeping mesquite, granjeno, lotebush, brasil, Texas persimmon, colima. Areas root-plowed 30-35 years ago have brush 2-3 m tall. Mesquite and huisache have increased in height 1.0-1.5 m in 20-25 years and shrubs have increased 0.3-0.5 m.

Understory in mottes: some plains bristlegrass and bunch cutgrass (*Leersia monandra*).

Openings between mottes: similar to mesquite-mixed grass except more silver bluestem and little bluestem.

#### Chaparral-mixed grass community: sandy loam sites

Woody plant cover (25.7%): granjeno, colima, mesquite, huisache, blackbrush, agarito, lotebush, Texas persimmon, prickly pear (0.3%).

Major grasses: silver bluestem, knotroot bristlegrass, plains bristlegrass, Texas cottontop.

#### Halophyte-shortgrass community: saline sites adjacent to temporary lakes or swales

Few, scattered mesquite.

Padre Island dropseed, whorled dropseed, saltgrass, Texas willkommia (*Willkommia texana*), gulf cordgrass, shoregrass; sea oxeye, glasswort (*Salicornia virginica*), purslane, saltbush.

#### Paspalum-aquatic plant community: swales on clay soils

Sesbania and some scattered huisache. Almost pure stands of hairyseed paspalum (*Paspalum publiflorum*). Some canarygrass (*Phlaris canariensis*), arrowhead, and water clover. During dry periods, buffalograss and creeping lovegrass (*Neeragrostis reptans*) become abundant.

#### Gulf cordgrass community: frequently flooded clay swales

Upper clay loam sites: mesquite, granjeno, blackbrush, sea oxeye; bermudagrass, little barley Upper sandy loam sites: huisache; bermudagrass, rescue grass, geranium Mid-elevation sites: closed canopy of gulf cordgrass Lower elevation sites: clubhead cutgrass (*Leersia hexandra*), cattail, and spikerush.

#### Huisache-mixed grass community: low swale areas

Dense stands of huisache.

Understory under closed canopy: Texas wintergrass, canarygrass, Ozarkgrass, sixweeks fescue Understory under open canopy: hairyseed paspalum, knotroot bristlegrass, vine-mesquite Wetter areas: spiny aster and longtom; drier areas: more silver bluestem, lovegrass tridens, plains bristlegrass.

#### Bunchgrass-annual forb community: sandy and sandy loam soils

Open grassland with 25-40% grass cover. Relative cover = 75% grasses, 19% forbs, 6% shrubs. Under light grazing: seacoast bluestem, big bluestem, Pan American balsamscale, tanglehead, switchgrass, Texasgrass (*Vaseochloa multinervosa*), trichloris, big sandbur, crinkleawn. Under moderate grazing: increase in balsamscale and thin paspalum.

Under heavy grazing: sandbur and knotgrass (Setaria formula) are common.

Major forbs: skunk daisy (*Ximenesia encelioides*), Texas doveweed, woolly doveweed, wild buckwheat. On sandy loam sites: increase in sideoats grama, brownseed paspalum, hooded windmillgrass, old-man's beard, and prickly pear.

#### Hogplum-bunchgrass community: sandy loam soils on river terraces

Stands of hogplum and old-man's beard, with scattered huisache and Texas kidneywood. Hogplum dense on terraces, huisache dense in swales. Understory: sideoats grama, brownseed paspalum, hooded windmillgrass, prickly pear.

#### Huisache-bunchgrass community: lower areas of Odem sandy loam soils

Moderate to dense stands of huisache and dense stands of old-man's beard. Understory similar to bunchgrass-annual forb community, but with southwestern bristlegrass (*Setaria scheelei*), Texas wintergrass, Virginia wildrye, snoutbean, and ruellia.

#### Chittimwood-hackberry community: sandy loam soils

Dense stands of chittimwood (*Bumelia lanuginose*) and hackberry. Small trees (3-7 m tall), with canopies extending to near the ground.

Sparse understory: southwestern bristlegrass and Turk's cap (Malvavicus drummondii).

#### Live oak-chaparral community: sandy and sandy loam soils

Overstory: scattered stands of old live oak, 2% canopy cover.

Mid-level: mesquite (30%; 3-5 m tall), colima (14%), Texas persimmon (6%), blackbrush (6%), granjeno (5%), agarito (5%), chittimwood, hackberry, anacua, chapatillo (*Amyris texana*), tickle-tongue.

Understory: seacoast bluestem, brownseed paspalum, tanglehead; some big bluestem, switchgrass, indiangrass, trichloris, southwestern bristlegrass.

Heavier grazing: windmillgrasses, brownseed paspalum, thin paspalum, sandbur.

Turk's cap, pigeon berry (Rivina humilis), mistflower, skunk daisy, doveweed.

#### Mesquite-bristlegrass community: poorly-drained sands and sandy loams

Open stands of mesquite, with granjeno, colima, lotebush, agarito.

Understory: knotroot bristlegrass, brownseed paspalum, Hall panicum, silver bluestem, gummy lovegrass; western ragweed

#### **Riparian woodland community:** riparian bottomlands

\_\_\_\_\_

Stands of large trees: hackberry, anacua, cedar elm, pecan, with mustang grape. Shrub understory: similar to that of live oak-chaparral community. Herbaceous understory: southwestern bristlegrass, broadleaf uniola (Chasmanthium latifolium), Virginia wildrye, Turk's cap, velvet mallow (Wissadula amplissima).

#### Woodland-spiny aster community: mixed alluvial soils

Mixture of chaparral, western soapberry (Sapindus saponaria), and spiny aster.

Spiny aster-longtom community: low-lying areas where water stands for long periods following rains

Dense stands of spiny aster, with some longtom and little snoutbean (Shynchosia minima).

#### Lakes and Ponds

Submersed community: coontail (Ceratophyllum demersum), water nymph (Najas quadalupensis), water stargrass (Heteranthera liebmanni), wigeongrass (Ruppia maritima), sago pondweed (Potamogeton pectinatus), and muskgrass (Chara spp.). Floating community: mostly lotus (Nelumbo lutea).

Lower marsh edges: bulrushes (Scirpus spp.), cattails, and sedges.

Upper marsh edges: clubhead cutgrass, longtom, sesbania.

As ponds dry: buffalograss, knotroot bristlegrass, creeping lovegrass.

Campbellton Webb Co. Goliad Co. Species Bovey et al. Buckley & Dodd & Holtz 1970 Dodd 1969 1972 Acacia farnesianamajorAcacia greggiiscatteredAcacia rigidulamajorCeltis pallidascattered 308/ha Colubrina texensis scattered 185/ha Diospyros texana scattered Eysenhardtia texana scattered 124/ha Lycium berlandieri scattered 62/ha Mahonia trifoliolata scattered Opuntia leptocaulis scattered Opuntia linheimeri scattered density = 1 Parkinsonia aculeata density = 4Prosopis glandulosa scattered density = 3 Varilla texana density = 2Varilla texana Yucca treculeana scattered Zizyphus obtusifolia scattered 62/ha Other woody species 333/ha

Appendix Table C.16 Woody plants reported on other study sites in South Texas.

Appendix Table C.17 Woody plant cover (%) at sites in South Texas.

| Community             | Woody Co | ver L      | ocation   |          | Reference            |
|-----------------------|----------|------------|-----------|----------|----------------------|
| Blackbrush-mesquite   | 20.4     | Welder WR  | San Patri | cio Co   | Box (1961)           |
| Blackbrush-mesquite   | 38.4     | Welder WR, |           |          | Drawe et al. (1978)  |
| Blackbrush-mesquite   | 48.6     | Welder WR, |           |          | Powell & Box (1967)  |
| Granjeno-colima       | 25.7     | Welder WR, | San Patri | .cio Co. | Drawe et al. (1978)  |
| Mesquite-buffalograss | 18.6     | Welder WR, | San Patri | .cio Co. | Box (1961)           |
| Mesquite-huisache     | 47       | Welder WR, | San Patri | .cio Co. | Box & White (1969)   |
| Mesquite-mixed grass  | 20       | Welder WR, | San Patri | .cio Co. | Drawe et al. (1978)  |
| Mesquite-prickly pear | 36.4     | La Copita, | Jim Wells | s Co.    | Archer et al. (1988) |
| Prickly pear-mesquite | 39.4     | Welder WR, | San Patri | .cio Co. | Box (1961)           |

Appendix Table C.18 Species composition (%) in wetland communities on the Welder Wildlife Refuge, San Patricio County (Scifres et al. 1980).

| Species                 | Clubhead cutgrass | Cattail-<br>cutgrass | Cutgrass-<br>spikerush | Cutgrass-<br>longtom | Wetland<br>Mean | Gulf<br>cordgrass |
|-------------------------|-------------------|----------------------|------------------------|----------------------|-----------------|-------------------|
| Borrichia frutescens    | 0                 | 1                    | t                      | 0                    | t               | 2                 |
| Cynodon dactylon        | 2                 | 5                    | t                      | 5                    | 3               | t                 |
| Leersia hexandra        | 29                | 19                   | 28                     | 20                   | 24              | 3                 |
| Paspalum lividum        | 20                | 14                   | 14                     | 29                   | 19              | 4                 |
| Setaria geniculata      | 0                 | 0                    | 7                      | t                    | 2               | 3                 |
| Spartina spartinae      | 0                 | 0                    | t                      | t                    | t               | 65                |
| Cchinodorus cordifolius | 9                 | 4                    | 6                      | 7                    | 6               | 2                 |
| Eleocharis spp          | 16                | 10                   | 19                     | 11                   | 14              | 6                 |
| Fimbristylis castanea   | 6                 | 5                    | 8                      | 3                    | 5               | 5                 |
| Typha domingensis       | t                 | 32                   | t                      | 0                    | 8               | 0                 |
| Iva annua               | 0                 | 0                    | 0                      | 6                    | 2               | 0                 |
| Phyla incisa            | t                 | t                    | 6                      | t                    | 2               | t                 |
| Polygonum ramosissimum  | 0                 | 0                    | 2                      | 7                    | 2               | 1                 |
| Rumex crispus           | 4                 | 1                    | 2                      | 9                    | 2               | 4                 |
| Sagittaria latifolia    | 4                 | 3                    | 3                      | 1                    | 3               | 4                 |

Appendix Table C.19 Non-quantified species lists for South Texas plant communities.

### Goliad County EDYS Model

#### FINAL REPORT

| Species                                  | Drawe (1994)<br>Bluestem-<br>cordgrass | McLendon (1994)<br>Mesquite-<br>granjeno-acacia | Smeins (1994a)<br>Little bluestem-<br>indiangrass | Smeins (1994b)<br>Little bluestem-<br>post oak | Archer (1990)<br>La Copita<br>Jim Wells Co. |
|------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------|
| Acacia farnesiana                        |                                        | common                                          |                                                   |                                                |                                             |
| Acacia rigidula                          |                                        | common                                          |                                                   |                                                |                                             |
| Acacia tortuosa                          |                                        | common                                          |                                                   |                                                |                                             |
| Aloysia lycioides                        |                                        | common                                          |                                                   |                                                |                                             |
| Celtis laevigata                         |                                        | CONTROLL                                        |                                                   | common                                         |                                             |
| Celtis pallida                           |                                        | sub-dominant                                    |                                                   | Contaitori                                     | common                                      |
| Condalia hookeri                         |                                        | common                                          |                                                   |                                                | common                                      |
| Diospyros texana                         |                                        | common                                          |                                                   |                                                | common                                      |
| Mahonia trifoliolata                     |                                        | common                                          |                                                   |                                                | common                                      |
| Opuntia linheimeri                       |                                        | common                                          |                                                   |                                                |                                             |
| Porlieria angustifolia                   |                                        | common                                          |                                                   |                                                |                                             |
| Prosopis glandulosa                      |                                        | dominant                                        |                                                   |                                                | dominant                                    |
| Quercus buckleyi                         |                                        |                                                 |                                                   | common                                         |                                             |
| Quercus marilandica                      |                                        |                                                 |                                                   | common                                         |                                             |
| Quercus stellata                         |                                        |                                                 |                                                   | dominant                                       |                                             |
| Quercus virginiana                       |                                        |                                                 |                                                   | common                                         |                                             |
| Rhus aromatic                            |                                        |                                                 |                                                   | common                                         |                                             |
| Schaefferia cuneifolia                   |                                        |                                                 |                                                   |                                                | common                                      |
| Smilax bona-nox                          |                                        |                                                 |                                                   | common                                         |                                             |
| Symphoricarpos orbiculat                 | us                                     |                                                 |                                                   | common                                         |                                             |
| Zanthoxylum fagara                       |                                        | common                                          |                                                   |                                                | common                                      |
| Zizyphus obtusifolia                     |                                        | common                                          |                                                   |                                                | common                                      |
| Andropogon gerardii                      |                                        |                                                 |                                                   | common                                         |                                             |
| Andropogon glomeratus                    | common                                 |                                                 |                                                   |                                                |                                             |
| Andropogon tenarius                      | common                                 |                                                 |                                                   |                                                |                                             |
| Andropogon virginicus                    | common                                 |                                                 |                                                   |                                                |                                             |
| Aristida purpurea                        | common                                 | common                                          | common                                            | common                                         | common                                      |
| Bothriochloa saccharoide                 | s common                               | common                                          |                                                   |                                                |                                             |
| Bouteloua curtipendula                   |                                        | common                                          | common                                            | common                                         |                                             |
| Bouteloua hirsuta                        |                                        | common                                          | common                                            | common                                         |                                             |
| Bouteloua rigidiseta                     |                                        | common                                          | common                                            |                                                | common                                      |
| Bouteloua trifida                        |                                        | common                                          |                                                   |                                                | common                                      |
| Buchloe dactyloides<br>Cenchrus ciliaris | common                                 | common                                          | common                                            | common                                         |                                             |
| Cenchrus cillaris<br>Cenchrus incertus   |                                        | common                                          |                                                   |                                                | common                                      |
| Chloris cucullata                        |                                        | common                                          |                                                   |                                                | common                                      |
| Chloris pluriflora                       |                                        | common                                          |                                                   |                                                | COllinoII                                   |
| Dichanthium annulatum                    |                                        | common                                          |                                                   |                                                |                                             |
| Distichlis spicata                       | common                                 |                                                 |                                                   |                                                |                                             |
| Elyonurus tripsacoides                   | common                                 |                                                 |                                                   |                                                |                                             |
| Hilaria belangeri                        |                                        | common                                          |                                                   |                                                |                                             |
| Panicum obtusum                          |                                        | common                                          |                                                   |                                                |                                             |
| Pappophorum bicolor                      |                                        | common                                          |                                                   |                                                |                                             |
| Paspalum plicatulum                      | common                                 |                                                 |                                                   |                                                |                                             |
| Paspalum lividum                         | common                                 |                                                 |                                                   |                                                |                                             |
| Paspalum setaceum                        |                                        |                                                 |                                                   |                                                | common                                      |
| Schizachyrium littoralis                 |                                        |                                                 |                                                   |                                                |                                             |
| Schizachyrium scoparium                  | dominant                               |                                                 | dominant                                          | sub-dominant                                   | t                                           |
| Setaria leucopila                        |                                        | common                                          |                                                   |                                                |                                             |
| Setaria texana                           |                                        | common                                          | and the standard state                            |                                                |                                             |
| Sorghastrum nutans                       |                                        |                                                 | sub-dominant                                      | common                                         |                                             |
| Spartina spartinae                       | dominant                               |                                                 |                                                   |                                                |                                             |
| Sporobolus asper                         | common                                 |                                                 | common                                            | common                                         |                                             |
| Sporobolus indicus<br>Sporobolus tharpii | common                                 |                                                 |                                                   |                                                |                                             |
| Stipa leucotricha                        | common                                 |                                                 | common                                            | common                                         |                                             |
| Tridens congestus                        | common                                 |                                                 | COMMON                                            | COMMON                                         |                                             |
| IIIdens congestus                        | COMMON                                 |                                                 |                                                   |                                                |                                             |
| Carex spp.                               | common                                 |                                                 |                                                   |                                                |                                             |
| Eleocharis spp.                          | common                                 |                                                 |                                                   |                                                |                                             |
| Fimbristylis spp.                        | common                                 |                                                 |                                                   |                                                |                                             |
| Scirpus spp.                             | common                                 |                                                 |                                                   |                                                |                                             |
|                                          |                                        |                                                 |                                                   |                                                |                                             |

| Species                | Drawe (1994)<br>Bluestem-<br>Cordgrass | McLendon (1994)<br>Mesquite-<br>granjeno-acacia | Smeins (1994a)<br>Little bluestem-<br>indiangrass | Archer (1990)<br>La Copita<br>Jim Wells Co. |
|------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------|
|                        |                                        |                                                 |                                                   |                                             |
| Ambrosia psilostachya  | common                                 |                                                 |                                                   |                                             |
| Amphiachyris dracuncul | loides                                 | common                                          |                                                   |                                             |
| Clematis drummondii    |                                        | common                                          |                                                   |                                             |
| Croton spp.            | common                                 | common                                          |                                                   |                                             |
| Cynanchum leave        |                                        | common                                          |                                                   |                                             |
| Desmanthus virgatus    |                                        | common                                          |                                                   |                                             |
| Dichondra micrantha    | common                                 |                                                 |                                                   |                                             |
| Ericameria texana      |                                        | common                                          |                                                   |                                             |
| Eriogonum multiflorum  | common                                 |                                                 |                                                   |                                             |
| Eupatorium odoratum    |                                        | common                                          |                                                   | common                                      |
| Eupatorium incarnatum  |                                        | common                                          |                                                   | common                                      |
| Evolvulus spp.         |                                        |                                                 |                                                   | common                                      |
| Gnaphalium obtusifoliu | ım                                     | common                                          |                                                   |                                             |
| Iva annua              | common                                 |                                                 |                                                   |                                             |
| Lantana horrida        |                                        | common                                          |                                                   |                                             |
| Parietaria texana      |                                        | common                                          |                                                   |                                             |
| Parthenium incanatum   |                                        | common                                          |                                                   |                                             |
| Ratibida columnaris    | common                                 |                                                 |                                                   |                                             |
| Rhynchosia spp.        | common                                 |                                                 |                                                   |                                             |
| Sagittaria latifolia   | common                                 |                                                 |                                                   |                                             |
| Sarcostemma cynanchoid | des                                    | common                                          |                                                   |                                             |
| <i>Verbesina</i> spp.  |                                        |                                                 |                                                   | common                                      |
| Zexmenia hispida       |                                        | common                                          |                                                   | common                                      |
|                        |                                        |                                                 |                                                   |                                             |

Remnants of the bluestem-cordgrass prairie remain as the Goliad Prairie, McFaddin Prairie (near Victoria), and east of Tivoli (Drawe 1994).

| Type             | Location | Units            | Exellent | Good | Fair | Poor | Reference                         |
|------------------|----------|------------------|----------|------|------|------|-----------------------------------|
| Bluestem prairie | E LA     | lbs/ac           | 2828     | 3239 | 3351 |      | Duvall & Linnartz (1967)          |
| Bluestem prairie |          | lbs/ac           | 3767     |      |      | 3172 | Hazell (1967)                     |
| Bluestem prairie |          | % comp           | 83       | 46   | 11   |      | Jensen & Schumacher (1969)        |
| Bluestem prairie | TX       | g/m <sup>2</sup> | 489      |      |      |      | McLendon (2014): Aransas NWR      |
| Bluestem prairie | TX TX    | g/m <sup>2</sup> |          |      | 236  |      | McLendon (2015a): Stieren Ranch   |
| Bluestem prairie | TX TX    | g/m <sup>2</sup> |          |      | 208  |      | McLendon et al. (2001): Fort Hood |
| Bluestem prairie | e TX     | g/m <sup>2</sup> |          |      |      | 176  | McLendon (2015b): Brooks County   |
| Bluestem prairie | TX TX    | g/m <sup>2</sup> |          |      |      | 163  | Drawe & Box (1969): Welder WR     |
| Bluestem prairie | TX TX    | g/m <sup>2</sup> |          |      |      | 172  | McLendon (1977): Dimmit County    |

| Appendix Table C.20 | Effect of range co | ondition or seral | stage on f | forage production. |
|---------------------|--------------------|-------------------|------------|--------------------|
|                     |                    |                   |            |                    |

#### Appendix Table C.21 Effect of grazing intensity on forage production.

| ocation  | Units                | Ungrazed                                                           | Light                                                                                                                                               | Medium                                                                                                                                                                        | Heavy                                                                                                                                                                                                                             | Reference                                                                                                                                                                    |
|----------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NM       | hagal                | 0 73                                                               | 1 00                                                                                                                                                | 0 69                                                                                                                                                                          | 0 57                                                                                                                                                                                                                              | Paulsen & Ares 1962                                                                                                                                                          |
| NM       | basal                | 0.51                                                               | 1.00                                                                                                                                                | 1.09                                                                                                                                                                          | 0.94                                                                                                                                                                                                                              | Paulsen & Ares 1962<br>Paulsen & Ares 1962                                                                                                                                   |
| NIM      | $\alpha/m^2$         | 62 7                                                               |                                                                                                                                                     | 50 G                                                                                                                                                                          |                                                                                                                                                                                                                                   | Pieper 1968                                                                                                                                                                  |
| NM<br>NM | g/m <sup>2</sup>     | 72.8                                                               |                                                                                                                                                     | 61.6                                                                                                                                                                          |                                                                                                                                                                                                                                   | Pieper 1968                                                                                                                                                                  |
| NM       | g/m²                 | 68.3                                                               |                                                                                                                                                     | 18.0                                                                                                                                                                          |                                                                                                                                                                                                                                   | Pieper 1968                                                                                                                                                                  |
|          | NM<br>NM<br>NM<br>NM | NM basal<br>NM basal<br>NM g/m <sup>2</sup><br>NM g/m <sup>2</sup> | NM         basal         0.73           NM         basal         0.51           NM         g/m²         62.7           NM         g/m²         72.8 | NM         basal         0.73         1.00           NM         basal         0.51         1.00           NM         g/m²         62.7           NM         g/m²         72.8 | NM         basal         0.73         1.00         0.69           NM         basal         0.51         1.00         1.09           NM         g/m²         62.7         52.6           NM         g/m²         72.8         61.6 | NM         basal         0.51         1.00         1.09         0.94           NM         g/m²         62.7         52.6           NM         g/m²         72.8         61.6 |

Appendix Table C.22 Calculation of change in aboveground grass biomass with change in range condition, seral stage, or grazing intensity. Ratios based on data in Appendix Tables C.20 and C.22.

```
Good = 1.15 (Excellent) Fair = 1.18 (Excellent)
Bluestem prairie
                 LA
Bluestem prairie
                 OK
                                                                   Poor = 0.84 (Excellent)
Bluestem prairie
                 NE
                     Good = 0.55(Excellent) Fair = 0.13(Excellent)
Bluestem prairie
                                            Fair = 0.45(Excellent) Poor = 0.35(Excellent)
                 TΧ
Tobosa grassland NM Light = 1.96(Ungrazed) Medium = 2.14(Ungrazed) Heavy = 1.84(Ungrazed)
                 NM Light = 1.37 (Ungrazed) Medium = 0.95 (Ungrazed)
Black grama
                                                                   Heavy = 0.78 (Ungrazed)
                                            Medium = 0.64 (Ungrazed)
Blue grama
                 NM
Means:
           Good = 0.85(Excellent) Fair = 0.59(Excellent) Poor = 0.60(Excellent)
         Light = 1.67 (Ungrazed) Medium = 1.25 (Ungrazed) Heavy = 1.31 (Ungrazed)
                           Medium = 0.75(Light) Heavy = 0.78(Light)
                            1.00 ----> 0.85 ----> 0.75 ----> 0.59 ----> 0.69
Summary:
     Range Condition: Excellent
                                     Good High-Fair Low-Fair
                                                                    Poor
     Seral Stage: Late
Grazing Intensity: Light
                                            Mid
                                                                    Early
                                          Moderate
                                                               Heavy
```

Appendix Table C.23 Aboveground biomass  $(g/m^2)$  for woody species in the Goliad County EDYS model (values based on 100% canopy cover of the respective woody species).

| Common Name       | Trunk                                                                                                                                                                                                                                  | Stems                                                                                                                                                                                                                                            | Leaves                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hui ee ek e       | E 000                                                                                                                                                                                                                                  | 1 4 6 0                                                                                                                                                                                                                                          | 260                                                                                                                                                                                                                                                                                                                           | C 700                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               | <i>'</i>                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               | <i>'</i>                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  | 300                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| post oak          | 12,240                                                                                                                                                                                                                                 | 1,920                                                                                                                                                                                                                                            | 190                                                                                                                                                                                                                                                                                                                           | 14,350                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| live oak          | 24,270                                                                                                                                                                                                                                 | 3,830                                                                                                                                                                                                                                            | 380                                                                                                                                                                                                                                                                                                                           | 28,480                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| guajillo          | 500                                                                                                                                                                                                                                    | 1,100                                                                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                           | 2,100                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| blackbrush        | 630                                                                                                                                                                                                                                    | 1,300                                                                                                                                                                                                                                            | 440                                                                                                                                                                                                                                                                                                                           | 2,370                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| whitebrush        | 700                                                                                                                                                                                                                                    | 1,500                                                                                                                                                                                                                                            | 400                                                                                                                                                                                                                                                                                                                           | 2,600                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| prairie baccharis | 1,240                                                                                                                                                                                                                                  | 1,240                                                                                                                                                                                                                                            | 260                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                 | 150                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                              | 250                                                                                                                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| granjeno          | 1,060                                                                                                                                                                                                                                  | 1,070                                                                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                           | 2,480                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| wolfberry         | 810                                                                                                                                                                                                                                    | 810                                                                                                                                                                                                                                              | 250                                                                                                                                                                                                                                                                                                                           | 1,870                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| agarito           | 70                                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                                            | 260                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| McCartney rose    | 1,200                                                                                                                                                                                                                                  | 3,600                                                                                                                                                                                                                                            | 900                                                                                                                                                                                                                                                                                                                           | 5,700                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rattlepod         | 250                                                                                                                                                                                                                                    | 1,000                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                           | 1,350                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mustang grape     | 1,200                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                              | 400                                                                                                                                                                                                                                                                                                                           | 1,800                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| prickly pear      | 350                                                                                                                                                                                                                                    | 2,000                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                            | 2,360                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | huisache<br>pecan<br>sugar hackberry<br>mesquite<br>post oak<br>live oak<br>guajillo<br>blackbrush<br>whitebrush<br>prairie baccharis<br>sea oxeye<br>granjeno<br>wolfberry<br>agarito<br>McCartney rose<br>rattlepod<br>mustang grape | huisache5,000pecan23,650sugar hackberry11,820mesquite7,240post oak12,240live oak24,270guajillo500blackbrush630whitebrush700prairie baccharis1,240sea oxeye150granjeno1,060wolfberry810agarito70McCartney rose1,200rattlepod250mustang grape1,200 | huisache5,0001,460pecan23,6503,890sugar hackberry11,8201,950mesquite7,2401,000post oak12,2401,920live oak24,2703,830guajillo5001,100blackbrush6301,300whitebrush7001,500prairie baccharis1,2401,240sea oxeye150100granjeno1,0601,070wolfberry810810agarito70120McCartney rose1,2003,600rattlepod2501,000mustang grape1,200200 | huisache5,0001,460260pecan23,6503,890330sugar hackberry11,8201,950330mesquite7,2401,000300post oak12,2401,920190live oak24,2703,830380guajillo5001,100500blackbrush6301,300440whitebrush7001,500400prairie baccharis1,2401,240260sea oxeye150100250granjeno1,0601,070350wolfberry810810250agarito7012070McCartney rose1,2003,600900rattlepod2501,000100 | huisache5,0001,4602606,720pecan23,6503,89033027,870sugar hackberry11,8201,95033014,100mesquite7,2401,0003008,540post oak12,2401,92019014,350live oak24,2703,83038028,480guajillo5001,1005002,100blackbrush6301,3004402,370whitebrush7001,5004002,600prairie baccharis1,2401,2402602,740sea oxeye150100250500granjeno1,0601,0703502,480wolfberry8108102501,870agarito7012070260McCartney rose1,2003,6009005,700rattlepod2501,0001001,350 |

| Ammomdiar Table C 24 | Effect of woody cover o | n anaga muchustian an t | ura man galam da in Tawaa |
|----------------------|-------------------------|-------------------------|---------------------------|
| ADDENDIX TADIE U.24  | Effect of woody cover o | n grass production on t | wo rangelands in Texas.   |
|                      |                         | - 8                     | 8                         |

|                        | Mes  | Mesquite Canopy (%) |      |      |      |      | Huisache Canopy (%) |      |      |      |      |      |
|------------------------|------|---------------------|------|------|------|------|---------------------|------|------|------|------|------|
|                        | 2-3  | 7-8                 | 13   | 24   | 00   | 10   | 20                  | 30   | 40   | 50   | 60   | 70   |
| Production $(g/m^2)$ : | 126  | 135                 | 145  | 96   | 415  | 425  | 365                 | 320  | 290  | 235  | 190  | 135  |
| Proportion of lowest:  | 1.00 | 1.07                | 1.15 | 0.76 | 1.00 | 1.02 | 0.88                | 0.77 | 0.70 | 0.57 | 0.46 | 0.33 |

Mesquite = Rolling Plains near Vernon (McDaniel et al. 1982); huisache = Welder Wildlife Refuge, San Patricio County (Scrifes et al. 1982).

Approximate grass production = (amount at 0% cover)[1.00 - (0.8)(woody plant cover)].

Appendix Table C.25. Species composition and initial biomass values for land-use types in the Goliad County EDYS model. Values for woody species are in % of total woody cover and impervious surfaces are % of total area. Values for herbaceous species are  $g/m^2$ .

| Species              | Urban  | Buildings  | Disturbed | Caliche | Tilled | Orchard | Oil  |
|----------------------|--------|------------|-----------|---------|--------|---------|------|
|                      | Houses | Industrial | Areas     | Pits    | Fields |         | Pads |
| Huisache             |        | 30         | 30        | 10      |        |         |      |
| Pecan                | 5      |            |           | 10      |        | 100     |      |
| Hackberry            |        | 30         | 20        |         |        | 100     |      |
| Mesquite             | 40     | 20         | 30        | 20      |        |         |      |
| Live oak             | 55     |            |           |         |        |         |      |
| Blackbrush           |        |            |           | 30      |        |         |      |
| Whitebrush           |        |            |           | 10      |        |         |      |
| Baccharis            |        | 20         | 10        | 10      |        |         |      |
| Granjeno             |        |            | 10        | 20      |        |         |      |
| Purple threeawn      |        | 20         | 25        | 20      |        |         |      |
| King Ranch bluestem  |        | 50         | 20        | 10      |        |         |      |
| Silver bluestem      |        | 10         | 5         | 20      |        |         |      |
| Sandbur              |        | 10         | 10        | 10      |        |         |      |
| Hooded windmillgrass |        | 10         | 10        | 20      |        |         |      |
| Bermudagrass         | 500    | 100        | 10        | 10      |        | 50      |      |
| Johnsongrass         |        | 150        | 20        | 10      |        | 20      |      |
| Milo                 |        |            |           |         | 20     |         |      |
| Ragweed              |        | 50         | 20        | 20      |        | 10      |      |
| Sunflower            |        | 50         | 20        | 10      | 10     | 10      |      |
| Impervious surface   | 50%    | 90%        | 0%        | 10%     | 0%     | 0%      | 100% |

| NRCS Range Site     | Woody Species<br>Relative Composition (%) | Herbaceous Species<br>Initial Aboveground Biomass (g/m <sup>2</sup> )<br>BOIS CYDA PACO SOHA AMPS |      |      |      |      |  |  |
|---------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|--|--|
|                     |                                           | BOIS                                                                                              | CYDA | PACO | SOHA | AMPS |  |  |
| Clay Soils          |                                           |                                                                                                   |      |      |      |      |  |  |
| Blackland RG Plains | huisache 50; mesquite 40; baccharis 10    | 30                                                                                                | 0    | 544  | 30   | 19   |  |  |
| Blackland Coastal   | huisache 50; McCart rose (40); bacchrs 10 | 60                                                                                                | 0    | 1089 | 60   | 39   |  |  |
| Clayey Bottomland   | huisache 60; mesquite 30; hackberry 10    | 33                                                                                                | 0    | 597  | 33   | 39   |  |  |
| Rolling Blackland   | huisache 20; mesquite 60; baccharis 20    | 30                                                                                                | 0    | 541  | 30   | 21   |  |  |
| Clay Loam Soils     |                                           |                                                                                                   |      |      |      |      |  |  |
| Clay Loam           | huisache 50; mesquite 40; baccharis 10    | 33                                                                                                | 0    | 596  | 33   | 23   |  |  |
| Loamy Bottomland    | huisache 60; mesquite 30; hackberry 10    | 50                                                                                                | 0    | 898  | 50   | 44   |  |  |
| Sandy Loam Soils    |                                           |                                                                                                   |      |      |      |      |  |  |
| Claypan Prairie     | huisache 50; McCartney rose 50            | 32                                                                                                | 576  | 0    | 32   | 29   |  |  |
| Claypan Savanna     | huisache 30; mesquite 70                  | 26                                                                                                | 464  | 0    | 26   | 15   |  |  |
| Gray Sandy Loam     | huisache 50; mesquite 40; whitebrush 10   | 22                                                                                                | 395  | 0    | 22   | 20   |  |  |
| Loamy Prairie       | huisache 50; McCart rose 40; mesquite 10  | 34                                                                                                | 621  | 0    | 35   | 31   |  |  |
| Sandy Loam          | huisache 50; mesquite 50                  | 29                                                                                                | 518  | 0    | 29   | 27   |  |  |
| Tight Sandy Loam    | huisache 50; mesquite 50                  | 24                                                                                                | 432  | 0    | 24   | 23   |  |  |
| Sandy Soils         |                                           |                                                                                                   |      |      |      |      |  |  |
| Deep Sand           | huisache 30; mesquite 40; live oak 30     | 20                                                                                                | 369  | 0    | 20   | 17   |  |  |
| Loamy Sand          | huisache 30; mesquite 50; live oak 20     | 25                                                                                                | 447  | 0    | 25   | 21   |  |  |
| Sandy               | huisache 40; mesquite 40; baccharis 20    | 25                                                                                                | 450  | 0    | 25   | 24   |  |  |
| Sandy Bottomland    | huisache 40; mesquite 40; hackberry 20    | 31                                                                                                | 560  | 0    | 31   | 33   |  |  |
| Shallow Soils       |                                           |                                                                                                   |      |      |      |      |  |  |
| Gravelly Ridge      | mesquite 20; blackbrush 60; granjeno 20   | 15                                                                                                | 270  | 0    | 15   | 20   |  |  |
| Shallow Ridge       | mesquite 30; blackbrush 70                | 11                                                                                                | 203  | 0    | 11   | 11   |  |  |
| Shallow Sandy Loam  | huisache 50; mesquite 50                  | 18                                                                                                | 319  | 0    | 17   | 36   |  |  |
| Sloping Clay Loam   | huisache 30; mesquite 50; blackbrush 20   | 16                                                                                                | 282  | 0    | 15   | 15   |  |  |
| Wetland Soils       |                                           |                                                                                                   |      |      |      |      |  |  |
| Lakebed RG Plains   | huisache 70; mesquite 20; baccharis 10    | 11                                                                                                | 418  | 0    | 36   | 15   |  |  |
| Lakebed Coastal     | huisache 80; mesquite 10; rattlepod 10    | 13                                                                                                | 458  | 0    | 38   | 17   |  |  |
| Lowland Coastal     | huisache 80; baccharis 10; rattlepod 10   | 19                                                                                                | 629  | 0    | 56   | 33   |  |  |
| Salty Prairie       | huisache 90; mesquite 10                  | 44                                                                                                | 791  | 0    | 44   | 39   |  |  |
|                     |                                           |                                                                                                   |      |      |      |      |  |  |

Appendix Table C.26 Species composition and aboveground herbaceous production (clippable biomass) in improved pasture by soil series in Goliad County.

