
DIPLOMARBEIT

FORMAL VERIFICATION OF AN
IEEE FLOATING POINT ADDER

FORMALE VERIFIKATION EINES IEEE-GLEITKOMMA -ADDIERERS

CHRISTOPHBERG

CB@CS.UNI-SB.DE

UNIVERSITÄT DES SAARLANDES

FACHRICHTUNG 6.2 – INFORMATIK

LEHRSTUHL FÜR RECHNERARCHITEKTUR UNDPARALLELRECHNER

PROF. DR. WOLFGANG J. PAUL

MAI 2001

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, daß ich die vorliegende Arbeit selbstst¨andig verfaßt und nur die
angegebenen Quellen benutzt habe. Ich habe diese Arbeit keinem anderen Pr¨ufungsamt vorgelegt.

Saarbr¨ucken, im Mai 2001

Christoph Berg

ii

Im Gebirge der Wahrheit kletterst du nie
umsonst: entweder du kommst schon heute
weiter hinauf oder du ¨ubst deine Kr¨afte, um
morgen h¨oher steigen zu k¨onnen.

—
In the mountains of truth you never climb in
vain: either you ascend today, or you practise
your strengths for climbing higher tomorrow.

Friedrich Nietzsche

Danke

Meinen Dank aussprechen m¨ochte ich all denjenigen, die mich beim Entstehen dieser Diplomar-
beit unterst¨utzt haben:

� Christian Jacobi, der vom Betreuer meiner Arbeit zu einem guten Freund wurde, und dessen
Unterstützung eine große Hilfe war,

� Prof. Wolfgang Paul, der mir durch seine Vorlesungen und die Vergabe des Themas erm¨og-
licht hat, an einem spannenden Projekt zu arbeiten,

� Jochen Preiß, Daniel Kr¨oning, Sven Beyer, Dirk Leinenbach, Michael Klein und Stefan
Kunde für die

”
soziale Infrastruktur“ am Lehrstuhl,

� meinen Freunden, die mir gen¨ugend Ablenkung vom Streß geboten haben, der sich beim
Arbeiten immer wieder einstellt,

� und nicht zuletzt meinen Eltern, die mich auf meinem universit¨aren Werdegang immer wie-
der ermutigt haben.

iii

Abstract

Our group at Saarland University is formally verifying the correctness of a complete microproces-
sor called VAMP. The PVS theorem prover is used to specify the circuit definitions and to prove
their correctness. For the VAMP project, a library of basic circuits was developed. The formal
verification of this library is described in the first part of this thesis. Part of the VAMP is an IEEE
compliant floating point unit. The second part of this thesis describes the formal verification of
the gate level correctness of the VAMP floating point adder.

Zusammenfassung

Die Korrektheit eines vollst¨andigen Mikroprozessors, dem VAMP, wird von unserer Gruppe an
der Universität des Saarlandes formal verifiziert. Der Theorembeweiser PVS wird benutzt, um
die Schaltkreis-Definitionen zu spezifizieren und deren Korrektheit zu zeigen. F¨ur das VAMP-
Projekt wurde eine Bibliothek von Standard-Schaltkreisen entwickelt. Die formale Verifikation
dieser Bibliothek ist im ersten Teil dieser Arbeit beschrieben. Teil des VAMP ist eine IEEE-
Gleitkomma-Einheit. Die formale Verifikation der Korrektheit des VAMP-Gleitkomma-Addierers
auf Gatterebene ist Thema des zweiten Teils dieser Diplomarbeit.

iv

Contents

1 Introduction 1

2 The PVS Theorem Prover 5

2.1 The PVS Logic . 5

2.2 An Example Proof . .. 6

2.2.1 Proof ofsum is recsum . 7

2.2.2 Proof ofrecsum is gauss . 12

2.2.3 Proof ofsum is gauss . 12

2.2.4 TCCs . 14

2.3 PVS and Mathematics .. 14

2.4 Bitvectors .. 15

3 Basic Components 17

3.1 Halfadder, Fulladder .. 17

3.2 Carry Chain Incrementer. 19

3.3 Carry Chain Adder . .. 21

3.4 Compound Adder 21

3.5 Generic Adder. 23

3.6 Carry Save Adder 26

3.7 Arithmetic Unit, Subtraction . .. 28

3.8 Absolute Value . 29

3.9 Multiplier . 30

3.10 Decoder . .. 31

3.11 Halfdecoder. 32

3.12 Encoder . .. 33

3.13 Leading Zero Counter .. 34

v

CONTENTS CONTENTS

3.14 Cyclic Left Shifter . .. 36

3.15 Logical Left Shifter . .. 38

3.16 Logical Right Shifter .. 39

3.17 Or Tree . .. 40

4 IEEE Floating Point Arithmetic 41

4.1 Factorings .. 41

4.2 Rounding .. 42

4.3 �-Equivalence. 43

4.4 Exceptions .. 45

4.5 Correctness of the FPU. 45

5 Floating Point Adder 47

5.1 Adder Correctness . .. 47

5.2 Addition Algorithm . 48

5.3 Algorithm Correctness. 49

5.4 Adder Hardware. 51

5.5 Stage 1: Computings0b . 52

5.6 Stage 2: Alignment Shift. 52

5.6.1 Exponent Subtract 53

5.6.2 Exponent Select. 54

5.6.3 Circuit Limit . 54

5.6.4 Significand Swapping .. 56

5.6.5 Alignment Shift and Sticky Bit Computation. 57

5.6.6 Alignment Shifter Correctness 59

5.7 Stage 3: Significand Addition . .. 61

5.8 Putting It All Together . 62

5.9 Boundary Constraints .. 63

6 Summary 65

6.1 The VAMP Project . .. 65

6.2 Bugs. 65

6.3 Related Work . 66

6.4 Prospect . .. 67

vi

Chapter 1

Introduction

Floating point hardware consists of complex circuits that tend to have subtle errors. Design flaws
are usually eliminated by testing, but it is impossible to test every state the circuit can enter. Even
millions of test vectors were unable to find the 1995 Pentium division bug [Pra95].

Proving the correctness using mathematical reasoning overcomes this limitation. But reasoning
about single bits in paper-and-pencil proofs is tedious and error prone, so the correctness of the
design is not entirely certain.

Formal verification—using theorem proving or other formal techniques—provides a way to
rigorously prove the correctness of a design.Theorem proving is a general framework for formal
reasoning in logic. It allows to prove very complex statements and can—using abstraction or
induction—even reason about infinite state spaces. The disadvantage is that a considerable amount
of manual work is needed. Finding proofs in a theorem prover is essentially as hard as finding
proofs in mathematics.

This thesis covers the formal verification of a library of basic circuits and an IEEE floating point
adder using theorem proving.

The VAMP project. Müller and Paul design a complete floating point unit (FPU) on the gate
level in their textbook [MP00]. The FPU features an addition/subtraction unit, a multiplica-
tion/division unit, a rounder common to the functional units, conversion to/from integer operands,
and floating point comparison. Along with the designs come paper-and-pencil proofs for the cor-
rectness of the circuits.

The FPU from [MP00] is embedded into the DLX processor. The DLX is a RISC processor
based on the MIPS instruction set architecture [HP96]. Features of the DLX implementation in
[MP00] are a 5-stage pipeline, precise and nested interrupts, delayed branch, and a cache memory
interface. [MP00] also includes paper-and-pencil proofs for the correctness of the DLX integer
core.

In the VAMP project, our group formally verifies the DLX processor [JK00, BJ01, Kr¨o01,
Jac01b, VAM] using the PVS theorem prover [OSR92]. The VAMP—standing forVerified Ar-
chitecture Microprocessor—is an implementation of the paper designs from [MP00] in the PVS
language. We verify the correctness of the [MP00] proofs. We successively add new features to
the VAMP and formally verify them. The major improvement over the DLX from [MP00] is the
implementation of a Tomasulo scheduler. A cache memory interface with TLB is being worked

1

CHAPTER 1. INTRODUCTION

��
��
��
��

��

���� ����

FPOp A FPOp B

UNPACK

MULT/DIVCOMPARE ADD/SUB

PACK

ROUND

FPUnpack

SPECIALCASES

FPOutFXOutFPFlag

CONVERT

FXOp

FXUNPACK

Figure 1.1: The VAMP FPU

on. The topic of this thesis is the formal verification of the VAMP floating point adder correctness.

Our group has implemented a translation tool that converts the hardware specifications from
PVS to Verilog HDL [BJKL01]. The Verilog files of the VAMP processor are compiled for a
Xilinx FPGA, which is hosted on a PCI board. We are porting the gcc compiler and the GNU C
library to the VAMP architecture to evaluate the verified VAMP processor.

Basic circuits. The correctness of the basic circuits library used in the VAMP processor is proved
in the first part of this thesis [BJK01]. Basic circuits are components like adders, multipliers,
shifters, and decoders that are used frequently in hardware design. The library has been developed
for the VAMP project, but may be used in any hardware verification project, as the circuits are of
arbitrary bit width and for general use.

FPU verification. For the verification of floating point hardware, a formalization of the IEEE
standard 754 [Ins85] is needed [Jac01b, Jac01a]. Based on this abstraction level, the FPU modules
are verified.

The VAMP FPU consists of three major parts (figure 1.1). The unpacker is given the FPU
input operands in the IEEE format and converts them to an internal representation; the unpacker
also handles integer operands and special cases as operations with NaN or infinite operands. The
functional units then compute the operation’s result. In the last step, the rounding unit rounds the
result and packs it into the IEEE format.

2

CHAPTER 1. INTRODUCTION

Other than the adder in [MP00], the adder design in this thesis does not handle special cases, as
this is done by the unpacker. The adder is a combinatorial circuit. Pipelining circuits by inserting
registers and building a functional unit for the Tomasulo scheduler is described in [Jac01b].

Project status. For his PhD thesis, Daniel Kröning has verified the correctness of the VAMP
integer core and implemented a verified Tomasulo scheduler [Krö01]. Christian Jacobi has im-
plemented the VAMP FPU functional modules (except for the adder) and the pipeline control for
the FPU. The verification of these will be described in his PhD thesis [Jac01b]. The verification
of the floating point adder hardware is the topic of this thesis. Sven Beyer has started to work on
the verification of the cache memory interface and TLB. Dirk Leinenbach and Sven Beyer have
implemented the PVS to Verilog translation tool [BJKL01].

The PVS files—hardware specifications and proofs—and the Verilog sources of the VAMP are
publically available at our web site [VAM].

Outline. Chapter 2 is a brief introduction to the PVS theorem prover. A simple example is
given to make the reader familiar with PVS proofs. Notations and lemmas used in the following
chapters are introduced. Chapter 3 covers the basic circuits library. For each circuit, the circuit
implementation is specified and the correctness is proved. Chapter 4 is an overview on the IEEE
floating point arithmetic formalization used. The correctness of the floating point adder is proved
in chapter 5. A summary and an overview on related work are given in chapter 6.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

The PVS Theorem Prover

PVS (short for Prototype Verification System) is a general purpose theorem prover [OSR92]. This
chapter gives a brief introduction to the PVS logic, presents a simple example proof to make the
reader familiar with PVS, and introduces some of the most important PVS commands. For a
further treatment, see the tutorial [COR+95]. At the end of the chapter, we introduce notations,
definitions, and lemmas that will be used in the following chapters.

2.1 The PVS Logic

PVS is based on typed higher order logic (HOL). Predefined types include bool, nat, int, real,
bit, . . . From these, sets, functions, tuples, and records are derived. Each PVS file consists of one
or more theories which in turn contain definitions, lemmas, theorems, and axioms written as HOL
formulas.

Within proofs, PVS operates on sequents of the form � ` �, where � and � are lists of HOL
formulas, called antecedents and consequents, respectively [Gen35]. For the proof to succeed, we
have to show that the disjunction of the consequents is a logical consequence of the conjunction
of the antecedents:1

�1; : : : ;
�i ` Æ1; : : : ; Æj is to be read as
�1 ^ � � � ^
�i =) Æ1 _ � � � _ Æj :

A proof of a lemma F starts with the sequent ` F . Sequents are modified by proof commands.
Proof commands transform a sequent into several—possibly zero—child sequents. These sequents
are subcases of the parent sequent; their conjunction implies the validity of the parent sequent. The
proof sequents form a tree. A proof branch is closed if the last proof command yielded no children,
i.e., if PVS was able to verify the validity of the sequent. A proof is finished when there are no
open branches left in the proof.

PVS has to verify that all types used in the specification are well-defined and generates so-called
TCCs (type correctness conditions) if it encounters any non-trivial type usage. For example, in the
expression

p
n, n must not be negative. The user then has to prove the TCCs to show that the

specification is sound. In most cases, TCCs are simple statements like 8 n 2 N
+ : n� 1 � 0 that

can be proved automatically. Sometimes, however, TCCs require a substantial amount of manual
work.

1Antecedent and consequent formulas are numbered using negative and positive integers, respectively.

5

2.2. AN EXAMPLE PROOF CHAPTER 2. THE PVS THEOREM PROVER

gauss: Theory
Begin

Importing bitvectors@sums

n, i: Var nat

sum(n): nat = sigma(0, n, Lambda i: i)

recsum(n): Recursive nat =
If n = 0 Then 0 Else n + recsum(n-1) EndIf
Measure n

gauss(n): real = n * (n + 1) / 2

sum_is_recsum: Lemma
sum(n) = recsum(n)

recsum_is_gauss: Lemma
recsum(n) = gauss(n)

sum_is_gauss: Theorem
sum(n) = gauss(n)

End gauss
Figure 2.1: PVS file gauss.pvs

A PVS lemma is called proved if its associated proof is finished. It is called complete if all
lemmas used in the proof and all TCCs generated are proved and complete themselves. Only
lemmas that are proved and complete may be considered valid, as unproved lemmas that are used
in proofs may be unsound.

2.2 An Example Proof

To give an intuition about how the PVS theorem prover works, we present a rather simple example:
the proof of GAUSS’s theorem.

Theorem 1 (GAUSS) For all n 2 N:

nX
i=0

i =
n(n+ 1)

2
:

We define three functions whose equality we want to prove using PVS (figure 2.1):

1. sum(n): nat = sigma(0, n, Lambda i: i)

sumuses the sigma function. sigma sums up a function over a finite natural domain. The
term i in theorem 1 is an expression, not a function. We therefore use the � term (� i : i)—

6

CHAPTER 2. THE PVS THEOREM PROVER 2.2. AN EXAMPLE PROOF

which is the identity function—in the formalization of the � operator. In mathematical
notation, this is

sum(n) :=

nX
0

(� i : i):

2. recsum(n): Recursive nat =
If n = 0 Then 0 Else n + recsum(n-1) EndIf
Measure n

Another formalization is given as the recursive function recsum . Recursive functions have
to be well-founded, i.e., the recursion must terminate eventually; a measure has to be sup-
plied whose natural value must decrease with each recursive call. In our case this is trivially
true since n� 1 < n.

recsum(n) :=

(
0 if n = 0

n+ recsum(n� 1) else.

3. gauss(n): real = n * (n + 1) / 2

Finally, gauss is GAUSS’s formula.

We aim to prove GAUSS’s theorem, formalized in sum is gauss . To clarify proof techniques
commonly used in PVS, we split this theorem into the two lemmas sum is recsum and rec-
sum is gauss .

2.2.1 Proof ofsum is recsum

We first show that sum and recsum are equivalent.

Lemma 1 sum is recsum:
sum(n) = recsum(n)

Proof. After starting the PVS prover, we are presented the first sequent.

sum_is_recsum :

|-------
{1} FORALL (n: nat): sum(n) = recsum(n)

Rule?

Note that PVS has augmented the lemma by a 8 quantor binding the free occurrence of n. We aim
to prove the lemma by induction on n. We start with the PVS command (induct "n") , which
yields two subgoals that correspond to induction base and step.

Rule? (induct "n")
Inducting on n on formula 1,

7

2.2. AN EXAMPLE PROOF CHAPTER 2. THE PVS THEOREM PROVER

this yields 2 subgoals:
sum_is_recsum.1 :

|-------
{1} sum(0) = recsum(0)

Rule?

Proof branches are named by the prover. Here, the induction base is named sum is recsum.1 .
This subgoal is resolved by (grind) . This proof command repeatedly expands all definitions
and applies various simplification rules. (grind) is one of the most powerful proof commands,
but in some cases, it will not terminate if recursive definitions are unwinded ad infinitum. Another
possibility to prove the induction base was to expand sum, sigma, and recsum manually (using
(expand)), but (grind) is more compact.

Rule? (grind)
sigma rewrites sigma(0, 0, LAMBDA i: i)

to 0
sum rewrites sum(0)

to 0
recsum rewrites recsum(0)

to 0
Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of sum_is_recsum.1.

sum_is_recsum.2 :

|-------
{1} FORALL j: sum(j) = recsum(j) IMPLIES

sum(j + 1) = recsum(j + 1)

Rule?

The induction step is named sum is recsum.2 . We replace the quantified j by an arbitrary, but
fixed j1 (a so called skolem constant) using (skosimp*) . This PVS command also simplifies
the sequent: in this case, it splits the implication in formula 1 into an antecedent part -1 and a
consequent part 1.

Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
sum_is_recsum.2 :

{-1} sum(j!1) = recsum(j!1)
|-------

{1} sum(j!1 + 1) = recsum(j!1 + 1)

8

CHAPTER 2. THE PVS THEOREM PROVER 2.2. AN EXAMPLE PROOF

Rule?

We have to prove that the equality in formula 1 (the induction claim) is an implication of formula
-1 (the induction hypothesis). We want to use properties of the sigma operator which is currently
hidden in our function sum. We therefore expand the definition of sum:

Rule? (expand "sum")
Expanding the definition of sum,
this simplifies to:
sum_is_recsum.2 :

{-1} sigma(0, j!1, LAMBDA i: i) = recsum(j!1)
|-------

{1} sigma(0, 1 + j!1, LAMBDA i: i) = recsum(1 + j!1)

Rule?

Before we can apply the induction hypothesis, we use the lemma SIGMA SPLIT from the PVS
bitvectors library. The command (lemma "sigma split") introduces the lemma as a new
antecedent formula.

Rule? (lemma "sigma_split")
Applying sigma_split
this simplifies to:
sum_is_recsum.2 :

{-1} FORALL (F: [nat -> nat], high, low, m: nat):
m >= low AND high > m IMPLIES

sigma(low, high, F) =
sigma(low, m, F) + sigma(m + 1, high, F)

[-2] sigma(0, j!1, LAMBDA i: i) = recsum(j!1)
|-------

[1] sigma(0, 1 + j!1, LAMBDA i: i) = recsum(1 + j!1)

Rule?

This lemma allows us to split a sigma term over F ranging from low to high at any intermediate
m. In our case, F = (� i : i), high = j1 +1, low = 0, and m = j1. Thus, we instantiate formula
-1 accordingly:2

Rule? (inst -1 "LAMBDA i: i" "j!1+1" "0" "j!1")
Instantiating the top quantifier in -1 with the terms:

LAMBDA i: i, j!1+1, 0, j!1,
this simplifies to:

2Instantiating a formula means to replace a 8 quantor over a variable in the antecedents (or equivalently, an 9

quantor in the consequents) by a specific value of the proper type for the variable.

9

2.2. AN EXAMPLE PROOF CHAPTER 2. THE PVS THEOREM PROVER

sum_is_recsum.2 :

{-1} j!1 >= 0 AND j!1 + 1 > j!1 IMPLIES
sigma(0, j!1 + 1, LAMBDA i: i) =

sigma(0, j!1, LAMBDA i: i) +
sigma(j!1 + 1, j!1 + 1, LAMBDA i: i)

[-2] sigma(0, j!1, LAMBDA i: i) = recsum(j!1)
|-------

[1] sigma(0, 1 + j!1, LAMBDA i: i) = recsum(1 + j!1)

Rule?

The lemma’s prerequisites j1 � 0 ^ j1 + 1 > j1 require j1 to lie in the range low : : : high, which
is true. By (assert) , we invoke the PVS decision procedures for linear arithmetic, thereby
simplifying the formula and eliminating the redundant prerequisites. We are left with the equation

j1+1X
0

(� i : i) =

j1X
0

(� i : i) +

j1+1X
j1+1

(� i : i):

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
this simplifies to:
sum_is_recsum.2 :

{-1} sigma(0, 1 + j!1, LAMBDA i: i) =
sigma(0, j!1, LAMBDA i: i) +

sigma(1 + j!1, 1 + j!1, LAMBDA i: i)
[-2] sigma(0, j!1, LAMBDA i: i) = recsum(j!1)

|-------
[1] sigma(0, 1 + j!1, LAMBDA i: i) = recsum(1 + j!1)

Rule?

The left side of equation -1 (the instantiated lemma SIGMA SPLIT) is equal to the left side of
equation 1. To apply the lemma, we replace any occurrence of the left side of equation -1 by the
right side. Since we do not need the lemma afterwards, we hide the formula.

Rule? (replace -1 :hide? t)
Replacing using formula -1,
this simplifies to:
sum_is_recsum.2 :

[-1] sigma(0, j!1, LAMBDA i: i) = recsum(j!1)
|-------

{1} sigma(0, j!1, LAMBDA i: i) +
sigma(1 + j!1, 1 + j!1, LAMBDA i: i) =

recsum(1 + j!1)

10

CHAPTER 2. THE PVS THEOREM PROVER 2.2. AN EXAMPLE PROOF

Rule?

The above four steps—importing a lemma, instantiating it, discharging its prerequisites, and re-
placing subterms—are the usual way to use lemmas in PVS.

We can now apply the induction hypothesis in formula -1, again by (replace) :

Rule? (replace -1 :hide? t)
Replacing using formula -1,
this simplifies to:
sum_is_recsum.2 :

|-------
{1} recsum(j!1) + sigma(1 + j!1, 1 + j!1, LAMBDA i: i) =

recsum(1 + j!1)

Rule?

The remaining sigma term is trivial, (expand "sigma") reduces it to 1 + j1. Note that PVS
tries to generate normal forms of expressions and moves the 1 to the front.

Rule? (expand "sigma")
Expanding the definition of sigma,
this simplifies to:
sum_is_recsum.2 :

|-------
{1} 1 + recsum(j!1) + j!1 = recsum(1 + j!1)

Rule?

Next, we unwind one step of the recursion in the second occurrence of recsum in formula 1
by (expand "recsum" 1 2) . This yields 1 + recsum(j1) + j1 on the right side, which is
syntactically equivalent to the left side. The PVS prover recognizes this and finishes the proof
automatically.

Rule? (expand "recsum" 1 2)
Expanding the definition of recsum,
this simplifies to:
sum_is_recsum.2 :

|-------
{1} TRUE

which is trivially true.

11

2.2. AN EXAMPLE PROOF CHAPTER 2. THE PVS THEOREM PROVER

This completes the proof of sum_is_recsum.2.

Q.E.D.

Run time = 0.50 secs.
Real time = 144.64 secs.

The proof subgoals generated by the proof commands form a tree representing the proof’s struc-
ture. PVS visualizes this tree during the proof attempt in a separate window (figure 2.2). �

2.2.2 Proof ofrecsum is gauss

To demonstrate a less ‘manual’ proof, we prove the next lemma using a more powerful proof
command.

Lemma 2 recsum is gauss:
recsum(n) = gauss(n)

Proof.
|-------

{1} FORALL (n: nat): recsum(n) = gauss(n)

One step, namely (induct-and-simplify "n") , suffices to prove this goal. This command
starts an induction and repeatedly expands and simplifies expressions. �

2.2.3 Proof ofsum is gauss

Finally, we can proceed to prove our original goal, the theorem sum is gauss .

Theorem 2 sum is gauss:
sum(n) = gauss(n)

Proof.
|-------

{1} FORALL (n: nat): sum(n) = gauss(n)

We first have to get rid of the quantor by using (skosimp*) , as in the sum is recsum proof.

|-------
{1} sum(n!1) = gauss(n!1)

Manually importing a lemma, instantiating it and replacing sub-terms using the equality in the
lemma—as in our first proof—is a task that can be automated if PVS is able to guess the right
instantiation. We now use the two previously proved lemmas to rewrite the formula in our current
goal. (rewrite "sum is recsum") replaces the occurrence of sum by the corresponding
recsum term:

12

CHAPTER 2. THE PVS THEOREM PROVER 2.2. AN EXAMPLE PROOF

(induct "n")

(grind) (skosimp*)

(expand "sum")

(lemma "sigma_split")

(inst ...)

(assert)

(replace −1 :hide? t)

(replace −1 :hide? t)

(expand "sigma")

(expand "recsum" 1 2)

(propax)

sum is recsum

(induct−and−simplify "n")

recsum is gauss

(skosimp*)

(rewrite "sum_is_recsum")

(rewrite "recsum_is_gauss")

sum is gauss

Figure 2.2: The sum is recsum, recsum is gauss, and sum is gauss proof trees

13

2.3. PVS AND MATHEMATICS CHAPTER 2. THE PVS THEOREM PROVER

|-------
{1} recsum(n!1) = gauss(n!1)

Finally, (rewrite "recsum is gauss") replaces recsum by gauss, leading to the triv-
ial sequent gauss(n!1) = gauss(n!1), which PVS recognizes as true. The theorem is
proved; it is complete as well, since all lemmas we used are proved and complete. �

The above proofs demonstrate some of the most important proof techniques used in PVS. We
did not try to make the proofs as short as possible, but to give the reader the intuition of how PVS
proofs work. In fact, the step (induct-and-simplify "n") that was used to prove lemma
recsum is gauss would have resolved the first lemma, sum is recsum, immediately. Of
course, more difficult theorems need many more steps, and our small proofs may be regarded as
‘ light’ proof examples for more complex properties we want to verify.

2.2.4 TCCs

Two TCCs are generated for the gauss theory, both for the recursive call recsum(n-1) in the
recsum function. Since recsum is only defined on natural numbers, we have to prove that n�1

is non-negative. But recsum(n-1) is only called if n 6= 0 and hence the TCC

recsum_TCC1: OBLIGATION
FORALL (n): NOT n = 0 IMPLIES n - 1 >= 0

is easily proved via (assert). The second TCC assures the termination of recursive recsum
calls. The measure n supplied in the recsum definition must decrease with each recursive call.
This TCC is trivially discharged as well.

recsum_TCC2: OBLIGATION
FORALL (n): NOT n = 0 IMPLIES n - 1 < n

Although we know that gauss returns a natural, we assigned it a type of real. Otherwise, we
had to prove a third TCC that n(n+1)

2
was natural, which we do not want to do here.3

2.3 PVS and Mathematics

Syntax. The reader should be convinced by now that the PVS syntax closely resembles math-
ematical notation, and translating between both is straightforward. For readability, we will use
conventional mathematical notation in the remaining part of this thesis.

Proofs. In textbooks, circuits are usually defined by using figures, and correctness proofs argue
about these figures. Translating hardware correctness proofs from conventional mathematics to
PVS means to formalize the figures in PVS, and then to adapt the proofs using proof techniques
exploiting the capabilities of PVS. If the proofs are not entirely formal or use lemmas that are not

3A possible approach would be to exploit the fact that gauss is equal to sum which is known to be natural.

14

CHAPTER 2. THE PVS THEOREM PROVER 2.4. BITVECTORS

available in PVS, the proofs have to redone from scratch, or several auxillary lemmas have to be
proved.

Conventional mathematical proofs use shortcuts where the line of reasoning is obvious—or at
least supposed to be obivous. Usually, these ‘proof gaps’ are marked by flowery phrases like
trivial, obvious, analogous, and without loss of generality. The gaps have to be filled for the
formal verification in PVS.

Contrarily, translating PVS proofs back to mathematical notation means to ‘extract’ the essen-
tial proof commands from a proof tree, and to provide the necessary intuition on the proof goal.
Only about one in every three or four PVS proof commands is worth being mentioned in the math-
ematical transcript, the others being uninteresting—or in other words trivial—transformations like
evaluating expressions (e.g., 1 � 1 = 0), or using associativity, commutativity, and such. Of
course, we will mark these steps using phrases like those mentioned above, but we hope that the
reader will be confident—due to the formal verification of the proofs in PVS—that there are no
proof gaps left.

2.4 Bitvectors

PVS provides a bitvectors library that provides bits, bitvectors, and a rich collection of lemmas for
bitvector transformation and arithmetic [BMS+96].

Notation. PVS defines the type bit, which we will denote by B , to be the type boolean :=

ffalse; trueg. For convenience, we will interpret B as well as the set f0;1g. A bitvector of width
n is a function mapping the domain fn� 1; : : : ; 0g to B . We denote the bitvector type by Bn . We
will implicitly identify bits B and bitvectors B1 of width 1.

A bitvector b of width n is indexed by b[i] with i ranging from n � 1 to 0. For h � l, b[h; l]
denotes the extracted bit vector consisting of bits h to l of b; Æ is the concatenation operator. For
x 2 B , xi denotes the bitvector consisting of bit x repeated i times. The bit operators :, ^, and _
will be applied to bitvectors as well, meaning bitwise application.

The natural number represented by b is denoted by

hbi :=
nX
i=0

2i � b[i]:

The two’s complement value of b is

[b] :=

(
hbi if hbi < 2n�1

hbi � 2n else.

The range of the n-bit two’s complement numbers is denoted by

Tn := f�2n�1
; : : : ; 2n�1 � 1g:

The proof that Tn is indeed the range of the n-bit two’s complement numbers can be found in the
bitvectors library.

15

2.4. BITVECTORS CHAPTER 2. THE PVS THEOREM PROVER

Lemmas. In the remaining part of this thesis, we need the following lemmas. Most of these
come from the PVS bitvectors library; we do not give the proofs. Unless otherwise noted, let
n 2 N

+ and b 2 B
n .

Lemma 3
hbi = b[n� 1] � 2n�1 + hb[n� 2; 0]i :

Lemma 4 For all n;m 2 N
+ , bn 2 B

n
; bm 2 B

m :

hbn Æ bmi = hbni � 2m + hbmi :

Lemma 5
hbi � 2n�1 () b[n� 1]:

Lemma 6 For all l 2 N<n :

hbi < 2l () b[n� 1; l] = 0
n�l

:

Lemma 7 For all l 2 N<n :
hb[l; 0]i = hbimod2l+1

:

Lemma 8 For all l 2 N<n :
hb[n� 1; l]i = hbidiv 2l:

Lemma 9
h: bi = 2n � hbi � 1:

Lemma 10
[b] = hbi � 2n � b[n� 1]:

Lemma 11
[b] = hb[n� 2; 0]i � 2n�1 � b[n� 1]:

Lemma 12
[b] < 0 () b[n� 1]:

Lemma 13
�[b] = [: b] + 1:

Lemma 14
hb[n� 1] Æ : b[n� 1] Æ b[n� 2; 0]i = 2n�1 + hbi :

16

Chapter 3

Basic Components

Large circuits are built from smaller modules that tend to be used frequently. Therefore, it is prof-
itable to collect these standard modules in a library of basic components. This section describes
the library developed as part of this thesis. The library consists of various combinatorial circuits
as listed in table 3.1. A summary of this chapter has been published as [BJK01].

Each component is specified as a PVS function. The correctness criterion is formulated as
a lemma stating the intended circuit behaviour using a mathematical formula. The correctness
criterion is then used as a rewrite rule in proofs of larger circuits that use the component. The
circuits are of arbitrary bit width and are designed for general use. Some circuits, however, are
limited to bit widths that are powers of 2.

The designs and most proofs were taken from [MP95, KP97, MP00]. As we will only prove the
correctness of the circuits, the reader should refer to the cited publications for a further explanation
of the circuit functionality. Cost and delay in table 3.1 are asymptotic measures, i.e., n means
O(n). We will not give proofs for these here.