BOIS = King Ranch bluestem; CYDA = bermudagrass; PACO = kleingrass; SOHA = Johnsongrass; AMPS = ragweed. Annual aboveground production (g/m<sup>2</sup>) of three forage species, adjusted to mean annual precipitation for Goliad County (34.8 inches), are 576 for bermudagrass, 794 for kleingrass, and 866 for King Ranch bluestem (McCawley 1978, Kapinga 1982) on Orelia fine sandy loam soils. Compared to production from native species (sandy loam = 488 g/m<sup>2</sup>), there are 1.18 for bermudagrass, 1.62 for kleingrass, and 1.77 for King Ranch bluestem. Total forage biomass of improved pastures was estimated by multiplying these respective factors by total grass production under excellent range condition (Table C.2). Major improved pasture species are assumed to be determined by soil texture and soil depth: clays and clay loams = kleingrass; sands, sandy loams, shallow soils, and wetlands = bermudagrass. King Ranch bluestem and Johnsongrass are each considered to constitute 5% of the forage biomass on all improved pastures.

| Appendix Table C.27    | Initial vegetation plot types, including separation by woody plant coverage (%), |  |
|------------------------|----------------------------------------------------------------------------------|--|
| used in the Goliad Cor | nty EDYS model.                                                                  |  |

|               |                                    |                |          | <b>D1</b> · | D T                      | 337 1    | NT 1     |
|---------------|------------------------------------|----------------|----------|-------------|--------------------------|----------|----------|
| Plot          | Range Type                         | Woody          | Number   | Plot        | Range Type               | Woody    | Number   |
| Туре          |                                    | Coverage       | of Cells | Туре        |                          | Coverage | of Cells |
|               |                                    | -              |          |             |                          | -        |          |
| 4501          | Blackland Coastal                  | 0-1            | 507      | 12101       | Loamy Prairie            | 0-1      | 105      |
| 4601          | Blackland Coastal                  | 1-10           | 1389     | 12201       | Loamy Prairie            | 1-10     | 354      |
| 4701          | Blackland Coastal                  | 10-25          | 67       | 12301       | Loamy Prairie            | 10-25    | 657      |
| 4801          | Blackland Coastal                  | 25-50          | 240      | 12401       | Loamy Prairie            | 25-50    | 702      |
| 4901          | Blackland Coastal                  | 50-75          | 310      | 12501       | Loamy Prairie            | 50-75    | 7        |
| 5001          | Blackland Coastal                  | 75-90          | 174      | 12601       | Loamy Prairie            | 75-90    | 1783     |
| 5101          | Blackland Coastal                  | 90-100         | 15       | 12001       | loamy frairie            | 10 00    | 1705     |
| 5101          | Diackiana coastai                  | J0 100         | 10       | 8701        | Loamy Sand               | 0-1      | 2052     |
| 4201          | Blackland RG Plains                | 25-50          | 1639     | 8801        | Loamy Sand               | 1-10     | 8600     |
| 4301          |                                    | 23-30<br>50-75 | 2770     |             | -                        | 10-25    | 3482     |
|               | Blackland RG Plains                |                |          | 8901        | Loamy Sand<br>Loamy Sand |          |          |
| 4401          | Blackland RG Plains                | 75-90          | 1348     | 9001        | -                        | 25-50    | 5942     |
| 10401         |                                    | 0 1            | 00000    | 9101        | Loamy Sand               | 50-75    | 7509     |
| 13401         | Clay Loam                          | 0-1            | 22332    | 9201        | Loamy Sand               | 75-90    | 1248     |
| 13501         | Clay Loam                          | 1-10           | 6905     | 9301        | Loamy Sand               | 90-100   | 15       |
| 13601         | Clay Loam                          | 10-25          | 9175     |             |                          |          |          |
| 13701         | Clay Loam                          | 25-50          | 14636    | 1301        | Lowland Coastal          | 0-1      | 287      |
| 13801         | Clay Loam                          | 50-75          | 2546     | 1401        | Lowland Coastal          | 1-10     | 466      |
| 13901         | Clay Loam                          | 75-90          | 22       | 1501        | Lowland Coastal          | 10-25    | 235      |
| 14001         | Clay Loam                          | 90-100         | 211      | 1601        | Lowland Coastal          | 25-50    | 144      |
|               |                                    |                |          | 1701        | Lowland Coastal          | 50-75    | 458      |
| 801           | Clayey Bottomland                  | 1-10           | 3        | 1801        | Lowland Coastal          | 75-90    | 80       |
| 901           | Clayey Bottomland                  | 25-50          | 135      |             |                          |          |          |
| 1001          | Clayey Bottomland                  | 50-75          | 712      | 1901        | Rolling Blackland        | 1-10     | 25       |
| 1101          | Clayey Bottomland                  | 75-90          | 19       | 2001        | Rolling Blackland        | 10-25    | 66       |
| 1201          | Clayey Bottomland                  | 90-100         | 135      | 2101        | Rolling Blackland        | 25-50    | 338      |
|               |                                    |                |          | 2201        | Rolling Blackland        | 50-75    | 575      |
| 14101         | Claypan Prairie                    | 0-1            | 514      | 2301        | Rolling Blackland        | 75-90    | 21       |
| 14201         | Claypan Prairie                    | 1-10           | 1524     | 2401        | Rolling Blackland        | 90-100   | 45       |
| 14301         | Claypan Prairie                    | 10-25          | 3368     | 2401        | Notiting blacktand       | J0 100   | 45       |
|               |                                    |                |          | 2001        | Colty Droinio            | 0 1      | 114      |
| 14401         | Claypan Prairie                    | 25-50          | 1033     | 3001        | Salty Prairie            | 0-1      |          |
| 14501         | Claypan Prairie                    | 50-75          | 6        | 3101        | Salty Prairie            | 1-10     | 589      |
| 14601         | Claypan Prairie                    | 75-90          | 43       | 3201        | Salty Prairie            | 10-25    | 507      |
| 14701         | Claypan Prairie                    | 90-100         | 306      | 3301        | Salty Prairie            | 25-50    | 61       |
|               |                                    |                |          | 3401        | Salty Prairie            | 50-75    | 1529     |
| 10101         | Claypan Savannah                   | 0-1            | 1        | 3501        | Salty Prairie            | 75-90    | 18       |
| 10201         | Claypan Savannah                   | 1-10           | 331      |             |                          |          |          |
| 10301         | Claypan Savannah                   | 10-25          | 133      | 5201        | Sandy                    | 0-1      | 343      |
| 10401         | Claypan Savannah                   | 25-50          | 210      | 5301        | Sandy                    | 1-10     | 415      |
| 10501         | Claypan Savannah                   | 50-75          | 543      | 5401        | Sandy                    | 10-25    | 578      |
| 10601         | Claypan Savannah                   | 75-90          | 833      | 5501        | Sandy                    | 25-50    | 633      |
|               |                                    |                |          | 5601        | Sandy                    | 50-75    | 846      |
| 3601          | Deep Sand                          | 0-1            | 199      | 5701        | Sandy                    | 75-90    | 209      |
| 3701          | Deep Sand                          | 1-10           | 141      | 5801        | Sandy                    | 90-100   | 6        |
| 3801          | Deep Sand                          | 10-25          | 101      |             |                          |          | -        |
| 3901          | Deep Sand                          | 25-50          | 41       | 14801       | Sandy Bottomland         | 0-1      | 597      |
| 4001          | Deep Sand                          | 50-75          | 723      | 14901       | Sandy Bottomland         | 1-10     | 1211     |
| 4101          | Deep Sand                          | 75-90          | 495      | 15001       | Sandy Bottomland         | 10-25    | 1732     |
| 4101          | Deep Sand                          | 15 50          | 400      |             | -                        |          | 1221     |
| 0001          | Crawelly Didas                     | 0-1            | 13       | 15101       | Sandy Bottomland         | 25-50    | 342      |
| 8001          | Gravelly Ridge                     | 0-1            |          | 15201       | Sandy Bottomland         | 50-75    |          |
| 8101          | Gravelly Ridge                     | 1-10           | 117      | 15301       | Sandy Bottomland         | 75-90    | 525      |
| 8201          | Gravelly Ridge                     | 10-25          | 185      | 15401       | Sandy Bottomland         | 90-100   | 43       |
| 8301          | Gravelly Ridge                     | 25-50          | 84       |             |                          |          |          |
| 8401          | Gravelly Ridge                     | 50-75          | 141      | 12701       | Sandy Loam               | 0-1      | 5836     |
| 8501          | Gravelly Ridge                     | 75-90          | 89       | 12801       | Sandy Loam               | 1-10     | 2174     |
| 8601          | Gravelly Ridge                     | 90-100         | 10       | 12901       | Sandy Loam               | 10-25    | 2125     |
|               |                                    |                |          | 13001       | Sandy Loam               | 25-50    | 2737     |
| 7301          | Gray Sandy Loam                    | 0-1            | 41       | 13101       | Sandy Loam               | 50-75    | 640      |
| 7401          | Gray Sandy Loam                    | 1-10           | 144      | 13201       | Sandy Loam               | 75-90    | 99       |
| 7501          | Gray Sandy Loam                    | 10-25          | 246      | 13301       | Sandy Loam               | 90-100   | 36       |
| 7601          | Gray Sandy Loam                    | 25-50          | 4337     |             | -                        |          |          |
| 7701          | Gray Sandy Loam                    | 50-75          | 3713     | 5901        | Shallow Ridge            | 0-1      | 649      |
| 7801          | Gray Sandy Loam                    | 75-90          | 505      | 6001        | Shallow Ridge            | 1-10     | 1086     |
| 7901          | Gray Sandy Loam<br>Gray Sandy Loam | 90-100         | 151      | 6101        | Shallow Ridge            | 10-25    | 824      |
| , , , , , , , | Stay Sanay Doam                    | 20 TOO         | TOT      | 6201        | Shallow Ridge            | 25-50    | 1375     |
|               |                                    |                |          | 0201        | SHATTOW KINGE            | 20 00    | 10/0     |
|               |                                    |                |          |             |                          |          |          |

175

| Appendix | Table C.27 | 7 (Cont.) |
|----------|------------|-----------|
|          |            |           |

| Plot  | Range Type        | Woody    | Number   | Plot  | Range Type         | Woody    | Number   |
|-------|-------------------|----------|----------|-------|--------------------|----------|----------|
| Туре  |                   | Coverage | of Cells | Туре  |                    | Coverage | of Cells |
|       |                   |          |          |       |                    |          |          |
| 2501  | Lakebed Coastal   | 0-1      | 178      | 6301  | Shallow Ridge      | 50-75    | 1387     |
| 2601  | Lakebed Coastal   | 1-10     | 9        | 6401  | Shallow Ridge      | 75-90    | 21       |
| 2701  | Lakebed Coastal   | 10-25    | 129      | 6501  | Shallow Ridge      | 90-100   | 30       |
| 2801  | Lakebed Coastal   | 25-50    | 247      |       |                    |          |          |
| 2901  | Lakebed Coastal   | 50-75    | 8        | 6601  | Shallow Sandy Loam |          | 602      |
|       |                   |          |          | 6701  | Shallow Sandy Loam |          | 1219     |
| 9401  | Lakebed RG Plains | 0-1      | 23       | 6801  | Shallow Sandy Loam | 10-25    | 851      |
| 9501  | Lakebed RG Plains | 1-10     | 212      | 6901  | Shallow Sandy Loam |          | 921      |
| 9601  | Lakebed RG Plains | 10-25    | 11       | 7001  | Shallow Sandy Loam | 50-75    | 1133     |
| 9701  | Lakebed RG Plains | 25-50    | 11       | 7101  | Shallow Sandy Loam |          | 88       |
| 9801  | Lakebed RG Plains | 50-75    | 10       | 7201  | Shallow Sandy Loam | 90-100   | 62       |
| 9901  | Lakebed RG Plains | 75-90    | 175      |       |                    |          |          |
| 10001 | Lakebed RG Plains | 90-100   | 20       | 10701 | Sloping Clay Loam  | 0-1      | 70       |
|       |                   |          |          | 10801 | Sloping Clay Loam  | 1-10     | 166      |
| 11401 | Loamy Bottomland  | 0-1      | 107      | 10901 | Sloping Clay Loam  | 10-25    | 24       |
| 11501 | Loamy Bottomland  | 1-10     | 34       | 11001 | Sloping Clay Loam  | 25-50    | 104      |
| 11601 | Loamy Bottomland  | 10-25    | 320      | 11101 | Sloping Clay Loam  | 50-75    | 30       |
| 11701 | Loamy Bottomland  | 25-50    | 1598     | 11201 | Sloping Clay Loam  | 75-90    | 259      |
| 11801 | Loamy Bottomland  | 50-75    | 159      | 11301 | Sloping Clay Loam  | 90-100   | 3        |
| 11901 | Loamy Bottomland  | 75-90    | 503      |       |                    |          |          |
| 12001 | Loamy Bottomland  | 90-100   | 64       | 101   | Tight Sandy Loam   | 0-1      | 1564     |
|       |                   |          |          | 201   | Tight Sandy Loam   | 1-10     | 9342     |
|       |                   |          |          | 301   | Tight Sandy Loam   | 10-25    | 3337     |
|       |                   |          |          | 401   | Tight Sandy Loam   | 25-50    | 4501     |
|       |                   |          |          | 501   | Tight Sandy Loam   | 50-75    | 7014     |
|       |                   |          |          | 601   | Tight Sandy Loam   | 75-90    | 1304     |
|       |                   |          |          | 701   | Tight Sandy Loam   | 90-100   | 216      |
|       |                   |          |          |       |                    |          |          |

| Range Type                        | Number of Cells | (Number of Cells)(Woody Coverage) | Mean Woody Cover |
|-----------------------------------|-----------------|-----------------------------------|------------------|
| Blackland Coastal                 | 13,321          | 3,063.23                          | 23.00            |
| Blackland RG Plains               | 5,875           | 3,532.60                          | 60.13            |
| Clay Loam                         | 308,678         | 129,654.43                        | 42.00            |
| Clayey Bottomland                 | 15,355          | 10,177.73                         | 66.28            |
| Claypan Prairie                   | 90,749          | 10,258.11                         | 11.30            |
| Claypan Savanna                   | 67,511          | 31,659.33                         | 46.90            |
| Deep Sand                         | 4,750           | 1,966.86                          | 40.90            |
| Gravelly Ridge                    | 4,593           | 2,004.61                          | 41.41<br>43.64   |
| Gravelly Ridge<br>Grav Sandy Loam | 44,025          | 24,683.23                         | 43.04<br>56.07   |
| Lakebed Coastal                   | 833             | 193.65                            | 23.25            |
| Lakebed RG Plains                 | 2,171           | 872.34                            | 40.18            |
| Loamy Bottomland                  | 48,961          | 27,599.67                         | 56.37            |
| Loamy Prairie                     | 35,503          | 9,443.67                          | 26.60            |
| Loamy Sand                        | 165,968         | 53,239.76                         | 32.08            |
| Lowland Coastal                   | 1,678           | 479.74                            | 28.59            |
| Rolling Blackland                 | 11,634          | 6,475.47                          | 55.66            |
| 2                                 | 36,184          | 2,638.58                          | 10.06            |
| Salty Prairie<br>Sandy            | 26,558          | 9,932.44                          | 37.40            |
| Sandy Bottomland                  | 24,786          | 13,898.80                         | 56.08            |
| Sandy Loam                        | 55,761          | 10,550.01                         | 18.92            |
| Shallow Ridge                     | 40,668          | 14,410.55                         | 35.42            |
| Shallow Sandy Loam                | 46,612          | 30,670.13                         | 65.80            |
| Sloping Clay Loam                 | 2,790           | 867.24                            | 31.08            |
|                                   | 207,904         | 73,877.55                         | 35.53            |
| Tight Sandy Loam                  | -               |                                   |                  |
| Improved Pasture                  | 25,794          | 350.92                            | 1.36             |
| Total                             | 1,288,662       | 471,500.65                        |                  |
| Overall Weighted Mea              | n               |                                   | 36.59            |

Appendix Table C.28 Weighted mean woody plant cover (%) by plot type and overall used as initial input values into the Goliad County EDYS model. Means are weighted by area (number of cells) in each woody coverage category.

Appendix Table C.29 Forage consumption (C;  $g/m^2$ ) by cattle on a seacoast bluestem-McCartney rose pasture in Calhoun County, Texas. Values are from utilization (U; %) x available forage (F;  $g/m^2$ ). Data taken from Durham and Kothmann (1977).

| Species            | ]  | Dec | 22   | J  | an 1 | 4    | F  | eb 1 | 1    | 1  | Mar | 08   |    | Mar | 25   | A  | Apr ( | )8   |
|--------------------|----|-----|------|----|------|------|----|------|------|----|-----|------|----|-----|------|----|-------|------|
|                    | U  | F   | С    | U  | F    | С    | U  | F    | С    | U  | F   | С    | U  | F   | С    | U  | F     | С    |
| McCartney rose     | 6  | 101 | 6.1  | 9  | 44   | 4.0  | 6  | 94   | 5.8  | 5  | 36  | 1.8  | 2  | 90  | 1.8  | 0  |       | 1.3  |
| Bermudagrass       | 35 | 38  | 13.3 | 31 | 22   | 6.8  | 40 | 33   | 13.2 | 27 | 58  | 15.7 | 20 | 85  | 17.0 | 31 | 58    | 18.0 |
| Longtom            | 15 | 19  | 2.9  | 33 | 37   | 12.2 | 32 | 63   | 20.2 | 25 | 91  | 22.8 | 22 | 54  | 11.9 | 11 | 60    | 6.6  |
| Brownseed paspalum | 28 | 15  | 4.2  | 26 | 37   | 9.6  | 38 | 31   | 11.8 | 25 | 46  | 11.5 | 17 | 54  | 9.2  | 14 | 36    | 5.0  |
| Seacoast bluestem  | 10 | 105 | 10.5 | 16 | 53   | 8.5  | 29 | 75   | 21.8 | 22 | 73  | 16.1 | 22 | 146 | 32.1 | 24 | 83    | 19.9 |
| Knotroot bristle   | 12 | 83  | 10.0 | 3  | 31   | 0.9  | 30 | 15   | 4.5  | 24 | 8   | 1.9  | 27 | 8   | 2.2  | 40 | 6     | 2.4  |
| Indiangrass        | 7  | 31  | 2.2  | 4  | 30   | 1.2  | 25 | 15   | 3.8  | 18 | 31  | 5.6  | 14 | 34  | 4.8  | 33 | 21    | 7.0  |
| Smutgrass          | 37 | 45  | 16.7 | 44 | 43   | 18.9 | 55 | 24   | 13.2 | 46 | 22  | 10.1 | 36 | 11  | 4.0  | 14 | 14    | 2.0  |
| Other grasses      | 5  | 42  | 2.1  | 14 | 30   | 4.2  | 15 | 15   | 2.3  | 14 | 24  | 3.4  | 24 | 33  | 8.0  | 20 | 13    | 2.6  |
| Total              |    |     | 68.0 |    |      | 66.3 |    |      | 96.6 |    |     | 88.9 |    |     | 91.0 |    |       | 64.8 |

Consumption of McCartney rose was calculated from botanical composition of diet data.

Appendix Table C.30 Calculation of forage disappearance, animal unit basis, by cattle on a seacoast bluestem-McCartney rose pasture in Calhoun County, Texas. Data taken from Durham and Kothmann (1977).

Total forage utilization over 110 days (22 Dec-10 Apr) = 475.6 g/m<sup>2</sup> (Appendix Table C.27) = 4.32 g/m<sup>2</sup> per day. Total area grazed = 7.2 ha = 72,000 m<sup>2</sup> = 17.8 acres. Area was grazed by four cows. Assume cows were 1000 lbs = 4 AU. Average daily consumption =  $(72,000 \text{ m}^2)(4.32 \text{ g/m}^2/\text{d})/4 \text{ AU} = 77,760 \text{ g/AUD} = 171.28 \text{ lbs/AUD}$ 

Total forage production = forage utilized + forage remaining =  $(475.6 - 20.8) + 291 = 746 \text{ g/m}^2$ Utilization rate = 455/746 = 0.610

### ADDITIONAL PLANT AND VEGETATION DATA

# Bovey, R.W., R.E. Meyer, and H.L. Morton. 1972. Herbage production following brush control with herbicides in Texas. Journal of Range Management 25:136-142.

Victoria County, Katy gravelly sandy loam.

Live oak-little bluestem community (shrub live oak = 2 m tall): live oak, little bluestem, brownseed paspalum, indiangrass, threeawns, lovegrasses, knotroot bristlegrass, bitter sneezeweed, Lindheimer doveweed.

Oct 1967 herbaceous biomass =  $185 \text{ g/m}^2 \text{ grasses} + 18 \text{ g/m}^2 \text{ forbs}$ 

Area bulldozed in Jul 1963 and harvested in Apr 1970 = 114 g/m<sup>2</sup> live oak regrowth + 2 g/m<sup>2</sup> grasses +  $2 \text{ g/m}^2$  forbs

Victoria 1967 PPT = 33.90 inches = 86.1 cm Oct 1966-Sep 1967 = 28.18 inches = 71.6 cm

 $PUE = 203 \text{ g/m}^2/71.6 \text{ cm} = 2.84 \text{ g/m}^2/\text{cm} + \text{live oak production}$ 

# Box, Thadis W. and Richard S. White. 1969. Fall and winter burning of South Texas brush ranges. Journal of Range Management 22:373-376.

Chaparral community, Welder Wildlife Refuge. Mesquite-huisache-blackbrush community

Sampled Aug 1967

Herbaceous production (24% buffalograss, 9% silver bluestem, 8% ruellia, 15% Texas broomweed):  $163.6 \text{ g/m}^2 = 97.7 \text{ g/m}^2 \text{ grasses} + 65.9 \text{ g/m}^2 \text{ forbs}$ 

# Buckley, P.E. and J.D. Dodd. 1969. Heavy precipitation influences saline clay flat vegetation. Journal of Range Management 22:405-407.

18 mi NNE of Zapata. Prickly pear-saladillo-mesquite community. Root plowed in 1962. Sampled in Nov 1967 following Beulah. Herbaceous production (56% Hall panicum, 20% curly mesquite, 10% whorled dropseed): 136 g/m<sup>2</sup> 1967 PPT at study site = 26.39 inches = 67.0 cm

 $PUE = 136 \text{ g/m}^2/67.0 \text{ cm} = 2.03 \text{ g/m}^2/\text{cm} + \text{shrub production}$ 

# Dodd, J.D. and S.T. Holtz. 1972. Integration of burning with mechanical manipulation of South Texas grassland. Journal of Range Management 25:130-136.

Cartwright Ranch, Goliad County. Blackbrush-Texas persimmon-hogplum community. Sampled Jun 1968.

Herbaceous production = 145 g/m<sup>2</sup> = 41 g/m<sup>2</sup> grass (24% sedge, 20% Texas grama, 16% threeawns) +  $\frac{104}{2}$  c  $\frac{1}{2}$  c

104 g/m<sup>2</sup> forbs (8% orange zexmenia, 4% Texas broomweed) Jun 1967-May 1968 PPT at Goliad = 54.45 inches = 138.3 cm

 $PUE = 145 \text{ g/m}^2/138.3 \text{ cm} = 1.05 \text{ g/m}^2/\text{cm} + \text{shrub production}$ 

# Drawe, D. Lynn and Thadis W. Box. 1969. High rates of nitrogen fertilization influence coastal prairie range. Journal of Range Management 22:32-36.

Bunchgrass-annual forb community on Zavala fine sandy loam, Welder Wildlife Refuge.

21% camphorweed, 14% knotgrass, 12% balsamscale, 10% sandbur, 9% signalgrass, 6% seacoast Sampled in August of each year.

|                                                                | 1965 | 1966          | 1967         |                                   |
|----------------------------------------------------------------|------|---------------|--------------|-----------------------------------|
| Herbaceous production $(g/m^2)$ :                              | 237  | 228           | 252          |                                   |
| Grasses (g/m <sup>2</sup> ):                                   | 159  | 137           | 192          |                                   |
| Forbs $(g/m^2)$ :                                              | 78   | 91            | 60           |                                   |
| Sep-Aug PPT (cm):<br>PUE (g/m <sup>2</sup> /cm):               |      | 101.3<br>2.25 | 65.2<br>3.87 | Refugio PPT(0.904)<br>Mean = 3.20 |
| Jan 1964-Sep 1965 PPT Refugio =<br>Jan 1964-Sep 1965 PPT WWR = |      |               |              | 5.74/50.59 = 0.904                |

# Powell, Jeff and Thadis W. Box. 1967. Mechanical control and fertilization as brush management practices affect forage production in South Texas. Journal of Range Management 20:227-236.

Chaparral-bristlegrass community, Victoria clay, Welder Wildlife Refuge. Blackbrush-huisache-mesquite (49% brush cover). Herbaceous: plains bristlegrass (15%), buffalograss (11%), ragweed, Texas broomweed (31% forbs) Forage production: 101 g/m<sup>2</sup> in 1964; 162 g/m<sup>2</sup> in 1965

Oct 1963-Sep 1964 PPT = 0.904(Refugio) = 0.904(33.37) = 30.17 inches = 76.6 cm Oct 1964-Sep 1965 PPT = 0.904(Refugio Oct-Dec) + 17.44 inches = 0.904(7.03) + 17.44 = 60.5 cm

 $1964 \text{ PUE} = 101 \text{ g/m}^2/76.6 \text{ cm} = 1.32 \text{ g/m}^2/\text{cm}$   $1965 \text{ PUE} = 162 \text{ g/m}^2/60.5 \text{ cm} = 2.68 \text{ g/m}^2/\text{cm}$ 

#### **APPENDIX D** ANIMALS

| Range Type          | Annual Forage       | Available Forage    | AU Forage Requirement | Stockir         | ig Rate |
|---------------------|---------------------|---------------------|-----------------------|-----------------|---------|
| C 71                | (g/m <sup>2</sup> ) | (g/m <sup>2</sup> ) | (g/AUD)(365 d)        | $(m^2/AU)$      |         |
| Blackland RG Plains | 261                 | 131                 | 5,634,870             | 43,014          | 10.63   |
| Blackland Coastal   | 522                 | 261                 | 5,634,870             | 21,580          | 5.33    |
| Clayey Bottomland   | 286                 | 143                 | 5,634,870             | 39,405          | 9.73    |
| Clay Loam           | 286                 | 143                 | 5,634,870             | 39,405          | 9.73    |
| Claypan Prairie     | 379                 | 190                 | 5,634,870             | 29 <b>,</b> 657 | 7.33    |
| Claypan Savanna     | 306                 | 153                 | 5,634,870             | 36,829          | 9.10    |
| Deep Sand           | 243                 | 122                 | 5,634,870             | 46,188          | 11.41   |
| Gravelly Ridge      | 178                 | 89                  | 5,634,870             | 63,313          | 15.64   |
| Gray Sandy Loam     | 260                 | 130                 | 5,634,870             | 43,345          | 10.71   |
| Lakebed RG Plains   | 276                 | 138                 | 5,634,870             | 40,832          | 10.09   |
| akebed Coastal      | 350                 | 175                 | 5,634,870             | 32,199          | 7.95    |
| oamy Bottomland     | 431                 | 216                 | 5,634,870             | 26,087          | 6.94    |
| Joamy Prairie       | 410                 | 205                 | 5,634,870             | 27,487          | 6.79    |
| Joamy Sand          | 295                 | 148                 | 5,634,870             | 38,074          | 9.41    |
| owland Coastal      | 447                 | 224                 | 5,634,870             | 25,156          | 6.21    |
| Rolling Blackland   | 260                 | 130                 | 5,634,870             | 43,345          | 10.71   |
| Salty Prairie       | 520                 | 260                 | 5,634,870             | 21,673          | 5.35    |
| andy                | 297                 | 149                 | 5,634,870             | 37,818          | 9.34    |
| Sandy Bottomland    | 369                 | 185                 | 5,634,870             | 30,459          | 7.52    |
| Sandy Loam          | 342                 | 171                 | 5,634,870             | 32 <b>,</b> 952 | 8.14    |
| hallow Ridge        | 134                 | 67                  | 5,634,870             | 84,103          | 20.78   |
| Shallow Sandy Loam  | 210                 | 105                 | 5,634,870             | 53 <b>,</b> 665 | 13.26   |
| Sloping Clay Loam   | 186                 | 93                  | 5,634,870             | 60 <b>,</b> 590 | 14.97   |
| ight Sandy Loam     | 285                 | 143                 | 5,634,870             | 39,405          | 9.73    |
| Improved Pasture    | 566                 | 283                 | 5,634,870             | 19,911          | 4.92    |
| lean                |                     |                     |                       |                 | 9.67    |

Appendix Table D.1 Estimation of cattle stocking rates (moderate level) for vegetation plot types in the Goliad County EDYS model. Values assume fair range condition and no woody plant cover.

Annual forage = fair range condition (Appendix Table C.2).

Available forage = (Annual Forage)(0.5), whre 0.5 is proper management harvest rate. AU Forage Requirement = 15,438 g/AUD = (Table 6.1). Stocking Rate = (AU Forage Requirement)/(Available Forage).

| Appendix Table D.2 Estimation of cattle stocking rates (moderate level) for vegetation plot types,  |
|-----------------------------------------------------------------------------------------------------|
| adusted for woody plant cover, in the Goliad County EDYS model. Values assume fair range condition. |

| Range Type                             | Woody Cove | er Annual        | Available        | Forage Requirement     | Stockir          | ng Rate        |
|----------------------------------------|------------|------------------|------------------|------------------------|------------------|----------------|
|                                        | (%)        | Forage $(g/m^2)$ | Forage $(g/m^2)$ | (g/AU)                 | $(m^2/AU)$       | (ac/AU)        |
|                                        |            |                  |                  |                        | . ,              | . ,            |
| Blackland RG Plains                    | 0          | 261              | 131              | 5,634,870              | 43,104           | 10.63          |
| Blackland RG Plains                    | 38         | 182              | 91               | 5,634,870              | 61 <b>,</b> 922  | 15.30          |
| Blackland RG Plains                    | 63         | 130              | 65               | 5,634,870              | 86,690           | 21.42          |
| Blackland RG Plains                    | 83         | 87               | 44               | 5,634,870              | 128,065          | 31.64          |
| Blackland Coastal                      | 0          | 522              | 261              | 5,634,870              | 21,580           | 5.33           |
| Blackland Coastal                      | 5          | 501              | 250              | 5,634,870              | 22,539           | 5.57           |
| Blackland Coastal                      | 18         | 447              | 223              | 5,634,870              | 25,268           | 6.24           |
| Blackland Coastal                      | 38         | 364              | 182              | 5,634,870              | 30,961           | 7.65<br>10.71  |
| Blackland Coastal<br>Blackland Coastal | 63<br>83   | 261<br>174       | 130<br>87        | 5,634,870<br>5,634,870 | 43,345<br>64,769 | 16.00          |
| Blackland Coastal                      | 95         | 63               | 31               | 5,634,870              | 181,770          | 44.90          |
| Clayey Bottomland                      | 0          | 286              | 143              | 5,634,870              | 39,405           | 9.73           |
| Clayey Bottomland                      | 5          | 275              | 137              | 5,634,870              | 41,130           | 10.16          |
| Clayey Bottomland                      | 38         | 200              | 100              | 5,634,870              | 56,349           | 13.92          |
| Clayey Bottomland                      | 63         | 143              | 71               | 5,634,870              | 79,364           | 19.61          |
| Clayey Bottomland                      | 83         | 95               | 47               | 5,634,870              | 119,891          | 29.62          |
| Clay Loam                              | 0          | 286              | 143              | 5,634,870              | 39,405           | 9.73           |
| Clay Loam                              | 5          | 275              | 137              | 5,634,870              | 41,130           | 10.16          |
| Clay Loam                              | 18         | 245              | 122              | 5,634,870              | 46,187           | 11.41          |
| Clay Loam                              | 38         | 200              | 100              | 5,634,870              | 56,349           | 13.92          |
| Clay Loam                              | 63         | 143              | 71               | 5,634,870              | 79 <b>,</b> 364  | 19.61          |
| Clay Loam                              | 83         | 95               | 47               | 5,634,870              | 119,891          | 29.62          |
| Clay Loam                              | 95         | 69               | 34               | 5,634,870              | 165,731          | 40.94          |
| Claypan Prairie                        | 0          | 379              | 190              | 5,634,870              | 29,657           | 7.33           |
| Claypan Prairie                        | 5          | 364              | 182              | 5,634,870              | 30,961           | 7.65           |
| Claypan Prairie                        | 18         | 324              | 162              | 5,634,870              | 34,783           | 8.59           |
| Claypan Prairie                        | 38<br>63   | 265<br>189       | 132              | 5,634,870              | 42,688           | 10.55          |
| Claypan Prairie<br>Claypan Prairie     | 83         | 189              | 94<br>64         | 5,634,870<br>5,634,870 | 59,945<br>88,045 | 14.81<br>21.75 |
| Claypan Prairie                        | 95         | 91               | 45               | 5,634,870              | 125,217          | 30.93          |
| Claypan Savanna                        | 0          | 306              | 153              | 5,634,870              | 36,829           | 9.10           |
| Claypan Savanna                        | 5          | 294              | 147              | 5,634,870              | 38,333           | 9.47           |
| Claypan Savanna                        | 18         | 262              | 131              | 5,634,870              | 43,014           | 10.63          |
| Claypan Savanna                        | 38         | 214              | 107              | 5,634,870              | 52,662           | 13.01          |
| Claypan Savanna                        | 63         | 153              | 76               | 5,634,870              | 74,143           | 18.32          |
| Claypan Savanna                        | 83         | 102              | 51               | 5,634,870              | 110,488          | 27.29          |
| Deep Sand                              | 0          | 243              | 122              | 5,634,870              | 46,187           | 11.41          |
| Deep Sand                              | 5          | 233              | 116              | 5,634,870              | 48,577           | 12.00          |
| Deep Sand                              | 18         | 208              | 104              | 5,634,870              | 54 <b>,</b> 181  | 13.38          |
| Deep Sand                              | 38         | 170              | 85               | 5,634,870              | 66 <b>,</b> 293  | 16.38          |
| Deep Sand                              | 63         | 121              | 60               | 5,634,870              | 93,915           | 23.20          |
| Deep Sand                              | 83         | 81               | 40               | 5,634,870              | 140,872          | 34.80          |
| Gravelly Ridge                         | 0          | 178              | 89               | 5,634,870              | 63,313           | 15.64          |
| Gravelly Ridge                         | 5          | 171              | 85               | 5,634,870              | 66,293           | 16.38          |
| Gravelly Ridge<br>Gravelly Ridge       | 18         | 152<br>124       | 76               | 5,634,870              | 74,143<br>90,885 | 18.32<br>21.45 |
| Gravelly Ridge                         | 38<br>63   | 89               | 62<br>45         | 5,634,870<br>5,634,870 | 125,217          | 30.93          |
| Gravelly Ridge                         | 83         | 59               | 29               | 5,634,870              | 194,306          | 48.00          |
| Gravelly Ridge                         | 95         | 43               | 21               | 5,634,870              | 268,327          | 66.29          |
| Gray Sandy Loam                        | 0          | 260              | 130              | 5,634,870              | 43,345           | 10.71          |
| Gray Sandy Loam                        | 5          | 250              | 125              | 5,634,870              | 45,079           | 11.14          |
| Gray Sandy Loam                        | 18         | 223              | 111              | 5,634,870              | 50,765           | 12.54          |
| Gray Sandy Loam                        | 38         | 182              | 91               | 5,634,870              | 61,922           | 15.30          |
| Gray Sandy Loam                        | 63         | 130              | 65               | 5,634,870              | 86,690           | 21.42          |
| Gray Sandy Loam                        | 83         | 86               | 43               | 5,634,870              | 131,043          | 32.37          |
| Gray Sandy Loam                        | 95         | 62               | 31               | 5,634,870              | 181 <b>,</b> 770 | 44.90          |
| Lakebed RG Plains                      | 0          | 276              | 138              | 5,634,870              | 40,832           | 10.09          |
| Lakebed RG Plains                      | 5          | 265              | 132              | 5,634,870              | 42,688           | 10.55          |
| Lakebed RG Plains                      | 18         | 236              | 118              | 5,634,870              | 47,753           | 11.80          |
| Lakebed RG Plains                      | 38         | 193              | 96               | 5,634,870              | 58,697           | 14.50          |
| Lakebed RG Plains                      | 63         | 138              | 69               | 5,634,870              | 81,665           | 20.17          |
| Lakebed RG Plains                      | 83         | 92               | 46               | 5,634,870              | 122,497          | 30.26          |
| Lakebed RG Plains                      | 95         | 74               | 37               | 5,634,870              | 152,294          | 37.62          |
| Lakebed Coastal                        | 0          | 350              | 175              | 5,634,870              | 32,199           | 7.95           |
|                                        |            |                  |                  |                        |                  |                |

# Appendix Table D.2 (Cont.)

| Range Type                             | Woody Cover | Annual         | Available F      | Forage Requirement     | Stocking          | g Rate         |
|----------------------------------------|-------------|----------------|------------------|------------------------|-------------------|----------------|
| runge i jpe                            | (%)         |                | Forage $(g/m^2)$ | (g/AU)                 |                   | (ac/AU)        |
|                                        | (,,,)       | 101080 (8.111) | 101080 (8.111)   | (8,110)                | (11/110)          | (46/110)       |
| Lakebed Coastal                        | 5           | 336            | 168              | 5,634,870              | 33,451            | 8.26           |
| Lakebed Coastal                        | 18          | 300            | 150              | 5,634,870              | 37,566            | 9.28           |
| Lakebed Coastal                        | 38          | 245            | 122              | 5,634,870              | 46,187            | 11.41          |
| Lakebed Coastal                        | 63          | 168            | 84               | 5,634,870              | 67,082            | 16.57          |
| Loamy Bottomland                       | 0           | 431            | 216              | 5,634,870              | 26,087            | 6.94           |
| Loamy Bottomland                       | 5           | 414            | 207              | 5,634,870              | 27,222            | 6.72           |
| Loamy Bottomland<br>Loamy Bottomland   | 18<br>38    | 369<br>300     | 184<br>150       | 5,634,870<br>5,634,870 | 30,624<br>37,566  | 7.57<br>9.28   |
| Loamy Bottomland                       | 63          | 215            | 107              | 5,634,870              | 52,662            | 13.01          |
| Loamy Bottomland                       | 83          | 143            | 71               | 5,634,870              | 79,364            | 19.61          |
| Loamy Bottomland                       | 95          | 103            | 51               | 5,634,870              | 110,488           | 27.29          |
| Loamy Prairie                          | 0           | 410            | 205              | 5,634,870              | 27,487            | 6.79           |
| Loamy Prairie                          | 5           | 394            | 197              | 5,634,870              | 28,603            | 7.07           |
| Loamy Prairie                          | 18          | 351            | 175              | 5,634,870              | 32,199            | 7.95           |
| Loamy Prairie                          | 38          | 286            | 143              | 5,634,870              | 39,405            | 9.73           |
| Loamy Prairie                          | 63          | 205            | 102              | 5,634,870              | 55,244            | 13.65          |
| Loamy Prairie                          | 83          | 136            | 68               | 5,634,870              | 82,866            | 20.47          |
| Loamy Sand                             | 0           | 295            | 148              | 5,634,870              | 38,074            | 9.41           |
| Loamy Sand                             | 5           | 283            | 141              | 5,634,870              | 39,964            | 9.87           |
| Loamy Sand<br>Loamy Sand               | 18<br>38    | 253<br>206     | 126<br>103       | 5,634,870<br>5,634,870 | 44,721<br>54,707  | 11.05<br>13.51 |
| Loamy Sand                             | 63          | 147            | 73               | 5,634,870              | 77,190            | 19.07          |
| Loamy Sand                             | 83          | 98             | 49               | 5,634,870              | 114,997           | 28.41          |
| Loamy Sand                             | 95          | 71             | 35               | 5,634,870              | 160,996           | 39.77          |
| Lowland Coastal                        | 0           | 447            | 224              | 5,634,870              | 25,156            | 6.21           |
| Lowland Coastal                        | 5           | 429            | 214              | 5,634,870              | 26,331            | 6.50           |
| Lowland Coastal                        | 18          | 383            | 191              | 5,634,870              | 29,502            | 7.29           |
| Lowland Coastal                        | 38          | 312            | 156              | 5,634,870              | 36,121            | 8.92           |
| Lowland Coastal                        | 63          | 223            | 111              | 5,634,870              | 50 <b>,</b> 765   | 12.54          |
| Lowland Coastal                        | 83          | 149            | 74               | 5,634,870              | 76,147            | 18.81          |
| Rolling Blackland                      | 0           | 260            | 130              | 5,634,870              | 43,345            | 10.71          |
| Rolling Blackland                      | 5<br>18     | 250<br>223     | 125              | 5,634,870              | 45,079            | 11.14<br>12.54 |
| Rolling Blackland<br>Rolling Blackland | 38          | 182            | 111<br>91        | 5,634,870<br>5,634,870 | 50,765<br>61,922  | 12.34          |
| Rolling Blackland                      | 63          | 130            | 65               | 5,634,870              | 86,690            | 21.42          |
| Rolling Blackland                      | 83          | 86             | 43               | 5,634,870              | 131,043           | 32.37          |
| Rolling Blackland                      | 95          | 62             | 31               | 5,634,870              | 181,770           | 44.90          |
| Salty Prairie                          | 0           | 520            | 260              | 5,634,870              | 21,673            | 5.35           |
| Salty Prairie                          | 5           | 499            | 249              | 5,634,870              | 22,630            | 5.59           |
| Salty Prairie                          | 18          | 445            | 222              | 5,634,870              | 25,382            | 6.27           |
| Salty Prairie                          | 38          | 364            | 182              | 5,634,870              | 30,961            | 7.65           |
| Salty Prairie                          | 63          | 260            | 130              | 5,634,870              | 43,345            | 10.71          |
| Salty Prairie                          | 83          | 172            | 86               | 5,634,870              | 65,522            | 16.19          |
| Sandy                                  | 0<br>5      | 297<br>285     | 149<br>142       | 5,634,870              | 37,818            | 9.34<br>9.80   |
| Sandy<br>Sandy                         | 18          | 254            | 127              | 5,634,870<br>5,634,870 | 39,682<br>44,369  | 10.96          |
| Sandy                                  | 38          | 207            | 103              | 5,634,870              | 54,707            | 13.51          |
| Sandy                                  | 63          | 148            | 74               | 5,634,870              | 76,147            | 18.81          |
| Sandy                                  | 83          | 99             | 49               | 5,634,870              | 114,997           | 28.41          |
| Sandy                                  | 95          | 71             | 35               | 5,634,870              | 160,996           | 39.77          |
| Sandy Bottomland                       | 0           | 369            | 185              | 5,634,870              | 30,459            | 7.52           |
| Sandy Bottomland                       | 5           | 354            | 177              | 5,634,870              | 31,835            | 7.86           |
| Sandy Bottomland                       | 18          | 316            | 158              | 5,634,870              | 35,664            | 8.81           |
| Sandy Bottomland                       | 38          | 258            | 129              | 5,634,870              | 43,666            | 10.79          |
| Sandy Bottomland                       | 63          | 184            | 92               | 5,634,870              | 61,249            | 15.13          |
| Sandy Bottomland                       | 83          | 123            | 61               | 5,634,870              | 92,375            | 22.82          |
| Sandy Bottomland<br>Sandy Loam         | 95<br>0     | 89<br>342      | 44<br>171        | 5,634,870<br>5,634,870 | 128,065<br>32,952 | 31.64<br>8.14  |
| Sandy Loam<br>Sandy Loam               | 5           | 328            | 164              | 5,634,870              | 34,359            | 8.49           |
| Sandy Loam<br>Sandy Loam               | 18          | 293            | 146              | 5,634,870              | 38,595            | 9.56           |
| Sandy Loam                             | 38          | 238            | 119              | 5,634,870              | 47,352            | 11.70          |
| Sandy Loam                             | 63          | 171            | 85               | 5,634,870              | 66,293            | 16.38          |
| Sandy Loam                             | 83          | 114            | 57               | 5,634,870              | 98,857            | 24.42          |
| Sandy Loam                             | 95          | 82             | 41               | 5,634,870              | 137,436           | 33.95          |
| Shallow Ridge                          | 0           | 134            | 67               | 5,634,870              | 84,103            | 20.78          |
| Shallow Ridge                          | 5           | 129            | 64               | 5,634,870              | 88,045            | 21.75          |
|                                        |             |                |                  |                        |                   |                |