The goal of the VAMP project is to obtain a completely verified CPU. The designs are not
necessarily optimized for speed. There are faster adder designs than carry chain adders, but as
the correctness of the design does not depend on the adder implementation used (as long as the
adder is correct), we use the simple, but slow carry chain implementation. Another reason for
carry chain adders is the FPGA implementation: due to fast carry lines, the carry chain adder is
the most efficient adder on Xilinx FPGAs [Xil00].

Unless noted otherwise, n is a positive natural number in this chapter: n 2 N
+ .

3.1 Halfadder, Fulladder

Halfadder. The halfadder takes two bits a and c and computes a bitvector of length 2 represent-
ing the sum a+ c (figure 3.1).

Circuit 1 Inputs a; c 2 B , output s 2 B
2 .

halfadder := (a ^ c) Æ (a� c):

17

3.1. HALFADDER, FULLADDER CHAPTER 3. BASIC COMPONENTS

component symbol width cost delay

halfadder halfadder 1 1 1

fulladder fulladder 1 1 1

carry chain incrementer carry chain inc n n n

carry chain adder carry chain n n n

compound adder compound n n log n log n

generic adder Add n n n

carry save adder csa n n 1

arithmetic unit add sub n n n

subtract unit sub n n n

absolute value abs n n n

linear multiplier mult lin n;m n �m n+m

decoder dec n 2n log n

half decoder hdec n 2n n

encoder enc 2n 2n n

leading zero counter lz 2n n log n

cyclic left shifter cls 2n n log n log n

logic left shifter lls n n log n log n

logic right shifter lrs n n log n log n

or tree ortree n n log n

Table 3.1: The components contained in the library

��
��
��
�� ��

��
��
��

s[0]

ca

s[1]

Figure 3.1: Halfadder HA

Lemma 15 (HALFADDER CORRECT) For all a; c 2 B :

hhalfadder(a; c)i = a+ c:

Proof. Since the halfadder is a small circuit of fixed size, its correctness is automatically verified
by using the PVS command (grind). �

Fulladder. Similar to the halfadder, the fulladder sums up three bits (figure 3.2).

Circuit 2 Inputs a; b; c 2 B , output s 2 B
2 . Let x := a� b.

fulladder :=
�
(a ^ b) _ (c ^ x)

�
Æ (x� c):

18

CHAPTER 3. BASIC COMPONENTS 3.2. CARRY CHAIN INCREMENTER

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

x

s[0]

a

b

c

s[1]

Figure 3.2: Fulladder FA

Lemma 16 (FULLADDER CORRECT) For all a; b; c 2 B :

hfulladder(a; b; c)i = a+ b+ c:

Proof. Trivial by (grind). �

3.2 Carry Chain Incrementer

Our first non-trivial circuit is a carry chain incrementer that is built from halfadders (figure 3.3).
Depending on a carry-in signal cin, the circuit increments a by one or passes it unmodified. The
carry chain incrementer is defined recursively for bitwidths n. We use indices to refer to a specific
circuit instance, e.g., carry chain incn�1 denotes an n�1 bit carry chain incrementer. The index
is omitted if the circuit width is clear from the context. Later, indices will also be used for circuits
that have more than one output (e.g., Addovf).

Circuit 3 Input a 2 B
n , cin 2 B , output s 2 B

n+1 . For n = 1,

carry chain inc1 := halfadder(a[0]; cin):

For n > 1, let C := carry chain incn�1(a[n� 2; 0]; cin),

carry chain incn := halfadder(a[n� 1]; C[n� 1]) Æ C[n� 2; 0]:

Lemma 17 (CARRY CHAIN INC CORRECT) For all a 2 B
n , cin 2 B :

hcarry chain incn(a; cin)i = hai+ cin:

19

3.2. CARRY CHAIN INCREMENTER CHAPTER 3. BASIC COMPONENTS

:

:

:

a0 cin

HA

HA

an�1

HA

s1

s0

sn�1
sn

a1

Figure 3.3: Carry chain incrementer

Proof. The proof is by induction on the width n of the input. The induction base n = 1 is
resolved by (grind).

In the induction step n+ 1, let C := carry chain incn(a[n� 1; 0]; cin). The claim is

hcarry chain incn+1(a; cin)i = hai+ cin:

Expanding the incrementer definition leads to

hhalfadder(a[n]; C[n]) Æ C[n� 1; 0]i = hai+ cin;

By lemma 4, this is equivalent to

hhalfadder(a[n]; C[n])i � 2n + hC[n� 1; 0]i = hai+ cin:

The halfadder is correct by lemma 15:

(a[n] + C[n]) � 2n + hC[n� 1; 0]i = hai+ cin:

By lemma 3 and the induction hypothesis, hCi = ha[n� 1; 0]i + cin, we have

a[n] � 2n + ha[n� 1; 0]i + cin = hai+ cin;

which is true by lemma 3. �

Incrementer. When we use an incrementer, we do not care about its actual implementation—as
long as the circuit satisfies the above correctness criterion lemma 17. In the following, we will
use inc to refer to the carry chain incrementer, but any other correct incrementer implementation
could also be used.

inc := carry chain inc:

20

CHAPTER 3. BASIC COMPONENTS 3.3. CARRY CHAIN ADDER

b1

b0

bn�1
: :
:

sn sn�1

s1

s0

cin

FA

FA
a1

a0

FA

an�1

Figure 3.4: Carry chain adder

3.3 Carry Chain Adder

By substituting the halfadders in the carry chain incrementer by fulladders, we obtain a carry chain
adder (figure 3.4). It adds two input numbers a and b, and a carry-in cin.

Circuit 4 Inputs a; b 2 B
n , cin 2 B , output s 2 B

n+1 . For n = 1,

carry chain1 := fulladder(a[0]; b[0]; cin):

For n > 1, let C := carry chainn�1(a[n� 2; 0]; b[n � 2; 0]; cin),

carry chainn := fulladder(a[n� 1]; b[n� 1]; C[n� 1]) Æ C[n� 2; 0]:

Lemma 18 (CARRY CHAIN CORRECT) For all a; b 2 B
n , cin 2 B :

hcarry chainn(a; b; cin)i = hai+ hbi+ cin:

Proof. The proof is the same as the carry chain incrementer proof, with halfadder replaced by
fulladder. �

Adder. Analogous to inc, we define add to refer to any adder implementation satisfying lemma
18. We use the carry chain adder.

add := carry chain:

3.4 Compound Adder

Another adder implementation is the compound adder (figure 3.5). The compound adder features
no carry-in bit, but computes both a+ b and a+ b+1. The compound adder is used in the floating
point rounder.

21

3.4. COMPOUND ADDER CHAPTER 3. BASIC COMPONENTS

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

s0[m� 1; 0]

n > 1

s1[m� 1; 0]s0[n;m]s1[n;m]s0[1; 0]

n = 1

s1[1; 0]

b[m� 1; 0]a[n� 1;m]a b a[m� 1; 0]b[n� 1;m]

s1 s1 s0

1 0 1 0

[m]

[m]

s0

compoundn�m compoundm

Figure 3.5: Compound adder

Circuit 5 Inputs a; b 2 B
n , outputs s0; s1 2 B

n+1 . For n = 1,

compound1;s1 := (a[0] _ b[0]) Æ :(a[0] � b[0]);

compound1;s0 := (a[0] ^ b[0]) Æ (a[0]� b[0]):

For n > 1, let m :=
�
n
2

�
, CH := compoundn�m(a[n � 1;m]; b[n � 1;m]), CL := com-

poundm(a[m� 1; 0]; b[m � 1; 0]),

compoundn;s1 :=

(
CHs1 if CLs1 [m]

CHs0 else

)
Æ CLs1[m� 1; 0];

compoundn;s0 :=

(
CHs1 if CLs0 [m]

CHs0 else

)
Æ CLs0[m� 1; 0]:

Lemma 19 (COMPOUND ADDER CORRECT) For all a; b 2 B
n :

(i) hcompounds1(a; b)i = hai+ hbi+ 1;

(ii) hcompounds0(a; b)i = hai+ hbi :

Proof. The base n = 1 of the induction on n is resolved by case analysis on a[0] and b[0] using
(grind).

In the induction step n, let m :=
�
n
2

�
, CH := compoundn�m(a[n � 1;m]; b[n � 1;m]),

CL := compoundm(a[m� 1; 0]; b[m � 1; 0]). The four induction hypotheses are

1. hCHs1i = ha[n� 1;m]i+ hb[n� 1;m]i + 1,

2. hCHs0i = ha[n� 1;m]i+ hb[n� 1;m]i,

3. hCLs1i = ha[m� 1; 0]i + hb[m� 1; 0]i + 1,

4. hCLs0i = ha[m� 1; 0]i + hb[m� 1; 0]i.

(i) In the case CLs1[m], we show

hCHs1 Æ CLs1[m� 1; 0]i = ha[n� 1;m] Æ a[m� 1; 0]i
+ hb[n� 1;m] Æ b[m� 1; 0]i + 1:

22

CHAPTER 3. BASIC COMPONENTS 3.5. GENERIC ADDER

��

��

����

cinb[n� 1]a[n� 1]

cout

s[n] s[n� 1; 0]

ovf

b[n� 1; 0]a[n� 1; 0]

cin

s[n� 1]

s[n� 1 : 0]neg

addn

Figure 3.6: Generic adder Add

By lemma 4, this reduces to

hCHs1i � 2m + hCLs1[m� 1; 0]i = ha[n� 1;m]i � 2m + ha[m� 1; 0]i
+ hb[n� 1;m]i � 2m + hb[m� 1; 0]i + 1:

By lemma 3, hCLs1 [m� 1; 0]i = hCLs1i �CLs1 [m] � 2m, and CLs1[m] = 1:

hCHs1i � 2m + hCLs1i � 2m = ha[n� 1;m]i � 2m + ha[m� 1; 0]i
+ hb[n� 1;m]i � 2m + hb[m� 1; 0]i + 1:

We finish this case by applying the induction hypotheses:

�
ha[n� 1;m]i+ hb[n� 1;m]i + 1

�
� 2m

+
�
ha[m� 1; 0]i + hb[m� 1; 0]i + 1

�
� 2m = ha[n� 1;m]i � 2m + ha[m� 1; 0]i

+ hb[n� 1;m]i � 2m + hb[m� 1; 0]i + 1:

The proofs for the case :CLs1 [m] and part (ii) are analogous. �

3.5 Generic Adder

The adders presented so far do not operate on two’s complement numbers. In this section, we
build an adder Add that provides the signals s, cout, neg, and ovf . The correctness lemmas for
binary and two’s complement operands are proved. In the construction of Add, we use the adder
add from section 3.3. We assume that add is correct, this holds by lemma 18:

hadd(a; b; cin)i = hai+ hbi+ cin:

In the following, let s denote add(a; b; cin).

23

3.5. GENERIC ADDER CHAPTER 3. BASIC COMPONENTS

Circuit 6 Given a circuit add, inputs a; b 2 B
n , cin 2 B , outputs s 2 B

n , neg; ovf; cout 2 B .

Adds := s[n� 1; 0];

Addcout := s[n];

Addneg := s[n]� a[n� 1]� b[n� 1];

Addovf := Addneg � s[n� 1]:

We first show that only certain combinations of the bits s[n], a[n� 1], and b[n� 1] occur:

Lemma 20 For all a; b 2 B
n , cin 2 B :

(i) s[n] =) a[n� 1] _ b[n� 1];

(ii) s[n](= a[n� 1] ^ b[n� 1]:

Proof. (i) The most significant bit of s is set, and hsi = hai+ hbi+ cin. We therefore conclude
by lemma 5

hai+ hbi+ cin � 2n:

If a[n� 1] = b[n� 1] = 0, we have hai < 2n�1 and hbi < 2n�1 by lemma 5. The sum of both is
less than 2n � 1, which is a contradiction. Hence, we have

a[n� 1] = 1 _ b[n� 1] = 1:

(ii) By lemma 5, we have

hai � 2n�1
;

hbi � 2n�1
;

hai+ hbi+ cin = hsi � 2n:

Again by lemma 5, we conclude
s[n] = 1:

�

The sum [a]+[b]+cin cannot always be represented within the n bits of Adds. The next lemma
provides the representation of the sum in n+ 1 bits.

Lemma 21 For all a; b 2 B
n , cin 2 B :�
Addneg Æ s[n� 1; 0]

�
= [a] + [b] + cin:

Proof. After applying lemma 11 on the left side and lemma 10 on the right, we have to show

�Addneg � 2n + hs[n� 1; 0]i = �a[n� 1] � 2n + hai � b[n� 1] � 2n + hbi+ cin:

By lemma 3, hs[n� 1; 0]i = hsi � 2n � s[n]:

�Addneg � 2n + hsi � 2n � s[n] = �a[n� 1] � 2n + hai � b[n� 1] � 2n + hbi+ cin:

24

CHAPTER 3. BASIC COMPONENTS 3.5. GENERIC ADDER

hsi = hai+ hbi+ cin gives

�Addneg � 2n � 2n � s[n] = �a[n� 1] � 2n � b[n� 1] � 2n:

We expand Addneg and divide by �2n:

(s[n]� a[n� 1]� b[n� 1]) + s[n] = a[n� 1] + b[n� 1]:

By case analysis of all combinations of s[n], a[n� 1], and b[n� 1] that are permissible by lemma
20, this equation holds. �

A two’s complement number represented by a bitvector of width n + 1 can be represented in
n bits if the two topmost bits are the same:

Lemma 22 For all s 2 B
n+1 :

[s] 2 Tn () s[n] = s[n� 1]:

Proof. We expand the definition of Tn and apply lemma 3. We show

�2n�1 � (�2n � s[n] + hs[n� 1; 0]i) � 2n�1 � 1 () s[n] = s[n� 1]:

By lemma 5, this is equivalent to the following, where S := hs[n� 1; 0]i:

�2n�1 �
�
� 2n � s[n] + S

�
� 2n�1 � 1 () s[n] = (S � 2n�1):

This statement is verified by case analysis on s[n] and the truth value of (S � 2n�1). �

We now use the above lemmas to show the correctness of Add:

Lemma 23 (ADDER CORRECT) For all a; b 2 B
n , cin 2 B , let binsum := hai + hbi + cin,

intsum := [a] + [b] + cin, and assume hadd(a; b; cin)i = hai+ hbi+ cin :

(i) hAddcout ÆAddsi = binsum;

(ii) Addovf () intsum 62 Tn;

(iii) intsum 2 Tn =) [Adds] = intsum;

(iv) Addneg () intsum < 0:

where Tn = f�2n�1
; : : : ; 2n�1 � 1g denotes the range of the n-bit two’s complement numbers.

Proof. (i) is trivial, since Addcout and Adds are re-concatenated after having been split in the
definition of Add.

(ii) We prove

Addneg � s[n� 1] () [a] + [b] + cin 62 Tn:

By lemma 21, we have

Addneg � s[n� 1] ()
�
Addneg Æ s[n� 1; 0]

�
62 Tn:

25

3.6. CARRY SAVE ADDER CHAPTER 3. BASIC COMPONENTS

The proof is finished by lemma 22, which yields

Addneg � s[n� 1] () Addneg 6= s[n� 1]:

(iii) We proceed to prove

[s[n� 1; 0]] = [a] + [b] + cin:

We apply lemma 10:

hs[n� 1; 0]i � 2n � s[n� 1] = hai � 2n � a[n� 1] + hbi � 2n � b[n� 1] + cin:

hs[n� 1; 0]i = hsi � 2n � s[n] by lemma 3:

hsi � 2n � s[n]� 2n � s[n� 1] = hai � 2n � a[n� 1] + hbi � 2n � b[n� 1] + cin:

Using hsi = hai+ hbi+ cin and simplifying gives

s[n] + s[n� 1] = a[n� 1] + b[n� 1]:

By assumption, we have [a] + [b] + cin 2 Tn, and hence, by part (ii), Addneg � s[n� 1] = 0: By
the definition of Addneg, we equivalently have s[n�1] = s[n]�a[n�1]� b[n�1]:We therefore
have to prove

s[n] + (s[n]� a[n� 1]� b[n� 1]) = a[n� 1] + b[n� 1]:

This statement has already been proved at the end of the proof of lemma 21.

(iv) We show

Addneg () [a] + [b] + cin < 0:

With lemma 21, we have

Addneg ()
�
Addneg Æ s[n� 1; 0]

�
< 0:

By using lemma 12, this is equal to

Addneg ()
�
Addneg Æ s[n� 1; 0]

�
[n];

which is trivially true. �

3.6 Carry Save Adder

A carry save adder (also called 3/2-adder) sums up three input numbers a, b, c and yields two
outputs s and t (figure 3.7). The sum of the inputs is equal to the sum of the outputs. This adder is
used in wallace tree multipliers and the floating point rounding and multiplication units, and has a
constant delay independent of the input width.

26

CHAPTER 3. BASIC COMPONENTS 3.6. CARRY SAVE ADDER

: : :

t[2] s[1] t[1] s[0] t[0]s[n� 1]t[n]

FA FA FA

a[n� 1] b[n� 1] a[1] b[1] a[0] b[0]
c[n� 1] c[1] c[0]

0

Figure 3.7: Carry save adder (3/2-adder)

Circuit 7 Inputs a; b; c 2 B
n , outputs s 2 B

n , t 2 B
n+1 . For n = 1, let F := fulladder(a[0],

b[0], c[0]),

carry save1;s := F [0];

carry save1;t := F [1] Æ 0:

For n > 1, let (S; T) := carry saven�1;(s;t)(a[n � 2; 0]; b[n � 2; 0]; c[n � 2; 0]), and F :=

fulladder(a[n� 1]; b[n� 1]; c[n� 1]),

carry saven;s := F [0] Æ S;
carry saven;t := F [1] Æ T:

Lemma 24 (CARRY SAVE CORRECT) For all a; b; c 2 B
n , let C = carry save(a; b; c) :

(i) hai+ hbi+ hci = hCsi+ hCti ;
(ii) [a] + [b] + [c] = [Cs] + [Ct]:

Proof. (i) We induct on n. The induction base n = 1 is trivial by (grind).

In the induction step for n+1, let (S; T) := carry saven;(s;t)(a[n�1; 0]; b[n�1; 0]; c[n�1; 0]),
and F = fulladder(a[n]; b[n]; c[n]). The induction claim is

hai+ hbi+ hci = hF [0] Æ Si+ hF [1] Æ T i :

By lemma 3, we have

(a[n] + b[n] + c[n]) � 2n+
ha[n� 1; 0]i + hb[n� 1; 0]i + hc[n� 1; 0]i = fa[0] � 2n + hSi+ fa[1] � 2n+1 + hT i :

We can simplify this by the induction hypothesis:

(a[n] + b[n] + c[n]) � 2n = (F [0] + 2 � F [1]) � 2n

This holds because of the correctness of the fulladder (lemma 16).

The proof for (ii) is analogous. �

27

3.7. ARITHMETIC UNIT, SUBTRACTION CHAPTER 3. BASIC COMPONENTS

�
�
�
�

n

neg ovf

n

b[n� 1; 0]
sub

cin

s[n� 1 : 0]

Addn

a[n� 1; 0]

Figure 3.8: Arithmetic Unit add sub

3.7 Arithmetic Unit, Subtraction

The arithmetic unit add sub can add and subtract two’s complement numbers. It is constructed
from Add. The signal sub is used to select addition or subtraction. We define �x as

�x :=

(
+ if x = 0

� if x = 1:

Circuit 8 Inputs a; b 2 B
n , sub 2 B , outputs s 2 B

n , neg; ovf 2 B .1

add subn := Addn(a; b� sub
n
; sub):

Lemma 25 (ADD SUB CORRECT) For all a; b 2 B
n
; sub 2 B , let intsum = [a]�sub [b] :

(i) add subovf () (intsum 62 Tn);

(ii) intsum 2 Tn =) [add subs] = intsum;

(iii) add subneg () (intsum < 0):

Proof. Using properties of mod arithmetic and the correctness of Add (lemma 23), it suffices to
show �

hb� sub
ni+ sub

�
mod 2n = (�1)sub � hbi :

This is trivial by lemmas 7 and 9. �

Subtraction. We define the circuit sub to be a circuit add sub that always subtracts. Lemma 25
will also be used for the correctness of sub.

sub(a; b) := add sub(a; b;1):

1The output Addcout is not used.

28

CHAPTER 3. BASIC COMPONENTS 3.8. ABSOLUTE VALUE

����

1

incn�1

10

abs[n� 2; 0]

b[n� 2; 0]

b[n� 1]

Figure 3.9: Absolute value computation

3.8 Absolute Value

The next circuit is used to compute the absolute value of a two’s complement number (figure 3.9).
If the input is positive, we pass the lower bits. Otherwise, we compute the two’s complement
inverse by inverting and incrementing the lower bits.

Circuit 9 Let n > 1. Input b 2 B
n , output abs 2 B

n�1 .

abs(b) :=

(
inc

�
: b[n� 2; 0];1

�
[n� 2; 0] if b[n� 1]

b[n� 2; 0] else.

Since the most negative two’s complement number �2n�1 does not have a corresponding posi-
tive value that is representable in n bits, we exclude this number in the correctness criterion.

Lemma 26 (ABS CORRECT) For all b 2 B
n , b 6= 1 Æ 0n�2 :

habs(b)i =
��[b]��:

Proof. The case b[n� 1] = 0 is trivial.

In the case b[n� 1] = 1, [b] < 0 by lemma 12, and we have to prove

inc

�
: b[n� 2; 0]; 1

�
[n� 2; 0]

�
= �[b]:

After applying lemmas 7 and 13, we have

hinc(: b[n� 2; 0]; 1)i mod 2n�1 = [: b] + 1:

inc is correct by lemma 17, and lemma 11 yields:

(h: b[n� 2; 0]i + 1) mod 2n�1 = h: b[n� 2; 0]i + 1:

This is trivial for h: b[n� 2; 0]i+1 < 2n�1. The only case where this does not hold is b[n�2; 0] =
0
n�1, which is excluded by the lemma’s prerequisites. �

29

3.9. MULTIPLIER CHAPTER 3. BASIC COMPONENTS

m > 1 a

multn;m�1

b[m� 1]

b[m� 2; 0]

addn

a

0

m = 1

b[0]

a

0

p[n] p[n� 1; 0]

p[n+m� 1;m� 1] p[m� 2; 0]

Figure 3.10: Linear multiplier multn;m

3.9 Multiplier

In this section, we construct a linear array multiplier. Multiplication with a single bit is imple-
mented by a bitvector-AND. The single bit products are added up by a linear adder chain (fig-
ure 3.10).

Lemma 27 For all a 2 B
n , b 2 B :

ha ^ bni = hai � b:

Proof. Trivial. �

Circuit 10 Let n;m 2 N
+ , inputs a 2 B

n , b 2 B
m , output p 2 B

n+m . For m = 1,

mult linn;1 := 0 Æ (a ^ b[0]n):

For m > 1, let M := mult linn;m�1(a; b[m� 2; 0]),

mult linn;m := addn

�
(a ^ b[m� 1]n);M [n+m� 2;m� 1];0

�
ÆM [m� 2; 0]:

Lemma 28 (MULTIPLIER CORRECT) For all n;m 2 N
+ , a 2 B

n , b 2 B
m :

hmult lin(a; b)i = hai � hbi :

Proof. We induct on m. The induction base m = 1 is trivial with lemma 27.

In the induction step m+ 1, let M := mult linn;m(a; b[m� 1; 0]). We show

add

�
(a ^ b[m]n);M [n+m� 1;m];0

�
ÆM [m� 1; 0]

�
= hai � hbi :

30

CHAPTER 3. BASIC COMPONENTS 3.10. DECODER

��

��
�
�
�
�

� � � � � �

d[0]

d[2n � 1] � � � d[y] � � � d[0]

deck

decn�k

n = 1 n > 1

kb[0]
b[k � 1; 0]

b[n� 1; k]
n� k

2n�k

2k

DH[y div 2k] DL[ymod2k]

DH[2n�k � 1; 0]

DL[2k � 1; 0]

d[1]

Figure 3.11: Decoder

We apply lemma 4:

add

�
(a ^ b[m]n);M [n+m� 1;m];0

��
� 2m + hM [m� 1; 0]i = hai � hbi :

By lemma 18, add correctly sums up its inputs:�
ha ^ b[m]ni+ hM [n+m� 1;m]i

�
� 2m + hM [m� 1; 0]i = hai � hbi :

Another application of lemma 4 yields

ha ^ b[m]ni � 2m + hM [n+m� 1; 0]i = hai � hbi :

By lemma 27 and the induction hypothesis, this is

hai � b[m] � 2m + hai � hb[m� 1; 0]i = hai � hbi :

This is true by lemma 3. �

3.10 Decoder

A decoder (figure 3.11) converts numbers in binary format to unary format, that is, it calculates
the function

B
n ! B

2n : b 7! 0
2n�hbi�1

10
hbi
:

Circuit 11 Input b 2 B
n , output d 2 B

2n . For n = 1,

dec1 = b[0] Æ : b[0]:

For n > 1, let k :=
�
n
2

�
, DH := decn�k(b[n� 1; k]), DL := deck(b[k � 1; 0]), and y < 2n,

decn[y] := DH[y div 2k] ^DL[ymod2k]:

Lemma 29 (DECODER CORRECT) For all b 2 B
n , y < 2n :

dec(b)[y] () hbi = y:

31

3.11. HALFDECODER CHAPTER 3. BASIC COMPONENTS

Proof. We induct on n. The induction base n = 1 is solved by (grind).

The induction hypothesis for n > 1 is

For all 0 < j < n; bj 2 B
j
; yj < 2j : decj(bj)[yj] () hbji = yj:

Let k =
�
n
2

�
. We need induction hypotheses for two values of j:

1. j = k: This is permissible, since 0 < k = dn
2
e < n. In this case, bj = b[k � 1; 0] and

yj = ymod2k.

deck(b[k � 1; 0])[ymod2k] () hb[k � 1; 0]i = ymod2k:

2. j = n� k: Here, n�
�
n
2

�
< n holds as well. bj = b[n� 1; k] and yj = y div 2k.

decn�k(b[n� 1; k])[y div 2k] () hb[n� 1; k]i = y div 2k:

For the instantiation, we have to show that y div 2k < 2n�k, i.e., that we stay within the
width of the bitvector. We successively use: div is defined via b�c, 8 x : bxc � x, and
y < 2n:

y div 2k =
j
y

2k

k
� y

2k
<

2n

2k
= 2n�k:

We start the proof by expanding the dec definition.

decn�k(b[n� 1; k])[y div 2k] ^ deck(b[k � 1; 0])[ymod2k] () hbi = y:

After applying the induction hypotheses, it remains to show�
hb[n� 1; k]i = y div 2k

�
^
�
hb[k � 1; 0]i = ymod2k

�
() hbi = y:

By properties of bitvector extraction (lemmas 7 and 8), we have�
hbi div 2k = y div 2k

�
^
�
hbimod2k = ymod2k

�
() hbi = y:

The(part is trivial. The) part holds because the decompositions of y and hbi into div and mod

components are unambiguous. This is proved by using the PVS mod and div lemmas. �

3.11 Halfdecoder

A halfdecoder (figure 3.12) converts binary numbers to half unary notation:

B
n ! B

2n : b 7! 0
2n�hbi

1
hbi
:

Circuit 12 Input b 2 B
n , output d 2 B

2n . For n = 1,

hdec1 := 0 Æ b[0]:

For n > 1, let HD = hdecn�1(b[n� 2; 0]),

hdecn := (b[n� 1]n ^HD) Æ (b[n� 1]n _HD):

Lemma 30 (HALFDECODER CORRECT) For all b 2 B
n , y < 2n:

hdec(b)[y] () y < hbi :

32

CHAPTER 3. BASIC COMPONENTS 3.12. ENCODER

�
�
�
� ��

��
��
��

d[2n � 1; 2n�1]

d[1]

b[0]

d[0]

0

n = 1 n > 1

2n�1 2n�1

2n�1

b[n� 2; 0]

HD[2n�1 � 1; 0]

hdecn�1

b[n� 1]

d[2n�1 � 1; 0]

Figure 3.12: Halfdecoder

Proof. Again, the base of the induction on n can be proved by (grind). We prove the state-
ment for n+ 1 with an induction hypothesis for n.

In the case y < 2n, we have to show

b[n] _ hdecn(b[n� 1; 0])[y] () y < hbi :

By the induction hypothesis, this is

b[n] _
�
y < hb[n� 1; 0]i

�
() y < hbi :

The (part is trivial for b[n] = 1.
For) and b[n] = 1, we have 2n � hbi by lemma 5, and therefore, y < 2n � hbi.
In the case b[n] = 0, we have hb[n� 1; 0]i = hbi.

In the case y � 2n, we show

b[n] ^ hdecn(b[n� 1; 0])[y � 2n] () y < hbi :

We apply the induction hypothesis:

b[n] ^
�
y � 2n < hb[n� 1; 0]i

�
() y < hbi :

For b[n] = 1, we have hb[n� 1; 0]i = hbi � 2n by lemma 3.
In the other case b[n] = 0, the) part is trivial by propositional logic reasoning.
For (and b[n] = 0, we show that y < hbi is false. This holds by lemma 5: hbi < 2n � y. �

3.12 Encoder

The encoder computes the inverse of the decoder’s function: for unary number inputs, it outputs
the binary encoding (figure 3.13). The output is not defined for inputs that are not in unary form.
The encoder implementation and correctness proof are due to Sven Beyer. We describe the imple-
mentation here because it is part of the VAMP basic circuits library. The proof is omitted here.

33

3.13. LEADING ZERO COUNTER CHAPTER 3. BASIC COMPONENTS

����
�� 1

n� 1

n > 1n = 1

b[2n�1 � 1; 0]b[2n � 1; 2n�1]

encn�1 encn�1
or enc or enc

or enc[n� 1] enc[n� 2; 0]enc[0] or

b[0]b[1]

Figure 3.13: Encoder

Circuit 13 Input b 2 B
2n , outputs or 2 B , enc 2 B

n . For n = 1,

enc1;or := b[1] _ b[0];
enc1;enc := b[1]:

For n > 1, let EH := encn�1(b[2
n�1; 2n�1]), EL := encn�1(b[2

n�1�1; 0]), and 0 � i � n�2,

encn;or := EHor _ELor;

encn;enc[i] := EHenc[i] _ELenc[i];

encn;enc[n� 1] := EHor:

Lemma 31 (ENCODER CORRECT) For all y < 2n :

encenc(0

2n�y�1
10

y)
�
= y:

The signal encor is only used internally and therefore not included in the correctness criterion.

3.13 Leading Zero Counter

The leading zero counter counts the number of zeros at the beginning of a bit string (figure 3.14).
This section is a revised version of section 3 from [BJK01].

Before we can prove the leading zero counter implementation correct, we need a formal notion
of ‘ leading zeros’ . We define a function lzero on bitvectors of length n:

lzero(b) := max
�
i 2 N j i = 0 _

�
i � n ^ b[n� 1; n� i] = 0

i
�	

:

We start with some lemmas on the lzero function. All these lemmas are fairly obvious, but their
proofs are technically complicated in PVS. We omit the proofs.

34

CHAPTER 3. BASIC COMPONENTS 3.13. LEADING ZERO COUNTER

b[2n � 1; 2n�1]

n > 0

b[0]

n = 0

lzn�1

LZL

LZH[n� 1]

1

0

LZH

n

n� 1

0

y[n; 0]

y[0]

b[2n�1 � 1; 0] lzn�1

m

n� 1

Figure 3.14: Leading zero counter

Lemma 32 lzero essentially depends on the position of the first 1-bit.2 Let 1 � i � n� 2.