#### Appendix Table D.2 (Cont.)

| Range Type                           | Woody Cover | Annual                     | Available                  | Forage Requirement     | Stock             | ing Rate     |
|--------------------------------------|-------------|----------------------------|----------------------------|------------------------|-------------------|--------------|
|                                      | (%)         | Forage (g/m <sup>2</sup> ) | Forage (g/m <sup>2</sup> ) | (g/AU)                 | $(m^2/AU)$        | (ac/AU)      |
|                                      |             | 0 (0 /                     | 0 (0 )                     |                        |                   | × /          |
| Shallow Ridge                        | 18          | 115                        | 57                         | 5,634,870              | 98,857            | 24.42        |
| Shallow Ridge                        | 38          | 93                         | 46                         | 5,634,870              | 122,497           | 30.26        |
| Shallow Ridge                        | 63          | 67                         | 33                         | 5,634,870              | 170,754           | 42.18        |
| Shallow Ridge                        | 83          | 44                         | 22                         | 5,634,870              | 256,130           | 63.27        |
| Shallow Ridge                        | 95          | 32                         | 16                         | 5,634,870              | 352,179           | 87.00        |
| Shallow Sandy Loam                   | 0           | 210                        | 105                        | 5,634,870              | 53,665            | 13.26        |
| Shallow Sandy Loam                   | 5           | 202                        | 101                        | 5,634,870              | 55,791            | 13.78        |
| Shallow Sandy Loam                   | 18          | 180                        | 90                         | 5,634,870              | 62,610            | 15.47        |
| Shallow Sandy Loam                   | 38          | 147                        | 73                         | 5,634,870              | 77,190            | 19.07        |
| Shallow Sandy Loam                   | 63          | 105                        | 52                         | 5,634,870              | 108,363           | 26.77        |
| Shallow Sandy Loam                   | 83          | 70                         | 35                         | 5,634,870              | 160,996           | 39.77        |
| Shallow Sandy Loam                   | 95          | 50                         | 25                         | 5,634,870              | 225,395           | 55.68        |
| Sloping Clay Loam                    | 0           | 186                        | 93                         | 5,634,870              | 60,590            | 14.97        |
| Sloping Clay Loam                    | 5           | 179                        | 89                         | 5,934,870              | 63,313            | 15.63        |
| Sloping Clay Loam                    | 18          | 159                        | 79                         | 5,934,870              | 71,327            | 17.62        |
| Sloping Clay Loam                    | 38          | 130                        | 65                         | 5,634,870              | 86,690            | 21.42        |
| Sloping Clay Loam                    | 63          | 93                         | 46                         | 5,634,870              | 122,497           | 30.26        |
| Sloping Clay Loam                    | 83          | 62                         | 31                         | 5,634,870              | 181,770           | 44.90        |
| Sloping Clay Loam                    | 95          | 45                         | 22                         | 5,634,870              | 256,130           | 63.27        |
| Tight Sandy Loam                     | 0           | 285                        | 143                        | 5,634,870              | 39,405            | 9.73         |
| Tight Sandy Loam                     | 5           | 205                        | 137                        | 5,634,870              | 41,130            | 10.16        |
| Tight Sandy Loam                     | 18          | 244                        | 122                        | 5,634,870              | 46,187            | 11.41        |
| Tight Sandy Loam                     | 38          | 199                        | 99                         | 5,634,870              | 56,918            | 14.06        |
|                                      | 63          | 142                        | 71                         |                        | 79,364            | 19.61        |
| Tight Sandy Loam                     | 83          | 95                         | 47                         | 5,634,870              | 119,891           | 29.62        |
| Tight Sandy Loam                     | o.5<br>95   | 68                         | 34                         | 5,634,870              |                   | 40.94        |
| Tight Sandy Loam                     | 0           |                            | 283                        | 5,634,870              | 165,731<br>19,911 | 40.94        |
| Improved Pasture                     | 5           | 566<br>543                 | 283                        | 5,634,870              |                   | 4.92<br>5.14 |
| Improved Pasture<br>Improved Pasture | 18          | 484                        | 242                        | 5,634,870<br>5,634,870 | 20,793<br>23,285  | 5.75         |
| Colishe Dit                          | 0           | 100                        | FO                         | E (34 070              | 110 007           | 07 04        |
| Caliche Pit                          | 0           | 100                        | 50                         | 5,634,870              | 112,697           | 27.84        |
| Caliche Pit                          | 5           | 96                         | 48                         | 5,634,870              | 117,393           | 29.00        |
| Caliche Pit                          | 18          | 86                         | 43                         | 5,634,870              | 131,043           | 32.37        |
| Caliche Pit                          | 38          | 70                         | 35                         | 5,634,870              | 160,996           | 39.77        |
| Disturbed Site                       | 0           | 100                        | 50                         | 5,634,870              | 112,697           | 27.84        |
| Disturbed Site                       | 5           | 96                         | 48                         | 5,634,870              | 117,393           | 29.00        |
| Disturbed Site                       | 18          | 86                         | 43                         | 5,634,870              | 131,043           | 32.37        |
| Disturbed Site                       | 38          | 70                         | 35                         | 5,634,870              | 160,996           | 39.37        |
| Orchard                              | 0           | 70                         | 35                         | 5,634,870              | 160,996           | 39.37        |
| Orchard                              | 5           | 67                         | 33                         | 5,634,870              | 170,754           | 42.18        |
| Orchard                              | 18          | 60                         | 30                         | 5,634,870              | 187,829           | 46.40        |
| Orchard                              | 38          | 49                         | 24                         | 5,634,870              | 234,786           | 58.00        |
| Urban/Housing                        | 0           | 500                        | 250                        | 5,634,870              | 22,539            | 5.57         |
| Urban/Housing                        | 5           | 480                        | 240                        | 5,634,870              | 23,479            | 5.80         |
| Urban/Housing                        | 18          | 428                        | 214                        | 5,634,870              | 26,331            | 6.50         |
| Urban/Housing                        | 38          | 348                        | 174                        | 5,634,870              | 32,384            | 8.00         |
| Urban/Housing                        | 63          | 250                        | 125                        | 5,634,870              | 45,079            | 11.14        |
| Industrial                           | 0           | 350                        | 175                        | 5,634,870              | 32,199            | 7.95         |
| Industrial                           | 5           | 336                        | 168                        | 5,634,870              | 33,541            | 8.26         |
| Industrial                           | 18          | 300                        | 150                        | 5,634,870              | 37 <b>,</b> 566   | 9.28         |
| Industrial                           | 38          | 245                        | 122                        | 5,634,870              | 46,187            | 11.41        |
| Oil Pad                              | 0           | 0                          | 0                          | 5,634,870              |                   |              |
| Oil Pad                              | 5           | 0                          | 0                          | 5,634,870              |                   |              |
| Oil Pad                              | 18          | 0                          | 0                          | 5,634,870              |                   |              |

Annual forage = fair range condition (Appendix Table C.2).

Available forage = (Annual Forage)(0.5), where 0.5 is proper management harvest rate. AU Forage Requirement = 15,438 g/AUD (Table 6.1).

Stocking rate = (AU Forage Requirement)(Available Forage)[1.00 - 0.8(percent woody plant cover/100)]; Appendix Table C.24.

| <b>APPENDIX E</b> | PLANT PARAMETERS |
|-------------------|------------------|
|-------------------|------------------|

Appendix Table E.1 General species characteristics for species used in the Goliad County EDYS model.

| . <u>1 Ocheral species charac</u> | teristics for species t | iscu ili tile |          | my |
|-----------------------------------|-------------------------|---------------|----------|----|
| Common Name                       | Growth Form             | Legume        | Biennial |    |
| Huisache                          | Deciduous Tree          | 1             | No       |    |
| Pecan                             | Deciduous Tree          | 0             | No       |    |
| Sugar hackberry                   | Deciduous Tree          | 0             | No       |    |
| Mesquite                          | Deciduous Tree          | 1             | No       |    |
| Post oak                          | Deciduous Tree          | 0             | No       |    |
| Live oak                          | Evergreen Tree          | 0             | No       |    |
| Guajillo                          | Evergreen Shrub         | 1             | No       |    |
| Blackbrush                        | Deciduous Shrub         | 1             | No       |    |
| Whitebrush                        | Deciduous Shrub         | 0             | No       |    |
| Prairie baccharis                 | Deciduous Shrub         | 0             | No       |    |
| Sea oxeye                         | Deciduous Shrub         | 0             | No       |    |
| Granjeno                          | Deciduous Shrub         | 0             | No       |    |
| Carolina wolfberry                | Deciduous Shrub         | 0             | No       |    |
| Agarito                           | evergreen shrub         | 0             | No       |    |
| McCartney rose                    | Deciduous Shrub         | 0             | No       |    |
| Rattlepod                         | Deciduous Shrub         | 1             | No       |    |
| Mustang grape                     | Deciduous Vine          | 0             | No       |    |
| Texas prickly pear                | Cacti                   | 0             | No       |    |
| Big bluestem                      | Perennial Grass         | 0             | No       |    |
| Bushy bluestem                    | Perennial Grass         | 0             | No       |    |
| Purple threeawn                   | Perennial Grass         | 0             | No       |    |
| King Ranch bluestem               | Perennial Grass         | 0             | No       |    |
| Silver bluestem                   | Perennial Grass         | 0             | No       |    |
| Sideoats grama                    | Perennial Grass         | 0             | No       |    |
| Hairy grama                       | Perennial Grass         | 0             | No       |    |
| Red grama                         | Perennial Grass         | 0             | No       |    |
| Buffalograss                      | Perennial Grass         | 0             | No       |    |
| Sandbur                           | Perennial Grass         | 0             | No       |    |
| Hooded windmillgrass              | Perennial Grass         | 0             | No       |    |
| Trichloris                        | Perennial Grass         | 0             | No       |    |
| Bermudagrass                      | Perennial Grass         | 0             | No       |    |
| Arizona cottontop                 | Perennial Grass         | 0             | No       |    |
| Saltgrass                         | Perennial Grass         | 0             | No       |    |
| Virginia wildrye                  | Perennial Grass         | 0             | No       |    |
| Texas cupgrass                    | Perennial Grass         | 0             | No       |    |
| Green sprangletop                 | Perennial Grass         | 0             | No       |    |
| Kleingrass                        | Perennial Grass         | 0             | No       |    |
| Guineagrass                       | Perennial Grass         | 0             | No       |    |
| Vine-mesquite                     | Perennial Grass         | 0             | No       |    |
| Switchgrass                       | Perennial Grass         | 0             | No       |    |
| Longtom                           | Perennial Grass         | 0             | No       |    |
| Brownseed paspalum                | Perennial Grass         | 0             | No       |    |
|                                   |                         | •             |          |    |

Appendix Table E.1 (Cont.)

| 2. <u>1 (Cont.)</u>   |                     |        |          |
|-----------------------|---------------------|--------|----------|
| Common Name           | Growth Form         | Legume | Biennial |
| Thin paspalum         | Perennial Grass     | 0      | No       |
| Common reed           | Perennial Grass     | 0      | No       |
| Little bluestem       | Perennial Grass     | 0      | No       |
| Knotroot bristlegrass | Perennial Grass     | 0      | No       |
| Plains bristlegrass   | Perennial Grass     | 0      | No       |
| Texas bristlegrass    | Perennial Grass     | 0      | No       |
| Indiangrass           | Perennial Grass     | 0      | No       |
| Johnsongrass          | Perennial Grass     | 0      | No       |
| Gulf cordgrass        | Perennial Grass     | 0      | No       |
| Tall dropseed         | Perennial Grass     | 0      | No       |
| Sand dropseed         | Perennial Grass     | 0      | No       |
| Smutgrass             | Perennial Grass     | 0      | No       |
| Texas wintergrass     | Perennial Grass     | 0      | No       |
| Milo                  | Annual Grass        | 0      | No       |
| Wheat                 | Annual Grass        | 0      | No       |
| Corn                  | Annual Grass        | 0      | No       |
| Littletooth sedge     | Perennial Grasslike | 0      | No       |
| Flatsedge             | Perennial Grasslike | 0      | No       |
| Cattail               | Perennial Grasslike | 0      | No       |
| Ragweed               | Perennial Forb      | 0      | No       |
| Lazydaisy             | Perennial Forb      | 0      | No       |
| Spiny aster           | Perennial Forb      | 0      | No       |
| Whitestem wild indigo | Perennial Forb      | 0      | No       |
| Old-mans beard        | Perennial Forb      | 0      | No       |
| Bundleflower          | Perennial Forb      | 1      | No       |
| Frogfruit             | Perennial Forb      | 0      | No       |
| Prairie coneflower    | Perennial Forb      | 0      | No       |
| Snoutbean             | Perennial Forb      | 1      | No       |
| Ruellia               | Perennial Forb      | 0      | No       |
| Curly dock            | Perennial Forb      | 1      | No       |
| Bulltongue            | Perennial Forb      | 1      | No       |
| Glasswort             | Perennial Forb      | 0      | No       |
| Bush sunflower        | Perennial Forb      | 0      | No       |
| Green briar           | Perennial Forb      | 0      | No       |
| Texas verbena         | Perennial Forb      | 0      | No       |
| Orange zexmenia       | Perennial Forb      | 0      | No       |
| Giant ragweed         | Annual Forb         | 0      | No       |
| Annual broomweed      | Annual Forb         | 0      | No       |
| Partridge pea         | Annual Forb         | 1      | No       |
| Texas doveweed        | Annual Forb         | 0      | No       |
| Sunflower             | Annual Forb         | 0      | No       |
| Dogweed               | Annual Forb         | 0      | No       |

| Appendix Table E.2 Tissue allocation in mature plants, by plant part (proportion of total), and root:shoot |
|------------------------------------------------------------------------------------------------------------|
| ratio (R:S) for species included in the Goliad County EDYS model.                                          |

| Common Name          | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|----------------------|-------|-------|-------|-------|--------|-------|
| Huisache             | 0.34  | 0.12  | 0.38  | 0.11  | 0.05   | 0.00  |
| Pecan                | 0.32  | 0.11  | 0.40  | 0.12  | 0.05   | 0.00  |
| Sugar hackberry      | 0.16  | 0.06  | 0.55  | 0.17  | 0.06   | 0.00  |
| Mesquite             | 0.14  | 0.10  | 0.39  | 0.28  | 0.09   | 0.00  |
| Post oak             | 0.20  | 0.07  | 0.51  | 0.16  | 0.06   | 0.00  |
| Live oak             | 0.24  | 0.08  | 0.48  | 0.15  | 0.05   | 0.00  |
| Guajillo             | 0.27  | 0.12  | 0.34  | 0.18  | 0.09   | 0.00  |
| Blackbrush           | 0.27  | 0.12  | 0.34  | 0.18  | 0.09   | 0.00  |
| Whitebrush           | 0.26  | 0.12  | 0.34  | 0.19  | 0.09   | 0.00  |
| Prairie baccharis    | 0.26  | 0.12  | 0.34  | 0.19  | 0.09   | 0.00  |
| Sea oxeye            | 0.32  | 0.15  | 0.28  | 0.19  | 0.06   | 0.00  |
| Granjeno             | 0.28  | 0.12  | 0.33  | 0.18  | 0.09   | 0.00  |
| Carolina wolfberry   | 0.25  | 0.10  | 0.21  | 0.23  | 0.21   | 0.00  |
| Agarito              | 0.35  | 0.14  | 0.28  | 0.15  | 0.08   | 0.00  |
| McCartney rose       | 0.32  | 0.15  | 0.28  | 0.19  | 0.06   | 0.00  |
| Rattlepod            | 0.27  | 0.11  | 0.34  | 0.19  | 0.09   | 0.00  |
| Mustang grape        | 0.23  | 0.10  | 0.35  | 0.17  | 0.15   | 0.00  |
| Texas prickly pear   | 0.16  | 0.08  | 0.37  | 0.38  | 0.01   | 0.00  |
| Big bluestem         | 0.24  | 0.24  | 0.10  | 0.21  | 0.21   | 0.00  |
| Bushy bluestem       | 0.23  | 0.36  | 0.13  | 0.16  | 0.12   | 0.00  |
| Purple threeawn      | 0.33  | 0.32  | 0.07  | 0.14  | 0.14   | 0.00  |
| King Ranch bluestem  | 0.31  | 0.30  | 0.08  | 0.16  | 0.15   | 0.00  |
| Silver bluestem      | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Sideoats grama       | 0.31  | 0.31  | 0.08  | 0.15  | 0.15   | 0.00  |
| Hairy grama          | 0.18  | 0.18  | 0.21  | 0.06  | 0.37   | 0.00  |
| Red grama            | 0.18  | 0.18  | 0.21  | 0.06  | 0.37   | 0.00  |
| Buffalograss         | 0.28  | 0.27  | 0.12  | 0.05  | 0.28   | 0.00  |
| Sandbur              | 0.26  | 0.39  | 0.12  | 0.08  | 0.15   | 0.00  |
| Hooded windmillgrass | 0.23  | 0.24  | 0.14  | 0.05  | 0.34   | 0.00  |
| Trichloris           | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Bermudagrass         | 0.28  | 0.27  | 0.15  | 0.05  | 0.25   | 0.00  |
| Arizona cottontop    | 0.23  | 0.24  | 0.11  | 0.21  | 0.21   | 0.00  |
| Saltgrass            | 0.23  | 0.36  | 0.13  | 0.16  | 0.12   | 0.00  |
| Virginia wildrye     | 0.23  | 0.23  | 0.11  | 0.22  | 0.21   | 0.00  |
| Texas cupgrass       | 0.26  | 0.26  | 0.10  | 0.19  | 0.19   | 0.00  |
| Green sprangletop    | 0.23  | 0.23  | 0.11  | 0.22  | 0.21   | 0.00  |
| Kleingrass           | 0.23  | 0.24  | 0.11  | 0.21  | 0.21   | 0.00  |
| Guineagrass          | 0.23  | 0.24  | 0.11  | 0.21  | 0.21   | 0.00  |
| Vine-mesquite        | 0.23  | 0.23  | 0.11  | 0.22  | 0.21   | 0.00  |
| Switchgrass          | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Longtom              | 0.36  | 0.35  | 0.08  | 0.03  | 0.18   | 0.00  |
| Brownseed paspalum   | 0.22  | 0.33  | 0.10  | 0.16  | 0.19   | 0.00  |

# Appendix Table E.2 (Cont.)

| Common Name           | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|-----------------------|-------|-------|-------|-------|--------|-------|
| Thin paspalum         | 0.22  | 0.21  | 0.17  | 0.06  | 0.34   | 0.00  |
| Common reed           | 0.18  | 0.18  | 0.18  | 0.26  | 0.20   | 0.00  |
| Little bluestem       | 0.31  | 0.31  | 0.08  | 0.15  | 0.15   | 0.00  |
| Knotroot bristlegrass | 0.26  | 0.26  | 0.14  | 0.05  | 0.29   | 0.00  |
| Plains bristlegrass   | 0.31  | 0.46  | 0.03  | 0.12  | 0.08   | 0.00  |
| Texas bristlegrass    | 0.19  | 0.19  | 0.19  | 0.06  | 0.37   | 0.00  |
| Indiangrass           | 0.37  | 0.36  | 0.05  | 0.11  | 0.11   | 0.00  |
| Johnsongrass          | 0.35  | 0.34  | 0.06  | 0.13  | 0.12   | 0.00  |
| Gulf cordgrass        | 0.31  | 0.46  | 0.03  | 0.12  | 0.08   | 0.00  |
| Tall dropseed         | 0.26  | 0.26  | 0.10  | 0.19  | 0.19   | 0.00  |
| Sand dropseed         | 0.24  | 0.23  | 0.11  | 0.21  | 0.21   | 0.00  |
| Smutgrass             | 0.31  | 0.46  | 0.03  | 0.12  | 0.08   | 0.00  |
| Texas wintergrass     | 0.28  | 0.28  | 0.13  | 0.04  | 0.27   | 0.00  |
| Milo                  | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Wheat                 | 0.23  | 0.24  | 0.11  | 0.21  | 0.21   | 0.00  |
| Corn                  | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Littletooth sedge     | 0.28  | 0.27  | 0.13  | 0.05  | 0.27   | 0.00  |
| Flatsedge             | 0.39  | 0.38  | 0.05  | 0.09  | 0.09   | 0.00  |
| Cattail               | 0.39  | 0.38  | 0.05  | 0.09  | 0.09   | 0.00  |
| Ragweed               | 0.28  | 0.28  | 0.09  | 0.18  | 0.17   | 0.00  |
| Lazydaisy             | 0.29  | 0.29  | 0.08  | 0.17  | 0.17   | 0.00  |
| Spiny aster           | 0.49  | 0.20  | 0.05  | 0.17  | 0.09   | 0.00  |
| Whitestem wild indigo | 0.24  | 0.25  | 0.09  | 0.15  | 0.27   | 0.00  |
| Old-mans beard        | 0.29  | 0.28  | 0.08  | 0.09  | 0.26   | 0.00  |
| Bundleflower          | 0.29  | 0.30  | 0.08  | 0.16  | 0.17   | 0.00  |
| Frogfruit             | 0.16  | 0.17  | 0.20  | 0.07  | 0.40   | 0.00  |
| Prairie coneflower    | 0.29  | 0.29  | 0.08  | 0.18  | 0.17   | 0.00  |
| Snoutbean             | 0.21  | 0.20  | 0.17  | 0.06  | 0.36   | 0.00  |
| Ruellia               | 0.19  | 0.19  | 0.19  | 0.06  | 0.37   | 0.00  |
| Curly dock            | 0.20  | 0.05  | 0.19  | 0.09  | 0.47   | 0.00  |
| Bulltongue            | 0.20  | 0.05  | 0.19  | 0.09  | 0.47   | 0.00  |
| Glasswort             | 0.14  | 0.10  | 0.25  | 0.25  | 0.26   | 0.00  |
| Bush sunflower        | 0.28  | 0.28  | 0.09  | 0.18  | 0.17   | 0.00  |
| Green briar           | 0.25  | 0.25  | 0.15  | 0.18  | 0.16   | 0.00  |
| Texas verbena         | 0.21  | 0.20  | 0.17  | 0.06  | 0.36   | 0.00  |
| Orange zexmenia       | 0.28  | 0.28  | 0.09  | 0.18  | 0.17   | 0.00  |
| Giant ragweed         | 0.16  | 0.17  | 0.13  | 0.27  | 0.27   | 0.00  |
| Annual broomweed      | 0.19  | 0.19  | 0.12  | 0.25  | 0.25   | 0.00  |
| Partridge pea         | 0.19  | 0.19  | 0.19  | 0.06  | 0.37   | 0.00  |
| Texas doveweed        | 0.14  | 0.15  | 0.14  | 0.29  | 0.28   | 0.00  |
| Sunflower             | 0.08  | 0.07  | 0.17  | 0.34  | 0.34   | 0.00  |
| Dogweed               | 0.19  | 0.19  | 0.16  | 0.06  | 0.40   | 0.00  |

croot = coarse roots; froot = fine roots

#### **Data Sources**

Root:Shoot Ratios

| Huisache:               | huisache seedling = 0.48 (Fulbright et al. 1997); <i>Leucaena leucocephala</i> seedling = 0.46 (Jones & Aliyu 1976; Huang et al. 1985); <i>Leucaena leucocephala</i> mature = 0.82 (Von Carlowitz & Wolf |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                         | 1991); huisache mature = $0.82(0.48/0.46) = 0.85$                                                                                                                                                        |  |  |  |  |
| Pecan:                  | Slow-growing hardwoods (Odum 1971:375)                                                                                                                                                                   |  |  |  |  |
| Sugar hackberry         | : Fagus sp. (Garelkov 1973)                                                                                                                                                                              |  |  |  |  |
| Texas persimmo          | n Slow-growing hardwoods (Odum 1971:375)                                                                                                                                                                 |  |  |  |  |
| Mesquite:               | Twice the value reported by Barth et al. (1982)                                                                                                                                                          |  |  |  |  |
| Post oak:               | Mean of Quercus alba (Nadelhoffer et al. 1985), Q. rubra (Nadelhoffer et al. 1985), Q. robur                                                                                                             |  |  |  |  |
|                         | (Andersson 1970, Duvigneaud et al. 1971, Rodin & Bazilevich 1967), Q. robus (Duvigneaud et al.                                                                                                           |  |  |  |  |
|                         | 1971), Q. velutina (Nadelhoffer et al. 1985)                                                                                                                                                             |  |  |  |  |
| Live oak:               | Mean of Quercus alba and Q. velutina (Nadelhoffer et al. 1985)                                                                                                                                           |  |  |  |  |
| Coarse:Fine Root Ratios |                                                                                                                                                                                                          |  |  |  |  |
| Coarse:Fine 7           | 5:25 trees; 70:30 shrubs; 50:50 herbaceous                                                                                                                                                               |  |  |  |  |

Aboveground Tissue Allocation (Trunk:Stem:Leaves)

 Trees:
 0.70:0.22:0.08

 Shrubs:
 0.55:0.30:0.15

 Herbaceous (stemmy):
 0.2:0.4:0.4

 Herbaceous (short):
 0.3:0.1:0.6

Appendix Table E.3 Allocation of new biomass production by plant part (proportion of total) for species included in the Goliad County EDYS model.

| Common Name          | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|----------------------|-------|-------|-------|-------|--------|-------|
| Huisache             | 0.08  | 0.20  | 0.09  | 0.22  | 0.41   | 0.00  |
| Pecan                | 0.11  | 0.32  | 0.15  | 0.08  | 0.34   | 0.00  |
| Sugar hackberry      | 0.06  | 0.16  | 0.27  | 0.08  | 0.43   | 0.00  |
| Mesquite             | 0.08  | 0.30  | 0.12  | 0.19  | 0.31   | 0.00  |
| Post oak             | 0.07  | 0.20  | 0.25  | 0.08  | 0.40   | 0.00  |
| Live oak             | 0.10  | 0.20  | 0.15  | 0.07  | 0.48   | 0.00  |
| Guajillo             | 0.06  | 0.20  | 0.04  | 0.18  | 0.52   | 0.00  |
| Blackbrush           | 0.05  | 0.20  | 0.05  | 0.20  | 0.50   | 0.00  |
| Whitebrush           | 0.04  | 0.18  | 0.04  | 0.25  | 0.49   | 0.00  |
| Prairie baccharis    | 0.05  | 0.20  | 0.05  | 0.20  | 0.50   | 0.00  |
| Sea oxeye            | 0.14  | 0.40  | 0.10  | 0.15  | 0.21   | 0.00  |
| Granjeno             | 0.04  | 0.18  | 0.04  | 0.22  | 0.52   | 0.00  |
| Carolina wolfberry   | 0.08  | 0.25  | 0.20  | 0.22  | 0.25   | 0.00  |
| Agarito              | 0.07  | 0.25  | 0.10  | 0.10  | 0.48   | 0.00  |
| McCartney rose       | 0.14  | 0.40  | 0.10  | 0.15  | 0.21   | 0.00  |
| Rattlepod            | 0.05  | 0.20  | 0.10  | 0.15  | 0.50   | 0.00  |
| Mustang grape        | 0.03  | 0.20  | 0.10  | 0.15  | 0.52   | 0.00  |
| Texas prickly pear   | 0.10  | 0.22  | 0.20  | 0.46  | 0.02   | 0.00  |
| Big bluestem         | 0.10  | 0.24  | 0.05  | 0.30  | 0.31   | 0.00  |
| Bushy bluestem       | 0.10  | 0.25  | 0.10  | 0.25  | 0.30   | 0.00  |
| Purple threeawn      | 0.12  | 0.25  | 0.08  | 0.10  | 0.45   | 0.00  |
| King Ranch bluestem  | 0.12  | 0.25  | 0.10  | 0.05  | 0.48   | 0.00  |
| Silver bluestem      | 0.12  | 0.24  | 0.05  | 0.25  | 0.34   | 0.00  |
| Sideoats grama       | 0.12  | 0.24  | 0.05  | 0.26  | 0.33   | 0.00  |
| Hairy grama          | 0.09  | 0.18  | 0.10  | 0.06  | 0.57   | 0.00  |
| Red grama            | 0.10  | 0.25  | 0.08  | 0.10  | 0.47   | 0.00  |
| Buffalograss         | 0.16  | 0.27  | 0.10  | 0.12  | 0.35   | 0.00  |
| Sandbur              | 0.02  | 0.40  | 0.10  | 0.15  | 0.33   | 0.00  |
| Hooded windmillgrass | 0.12  | 0.24  | 0.07  | 0.05  | 0.52   | 0.00  |
| Trichloris           | 0.12  | 0.25  | 0.04  | 0.26  | 0.33   | 0.00  |
| Bermudagrass         | 0.12  | 0.25  | 0.10  | 0.05  | 0.48   | 0.00  |
| Arizona cottontop    | 0.12  | 0.24  | 0.05  | 0.30  | 0.29   | 0.00  |
| Saltgrass            | 0.09  | 0.36  | 0.19  | 0.24  | 0.12   | 0.00  |
| Virginia wildrye     | 0.12  | 0.23  | 0.05  | 0.30  | 0.30   | 0.00  |
| Texas cupgrass       | 0.12  | 0.23  | 0.10  | 0.24  | 0.31   | 0.00  |
| Green sprangletop    | 0.12  | 0.24  | 0.08  | 0.25  | 0.31   | 0.00  |
| Kleingrass           | 0.11  | 0.24  | 0.05  | 0.30  | 0.30   | 0.00  |
| Guineagrass          | 0.11  | 0.24  | 0.05  | 0.30  | 0.30   | 0.00  |
| Vine-mesquite        | 0.11  | 0.21  | 0.06  | 0.30  | 0.32   | 0.00  |
| Switchgrass          | 0.11  | 0.24  | 0.06  | 0.25  | 0.34   | 0.00  |
| Longtom              | 0.13  | 0.25  | 0.08  | 0.22  | 0.32   | 0.00  |
| Brownseed paspalum   | 0.10  | 0.22  | 0.08  | 0.30  | 0.30   | 0.00  |

# Appendix Table E.3 (Cont.)

| Common Name           | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|-----------------------|-------|-------|-------|-------|--------|-------|
| Thin paspalum         | 0.11  | 0.21  | 0.09  | 0.20  | 0.39   | 0.00  |
| Common reed           | 0.15  | 0.25  | 0.10  | 0.20  | 0.30   | 0.00  |
| Little bluestem       | 0.13  | 0.25  | 0.05  | 0.26  | 0.31   | 0.00  |
| Knotroot bristlegrass | 0.14  | 0.25  | 0.10  | 0.26  | 0.25   | 0.00  |
| Plains bristlegrass   | 0.04  | 0.17  | 0.11  | 0.45  | 0.23   | 0.00  |
| Texas bristlegrass    | 0.09  | 0.20  | 0.09  | 0.10  | 0.52   | 0.00  |
| Indiangrass           | 0.10  | 0.24  | 0.05  | 0.30  | 0.31   | 0.00  |
| Johnsongrass          | 0.12  | 0.23  | 0.05  | 0.30  | 0.30   | 0.00  |
| Gulf cordgrass        | 0.04  | 0.17  | 0.11  | 0.45  | 0.23   | 0.00  |
| Tall dropseed         | 0.11  | 0.24  | 0.05  | 0.30  | 0.30   | 0.00  |
| Sand dropseed         | 0.12  | 0.24  | 0.06  | 0.30  | 0.28   | 0.00  |
| Smutgrass             | 0.04  | 0.17  | 0.11  | 0.45  | 0.23   | 0.00  |
| Texas wintergrass     | 0.10  | 0.20  | 0.05  | 0.40  | 0.25   | 0.00  |
| Milo                  | 0.10  | 0.20  | 0.05  | 0.25  | 0.40   | 0.00  |
| Wheat                 | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Corn                  | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Littletooth sedge     | 0.14  | 0.27  | 0.07  | 0.10  | 0.42   | 0.00  |
| Flatsedge             | 0.18  | 0.35  | 0.06  | 0.12  | 0.29   | 0.00  |
| Cattail               | 0.20  | 0.20  | 0.04  | 0.28  | 0.28   | 0.00  |
| Ragweed               | 0.15  | 0.20  | 0.10  | 0.30  | 0.25   | 0.00  |
| Lazydaisy             | 0.10  | 0.25  | 0.10  | 0.15  | 0.40   | 0.00  |
| Spiny aster           | 0.28  | 0.12  | 0.20  | 0.20  | 0.20   | 0.00  |
| Whitestem wild indigo | 0.04  | 0.18  | 0.26  | 0.26  | 0.26   | 0.00  |
| Old-mans beard        | 0.15  | 0.28  | 0.10  | 0.24  | 0.23   | 0.00  |
| Bundleflower          | 0.08  | 0.18  | 0.10  | 0.32  | 0.32   | 0.00  |
| Frogfruit             | 0.08  | 0.17  | 0.10  | 0.30  | 0.35   | 0.00  |
| Prairie coneflower    | 0.12  | 0.24  | 0.08  | 0.30  | 0.26   | 0.00  |
| Snoutbean             | 0.10  | 0.20  | 0.10  | 0.30  | 0.30   | 0.00  |
| Ruellia               | 0.15  | 0.25  | 0.15  | 0.05  | 0.40   | 0.00  |
| Curly dock            | 0.05  | 0.15  | 0.20  | 0.10  | 0.50   | 0.00  |
| Bulltongue            | 0.05  | 0.15  | 0.20  | 0.10  | 0.50   | 0.00  |
| Glasswort             | 0.15  | 0.15  | 0.24  | 0.10  | 0.36   | 0.00  |
| Bush sunflower        | 0.12  | 0.25  | 0.12  | 0.26  | 0.25   | 0.00  |
| Green briar           | 0.15  | 0.15  | 0.15  | 0.30  | 0.25   | 0.00  |
| Texas verbena         | 0.10  | 0.20  | 0.12  | 0.29  | 0.29   | 0.00  |
| Orange zexmenia       | 0.13  | 0.25  | 0.12  | 0.25  | 0.25   | 0.00  |
| Giant ragweed         | 0.16  | 0.17  | 0.13  | 0.27  | 0.27   | 0.00  |
| Annual broomweed      | 0.19  | 0.19  | 0.12  | 0.25  | 0.25   | 0.00  |
| Partridge pea         | 0.19  | 0.19  | 0.19  | 0.06  | 0.37   | 0.00  |
| Texas doveweed        | 0.14  | 0.15  | 0.14  | 0.29  | 0.28   | 0.00  |
| Sunflower             | 0.12  | 0.20  | 0.10  | 0.30  | 0.23   | 0.05  |
| Dogweed               | 0.19  | 0.19  | 0.16  | 0.06  | 0.40   | 0.00  |

Appendix Table E.4 Allocation of biomass production in green-out months by plant part (proportion of total) for species included in the Goliad County EDYS model.

| Common Name          | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|----------------------|-------|-------|-------|-------|--------|-------|
| Huisache             | 0.00  | 0.23  | 0.00  | 0.04  | 0.73   | 0.00  |
| Pecan                | 0.00  | 0.24  | 0.00  | 0.05  | 0.71   | 0.00  |
| Sugar hackberry      | 0.00  | 0.12  | 0.00  | 0.06  | 0.82   | 0.00  |
| Mesquite             | 0.00  | 0.15  | 0.00  | 0.10  | 0.75   | 0.00  |
| Post oak             | 0.00  | 0.15  | 0.00  | 0.06  | 0.79   | 0.00  |
| Live oak             | 0.00  | 0.18  | 0.00  | 0.05  | 0.77   | 0.00  |
| Guajillo             | 0.00  | 0.20  | 0.00  | 0.20  | 0.60   | 0.00  |
| Blackbrush           | 0.00  | 0.20  | 0.00  | 0.20  | 0.60   | 0.00  |
| Whitebrush           | 0.00  | 0.19  | 0.00  | 0.20  | 0.61   | 0.00  |
| Prairie baccharis    | 0.00  | 0.19  | 0.00  | 0.20  | 0.61   | 0.00  |
| Sea oxeye            | 0.00  | 0.15  | 0.00  | 0.25  | 0.60   | 0.00  |
| Granjeno             | 0.00  | 0.21  | 0.00  | 0.19  | 0.60   | 0.00  |
| Carolina wolfberry   | 0.00  | 0.25  | 0.20  | 0.20  | 0.35   | 0.00  |
| Agarito              | 0.00  | 0.26  | 0.00  | 0.37  | 0.37   | 0.00  |
| McCartney rose       | 0.00  | 0.15  | 0.00  | 0.25  | 0.60   | 0.00  |
| Rattlepod            | 0.00  | 0.19  | 0.00  | 0.30  | 0.51   | 0.00  |
| Mustang grape        | 0.00  | 0.17  | 0.00  | 0.23  | 0.60   | 0.00  |
| Texas prickly pear   | 0.10  | 0.15  | 0.05  | 0.69  | 0.01   | 0.00  |
| Big bluestem         | 0.01  | 0.18  | 0.00  | 0.41  | 0.40   | 0.00  |
| Bushy bluestem       | 0.00  | 0.00  | 0.00  | 0.33  | 0.67   | 0.00  |
| Purple threeawn      | 0.00  | 0.19  | 0.00  | 0.03  | 0.78   | 0.00  |
| King Ranch bluestem  | 0.01  | 0.19  | 0.00  | 0.04  | 0.76   | 0.00  |
| Silver bluestem      | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Sideoats grama       | 0.01  | 0.18  | 0.00  | 0.41  | 0.40   | 0.00  |
| Hairy grama          | 0.00  | 0.14  | 0.00  | 0.03  | 0.83   | 0.00  |
| Red grama            | 0.00  | 0.19  | 0.00  | 0.05  | 0.76   | 0.00  |
| Buffalograss         | 0.00  | 0.20  | 0.00  | 0.09  | 0.71   | 0.00  |
| Sandbur              | 0.00  | 0.40  | 0.00  | 0.25  | 0.35   | 0.00  |
| Hooded windmillgrass | 0.00  | 0.18  | 0.00  | 0.03  | 0.79   | 0.00  |
| Trichloris           | 0.00  | 0.19  | 0.00  | 0.40  | 0.41   | 0.00  |
| Bermudagrass         | 0.01  | 0.19  | 0.00  | 0.03  | 0.77   | 0.00  |
| Arizona cottontop    | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Saltgrass            | 0.00  | 0.35  | 0.00  | 0.38  | 0.27   | 0.00  |
| Virginia wildrye     | 0.00  | 0.17  | 0.00  | 0.41  | 0.42   | 0.00  |
| Texas cupgrass       | 0.00  | 0.17  | 0.00  | 0.42  | 0.41   | 0.00  |
| Green sprangletop    | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Kleingrass           | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Guineagrass          | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Vine-mesquite        | 0.01  | 0.16  | 0.00  | 0.15  | 0.68   | 0.00  |
| Switchgrass          | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Longtom              | 0.00  | 0.26  | 0.00  | 0.03  | 0.71   | 0.00  |
| Brownseed paspalum   | 0.00  | 0.15  | 0.00  | 0.40  | 0.45   | 0.00  |