(1) lzero(b) = 0 () b = 1 Æ b[n� 2; 0];

(2) lzero(b) = i () b = 0
i Æ 1 Æ b[n� i� 2; 0];

(3) lzero(b) = n� 1 () b = 0
n�1 Æ 1;

(4) lzero(b) = n () b = 0
n
:

Lemma 33 lzero is bounded by n :

lzero(b) � n:

Lemma 34 Leading zero concatenation: For all l 2 N
+ :

lzero(0l Æ b) = l + lzero(b):

Circuit 14 Let n 2 N . Input b 2 B
2n , output y 2 B

n+1 . For n = 0,

lz0 := : b[0]:

For n > 0, let LZH = lzn�1(b[2
n � 1; 2n�1]) and LZL = lzn�1(b[2

n�1 � 1; 0]),

lzn :=

(
LZL[n� 1] Æ :LZL[n� 1] Æ LZL[n� 2; 0] if LZH[n� 1]

0 Æ LZH else.

The implementation is correct if it counts the number of leading zeros for all inputs correctly:

Lemma 35 (LZERO CORRECT) For all n 2 N0 ; b 2 B
2n :

hlz(b)i = lzero(b):

2The case split is necessary to avoid bitvectors of zero length.

35

3.14. CYCLIC LEFT SHIFTER CHAPTER 3. BASIC COMPONENTS

Proof. The proof is by induction on n. The induction base n = 0 is easily proved by using
lemmas 32.4 and 33.

In the induction step n, let bH := b[2n � 1; 2n�1] and bL := b[2n�1 � 1; 0]. We first look at the
case LZH[n� 1] = 1. By lemma 5, it follows that

2n�1 � hlzn�1(bH)i :

The induction hypothesis and lemma 33 yield

2n�1 � lzero(bH) � 2n�1
;

which implies equality. Lemma 32.4 leads to

bH = 0
2n�1

:

By lemma 34, and the induction hypothesis we have

lzero(b) = lzero(02
n�1 Æ bL)

= 2n�1 + lzero(bL)

= 2n�1 + hlzn�1(bL)i :

With lemma 14, the output y of the multiplexer satisfies

lzero(b) = 2n�1 + hlzn�1(bL)i = hyi :

When LZH[n� 1] = 0, by the induction hypothesis, the multiplexer output y satisfies

hyi = hLZHi = lzero(bL):

By lemma 5, we have
lzero(bL) = hLZHi < 2n�1

:

We finish the proof with lemma 32.2, which yields

lzero(bL Æ bH) = lzero(b):

�

3.14 Cyclic Left Shifter

A cyclic left shifter shifts its input to the left. The bits that are shifted out on the left side are filled
in on the right side. The circuit is defined for bitvector widths that are powers of two (figure 3.15).

Let m 2 N
+ , n := 2m in this section. The formal definition of a cyclic left shift of a bitvector

a 2 B
n shifted i < n bits is

clshiftn(a; i) :=

(
a[n� i� 1; 0] Æ a[n� 1; n� i] if i > 0

a else.

Lemma 36 For all a 2 B
n , b; c 2 N , b+ c < n :

clshiftn(a; b+ c) = clshiftn

�
clshiftn(a; b); c

�
:

36

CHAPTER 3. BASIC COMPONENTS 3.14. CYCLIC LEFT SHIFTER

r
1

b[m� 1]

...

a[n� 1 : 0]

r

r
0

cls stagen;20

cls stagen;21

cls stagen;2m�1

b[0]

b[1]

Figure 3.15: Cyclic left shifter cls

Proof. This lemma is resolved by expansion of the bitvector concatenation and extraction defi-
nitions, and applying the PVS decision procedures. �

We first define a single shifter stage, consisting of a multiplexer. Depending on a bit b, the stage
either passes a unshifted, or shifts a by a fixed amount i to the left.

Circuit 15 Let 0 < i < n. Inputs a 2 B
n , b 2 B , output r 2 B

n ,

cls stagen;i :=

(
a[n� i� 1; 0] Æ a[n� 1; n� i] if b

a else.

Lemma 37 For all a 2 B
n , 0 < i < n, b 2 B :

cls stagen;i(a; b) = clshiftn(a; i � b):

Proof. Trivial, since the clshift and cls stage definitions only differ marginally. The reader
should note the subtle difference between the function clshift that shifts a bitvector by an arbitrary
amount, and the cls stage hardware that shifts by an arbitrary, but fixed amount. �

The recursive shifter construction consists of a stack of stages that shift by powers of two (fig-
ure 3.15).

Circuit 16 Let s < m, inputs a 2 B
n , b 2 B

m , output r 2 B
n .

cls recm;0 := cls stagen;1(a; b[0]);

cls recm;s := cls stagen;2s
�
cls recm;s�1(a; b); b[s]

�
:

To prove the correctness of the cls rec circuit, we show that the following invariant holds for
each of the m stages of the shifter:

Lemma 38 (CLS REC CORRECT) For all s < m, a 2 B
n , b 2 B

m :

cls recm;s(a; b) = clshiftn(a; hb[s; 0]i):

37

3.15. LOGICAL LEFT SHIFTER CHAPTER 3. BASIC COMPONENTS

Proof. We induct on s. The induction base s = 0 is a direct consequence of lemma 37.

In the induction step s+ 1, the induction hypothesis is

cls recm;s(a; b) = clshiftn(a; hb[s; 0]i):

We start by expanding the recursive definition of cls rec:

cls stagem;2s+1
�
cls recm;s(a; b); b[s + 1]

�
= clshiftn(a; hb[s+ 1; 0]i):

By using the induction hypothesis, we have

cls stagem;2s+1
�
clshiftn(a; hb[s; 0]i); b[s+ 1]

�
= clshiftn(a; hb[s+ 1; 0]i):

By lemma 37 we have

clshiftn

�
clshiftn(a; hb[s; 0]i); 2s+1 � b[s+ 1]

�
= clshiftn(a; hb[s+ 1; 0]i):

Applying lemma 36 yields

clshiftn(a; hb[s; 0]i + 2s+1 � b[s+ 1]) = clshiftn(a; hb[s+ 1; 0]i):

This is true by lemma 3. �

Finally, we define the cyclic left shifter by an initial call to the recursive definition (figure 3.15):

Circuit 17 Inputs a 2 B
n , b 2 B

m , output r 2 B
n .

clsm(a; b) := cls recm;m�1(a; b):

Lemma 39 (CLS CORRECT) For all m 2 N
+ , n := 2m, a 2 B

n , b 2 B
m :

clsm = clshiftn(a; hbi):

Proof. A trivial application of lemma 38, where s = m� 1. �

3.15 Logical Left Shifter

In contrast to the cyclic left shifter, the logical left shifter pads the right part of the bitvector with
zeros. We proceed in the same way as in the previous section: the shifter is a stack of stages that
shift the bitvector by powers of two (analogous to figure 3.15). The difference is in the definition
of the stages which do not shift cyclicly. Unlike the cyclic left shifter, the logical shifters are
defined for arbitrary bitvector width.

Let n 2 N
+ and logN := dlog ne in this section. The definition of the logical right shift of

a 2 B
n by i bits is

left shiftn(a; i) :=

8><
>:
a if i = 0

a[n� i� 1; 0] Æ 0i if i < n

0
n else.

38

CHAPTER 3. BASIC COMPONENTS 3.16. LOGICAL RIGHT SHIFTER

Circuit 18 Let 0 < i < n. Inputs a 2 B
n , b 2 B , output r 2 B

n .

lls stagen;i :=

(
a[N � i� 1; 0] Æ 0i if b

a else.

Circuit 19 Let s < logN . Inputs a 2 B
n , b 2 B

logN , output r 2 B
n .

lls recn;0 := lls stagen;1(a; b[0]):

lls recn;s := lls stagen;2s
�
lls recn;s�1(a; b); b[s]

�
:

Lemma 40 (LLS REC CORRECT) For all s < logN , a 2 B
n , b 2 B

logN :

lls recn;s(a; b) = left shiftn(a; hb[s; 0]i):

Proof. The proof is analogous to the proof of lemma 38; we induct on s and expand the recursive
definition of lls rec. The PVS decision procedures then complete the proof. �

Circuit 20 Inputs a 2 B
n , b 2 B

logN , output r 2 B
n .

lls(a; b) := lls recn;logN�1(a; b):

Lemma 41 (LLS CORRECT) For all a 2 B
n , b 2 B

logN :

lls(a; b) = left shiftn(a; hbi):

Proof. Trivial application of the previous lemma 40 with s = logN � 1. �

3.16 Logical Right Shifter

The logical right shifter is symmetric to the logical left shifter. We therefore only state the speci-
fication and the correctness lemma without proof. Again, let n 2 N

+ and logN := dlog ne.

right shiftn(a; i) :=

8><
>:
a if i = 0

0
i Æ a[n� 1; i] if i < n

0
n else.

Circuit 21 Let 0 < i < n. Inputs a 2 B
n , b 2 B , output r 2 B

n .

lrs stagen;i :=

(
0
i Æ a[N � 1; i] if b

a else.

Circuit 22 Let s < logN . Inputs a 2 B
n , b 2 B

logN , output r 2 B
n .

lrs recn;0 := lrs stage(a; b[0]; 1);

lrs recn;s := lrs stagen;2s
�
lrs recn;s�1(a; b); b[s]

�
:

lrs := lrs recn;logN�1(a; b):

39

3.17. OR TREE CHAPTER 3. BASIC COMPONENTS

b[n� 1; k] b[k � 1; 0]

ortreen�k ortreek

b[0]

n = 1 n > 1

oror

Figure 3.16: Or tree

Lemma 42 (LRS CORRECT) For all a 2 B
n , b 2 B

logN :

lrs(a; b) = right shiftn(a; hbi):

3.17 Or Tree

An or tree is a tree of OR gates (figure 3.16). It is used for testing whether a bitvector consists
only of zeros.

Circuit 23 Input b 2 B
n , output or 2 B .

ortree1 := b[0]:

Let k =
�
n
2

�
.

ortreen := ortreen�k(b[n� 1; k]) _ ortreek(b[k � 1; 0]):

Lemma 43 (OR TREE CORRECT) For all b 2 B
n :

ortree(b) () b 6= 0
n
:

Proof. We induct on n. The case n = 0 is resolved by (grind).

In the induction step n, we show

ortreen�k(b[n� 1; k]) _ ortreek(b[k � 1; 0]) () b 6= 0
n
:

The proof is finished by using the induction hypotheses:

b[n� 1; k] 6= 0
n�k _ b[k � 1; 0] 6= 0

k () b 6= 0
n
:

�

40

Chapter 4

IEEE Floating Point Arithmetic

To formally verify the correctness of the VAMP FPU and its components, we need a formal notion
of “correctness” , i.e., a formalization of the IEEE standard [Ins85] the FPU shall obey. In this
chapter, we sketch the formalization of the IEEE standard used in the VAMP verification project.
The formalization is primarily based on [Min95, EP97, MP00]. The formalization of the IEEE
standard has been implemented and formally verified in PVS by Christian Jacobi [JK00, BJ01,
Jac01a, Jac01b]. The IEEE library is described here without proofs. This chapter is a revised
version of section 2 from [BJ01].

4.1 Factorings

We abstract IEEE numbers as defined in the standard to factorings. A factoring is a triple (s; e; f)

with sign bit s 2 f0;1g, exponent e 2 Z, and significand f 2 R�0 . Note that exponent range and
significand precision are unbounded. The value of a factoring is

[[s; e; f]] := (�1)s � 2e � f:

The standard introduces an exponent width N , from which constants emin := �2N�1 + 2 and
emax := 2N�1 � 1 are derived. These constants are used to bound the exponent range.

We call a factoring (s; e; f) normal if e � emin and 1 � f < 2. A factoring is called denormal
if e = emin and 0 � f < 1. We call a factoring an IEEE factoring if it is either normal or
denormal.

Lemma 44 Each x 2 R 6=0 , has a unique factoring (ŝ; ê; f̂) with 1 � f̂ < 2 and [[ŝ; ê; f̂]] = x.
Each x 2 R 6=0 has a unique IEEE factoring (s; e; f) with [[s; e; f]] = x. Zero has two IEEE
factorings (0; emin; 0) and (1; emin; 0), called +0 and �0, respectively.

Let �̂ and � be the functions that map (non-zero) reals x to their corresponding factorings
(ŝ; ê; f̂) and (s; e; f), respectively. We define �(0) := (0; emin; 0).

41

4.2. ROUNDING CHAPTER 4. IEEE FLOATING POINT ARITHMETIC

Lemma 45 Let x 2 R with x 6= 0 in the context of �̂. It holds:1

�̂e(x) = blog2 jxjc; �e(x) =

(
blog2 jxjc if x 6= 0 and blog2 jxjc � emin

emin else,

�̂f (x) = jxj � 2��̂e(x); �f (x) = jxj � 2��e(x):

Let P be the significand precision defined in the standard. A significand f is called repre-
sentable if f has at most P � 1 digits behind the binary point, i.e., if 2P�1 �f 2 N . We call an
IEEE factoring (s; e; f) semi-representable if f is representable. We call an IEEE factoring rep-
resentable if it is semi-representable and e � emax holds. We call a real x (semi-)representable if
�(x) is (semi-)representable.

Representable numbers exactly correspond to the representable numbers defined in the stan-
dard. Common values for (N;P) are (8; 24) and (11; 53), called single and double precision,
respectively. The standard defines an encoding of single and double precision IEEE factorings
into bit strings of length 32 and 64, respectively. In this chapter, factorings are triples of numbers.
In chapter 5, we introduce factorings that are triples of bitvectors.

4.2 Rounding

We proceed with the definition of the rounding function. The IEEE standard defines four rounding
modes: round to nearest, up, down, and to zero. We define a function rint(� ;M) for each rounding
mode M 2 fnear; up; down; zerog, which rounds reals x to integers [Min95]:

rint(x; near) :=

8>>>><
>>>>:

bxc if x� bxc < dxe � x

dxe if x� bxc > dxe � x

x if bxc = dxe
2 � bdxe=2c else,

rint(x; up) := dxe;
rint(x; down) := bxc;
rint(x; zero) := sign(x) � bjxjc:

By scaling by 2P�1, reals are rounded to rationals with P � 1 fractional bits:

rrat(x;M) := 2�(P�1) � rint(x � 2P�1
;M):

Further scaling with 2e, e := �e(x), yields the IEEE rounding function:

rd(x;M) := 2e � rrat(x � 2�e;M):

It is not obvious that this definition conforms with the IEEE standard. The conformance is proved
in [Jac01a].

The rounding of reals x can be decomposed into three steps: �-computation, significand round-
ing, and post-normalization [MP00, Jac01b]. The benefit of this decomposition is that it simplifies
the design and verification of the rounder (see theorem 3) [BJ01].

1�e(x) denotes the e-component of the factoring �(x) = (s; e; f); analogous for other components and �̂.

42

CHAPTER 4. IEEE FLOATING POINT ARITHMETIC 4.3. �-EQUIVALENCE

First, the �-computation step computes the IEEE factoring �(x), where x is the number to be
rounded. The significand round then rounds the significand computed in the �-computation to
P � 1 digits behind the binary point. This is formalized in the function sigrd:

sigrd(X;M) :=
��rrat�(�1)s � f;M��� ;

where X = (s; e; f) is an arbitrary IEEE factoring, and M 2 fnear; up; down; zerog is a round-
ing mode.

In case the significand round returns 0 or 2, the factoring has to be post-normalized: if the
significand round returns 2, the exponent is incremented, and the significand is forced to 1; if
the significand round returns 0, the sign bit is forced to 0 (in order to yield �(0)). The post-
normalization is defined as follows:

postnorm(X;M) =

8><
>:
(s; e; sigrd(X;M)) if 0 < sigrd(X;M) < 2

(s; e+ 1; 1) if sigrd(X;M) = 2

(0; emin; 0) if sigrd(X;M) = 0:

Theorem 3 (DECOMPOSITION THEOREM) For x 2 R and rounding mode M 2 fnear, up,
down, zerog:

postnorm
�
�(x);M

�
= �

�
rd(x;M)

�
:

4.3 �-Equivalence

We now define the concept of �-equivalence and �-representatives [EP97, MP00]. As we will see
in theorem 5, this concept is a very concise way to speak about sticky-bit computations.

Let � be an integer. Two reals x and y are said to be �-equivalent, if

x �� y :() x = y _
�
9 q 2 Z : q � 2� < x; y < (q + 1) � 2�

�
;

i.e., if both x and y lie in the same open interval between two consecutive integral multiples of 2�.
Clearly, if such an q exists, it must be

q�(x) := bx � 2��c:

The �-representative of x is defined as

[x]� :=

(
x if x = q�(x) � 2��
q�(x) +

1
2

�
� 2� else,

i.e., if x is an integral multiple of 2�, the representative of x is x itself, and otherwise the midpoint
of the interval between the surrounding multiples of 2�.

Lemma 46 Let x; y 2 R, and �; k 2 Z.

1. �� is an equivalence relation,

2. x �� [x]�,

43

4.3. �-EQUIVALENCE CHAPTER 4. IEEE FLOATING POINT ARITHMETIC

3. x �� y () [x]� = [y]�, (representative equivalence)

4. x �� y () �x �� �y, and [�x]� = �[x]�, (negative value)

5. x �� y () 2k � x ��+k 2k � y, and [2k � x]�+k = 2k � [x]�, (scaling)

6. x �� y () x+ k � 2� �� y + k � 2�, (translation)

7. x �� y =) x ��+k y if k � 0, (coarsening)

8. x = 0 () x �� 0 () [x]� = 0, (zero value)

9. 0 < x < 2� =) [x]� = 2��1. (small value)

The following theorem describes the computation of IEEE factorings of representatives:

Theorem 4 Let x 2 R, let (s; e; f) := �(x) be the corresponding IEEE factoring, and let p � 0

be an integer. The IEEE factoring of [x]e�p can be computed by computing the representative
[f]�p of f :

�([x]e�p) = (s; e; [f]�p):

Next, we show that the representative of f can be computed by a sticky bit computation. Let
f � 0 be a real in binary format fk; : : : ; f0; : : : ; f�l 2 f0; 1gk+l+1 such that hfi :=

Pk
i=�l fi �2i.

Let p be an integer, k � p > �l. The p-sticky-bit of f is the logical OR of all bits fp�1; : : : ; f�l:

stickyp(f) :=

p�1_
i=�l

fi:

Theorem 5 The representative [f]p of f can be computed by replacing the less significant bits by
the sticky bit:

[f]p = hf [k; p]i+ 2p�1 � stickyp(f):

Theorems 4 and 5 together allow a very efficient computation of representatives (respectively
their IEEE factorings) by or-ing the less significant bits in an or tree, and replacing them by
the sticky bit. This technique is well known [Gol96], but introducing the formalism with �-
representatives allows for a very concise argumentation about sticky computations.

The valuable property of �-representatives is that rounding x and its representative [x]e�P yields
the same result:

Theorem 6 Let x 2 R, e := �e(x), and M be a rounding mode. It holds

rd(x;M) = rd([x]e�P ;M):

As a consequence, the significand round can be performed on the representative [f]�P of f :

sigrd
�
(s; e; f);M

�
= sigrd

�
(s; e; [f]�P);M

�
:

Theorem 7 By lemma 46.7, theorem 6 also holds for any � � e� P :

rd(x;M) = rd([x]�;M):

44

CHAPTER 4. IEEE FLOATING POINT ARITHMETIC 4.4. EXCEPTIONS

4.4 Exceptions

The IEEE standard defines five exceptions: invalid operation (INV), division by zero (DIVZ),
overflow (OVF), underflow (UNF), and inexact result (INX). Our formalization of these exceptions
is taken literally from [MP00], as the implementation in the actual hardware is. As a consequence
of theorem 6, the exceptions can be detected by considering only the representative of the exact
result.

In case of underflow or overflow with the respective trap handler enabled, the standard mandates
scaling the result into the representable range, and passing the scaled result to the trap handler. This
is called wrapped exponent. The scale factor is defined to be 2A with A := 3 � 2N�2.

4.5 Correctness of the FPU

The standard requests that every floating point operation shall return a result obtained as if one first
computed the exact result with infinite precision, and then rounded this exact result. We therefore
call the FPU correct, if for each operation Æ 2 f+;�;�;�g on all representable numbers x and
y, the FPU returns the IEEE bit string encoding of the factoring

�
�
rd(x Æ y;M)

�
:

45

4.5. CORRECTNESS OF THE FPU CHAPTER 4. IEEE FLOATING POINT ARITHMETIC

46

Chapter 5

The Floating Point Adder

In this chapter, we prove the correctness of the floating point adder from the VAMP FPU. A
summary of this chapter is part of [BJ01]. The adder is given two factorings a and b and a flag
sub. For sub = 0, it computes the sum a+ b, and for sub = 1, the difference a� b.

5.1 Adder Correctness

Bitvector representation. The VAMP FPU handles single and double precision operands. Since
single precision operands are embedded into double precision bitvectors by the unpacker, we only
use double precision within the adder. We therefore fix the precision constants (N;P) = (11; 53)

in this chapter.

We define the bitvector factoring type

Ip := (B ; B 11
; B

p);

with the abbreviation I := I53: In section 4.1, we defined [[�]] on numbers. For (s; e; f) 2 Ip, we
define

[[s; e; f]]i := [[s; [e]; hfi � 2i�p]];
i.e., e is interpreted as a two’s complement number, and f as a binary fraction with i bits in front
of the binary point. For convenience, we will omit the index 1:

[[s; e; f]] := [[s; e; f]]1:

In section 4.1, we defined (semi-)representable IEEE factorings. We will also apply these notions
to bitvector factorings, e.g., (s; e; f) 2 I is called an IEEE factoring if (s; [e]; hfi � 2i�p) is an
IEEE factoring (where i is clear from the context).

Correctness criterion. As in chapter 3, we define �x for x 2 B as

�x :=

(
+ if x = 0

� if x = 1:

The VAMP unpacker passes the IEEE factorings a and b 2 I to the adder [BJ01]. Let the exact,
infinitely precise result of the operation to be performed be

S := [[a]]�sub [[b]]:

47

5.2. ADDITION ALGORITHM CHAPTER 5. FLOATING POINT ADDER

The adder computes an approximation factoring s of the exact result S.

The adder passes its output s to the floating point rounder. From s, the rounder computes the
rounded result rd(S;M) according to the IEEE standard (cf. section 4.2). To meet the rounder
input specifications, we have to prove that the output s of the adder is close enough to S. In terms
of �-equivalence (see theorem 6), that is

S �e�P [[s]];

where e := �e(S). Using ê := �̂e(S) and theorem 7, we will prove the adder correctness criterion

S �ê�P [[s]]:

By lemma 45, we have ê � e, and hence, the prerequisites of theorem 7 are satisfied.

The output s may be an arbitrary factoring, as the VAMP rounder is capable of rounding s

correctly even if s is not an IEEE factoring. The rounder specification imposes two additional
restrictions: the rounder input exponent must satisfy e � emax in case of a denormal input signifi-
cand, and the value of the input factoring must lie in the range that can be scaled into the range of
representable numbers using the wrapped exponent from section 4.4. (See [Jac01b] for details.)

Special cases. For a zero sum S, ê = �̂e(S) is not defined. We will therefore require

S 6= 0

as a prerequisite to the adder correctness criterion proved here. In the VAMP FPU, the case S = 0

is detected by the unpacker. Other special cases that are handled by the unpacker are operations on
NaN and �1. We therefore only treat numeric operands (represented by IEEE factorings). The
unpacker implementation is described in detail in [Jac01b].

5.2 Addition Algorithm

We are given the input factorings a := (sa; ea; fa) and b := (sb; eb; fb), and a flag sub. We want
to compute [[a]]�sub [[b]], represented by s := (ss; es; fs).

We will implement the floating point addition using the following algorithm:

1. In case of a subtraction, flip the sign bit of b: s0b := sb � sub,

2. the larger exponent of ea and eb is the result’s exponent es,

3. assume ea � eb, otherwise exchange a and b.

4. align the significand fb to fa by shifting it Æ := jea � ebj to the right: f�b := fb � 2�Æ ,

5. let sx := sa � s
0
b,

6. let sum := fa �sx f
�
b ,

7. the results significand is fs := jsumj,

8. the result’s sign is ss := sa � (sum < 0).

48

CHAPTER 5. FLOATING POINT ADDER 5.3. ALGORITHM CORRECTNESS

This addition algorithm for floating point addition is well known [Gol96].

The alignment shift would require shifters of size � 2N+1, which is impractical. We therefore
approximate the shifted significand f

�
b by its �(P + 1)-representative

f
0
b := [2�Æ � fb]�(P+1):

5.3 Correctness of the Addition Algorithm

To justify using the algorithm from section 5.2, we prove the following theorem, which will be
used as the core of the adder hardware correctness proof.

Theorem 8 For all representable IEEE factorings a := (sa; ea; fa) and b := (sb; eb; fb) where
ea � eb, let S := [[a]] + [[b]] 6= 0, ê := �̂e(S), Æ := ea � eb, and f 0b := [2�Æ � fb]�(P+1):

S �ê�P 2ea �
�
(�1)sa � fa + (�1)sb � f 0b

�
:

Proof. S can be rewritten as

S = [[sa; ea; fa]] + [[sb; eb; fb]]

= (�1)sa � 2ea � fa + (�1)sb � 2eb � fb
= 2ea �

�
(�1)sa � fa + (�1)sb � 2�Æ � fb

�
:

It remains to prove

2ea �
�
(�1)sa � fa + (�1)sb � 2�Æ � fb

�
�ê�P 2ea �

�
(�1)sa � fa + (�1)sb � f 0b

�
:

For Æ � 2, we claim
f
0
b = [2�Æ � fb]�(P+1) = 2�Æ � fb:

We use the premise that b is a representable IEEE factoring with precision P . It follows that
fb � 2P�1 is an integer. Since Æ � 2, fb � 2�Æ � 2P+1 is also integer. Therefore, 2�Æ � fb =

[2�Æ � fb]�(P+1) by the definition of [�]�, which proves the theorem for Æ � 2.

Now let Æ � 3. Starting from

[2�Æ � fb]�(P+1) = f
0
b;

we have by lemma 46.3

2�Æ � fb ��(P+1) f
0
b:

Applying lemma 46.4 yields

(�1)sb � 2�Æ � fb ��(P+1) (�1)sb � f 0b:

Lemma 46.6 yields

(�1)sa � fa + (�1)sb � 2�Æ � fb ��(P+1) (�1)sa � fa + (�1)sb � f 0b:

49

5.3. ALGORITHM CORRECTNESS CHAPTER 5. FLOATING POINT ADDER

Lemma 46.5 yields

2ea �
�
(�1)sa � fa + (�1)sb � 2�Æ � fb

�
�ea�(P+1) 2

ea �
�
(�1)sa � fa + (�1)sb � f 0b

�
:

Lemma 47 below tells us that ê�P � ea� (P +1). Therefore, we can coarsen the �-equivalence
to ê� P using lemma 46.7:

2ea �
�
(�1)sa � fa + (�1)sb � 2�Æ � fb

�
�ê�P 2ea �

�
(�1)sa � fa + (�1)sb � f 0b

�
:

�

It remains to prove lemma 47, from which we concluded ê � P � ea � (P + 1) in the above
proof.

Lemma 47 For all representable IEEE factorings a := (sa; ea; fa) and b := (sb; eb; fb), where
Æ := ea � eb � 2, let S := [[a]] + [[b]] 6= 0, ê := �̂e(S):

ê � ea � 1:

Proof. By lemma 45 and the definitions of S and [[�]], we have to show

ê = �̂(S):e = blog2 j(�1)sa � 2ea � fa + (�1)sb � 2eb � fbjc � ea � 1:

Since ea � 1 is integer, this is equivalent to

log2 j(�1)sa � 2ea � fa + (�1)sb � 2eb � fbj � ea � 1:

b is an IEEE factoring, i.e.

0 � fb < 2;

Æ � 2 implies

0 < 2�Æ � 1

4
;

we conclude

2�Æ � fb <
1

2
:

From the fact that b is an IEEE factoring, we know

eb � emin;

and due to Æ = ea � eb � 2,

ea = eb + Æ � emin + Æ > emin:

This means that a is a normal IEEE factoring, hence

fa � 1:

50

CHAPTER 5. FLOATING POINT ADDER 5.4. ADDER HARDWARE

stage 3stage 1 stage 2

ea[10; 0]
sa

eb[10; 0]

es[10; 0]

sssb

sub

s
0

b

fa[52; 0]

fb[52; 0]

sx

sb2

sa2

es[10; 0]

fa2[52; 0]

fb3[55; 0]
fs[56; 0]

A
lig

nS
hi

ft

Si
gA

dd

Figure 5.1: Top level schematics for the adder

By checking the four cases for the sign bits sa and sb, we conclude

j(�1)sa � fa + (�1)sb � 2�Æ � fbj �
1

2
:

Multiplying by 2ea yields

j(�1)sa � 2ea � fa + (�1)sb � 2eb � fbj � 2ea�1
:

Taking logarithms on both sides finishes the proof. �

5.4 Adder Hardware

We will now show that the VAMP floating point adder (figure 5.1) correctly implements the addi-
tion algorithm in section 5.2.

Inputs to the adder are the representable IEEE factorings a := (sa; ea; fa), b := (sb; eb; fb) 2 I

and the flag sub 2 B . Output is the factoring s := (ss; es; fs) 2 I57.

The adder is divided into three stages. The first stage consists of a single XOR gate to compute
s
0
b (step 1 of the algorithm). The second stage exchanges a and b if necessary and computes the

alignment shift, producing factorings a2 and b3 (steps 2 to 5). The third stage then adds/subtracts
the significands (steps 6 to 8).

Differences from the adder given in [MP00] are:

� The special cases of NaN and infinite operands are not handled by the adder itself, but the
unpacker. A zero result is also a special case. This evades the need for a forth adder stage
for the sign computation. The zero tester is moved from the significand add stage to the
unpacker [BJ01, Jac01b].

� The formalization does not use binary fractions, but natural numbers. This is due to the fact
that the PVS bitvectors library does not support binary fractions. One could formalize binary
fractions in PVS, but one would loose the benefits of the bitvector lemmas PVS provides.

51

5.5. STAGE 1: COMPUTING S
0
B CHAPTER 5. FLOATING POINT ADDER

5.5 Stage 1: Computings0

b

Stage 1 implements the subtraction algorithm by inverting the sign bit sb in case of a subtraction
(see figure 5.1).

Circuit 24 Inputs to stage 1 are the factorings a := (sa; ea; fa), b := (sb; eb; fb) 2 I, and the
subtract bit sub 2 B . Outputs are (sa; ea; fa) and b

0 := (s0b; eb; fb) 2 I. The sign bit of b0 is
computed as

s
0
b := sub� sb:

All other outputs pass stage 1 unmodified.

The following lemma states that the value b0 is computed correctly:

Lemma 48 For all factorings (sb; eb; fb) 2 Iand subtract bits sub, the output (s0b; eb; fb) 2 Iof
stage 1 satisfies

[[s0b; eb; fb]] = [[sb; eb; fb]] � (�1)sub:

Proof. The proof is trivial by applying the definitions of s0b and [[�]]. �

Stage 2 requires that its inputs are IEEE factorings, this holds for the output of stage 1 if its
inputs are IEEE factorings.

Lemma 49 For all IEEE factorings (sa; ea; fa), (sb; eb; fb) 2 I:

Output (s0b; eb; fb) is an IEEE factoring:

Output (sa; ea; fa) is an IEEE factoring by prerequisite.

Proof. Trivial by the definition of IEEE factorings. �

The correctness of the stage 1 output is asserted by theorem 9.

Theorem 9 (STAGE 1 CORRECT) For all factorings (sa; ea; fa) and (sb; eb; fb) 2 I, and subtract
bits sub 2 B :

[[sa; ea; fa]]�sub [[s
0
b; eb; fb]] = [[sa; ea; fa]] + [[s0b; eb; fb]]:

Proof. Trivial by lemma 48. �

5.6 Stage 2: Alignment Shift

Stage 2 consists of the alignment shifter that computes the larger of both input exponents (step 2
from the algorithm in section 5.2), swaps a and b if necessary (step 3), and aligns the significands
according to the difference of the exponents, thereby computing the representative f0b of the shifted
significand (step 4).