# Appendix Table E.4 (Cont.)

| Common Name           | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|-----------------------|-------|-------|-------|-------|--------|-------|
| Thin paspalum         | 0.00  | 0.16  | 0.00  | 0.05  | 0.79   | 0.00  |
| Common reed           | 0.02  | 0.19  | 0.00  | 0.40  | 0.41   | 0.00  |
| Little bluestem       | 0.01  | 0.18  | 0.00  | 0.40  | 0.41   | 0.00  |
| Knotroot bristlegrass | 0.01  | 0.19  | 0.00  | 0.05  | 0.75   | 0.00  |
| Plains bristlegrass   | 0.00  | 0.15  | 0.00  | 0.53  | 0.32   | 0.00  |
| Texas bristlegrass    | 0.00  | 0.15  | 0.00  | 0.05  | 0.80   | 0.00  |
| Indiangrass           | 0.01  | 0.18  | 0.00  | 0.41  | 0.40   | 0.00  |
| Johnsongrass          | 0.01  | 0.17  | 0.00  | 0.41  | 0.41   | 0.00  |
| Gulf cordgrass        | 0.00  | 0.15  | 0.00  | 0.53  | 0.32   | 0.00  |
| Tall dropseed         | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Sand dropseed         | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Smutgrass             | 0.00  | 0.15  | 0.00  | 0.53  | 0.32   | 0.00  |
| Texas wintergrass     | 0.00  | 0.19  | 0.00  | 0.03  | 0.78   | 0.00  |
| Milo                  | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Wheat                 | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Corn                  | 0.25  | 0.25  | 0.10  | 0.20  | 0.20   | 0.00  |
| Littletooth sedge     | 0.00  | 0.20  | 0.00  | 0.05  | 0.75   | 0.00  |
| Flatsedge             | 0.00  | 0.26  | 0.00  | 0.20  | 0.54   | 0.00  |
| Cattail               | 0.02  | 0.15  | 0.00  | 0.43  | 0.40   | 0.00  |
| Ragweed               | 0.00  | 0.15  | 0.00  | 0.43  | 0.42   | 0.00  |
| Lazydaisy             | 0.00  | 0.19  | 0.00  | 0.41  | 0.40   | 0.00  |
| Spiny aster           | 0.00  | 0.10  | 0.00  | 0.52  | 0.38   | 0.00  |
| Whitestem wild indigo | 0.00  | 0.15  | 0.00  | 0.85  | 0.00   | 0.00  |
| Old-mans beard        | 0.00  | 0.21  | 0.00  | 0.39  | 0.40   | 0.00  |
| Bundleflower          | 0.00  | 0.14  | 0.00  | 0.43  | 0.43   | 0.00  |
| Frogfruit             | 0.00  | 0.13  | 0.00  | 0.44  | 0.43   | 0.00  |
| Prairie coneflower    | 0.00  | 0.18  | 0.00  | 0.41  | 0.41   | 0.00  |
| Snoutbean             | 0.00  | 0.15  | 0.00  | 0.43  | 0.42   | 0.00  |
| Ruellia               | 0.00  | 0.14  | 0.00  | 0.21  | 0.65   | 0.00  |
| Curly dock            | 0.00  | 0.05  | 0.00  | 0.35  | 0.60   | 0.00  |
| Bulltongue            | 0.00  | 0.05  | 0.00  | 0.35  | 0.60   | 0.00  |
| Glasswort             | 0.00  | 0.10  | 0.15  | 0.05  | 0.70   | 0.00  |
| Bush sunflower        | 0.00  | 0.19  | 0.00  | 0.41  | 0.40   | 0.00  |
| Green briar           | 0.00  | 0.10  | 0.00  | 0.20  | 0.70   | 0.00  |
| Texas verbena         | 0.00  | 0.15  | 0.00  | 0.43  | 0.42   | 0.00  |
| Orange zexmenia       | 0.00  | 0.19  | 0.00  | 0.41  | 0.40   | 0.00  |
| Giant ragweed         | 0.16  | 0.17  | 0.13  | 0.27  | 0.27   | 0.00  |
| Annual broomweed      | 0.19  | 0.19  | 0.12  | 0.25  | 0.25   | 0.00  |
| Partridge pea         | 0.19  | 0.19  | 0.19  | 0.06  | 0.37   | 0.00  |
| Texas doveweed        | 0.14  | 0.15  | 0.14  | 0.29  | 0.28   | 0.00  |
| Sunflower             | 0.16  | 0.17  | 0.13  | 0.27  | 0.27   | 0.00  |
| Dogweed               | 0.19  | 0.19  | 0.16  | 0.06  | 0.40   | 0.00  |

#### General guidelines for greenout allocation:

- Trees: coarse roots, trunks, and seeds = no allocation; fine roots and stems = 75% of new growth allocation; leaves = remainder of allocation
- Shrubs, midgrasses, and perennial forbs: coarse roots, trunks, and seeds = no allocation; fine roots = 75% of new growth allocation; stems + leaves = remainder of allocation (exception = rhizomatous grasses, which have coarse roots = 10% of new growth allocation)
- Shortgrasses: coarse roots, trunks, and seeds = no allocation; fine roots = 75% of new growth allocation; stems = 50% of new growth allocation; leaves = remainder of allocation (exceptions = rhizomatous grasses which have coarse roots = 10% of new growth allocation and stoloniferous grasses which have stems = 75% of new growth allocation)

Annuals = new growth allocations.

| potential rooting dept | <u>ii (iii</u> | n) it | n più | n spee |       | Iuucu |       | Gonad | Coun  | IY LD | 1.5 110 | uei.   | Max Root   |
|------------------------|----------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|---------|--------|------------|
| Common Name            | 0-1            | 1-5   | 5-10  | 10-20  | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90   | 90-100 | Depth (mm) |
| Huisache               | 6              | 11    | 14    | 18     | 15    | 12    | 8     | 6     | 4     | 3     | 2       | 1      | 5000       |
| Pecan                  | 4              | 9     | 14    | 20     | 13    | 5     | 6     | 6     | 2     | 6     | 8       | 7      | 6250       |
| Sugar hackberry        | 2              | 9     | 14    | 20     | 15    | 5     | 6     | 6     | 2     | 6     | 8       | 7      | 6000       |
| Mesquite               | 15             | 14    | 15    | 14     | 11    | 9     | 7     | 5     | 4     | 3     | 2       | 1      | 53400      |
| Post oak               | 2              | 8     | 9     | 18     | 15    | 11    | 11    | 6     | 5     | 5     | 5       | 5      | 5700       |
| Live oak               | 4              | 14    | 15    | 21     | 12    | 8     | 8     | 7     | 4     | 4     | 2       | 1      | 22000      |
| Guajillo               | 3              | 10    | 13    | 18     | 13    | 11    | 9     | 8     | 5     | 5     | 3       | 2      | 5000       |
| Blackbrush             | 3              | 9     | 13    | 19     | 15    | 12    | 9     | 7     | 4     | 4     | 3       | 2      | 5250       |
| Whitebrush             | 2              | 10    | 16    | 19     | 14    | 12    | 9     | 6     | 5     | 4     | 2       | 1      | 2230       |
| Prairie baccharis      | 1              | 5     | 9     | 12     | 18    | 17    | 11    | 11    | 7     | 6     | 2       | 1      | 1900       |
| Sea oxeye              | 4              | 6     | 15    | 20     | 15    | 12    | 10    | 6     | 5     | 3     | 2       | 2      | 2000       |
| Granjeno               | 4              | 13    | 14    | 17     | 14    | 12    | 10    | 6     | 4     | 3     | 2       | 1      | 6680       |
| Carolina wolfberry     | 10             | 12    | 25    | 20     | 20    | 5     | 3     | 1     | 1     | 1     | 1       | 1      | 1500       |
| Agarito                | 3              | 10    | 12    | 19     | 13    | 12    | 10    | 9     | 5     | 4     | 2       | 1      | 3000       |
| McCartney rose         | 2              | 6     | 8     | 15     | 16    | 14    | 8     | 10    | 9     | 7     | 3       | 2      | 3700       |
| Rattlepod              | 2              | 5     | 9     | 15     | 17    | 16    | 13    | 8     | 7     | 5     | 2       | 1      | 1380       |
| Mustang grape          | 5              | 12    | 15    | 17     | 13    | 11    | 9     | 7     | 5     | 3     | 2       | 1      | 3660       |
| Texas prickly pear     | 2              | 9     | 12    | 19     | 13    | 20    | 11    | 6     | 4     | 2     | 1       | 1      | 840        |
| Big bluestem           | 15             | 18    | 20    | 15     | 9     | 7     | 5     | 4     | 3     | 2     | 1       | 1      | 3050       |
| Bushy bluestem         | 5              | 10    | 20    | 20     | 15    | 12    | 10    | 3     | 2     | 1     | 1       | 1      | 720        |
| Purple threeawn        | 4              | 7     | 10    | 15     | 18    | 15    | 14    | 8     | 5     | 2     | 1       | 1      | 1830       |
| King Ranch bluestem    | 4              | 16    | 21    | 18     | 14    | 8     | 6     | 4     | 3     | 2     | 2       | 2      | 1200       |
| Silver bluestem        | 12             | 22    | 20    | 20     | 8     | 6     | 3     | 3     | 2     | 2     | 1       | 1      | 2380       |
| Sideoats grama         | 12             | 20    | 23    | 21     | 12    | 5     | 2     | 1     | 1     | 1     | 1       | 1      | 3960       |
| Hairy grama            | 5              | 13    | 14    | 18     | 13    | 11    | 9     | 9     | 4     | 2     | 1       | 1      | 1070       |
| Red grama              | 4              | 13    | 14    | 20     | 13    | 10    | 9     | 7     | 4     | 3     | 2       | 1      | 600        |
| Buffalograss           | 8              | 23    | 24    | 20     | 8     | 5     | 4     | 3     | 2     | 1     | 1       | 1      | 2160       |
| Sandbur                | 10             | 20    | 25    | 12     | 7     | 6     | 5     | 5     | 4     | 3     | 2       | 1      | 350        |
| Hooded windmillgrass   | 4              | 12    | 13    | 21     | 12    | 11    | 11    | 4     | 3     | 3     | 3       | 3      | 990        |
| Trichloris             | 10             | 14    | 16    | 17     | 10    | 8     | 8     | 6     | 4     | 4     | 2       | 1      | 2300       |
| Bermudagrass           | 5              | 14    | 17    | 15     | 12    | 10    | 8     | 6     | 5     | 4     | 3       | 1      | 900        |
| Arizona cottontop      | 3              | 12    | 13    | 21     | 12    | 10    | 8     | 6     | 5     | 4     | 3       | 3      | 1000       |
| Saltgrass              | 10             | 20    | 22    | 20     | 10    | 6     | 4     | 3     | 2     | 1     | 1       | 1      | 720        |
| Virginia wildrye       | 4              | 12    | 16    | 18     | 14    | 12    | 8     | 6     | 4     | 3     | 2       | 1      | 720        |
| Texas cupgrass         | 4              | 15    | 17    | 19     | 12    | 7     | 7     | 5     | 4     | 4     | 4       | 3      | 1040       |
| Green sprangletop      | 3              | 13    | 15    | 18     | 13    | 11    | 9     | 6     | 4     | 4     | 3       | 1      | 1150       |
| Kleingrass             | 3              | 10    | 13    | 18     | 15    | 13    | 13    | 3     | 3     | 3     | 3       | 3      | 2280       |
| Guineagrass            | 3              | 10    | 13    | 18     | 15    | 13    | 13    | 3     | 3     | 3     | 3       | 3      | 2280       |
| Vine-mesquite          | 3              | 11    | 13    | 19     | 14    | 10    | 8     | 6     | 5     | 4     | 4       | 3      | 2020       |
| Switchgrass            | 15             | 17    | 20    | 12     | 8     | 8     | 7     | 4     | 4     | 2     | 2       | 1      | 3350       |
| Longtom                | 5              | 19    | 18    | 12     | 9     | 7     | 7     | 6     | 5     | 4     | 4       | 4      | 900        |
| Brownseed paspalum     | 6              | 20    | 28    | 16     | 12    | 8     | 5     | 1     | 1     | 1     | 1       | 1      | 1000       |

Appendix Table E.9 Root architecture, proportion of roots by maximum rooting depth, and maximum potential rooting depth (mm) for plant species included in the Goliad County EDYS model.

# Appendix Table E.9 (Cont.)

| Appendix Table E.9 (  | Cont | .)  |      |       |       |       |       |       |       |       |       |        | May Da at              |
|-----------------------|------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------------------|
| Common Name           | 0-1  | 1-5 | 5-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 | Max Root<br>Depth (mm) |
| Thin paspalum         | 3    | 12  | 15   | 24    | 13    | 10    |       | 6     | 4     | 3     | 2     | 1      | 1660                   |
| Common reed           | 2    | 9   | 11   | 23    | 9     | 9     | 8     | 8     | 7     | 6     | 5     | 3      | 3500                   |
| Little bluestem       | 10   | 22  | 23   | 18    | 8     | 5     | 4     | 3     | 3     | 2     | 1     | 1      | 2440                   |
| Knotroot bristlegrass | 4    | 14  | 16   | 18    | 14    | 10    | 8     | 6     | 5     | 2     | 2     | - 1    | 1020                   |
| Plains bristlegrass   | 6    | 19  | 19   | 27    | 9     | 4     | 3     | 3     | 3     | 3     | 2     | 2      | 1600                   |
| Texas bristlegrass    | 3    | 13  | 14   | 21    | 12    | 11    | 9     | 6     | 4     | 3     | 2     | 2      | 930                    |
| Indiangrass           | 12   | 25  | 21   | 10    |       | 7     | 5     | 4     | 3     | 2     | 1     | 1      | 2430                   |
| Johnsongrass          | 3    | 12  | 17   | 18    | 14    | 10    | 9     | 7     | 5     | 3     | 1     | 1      | 2410                   |
| Gulf cordgrass        | 10   | 20  | 25   | 12    | 7     | 6     | 5     | 5     | 4     | 3     | 2     | 1      | 3960                   |
| Tall dropseed         | 4    | 15  | 17   | 20    | 11    | 8     | 6     | 5     | 5     | 4     | 4     | 1      | 2130                   |
| Sand dropseed         | 6    | 19  | 19   | 27    | 9     | 4     | 3     | 3     | 3     | 3     | 2     | 2      | 2700                   |
| Smutgrass             | 3    | 13  | 14   | 20    | 12    | 9     | 5     | 6     | 8     | 5     | 3     | 2      | 2100                   |
| Texas wintergrass     | 3    | 11  | 13   | 18    | 14    | 10    | 8     | 8     | 6     | 4     | 3     | 2      | 1950                   |
| Milo                  | 2    | 6   | 9    | 18    | 17    | 14    | 12    | 9     | 7     | 3     | 2     | 1      | 1950                   |
| Wheat                 | 2    | 5   | 7    | 15    | 16    | 15    | 13    | 10    | 8     | 5     | 3     | 1      | 3000                   |
| Corn                  | 2    | 7   | 10   | 22    | 17    | 13    | 12    | 8     | 5     | 2     | 1     | 1      | 2400                   |
| Littletooth sedge     | 2    | 9   | 12   | 22    | 16    | 10    | 8     | 6     | 5     | 5     | 4     | 1      | 1310                   |
| Flatsedge             | 2    | 5   | 8    | 15    | 13    | 12    | 12    | 10    | 9     | 7     | 4     | 3      | 630                    |
| Cattail               | 3    | 12  | 13   | 18    | 10    | 9     | 8     | 8     | 7     | 6     | 4     | 2      | 1400                   |
| Ragweed               | 6    | 20  | 20   | 27    | 10    | 4     | 3     | 3     | 2     | 2     | 2     | 1      | 1830                   |
| Lazydaisy             | 2    | 5   | 8    | 13    | 12    | 11    | 11    | 12    | 10    | 7     | 5     | 4      | 600                    |
| Spiny aster           | 15   | 20  | 25   | 25    | 5     | 3     | 2     | 1     | 1     | 1     | 1     | 1      | 3100                   |
| Whitestem wild indigo | 10   | 24  | 20   | 24    | 9     | 4     | 3     | 2     | 1     | 1     | 1     | 1      | 1700                   |
| Old-mans beard        | 3    | 9   | 13   | 24    | 16    | 9     | 7     | 6     | 4     | 3     | 3     | 3      | 1280                   |
| Bundleflower          | 3    | 9   | 14   | 23    | 12    | 5     | 4     | 5     | 9     | 7     | 6     | 3      | 2100                   |
| Frogfruit             | 2    | 6   | 8    | 14    | 12    | 11    | 14    | 11    | 11    | 5     | 4     | 2      | 690                    |
| Prairie coneflower    | 4    | 16  | 14   | 23    | 14    | 6     | 6     | 4     | 4     | 4     | 3     | 2      | 1830                   |
| Snoutbean             | 5    | 12  | 20   | 15    | 8     | 4     | 2     | 3     | 10    | 12    | 6     | 3      | 1350                   |
| Ruellia               | 4    | 4   | 7    | 19    | 20    | 14    | 11    | 7     | 6     | 4     | 3     | 1      | 1500                   |
| Curly dock            | 8    | 30  | 34   | 12    | 5     | 4     | 2     | 1     | 1     | 1     | 1     | 1      | 610                    |
| Bulltongue            | 8    | 30  | 34   | 12    | 5     | 4     | 2     | 1     | 1     | 1     | 1     | 1      | 610                    |
| Glasswort             | 8    | 16  | 16   | 24    | 12    | 8     | 6     | 4     | 2     | 2     | 1     | 1      | 457                    |
| Bush sunflower        | 10   | 14  | 18   | 23    | 11    | 6     | 5     | 4     | 3     | 3     | 2     | 1      | 2620                   |
| Green briar           | 4    | 12  | 13   | 25    | 8     | 5     | 5     | 5     | 6     | 6     | 6     | 5      | 1500                   |
| Texas verbena         | 2    | 8   | 10   | 15    | 14    | 13    | 8     | 8     | 8     | 6     | 5     | 3      | 1520                   |
| Orange zexmenia       | 3    | 8   | 13   | 30    | 11    | 8     | 7     | 7     | 5     | 4     | 3     | 1      | 2640                   |
| Giant ragweed         | 2    | 6   | 11   | 23    | 10    | 9     | 9     | 9     | 8     | 7     | 4     | 2      | 1970                   |
| Annual broomweed      | 4    | 17  | 9    | 17    | 12    | 14    | 8     | 7     | 4     | 3     | 3     | 2      | 1050                   |
| Partridge pea         | 2    | 8   | 10   | 15    | 14    | 10    | 8     | 11    | 8     | 6     | 5     | 3      | 850                    |
| Texas doveweed        | 3    | 13  | 8    | 16    | 13    | 14    | 10    | 7     | 5     | 4     | 4     | 3      | 320                    |
| Sunflower             | 6    | 24  | 6    | 9     | 12    | 16    | 10    | 7     | 2     | 3     | 3     | 2      | 3100                   |
| Dogweed               | 3    | 6   | 8    | 15    | 11    | 12    | 12    | 11    | 9     | 6     | 4     | 3      | 760                    |

#### **Data Sources**

## **Root Architecture**

| Mesquite         mean of Heischmidt et al. (1988) and Montana et al. (1995)           Post oak         Quercus havardi (Sears et al. 1986)           Live oak         mean of Acer saccharum (Dawson 1993), Leucaena leucocephala (Toky & Bisht 1992),<br>Nothofgus antarctice and N. pamila (Schulze et al. 1986)           Guajillo         Larrea tridentata (Wallace et al. 1980; Moorhead et al. 1988)           Blackbrush         mean of Flourensia cernua (Wallace et al. 1980; Moothaa et al. 1985; Ogle et al. 2004)           Whitebrush         mean of Flourensia cernua (Wallace et al. 1980; Moothaa et al. 1980; Montana et al. 1980; Moothaa et al. 1980; Montana et al. 1995; Ogle et al. 2004)           Prairie baccharis         Pulchea sericea (Gary 1963)           Granjeno         mean of Flourensia cernua (Wallace et al. 1980) and Prosopis glandulosa           Mesquito         mean of Ephedra nevadensis (Wallace et al. 1980) and Prosopis glandulosa           Mustang grape         mean of Z brinviso           Prickly pear         mean of Z brinviso           Prickly pear         mean of Z brinviso           Rattlepod         mean of Z brinviso           Big bluestem         Sperry (1935), Waver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw (1953); Hopkins (1953), Weaver (1954)           Runch bluestem         mean of Aristida purpurea (Weaver & Clements 1938) and Boureloua graciifs (Weaver & Clements 1938); Mayare & Bardford (1946), Hopkins (1953)           Sideoats grama<                                                                                                                                                                                                                                                                                                                                           |                   | mean of <i>Leucaena leucocephala</i> (Toky & Bisht 1992) and <i>Prosopis glandulosa</i><br>(7, Texas persimmon Acer saccharum (Dawson 1993)                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Live oakTeam of Acer saccharum (Dawson 1993), Leucaena leucocephala (Toky & Bisht 1992),<br>Nothofagus antarctica and N. punila (Schulze et al. 1996), Populus fremontii (McLendon<br>2008), Prosopis glandulosa, Quercus havardii (Sears et al. 1986)GuajilloLarrea tridentata (Wallace et al. 1980; Moorhead et al. 1989; Montana et al. 1995), Ogle et<br>al. 2004)Blackbrushmean of Flourensia cernua (Wallace et al. 1980) and Larrea tridentata (Wallace et al.<br>1980; Moorhead et al. 1980; Montana et al. 1995; Ogle et al. 2004)Whitebrushmean of Krameria parvifolia, Lycium andersonii, L. pallidum (Wallace et al. 1980), and<br>Tetradymia spinosa (Branson et al. 1976)Prairie baccharisPulchea sericea (Gary 1963)Granjenomean of Ephedra nevadensis (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson et<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                       |
| Nothofagius antarctica and N. pumila (Schulze et al. 1996), Populus fremontii (McLendon<br>2008), Prosopis glandulosa, Quercus havardii (Sears et al. 1986)GuajilloLarrea tridentata (Wallace et al. 1980; Moorhead et al. 1989; Montana et al. 1995; Ogle et<br>al. 2004)Blackbrushmean of Flourensia cermua (Wallace et al. 1980) and Larrea tridentata (Wallace et al.<br>1980; Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004)Whitebrushmean of Flourensia cermua (Wallace et al. 1980) and Larrea tridentata (Wallace et al.<br>1980; Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004)Prairie baccharisPulchea sericea (Gary 1963)Granjenomean of Ephedra nevadensis (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepodmean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)Mustang grapemean of Cojunita acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hookins (1953), Weaver (1954)Ring Ranch bluestemCoyne & Bradford (1986)Silver bluestemSoerry (1935), Weaver & Zink (1945), Weaver (1954)Silver bluestemCoyne & Bradford (1986)Silve ta user of Bouteloua curtipendula and Schizachyrium scoparium<br>(Albertson 1937; Weaver & Darland (1949), Hopkins (1953)Making Ranch bluestemCoyne & Bradford (1986)Silve ta user of Lenents (1938), Weaver (2054)mean of Arxitida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weave                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                                                       |
| al. 2004)al. 2004)Blackbrushmean of Flourensia cernua (Wallace et al. 1980) and Larrea tridentata (Wallace et al.Whitebrushmean of Krameria parvifolia, Lycium andersonii, L. pallidum (Wallace et al. 1980), and<br>Tetradymia spinosa (Branson et al. 1976)Prairie baccharisPulchea sericea (Gary 1963)Granjenomean of Ephedra nevadensis (Wallace et al. 1980) and Prosopis glandulosa<br>mean of Ephedra nevadensis (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepodmean of Euceana leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)<br>mean of Z shrubsPrickly pearmean of Opuntia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)<br>modified from Weaver & Clements (1938)<br>Cone & Bradford (1986)Silver bluestemSperry (1935), Weaver 1947, 1958; Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver (1954)<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Meaver (2014), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)<br>mean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)<br>mean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)Hoided windmillmean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)BuffalograssWeaver & Clements (1938), Me                                                                                                                            |                   | Nothofagus antarctica and N. pumila (Schulze et al. 1996), Populus fremontii (McLendon                                                                                                                                                                                |
| Whitebrush1980; Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004)<br>mean of Krameria parvifolia, Lycium andersonii, L. pallidum (Wallace et al. 1980), and<br>Tetradymia spinosa (Branson et al. 1976)Prairie baccharisPulchea sericea (Gary 1963)<br>mean of Flourensia cernua (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepod<br>Mustang grapemean of Epidera nevadensis (Wallace et al. 1980; Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepod<br>Mustang grapemean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)<br>mean of 25 shrubsPrickly pearmean of Dountia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestem<br>Silver bluestem<br>Silver bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>modified from Weaver & Clements (1938)<br>Coyne & Bradford (1986)Silver bluestem<br>Sideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)Buffalograss<br>Sandburmean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmill<br>mean of Aristida purpurea<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmill<br>me                                                             | -                 | al. 2004)                                                                                                                                                                                                                                                             |
| Tetradymia spinosa (Branson et al. 1976)Prairie baccharisGranjenoAgaritoAgaritoAgaritoAgaritoMulter et al. 1980; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson et al. 1976)Rattlepodmean of Elphedra nevadensis (Wallace et al. 1980); Larrea tridentata (Wallace et al. 1980; Moothead et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson et al. 1976)Rattlepodmean of Zi shrubsPrickly pearPrickly pearPrickly pearDig bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw (1953); Hopkins (1953), Weaver (1954)Purple threeawnKing Ranch bluestemSideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)Hairy gramaWeaver & Darland (1949), Hopkins (1953), Weaver (2014), 1999)BuffalograssWeaver & Clements (1938), Weaver (1954)Hairy grama(Albertson 1937; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949; Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989, Lee & Lauenroth 1994; Gill et al. 1999)BuffalograssWeaver & Clements (1938), Meaver (1954)mean of Aristida purpurea (Weaver & Darland (1949), Hopkins (1953)mean of Aristida purpurea (Weaver & Darland (1949), Hopkins (1953)Sandbur(Albertson 1937; Weaver (2014), 1958; Weaver & Darland (1949), Hopkins (1953)mean of Aristida purpurea (Weaver & Darland (1949), Hopkins (1953)Sandbur(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blackbrush        |                                                                                                                                                                                                                                                                       |
| Granjenomean of Flourensia cernua (Wallace et al. 1980) and Prosopis glandulosaAgaritomean of Ephedra nevadensis (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepodmean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)<br>mean of C shrubsPrickly pearmean of Opuntia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)Purple threeawnmodified from Weaver & Clements (1938)Sideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)Hairy gramamean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver (1954)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)BuffalograssWeaver & Clements (1938), Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)Soload windmillmean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)FrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dallgren et al. 1997; McLendon 2008), Hilaria mutica (Montan et al. 1995)Arizona cottontopmean of Agropyron trachycaulum an                                                                                                                                                                             | Whitebrush        |                                                                                                                                                                                                                                                                       |
| Agaritomean of Ephedra nevadensis (Wallace et al. 1980), Larrea tridentata (Wallace et al. 1980;<br>Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepodmean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)Mustang grapemean of Countia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)Purple threeawnmodified from Weaver & Clements (1938)Silver bluestemmean of Routeloua curtipendula and Schizachyrium scopariumSideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)Hairy gramamean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989)BuffalograssWeaver & Clements (1938), Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Aristida purpurea (Weaver & Clements 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Aronopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; W                                                                                                                          | Prairie baccharis |                                                                                                                                                                                                                                                                       |
| Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson<br>et al. 1976)Rattlepodmean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)Mustang grapemean of 25 shrubsPrickly pearmean of Opuntia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)Purple threeawnmodified from Weaver & Clements (1938)King Ranch bluestemCoyne & Bradford (1986)Silver bluestemmean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)Mooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Dustichlis spicata (Seliskar 1983;<br>Daldgre et al. 1997)Arizona cottontopmean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Agropyron trachy                                                                                                                  | •                 |                                                                                                                                                                                                                                                                       |
| Rattlepod<br>Mustang grape<br>Prickly pearmean of Leucaena leucocephala (Toky & Bisht 1992) and Pulchea sericea (Gary 1963)<br>mean of 25 shrubs<br>mean of Opuntia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestem<br>Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)<br>modified from Weaver & Clements (1938)Purple threeawn<br>Sideoats gramaCoyne & Bradford (1986)<br>mean of Bouteloua curtipendula and Schizachyrium scoparium<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)Buffalograss<br>Hooded windmillWeaver & Clements (1938), Weaver & Darland (1949), Hopkins 1953)<br>mean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997); McLendon 2008), Hilaria mutica (Montana et al. 1995)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildrye<br>Wirginia wildrye<br>Weine-mesquiteMcLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1920)Virginia wildrye<br>Wine-mesquiteHons et al. (1979)<br>mean of Boutileoua curtipendula (Weaver & Darlan | Agarito           | Moorhead et al. 1989; Montana et al. 1995; Ogle et al. 2004), Tetradymia spinosa (Branson                                                                                                                                                                             |
| Prickly pearmean of Opuntia acanthocarpa (Nobel & Bobich 2002), O. humifusa (Sperry 1935), and<br>O. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)Purple threeawn<br>King Ranch bluestemmodified from Weaver & Clements (1938)Silver bluestemmean of Bouteloua curtipendula and Schizachyrium scopariumSideoats grama<br>Hairy gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)BuffalograssWeaver & Darland (1949), Hopkins (1953), Weaver (2014)BuffalograssWeaver & Darland (1949), Hopkins (1957), Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)Goded windmillmean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)Vine-mesquitemean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954)                                                                                                                                                                                                             | Rattlepod         |                                                                                                                                                                                                                                                                       |
| D. polyacantha (Dougherty 1986)Big bluestemSperry (1935), Weaver & Zink (1946), Weaver & Darland (1949), Coupland & Bradshaw<br>(1953); Hopkins (1953), Weaver (1954)<br>modified from Weaver & Clements (1938)Purple threeawn<br>Silver bluestemCoyne & Bradford (1986)<br>mean of Bouteloua curtipendula and Schizachyrium scoparium<br>Weaver & Darland (1949), Hopkins (1953), Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)Buffalograss<br>SandburWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmill<br>Bermudagrassmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Trichloris<br>Bermudagrassmean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)<br>mean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildrye<br>Clubhead cutgrassmean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)Kleingrass<br>Vine-mesquiteHons et al. (1979)<br>mean of Boutleloua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                     | Mustang grape     | mean of 25 shrubs                                                                                                                                                                                                                                                     |
| (1953); Hopkins (1953), Weaver (1954)Purple threeawnKing Ranch bluestemSilver bluestemSideoats gramaHairy gramaBuffalograssBuffalograssBuffalograssBuffalograssBuffalograssBuffalograssBuffalograssClements (1938), Weaver & Darland (1949), Hopkins (1953), Weaver & Darland (1949); Hopkins (1953)Hooded windmillmean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver & Clements 1938; Weaver 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)mean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988), and Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scopariummean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983; Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973; Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildryeCleingrassWirginia wildryeCleingrassHons et al. (1979)Wine-mesquitemean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prickly pear      |                                                                                                                                                                                                                                                                       |
| King Ranch bluestem<br>Silver bluestemCoyne & Bradford (1986)<br>mean of Bouteloua curtipendula and Schizachyrium scopariumSideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 2 & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver & Clements 1938), and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildryemean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)                                                                                                                                                                                                                            | -                 | (1953); Hopkins (1953), Weaver (1954)                                                                                                                                                                                                                                 |
| Silver bluestemmean of Bouteloua curtipendula and Schizachyrium scopariumSideoats gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)Hairy gramamean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                       |
| Sideoats grama<br>Hairy gramaWeaver & Darland (1949), Hopkins (1953), Weaver (1954)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Darland (1949), Hopkins (1953)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Aristida purpurea (Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; MeLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Virginia wildryemean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                       |
| Hairy gramamean of Aristida purpura (Weaver & Clements 1938) and Bouteloua gracilis (Weaver &<br>Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949;<br>Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et<br>al. 1999)BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)<br>mean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins 1957)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                                                                                                                                                       |
| BuffalograssWeaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)Sandburmean of Aristida purpurea (Weaver & Clements 1938) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | mean of <i>Aristida purpurea</i> (Weaver & Clements 1938) and <i>Bouteloua gracilis</i> (Weaver & Clements 1938; Weaver 1947, 1958; Weaver & Zink 1947; Weaver & Darland 1949; Hopkins 1953; Lorenz & Rogler 1967; Redente et al. 1989; Lee & Lauenroth 1994; Gill et |
| Hooded windmill(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)Hooded windmillmean of Axonopus compressus (Fiala & Herrera 1988) and Sporobolus cryptandrus<br>(Albertson 1937; Weaver & Darland 1949; Hopkins 1953)TrichlorisSchizachyrium scoparium<br>mean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Buffalograss      | Weaver & Clements (1938), Weaver & Darland (1949), Hopkins (1953)                                                                                                                                                                                                     |
| TrichlorisSchizachyrium scopariumBermudagrassmean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sandbur           |                                                                                                                                                                                                                                                                       |
| Bermudagrassmean of Axonopus compressus (Fiala & Herrera 1988), Distichlis spicata (Seliskar 1983;<br>Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopmean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildryemean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hooded windmill   |                                                                                                                                                                                                                                                                       |
| Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)Arizona cottontopDailgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)mean of Cenchrus ciliaris (Chaieb et al. 1996), Hilaria jamesii (Moore & West 1973;<br>Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildryeClubhead cutgrassKleingrassKleingrassHons et al. (1979)<br>wean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                       |
| Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins<br>1953)Virginia wildrye<br>Clubhead cutgrassmean of Agropyron trachycaulum and Poa compressa (McLendon 2001)<br>mean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)Kleingrass<br>Vine-mesquiteHons et al. (1979)<br>mean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                 | Dahlgren et al. 1997; McLendon 2008), Hilaria mutica (Montana et al. 1995)                                                                                                                                                                                            |
| Clubhead cutgrassmean of Axonopus compressus (Fiala & Herrera 1988), Paspalum notatum (Hernandez &<br>Fiala 1992)KleingrassHons et al. (1979)Vine-mesquitemean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arizona cottontop | Daddy 1985), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949; Hopkins                                                                                                                                                                                   |
| Fiala 1992)KleingrassVine-mesquiteHons et al. (1979)Wine-mesquiteMean of Boutleoua curtipendula (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Virginia wildrye  | mean of Agropyron trachycaulum and Poa compressa (McLendon 2001)                                                                                                                                                                                                      |
| Vine-mesquite mean of <i>Boutleoua curtipendula</i> (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                 | Fiala 1992)                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e                 |                                                                                                                                                                                                                                                                       |
| Pettit & Jaynes 1971), Distichlis spicata (Seliskar 1983; Dahlgren et al. 1997; McLendon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vine-mesquite     |                                                                                                                                                                                                                                                                       |

|                          | 2008), Hilaria mutica (Montana et al. 1995)                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switchgrass              | Weaver & Darland (1949), Hopkins (1953), Pettit & Jaynes (1971)                                                                                                                                     |
| Longtom                  | mean of <i>Distichlis spicata</i> (Seliskar 1983; Dahlgren et al. 1997; McLendon 2008) and                                                                                                          |
| Longton                  | Paspalum notatum (Hernandez & Fiala 1992)                                                                                                                                                           |
| Thin paspalum            | mean of Andropogon gerardii var. paucipilus (Weaver & Clements 1938), Cenchrus                                                                                                                      |
| i iiii paspaiuiii        | ciliaris (Chaieb et al. 1996), Redfieldia flexuosa (Weaver & Clements 1938), Sporobolus                                                                                                             |
|                          | <i>cryptandrus</i> (Albertson 1937; Weaver & Darland 1949; Hopkins 1953), and <i>Schzachyrium</i>                                                                                                   |
|                          | scoparium                                                                                                                                                                                           |
| Little bluestem          | Sperry (1935), Weaver & Zink (1946), Weaver (1947, 1950, 1954, 1958), Weaver &                                                                                                                      |
| Little oldestelli        | Darland (1949), Coupland & Bradshaw (1953), Jurena & Archer (2003)                                                                                                                                  |
| Knotroot bristlegrass    | mean of <i>Bouteloua curtipendula</i> (Weaver & Darland 1949; Hopkins 1953; Weaver 1954;                                                                                                            |
| renotion of bristlegrass | Pettit & Jayens 1971) and Sporobolus airoides (McLendon 2008)                                                                                                                                       |
| Texas bristlegrass       | mean of Aristida purpurea (Weaver & Clements 1938), Axonopus compressus (Fiala &                                                                                                                    |
| renab oribitegrabb       | Herrera 1988), <i>Digitaria commutata</i> (Chaieb et al. 1996), <i>Koeleria pyramidata</i> (Coupland                                                                                                |
|                          | & Bradshaw 1953), Sporobolus cryptandrus (Albertson 1937; Weaver & Darland 1949;                                                                                                                    |
|                          | Hopkins 1953)                                                                                                                                                                                       |
| Johnsongrass             | mean of <i>Panicum virgatum</i> (Weaver & Darland 1949; Hopkins 1953; Pettit & Jaynes                                                                                                               |
|                          | 1971) and Zea mays (Weaver & Clements 1938)                                                                                                                                                         |
| Tall dropseed            | mean of Muhlenbergia cuspidata (Sperry 1935), Schizachyrium scoparium (Sperry 1935;                                                                                                                 |
| 1                        | Weaver & Zink 1946; Weaver 1947, 1950, 1954, 1958; Weaver & Darland 1949;                                                                                                                           |
|                          | Coupland & Bradshaw 1953; Jurena & Archer 2003), Sporobolus cryptandrus (Albertson                                                                                                                  |
|                          | 1937; Weaver & Darland 1949; Hopkins 1953)                                                                                                                                                          |
| Texas wintergrass        | mean of Stipa comata (Melgoza & Nowak 1991), S. lagascae (Chaieb et al. 1996), S.                                                                                                                   |
| -                        | spartea (Sperry 1935; Coupland & Bradshaw 1953)                                                                                                                                                     |
|                          |                                                                                                                                                                                                     |
| Milo                     | mean of Triticum aestivum and Zea mays                                                                                                                                                              |
| Wheat                    | Weaver et al. (1924), Weaver & Clements (1938)                                                                                                                                                      |
| Corn                     | Weaver & Clements (1938)                                                                                                                                                                            |
| The second second        |                                                                                                                                                                                                     |
| Littletooth sedge        | mean of <i>Carex douglasii</i> (Manning et al. 1989) and <i>C. varia</i> (Sperry 1935)                                                                                                              |
| Flatsedge                | mean of <i>Carex nebrascensis</i> (Manning et al. 1989; Svejcar & Trent 1995; Kauffman et                                                                                                           |
| Einsharr                 | al. 2004) and <i>Scirpus validus</i> (Weaver & Clements 1938)                                                                                                                                       |
| Fimbry                   | mean of <i>Carex douglasii</i> (Manning et al. 1989), <i>C. nebrascensis</i> (Manning et al. 1989;<br>Sucied & Trent 1995; Kauffman et al. 2004). <i>C. laciocarna, C. resturta, C. trichocarna</i> |
|                          | Svejcar & Trent 1995; Kauffman et al. 2004), C. lasiocarpa, C. rostrata, C. trichocarpa (Bernard & Fiala 1986), C. varia (Sperry 1935), Juncus balticus (Manning et al. 1989),                      |
|                          | Scirpus validus (Weaver & Clements 1938)                                                                                                                                                            |
| Cattail                  | mean of <i>Carex nebrascensis</i> (Manning et al. 1989), <i>Distichlis spicata</i> (Seliskar 1983;                                                                                                  |
| Cattall                  | Dahlgren et al. 1997; McLendon 2008), <i>Lepidium latifolium</i> (Renz et al. 1997), <i>Paspalum</i>                                                                                                |
|                          | notatum (Hernandez & Fiala 1992), Scirpus validus (Weaver & Clements 1938), Spartina                                                                                                                |
|                          | pectinata (Sperry 1935)                                                                                                                                                                             |
|                          |                                                                                                                                                                                                     |
| Ragweed                  | Sperry (1935)                                                                                                                                                                                       |
| Old-mans beard           | mean of Achillea millefolium and Solidago decumbens (Holch et al. 1941)                                                                                                                             |
| Bundleflower             | mean of Oxytropis lambertii (Weaver & Clements 1938), Petalostemum purpureum                                                                                                                        |
|                          | (Sperry 1935), and Potentilla diversifolis and P. gracilis (Holch et al. 1941)                                                                                                                      |
| Frogfruit                | mean of Potentilla gracilis (Holch et al. 1941), Pycanthemum tenuifolium (Sperry 1935)                                                                                                              |
| Prairie coneflower       | Ratibida pinnata (Sperry 1935)                                                                                                                                                                      |
| Snoutbean                | Petalostemum purpureum (Sperry 1935)                                                                                                                                                                |
| Ruellia                  | Ruellia humilis (Sperry 1935)                                                                                                                                                                       |
| Bush sunflower           | Helianthus scaberriums (Sperry 1935)                                                                                                                                                                |
| Texas verbena            | mean of Aster multiflorus (Sperry 1935), A. oblongifolius (Sperry 1935), Erysimum                                                                                                                   |
|                          | asperum (Holch et al. 1941), Gallardia aristata (Holch et al. 1941), Geranium fremontii                                                                                                             |
| · ·                      | (Holch et al. 1941), Silphium integrifolium (Sperry 1935)                                                                                                                                           |
| Orange zexmenia          | mean of Helianthus scaberriums and Parthenium hispidum (Sperry 1935)                                                                                                                                |
|                          |                                                                                                                                                                                                     |
| Ciant no averal          |                                                                                                                                                                                                     |
| Giant ragweed            | mean of Ambrosia psilostachya and Parthenium hispidum (Sperry 1935)                                                                                                                                 |

| Annual broomweed | mean of Helianthus annuus (Stone et al. 2001), Grindelia squarrosa (Holch et al. 1941) |
|------------------|----------------------------------------------------------------------------------------|
| Partridge pea    | mean of Erysimum asperum (Holch et al. 1941), Euphorbia corollata (Sperry 1935)        |
| Texas doveweed   | mean of Centaurea maculosa (Marier et al. 1999), Grindelia squarrosa (Holch et al.     |
|                  | 1941), Helianthus annuus (Stone et al. 2001)                                           |
| Sunflower        | Stone et al. (2001)                                                                    |
| Duckweed         | Phacelia glandulosa (Holch et al. 1941)                                                |
| Texas bluebonnet | Oxytropis lambertii (Weaver & Clements 1938)                                           |
| Dogweed          | mean of Aster multiflorus (Sperry 1935), A. oblongifolius (Sperry 1935), Eriogonum     |
|                  | alatum (Holch et al. 1941), and Grindelia squarrosa (Holch et al. 1941)                |
|                  |                                                                                        |