52

CHAPTER 5. FLOATING POINT ADDER 5.6. STAGE 2: ALIGNMENT SHIFT

sa

s
0

b
sb2

fa[52; 0]

fb[52; 0]

fb2[54; 0]
fa2[52; 0]

sx

ea[10; 0]

eb[10; 0]

sa2

Limit
fb3[55; 1]

fb3[0]

as[11; 0]
as2[5; 0]

eb>a

es[10; 0]

stickybit

Swap

ExpSub
lrs55

Sticky

0

1

eb>a

Figure 5.2: Top level alignment shifter schematics

sub12

11

12

eb[10; 0]

as[11 : 0]

ea[10; 0]

eb>a

neg s

Figure 5.3: Exponent Subtract ExpSub

The alignment shifter itself is divided into several subcircuits (figure 5.2). Overall inputs are
a := (sa; ea; fa) and b

0 := (s0b; eb; fb). Outputs are the (unrounded) result’s exponent es and the
possibly swapped sign bits and significands (sa2; es; fa2) 2 I and (sb2; es; fb3) 2 I56. A bit sx
indicates whether we have to add or subtract the significands in the next stage.

5.6.1 Exponent Subtract

Circuit ExpSub computes the alignment shift distance as := ea � eb, and the flag eb>a indicating
that the difference is negative (figure 5.3).

Circuit 25 Inputs ea; eb 2 B
11 , outputs eb>a 2 B , as 2 B

12 . Let sext(b) denote the sign
extension of b by one bit.

as := subs(sext(ea); sext(eb));

eb>a := subneg(sext(ea); sext(eb)):

53

5.6. STAGE 2: ALIGNMENT SHIFT CHAPTER 5. FLOATING POINT ADDER

��
��
��
��

1

0

[5; 0]

as2[5 : 0]
6

as[11; 0]

eb>a

as1[11; 0]

6

6

ortree

[11; 6]

Figure 5.4: Circuit Limit

Lemma 50 (EXPSUB AS CORRECT) For all ea; eb 2 B
11 :

as = [ea]� [eb]:

Lemma 51 (EXPSUB EB-EA CORRECT) For all ea; eb 2 B
11 :

eb>a () [eb] > [ea] () [as] < 0:

Proof. Trivial application of the sub correctness lemma 25. �

5.6.2 Exponent Select

The greater of both exponents is selected by a multiplexer (see figure 5.2).

Circuit 26 Inputs ea; eb 2 B
11 , eb>a 2 B , output es 2 B

11 .

es :=

(
eb if eb>a
ea else.

Lemma 52 (EXPONENT ES CORRECT) For all ea, eb 2 B
11 , eb>a 2 B , let eb>a = ([eb] > [ea]):

es = max(ea; eb):

Proof. Here, max is the bitvector two’s complement maximum. This lemma assumes the cor-
rectness of the eb>a input, which was asserted by lemma 51. The proof is trivial. �

5.6.3 Circuit Limit

The alignment shift distance as is limited to reduce the size of the shifter lrs that aligns the signifi-
cands (figure 5.4). The first part limit approx of the limit circuit computes an approximation as1
of the absolute value of as. Instead of computing the two’s complement, the circuit only negates
as, saving an incrementer on the critical path of the floating point adder. The error introduced in
the shift distance is compensated by the swap circuit where fb2 is shifted by 1 in the erroneous
case. The second part limit limit limits as1 to a maximum value of B = 63. as2 is the output of
the concatenation of both parts.

54

CHAPTER 5. FLOATING POINT ADDER 5.6. STAGE 2: ALIGNMENT SHIFT

Approximating the Shift Distance

Circuit 27 Inputs as 2 B
12 , eb>a 2 B , output as1 2 B

12 .

limit approx :=

(
: as if eb>a
as else.

Lemma 53 (LIMIT APPROX CORRECT) For all as 2 B
12
; eb>a 2 B , let eb>a = ([as] < 0):

has1i = j[as]j � eb>a:

Proof. The assumption on eb>a holds by lemma 51.

In the case eb>a = 1, we have to show that

h: asi = j[as]j � 1

holds. In this case, [as] < 0. By lemma 9, this is equivalent to

212 � 1� hasi = �[as]� 1:

Again because of [as] < 0, we conclude that as[11] is set (lemma 12). We finish this case with
lemma 10:

212 � hasi = �(hasi � 1 � 212):

In the other case eb>a = 0, we have [as] � 0, and hence, : as[11] by lemma 12.

hasi = j[as]j � 0;

hasi = [as]:

The latter holds by lemma 10. �

Limiting the Shift Distance

Circuit 28 Input as1 2 B
12 , output as2 2 B

6 .

limit limit := as1[5; 0] _
�
ortree(as1[11; 6])

�6
:

Lemma 54 (LIMIT LIMIT CORRECT) Let B = 63. For all as1 2 B
12 :

has2i = min(has1i ; B):

55

5.6. STAGE 2: ALIGNMENT SHIFT CHAPTER 5. FLOATING POINT ADDER

fa[52; 0]

0

10eb>a10

s0

b
0sa0sa, fa[52; 0] s0

b
, fb[52; 0] fb[52; 0]

sa2, fa2[52; 0] sb2, fb2[54; 0]

Figure 5.5: Significand and sign bit swapping

Proof. First, we assume has1i > B. By lemma 6, we have as1[11; 6] 6= 0
6, and by lemma 43,

ortree(as1[11; 6]) = 1. Hence,

has2i =

1
6
�
= B = min(has1i ; B):

Where has1i � B, as1[11; 6] = 0
6, and ortree(as1[11; 6]) = 0. We finish with

has2i = has1[5; 0]i = has1i = min(has1i ; B):

�

Finally, we combine the two circuits and lemmas:

Circuit 29 Inputs as 2 B
12 , eb>a 2 B , output as2 2 B

6 .

limit := limit limit Æ limit approx:

Here, Æ is function concatenation.

Lemma 55 (LIMIT CORRECT) For all as 2 B
12 , eb>a 2 B , let eb>a = ([as] < 0):

has2i = min(j[as]j � eb>a; B):

Proof. A direct consequence of lemmas 53 and 54. �

5.6.4 Significand Swapping

If exponent eb is greater than ea, signal eb>a indicates that the significands fa and fb, and the sign
bits sa and sb have to be swapped (figure 5.5). This is realized by multiplexers. Because of the
error in the shift amount introduced by the limit circuit, fb2 is shifted one digit to the right here
when eb>a is active (0 Æ fa vs. fb Æ 0 in the fb2 definition).

Circuit 30 Inputs sa; s0b; eb>a 2 B , fa; fb 2 B
53 , outputs sa2; sb2 2 B , fa2 2 B

53 , fb2 2 B
55 .

sa2 :=

(
s
0
b if eb>a
sa else,

sb2 :=

(
sa if eb>a
s
0
b else,

fa2 :=

(
fb if eb>a
fa else,

fb2 :=

(
0 Æ fa if eb>a
fb Æ 0 else

)
Æ 0:

56

CHAPTER 5. FLOATING POINT ADDER 5.6. STAGE 2: ALIGNMENT SHIFT

stickyhas2i

54

0

fb2

1

0

j � has2i+ 1

has2i

55� has2i

fb30has2i

j

Figure 5.6: Shifting fb2 by has2i bits to the right

Lemma 56 (SIGNIFICAND SWAP CORRECT) For all fa; fb 2 B
53 , eb>a 2 B :

sa2 =

(
s
0
b if eb>a
sa else,

sb2 =

(
sa if eb>a
s
0
b else,

hfa2i =
(
hfbi if eb>a
hfai else,

hfb2i =
(
2 � hfai if eb>a
4 � hfbi else.

Proof. The proof is trivial by lemma 4. �

5.6.5 Alignment Shift and Sticky Bit Computation

The alignment shifter shifts the significand fb2 to the right, collecting the shifted-out bits in the
sticky bit (figure 5.6). We split this task into a logical right shifter lrs and the sticky bit computa-
tion stickybit (figure 5.7).

The sticky bit is the logical OR of the lower as2 bits of fb2. The lower bits are selected by an
AND mask driven by a halfdecoder.

Circuit 31 Inputs fb2 2 B
53 , as2 2 B

6 , output stickybit 2 B .

stickybit := ortree(hdec(as2)[54; 0] ^ fb2):

This definition conforms with the definition of sticky in section 4.3:

Lemma 57 For all as2 2 B 6 , 0 < has2i < 55, fb2 2 B 55 :

stickybit(as2; fb2) = stickyhas2i(fb2):

Proof. After expanding stickybit and sticky, and applying the correctness lemmas of ortree
(lemma 43) and hdec (lemma 30), it remains to show��

0
26�has2i Æ 1has2i

�
[54; 0] ^ fb2

�
6= 0

55 () fb2[has2i � 1; 0] 6= 0
has2i:

This is straightforward in PVS by expanding the definitions of Æ and [�; �]. �

We now show that the sticky bit is computed correctly for has2i = 0 and has2i = 55, and that
all has2i � 55 are equivalent to the latter case.

57

5.6. STAGE 2: ALIGNMENT SHIFT CHAPTER 5. FLOATING POINT ADDER

fb2[0]

fb2[54]

ortree55

h
d
e
c 6

stickybit

9

as2[5; 0]

[54]

[0]

Figure 5.7: Sticky bit computation

Lemma 58 Let B55 be the unique bitvector of width 6 with hB55i = 55. For as2 2 B
6
; fb2 2 B

55 :

1. has2i = 0 =) stickybit(as2; fb2) = 0;

2. stickybit(B55; fb2) () fb2 6= 0
55
;

3. has2i � 55 =) stickybit(as2; fb2) = stickybit(B55; fb2):

Proof. The proof is similar to the proof of lemma 57; after applying the correctness lemmas of
ortree and hdec, PVS is able to prove the statements by expanding Æ and [�; �]. �

The representative fb3 of fb2 is computed by the bitvector concatenation of a logical right shifter
and stickybit (see figure 5.2):

Circuit 32 Inputs fb2 2 B
55 , as2 2 B

6 , output fb3 2 B
56 .

fb3 := lrs(fb2; as2) Æ stickybit(as2; fb2):

Lemma 59 (STICKY SHIFT CORRECT) For all as2 2 B
6
; fb2 2 B

55 :

hfb3i = [hfb2i � 2�has2i�54]�54 � 255:

Proof. We split the proof in three cases:

1. has2i = 0: In this case, lrs does not modify fb2, and stickybit = 0 by lemma 58. We show

hfb2 Æ 0i = [hfb2i � 2�54]�54 � 255:

Since hfb2i is integer, [hfb2i � 2�54]�54 = hfb2i � 2�54 by the definition of �-representatives.
On the left side oft the equation, we use lemma 4.

hfb2i � 2 = hfb2i � 2�54 � 255:

58

CHAPTER 5. FLOATING POINT ADDER 5.6. STAGE 2: ALIGNMENT SHIFT

2. 0 < has2i < 55: After applying lemma 57, we have

lrs(fb2; as2) Æ stickyhas2i(fb2)

�
= [hfb2i � 2�has2i�54]�54 � 255:

We apply the correctness of lrs (lemma 42):D
0
has2i Æ fb2[54; has2i] Æ stickyhas2i(fb2)

E
= [hfb2i � 2�has2i�54]�54 � 255:

Lemma 4 yields

fb2[54; has2i] Æ stickyhas2i(fb2)

�
= [hfb2i � 2�has2i�54]�54 � 255:

By lemma 46.5 we can scale the �-representative by 2�has2i�54, yielding

fb2[54; has2i] Æ stickyhas2i(fb2)

�
= [hfb2i]has2i � 2

1�has2i:

This is true by theorem 5.

3. has2i � 55: Using lemma 58, we have to show

lrs(fb2; as2) Æ (fb2 6= 0

55)
�
= [hfb2i � 2�has2i�54]�54 � 255:

fb2 is shifted out completely by lrs (lemma 42):

0
55 Æ (fb2 6= 0

55)
�
= [hfb2i � 2�has2i�54]�54 � 255:

Lemma 4 yields

fb2 6= 0

55
�
= [hfb2i � 2�has2i�54]�54 � 255:

In case where fb2 = 0
55, this is trivial by lemma 46.8. For fb2 6= 0

55, we use lemma 46.9,

1 = 2�55 � 255:

The application of lemma 46.9 is valid for hfb2i � 2�has2i�54
< 2�54, which is true. �

5.6.6 Alignment Shifter Correctness

The alignment shifter consists of circuits 25 to 32. This is also the definition of stage 2.

Circuit 33 Inputs (sa; ea; fa), (s0b; eb; fb) 2 I, signals eb>a 2 B, as 2 B
12 , as2 2 B

6 , fb2 2 B
55 ,

outputs (sa2; es; fa2) 2 I, (sb2; es; fb3) 2 I56, sx 2 B . Let the wires be connected as defined in
circuits 25 to 32.

We now can prove that the sum of the outputs of the alignment shifter is �-equivalent to the
sum of the inputs.

Lemma 60 (ALIGN SHIFT CORRECT) For all semi-representable IEEE factorings a := (sa, ea,
fa), b0 := (s0b, eb, fb) 2 I: Let S := [[a]] + [[b0]] 6= 0, ê := �̂e(S).

S �ê�53 2
[es] �

�
(�1)sa2 � hfa2i

252
+ (�1)sb2 � hfb3i

255

�
:

59

5.6. STAGE 2: ALIGNMENT SHIFT CHAPTER 5. FLOATING POINT ADDER

Proof. We apply lemma 59 for fb3:

S �ê�53 2
[es] �

�
(�1)sa2 � hfa2i

252
+ (�1)sb2 � [hfb2i � 2�has2i�54]�54

�
:

We distinguish two cases, depending on the signal eb>a:

1. : eb>a: The significand swap is correct (lemma 56 for sa2, fa2, sb2, and fb2):

S �ê�53 2
[es] �

�
(�1)sa � hfai

252
+ (�1)s0b � [4 � hfbi � 2�has2i�54]�54

�
:

Lemmas 52 (es) and 55 (as2) yield

S �ê�53 2
[ea] �

�
(�1)sa � hfai

252
+ (�1)s0b �

�
4 � hfbi

254
� 2�min([as];B)

�
�54

�
:

By lemma 50 (as), we conclude

S �ê�53 2
[ea] �

�
(�1)sa � hfai

252
+ (�1)s0b �

�
hfbi
252

� 2�min([ea]�[eb];B)

�
�54

�
:

By lemma 61 below, this is equivalent to

S �ê�53 2
[ea] �

�
(�1)sa � hfai

252
+ (�1)s0b �

�
hfbi
252

� 2�([ea]�[eb])

�
�54

�
:

This is true by theorem 8.