# Maximum Potential Rooting Depth

| Huisache             | mean of Chilopsis linearis (Meinzer 1927), Prosopis velutina (Snyder & Williams 2003)                                                                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pecan                | mean of <i>Celtis laevigata</i> (Jackson et al. 1999), <i>Juglans nigra</i> (Canadell et al. 1996), <i>Ulmus americana</i> (Jackson et al. 1999), <i>Ulmus crassifolia</i> (Jackson et al. 1999)                                      |
| Sugar hackberry      | Jackson et al. (1999)                                                                                                                                                                                                                 |
| Texas persimmon      | mean of Malus pumila (Weaver & Clements 1938), Rhus glabra (Weaver 1926)                                                                                                                                                              |
| Mesquite             | Phillips (1963)                                                                                                                                                                                                                       |
| Post oak             | mean of <i>Quercus durandii</i> (Jackson et al. 1999) and <i>Q. macrocarpa</i> (Biswell 1935)                                                                                                                                         |
| Live oak             | Jackson et al. (1999)                                                                                                                                                                                                                 |
| Guajillo             | Larrea tridentata (Gile et al. 1998)                                                                                                                                                                                                  |
| Blackbrush           | mean of Koeberlinia spinosa (Gibbens & Lenz 2001), Larrea tridentata (Gile et al. 1998)                                                                                                                                               |
| Whitebrush           | mean of Corylus americana (Weaver 1919), Fallugia paradoxa (Foxx & Tierney 1986),<br>Lycium berlandieri (Gibbens & Lenz 2001), L. pallidum (Yoder & Nowak 1999a)                                                                      |
| Prairie baccharis    | mean of Baccharis glutinosa (Gary 1963), B. pilularis (Wright 1928)                                                                                                                                                                   |
| Granjeno             | mean of Arctostaphylos glandulosa (Hellmers et al. 1955), Celtis laevigata (Jackson et al.                                                                                                                                            |
|                      | 1999), Flourensia cernua (Gibbens & Lenz 2001), Koeberlinia spinosa (Gibbens & Lenz 2001), Larrea tridentata (Gile et al. 1998), Lycium berlandieri (Gibbens & Lenz 2001), Sarcobatus vermiculatus (Meinzer 1927)                     |
| Agarito              | Berberis repens (Weaver 1919)                                                                                                                                                                                                         |
| Rattlepod            | mean of Baccharis glutinosa (Gary 1963), Pulchea sericea (Gary 1963), Sesbania sesban                                                                                                                                                 |
| 1                    | (Sekiya & Yano 2002)                                                                                                                                                                                                                  |
| Mustang grape        | Toxicodendron radicans (Tolstead 1942)                                                                                                                                                                                                |
| Prickly pear         | mean of Opuntia imbricata (Dittmer 1959), O. polyacantha (Tierney & Foxx 1987)                                                                                                                                                        |
| Big bluestem         | Tomanek & Albertson (1957)                                                                                                                                                                                                            |
| Purple threeawn      | Albertson (1937)                                                                                                                                                                                                                      |
| King Ranch bluestem  | Coyne & Bradford (1986)                                                                                                                                                                                                               |
| Silver bluestem      | mean of <i>Bouteloua curtipendula</i> (Tomanek & Albertson 1957), <i>Heteropogon contortus</i> (Cable 1980), <i>Schizachyrium scoparium</i> (Weaver & Fitzpatrick 1934), <i>Sporobolus asper</i> (Weaver & Albertson 1943)            |
| Sideoats grama       | Tomanek & Albertson (1957)                                                                                                                                                                                                            |
| Hairy grama          | Weaver (1926)                                                                                                                                                                                                                         |
| Buffalograss         | Weaver & Clements (1938)                                                                                                                                                                                                              |
| Sandbur              | Dittmer (1959)                                                                                                                                                                                                                        |
| Hooded windmillgrass | mean of Bouteloua hirsuta (Weaver 1926), Cenchrus incertus (Dittmer 1959),<br>Digitaria californica (Cable 1980), Hilaria jamesii (Weaver 1958), Muhlenbergia<br>torreyi (Weaver 1958), Scleropogon brevifolius (Gibbens & Lenz 2001) |
| Trichloris           | about 5% less than Schizachyrium scoparium                                                                                                                                                                                            |
| Bermudagrass         | Garrot & Mancino (1994)                                                                                                                                                                                                               |
| Arizona cottontop    | Cable (1980)                                                                                                                                                                                                                          |
| Virginia wildrye     | Elymus canadensis (Weaver 1958)                                                                                                                                                                                                       |
| Clubhead cutgrass    | mean of Holcus lanatus and Nardus stricta (Boggie et al. 1958)                                                                                                                                                                        |
| Kleingrass           | mean of <i>Eragrostis lehmanniana</i> (Gibbens & Lenz 2001) and <i>Panicum virgatum</i> (Weaver 1954)                                                                                                                                 |
|                      |                                                                                                                                                                                                                                       |

| Vine-mesquite                 | mean of <i>Distichlis spicata</i> (Shantz & Piemeisel 1940), <i>Hilaria mutica</i> (Cottle 1931), <i>Panicm virgatum</i> (Weaver 1954)                                                                                                                                                                                                                            |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switchgrass<br>Longtom        | Weaver (1954)<br>mean of Cynodon dactylon (Garrot & Mancino 1994), Distichlis spicata (Shantz &                                                                                                                                                                                                                                                                   |
| Thin paspalum                 | Piemeisel 1940), and <i>Holcus lanatus</i> and <i>Nardus stricta</i> (Boggie et al. 1958)<br>mean of <i>Heteropogon contortus</i> (Cable 1980), <i>Muhlenbergia arenacea</i> (Gibbens &<br>Lenz 2001), <i>Redfieldia flexuosa</i> (Weaver 1958), <i>Schizachyrium scoparium</i> (Weaver &<br>Fitzpatrick 1934), <i>Sporobolus asper</i> (Weaver & Albertson 1943) |
| Little bluestem               | Weaver & Fitzpatrick (1934)                                                                                                                                                                                                                                                                                                                                       |
| Knotroot bristlegrass         | mean of Agrostis tenuis (Boggie et al. 1958), Dichanthelium scribnerianum (Weaver 1954), Muhlenbergia torreyi (Weaver 1958), Poa pratensis (Weaver 1954)                                                                                                                                                                                                          |
| Texas bristlegrass            | mean of Aristida purpurea (Albertson 1937), Bouteloua hirsuta (Weaver 1926),<br>Cenchrus incertus (Dittmer 1959), Dichanthelium scribnerianum (Weaver 1954),<br>Festuca ovina (Boggie et al. 1958), Koeleria pyramidata (Wyatt et al. 1980),<br>Muhlenbergia porteri (Gibbens & Lenz 2001), Scleropogon brevifolius (Gibbens &                                    |
|                               | Lenz 2001)                                                                                                                                                                                                                                                                                                                                                        |
| Johnsongrass<br>Tall dropseed | mean of <i>Sorghastrum nutans</i> (Albertson 1937) and <i>Zea mays</i> (Weaver 1926)<br>Weaver & Albertson (1943)                                                                                                                                                                                                                                                 |
| Texas wintergrass             | Stipa comata (Wyatt et al. 1980)                                                                                                                                                                                                                                                                                                                                  |
| Terras wither Brass           |                                                                                                                                                                                                                                                                                                                                                                   |
| Milo                          | mean of <i>Pennisetum glaucum</i> (Payne et al. 1990) and <i>Zea mays</i> (Weaver 1926)                                                                                                                                                                                                                                                                           |
| Wheat                         | Hamblin & Tennant (1987)                                                                                                                                                                                                                                                                                                                                          |
| Corn                          | Weaver (1926)                                                                                                                                                                                                                                                                                                                                                     |
| Littletooth sedge             | mean of Carex filifolia (Weaver 1920; Tolstead 1942), C. geyerii (Spence 1937), C. varia (Sperry 1935)                                                                                                                                                                                                                                                            |
| Flatsedge                     | mean of <i>Carex nebrascensis</i> (Chambers et al. 1999), <i>Juncus balticus</i> (Manning et al. 1989), <i>Scirpus validus</i> (Weaver & Clements 1938)                                                                                                                                                                                                           |
| Fimbry                        | mean of <i>Juncus balticus</i> (Manning et al. 1989), <i>Scirpus validus</i> (Weaver & Clements 1938)                                                                                                                                                                                                                                                             |
| Cattail                       | mean of Lepidium latifolium (Renz et al. 1997), Scirpus validus (Weaver & Clements 1938), Spartina pectinata (Weaver 1958)                                                                                                                                                                                                                                        |
| Ragweed                       | Weaver (1958)                                                                                                                                                                                                                                                                                                                                                     |
| Old-mans beard                | mean of Achillea millefolium (Spence 1937), Smilax rotundifolia (Duncan 1935)                                                                                                                                                                                                                                                                                     |
| Bundleflower                  | Desmanthus cooleyi (Gibbens & Lenz 2001)                                                                                                                                                                                                                                                                                                                          |
| Frogfruit                     | mean of <i>Euphorbia albomarginata</i> (Gibbens & Lenz 2001), <i>Evolvulus nuttallianus</i>                                                                                                                                                                                                                                                                       |
| Prairie coneflower            | (Albertson 1937), <i>Hedyotis nigricans</i> (Albertson 1937)<br>Hopkins (1951)                                                                                                                                                                                                                                                                                    |
| Snoutbean                     | mean of Cassia bauhinioides (Gibbens & Lenz 2001), Desmanthus cooleyi (Gibbens                                                                                                                                                                                                                                                                                    |
|                               | & Lenz 2001), Hoffmanseggia drepanocarpa (Gibbens & Lenz 2001), Thermopsis rhombifolia (Coupland & Johnson 1965), Trifolium pretense (Keim & Beadle 1927)                                                                                                                                                                                                         |
| Ruellia                       | Ruellia caroliniensis (Sperry 1935)                                                                                                                                                                                                                                                                                                                               |
| Bush sunflower                | mean of Arnica pumila (Holch et al. 1941), Balsamorhiza sagittata (Weaver 1958),<br>Chrysopsis villosa (Weaver 1958), Helianthus laetiflorus (Weaver 1954), Parthenium<br>integrifolium (Sperry 1935), Veronica baldwinii (Weaver 1919)                                                                                                                           |
| Texas verbena                 | Verbena stricta (Weaver 1958)                                                                                                                                                                                                                                                                                                                                     |
| Orange zexmenia               | mean of Artemisia dracunculus (Foxx & Tierney 1986), Chrysopsis villosa (Weaver 1958), Helianthus laetiflorus (Weaver 1954), Machaeranthera pinnatifida (Hopkins 1951), Parthenium integrifolium (Sperry 1935)                                                                                                                                                    |
| Giant ragweed                 | mean of Ambrosia acanthicarpa (Dittmer 1959), A. artemisifolia (Cole & Holch 1941), Helianthus annuus (Schwarzbach et al. 2001), Kochia scoparia (Foxx & Tierney 1986)                                                                                                                                                                                            |
| Annual broomweed              | mean of <i>Croton pottsii</i> (Gibbens & Lenz 2001), <i>C. texensis</i> (Dittmer 1959)                                                                                                                                                                                                                                                                            |
| Partridge pea                 | Cassia bauhinioides (Gibbens & Lenz 2001)                                                                                                                                                                                                                                                                                                                         |
|                               |                                                                                                                                                                                                                                                                                                                                                                   |

| Texas doveweed   | Dittmer (1959)                                                                    |
|------------------|-----------------------------------------------------------------------------------|
| Sunflower        | Schwarzbach et al. (2001)                                                         |
| Duckweed         | mean of Mimulus bigelovii and Polygonum aviculare (Forseth et al. 1984)           |
| Texas bluebonnet | mean of Cassia bauhinioides (Gibbens & Lenz 2001), Hoffmanseggia drepanocarpa     |
|                  | (Gibbens & Lenz 2001), Medicago lupulina (Cole & Holch 1941), Lupinus caudatus    |
|                  | (Foxx & Tierney 1986)                                                             |
| Dogweed          | mean of Aphanostephus ramoissimus (Gibbens & Lenz 2001), Centaurea solstitialis   |
|                  | (Sheley & Larson 1994), Croton texensis (Dittmer 1959), Erodium botrys (McKell et |
|                  | al. 1962), Lepidium densiflorum (Allen & Knight 1984), Linum australe (Gibbens &  |
|                  | Lenz 2001), Verbena utricifolia (Cole & Holch 1941)                               |

| Common Name          | Green-out | Seed | -sprout | See | d-set | Dormancy |  |
|----------------------|-----------|------|---------|-----|-------|----------|--|
| Huisache             | 2         | 2    | 9       | 4   | 9     | 12       |  |
| Pecan                | 3         | 3    | 9       | 4   | 9     | 10       |  |
| Sugar hackberry      | 3         | 3    | 9       | 4   | 8     | 10       |  |
| Mesquite             | 3         | 3    | 9       | 4   | 8     | 11       |  |
| Post oak             | 3         | 3    | 7       | 4   | 8     | 11       |  |
| Live oak             | 3         | 3    | 7       | 4   | 8     | 2        |  |
| Guajillo             | 1         | 2    | 10      | 6   | 10    | 12       |  |
| Blackbrush           | 2         | 2    | 10      | 6   | 10    | 12       |  |
| Whitebrush           | 2         | 3    | 10      | 6   | 10    | 11       |  |
| Prairie baccharis    | 2         | 2    | 10      | 2   | 10    | 11       |  |
| Sea oxeye            | 4         | 3    | 9       | 4   | 8     | 10       |  |
| Granjeno             | 3         | 2    | 10      | 4   | 8     | 11       |  |
| Carolina wolfberry   | 3         | 3    | 9       | 4   | 9     | 11       |  |
| Agarito              | 1         | 2    | 10      | 4   | 8     | 12       |  |
| McCartney rose       | 1         | 3    | 9       | 4   | 8     | 1        |  |
| Rattlepod            | 3         | 2    | 10      | 6   | 7     | 11       |  |
| Mustang grape        | 2         | 3    | 9       | 6   | 10    | 12       |  |
| Texas prickly pear   | 1         | 2    | 11      | 7   | 8     | 12       |  |
| Big bluestem         | 3         | 4    | 8       | 8   | 8     | 11       |  |
| Bushy bluestem       | 3         | 4    | 4       | 8   | 8     | 11       |  |
| Purple threeawn      | 3         | 4    | 9       | 7   | 11    | 12       |  |
| King Ranch bluestem  | 3         | 4    | 10      | 6   | 10    | 11       |  |
| Silver bluestem      | 3         | 3    | 9       | 5   | 7     | 11       |  |
| Sideoats grama       | 3         | 4    | 9       | 6   | 10    | 11       |  |
| Hairy grama          | 3         | 4    | 10      | 6   | 10    | 11       |  |
| Red grama            | 3         | 4    | 9       | 5   | 9     | 11       |  |
| Buffalograss         | 3         | 3    | 9       | 5   | 10    | 11       |  |
| Sandbur              | 3         | 4    | 9       | 7   | 8     | 11       |  |
| Hooded windmillgrass | 3         | 3    | 10      | 7   | 8     | 11       |  |
| Trichloris           | 3         | 3    | 10      | 7   | 8     | 11       |  |
| Bermudagrass         | 3         | 4    | 10      | 5   | 8     | 11       |  |
| Arizona cottontop    | 3         | 3    | 9       | 5   | 7     | 11       |  |
| Saltgrass            | 3         | 3    | 9       | 5   | 7     | 11       |  |
| Virginia wildrye     | 10        | 10   | 6       | 5   | 7     | 6        |  |
| Texas cupgrass       | 3         | 4    | 9       | 6   | 9     | 10       |  |
| Green sprangletop    | 3         | 4    | 9       | 5   | 9     | 11       |  |
| Kleingrass           | 3         | 3    | 9       | 5   | 7     | 11       |  |
| Guineagrass          | 3         | 3    | 9       | 5   | 7     | 11       |  |
| Vine-mesquite        | 3         | 4    | 10      | 5   | 10    | 12       |  |
| Switchgrass          | 3         | 5    | 9       | 7   | 9     | 11       |  |
| Longtom              | 3         | 3    | 10      | 8   | 10    | 11       |  |
| Brownseed paspalum   | 3         | 3    | 8       | 8   | 10    | 10       |  |

Appendix Table E.11 Values for months when physiological responses occur in plant species included in the Goliad County EDYS model.

# Appendix Table E.11 (Cont.)

| Common Name           | Green-out | Seed | -sprout | See | d-set | Dormancy |
|-----------------------|-----------|------|---------|-----|-------|----------|
| Thin paspalum         | 3         | 3    | 10      | 8   | 9     | 11       |
| Common reed           | 3         | 4    | 10      | 9   | 11    | 11       |
| Little bluestem       | 3         | 5    | 9       | 7   | 9     | 11       |
| Knotroot bristlegrass | 3         | 3    | 10      | 5   | 8     | 12       |
| Plains bristlegrass   | 3         | 3    | 9       | 5   | 8     | 11       |
| Texas bristlegrass    | 2         | 2    | 11      | 5   | 8     | 12       |
| Indiangrass           | 3         | 5    | 9       | 7   | 9     | 11       |
| Johnsongrass          | 3         | 4    | 9       | 7   | 10    | 11       |
| Gulf cordgrass        | 3         | 3    | 9       | 5   | 8     | 11       |
| Tall dropseed         | 3         | 4    | 9       | 5   | 8     | 11       |
| Sand dropseed         | 3         | 4    | 10      | 5   | 9     | 11       |
| Smutgrass             | 3         | 3    | 9       | 5   | 8     | 11       |
| Texas wintergrass     | 10        | 10   | 5       | 3   | 5     | 6        |
| Milo                  | 3         | 3    | 9       | 5   | 8     | 11       |
| Wheat                 | 10        | 10   | 4       | 4   | 5     | 5        |
| Corn                  | 4         | 4    | 9       | 5   | 8     | 11       |
| Littletooth sedge     | 3         | 3    | 10      | 5   | 9     | 12       |
| Flatsedge             | 2         | 3    | 10      | 4   | 9     | 12       |
| Cattail               | 3         | 4    | 10      | 6   | 8     | 12       |
| Ragweed               | 3         | 3    | 9       | 5   | 10    | 10       |
| Lazydaisy             | 2         | 3    | 9       | 3   | 7     | 10       |
| Spiny aster           | 3         | 4    | 9       | 6   | 8     | 9        |
| Whitestem wild indigo | 3         | 3    | 9       | 5   | 8     | 11       |
| Old-mans beard        | 3         | 3    | 10      | 6   | 10    | 12       |
| Bundleflower          | 3         | 4    | 9       | 5   | 10    | 11       |
| Frogfruit             | 3         | 3    | 9       | 3   | 10    | 11       |
| Prairie coneflower    | 2         | 2    | 8       | 4   | 8     | 10       |
| Snoutbean             | 3         | 3    | 9       | 4   | 8     | 11       |
| Ruellia               | 3         | 3    | 10      | 4   | 8     | 12       |
| Curly dock            | 2         | 3    | 9       | 4   | 8     | 11       |
| Bulltongue            | 2         | 3    | 9       | 4   | 8     | 11       |
| Glasswort             | 2         | 3    | 8       | 5   | 9     | 10       |
| Bush sunflower        | 3         | 3    | 9       | 5   | 9     | 11       |
| Green briar           | 3         | 9    | 6       | 2   | 6     | 2        |
| Texas verbena         | 2         | 2    | 9       | 4   | 8     | 12       |
| Orange zexmenia       | 3         | 4    | 9       | 5   | 9     | 11       |
| Giant ragweed         | 3         | 3    | 9       | 7   | 8     | 11       |
| Annual broomweed      | 3         | 2    | 9       | 3   | 10    | 11       |
| Partridge pea         | 3         | 3    | 9       | 6   | 7     | 11       |
| Texas doveweed        | 3         | 2    | 9       | 4   | 8     | 11       |
| Sunflower             | 2         | 2    | 10      | 5   | 9     | 11       |
| Dogweed               | 3         | 3    | 9       | 4   | 9     | 11       |

\_\_\_

|                      | Maintenance (mm/g | New biomass | J                   |                     |
|----------------------|-------------------|-------------|---------------------|---------------------|
| Common Name          | bio/mo)           | maintenance | Water to production | Green-out water use |
| Huisache             | 0.000085          | 0.04        | 1.25                | 0.55                |
| Pecan                | 0.000085          | 0.04        | 0.88                | 0.55                |
| Sugar hackberry      | 0.000090          | 0.05        | 0.90                | 0.45                |
| Mesquite             | 0.000085          | 0.04        | 1.10                | 0.50                |
| Post oak             | 0.000080          | 0.04        | 0.90                | 0.45                |
| Live oak             | 0.000080          | 0.03        | 0.80                | 0.45                |
| Guajillo             | 0.000090          | 0.05        | 1.63                | 0.70                |
| Blackbrush           | 0.000090          | 0.05        | 1.63                | 0.70                |
| Whitebrush           | 0.000090          | 0.05        | 1.20                | 0.70                |
| Prairie baccharis    | 0.000090          | 0.05        | 0.81                | 0.70                |
| Sea oxeye            | 0.0000100         | 0.05        | 1.87                | 0.50                |
| Granjeno             | 0.0000100         | 0.05        | 1.22                | 0.50                |
| Carolina wolfberry   | 0.000085          | 0.04        | 1.25                | 0.65                |
| Agarito              | 0.000080          | 0.04        | 1.47                | 0.60                |
| McCartney rose       | 0.000090          | 0.05        | 1.00                | 0.65                |
| Rattlepod            | 0.0000250         | 0.07        | 0.64                | 0.75                |
| Mustang grape        | 0.000090          | 0.05        | 0.90                | 0.70                |
| Texas prickly pear   | 0.000080          | 0.04        | 0.30                | 0.80                |
| Big bluestem         | 0.0000280         | 0.05        | 0.83                | 0.80                |
| Bushy bluestem       | 0.0000280         | 0.05        | 1.30                | 0.80                |
| Purple threeawn      | 0.0000150         | 0.04        | 0.68                | 0.65                |
| King Ranch bluestem  | 0.0000150         | 0.04        | 0.70                | 0.67                |
| Silver bluestem      | 0.0000160         | 0.04        | 0.76                | 0.70                |
| Sideoats grama       | 0.0000160         | 0.04        | 0.87                | 0.65                |
| Hairy grama          | 0.0000150         | 0.03        | 0.60                | 0.60                |
| Red grama            | 0.0000140         | 0.03        | 0.56                | 0.60                |
| Buffalograss         | 0.0000150         | 0.04        | 0.74                | 0.64                |
| Sandbur              | 0.0003910         | 0.05        | 0.47                | 0.80                |
| Hooded windmillgrass | 0.0003910         | 0.05        | 0.87                | 0.80                |
| Trichloris           | 0.0003910         | 0.05        | 0.87                | 0.80                |
| Bermudagrass         | 0.0000160         | 0.04        | 0.91                | 0.70                |
| Arizona cottontop    | 0.0000160         | 0.04        | 0.63                | 0.70                |
| Saltgrass            | 0.0000160         | 0.04        | 0.78                | 0.70                |
| Virginia wildrye     | 0.0000160         | 0.04        | 1.24                | 0.70                |
| Texas cupgrass       | 0.0000170         | 0.05        | 0.82                | 0.75                |
| Green sprangletop    | 0.0000160         | 0.04        | 0.76                | 0.70                |
| Kleingrass           | 0.0000160         | 0.04        | 1.36                | 0.70                |
| Guineagrass          | 0.0000160         | 0.04        | 1.36                | 0.70                |
| Vine-mesquite        | 0.0000150         | 0.04        | 0.90                | 0.65                |
| Switchgrass          | 0.0000180         | 0.05        | 1.00                | 0.75                |
| Longtom              | 0.0000017         | 0.06        | 0.50                | 0.65                |
| Brownseed paspalum   | 0.0000017         | 0.06        | 0.95                | 0.65                |

## Appendix Table E.13 Values for water use variables used in the Goliad County EDYS model.

#### Maintenance (mm/g New biomass Common Name bio/mo) maintenance Water to production Green-out water use 0.0000017 Thin paspalum 0.06 0.76 0.65 Common reed 0.0000200 0.06 0.73 0.70 0.0000170 0.05 0.90 0.65 Little bluestem 0.0000120 0.04 0.90 0.70 Knotroot bristlegrass 0.04 0.70 **Plains bristlegrass** 0.0000120 0.80 Texas bristlegrass 0.0000120 0.04 0.61 0.70 Indiangrass 0.0000175 0.05 0.89 0.75 Johnsongrass 0.0000175 0.06 0.89 0.70 0.04 0.70 Gulf cordgrass 0.0000120 0.60 Tall dropseed 0.0000160 0.04 0.71 0.70 0.04 Sand dropseed 0.0000140 0.85 0.65 0.04 0.60 0.70 Smutgrass 0.0000120 Texas wintergrass 0.0000120 0.03 0.99 0.65 0.04 0.70 Milo 0.0000120 0.33 Wheat 0.0000120 0.04 0.76 0.70 Corn 0.0000120 0.04 0.37 0.70 Littletooth sedge 0.0000200 0.06 0.79 0.67 Flatsedge 0.0000200 0.06 0.73 0.70 Cattail 0.0000225 0.06 0.85 0.70 0.03 Ragweed 0.0000140 0.91 0.72 Lazydaisy 0.0000140 0.03 0.67 0.70 0.04 0.50 0.78 Spiny aster 0.0000100 Whitestem wild indigo 0.0000187 0.05 1.10 0.67 Old-mans beard 0.000090 0.05 0.80 0.70 Bundleflower 0.03 0.0000140 0.67 0.72 Frogfruit 0.03 0.70 0.72 0.0000070 Prairie coneflower 0.06 0.0000160 0.69 0.67 Snoutbean 0.08 0.82 0.0000250 0.83 Ruellia 0.0000250 0.08 0.60 0.82 Curly dock 0.08 0.87 0.82 0.0000250 Bulltongue 0.0000250 0.08 0.87 0.82 Glasswort 0.0000190 0.06 0.80 0.67 **Bush sunflower** 0.0000200 0.07 0.85 0.75 Green briar 0.0000180 0.05 1.20 0.61 Texas verbena 0.0000250 0.08 0.79 0.82 Orange zexmenia 0.0000180 0.05 0.70 0.60 **Giant ragweed** 0.000070 0.03 0.53 0.72 Annual broomweed 0.000070 0.03 0.58 0.72 0.07 0.76 0.75 Partridge pea 0.0000250 Texas doveweed 0.0000250 0.08 0.56 0.82 Sunflower 0.0000200 0.06 0.55 0.70 Dogweed 0.0000070 0.03 0.50 0.72

#### Appendix Table E.13 (Cont.)

#### **Data Sources**

#### Water to Production

Huisache: mean of *Cercidium microphylum* and *Prosopis velutina* (McGinnes & Arnold 1939) Pecan, sugar hackberry, Texas persimmon, post oak, live oak: *Populus fremontii* (Anderson 1982) Mesquite: Dwyer & DeGarmo (1970)

Guajillo and blackbrush: Acacia greggii, Cercidium microphylum, Prosopis velutina (McGinnes & Arnold 1939) Whitebrush: mean of Atriplex lentiformis (Watson 1990), Chrysothamnus nauseosus (Donovan et al. 1996),

Sarcobatus vermiculatus (Donovan et al. 1996), Simmondsia chinensis (McGinnes & Arnold 1939) Baccharis: 0.9(Populus fremontii) = Baccharis salicifolia (Glenn et al. 1998)

Granjeno: mean of *Atriplex canescens* (Watson 1990), *Larrea tridentata* (Dwyer & DeGarmo 1970), *Populus fremontii* (Anderson 1982)

Agarito: Larrea tridentata (mean of Dwyer & DeGarmo 1970; Lane et al. 1984)

Rattlepod: mean of Atriplex lentiformis (Watson 1990), Baccharis salicifolia (Glenn et al. 1998), Salix goodingii (Glenn et al. 1998)

Mustang grape: Populus fremontii (Anderson 1982)

Prickly pear: Opuntia basilaris (Nobel 1976)

| Big bluestem:       | Weaver (1941)                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------|
| Purple threeawn:    | McLendon et al. (unpublished)                                                                 |
| KR bluestem:        | Coyne & Bradford (1986)                                                                       |
| Silver bluestem:    | McGinnes & Arnold (1939)                                                                      |
| Sideoats grama:     | McGinnes & Arnold (1939)                                                                      |
| Hairy grama:        | McGinnes & Arnold (1939)                                                                      |
| Buffalograss:       | 90% of blue grama (Shantz & Piemeisel 1927)                                                   |
| Sandbur:            | Cenchrus ciliaris, mean of Khan (1971) and Kapinga (1982)                                     |
| Hooded windmillg    | rass and trichloris: Chloris gayana (Kapinga 1982)                                            |
| Bermudagrass:       | mean of McDonald & Hughes (1968) and Wiedenfeld (1988)                                        |
| Arizona cottontop:  | McGinnes & Arnold (1939)                                                                      |
| Virginia wildrye:   | Leymus junceus, mean of Hunt (1962), Power (1985), Frank & Berdahl (1999)                     |
| Clubhead cutgrass   | : Phalaris aquatica (Morison & Gifford 1984)                                                  |
| Kleingrass:         | mean of McCawley (1978) and Kapinga (1982)                                                    |
| Vine-mesquite:      | 90% of Hilaria mutica (Dwyer & DeGarmo 1970)                                                  |
| Switchgrass:        | mean of Andropogon gerardii (Weaver 1941), Panicum antidotale (Writht & Dobrenz 1970)         |
| Longtom:            | Paspalum vaginatum (Biran et al. 1981)                                                        |
| Thin paspalum:      | mean of Aristida purpurea (McLendon et al., unpublished), Bouteloua hirsuta (McGinnes &       |
|                     | Arnold), Cenchrus ciliaris (Kapinga 1982), Eragrostis curvula (Wiedenfield 1988), Heteropogon |
|                     | contortus (McGinnes & Arnold 1939), Schizachyrium scoparium (Weaver 1941), Sporobolus         |
|                     | airoides (Benton & Wester 1998), Sporobolus flexuous (Dwyer & DeGarmo)                        |
| Little bluestem:    | mean of Weaver (1941) and McLendon et al. (unpublished)                                       |
| Knotroot bristle:   | mean of Spartina alterniflora (Gallagher et al. 1980) and Sporobolus wrightii (Cox 1985)      |
| Texas bristlegrass: | mean of Bothriochloa saccharoides (McGinnes & Arnold), Setaria italic (Briggs & Shantz        |
|                     | 1913), Sporobolus flexuous (Dwyer & DeGarmo 1970)                                             |
| Johnsongrass:       | mean of Andropogon gerardii (Weaver 1941), Chloris gayana (Kapinga 1982), Panicum             |
|                     | antidotale (Wright & Dobrenz), Phragmites australis (Mueller et al. 2005), Sorghum bicolor    |
|                     | (Briggs & Shantz 1913)                                                                        |
| Tall dropseed:      | Sporobolus flexuosus (Dwyer & DeGarmo 1970)                                                   |
| Texas wintergrass:  | Stipa viridula (Fairbourn 1982)                                                               |
| Milo:               | Briggs & Shantz (1913), Peng & Krieg (1992)                                                   |
| Wheat:              | Briggs & Shantz (1913)                                                                        |
| Corn:               | Briggs & Shantz (1913)                                                                        |
|                     |                                                                                               |

## Goliad County EDYS Model

| Littletooth sedge:<br>Flatsedge:<br>Fimbry:<br>Cattail: | Juncus roemerianus (Giurgevich & Dunn 1978)<br>Phragmites australis (Mueller et al. 2005)<br>Phalaris arundinacea (Mueller et al. 2005)<br>mean of Juncus roemerianus (Giurgevich & Dunn 1978), Paspalum vaginatum (Biran et al.<br>1981), Phalaris aquatica (Morison & Gifford 1984), Phragmites australis (Mueller et al. 2005),<br>Spartina alterniflora (Gallagher et al. 1980) |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ragweed:<br>Old-mans beard:<br>Bundleflower:            | Ambrosia artemisifolia (Shantz & Piemeisel 1927)<br>mean of Ambrosia artemisifolia and Iva xanthifolia (Shantz & Piemeisel 1927)<br>mean of Lotus humistrautis (McGinnes & Arnold 1939), Melilotus alba (Shantz & Piemeisel<br>1927)                                                                                                                                                |
| Frogfruit:                                              | mean of <i>Amaranthus retroflexus</i> (Briggs & Shantz 1913), <i>Plantago insularis</i> (McGinnes & Arnold 1939), <i>Polygonum aviculare</i> (Shantz & Piemeisel 1927)                                                                                                                                                                                                              |
| Priaire coneflower:                                     | mean of Ambrosia artemisifolia, Grindelia squarrosa, Helianthus petiolaris, Polygonum aviculare (Shantz & Piemeisel 1927)                                                                                                                                                                                                                                                           |
| Snoutbean:                                              | mean of <i>Glycine max</i> (Lawn 1982), <i>Lotus humistrautis</i> (McGinnes & Arnold 1939), <i>Pisum sativum</i> (Briggs & Shantz 1913)                                                                                                                                                                                                                                             |
| Ruellia:                                                | mean of <i>Fagopyrum fagopyrum</i> (Briggs & Shantz 1913), <i>Iva xanthifolia</i> (Shantz & Piemeisel 1927), <i>Plantago insularis</i> (McGinnes & Arnold 1939), <i>Polygonum aviculare</i> (Shantz & Piemeisel 1927), <i>Solanum tuberosum</i> (Briggs & Shantz 1913)                                                                                                              |
| Bush sunflower:                                         | mean of <i>Helianthus petiolaris</i> and <i>Polygonum aviculare</i> (Shantz & Piemeisel 1927)                                                                                                                                                                                                                                                                                       |
| Texas verbena:                                          | mean of <i>Chenopodium album</i> (Shantz & Piemeisel 1927), <i>Erodium cicutarium</i> (McGinnes & Arnold 1939)                                                                                                                                                                                                                                                                      |
| Orange zexmenia:                                        | 0.8(bush sunflower)                                                                                                                                                                                                                                                                                                                                                                 |
| Giant ragweed:                                          | mean of <i>Amaranthus retroflexus</i> (Briggs & Shantz 1913), <i>Helianthus annuus</i> (mean of 4 studies), <i>Iva xanthifolia</i> (Shantz & Piemeisel 1927), <i>Polygonum aviculare</i> (Shantz & Piemeisel 1927)                                                                                                                                                                  |
| Annual broomweed                                        | mean of <i>Fagopyrum fagopyrum</i> (Briggs & Shantz 1913), <i>Grindelia squarrosa</i> (Shantz & Piemeisel 1927)                                                                                                                                                                                                                                                                     |
| Sunflower:                                              | mean of Shantz & Piemeisel (1927), Morison & Gifford (1984), Larcher (1995), Mueller et al. (2005)                                                                                                                                                                                                                                                                                  |
| Duckweed:                                               | mean of <i>Allenrolfea occidentalis</i> (Glenn et al. 1998), <i>Iva xanthifolia</i> (Shantz & Piemeisel 1927), <i>Phalaris aquatica</i> (Morison & Gifford 1984)                                                                                                                                                                                                                    |
| Partridge pea:                                          | mean of Astragalus cicer (Fairbourn 1982), Lotus humistrautis (McGinnes & Arnold 1939),<br>Pisum sativum (Briggs & Shantz 1913)                                                                                                                                                                                                                                                     |
| Texas doveweed:                                         | mean of <i>Brassica napus</i> (Briggs & Shantz 1913), <i>Chenopodium album</i> (Shantz & Piemeisel 1927), <i>Fagopyrum fagopyrum</i> (Briggs & Shantz 1913),                                                                                                                                                                                                                        |
| Texas bluebonnet:                                       | mean of <i>Astragalus cicer</i> (Fairbourn 1982), <i>Lotus humistrautis</i> (McGinnes & Arnold 1939),<br><i>Trifolium pretense</i> (Mueller et al. 2005)                                                                                                                                                                                                                            |
| Dogweed:                                                | mean of <i>Boerhaavia torreyana</i> (McGinnes & Arnold 1939), <i>Pectocarya linearis</i> (McGinnes & Arnold 1939), <i>Salsola iberica</i> (Briggs & Shantz 1913)                                                                                                                                                                                                                    |

|                      |                 |             |                  | Max old biomass |
|----------------------|-----------------|-------------|------------------|-----------------|
| Common Name          | Max growth rate | Max biomass | Max plant height | drought loss    |
| Huisache             | 1.10            | 5000        | 6000             | 0.20            |
| Pecan                | 0.98            | 28000       | 42672            | 0.10            |
| Sugar hackberry      | 1.10            | 14000       | 9144             | 0.10            |
| Mesquite             | 0.90            | 6400        | 9144             | 0.05            |
| Post oak             | 0.25            | 15000       | 9144             | 0.10            |
| Live oak             | 0.40            | 29000       | 9144             | 0.10            |
| Guajillo             | 0.28            | 2100        | 1500             | 0.35            |
| Blackbrush           | 0.28            | 2400        | 1500             | 0.35            |
| Whitebrush           | 1.00            | 2600        | 1500             | 0.35            |
| Prairie baccharis    | 1.20            | 2800        | 1500             | 0.40            |
| Sea oxeye            | 0.80            | 390         | 792              | 0.50            |
| Granjeno             | 0.90            | 2500        | 792              | 0.50            |
| Carolina wolfberry   | 0.50            | 1000        | 1500             | 0.25            |
| Agarito              | 0.25            | 1200        | 792              | 0.10            |
| McCartney rose       | 0.75            | 2000        | 792              | 0.30            |
| Rattlepod            | 1.30            | 1400        | 792              | 0.70            |
| Mustang grape        | 1.00            | 2000        | 1500             | 0.40            |
| Texas prickly pear   | 0.05            | 2400        | 792              | 0.10            |
| Big bluestem         | 3.00            | 800         | 792              | 0.80            |
| Bushy bluestem       | 2.25            | 390         | 792              | 0.80            |
| Purple threeawn      | 2.75            | 300         | 792              | 0.20            |
| King Ranch bluestem  | 2.50            | 800         | 610              | 0.20            |
| Silver bluestem      | 2.75            | 600         | 610              | 0.40            |
| Sideoats grama       | 2.75            | 600         | 610              | 0.25            |
| Hairy grama          | 1.75            | 250         | 610              | 0.20            |
| Red grama            | 1.75            | 150         | 850              | 0.20            |
| Buffalograss         | 1.71            | 350         | 610              | 0.30            |
| Sandbur              | 2.20            | 1020        | 610              | 0.80            |
| Hooded windmillgrass | 1.75            | 250         | 610              | 0.80            |
| Trichloris           | 2.25            | 600         | 610              | 0.80            |
| Bermudagrass         | 2.50            | 600         | 396              | 0.25            |
| Arizona cottontop    | 2.50            | 500         | 351              | 0.40            |
| Saltgrass            | 2.30            | 1020        | 351              | 0.40            |
| Virginia wildrye     | 2.75            | 600         | 351              | 0.40            |
| Texas cupgrass       | 2.50            | 600         | 351              | 0.30            |
| Green sprangletop    | 2.50            | 400         | 351              | 0.30            |
| Kleingrass           | 2.00            | 800         | 351              | 0.40            |
| Guineagrass          | 2.00            | 800         | 351              | 0.40            |
| Vine-mesquite        | 2.75            | 450         | 351              | 0.30            |
| Switchgrass          | 2.75            | 800         | 351              | 0.30            |
| Longtom              | 2.75            | 500         | 610              | 0.40            |
| Brownseed paspalum   | 2.40            | 780         | 990              | 0.40            |

Appendix Table E.14 Growth rate control factor values for plant species included in the Goliad County EDYS model.

# Appendix Table E.14 (Cont.)

|                       |                 |             |                  | Max old biomass |
|-----------------------|-----------------|-------------|------------------|-----------------|
| Common Name           | Max growth rate | Max biomass | Max plant height | drought loss    |
| Thin paspalum         | 2.25            | 400         | 610              | 0.40            |
| Common reed           | 3.26            | 2100        | 850              | 0.15            |
| Little bluestem       | 2.50            | 600         | 914              | 0.30            |
| Knotroot bristlegrass | 1.50            | 250         | 850              | 0.30            |
| Plains bristlegrass   | 1.36            | 1080        | 850              | 0.30            |
| Texas bristlegrass    | 1.50            | 100         | 850              | 0.30            |
| Indiangrass           | 2.75            | 750         | 792              | 0.30            |
| Johnsongrass          | 2.75            | 800         | 850              | 0.35            |
| Gulf cordgrass        | 1.36            | 1080        | 2012             | 0.30            |
| Tall dropseed         | 2.75            | 600         | 850              | 0.30            |
| Sand dropseed         | 2.75            | 400         | 850              | 0.20            |
| Smutgrass             | 1.36            | 1080        | 850              | 0.30            |
| Texas wintergrass     | 2.00            | 300         | 1200             | 0.25            |
| Milo                  | 4.00            | 1000        | 1200             | 0.30            |
| Wheat                 | 2.00            | 350         | 1200             | 0.30            |
| Corn                  | 3.00            | 1200        | 1200             | 0.30            |
| Littletooth sedge     | 1.25            | 250         | 1325             | 0.50            |
| Flatsedge             | 1.50            | 500         | 351              | 0.30            |
| Cattail               | 1.00            | 800         | 351              | 0.50            |
| Ragweed               | 3.12            | 600         | 1035             | 0.20            |
| Lazydaisy             | 2.00            | 60          | 1035             | 0.25            |
| Spiny aster           | 3.50            | 1000        | 1325             | 0.30            |
| Whitestem wild indigo | 1.75            | 710         | 351              | 0.50            |
| Old-mans beard        | 1.00            | 400         | 1400             | 0.35            |
| Bundleflower          | 2.00            | 80          | 1035             | 0.20            |
| Frogfruit             | 2.40            | 60          | 1035             | 0.10            |
| Prairie coneflower    | 2.00            | 60          | 895              | 0.30            |
| Snoutbean             | 2.00            | 80          | 1050             | 0.80            |
| Ruellia               | 2.00            | 50          | 1050             | 0.80            |
| Curly dock            | 1.50            | 450         | 1050             | 0.80            |
| Bulltongue            | 1.50            | 450         | 1050             | 0.80            |
| Glasswort             | 1.80            | 450         | 1050             | 0.40            |
| Bush sunflower        | 1.75            | 300         | 1050             | 0.20            |
| Green briar           | 0.40            | 800         | 792              | 0.40            |
| Texas verbena         | 2.50            | 50          | 1050             | 0.80            |
| Orange zexmenia       | 1.35            | 200         | 1050             | 0.15            |
| Giant ragweed         | 4.00            | 1000        | 1035             | 0.10            |
| Annual broomweed      | 3.00            | 300         | 1035             | 0.10            |
| Partridge pea         | 1.50            | 200         | 1325             | 0.70            |
| Texas doveweed        | 1.50            | 250         | 895              | 0.80            |
| Sunflower             | 3.00            | 750         | 895              | 0.30            |
| Dogweed               | 1.00            | 60          | 1035             | 0.10            |

#### **Data Sources**

#### **Maximum Growth Rate**

| Purple threeawn   | Aristida glabrata (McGinnies & Arnold 1939)     |
|-------------------|-------------------------------------------------|
| Silver bluestem   | McGinnies & Arnold (1939)                       |
| Sideoats grama    | McGinnies & Arnold (1939)                       |
| Hairy grama       | McGinnies & Arnold (1939)                       |
| Buffalograss      | Hilaria belangeri (McGinnies & Arnold 1939)     |
| Arizona cottontop | modified from McGinnies & Arnold (1939)         |
| Thin paspalum     | Heteropogon contortus (McGinnies & Arnold 1939) |

#### **Maximum Aboveground Biomass**

King Ranch bluestem Dichanthium annualtum (Kapinga 1982)

| Table E.14) for plant species in the Gonad County ED 15 model.                                                                           |           |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                          | Nov Dec   |
|                                                                                                                                          | 0.20 0.10 |
|                                                                                                                                          | 0.10 0.00 |
| 5 ,                                                                                                                                      | 0.10 0.00 |
|                                                                                                                                          | 0.20 0.05 |
|                                                                                                                                          | 0.10 0.00 |
|                                                                                                                                          | 0.40 0.30 |
|                                                                                                                                          | 0.10 0.05 |
|                                                                                                                                          | 0.30 0.10 |
|                                                                                                                                          | 0.30 0.20 |
|                                                                                                                                          | 0.30 0.10 |
| •                                                                                                                                        | 0.00 0.00 |
| ,                                                                                                                                        | 0.30 0.05 |
| •                                                                                                                                        | 0.30 0.00 |
| Agarito 0.10 0.20 0.70 0.90 1.00 1.00 1.00 0.90 0.70                                                                                     | 0.20 0.10 |
| McCartney rose 0.20 0.20 0.40 0.80 1.00 1.00 1.00 0.90 0.60                                                                              | 0.30 0.20 |
| Rattlepod 0.05 0.20 0.40 0.70 1.00 1.00 1.00 0.90 0.70                                                                                   | 0.40 0.05 |
|                                                                                                                                          | 0.20 0.00 |
| Texas prickly pear 0.10 0.10 0.60 0.90 1.00 1.00 1.00 1.00 1.00 0.70                                                                     | 0.30 0.10 |
| Big bluestem 0.00 0.10 0.50 0.90 1.00 1.00 1.00 1.00 0.90 0.60                                                                           | 0.30 0.05 |
| Bushy bluestem 0.00 0.00 0.30 0.60 0.90 1.00 1.00 1.00 0.75 0.40                                                                         | 0.05 0.00 |
| Purple threeawn 0.10 0.20 0.80 1.00 1.00 1.00 1.00 1.00 0.85 0.60                                                                        | 0.20 0.10 |
| King Ranch bluestem         0.10         0.20         0.60         0.90         1.00         1.00         1.00         0.80         0.50 | 0.20 0.10 |
| Silver bluestem 0.10 0.15 0.50 0.80 1.00 1.00 1.00 1.00 0.80 0.50                                                                        | 0.20 0.10 |
| Sideoats grama 0.10 0.15 0.60 0.80 1.00 1.00 1.00 1.00 0.60 0.30                                                                         | 0.20 0.10 |
| Hairy grama 0.10 0.15 0.40 0.80 1.00 1.00 1.00 0.80 0.50                                                                                 | 0.20 0.10 |
| Red grama 0.10 0.15 0.40 0.80 1.00 1.00 1.00 1.00 0.80 0.50                                                                              | 0.20 0.10 |
| Buffalograss 0.05 0.10 0.40 0.80 1.00 1.00 0.90 0.70 0.50                                                                                | 0.30 0.10 |
| Sandbur 0.00 0.00 0.20 0.50 0.80 1.00 1.00 0.90 0.80 0.60                                                                                | 0.30 0.00 |
| Hooded windmillgrass 0.00 0.01 0.40 0.80 0.90 1.00 1.00 0.90 0.70 0.50                                                                   | 0.20 0.00 |
| Trichloris 0.10 0.10 0.50 0.70 1.00 1.00 0.90 0.70 0.50                                                                                  | 0.20 0.10 |
| Bermudagrass 0.00 0.05 0.20 0.50 1.00 1.00 1.00 1.00 0.90 0.60                                                                           | 0.20 0.00 |
| Arizona cottontop 0.20 0.30 0.40 0.50 0.60 0.70 0.90 1.00 0.60 0.50                                                                      | 0.40 0.30 |
| Saltgrass 0.10 0.20 0.60 1.00 1.00 0.90 0.80 0.70 0.80 0.40                                                                              | 0.20 0.10 |
| Virginia wildrye 0.50 0.80 1.00 1.00 0.80 0.40 0.10 0.10 0.30 0.40                                                                       | 0.50 0.50 |
| Texas cupgrass 0.00 0.10 0.60 0.90 1.00 1.00 1.00 1.00 0.80 0.60                                                                         | 0.30 0.10 |
|                                                                                                                                          | 0.10 0.05 |
|                                                                                                                                          | 0.40 0.20 |
| -                                                                                                                                        | 0.40 0.20 |
| 5                                                                                                                                        | 0.30 0.15 |
| •                                                                                                                                        | 0.30 0.10 |
|                                                                                                                                          | 0.20 0.10 |
| 5                                                                                                                                        | 0.20 0.00 |

Appendix Table E.15 Monthly growth rates (proportion of maximum potential growth rate, Appendix Table E.14) for plant species in the Goliad County EDYS model.

Appendix Table E.15 (Cont.)

|                       |      | ,    |      |      |      |      |      |      |      |      |      |      |
|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Common Name           | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
| Thin paspalum         | 0.10 | 0.20 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.40 | 0.20 | 0.10 |
| Common reed           | 0.00 | 0.10 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.30 | 0.10 |
| Little bluestem       | 0.05 | 0.10 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.10 | 0.05 |
| Knotroot bristlegrass | 0.10 | 0.30 | 0.60 | 0.80 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.40 | 0.20 | 0.10 |
| Plains bristlegrass   | 0.00 | 0.10 | 0.80 | 1.00 | 1.00 | 0.90 | 0.80 | 0.70 | 0.80 | 0.40 | 0.20 | 0.00 |
| Texas bristlegrass    | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.00 | 0.80 | 0.70 | 0.60 | 0.50 | 0.40 | 0.30 |
| Indiangrass           | 0.05 | 0.10 | 0.40 | 0.70 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.05 |
| Johnsongrass          | 0.00 | 0.00 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.05 |
| Gulf cordgrass        | 0.10 | 0.30 | 0.80 | 1.00 | 1.00 | 0.90 | 0.80 | 0.70 | 0.80 | 0.40 | 0.20 | 0.10 |
| Tall dropseed         | 0.10 | 0.20 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.40 | 0.20 | 0.10 |
| Sand dropseed         | 0.05 | 0.10 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.05 |
| Smutgrass             | 0.10 | 0.30 | 0.80 | 1.00 | 1.00 | 0.90 | 0.80 | 0.70 | 0.80 | 0.40 | 0.20 | 0.10 |
| Texas wintergrass     | 0.70 | 0.80 | 1.00 | 1.00 | 0.70 | 0.40 | 0.10 | 0.00 | 0.20 | 0.40 | 0.60 | 0.70 |
| Milo                  | 0.00 | 0.10 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.50 | 0.20 | 0.00 | 0.00 |
| Wheat                 | 0.80 | 0.90 | 1.00 | 1.00 | 0.70 | 0.30 | 0.00 | 0.00 | 0.00 | 0.20 | 0.40 | 0.80 |
| Corn                  | 0.00 | 0.10 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.60 | 0.30 | 0.10 | 0.00 |
| Littletooth sedge     | 0.10 | 0.25 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.50 | 0.30 | 0.10 |
| Flatsedge             | 0.10 | 0.20 | 0.60 | 0.90 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.30 | 0.20 | 0.10 |
| Cattail               | 0.10 | 0.20 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.10 |
| Ragweed               | 0.00 | 0.10 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 0.90 | 0.50 | 0.30 | 0.10 | 0.10 |
| Lazydaisy             | 0.00 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.10 | 0.00 |
| Spiny aster           | 0.00 | 0.15 | 0.30 | 0.60 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.30 | 0.10 | 0.00 |
| Whitestem wild indigo | 0.00 | 0.10 | 0.60 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.20 | 0.10 | 0.00 |
| Old-mans beard        | 0.10 | 0.20 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.50 | 0.30 | 0.20 |
| Bundleflower          | 0.10 | 0.20 | 0.50 | 0.70 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.40 | 0.20 | 0.10 |
| Frogfruit             | 0.10 | 0.20 | 0.50 | 0.70 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.40 | 0.20 | 0.10 |
| Prairie coneflower    | 0.10 | 0.30 | 0.70 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.50 | 0.30 | 0.20 | 0.10 |
| Snoutbean             | 0.10 | 0.15 | 0.60 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.10 |
| Ruellia               | 0.10 | 0.20 | 0.70 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.40 | 0.20 | 0.10 |
| Curly dock            | 0.10 | 0.10 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.40 | 0.20 | 0.10 |
| Bulltongue            | 0.10 | 0.10 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.40 | 0.20 | 0.10 |
| Glasswort             | 0.00 | 0.00 | 0.40 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 0.50 | 0.20 | 0.00 |
| Bush sunflower        | 0.00 | 0.10 | 0.40 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.30 | 0.00 | 0.00 |
| Green briar           | 0.10 | 0.30 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.50 | 0.40 | 0.10 |
| Texas verbena         | 0.20 | 0.30 | 0.80 | 1.00 | 1.00 | 0.90 | 0.80 | 0.70 | 0.60 | 0.50 | 0.40 | 0.30 |
| Orange zexmenia       | 0.20 | 0.40 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.30 | 0.40 | 0.00 |
| Giant ragweed         | 0.10 | 0.10 | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.30 | 0.20 | 0.00 |
| Annual broomweed      | 0.10 | 0.20 | 0.30 | 0.30 | 1.00 | 1.00 | 0.90 | 0.80 | 0.50 | 0.40 | 0.20 | 0.00 |
| Partridge pea         | 0.10 | 0.20 | 0.40 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.50 | 0.30 | 0.10 | 0.00 |
| Texas doveweed        | 0.20 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 0.90 | 0.70 | 0.50 | 0.30 | 0.10 | 0.00 |
| Sunflower             | 0.10 | 0.30 | 0.60 | 0.80 | 1.00 | 1.00 | 1.00 | 0.80 | 0.60 | 0.40 | 0.10 | 0.00 |
| Dogweed               | 0.00 | 0.10 | 0.40 | 0.80 | 1.00 | 1.00 | 1.00 | 0.90 | 0.60 | 0.40 | 0.20 | 0.00 |

#### **Data Sources**

| Purple threeawn   | Modified from Aristida divaricata (McGinnies & Arnold 1939) |
|-------------------|-------------------------------------------------------------|
| Silver bluestem   | McGinnies & Arnold 1939                                     |
| Sideoats grama    | McGinnies & Arnold 1939                                     |
| Hairy grama       | McGinnies & Arnold 1939                                     |
| Arizona cottontop | McGinnies & Arnold 1939                                     |
|                   |                                                             |

| Common Name          | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|----------------------|-------|-------|-------|-------|--------|-------|
| Huisache             | 0.00  | 0.00  | 0.00  | 0.05  | 1.00   | 0.00  |
| Pecan                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Sugar hackberry      | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Mesquite             | 0.00  | 0.00  | 0.00  | 0.02  | 1.00   | 0.00  |
| Post oak             | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Live oak             | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Guajillo             | 0.00  | 0.00  | 0.00  | 0.02  | 1.00   | 0.00  |
| Blackbrush           | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Whitebrush           | 0.00  | 0.00  | 0.00  | 0.05  | 1.00   | 0.00  |
| Prairie baccharis    | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Sea oxeye            | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.10  |
| Granjeno             | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Carolina wolfberry   | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Agarito              | 0.00  | 0.00  | 0.00  | 0.02  | 1.00   | 0.00  |
| McCartney rose       | 0.00  | 0.00  | 0.00  | 0.30  | 1.00   | 0.00  |
| Rattlepod            | 0.00  | 0.00  | 0.00  | 0.05  | 1.00   | 0.00  |
| Mustang grape        | 0.00  | 0.00  | 0.00  | 0.00  | 1.00   | 0.00  |
| Texas prickly pear   | 0.00  | 0.00  | 0.02  | 1.00  | 0.00   | 0.00  |
| Big bluestem         | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Bushy bluestem       | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Purple threeawn      | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| King Ranch bluestem  | 0.00  | 0.00  | 0.05  | 0.30  | 1.00   | 0.00  |
| Silver bluestem      | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |
| Sideoats grama       | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Hairy grama          | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Red grama            | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Buffalograss         | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Sandbur              | 0.00  | 0.00  | 0.10  | 0.40  | 1.00   | 0.00  |
| Hooded windmillgrass | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Trichloris           | 0.00  | 0.00  | 0.01  | 0.20  | 1.00   | 0.00  |
| Bermudagrass         | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Arizona cottontop    | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Saltgrass            | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Virginia wildrye     | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Texas cupgrass       | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Green sprangletop    | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Kleingrass           | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Guineagrass          | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Vine-mesquite        | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Switchgrass          | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Longtom              | 0.00  | 0.00  | 0.03  | 0.20  | 1.00   | 0.00  |
| Brownseed paspalum   | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |

Appendix Table E.16 Plant part productivity rates (proportion of maximum photosynthetic rate) for plant species in the Goliad County EDYS model.

Appendix Table E.16 (Cont.)

| Common Name           | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|-----------------------|-------|-------|-------|-------|--------|-------|
| Thin paspalum         | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Common reed           | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Little bluestem       | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Knotroot bristlegrass | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Plains bristlegrass   | 0.00  | 0.00  | 0.00  | 0.30  | 1.00   | 0.00  |
| Texas bristlegrass    | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Indiangrass           | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Johnsongrass          | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Gulf cordgrass        | 0.00  | 0.00  | 0.00  | 0.30  | 1.00   | 0.00  |
| Tall dropseed         | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Sand dropseed         | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Smutgrass             | 0.00  | 0.00  | 0.00  | 0.30  | 1.00   | 0.00  |
| Texas wintergrass     | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Milo                  | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |
| Wheat                 | 0.00  | 0.00  | 0.02  | 0.20  | 1.00   | 0.00  |
| Corn                  | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |
| Littletooth sedge     | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Flatsedge             | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |
| Cattail               | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Ragweed               | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Lazydaisy             | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Spiny aster           | 0.00  | 0.00  | 0.00  | 0.60  | 1.00   | 0.00  |
| Whitestem wild indigo | 0.00  | 0.00  | 0.10  | 1.00  | 0.00   | 0.00  |
| Old-mans beard        | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Bundleflower          | 0.00  | 0.00  | 0.10  | 0.10  | 1.00   | 0.00  |
| Frogfruit             | 0.00  | 0.00  | 0.05  | 0.05  | 1.00   | 0.00  |
| Prairie coneflower    | 0.00  | 0.00  | 0.00  | 0.05  | 1.00   | 0.00  |
| Snoutbean             | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Ruellia               | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Curly dock            | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Bulltongue            | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Glasswort             | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Bush sunflower        | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Green briar           | 0.00  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Texas verbena         | 0.00  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |
| Orange zexmenia       | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Giant ragweed         | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |
| Annual broomweed      | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Partridge pea         | 0.00  | 0.00  | 0.00  | 0.10  | 1.00   | 0.00  |
| Texas doveweed        | 0.00  | 0.00  | 0.00  | 0.05  | 1.00   | 0.00  |
| Sunflower             | 0.00  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |
| Dogweed               | 0.00  | 0.00  | 0.00  | 0.20  | 1.00   | 0.00  |

| converted to new production at green-out) for plant species in the Goliad County EDYS model. |       |       |       |       |        |       |  |
|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|-------|--|
| Common Name                                                                                  | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |  |
| Huisache                                                                                     | 0.02  | 0.00  | 0.01  | 0.05  | 1.00   | 0.00  |  |
| Pecan                                                                                        | 0.02  | 0.00  | 0.01  | 0.02  | 1.00   | 0.00  |  |
| Sugar hackberry                                                                              | 0.01  | 0.00  | 0.01  | 0.03  | 1.00   | 0.00  |  |
| Mesquite                                                                                     | 0.02  | 0.00  | 0.01  | 0.05  | 1.00   | 0.00  |  |
| Post oak                                                                                     | 0.01  | 0.00  | 0.01  | 0.02  | 1.00   | 0.00  |  |
| Live oak                                                                                     | 0.01  | 0.00  | 0.01  | 0.02  | 1.00   | 0.00  |  |
| Guajillo                                                                                     | 0.02  | 0.00  | 0.02  | 0.05  | 1.00   | 0.00  |  |
| Blackbrush                                                                                   | 0.02  | 0.00  | 0.02  | 0.05  | 1.00   | 0.00  |  |
| Whitebrush                                                                                   | 0.04  | 0.00  | 0.04  | 0.10  | 1.00   | 0.00  |  |
| Prairie baccharis                                                                            | 0.04  | 0.00  | 0.04  | 0.10  | 1.00   | 0.00  |  |
| Sea oxeye                                                                                    | 0.10  | 0.00  | 0.00  | 0.10  | 0.80   | 0.00  |  |
| Granjeno                                                                                     | 0.02  | 0.00  | 0.02  | 0.05  | 1.00   | 0.00  |  |
| Carolina wolfberry                                                                           | 0.10  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |  |
| Agarito                                                                                      | 0.02  | 0.00  | 0.02  | 0.05  | 1.00   | 0.00  |  |
| McCartney rose                                                                               | 0.05  | 0.00  | 0.05  | 0.20  | 1.00   | 0.00  |  |
| Rattlepod                                                                                    | 0.02  | 0.00  | 0.05  | 0.10  | 1.00   | 0.00  |  |
| Mustang grape                                                                                | 0.01  | 0.00  | 0.02  | 0.10  | 1.00   | 0.00  |  |
| Texas prickly pear                                                                           | 0.01  | 0.00  | 0.02  | 0.00  | 0.00   | 0.00  |  |
| Big bluestem                                                                                 | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Bushy bluestem                                                                               | 0.00  | 0.00  | 1.00  | 1.00  | 1.00   | 0.00  |  |
| Purple threeawn                                                                              | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| King Ranch bluestem                                                                          | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Silver bluestem                                                                              | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Sideoats grama                                                                               | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Hairy grama                                                                                  | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Red grama                                                                                    | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Buffalograss                                                                                 | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Sandbur                                                                                      | 0.10  | 0.00  | 0.20  | 0.50  | 1.00   | 0.00  |  |
| Hooded windmillgrass                                                                         | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Trichloris                                                                                   | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Bermudagrass                                                                                 | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Arizona cottontop                                                                            | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Saltgrass                                                                                    | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Virginia wildrye                                                                             | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Texas cupgrass                                                                               | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Green sprangletop                                                                            | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |  |
| Kleingrass                                                                                   | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Guineagrass                                                                                  | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Vine-mesquite                                                                                | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Switchgrass                                                                                  | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Longtom                                                                                      | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |
| Brownseed paspalum                                                                           | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |  |

Appendix Table E.17 Green-out plant part productivity conversion rates (proportion of biomass weight converted to new production at green-out) for plant species in the Goliad County EDYS model.

Appendix Table E.17 (Cont.)

| Common Name           | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|-----------------------|-------|-------|-------|-------|--------|-------|
| Thin paspalum         | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Common reed           | 0.10  | 0.00  | 0.10  | 0.25  | 1.00   | 0.00  |
| Little bluestem       | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Knotroot bristlegrass | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Plains bristlegrass   | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Texas bristlegrass    | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Indiangrass           | 0.05  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Johnsongrass          | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Gulf cordgrass        | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Tall dropseed         | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Sand dropseed         | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Smutgrass             | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Texas wintergrass     | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Milo                  | 0.00  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Wheat                 | 0.00  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Corn                  | 0.00  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Littletooth sedge     | 0.05  | 0.00  | 0.05  | 0.50  | 1.00   | 0.00  |
| Flatsedge             | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Cattail               | 0.30  | 0.00  | 0.20  | 0.30  | 1.00   | 0.00  |
| Ragweed               | 0.10  | 0.00  | 0.10  | 0.40  | 1.00   | 0.00  |
| Lazydaisy             | 0.05  | 0.00  | 0.10  | 0.30  | 1.00   | 0.00  |
| Spiny aster           | 0.00  | 0.00  | 0.20  | 0.50  | 1.00   | 0.00  |
| Whitestem wild indigo | 0.10  | 0.00  | 0.10  | 1.00  | 0.00   | 0.00  |
| Old-mans beard        | 0.10  | 0.00  | 0.10  | 0.40  | 1.00   | 0.00  |
| Bundleflower          | 0.05  | 0.00  | 0.10  | 0.40  | 1.00   | 0.00  |
| Frogfruit             | 0.05  | 0.00  | 0.10  | 0.30  | 1.00   | 0.00  |
| Prairie coneflower    | 0.10  | 0.00  | 0.10  | 0.30  | 1.00   | 0.00  |
| Snoutbean             | 0.10  | 0.00  | 0.20  | 0.30  | 1.00   | 0.00  |
| Ruellia               | 0.10  | 0.00  | 0.10  | 0.30  | 1.00   | 0.00  |
| Curly dock            | 0.20  | 0.00  | 0.40  | 0.40  | 1.00   | 0.00  |
| Bulltongue            | 0.20  | 0.00  | 0.40  | 0.40  | 1.00   | 0.00  |
| Glasswort             | 0.10  | 0.00  | 0.10  | 0.50  | 1.00   | 0.00  |
| Bush sunflower        | 0.10  | 0.00  | 0.20  | 0.40  | 1.00   | 0.00  |
| Green briar           | 0.10  | 0.00  | 0.20  | 0.50  | 1.00   | 0.00  |
| Texas verbena         | 0.05  | 0.00  | 0.10  | 0.30  | 1.00   | 0.00  |
| Orange zexmenia       | 0.10  | 0.00  | 0.10  | 0.40  | 1.00   | 0.00  |
| Giant ragweed         | 0.00  | 0.00  | 0.20  | 0.50  | 1.00   | 0.00  |
| Annual broomweed      | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Partridge pea         | 0.00  | 0.00  | 0.20  | 0.40  | 1.00   | 0.00  |
| Texas doveweed        | 0.00  | 0.00  | 0.10  | 0.20  | 1.00   | 0.00  |
| Sunflower             | 0.00  | 0.00  | 0.20  | 0.50  | 1.00   | 0.00  |
| Dogweed               | 0.00  | 0.00  | 0.20  | 0.30  | 1.00   | 0.00  |

|                      | Growing season max | Growing season green- | Max 1-mo seed | Max 1st-mo seedling |
|----------------------|--------------------|-----------------------|---------------|---------------------|
| Common Name          | root:shoot         | out shoot:root        | germination   | growth              |
| Huisache             | 1.70               | 0.230                 | 0.730         | 20.00               |
| Pecan                | 1.50               | 0.670                 | 0.730         | 5.00                |
| Sugar hackberry      | 0.56               | 1.780                 | 0.800         | 10.00               |
| Mesquite             | 0.64               | 1.560                 | 0.500         | 10.00               |
| Post oak             | 0.72               | 0.130                 | 0.950         | 8.00                |
| Live oak             | 0.92               | 1.090                 | 0.630         | 8.00                |
| Guajillo             | 1.30               | 0.200                 | 0.960         | 20.00               |
| Blackbrush           | 1.30               | 0.200                 | 0.960         | 20.00               |
| Whitebrush           | 1.22               | 0.190                 | 0.960         | 20.00               |
| Prairie baccharis    | 1.22               | 0.820                 | 0.940         | 10.00               |
| Sea oxeye            | 1.80               | 0.280                 | 0.750         | 15.00               |
| Granjeno             | 1.32               | 0.200                 | 0.750         | 15.00               |
| Carolina wolfberry   | 1.10               | 0.463                 | 0.720         | 20.00               |
| Agarito              | 1.94               | 0.520                 | 0.790         | 10.00               |
| McCartney rose       | 5.10               | 0.097                 | 0.480         | 20.00               |
| Rattlepod            | 1.22               | 0.190                 | 0.260         | 30.00               |
| Mustang grape        | 1.00               | 1.000                 | 0.640         | 10.00               |
| Texas prickly pear   | 0.62               | 1.610                 | 0.700         | 10.00               |
| Big bluestem         | 1.72               | 0.230                 | 0.540         | 20.00               |
| Bushy bluestem       | 1.30               | 0.750                 | 0.540         | 20.00               |
| Purple threeawn      | 3.78               | 0.260                 | 0.160         | 20.00               |
| King Ranch bluestem  | 3.18               | 0.310                 | 0.600         | 30.00               |
| Silver bluestem      | 2.00               | 0.250                 | 0.900         | 30.00               |
| Sideoats grama       | 3.20               | 0.310                 | 0.720         | 20.00               |
| Hairy grama          | 1.12               | 0.890                 | 0.390         | 20.00               |
| Red grama            | 1.12               | 0.890                 | 0.390         | 20.00               |
| Buffalograss         | 2.40               | 0.270                 | 0.618         | 30.00               |
| Sandbur              | 2.00               | 0.249                 | 0.440         | 15.00               |
| Hooded windmillgrass | 1.80               | 0.240                 | 0.440         | 15.00               |
| Trichloris           | 2.00               | 0.250                 | 0.440         | 15.00               |
| Bermudagrass         | 2.42               | 0.410                 | 0.850         | 20.00               |
| Arizona cottontop    | 1.80               | 0.240                 | 0.900         | 30.00               |
| Saltgrass            | 1.40               | 0.530                 | 0.900         | 30.00               |
| Virginia wildrye     | 1.68               | 0.230                 | 0.900         | 30.00               |
| Texas cupgrass       | 2.12               | 0.470                 | 0.530         | 20.00               |
| Green sprangletop    | 1.72               | 0.580                 | 0.790         | 20.00               |
| Kleingrass           | 1.80               | 0.240                 | 0.900         | 30.00               |
| Guineagrass          | 1.80               | 0.240                 | 0.900         | 30.00               |
| Vine-mesquite        | 1.70               | 0.590                 | 0.370         | 20.00               |
| Switchgrass          | 1.96               | 0.510                 | 0.480         | 20.00               |
| Longtom              | 5.00               | 0.360                 | 0.530         | 30.00               |
| Brownseed paspalum   | 2.40               | 0.210                 | 0.530         | 30.00               |

| Appendix Table E.18 Physiological control constants for plant species in the Goliad County EDY | YS |
|------------------------------------------------------------------------------------------------|----|
| model.                                                                                         | _  |

|                       | Growing season max | Growing season green- | Max 1-mo seed | Max 1st-mo seedling |
|-----------------------|--------------------|-----------------------|---------------|---------------------|
| Common Name           | root:shoot         | out shoot:root        | germination   | growth              |
| Thin paspalum         | 1.52               | 0.220                 | 0.530         | 30.00               |
| Common reed           | 0.72               | 1.250                 | 0.010         | 10.00               |
| Little bluestem       | 3.26               | 0.310                 | 0.480         | 20.00               |
| Knotroot bristlegrass | 2.20               | 0.260                 | 0.580         | 25.00               |
| Plains bristlegrass   | 3.40               | 0.220                 | 0.580         | 25.00               |
| Texas bristlegrass    | 1.20               | 0.190                 | 0.580         | 25.00               |
| Indiangrass           | 1.72               | 0.580                 | 0.630         | 20.00               |
| Johnsongrass          | 4.42               | 0.230                 | 0.880         | 20.00               |
| Gulf cordgrass        | 3.40               | 0.220                 | 0.580         | 25.00               |
| Tall dropseed         | 2.20               | 0.450                 | 0.800         | 20.00               |
| Sand dropseed         | 1.76               | 0.570                 | 0.800         | 20.00               |
| Smutgrass             | 3.40               | 0.220                 | 0.580         | 25.00               |
| Texas wintergrass     | 2.52               | 0.400                 | 0.130         | 20.00               |
| Milo                  | 2.00               | 0.250                 | 0.580         | 25.00               |
| Wheat                 | 1.76               | 0.570                 | 0.940         | 20.00               |
| Corn                  | 2.00               | 0.250                 | 0.580         | 25.00               |
| Littletooth sedge     | 2.40               | 0.270                 | 0.353         | 30.00               |
| Flatsedge             | 6.66               | 0.170                 | 0.460         | 20.00               |
| Cattail               | 6.66               | 0.170                 | 0.650         | 20.00               |
| Ragweed               | 2.52               | 0.400                 | 0.600         | 20.00               |
| Lazydaisy             | 2.76               | 0.360                 | 0.700         | 10.00               |
| Spiny aster           | 2.30               | 0.350                 | 0.950         | 40.00               |
| Whitestem wild indigo | 1.60               | 0.300                 | 0.520         | 15.00               |
| Old-mans beard        | 2.60               | 0.280                 | 0.960         | 20.00               |
| Bundleflower          | 2.92               | 0.350                 | 0.420         | 20.00               |
| Frogfruit             | 1.00               | 0.170                 | 0.500         | 20.00               |
| Prairie coneflower    | 2.76               | 0.360                 | 0.500         | 20.00               |
| Snoutbean             | 1.40               | 0.210                 | 0.700         | 50.00               |
| Ruellia               | 1.20               | 0.190                 | 0.700         | 50.00               |
| Curly dock            | 0.70               | 0.270                 | 0.700         | 50.00               |
| Bulltongue            | 0.70               | 0.270                 | 0.700         | 50.00               |
| Glasswort             | 3.90               | 0.129                 | 0.990         | 30.00               |
| Bush sunflower        | 2.52               | 0.400                 | 0.380         | 20.00               |
| Green briar           | 2.00               | 0.250                 | 0.600         | 30.00               |
| Texas verbena         | 1.40               | 0.210                 | 0.700         | 50.00               |
| Orange zexmenia       | 2.52               | 0.400                 | 0.500         | 20.00               |
| Giant ragweed         | 1.00               | 0.170                 | 0.500         | 20.00               |
| Annual broomweed      | 1.20               | 0.190                 | 0.500         | 20.00               |
| Partridge pea         | 1.20               | 0.190                 | 0.260         | 30.00               |
| Texas doveweed        | 0.80               | 0.140                 | 0.700         | 50.00               |
| Sunflower             | 0.34               | 2.940                 | 0.820         | 30.00               |
| Dogweed               | 1.20               | 0.190                 | 0.600         | 30.00               |

Growing season max root:shoot ratio = twice the initial root:shoot ratio value (Appendix Table D.2). Examples of field root:shoot ratios include: *Quercus robur* 0.35 (Rodin & Bazilevich 1967); *Q. velutina* 0.54 (Nadelhoffer et al. 1985); *Larrea tridentata* 0.42 (Chew & Chew 1965), 1.08 (Wallace et al. 1974); *Bouteloua gracilis* 2.39 (Samuel & Hart 1992), 4.10 (Coupland & Johnson 1965), 6.90 (Vinton & Burke 1995); *Cynodon dactylon* 0.62 (Rodriguez et al. 2002), 1.60 (Hons et al. 1979), 2.90 (Beaty et al. 1975); *Distichlis spicata* 1.10 (Seliskar & Gallagher 2000); *Hilaria jamesii* 5.31 (Moore & West 1973); *Hilaria rigida* 0.57 (Robberecht et al. 1983); *Oryzopsis hymenoides* 2.62 (Orodho & Trlica 1990); *Paspalum notatum* 2.27 (Fiala et al. 1991), 2.50 (Beaty et al. 1975); *Schizachyrium scoparium* 2.76 (Cerligione et al. 1987); tallgrass prairie 0.90 Oklahoma (Sims & Singh 1978), 0.97 Missouri (Buyanovsky et al. 1987); Kansas midgrass prairie 1.76 (Sims & Singh 1978); shortgrass plains 1.87 Colorado (Sims & Singh 1978), 2.21 Texas (Sims & Singh 1978); *Carex nebrascensis* 5.62 (Manning et al. 1989); *Juncus roemerianus* 1.55 (Gallagher et al. 1977).

Growing season green-out shoot:root ratio = half the inverse of initial shoot:root ratio (Appendix Table D.2).

| Appendix Table E.19 End of growing season dieback (proportion of tissue lost at onset of dormancy) for |  |
|--------------------------------------------------------------------------------------------------------|--|
| plant species in the Goliad County EDYS model.                                                         |  |

| Common Name          | CRoot | FRoot | Trunk | Stems | Leaves | Seeds |
|----------------------|-------|-------|-------|-------|--------|-------|
| Huisache             | 0.02  | 0.06  | 0.010 | 0.02  | 0.85   | 1.00  |
| Pecan                | 0.01  | 0.05  | 0.005 | 0.01  | 1.00   | 1.00  |
| Sugar hackberry      | 0.01  | 0.05  | 0.010 | 0.02  | 0.98   | 1.00  |
| Mesquite             | 0.01  | 0.05  | 0.005 | 0.02  | 0.90   | 1.00  |
| Post oak             | 0.01  | 0.05  | 0.010 | 0.02  | 1.00   | 1.00  |
| Live oak             | 0.01  | 0.05  | 0.005 | 0.01  | 0.74   | 1.00  |
| Guajillo             | 0.03  | 0.15  | 0.030 | 0.10  | 0.35   | 1.00  |
| Blackbrush           | 0.03  | 0.15  | 0.020 | 0.10  | 0.40   | 1.00  |
| Whitebrush           | 0.04  | 0.15  | 0.030 | 0.25  | 0.90   | 1.00  |
| Prairie baccharis    | 0.04  | 0.15  | 0.050 | 0.15  | 0.85   | 1.00  |
| Sea oxeye            | 0.01  | 0.05  | 0.010 | 0.03  | 1.00   | 1.00  |
| Granjeno             | 0.03  | 0.15  | 0.020 | 0.05  | 0.80   | 1.00  |
| Carolina wolfberry   | 0.05  | 0.15  | 0.050 | 0.20  | 1.00   | 1.00  |
| Agarito              | 0.02  | 0.10  | 0.020 | 0.10  | 0.35   | 1.00  |
| McCartney rose       | 0.03  | 0.10  | 0.020 | 0.20  | 0.35   | 1.00  |
| Rattlepod            | 0.08  | 0.15  | 0.100 | 0.20  | 0.95   | 1.00  |
| Mustang grape        | 0.04  | 0.15  | 0.010 | 0.08  | 0.95   | 1.00  |
| Texas prickly pear   | 0.04  | 0.10  | 0.020 | 0.08  | 0.05   | 1.00  |
| Big bluestem         | 0.03  | 0.09  | 0.030 | 0.90  | 0.99   | 1.00  |
| Bushy bluestem       | 0.06  | 0.15  | 0.200 | 1.00  | 1.00   | 1.00  |
| Purple threeawn      | 0.10  | 0.20  | 0.050 | 0.95  | 0.95   | 1.00  |
| King Ranch bluestem  | 0.10  | 0.20  | 0.080 | 0.95  | 0.98   | 1.00  |
| Silverbluestem       | 0.07  | 0.15  | 0.040 | 0.90  | 0.95   | 1.00  |
| Sideoats grama       | 0.05  | 0.15  | 0.030 | 0.90  | 0.98   | 1.00  |
| Hairy grama          | 0.15  | 0.30  | 0.080 | 0.95  | 0.90   | 1.00  |
| Red grama            | 0.15  | 0.30  | 0.150 | 0.95  | 0.95   | 1.00  |
| Buffalograss         | 0.15  | 0.30  | 0.150 | 0.85  | 0.90   | 1.00  |
| Sandbur              | 0.10  | 0.20  | 0.050 | 1.00  | 1.00   | 1.00  |
| Hooded windmillgrass | 0.15  | 0.30  | 0.080 | 0.95  | 0.95   | 1.00  |
| Trichloris           | 0.10  | 0.20  | 0.040 | 0.90  | 0.95   | 1.00  |
| Bermudagrass         | 0.10  | 0.20  | 0.150 | 0.70  | 0.90   | 1.00  |
| Arizona cottontop    | 0.10  | 0.20  | 0.050 | 0.95  | 0.95   | 1.00  |
| Saltgrass            | 0.10  | 0.20  | 0.050 | 0.85  | 1.00   | 1.00  |
| Virginia wildrye     | 0.12  | 0.25  | 0.100 | 0.95  | 0.99   | 1.00  |
| Texas cupgrass       | 0.10  | 0.20  | 0.100 | 0.95  | 0.95   | 1.00  |
| Green sprangletop    | 0.15  | 0.30  | 0.150 | 0.95  | 0.90   | 1.00  |
| Kleingrass           | 0.18  | 0.40  | 0.150 | 0.95  | 0.95   | 1.00  |
| Guineagrass          | 0.18  | 0.40  | 0.150 | 0.95  | 0.95   | 1.00  |
| Vine-mesquite        | 0.10  | 0.20  | 0.050 | 0.90  | 0.95   | 1.00  |
| Switchgrass          | 0.05  | 0.15  | 0.030 | 0.90  | 0.95   | 1.00  |
| Longtom              | 0.15  | 0.30  | 0.060 | 0.80  | 0.95   | 1.00  |
| Brownseed paspalum   | 0.10  | 0.20  | 0.050 | 0.90  | 1.00   | 1.00  |

Appendix Table E.19 (Cont.)

|                       | ·     | 50 .  | <b>T</b> 1 | <u>c</u> : |        | <b>6</b> 1 |
|-----------------------|-------|-------|------------|------------|--------|------------|
| Common Name           | CRoot | FRoot | Trunk      | Stems      | Leaves | Seeds      |
| Thin paspalum         | 0.17  | 0.25  | 0.120      | 0.95       | 0.99   | 1.00       |
| Common reed           | 0.03  | 0.10  | 0.050      | 0.80       | 0.90   | 1.00       |
| Little bluestem       | 0.10  | 0.20  | 0.030      | 0.90       | 0.98   | 1.00       |
| Knotroot bristlegrass | 0.18  | 0.30  | 0.150      | 0.90       | 0.90   | 1.00       |
| Plains bristlegrass   | 0.08  | 0.20  | 0.040      | 0.95       | 0.90   | 1.00       |
| Texas bristlegrass    | 0.25  | 0.50  | 0.250      | 0.98       | 0.99   | 1.00       |
| Indiangrass           | 0.05  | 0.15  | 0.030      | 0.90       | 0.95   | 1.00       |
| Johnsongrass          | 0.10  | 0.20  | 0.100      | 0.90       | 0.95   | 1.00       |
| Gulf cordgrass        | 0.08  | 0.20  | 0.040      | 0.95       | 0.90   | 1.00       |
| Tall dropseed         | 0.10  | 0.20  | 0.050      | 0.95       | 0.97   | 1.00       |
| Sand dropseed         | 0.15  | 0.30  | 0.100      | 0.90       | 0.95   | 1.00       |
| Smutgrass             | 0.08  | 0.20  | 0.040      | 0.95       | 0.90   | 1.00       |
| Texas wintergrass     | 0.15  | 0.30  | 0.150      | 0.95       | 0.95   | 1.00       |
| Milo                  | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Wheat                 | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Corn                  | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Littletooth sedge     | 0.15  | 0.30  | 0.200      | 0.90       | 0.95   | 1.00       |
| Flatsedge             | 0.15  | 0.30  | 0.150      | 0.97       | 0.95   | 1.00       |
| Cattail               | 0.10  | 0.20  | 0.050      | 0.95       | 0.90   | 1.00       |
| Ragweed               | 0.18  | 0.35  | 0.200      | 0.95       | 0.99   | 1.00       |
| Lazydaisy             | 0.20  | 0.40  | 0.150      | 0.80       | 0.99   | 1.00       |
| Spiny aster           | 0.08  | 0.20  | 0.100      | 0.90       | 1.00   | 1.00       |
| Whitestem wild indigo | 0.10  | 0.20  | 0.050      | 0.95       | 1.00   | 1.00       |
| Old-mans beard        | 0.15  | 0.30  | 0.120      | 0.60       | 0.90   | 1.00       |
| Bundleflower          | 0.10  | 0.20  | 0.120      | 0.60       | 0.95   | 1.00       |
| Frogfruit             | 0.20  | 0.30  | 0.200      | 0.80       | 0.95   | 1.00       |
| Prairie coneflower    | 0.15  | 0.30  | 0.200      | 0.70       | 0.95   | 1.00       |
| Snoutbean             | 0.05  | 0.15  | 0.050      | 0.40       | 0.95   | 1.00       |
| Ruellia               | 0.18  | 0.30  | 0.100      | 0.60       | 0.80   | 1.00       |
| Curly dock            | 0.50  | 0.60  | 0.500      | 0.90       | 0.90   | 1.00       |
| Bulltongue            | 0.50  | 0.60  | 0.500      | 0.90       | 0.90   | 1.00       |
| Glasswort             | 0.20  | 0.40  | 0.200      | 1.00       | 1.00   | 1.00       |
| Bush sunflower        | 0.10  | 0.20  | 0.200      | 0.95       | 0.99   | 1.00       |
| Green briar           | 0.08  | 0.20  | 0.100      | 0.40       | 1.00   | 1.00       |
| Texas verbena         | 0.25  | 0.50  | 0.300      | 0.90       | 0.90   | 1.00       |
| Orange zexmenia       | 0.10  | 0.20  | 0.200      | 0.95       | 0.98   | 1.00       |
| Giant ragweed         | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Annual broomweed      | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Partridge pea         | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Texas doveweed        | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
| Sunflower             | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |
|                       | 1.00  | 1.00  | 1.000      | 1.00       | 1.00   | 1.00       |

#### **Data Sources**

Weaver & Zink (1946); Caldwell & Camp (1974); Peet et al. (2005).

Appendix Table E.20 Shading effect on species included in the Goliad County EDYS model. Values are the proportional decreases in maximum potential production of the **shaded species** resulting from 100% cover of the **shading species**.

|                      | 81       |       | Sugar     |          |          |          |          |            |            | Prairie   |           |
|----------------------|----------|-------|-----------|----------|----------|----------|----------|------------|------------|-----------|-----------|
| Common Name          | Huisache | Pecan | hackberry | Mesquite | Post oak | Live oak | Guajillo | Blackbrush | Whitebrush | baccharis | Sea oxeye |
| Huisache             | 0.00     | 0.03  | 0.01      | 0.01     | 0.01     | 0.03     | 0.00     | 0.00       | 0.01       | 0.01      | 0.00      |
| Pecan                | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sugar hackberry      | 0.00     | 0.02  | 0.00      | 0.00     | 0.00     | 0.04     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Mesquite             | 0.00     | 0.06  | 0.01      | 0.00     | 0.00     | 0.04     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Post oak             | 0.00     | 0.02  | 0.01      | 0.00     | 0.00     | 0.01     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Live oak             | 0.00     | 0.02  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Guajillo             | 0.03     | 0.03  | 0.02      | 0.02     | 0.02     | 0.03     | 0.00     | 0.01       | 0.02       | 0.02      | 0.00      |
| Blackbrush           | 0.01     | 0.02  | 0.02      | 0.01     | 0.02     | 0.04     | 0.01     | 0.00       | 0.01       | 0.01      | 0.00      |
| Whitebrush           | 0.01     | 0.02  | 0.01      | 0.01     | 0.01     | 0.01     | 0.00     | 0.00       | 0.00       | 0.01      | 0.00      |
| Prairie baccharis    | 0.00     | 0.03  | 0.02      | 0.02     | 0.00     | 0.03     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sea oxeye            | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Granjeno             | 0.01     | 0.01  | 0.01      | 0.01     | 0.01     | 0.02     | 0.00     | 0.00       | 0.01       | 0.01      | 0.00      |
| Carolina wolfberry   | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Agarito              | 0.00     | 0.04  | 0.03      | 0.01     | 0.00     | 0.03     | 0.00     | 0.00       | 0.00       | 0.01      | 0.00      |
| McCartney rose       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Rattlepod            | 0.02     | 0.02  | 0.02      | 0.02     | 0.02     | 0.02     | 0.00     | 0.00       | 0.01       | 0.01      | 0.00      |
| Mustang grape        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas prickly pear   | 0.00     | 0.04  | 0.02      | 0.01     | 0.00     | 0.04     | 0.00     | 0.00       | 0.00       | 0.01      | 0.00      |
| Big bluestem         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Bushy bluestem       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Purple threeawn      | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| King Ranch bluestem  | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Silver bluestem      | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sideoats grama       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Hairy grama          | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Red grama            | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Buffalograss         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sandbur              | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Hooded windmillgrass | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Trichloris           | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Bermudagrass         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Arizona cottontop    | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Saltgrass            | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Virginia wildrye     | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas cupgrass       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Green sprangletop    | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Kleingrass           | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Guineagrass          | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Vine-mesquite        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Switchgrass          | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Longtom              | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Brownseed paspalum   | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |

|                       |          |       | Sugar     |          |          |          |          |            |            | Prairie   |           |
|-----------------------|----------|-------|-----------|----------|----------|----------|----------|------------|------------|-----------|-----------|
| Common Name           | Huisache | Pecan | hackberry | Mesquite | Post oak | Live oak | Guajillo | Blackbrush | Whitebrush | baccharis | Sea oxeye |
| Thin paspalum         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Common reed           | 0.00     | 0.02  | 0.01      | 0.00     | 0.00     | 0.02     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Little bluestem       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Knotroot bristlegrass | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Plains bristlegrass   | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas bristlegrass    | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Indiangrass           | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Johnsongrass          | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Gulf cordgrass        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Tall dropseed         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sand dropseed         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Smutgrass             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas wintergrass     | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Milo                  | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Wheat                 | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Corn                  | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Littletooth sedge     | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Flatsedge             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Cattail               | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Ragweed               | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Lazydaisy             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Spiny aster           | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Whitestem wild indigo | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Old-mans beard        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Bundleflower          | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Frogfruit             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Prairie coneflower    | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Snoutbean             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Ruellia               | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Curly dock            | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Bulltongue            | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Glasswort             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Bush sunflower        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Green briar           | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas verbena         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Orange zexmenia       | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Giant ragweed         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Annual broomweed      | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Partridge pea         | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas doveweed        | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Sunflower             | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |
| Dogweed               | 0.00     | 0.00  | 0.00      | 0.00     | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00      | 0.00      |

|                      | (        | Carolina  |         | McCartney |           | Mustang | Texas prickly |              | Bushy    | Purple   | King Ranch |
|----------------------|----------|-----------|---------|-----------|-----------|---------|---------------|--------------|----------|----------|------------|
| Common Name          | Granjeno | wolfberry | Agarito | rose      | Rattlepod | grape   |               | Big bluestem | bluestem | threeawn | bluestem   |
| Huisache             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.04    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Pecan                | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.06    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Sugar hackberry      | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.06    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Mesquite             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.07    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Post oak             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.04    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Live oak             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.07    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Guajillo             | 0.01     | 0.00      | 0.01    | 0.00      | 0.00      | 0.04    | 0.00          | 0.06         | 0.00     | 0.00     | 0.00       |
| Blackbrush           | 0.01     | 0.00      | 0.00    | 0.00      | 0.00      | 0.04    | 0.00          | 0.04         | 0.00     | 0.00     | 0.00       |
| Whitebrush           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.01    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Prairie baccharis    | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.07    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Sea oxeye            | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Granjeno             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.04    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Carolina wolfberry   | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Agarito              | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.06    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| McCartney rose       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Rattlepod            | 0.01     | 0.00      | 0.00    | 0.00      | 0.00      | 0.04    | 0.00          | 0.05         | 0.00     | 0.00     | 0.00       |
| Mustang grape        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Texas prickly pear   | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.07    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Big bluestem         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Bushy bluestem       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Purple threeawn      | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| King Ranch bluestem  | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Silver bluestem      | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.07         | 0.00     | 0.00     | 0.00       |
| Sideoats grama       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Hairy grama          | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Red grama            | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Buffalograss         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.01     | 0.01       |
| Sandbur              | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Hooded windmillgrass | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.01     | 0.01       |
| Trichloris           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.08         | 0.00     | 0.00     | 0.00       |
| Bermudagrass         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Arizona cottontop    | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Saltgrass            | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Virginia wildrye     | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.06         | 0.00     | 0.00     | 0.00       |
| Texas cupgrass       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Green sprangletop    | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Kleingrass           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Guineagrass          | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Vine-mesquite        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Switchgrass          | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Longtom              | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.08         | 0.00     | 0.00     | 0.00       |
| Brownseed paspalum   | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |

|                       |          | Carolina  |         | McCartney |           | Mustang | Texas prickly |              | Bushy    | Purple   | King Ranch |
|-----------------------|----------|-----------|---------|-----------|-----------|---------|---------------|--------------|----------|----------|------------|
| Common Name           | Granjeno | wolfberry | Agarito | rose      | Rattlepod | grape   |               | Big bluestem | bluestem | threeawn | bluestem   |
| Thin paspalum         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.01     | 0.00       |
| Common reed           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.02    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Little bluestem       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Knotroot bristlegrass | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.01     | 0.01       |
| Plains bristlegrass   | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Texas bristlegrass    | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.02     | 0.02       |
| Indiangrass           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Johnsongrass          | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Gulf cordgrass        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Tall dropseed         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Sand dropseed         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Smutgrass             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Texas wintergrass     | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Milo                  | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.06     | 0.06       |
| Wheat                 | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Corn                  | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Littletooth sedge     | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.02     | 0.01       |
| Flatsedge             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Cattail               | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Ragweed               | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Lazydaisy             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Spiny aster           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Whitestem wild indigo | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Old-mans beard        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.06         | 0.00     | 0.00     | 0.00       |
| Bundleflower          | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Frogfruit             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.01     | 0.01       |
| Prairie coneflower    | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Snoutbean             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Ruellia               | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Curly dock            | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Bulltongue            | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Glasswort             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Bush sunflower        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Green briar           | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Texas verbena         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Orange zexmenia       | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Giant ragweed         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.05         | 0.00     | 0.00     | 0.00       |
| Annual broomweed      | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.01     | 0.00       |
| Partridge pea         | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.09         | 0.00     | 0.00     | 0.00       |
| Texas doveweed        | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.01     | 0.00       |
| Sunflower             | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.00         | 0.00     | 0.00     | 0.00       |
| Dogweed               | 0.00     | 0.00      | 0.00    | 0.00      | 0.00      | 0.00    | 0.00          | 0.10         | 0.00     | 0.03     | 0.01       |

|                      | Silver   | Sideoats | Hairy | Red   |              |         | Hooded        |            |              | Arizona   |           |
|----------------------|----------|----------|-------|-------|--------------|---------|---------------|------------|--------------|-----------|-----------|
| Common Name          | bluestem | grama    | grama | grama | Buffalograss | Sandbur | windmillgrass | Trichloris | Bermudagrass | cottontop | Saltgrass |
| Huisache             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Pecan                | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Sugar hackberry      | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Mesquite             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Post oak             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Live oak             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Guajillo             | 0.01     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Blackbrush           | 0.01     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Whitebrush           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Prairie baccharis    | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Sea oxeye            | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Granjeno             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Carolina wolfberry   | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Agarito              | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| McCartney rose       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Rattlepod            | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Mustang grape        | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Texas prickly pear   | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Big bluestem         | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Bushy bluestem       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Purple threeawn      | 0.00     | 0.02     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| King Ranch bluestem  | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Silver bluestem      | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Sideoats grama       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Hairy grama          | 0.00     | 0.05     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Red grama            | 0.00     | 0.05     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Buffalograss         | 0.02     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.01      | 0.00      |
| Sandbur              | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Hooded windmillgrass | 0.03     | 0.02     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.02       | 0.00         | 0.02      | 0.00      |
| Trichloris           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Bermudagrass         | 0.00     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Arizona cottontop    | 0.01     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Saltgrass            | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Virginia wildrye     | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Texas cupgrass       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Green sprangletop    | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Kleingrass           | 0.01     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Guineagrass          | 0.01     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Vine-mesquite        | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Switchgrass          | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Longtom              | 0.01     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.00      | 0.00      |
| Brownseed paspalum   | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |

|                       | Silver   | Sideoats | Hairy | Red   |              |         | Hooded        |            |              | Arizona   |           |
|-----------------------|----------|----------|-------|-------|--------------|---------|---------------|------------|--------------|-----------|-----------|
| Common Name           | bluestem | grama    | grama | grama | Buffalograss | Sandbur | windmillgrass | Trichloris | Bermudagrass | cottontop | Saltgrass |
| Thin paspalum         | 0.01     | 0.02     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.01      | 0.00      |
| Common reed           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Little bluestem       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Knotroot bristlegrass | 0.04     | 0.03     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.02       | 0.00         | 0.00      | 0.00      |
| Plains bristlegrass   | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Texas bristlegrass    | 0.04     | 0.03     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.03       | 0.00         | 0.02      | 0.00      |
| Indiangrass           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Johnsongrass          | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Gulf cordgrass        | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Tall dropseed         | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Sand dropseed         | 0.00     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Smutgrass             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Texas wintergrass     | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Milo                  | 0.09     | 0.08     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.02       | 0.00         | 0.00      | 0.00      |
| Wheat                 | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Corn                  | 0.08     | 0.07     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.00      | 0.00      |
| Littletooth sedge     | 0.04     | 0.03     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.03       | 0.00         | 0.00      | 0.00      |
| Flatsedge             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Cattail               | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Ragweed               | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Lazydaisy             | 0.00     | 0.08     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Spiny aster           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Whitestem wild indigo | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Old-mans beard        | 0.01     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.00      | 0.00      |
| Bundleflower          | 0.00     | 0.02     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Frogfruit             | 0.02     | 0.02     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.01      | 0.00      |
| Prairie coneflower    | 0.00     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Snoutbean             | 0.01     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.01      | 0.00      |
| Ruellia               | 0.02     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.01      | 0.00      |
| Curly dock            | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Bulltongue            | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Glasswort             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Bush sunflower        | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Green briar           | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Texas verbena         | 0.01     | 0.01     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.01       | 0.00         | 0.02      | 0.00      |
| Orange zexmenia       | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Giant ragweed         | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Annual broomweed      | 0.06     | 0.05     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.05       | 0.00         | 0.02      | 0.00      |
| Partridge pea         | 0.04     | 0.03     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.03       | 0.00         | 0.01      | 0.00      |
| Texas doveweed        | 0.05     | 0.04     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.04       | 0.00         | 0.02      | 0.00      |
| Sunflower             | 0.00     | 0.00     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.00       | 0.00         | 0.00      | 0.00      |
| Dogweed               | 0.06     | 0.05     | 0.00  | 0.00  | 0.00         | 0.00    | 0.00          | 0.05       | 0.00         | 0.05      | 0.00      |

|                      | Virginia | Texas    | Green       |            |             | Vine-    |             |         | Brownseed | Thin     | Common |
|----------------------|----------|----------|-------------|------------|-------------|----------|-------------|---------|-----------|----------|--------|
| Common Name          | wildrye  | cupgrass | sprangletop | Kleingrass | Guineagrass | mesquite | Switchgrass | Longtom | paspalum  | paspalum | reed   |
| Huisache             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Pecan                | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Sugar hackberry      | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Mesquite             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.01   |
| Post oak             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Live oak             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Guajillo             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.03        | 0.00    | 0.00      | 0.00     | 0.00   |
| Blackbrush           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.00   |
| Whitebrush           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Prairie baccharis    | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.05   |
| Sea oxeye            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Granjeno             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Carolina wolfberry   | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Agarito              | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.07   |
| McCartney rose       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Rattlepod            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Mustang grape        | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Texas prickly pear   | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.08   |
| Big bluestem         | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Bushy bluestem       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Purple threeawn      | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| King Ranch bluestem  | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.05   |
| Silver bluestem      | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.03        | 0.00    | 0.00      | 0.00     | 0.00   |
| Sideoats grama       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.06   |
| Hairy grama          | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Red grama            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Buffalograss         | 0.01     | 0.00     | 0.00        | 0.04       | 0.00        | 0.00     | 0.08        | 0.00    | 0.00      | 0.02     | 0.00   |
| Sandbur              | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Hooded windmillgrass | 0.02     | 0.00     | 0.00        | 0.05       | 0.00        | 0.00     | 0.08        | 0.00    | 0.00      | 0.02     | 0.00   |
| Trichloris           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.04        | 0.00    | 0.00      | 0.00     | 0.00   |
| Bermudagrass         | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.02   |
| Arizona cottontop    | 0.01     | 0.00     | 0.00        | 0.02       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.00   |
| Saltgrass            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Virginia wildrye     | 0.00     | 0.00     | 0.00        | 0.01       | 0.00        | 0.00     | 0.03        | 0.00    | 0.00      | 0.00     | 0.00   |
| Texas cupgrass       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.05   |
| Green sprangletop    | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.05   |
| Kleingrass           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.00   |
| Guineagrass          | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.00   |
| Vine-mesquite        | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.01        | 0.00    | 0.00      | 0.00     | 0.02   |
| Switchgrass          | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.02   |
| Longtom              | 0.01     | 0.00     | 0.00        | 0.01       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.00   |
| Brownseed paspalum   | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |

|                       | Virginia | Texas    | Green       |            |             | Vine-    |             |         | Brownseed | Thin     | Common |
|-----------------------|----------|----------|-------------|------------|-------------|----------|-------------|---------|-----------|----------|--------|
| Common Name           | wildrye  | cupgrass | sprangletop | Kleingrass | Guineagrass | mesquite | Switchgrass | Longtom | paspalum  | paspalum | reed   |
| Thin paspalum         | 0.01     | 0.00     | 0.00        | 0.03       | 0.00        | 0.00     | 0.06        | 0.00    | 0.00      | 0.00     | 0.00   |
| Common reed           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Little bluestem       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.04   |
| Knotroot bristlegrass | 0.02     | 0.00     | 0.00        | 0.04       | 0.00        | 0.00     | 0.06        | 0.03    | 0.00      | 0.02     | 0.00   |
| Plains bristlegrass   | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Texas bristlegrass    | 0.02     | 0.00     | 0.00        | 0.05       | 0.00        | 0.00     | 0.10        | 0.01    | 0.00      | 0.03     | 0.00   |
| Indiangrass           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.03   |
| Johnsongrass          | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.01        | 0.00    | 0.00      | 0.00     | 0.02   |
| Gulf cordgrass        | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Tall dropseed         | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.03        | 0.00    | 0.00      | 0.00     | 0.05   |
| Sand dropseed         | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.10   |
| Smutgrass             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Texas wintergrass     | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.05   |
| Milo                  | 0.00     | 0.00     | 0.00        | 0.04       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.00   |
| Wheat                 | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Corn                  | 0.00     | 0.00     | 0.00        | 0.02       | 0.00        | 0.00     | 0.09        | 0.00    | 0.00      | 0.00     | 0.00   |
| Littletooth sedge     | 0.01     | 0.00     | 0.00        | 0.03       | 0.00        | 0.00     | 0.08        | 0.02    | 0.00      | 0.02     | 0.00   |
| Flatsedge             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.02   |
| Cattail               | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Ragweed               | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.05   |
| Lazydaisy             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Spiny aster           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Whitestem wild indigo | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Old-mans beard        | 0.00     | 0.00     | 0.00        | 0.01       | 0.00        | 0.00     | 0.07        | 0.00    | 0.00      | 0.01     | 0.00   |
| Bundleflower          | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Frogfruit             | 0.01     | 0.00     | 0.00        | 0.03       | 0.00        | 0.00     | 0.09        | 0.02    | 0.00      | 0.02     | 0.00   |
| Prairie coneflower    | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.00     | 0.10   |
| Snoutbean             | 0.01     | 0.00     | 0.00        | 0.02       | 0.00        | 0.00     | 0.07        | 0.00    | 0.00      | 0.02     | 0.00   |
| Ruellia               | 0.01     | 0.00     | 0.00        | 0.03       | 0.00        | 0.00     | 0.08        | 0.00    | 0.00      | 0.01     | 0.00   |
| Curly dock            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Bulltongue            | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Glasswort             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Bush sunflower        | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.10   |
| Green briar           | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.00        | 0.00    | 0.00      | 0.00     | 0.00   |
| Texas verbena         | 0.01     | 0.00     | 0.00        | 0.02       | 0.00        | 0.00     | 0.07        | 0.01    | 0.00      | 0.02     | 0.00   |
| Orange zexmenia       | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.10   |
| Giant ragweed         | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.02        | 0.00    | 0.00      | 0.00     | 0.00   |
| Annual broomweed      | 0.01     | 0.00     | 0.00        | 0.05       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.04     | 0.00   |
| Partridge pea         | 0.01     | 0.00     | 0.00        | 0.03       | 0.00        | 0.00     | 0.06        | 0.00    | 0.00      | 0.01     | 0.00   |
| Texas doveweed        | 0.01     | 0.00     | 0.00        | 0.04       | 0.00        | 0.00     | 0.10        | 0.00    | 0.00      | 0.04     | 0.00   |
| Sunflower             | 0.00     | 0.00     | 0.00        | 0.00       | 0.00        | 0.00     | 0.05        | 0.00    | 0.00      | 0.00     | 0.07   |
| Dogweed               | 0.04     | 0.00     | 0.00        | 0.05       | 0.00        | 0.00     | 0.10        | 0.03    | 0.00      | 0.04     | 0.00   |

|                      | Little   | Knotroot     | Plains       | Texas        |             |              | Gulf      | Tall     | Sand     |           | Texa       |
|----------------------|----------|--------------|--------------|--------------|-------------|--------------|-----------|----------|----------|-----------|------------|
| Common Name          | bluestem | bristlegrass | bristlegrass | bristlegrass | Indiangrass | Johnsongrass | cordgrass | dropseed | dropseed | Smutgrass | wintergras |
| Huisache             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Pecan                | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Sugar hackberry      | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Mesquite             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Post oak             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Live oak             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Guajillo             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Blackbrush           | 0.01     | 0.00         | 0.00         | 0.00         | 0.00        | 0.01         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Whitebrush           | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Prairie baccharis    | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Sea oxeye            | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Granjeno             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Carolina wolfberry   | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Agarito              | 0.01     | 0.00         | 0.00         | 0.00         | 0.02        | 0.02         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| McCartney rose       | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Rattlepod            | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Mustang grape        | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Texas prickly pear   | 0.00     | 0.00         | 0.00         | 0.00         | 0.01        | 0.01         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Big bluestem         | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Bushy bluestem       | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Purple threeawn      | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.03     | 0.00     | 0.00      | 0.0        |
| King Ranch bluestem  | 0.01     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Silver bluestem      | 0.01     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Sideoats grama       | 0.00     | 0.00         | 0.00         | 0.00         | 0.01        | 0.01         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Hairy grama          | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.03     | 0.00     | 0.00      | 0.0        |
| Red grama            | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.03     | 0.00     | 0.00      | 0.0        |
| Buffalograss         | 0.02     | 0.00         | 0.00         | 0.00         | 0.00        | 0.04         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0        |
| Sandbur              | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Hooded windmillgrass | 0.05     | 0.00         | 0.00         | 0.00         | 0.00        | 0.04         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0        |
| Trichloris           | 0.02     | 0.00         | 0.00         | 0.00         | 0.00        | 0.01         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Bermudagrass         | 0.05     | 0.00         | 0.00         | 0.00         | 0.05        | 0.04         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Arizona cottontop    | 0.02     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.01     | 0.00     | 0.00      | 0.0        |
| Saltgrass            | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Virginia wildrye     | 0.02     | 0.00         | 0.00         | 0.00         | 0.00        | 0.01         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Texas cupgrass       | 0.01     | 0.00         | 0.00         | 0.00         | 0.02        | 0.02         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Green sprangletop    | 0.02     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Kleingrass           | 0.02     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Guineagrass          | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Vine-mesquite        | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Switchgrass          | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Longtom              | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0        |
| Brownseed paspalum   | 0.04     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.01     | 0.00     | 0.00      | 0.0        |

|                       | Little   | Knotroot     | Plains       | Texas        |             |              | Gulf      | Tall     | Sand     |           | Texas       |
|-----------------------|----------|--------------|--------------|--------------|-------------|--------------|-----------|----------|----------|-----------|-------------|
| Common Name           | bluestem | bristlegrass | bristlegrass | bristlegrass | Indiangrass | Johnsongrass | cordgrass | dropseed | dropseed | Smutgrass | wintergrass |
| Thin paspalum         | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.01         | 0.00      | 0.01     | 0.00     | 0.00      | 0.00        |
| Common reed           | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Little bluestem       | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Knotroot bristlegrass | 0.04     | 0.00         | 0.00         | 0.00         | 0.00        | 0.02         | 0.00      | 0.02     | 0.00     | 0.00      | 0.00        |
| Plains bristlegrass   | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Texas bristlegrass    | 0.06     | 0.00         | 0.00         | 0.00         | 0.00        | 0.06         | 0.00      | 0.02     | 0.00     | 0.00      | 0.00        |
| Indiangrass           | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Johnsongrass          | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Gulf cordgrass        | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Tall dropseed         | 0.01     | 0.00         | 0.00         | 0.00         | 0.03        | 0.03         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Sand dropseed         | 0.03     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.03     | 0.00     | 0.00      | 0.00        |
| Smutgrass             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Texas wintergrass     | 0.01     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Milo                  | 0.06     | 0.00         | 0.00         | 0.00         | 0.00        | 0.08         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Wheat                 | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.05     | 0.00     | 0.00      | 0.00        |
| Corn                  | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.00        |
| Littletooth sedge     | 0.05     | 0.00         | 0.00         | 0.00         | 0.00        | 0.04         | 0.00      | 0.02     | 0.00     | 0.00      | 0.00        |
| Flatsedge             | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Cattail               | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Ragweed               | 0.05     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Lazydaisy             | 0.07     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.05     | 0.00     | 0.00      | 0.0         |
| Spiny aster           | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Whitestem wild indigo | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Old-mans beard        | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.01         | 0.00      | 0.01     | 0.00     | 0.00      | 0.0         |
| Bundleflower          | 0.07     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.04     | 0.00     | 0.00      | 0.0         |
| Frogfruit             | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0         |
| Prairie coneflower    | 0.03     | 0.00         | 0.00         | 0.00         | 0.10        | 0.10         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0         |
| Snoutbean             | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0         |
| Ruellia               | 0.04     | 0.00         | 0.00         | 0.00         | 0.00        | 0.04         | 0.00      | 0.03     | 0.00     | 0.00      | 0.0         |
| Curly dock            | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Bulltongue            | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Glasswort             | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Bush sunflower        | 0.01     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Green briar           | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Texas verbena         | 0.03     | 0.00         | 0.00         | 0.00         | 0.00        | 0.03         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0         |
| Orange zexmenia       | 0.02     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Giant ragweed         | 0.00     | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Annual broomweed      | 0.07     | 0.00         | 0.00         | 0.00         | 0.00        | 0.08         | 0.00      | 0.03     | 0.00     | 0.00      | 0.0         |
| Partridge pea         | 0.04     | 0.00         | 0.00         | 0.00         | 0.00        | 0.04         | 0.00      | 0.02     | 0.00     | 0.00      | 0.0         |
| Texas doveweed        | 0.05     | 0.00         | 0.00         | 0.00         | 0.00        | 0.07         | 0.00      | 0.04     | 0.00     | 0.00      | 0.0         |
| Sunflower             | 0.01     | 0.00         | 0.00         | 0.00         | 0.05        | 0.05         | 0.00      | 0.00     | 0.00     | 0.00      | 0.0         |
| Dogweed               | 0.08     | 0.00         | 0.00         | 0.00         | 0.00        | 0.08         | 0.00      | 0.07     | 0.00     | 0.00      | 0.0         |

|                      | ```` |       |      | Littletooth |           |         |         |           |             | Whitestem   | Old-mans |
|----------------------|------|-------|------|-------------|-----------|---------|---------|-----------|-------------|-------------|----------|
| Common Name          | Milo | Wheat | Corn | sedge       | Flatsedge | Cattail | Ragweed | Lazydaisy | Spiny aster | wild indigo | beard    |
| Huisache             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Pecan                | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Sugar hackberry      | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Mesquite             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Post oak             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Live oak             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Guajillo             | 0.00 | 0.00  | 0.05 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Blackbrush           | 0.00 | 0.00  | 0.05 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Whitebrush           | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Prairie baccharis    | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Sea oxeye            | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Granjeno             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Carolina wolfberry   | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Agarito              | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| McCartney rose       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Rattlepod            | 0.00 | 0.00  | 0.05 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Mustang grape        | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Texas prickly pear   | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.04    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Big bluestem         | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Bushy bluestem       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Purple threeawn      | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.10    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| King Ranch bluestem  | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Silver bluestem      | 0.00 | 0.00  | 0.02 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Sideoats grama       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.06    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Hairy grama          | 0.00 | 0.00  | 0.00 | 0.00        | 0.03      | 0.10    | 0.05    | 0.00      | 0.00        | 0.00        | 0.00     |
| Red grama            | 0.00 | 0.00  | 0.00 | 0.00        | 0.05      | 0.10    | 0.05    | 0.00      | 0.00        | 0.00        | 0.00     |
| Buffalograss         | 0.00 | 0.00  | 0.05 | 0.00        | 0.01      | 0.03    | 0.03    | 0.00      | 0.00        | 0.00        | 0.03     |
| Sandbur              | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Hooded windmillgrass | 0.00 | 0.00  | 0.05 | 0.00        | 0.03      | 0.04    | 0.04    | 0.00      | 0.00        | 0.00        | 0.04     |
| Trichloris           | 0.00 | 0.00  | 0.05 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Bermudagrass         | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.01    | 0.00      | 0.00        | 0.00        | 0.00     |
| Arizona cottontop    | 0.00 | 0.00  | 0.04 | 0.00        | 0.01      | 0.01    | 0.01    | 0.00      | 0.00        | 0.00        | 0.01     |
| Saltgrass            | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Virginia wildrye     | 0.00 | 0.00  | 0.05 | 0.00        | 0.00      | 0.01    | 0.00    | 0.00      | 0.00        | 0.00        | 0.01     |
| Texas cupgrass       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Green sprangletop    | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.01    | 0.00      | 0.00        | 0.00        | 0.00     |
| Kleingrass           | 0.00 | 0.00  | 0.04 | 0.00        | 0.00      | 0.02    | 0.01    | 0.00      | 0.00        | 0.00        | 0.01     |
| Guineagrass          | 0.00 | 0.00  | 0.04 | 0.00        | 0.00      | 0.02    | 0.01    | 0.00      | 0.00        | 0.00        | 0.01     |
| Vine-mesquite        | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.02    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Switchgrass          | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Longtom              | 0.00 | 0.00  | 0.03 | 0.00        | 0.01      | 0.01    | 0.01    | 0.00      | 0.00        | 0.00        | 0.03     |
| Brownseed paspalum   | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |

|                       |      |       |      | Littletooth |           |         |         |           |             | Whitestem   | Old-mans |
|-----------------------|------|-------|------|-------------|-----------|---------|---------|-----------|-------------|-------------|----------|
| Common Name           | Milo | Wheat | Corn | sedge       | Flatsedge | Cattail | Ragweed | Lazydaisy | Spiny aster | wild indigo | beard    |
| Thin paspalum         | 0.00 | 0.00  | 0.04 | 0.00        | 0.01      | 0.01    | 0.03    | 0.00      | 0.00        | 0.00        | 0.03     |
| Common reed           | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Little bluestem       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.02    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Knotroot bristlegrass | 0.00 | 0.00  | 0.04 | 0.00        | 0.02      | 0.02    | 0.03    | 0.00      | 0.00        | 0.00        | 0.04     |
| Plains bristlegrass   | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Texas bristlegrass    | 0.00 | 0.00  | 0.04 | 0.00        | 0.04      | 0.04    | 0.06    | 0.00      | 0.00        | 0.00        | 0.05     |
| Indiangrass           | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.01    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Johnsongrass          | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.01    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Gulf cordgrass        | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Tall dropseed         | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.01    | 0.00      | 0.00        | 0.00        | 0.00     |
| Sand dropseed         | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.10    | 0.03    | 0.00      | 0.00        | 0.00        | 0.00     |
| Smutgrass             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Texas wintergrass     | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Milo                  | 0.00 | 0.00  | 0.06 | 0.00        | 0.02      | 0.03    | 0.04    | 0.00      | 0.00        | 0.00        | 0.05     |
| Wheat                 | 0.00 | 0.00  | 0.00 | 0.00        | 0.03      | 0.10    | 0.05    | 0.00      | 0.00        | 0.00        | 0.00     |
| Corn                  | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.01    | 0.04    | 0.00      | 0.00        | 0.00        | 0.05     |
| Littletooth sedge     | 0.00 | 0.00  | 0.04 | 0.00        | 0.03      | 0.03    | 0.04    | 0.00      | 0.00        | 0.00        | 0.04     |
| Flatsedge             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.03    | 0.01    | 0.00      | 0.00        | 0.00        | 0.00     |
| Cattail               | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Ragweed               | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.08    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Lazydaisy             | 0.00 | 0.00  | 0.00 | 0.00        | 0.05      | 0.10    | 0.10    | 0.00      | 0.00        | 0.00        | 0.00     |
| Spiny aster           | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Whitestem wild indigo | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Old-mans beard        | 0.00 | 0.00  | 0.01 | 0.00        | 0.00      | 0.00    | 0.02    | 0.00      | 0.00        | 0.00        | 0.00     |
| Bundleflower          | 0.00 | 0.00  | 0.00 | 0.00        | 0.01      | 0.08    | 0.05    | 0.00      | 0.00        | 0.00        | 0.00     |
| Frogfruit             | 0.00 | 0.00  | 0.01 | 0.00        | 0.01      | 0.01    | 0.03    | 0.00      | 0.00        | 0.00        | 0.05     |
| Prairie coneflower    | 0.00 | 0.00  | 0.00 | 0.00        | 0.01      | 0.10    | 0.10    | 0.00      | 0.00        | 0.00        | 0.00     |
| Snoutbean             | 0.00 | 0.00  | 0.02 | 0.00        | 0.00      | 0.00    | 0.03    | 0.00      | 0.00        | 0.00        | 0.05     |
| Ruellia               | 0.00 | 0.00  | 0.02 | 0.00        | 0.01      | 0.02    | 0.03    | 0.00      | 0.00        | 0.00        | 0.06     |
| Curly dock            | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Bulltongue            | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Glasswort             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Bush sunflower        | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.05    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Green briar           | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Texas verbena         | 0.00 | 0.00  | 0.03 | 0.00        | 0.00      | 0.01    | 0.02    | 0.00      | 0.00        | 0.00        | 0.06     |
| Orange zexmenia       | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.08    | 0.02    | 0.00      | 0.00        | 0.00        | 0.00     |
| Giant ragweed         | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.00    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Annual broomweed      | 0.00 | 0.00  | 0.04 | 0.00        | 0.02      | 0.02    | 0.04    | 0.00      | 0.00        | 0.00        | 0.07     |
| Partridge pea         | 0.00 | 0.00  | 0.02 | 0.00        | 0.00      | 0.01    | 0.03    | 0.00      | 0.00        | 0.00        | 0.05     |
| Texas doveweed        | 0.00 | 0.00  | 0.04 | 0.00        | 0.02      | 0.02    | 0.04    | 0.00      | 0.00        | 0.00        | 0.06     |
| Sunflower             | 0.00 | 0.00  | 0.00 | 0.00        | 0.00      | 0.04    | 0.00    | 0.00      | 0.00        | 0.00        | 0.00     |
| Dogweed               | 0.00 | 0.00  | 0.05 | 0.00        | 0.02      | 0.02    | 0.05    | 0.00      | 0.00        | 0.00        | 0.06     |

|                      |              |      | Prairie |           |         |            |            |           | Bush      |
|----------------------|--------------|------|---------|-----------|---------|------------|------------|-----------|-----------|
| Common Name          | Bundleflower | -    |         | Snoutbean | Ruellia | Curly dock | Bulltongue | Glasswort | sunflower |
| Huisache             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Pecan                | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Sugar hackberry      | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Mesquite             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Post oak             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Live oak             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Guajillo             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Blackbrush           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Whitebrush           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Prairie baccharis    | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Sea oxeye            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Granjeno             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Carolina wolfberry   | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Agarito              | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| McCartney rose       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Rattlepod            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Mustang grape        | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas prickly pear   | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Big bluestem         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Bushy bluestem       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Purple threeawn      | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| King Ranch bluestem  | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Silver bluestem      | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Sideoats grama       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Hairy grama          | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.04      |
| Red grama            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.05      |
| Buffalograss         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.01      |
| Sandbur              | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Hooded windmillgrass | 0.00         | 0.00 | 0.00    | 0.02      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Trichloris           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Bermudagrass         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Arizona cottontop    | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.01      |
| Saltgrass            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Virginia wildrye     | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas cupgrass       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Green sprangletop    | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Kleingrass           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Guineagrass          | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Vine-mesquite        | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Switchgrass          | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Longtom              | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.01      |
| Brownseed paspalum   | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |

|                       |              |      | Prairie |           |         |            |            |           | Bush      |
|-----------------------|--------------|------|---------|-----------|---------|------------|------------|-----------|-----------|
| Common Name           | Bundleflower |      |         | Snoutbean | Ruellia | Curly dock | Bulltongue | Glasswort | sunflower |
| Thin paspalum         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.03      |
| Common reed           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Little bluestem       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Knotroot bristlegrass | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.01      |
| Plains bristlegrass   | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas bristlegrass    | 0.00         | 0.00 | 0.00    | 0.02      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Indiangrass           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Johnsongrass          | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Gulf cordgrass        | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Tall dropseed         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Sand dropseed         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Smutgrass             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas wintergrass     | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Milo                  | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Wheat                 | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.05      |
| Corn                  | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Littletooth sedge     | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Flatsedge             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Cattail               | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Ragweed               | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Lazydaisy             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.05      |
| Spiny aster           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Whitestem wild indigo | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Old-mans beard        | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Bundleflower          | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.03      |
| Frogfruit             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Prairie coneflower    | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.03      |
| Snoutbean             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.01      |
| Ruellia               | 0.00         | 0.00 | 0.00    | 0.01      | 0.00    | 0.00       | 0.00       | 0.00      | 0.03      |
| Curly dock            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Bulltongue            | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Glasswort             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Bush sunflower        | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Green briar           | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Texas verbena         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.04      |
| Orange zexmenia       | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Giant ragweed         | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Annual broomweed      | 0.00         | 0.00 | 0.00    | 0.02      | 0.00    | 0.00       | 0.00       | 0.00      | 0.04      |
| Partridge pea         | 0.00         | 0.00 | 0.00    | 0.01      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Texas doveweed        | 0.00         | 0.00 | 0.00    | 0.02      | 0.00    | 0.00       | 0.00       | 0.00      | 0.02      |
| Sunflower             | 0.00         | 0.00 | 0.00    | 0.00      | 0.00    | 0.00       | 0.00       | 0.00      | 0.00      |
| Dogweed               | 0.00         | 0.00 | 0.00    | 0.04      | 0.00    | 0.00       | 0.00       | 0.00      | 0.09      |

|                      | <b>``</b>   | Texas   | Orange   | Giant   | Annual    | Partridge | Texas    |           |         |
|----------------------|-------------|---------|----------|---------|-----------|-----------|----------|-----------|---------|
| Common Name          | Green briar | verbena | zexmenia | ragweed | broomweed | pea       | doveweed | Sunflower | Dogweed |
| Huisache             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Pecan                | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Sugar hackberry      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Mesquite             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Post oak             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Live oak             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Guajillo             | 0.00        | 0.00    | 0.00     | 0.80    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Blackbrush           | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Whitebrush           | 0.00        | 0.00    | 0.00     | 0.20    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Prairie baccharis    | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Sea oxeye            | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Granjeno             | 0.00        | 0.00    | 0.00     | 0.50    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Carolina wolfberry   | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Agarito              | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| McCartney rose       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Rattlepod            | 0.00        | 0.00    | 0.00     | 0.80    | 0.00      | 0.00      | 0.00     | 0.10      | 0.00    |
| Mustang grape        | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Texas prickly pear   | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Big bluestem         | 0.00        | 0.00    | 0.00     | 0.50    | 0.00      | 0.00      | 0.00     | 0.10      | 0.00    |
| Bushy bluestem       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Purple threeawn      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.02      | 0.00    |
| King Ranch bluestem  | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Silver bluestem      | 0.00        | 0.00    | 0.00     | 0.60    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Sideoats grama       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Hairy grama          | 0.00        | 0.00    | 0.01     | 0.00    | 0.00      | 0.00      | 0.00     | 0.03      | 0.00    |
| Red grama            | 0.00        | 0.00    | 0.02     | 0.00    | 0.00      | 0.00      | 0.00     | 0.04      | 0.00    |
| Buffalograss         | 0.00        | 0.00    | 0.00     | 0.90    | 0.00      | 0.00      | 0.05     | 0.30      | 0.00    |
| Sandbur              | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Hooded windmillgrass | 0.00        | 0.00    | 0.00     | 0.95    | 0.01      | 0.00      | 0.05     | 0.60      | 0.00    |
| Trichloris           | 0.00        | 0.00    | 0.00     | 0.60    | 0.00      | 0.00      | 0.00     | 0.20      | 0.00    |
| Bermudagrass         | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Arizona cottontop    | 0.00        | 0.00    | 0.00     | 0.80    | 0.01      | 0.00      | 0.04     | 0.50      | 0.00    |
| Saltgrass            | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Virginia wildrye     | 0.00        | 0.00    | 0.00     | 0.60    | 0.00      | 0.00      | 0.00     | 0.30      | 0.00    |
| Texas cupgrass       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Green sprangletop    | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Kleingrass           | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.00     | 0.20      | 0.00    |
| Guineagrass          | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.00     | 0.20      | 0.00    |
| Vine-mesquite        | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Switchgrass          | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Longtom              | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.01     | 0.30      | 0.00    |
| Brownseed paspalum   | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |

|                       | X /         | Texas   | Orange   | Giant   | Annual    | Partridge | Texas    |           |         |
|-----------------------|-------------|---------|----------|---------|-----------|-----------|----------|-----------|---------|
| Common Name           | Green briar | verbena | zexmenia | ragweed | broomweed | pea       | doveweed | Sunflower | Dogweed |
| Thin paspalum         | 0.00        | 0.00    | 0.01     | 0.80    | 0.01      | 0.00      | 0.04     | 0.60      | 0.00    |
| Common reed           | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Little bluestem       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Knotroot bristlegrass | 0.00        | 0.00    | 0.00     | 0.80    | 0.02      | 0.00      | 0.03     | 0.50      | 0.00    |
| Plains bristlegrass   | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Texas bristlegrass    | 0.00        | 0.00    | 0.00     | 0.90    | 0.01      | 0.00      | 0.02     | 0.50      | 0.00    |
| Indiangrass           | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Johnsongrass          | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Gulf cordgrass        | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Tall dropseed         | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Sand dropseed         | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Smutgrass             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Texas wintergrass     | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Milo                  | 0.00        | 0.00    | 0.00     | 0.90    | 0.00      | 0.00      | 0.01     | 0.40      | 0.00    |
| Wheat                 | 0.00        | 0.00    | 0.02     | 0.00    | 0.00      | 0.00      | 0.00     | 0.05      | 0.00    |
| Corn                  | 0.00        | 0.00    | 0.00     | 0.80    | 0.00      | 0.00      | 0.00     | 0.30      | 0.00    |
| Littletooth sedge     | 0.00        | 0.00    | 0.00     | 0.80    | 0.01      | 0.00      | 0.03     | 0.60      | 0.00    |
| Flatsedge             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Cattail               | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Ragweed               | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.01      | 0.00    |
| Lazydaisy             | 0.00        | 0.00    | 0.02     | 0.00    | 0.00      | 0.00      | 0.00     | 0.05      | 0.00    |
| Spiny aster           | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Whitestem wild indigo | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Old-mans beard        | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.00     | 0.30      | 0.00    |
| Bundleflower          | 0.00        | 0.00    | 0.01     | 0.00    | 0.00      | 0.00      | 0.00     | 0.03      | 0.00    |
| Frogfruit             | 0.00        | 0.00    | 0.00     | 0.40    | 0.01      | 0.00      | 0.02     | 0.30      | 0.00    |
| Prairie coneflower    | 0.00        | 0.00    | 0.01     | 0.00    | 0.00      | 0.00      | 0.00     | 0.05      | 0.00    |
| Snoutbean             | 0.00        | 0.00    | 0.00     | 0.80    | 0.01      | 0.00      | 0.03     | 0.50      | 0.00    |
| Ruellia               | 0.00        | 0.00    | 0.00     | 0.80    | 0.01      | 0.00      | 0.02     | 0.40      | 0.00    |
| Curly dock            | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Bulltongue            | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Glasswort             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Bush sunflower        | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Green briar           | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Texas verbena         | 0.00        | 0.00    | 0.01     | 0.80    | 0.02      | 0.00      | 0.04     | 0.50      | 0.00    |
| Orange zexmenia       | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.01      | 0.00    |
| Giant ragweed         | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Annual broomweed      | 0.00        | 0.00    | 0.01     | 0.80    | 0.00      | 0.00      | 0.02     | 0.50      | 0.00    |
| Partridge pea         | 0.00        | 0.00    | 0.00     | 0.70    | 0.00      | 0.00      | 0.01     | 0.20      | 0.00    |
| Texas doveweed        | 0.00        | 0.00    | 0.00     | 0.90    | 0.01      | 0.00      | 0.00     | 0.50      | 0.00    |
| Sunflower             | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00     | 0.00      | 0.00    |
| Dogweed               | 0.00        | 0.01    | 0.04     | 0.99    | 0.04      | 0.06      | 0.06     | 0.80      | 0.00    |

Appendix Table E.21 Cattle preference factors for plant parts, by species, in the Goliad County EDYS model. Values are relative rankings (1 = highest, 30 = lowest). High rankings indicate the plant part and species are highly preferred by cattle.

| Common Name          | Croot | Froot | Trunk | Stems | Leaves | Seeds | SDStems | SDLeaves | SdlgRoot | SdlgShoot | SeedBank |
|----------------------|-------|-------|-------|-------|--------|-------|---------|----------|----------|-----------|----------|
| Huisache             | 35    | 35    | 35    | 35    | 10     | 21    | 36      | 28       | 10       | 10        | 35       |
| Pecan                | 20    | 19    | 22    | 16    | 11     | 19    | 19      | 13       | 8        | 7         | 19       |
| Sugar hackberry      | 20    | 19    | 22    | 15    | 10     | 15    | 19      | 11       | 6        | 5         | 17       |
| Mesquite             | 20    | 19    | 22    | 17    | 14     | 3     | 19      | 15       | 8        | 7         | 17       |
| Post oak             | 35    | 35    | 35    | 35    | 25     | 34    | 35      | 31       | 25       | 25        | 34       |
| Live oak             | 20    | 19    | 22    | 17    | 13     | 16    | 19      | 15       | 7        | 6         | 16       |
| Guajillo             | 35    | 35    | 35    | 34    | 6      | 18    | 35      | 20       | 6        | 6         | 35       |
| Blackbrush           | 35    | 35    | 35    | 35    | 12     | 21    | 35      | 29       | 12       | 12        | 35       |
| Whitebrush           | 35    | 35    | 35    | 34    | 17     | 18    | 30      | 28       | 17       | 17        | 35       |
| Prairie baccharis    | 29    | 29    | 29    | 26    | 10     | 10    | 31      | 20       | 6        | 6         | 12       |
| Sea oxeye            | 29    | 29    | 29    | 26    | 10     | 10    | 31      | 20       | 6        | 6         | 12       |
| Granjeno             | 35    | 35    | 35    | 34    | 16     | 16    | 31      | 29       | 16       | 16        | 36       |
| Carolina wolfberry   | 29    | 29    | 29    | 26    | 10     | 10    | 31      | 20       | 6        | 6         | 12       |
| Agarito              | 19    | 18    | 21    | 16    | 16     | 16    | 18      | 17       | 7        | 6         | 17       |
| McCartney rose       | 29    | 29    | 29    | 26    | 10     | 10    | 31      | 20       | 6        | 6         | 12       |
| Rattlepod            | 35    | 35    | 35    | 34    | 26     | 36    | 35      | 30       | 25       | 25        | 36       |
| Mustang grape        | 19    | 18    | 21    | 16    | 9      | 4     | 18      | 11       | 6        | 5         | 17       |
| Texas prickly pear   | 19    | 18    | 20    | 8     | 8      | 3     | 18      | 18       | 3        | 2         | 17       |
| Big bluestem         | 11    | 11    | 3     | 1     | 1      | 1     | 11      | 9        | 1        | 1         | 34       |
| Bushy bluestem       | 29    | 29    | 29    | 26    | 10     | 10    | 31      | 20       | 6        | 6         | 12       |
| Purple threeawn      | 18    | 17    | 5     | 3     | 3      | 3     | 4       | 4        | 3        | 2         | 17       |
| King Ranch bluestem  | 18    | 17    | 5     | 2     | 2      | 2     | 5       | 5        | 2        | 1         | 9        |
| Silver bluestem      | 10    | 10    | 3     | 2     | 2      | 2     | 9       | 9        | 1        | 1         | 35       |
| Sideoats grama       | 18    | 17    | 4     | 1     | 1      | 1     | 3       | 3        | 2        | 1         | 8        |
| Hairy grama          | 18    | 17    | 4     | 2     | 2      | 2     | 3       | 3        | 3        | 2         | 8        |
| Red grama            | 18    | 17    | 4     | 3     | 3      | 3     | 3       | 3        | 3        | 2         | 8        |
| Buffalograss         | 8     | 8     | 2     | 1     | 1      | 1     | 2       | 2        | 1        | 1         | 35       |
| Sandbur              | 6     | 6     | 6     | 1     | 1      | 1     | 5       | 5        | 1        | 1         | 5        |
| Hooded windmillgrass | 9     | 9     | 5     | 4     | 4      | 4     | 8       | 8        | 3        | 3         | 36       |
| Trichloris           | 10    | 10    | 4     | 2     | 2      | 2     | 9       | 9        | 1        | 1         | 36       |
| Bermudagrass         | 18    | 17    | 4     | 1     | 1      | 1     | 3       | 3        | 2        | 1         | 8        |
| Arizona cottontop    | 10    | 10    | 3     | 1     | 1      | 1     | 9       | 9        | 1        | 1         | 36       |
| Saltgrass            | 6     | 6     | 6     | 1     | 1      | 1     | 5       | 5        | 1        | 1         | 5        |
| Virginia wildrye     | 10    | 10    | 4     | 2     | 2      | 2     | 9       | 9        | 1        | 1         | 35       |
| Texas cupgrass       | 18    | 17    | 4     | 1     | 1      | 1     | 3       | 3        | 2        | 1         | 7        |
| Green sprangletop    | 18    | 17    | 4     | 1     | 1      | 1     | 3       | 3        | 2        | 1         | 8        |
| Kleingrass           | 10    | 10    | 4     | 2     | 2      | 2     | 9       | 9        | 1        | 1         | 35       |
| Guineagrass          | 10    | 10    | 4     | 2     | 2      | 2     | 9       | 9        | 1        | 1         | 35       |
| Vine-mesquite        | 18    | 17    | 4     | 1     | 1      | 1     | 3       | 3        | 2        | 1         | 6        |
| Switchgrass          | 18    | 17    | 5     | 1     | 1      | 1     | 4       | 4        | 2        | 1         | 8        |
| Longtom              | 9     | 8     | 3     | 2     | 2      | 2     | 8       | 8        | 1        | 1         | 34       |
| Brownseed paspalum   | 7     | 7     | 7     | 2     | 2      | 2     | 5       | 5        | 1        | 1         | 5        |

| Common Name           | Croot | Froot | Trunk | Stems | Leaves  | Seeds   | SDStems  | SDLeaves | SdlgRoot | SdlgShoot | SeedBank |
|-----------------------|-------|-------|-------|-------|---------|---------|----------|----------|----------|-----------|----------|
| Thin paspalum         | 10    | 10    | 4     | 3     | 3       | 3       | 9        | 9        | 2        | 2         | 35       |
| Common reed           | 7     | 7     | 7     | 2     | 2       | 2       | 5        | 5        | 1        | 1         | 5        |
| Little bluestem       | 18    | 17    | 5     | 2     | 2       | 2       | 4        | 4        | 2        | 1         | 9        |
| Knotroot bristlegrass | 10    | 10    | 6     | 4     | 4       | 4       | 9        | 9        | 3        | 3         | 35       |
| Plains bristlegrass   | 7     | 7     | 7     | 3     | 3       | 3       | 6        | 6        | 2        | 2         | 6        |
| Texas bristlegrass    | 9     | 9     | 4     | 3     | 3       | 3       | 8        | 8        | 2        | 2         | 35       |
| Indiangrass           | 18    | 17    | 5     | 1     | 1       | 1       | 4        | 4        | 2        | 1         | 3        |
| Johnsongrass          | 7     | 7     | 7     | 3     | 3       | 3       | 6        | 6        | 2        | 2         | 6        |
| Gulf cordgrass        | 7     | 7     | 7     | 3     | 3       | 3       | 6        | 6        | 2        | 2         | 6        |
| Tall dropseed         | 18    | 17    | 5     | 2     | 2       | 2       | 4        | 4        | 3        | 2         | 8        |
| Sand dropseed         | 18    | 17    | 4     | 2     | 2       | 2       | 3        | 3        | 2        | 1         | 8        |
| Smutgrass             | 7     | 7     | 7     | 3     | 3       | 3       | 6        | 6        | 2        | 2         | 6        |
| Texas wintergrass     | 18    | 17    | 4     | 1     | 1       | 1       | 3        | 3        | 3        | 2         | 9        |
| Milo                  | 10    | 10    | 9     | 3     | 2       | 2       | 11       | 9        | 1        | 1         | 3        |
| Wheat                 | 18    | 16    | 2     | 1     | 1       | 1       | 5        | 5        | 2        | 1         | 3        |
| Corn                  | 10    | 10    | 9     | 3     | 1       | 1       | 11       | 9        | 1        | 1         | 2        |
| Littletooth sedge     | 9     | 9     | 6     | 5     | 5       | 5       | 9        | 9        | 4        | 4         | 35       |
| Flatsedge             | 18    | 17    | 6     | 4     | 3       | 3       | 5        | 5        | 3        | 2         | 9        |
| Cattail               | 18    | 17    | 9     | 9     | 6       | 9       | 18       | 8        | 4        | 3         | 10       |
| Ragweed               | 18    | 17    | 11    | 9     | 9       | 9       | 16       | 16       | 5        | 3         | 8        |
| Lazydaisy             | 18    | 17    | 4     | 3     | 3       | 3       | 5        | 5        | 3        | 2         | 8        |
| Spiny aster           | 0     | 0     | 0     | 5     | 4       | 0       | 7        | 6        | 0        | 0         | 0        |
| Whitestem wild indigo | 7     | 7     | 7     | 3     | 3       | 3       | 6        | 6        | 2        | 2         | 6        |
| Old-mans beard        | 16    | 16    | 15    | 14    | 14      | 14      | 16       | 16       | 13       | 13        | 36       |
| Bundleflower          | 18    | 17    | 4     | 3     | 3       | 3       | 5        | 5        | 2        | 1         | 8        |
| Frogfruit             | 14    | 14    | 12    | 11    | 11      | 11      | 13       | 13       | 10       | 10        | 35       |
| Prairie coneflower    | 18    | 17    | 5     | 4     | 4       | 4       | 6        | 6        | 2        | 1         | 8        |
| Snoutbean             | 13    | 13    | 12    | 11    | 11      | 11      | 12       | 12       | 10       | 10        | 34       |
| Ruellia               | 14    | 14    | 13    | 12    | 12      | 12      | 13       | 13       | 11       | 11        | 34       |
| Curly dock            | 20    | 20    | 20    | 12    | 12      | 12      | 20       | 20       | 10       | 10        | 11       |
| Bulltongue            | 20    | 20    | 20    | 12    | 12      | 12      | 20       | 20       | 10       | 10        | 11       |
| Glasswort             | 20    | 20    | 20    | 12    | 12      | 12      | 20       | 20       | 10       | 10        | 11       |
| Bush sunflower        | 18    | 17    | 9     | 9     | 7       | 7       | 17       | 8        | 4        | 3         | 7        |
| Green briar           | 29    | 29    | 29    | 26    | 10      | 10      | 31       | 20       | 6        | 6         | 12       |
| Texas verbena         | 18    | 18    | 17    | 15    | 15      | 15      | 17       | 17       | 14       | 14        | 35       |
| Orange zexmenia       | 18    | 17    | 5     | 3     | 3       | 3       | 4        | 4        | 2        | 1         | 7        |
| Giant ragweed         | 30    | 30    | 29    | 27    | 25      | 25      | 33       | 32       | 24       | 24        | 35       |
| Annual broomweed      | 31    | 31    | 31    | 30    | 28      | 27      | 32       | 31       | 27       | 27        | 36       |
| Partridge pea         | 13    | 13    | 10    | 8     | 8       | 8       | 12       | 12       | 7        | 7         | 34       |
| Texas doveweed        | 31    | 31    | 32    | 31    | 26      | 26      | 31       | 30       | 25       | 25        | 34<br>6  |
| Sunflower             | 18    | 17    | 9     | 9     | 6<br>29 | 5<br>29 | 19<br>20 | 9        | 4        | 3         | -        |
| Dogweed               | 31    | 30    | 30    | 29    | 29      | 29      | 30       | 30       | 28       | 28        | 34       |

SDStems = standing dead stems; SDLeaves = standing dead leaves; SdlgRoot = seedling roots; SdlgShoot = seedling shoots

Appendix Table E.22 Cattle competition factors for plant parts, by species, in the Goliad County EDYS model. Values are relative rankings among competing herbivores for the respective plant material (1 = most competitive of the herbivores; 6 = least competitive).

| Common Name                  | Croot | Froot | Trunk | Stems | Leaves | Seeds | SDStems | SDLeaves | SdlgRoot | SdlgShoot |
|------------------------------|-------|-------|-------|-------|--------|-------|---------|----------|----------|-----------|
|                              |       |       |       |       |        |       |         |          |          |           |
| Huisache                     | 6     | 6     | 6     | 4     | 4      | 4     | 4       | 4        | 6        | 6         |
| Pecan                        | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Sugar hackberry              | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Mesquite                     | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Post oak                     | 6     | 6     | 6     | 4     | 4      | 4     | 4       | 4        | 6        | 6         |
| Live oak                     | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Guajillo                     | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Blackbrush                   | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Whitebrush                   | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Prairie baccharis            | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Sea oxeye                    | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Granjeno                     | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Carolina wolfberry           | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Agarito                      | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| McCartney rose               | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Rattlepod                    | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Mustang grape                | 6     | 6     | 6     | 5     | 5      | 5     | 5       | 5        | 6        | 6         |
| Texas prickly pear           | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Big bluestem                 | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Bushy bluestem               | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Purple threeawn              | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| King Ranch bluestem          | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Silver bluestem              | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Sideoats grama               | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Hairy grama                  | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Red grama                    | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Buffalograss                 | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Sandbur                      | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Hooded windmillgrass         | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Trichloris                   | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Bermudagrass                 | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Arizona cottontop            | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
|                              | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Saltgrass<br>Virginia wildow | 6     | 6     | 6     | 6     | 6      | 5     | 6       |          | 6        | 6         |
| Virginia wildrye             |       |       |       |       |        |       |         | 6        |          |           |
| Texas cupgrass               | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Green sprangletop            | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Kleingrass                   | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Guineagrass                  | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Vine-mesquite                | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Switchgrass                  | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Longtom                      | 6     | 6     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Brownseed paspalum           | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |

| Common Name           | Croot | Froot | Trunk | Stems | Leaves | Seeds | SDStems | SDLeaves | SdlgRoot | SdlgShoot |
|-----------------------|-------|-------|-------|-------|--------|-------|---------|----------|----------|-----------|
| Thin paspalum         | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Common reed           | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Little bluestem       | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Knotroot bristlegrass | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Plains bristlegrass   | 2     | 2     | 2     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Texas bristlegrass    | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Indiangrass           | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Johnsongrass          | 2     | 2     | 2     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Gulf cordgrass        | 2     | 2     | 2     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Tall dropseed         | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Sand dropseed         | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Smutgrass             | 2     | 2     | 2     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Texas wintergrass     | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Milo                  | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Wheat                 | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Corn                  | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Littletooth sedge     | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Flatsedge             | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Cattail               | 6     | 6     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Ragweed               | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Lazydaisy             | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Spiny aster           | 0     | 0     | 0     | 4     | 4      | 0     | 4       | 4        | 0        | 0         |
| Whitestem wild indigo | 2     | 2     | 2     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Old-mans beard        | 6     | 6     | 6     | 6     | 5      | 5     | 6       | 5        | 6        | 6         |
| Bundleflower          | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Frogfruit             | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Prairie coneflower    | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Snoutbean             | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Ruellia               | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Curly dock            | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Bulltongue            | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Glasswort             | 5     | 5     | 5     | 5     | 5      | 5     | 5       | 5        | 5        | 5         |
| Bush sunflower        | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Green briar           | 5     | 5     | 5     | 4     | 4      | 4     | 4       | 4        | 5        | 5         |
| Texas verbena         | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Orange zexmenia       | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Giant ragweed         | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Annual broomweed      | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Partridge pea         | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Texas doveweed        | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |
| Sunflower             | 6     | 6     | 6     | 6     | 6      | 5     | 6       | 6        | 6        | 6         |
| Dogweed               | 6     | 6     | 6     | 6     | 6      | 6     | 6       | 6        | 6        | 6         |

SDStems = standing dead stems; SDLeaves = standing dead leaves; SdlgRoot = seedling roots; SdlgShoot = seedling shoots

Appendix Table E.23 Accessibility of plant parts, by species, for consumption by cattle in the Goliad County EDYS model. Values are the percentage of standing crop biomass that could be accessed by cattle.

| Common Name                    | CRoot | FRoot | Trunk    | Stems    | Leaves   | Seeds    | SDStems  | SDLeaves | SdlgRoot | SdlgShoot | SeedBank |
|--------------------------------|-------|-------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|
| Huisache                       | 0     | 0     | 1        | 10       | 10       | 5        | 10       | 10       | 10       | 40        | 20       |
| Pecan                          | 0     | 0     | 1        | 10       | 10       | 0        | 10       | 10       | 0        | 80        | 5        |
| Sugar hackberry                | 0     | 0     | 1        | 2        | 2        | 1        | 2        | 2        | 0        | 25        | 0        |
| Mesquite                       | 0     | 0     | 1        | 10       | 10       | 10       | 10       | 10       | 0        | 40        | 2        |
| Post oak                       | 0     | 0     | 1        | 10       | 10       | 0        | 10       | 10       | 10       | 40<br>70  | 50       |
| Live oak                       | 0     | 0     | 1        | 5        | 5        | 4        | 5        | 5        | 0        | 50        | 2        |
| Guajillo                       | 1     | 1     | 90       | 99       | 99       | 4<br>99  | 99       | 99       | 10       | 60        | 30       |
| Blackbrush                     | 1     | 1     | 90<br>90 | 95       | 90       | 90       | 95       | 80       | 10       | 50        | 30<br>10 |
| Whitebrush                     | 0     | 0     | 90<br>90 | 95<br>99 | 90<br>95 | 90<br>75 | 95<br>95 | 80<br>80 | 10<br>5  | 30<br>40  | 10       |
| Prairie baccharis              | 1     | 0     | 90<br>99 | 99<br>99 | 93<br>80 | 90       | 95<br>99 | 50       | 20       | 40<br>80  | 0        |
|                                | 1     | 0     | 99<br>99 | 99<br>99 | 80<br>80 | 90<br>90 | 99<br>99 | 50<br>50 | 20       | 80<br>80  | 0        |
| Sea oxeye                      |       |       |          |          |          |          |          |          |          |           |          |
| Granjeno<br>Granjina uvaliharm | 0     | 0     | 90<br>99 | 95       | 80       | 10       | 90       | 50       | 5        | 40        | 0        |
| Carolina wolfbern              | 1     | 0     |          | 99       | 80       | 90       | 99       | 50       | 20       | 80        | 0        |
| Agarito                        | 0     | 0     | 80       | 95       | 95       | 95       | 95       | 95       | 0        | 5         | 0        |
| McCartney rose                 | 1     | 0     | 99       | 99       | 80       | 90       | 99       | 50       | 20       | 80        | 0        |
| Rattlepod                      | 0     | 0     | 95       | 99       | 95       | 95       | 95       | 80       | 10       | 70        | 20       |
| Mustang grape                  | 0     | 0     | 5        | 5        | 5        | 4        | 5        | 5        | 0        | 5         | 0        |
| Texas prickly pear             |       | 0     | 50       | 95       | 95       | 95       | 95       | 95       | 0        | 5         | 0        |
| Big bluestem                   | 1     | 1     | 40       | 90       | 90       | 95       | 90       | 90       | 10       | 50        | 0        |
| Bushy bluestem                 | 1     | 0     | 99       | 99       | 80       | 90       | 99       | 50       | 20       | 80        | 0        |
| Purple threeawn                | 0     | 0     | 5        | 95       | 95       | 90       | 95       | 95       | 0        | 5         | 0        |
| King Ranch bluest              | 0     | 0     | 5        | 90       | 90       | 95       | 90       | 90       | 0        | 5         | 0        |
| Silver bluestem                | 1     | 1     | 40       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Sideoats grama                 | 0     | 0     | 5        | 95       | 95       | 90       | 95       | 95       | 0        | 10        | 0        |
| Hairy grama                    | 0     | 0     | 2        | 90       | 90       | 90       | 90       | 90       | 0        | 2         | 0        |
| Red grama                      | 0     | 0     | 2        | 80       | 85       | 80       | 80       | 85       | 0        | 1         | 0        |
| Buffalograss                   | 1     | 1     | 20       | 80       | 75       | 40       | 80       | 70       | 5        | 20        | 0        |
| Sandbur                        | 10    | 0     | 40       | 70       | 80       | 95       | 70       | 80       | 40       | 50        | 0        |
| Hooded windmill <sub>{</sub>   | 1     | 1     | 30       | 90       | 85       | 90       | 90       | 80       | 5        | 30        | 0        |
| Frichloris                     | 1     | 1     | 40       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Bermudagrass                   | 0     | 0     | 2        | 80       | 80       | 80       | 80       | 80       | 0        | 2         | 0        |
| Arizona cottontop              | 1     | 1     | 30       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Saltgrass                      | 10    | 0     | 40       | 70       | 80       | 95       | 70       | 80       | 40       | 50        | 0        |
| Virginia wildrye               | 1     | 1     | 40       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Texas cupgrass                 | 0     | 0     | 5        | 95       | 95       | 90       | 95       | 95       | 0        | 10        | 0        |
| Green sprangleto               | 0     | 0     | 5        | 95       | 95       | 95       | 95       | 95       | 0        | 10        | 0        |
| Kleingrass                     | 1     | 1     | 30       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Guineagrass                    | 1     | 1     | 30       | 90       | 90       | 95       | 90       | 85       | 10       | 50        | 0        |
| Vine-mesquite                  | 0     | 0     | 5        | 80       | 85       | 90       | 80       | 85       | 0        | 5         | 0        |
| Switchgrass                    | 0     | 0     | 5        | 95       | 95       | 95       | 95       | 95       | 0        | 10        | 0        |
| Longtom                        | 3     | 2     | 10       | 80       | 75       | 90       | 80       | 70       | 10       | 30        | 0        |
| Brownseed paspa                | 10    | 0     | 40       | 80       | 80       | 95       | 80       | 80       | 40       | 50        | 0        |

Appendix Table E.23 (Cont.)

| Common Name         | CRoot | FRoot | Trunk | Stems | Leaves | Seeds | SDStems | SDLeaves | SdlgRoot | SdlgShoot | SeedBank |
|---------------------|-------|-------|-------|-------|--------|-------|---------|----------|----------|-----------|----------|
| Thin paspalum       | 1     | 1     | 20    | 90    | 90     | 95    | 90      | 85       | 10       | 30        | 0        |
| Common reed         | 10    | 0     | 40    | 80    | 80     | 95    | 80      | 80       | 40       | 50        | 0        |
| Little bluestem     | 0     | 0     | 5     | 95    | 95     | 95    | 95      | 95       | 0        | 10        | 0        |
| Knotroot bristlegr  | 1     | 1     | 10    | 80    | 75     | 90    | 80      | 70       | 5        | 20        | 0        |
| Plains bristlegrass | 5     | 0     | 50    | 80    | 80     | 95    | 80      | 80       | 50       | 50        | 0        |
| Texas bristlegrass  | 1     | 1     | 10    | 90    | 80     | 90    | 90      | 75       | 5        | 20        | 0        |
| Indiangrass         | 0     | 0     | 5     | 95    | 95     | 95    | 95      | 95       | 0        | 10        | 0        |
| Johnsongrass        | 5     | 0     | 50    | 80    | 80     | 95    | 80      | 80       | 50       | 50        | 0        |
| Gulf cordgrass      | 5     | 0     | 50    | 80    | 80     | 95    | 80      | 80       | 50       | 50        | 0        |
| Tall dropseed       | 0     | 0     | 5     | 95    | 95     | 95    | 95      | 95       | 0        | 10        | 0        |
| Sand dropseed       | 0     | 0     | 5     | 95    | 95     | 90    | 95      | 95       | 0        | 5         | 0        |
| Smutgrass           | 5     | 0     | 50    | 80    | 80     | 95    | 80      | 80       | 50       | 50        | 0        |
| Texas wintergrass   | 0     | 0     | 5     | 90    | 90     | 90    | 90      | 90       | 0        | 5         | 0        |
| Milo                | 2     | 1     | 20    | 90    | 90     | 95    | 90      | 85       | 20       | 70        | 20       |
| Wheat               | 0     | 0     | 5     | 95    | 95     | 95    | 95      | 95       | 0        | 10        | 1        |
| Corn                | 2     | 1     | 30    | 90    | 90     | 95    | 90      | 85       | 30       | 80        | 70       |
| Littletooth sedge   | 1     | 1     | 10    | 90    | 80     | 90    | 90      | 70       | 5        | 20        | 0        |
| Flatsedge           | 0     | 0     | 5     | 90    | 85     | 90    | 90      | 85       | 0        | 5         | 0        |
| Cattail             | 5     | 5     | 50    | 90    | 90     | 80    | 90      | 90       | 0        | 10        | 0        |
| Ragweed             | 0     | 0     | 5     | 95    | 95     | 95    | 95      | 95       | 0        | 5         | 0        |
| Lazydaisy           | 0     | 0     | 1     | 90    | 70     | 80    | 90      | 70       | 0        | 1         | 0        |
| Spiny aster         | 0     | 0     | 0     | 100   | 100    | 0     | 100     | 100      | 0        | 0         | 0        |
| Whitestem wild ir   | 5     | 0     | 50    | 80    | 80     | 95    | 80      | 80       | 50       | 50        | 0        |
| Old-mans beard      | 1     | 1     | 10    | 70    | 80     | 80    | 70      | 70       | 5        | 20        | 0        |
| Bundleflower        | 0     | 0     | 5     | 90    | 80     | 80    | 90      | 80       | 0        | 2         | 0        |
| Frogfruit           | 1     | 1     | 5     | 70    | 50     | 70    | 70      | 40       | 5        | 10        | 0        |
| Prairie coneflowe   | 0     | 0     | 2     | 90    | 70     | 90    | 90      | 70       | 0        | 5         | 0        |
| Snoutbean           | 1     | 1     | 10    | 75    | 60     | 80    | 75      | 50       | 5        | 10        | 1        |
| Ruellia             | 1     | 1     | 1     | 60    | 40     | 60    | 60      | 30       | 1        | 5         | 0        |
| Curly dock          | 5     | 0     | 50    | 80    | 80     | 80    | 80      | 70       | 10       | 40        | 0        |
| Bulltongue          | 5     | 0     | 50    | 80    | 80     | 80    | 80      | 70       | 10       | 40        | 0        |
| Glasswort           | 5     | 0     | 50    | 80    | 80     | 80    | 80      | 70       | 10       | 40        | 0        |
| Bush sunflower      | 0     | 0     | 5     | 90    | 85     | 95    | 90      | 85       | 0        | 5         | 0        |
| Green briar         | 1     | 0     | 99    | 99    | 80     | 90    | 99      | 50       | 20       | 80        | 0        |
| Texas verbena       | 1     | 1     | 5     | 80    | 70     | 90    | 80      | 60       | 5        | 10        | 0        |
| Orange zexmenia     | 0     | 0     | 5     | 90    | 85     | 90    | 90      | 85       | 0        | 5         | 0        |
| Giant ragweed       | 1     | 1     | 20    | 90    | 90     | 80    | 90      | 80       | 10       | 50        | 0        |
| Annual broomwee     | 1     | 1     | 5     | 80    | 80     | 85    | 80      | 70       | 10       | 40        | 0        |
| Partridge pea       | 1     | 1     | 5     | 80    | 70     | 70    | 80      | 60       | 10       | 30        | 1        |
| Texas doveweed      | 1     | 1     | 5     | 85    | 90     | 90    | 85      | 80       | 10       | 20        | 0        |
| Sunflower           | 0     | 0     | 5     | 95    | 95     | 90    | 95      | 95       | 0        | 5         | 0        |
| Dogweed             | 1     | 1     | 1     | 80    | 60     | 90    | 80      | 50       | 1        | 10        | 0        |

SDStems = standing dead stems; SDLeaves = standing dead leaves; SdlgRoot = seedling roots; SdlgShoot = seedling shoots