2. eb>a: The significand swap (lemma 56 for sa2, fa2, sb2, and fb2) yields

S �ê�53 2
[es] �

�
(�1)sb0 � hfbi

252
+ (�1)sa � [2 � hfai � 2�has2i�54]�54

�
:

We use lemmas 52 (es) and 55 (as2):

S �ê�53 2
[eb] �

�
(�1)s0b � hfbi

252
+ (�1)sa �

�
2 � hfai

254
� 2�min(�[as]�1;B)

�
�54

�
:

Lemma 50 (as) yields

S �ê�53 2
[eb] �

�
(�1)s0b � hfbi

252
+ (�1)sa �

�
hfai
253

� 2�min

�
�([ea]�[eb])�1;B

��
�54

�
:

By lemma 62 below, we have

S �ê�53 2
[eb] �

�
(�1)s0b � hfbi

252
+ (�1)sa �

�
hfai
252

� 2�([eb]�[ea])

�
�54

�
:

This is proved by interchanging a and b in theorem 8. �

Lemma 61 For all semi-representable IEEE factorings a := (sa; ea; fa), b0 := (s0b; eb; fb) 2 I,
where ea � eb, let Æ := [ea]� [eb]:�

hfbi
252

� 2�min(Æ;B)

�
�54

=

�
hfbi
252

� 2�Æ
�
�54:

60

CHAPTER 5. FLOATING POINT ADDER 5.7. STAGE 3: SIGNIFICAND ADDITION

sub

ss

fa2[52; 0] fb3[55; 0]

fs[56; 0]

add sub58

abs58

sx

neg s[57; 0]

sa2

3532

00 000 00

Figure 5.8: Significand addition SigAdd

Proof. By lemma 46.8, the claim is trivial for fb = 0. It is also trivial for Æ � B, where
min(Æ;B) = Æ. For Æ � B, both sides of the equation are equal to 2�55 by lemma 46.9, and the
lemma is proved. �

Lemma 62 For all semi-representable IEEE factorings a := (sa; ea; fa), b0 := (s0b; eb; fb) 2 I,
where ea < eb, let Æ := [ea]� [eb]:�

hfai
253

� 2�min(�Æ�1;B)

�
�54

=

�
hfai
252

� 2�Æ
�
�54:

Proof. Analogous to the proof of lemma 61. �

Theorem 10 (STAGE 2 CORRECT) For all semi-representable IEEE factorings a := (sa; ea; fa),
b
0 := (s0b; eb; fb) 2 I: Let S := [[a]] + [[b0]] 6= 0, ê := �̂e(S).

S �ê�53 [[sa2; es; fa2]] + [[sb2; es; fb3]]:

Proof. Immediate consequence of lemma 60 and the definition of [[�]]. �

5.7 Stage 3: Significand Addition

The third stage adds the significands computed by stage 2. Depending on sx, we have to add or
subtract the significands.

Circuit 34 Inputs (sa2; �; fa2) 2 I, (sb2; �; fb3) 2 I56, sx 2 B , output (ss; �; fs) 2 I57. Let
add sub := add sub(02 Æ fa2 Æ 03;02 Æ fb3; sx).

ss := sa2 � add subneg;

fs := abs(add subs):

Lemma 63 (SIG ADD CORRECT) For all (sa2; �; fa2) 2 I, (sb2; �; fb3) 2 I56, sx 2 B , sx =

sa2 � sb2. Let sum := [[sa2; 0; fa2]] + [[sb2; 0; fb3]].

sum = [[ss; 0; fs]]2:

61

5.8. PUTTING IT ALL TOGETHER CHAPTER 5. FLOATING POINT ADDER

Proof. We show

sum = (�1)sa2�add subneg � habs(add subs)i
255

:

Using the correctness of the abs circuit (lemma 26) yields

sum = (�1)sa2�add subneg � j[add subs]j
255

:

In the case sa2 = sb2 = 0, we have sx = 0 by the assumption on sx. The outputs add subs and
add subneg are correct by lemma 25. In this case,

sum = (�1)0�
�
[02Æfa2Æ0

3]+[02Æfb3]<0

�
�
��[02 Æ fa2 Æ 03] + [02 Æ fb3]

��
255

:

We rewrite with lemmas 10 and 4:

hfa2i
252

+
hfb3i
255

= (�1)(8�hfa2i+hfb3i<0) � j8 � hfa2i+ hfb3ij
255

:

The right side reduces to

hfa2i
252

+
hfb3i
255

=
8 � hfa2i+ hfb3i

255
:

The other cases of sa2 and sb2 are resolved analogously.

It remains to show that the sum of the inputs is representable in the width of the add sub output,
and that the add sub output is a valid input for abs. Both statements are proved by using the fact
that the range of the inputs is limited by the leading zeros fed into add sub. �

Stage 3 consists of the significand addition circuit and an additional wire for passing es (see
figure 5.1).

Theorem 11 (STAGE 3 CORRECT) For all (sa2; es; fa2) 2 I, (sb2; es; fb3) 2 I56, sx 2 B , where
sx = sa2 � sb2, let sum := [[sa2; es; fa2]] + [[sb2; es; fb3]] :

sum = [[ss; es; fs]]2:

Proof. By multiplication with 2es in lemma 63. �

5.8 Putting It All Together

We now combine the above defined stages.

Circuit 35 Inputs (sa; ea; fa); (sb; eb; fb) 2 I, sub 2 B, output (ss; es; fs) 2 I57.

fpadder := stage 3 Æ stage 2 Æ stage 1:

Here, Æ is function concatenation, not bitvector concatenation.

62

CHAPTER 5. FLOATING POINT ADDER 5.9. BOUNDARY CONSTRAINTS

In section 5.1, we argued that the floating point adder is correct if its output is (ê�P)-equivalent
to the correct result, where P = 53. This is proved in the next theorem. Since the significand adder
output fs has two bits in front of the binary point, we use [[�]]2.

Theorem 12 (FP ADDER CORRECT) For all IEEE factorings a := (sa, ea, fa), b := (sb, eb,
fb) 2 Iand subtract bits sub 2 B , let S = [[a]] �sub [[b]], and ê = �̂e(S), where S 6= 0. Then the
following equation holds for the output (ss; es; fs) 2 I57 of fpadder:

S �ê�P [[ss; es; fs]]2:

Proof. We start with

S = [[sa; ea; fa]]�sub [[sb; eb; fb]]:

Theorem 9 yields

S = [[sa; ea; fa]] + [[s0b; eb; fb]]:

By theorem 10, we have

S �ê�P [[sa2; es; fa2]] + [[sb2; es; fb3]]:

By theorem 11, this is

S �ê�P [[ss; es; fs]]2:

Therefore, the VAMP floating point adder is correct. �

Theorem 12 is an excellent example on how the task of “putting it all together” can be handled
in a precise way by application of the specifications of the modules—if the modules have a well
defined behaviour.

5.9 Boundary Constraints

It remains to prove the additional rounder input requirements from section 5.1.

es � emax

holds trivially, since es is chosen from fea; ebg and emax is the maximum value in TN . (We prove
this even if the significand is not denormal.)

To show that we stay in the range that is scalable into the range of representable numbers by
wrapped exponent (section 4.4), we show

2emin�A < j[[s]]j < 2emax+A:

63

5.9. BOUNDARY CONSTRAINTS CHAPTER 5. FLOATING POINT ADDER

Proof. For the lower bound, we first notice that [[s]] 6= 0, since S 6= 0 by assumption, S �� [[s]]

by theorem 12, and [[s]] = 0 () [[s]] �� 0 by lemma 46.8. The smallest positive representable
number is 2emin�P+1. We finish this case by observing A� P , and hence,

2emin�A < 2emin�P+1 � j[[s]]j:

For the upper bound, we start with theorem 12:

[[s]] �ê�P [[a]]�sub [[b]]:

This implies

j[[s]]j �ê�P j[[a]]�sub [[b]]j:

We conclude

j[[s]]j < j[[a]]�sub [[b]]j+ 2ê�P :

Using the triangle inequality, this is

j[[s]]j < j[[a]]j+ j[[b]]j+ 2ê�P :

a and b are bounded: [[a]]; [[b]] < 2emax+1, therefore

j[[s]]j < 2emax+1 + 2emax+1 + 2ê�P :

The claim is proved with

j[[s]]j < 2emax+A:

The VAMP floating point adder meets the VAMP rounder specification. �

64

Chapter 6

Summary

6.1 The VAMP Project

Our group at Saarland University is verifying the correctness of the VAMP microprocessor. The
VAMP is a RISC processor based on the DLX architecture [HP96, MP00]. The VAMP features
a five stage pipeline, a Tomasulo scheduler, precise and nested interrupts, delayed branch, and
a fully IEEE compliant floating point unit [JK00, Krö01, BJ01, Jac01b]. The correctness of the
circuits is proved using the PVS theorem prover [OSR92]. The floating point adder that is formally
verified in this thesis is part of the VAMP FPU.

The verified VAMP processor is being implemented on a Xilinx FPGA [BJKL01]. Our group is
porting the gcc compiler and the GNU C library to the VAMP architecture to yield an environment
suitable to evaluating the verified hardware.

All PVS sources—specification, implementation, and proof scripts—and the Verilog hardware
descriptions are publically available at our web site [VAM].

To the best of our knowledge, this is the first time that a complete floating point unit has been
formally verified on the gate level, and all proofs and designs have been published.

6.2 Bugs

‘Bugs’ are either differences between a specification and corresponding implementation, or flaws
in the specification itself. There are several ways to find bugs: proof-reading specification and
implementation, testing, proofs, or combinations of these. The purpose of formal verification is
to find bugs that would otherwise go unnoticed. Formal verification gives—to some extend—the
confidence that the implementation adheres to its specification.

Two problems remain, however. On the one hand, the consistency of the specification itself
cannot be asserted entirely. The specification may be inconsistent, which will probably be found
within the verification process because of inherent errors, or the specification may be consistent,
but be something else than what we wanted to formalize. We can only hope that the provably
correct theorem ‘ the implementation is correct for the specification’ is the same as ‘ the implemen-
tation is exactly what we intended to build’ .

65

6.3. RELATED WORK CHAPTER 6. SUMMARY

Furthermore, the verification tool—PVS in our case—could be unsound, meaning that it is
possible to prove statements that are not true in the mathematical sense. There are some known
flaws in PVS, and it is even possible to prove a theorem stating ‘ false’ by exploiting these flaws.
We tried not to use any faulty proof commands, although it is possible—though unlikely—that we
accidentally got trapped by bugs in PVS that have not yet been discovered.

Bugs found. One major bug in the design of the floating point adder was found in the verifica-
tion. In [MP00], the sign bit ss (called ss1 in the book) is wrongly computed as

ss := (s0b ^ neg) _ (sa ^ : (s0b ^ neg)):

This error results from an erroneous entry in table 8.2 (page 370), where line 7 is marked ‘ im-
possible’ . The proper entry is ‘ impossible’ in line 8, and ‘0’ in line 7. This change results in the
correct equation for the sign bit:

ss := sa � neg:

Other bugs where incorrect bitvector subscripts and exponents in powers of 2. Since these can
be considered to be mere typos, we do not list them here.

No serious bugs in the PVS logic were found, i.e., bugs rendering PVS unsound. Several minor
flaws in the PVS system were reported to SRI [PVS].

6.3 Related Work

Basic circuits. The verification of a simple adder and an arithmetic logic unit using PVS is
reported in [CRSS94]. The PVS bitvectors library [BMS+96] includes a verified carry chain
adder. The verification of an adder using various verification systems is described in [SBE88]. In
[CB96], Bryant verifies fixed size arithmetic circuits against a mathematical specification.

Given a reference design and assuming its correctness, it is state-of-the-art to automatically ver-
ify equivalence with a new design. There are several approaches to this, e.g., boolean equivalence
checkers using BDDs or variations [Bry86, BC95, CFZ95]. In [JLMC97], Clarke et al. use func-
tion abstraction and BDDs for equivalence checking. In [Sta99], Stanion proves the equivalence
of two fixed bit width multipliers.

IEEE standard. Other formalizations of the IEEE standard in theorem proving systems have
been given by Miner [Min95] and Harrison [Har99].

Floating point hardware. Aagaard and Seger combine BDD based methods and theorem prov-
ing techniques to verify a floating point multiplier [AS95]. Chen and Bryant [CB98] use word-
level SMV to verify a floating point adder. Exceptions and denormals are not handled in both
verification projects.

Cornea-Hasegan describes the computation of division and square root by Newton-Raphson
iteration in the Intel IA-64 architecture [CH98, CHN99]. The verification is done using Mathe-
matica. O’Leary et al. report on the verification of the gate level design of Intel’s FPU using a
combination of model-checking and theorem proving [OZGS99]. Denormals and exceptions are
not covered in the paper.

66

CHAPTER 6. SUMMARY 6.4. PROSPECT

Moore et al. have verified the AMD K5 division algorithm [MLK98] with the theorem prover
ACL2. Russinoff has verified the K5 square root algorithm as well as the Athlon multiplication,
division, square root, and addition algorithms [Rus98, Rus99, Rus00].

6.4 Prospect

There are several ways in which to extend the work on the VAMP architecture:

� Modern FPUs support a vast variety of operations, such as square root, trigonometric func-
tions, and compound operations as 1

1�x2
. One could verify functional units for these and

incorporate them into the VAMP FPU.

� Similarly, modern CPUs support more precision modes.

� Efficiency was not a goal of the VAMP project. One could improve both throughput and
latency of the verified functional units.

� In an analogous way, the above points apply to the VAMP integer core, pipeline, and control.

� Hardware verification is difficult, and even reusing proofs for similar circuits and modules
requires much effort. A better framework for handling (hardware) proofs would be benefi-
cial.

� We have verified the PVS hardware specifications, and translated these to Verilog using a
tool that has not been verified. One could formally verify the Verilog specifications.

67

6.4. PROSPECT CHAPTER 6. SUMMARY

68

Bibliography

[AS95] M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined double-
precision IEEE floating-point multiplier. In ICCAD, pages 7–10. IEEE, November
1995.

[BC95] R. E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with binary moment
diagrams. In 32nd ACM/IEEE Design Automation Conference, Pittsburgh, June 1995.
Carnegie Mellon University.

[BJ01] Christoph Berg and Christian Jacobi. Formal verification of the VAMP floating point
unit. To appear in CHARME 2001, 2001.

[BJK01] Christoph Berg, Christian Jacobi, and Daniel Kröning. Formal verification of a basic
circuits library. In IASTED International Conference on Applied Informatics. ACTA
Press, February 2001.

[BJKL01] Sven Beyer, Christian Jacobi, Daniel Kröning, and Dirk Leinenbach. Correct hard-
ware by synthesis from PVS. Submitted to ICCD 2001, 2001.

[BMS+96] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and Steven P.
Miller. A bitvectors library for PVS. Technical Report TM-110274, NASA Langley
Research Center, 1996.

[Bry86] Bryant, R. E. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

[CB96] Y. Chen and R. Bryant. ACV: An arithmetic circuit verifier. In In Proc. of IEEE ICCD
’96, pages 361–365. IEEE, 1996.

[CB98] Y.-A. Chen and R. E. Bryant. Verification of floating point adders. In CAV’98, volume
1427 of LNCS, 1998.

[CFZ95] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams overcoming the
limitations of MTBDDs and BMDs. In ICCAD, pages 159–163, Los Alamitos, Ca.,
USA, November 1995. IEEE Computer Society Press.

[CH98] Marius Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point
square root, divide, and remainder algorithms. Intel Technology Journal, Q2, 1998.

[CHN99] Marius Cornea-Hasegan and Bob Norin. IA-64 floating point operations and the IEEE
standard for binary floating-point arithmetic. Intel Technology Journal, Q4, 1999.

69

BIBLIOGRAPHY BIBLIOGRAPHY

[COR+95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to
PVS. In WIFT’95: Workshop on Industrial-Strength Formal Specification Techniques,
1995.

[CRSS94] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving for
hardware verification. In 2nd International Conference on Theorem Provers in Circuit
Design, volume 901 of LNCS, pages 203–222. Springer, 1994.

[EP97] Guy Even and Wolfgang J. Paul. On the design of IEEE compliant floating point
units. In Proceedings of the 13th Symposium on Computer Arithmetic. IEEE Computer
Society Press, 1997.

[Gen35] G. Gentzen. Untersuchungen über das logische Schließen. In Mathematische
Zeitschrift, volume 1, pages 176–210, 1935.

[Gol96] David Goldberg. Computer arithmetic, 1996. Appendix A in [HP96].

[Har99] John Harrison. A machine checked theory of floating point arithmetic. In TPHOL
’99, volume 1690 of LNCS. Springer, 1999.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[Ins85] Institute of Electrical and Electronics Engineers. ANSI/IEEE standard 754–1985,
IEEE Standard for Binary Floating-Point Arithmetic, 1985.

[Jac01a] Christian Jacobi. A formally verified theory of IEEE rounding. Unpublished, available
at http://www-wjp.cs.uni-sb.de/˜cj/ieee-lib.ps, 2001.

[Jac01b] Christian Jacobi. Formal Verification of an IEEE Compliant Floation Point Unit. PhD
thesis, Saarland University, Computer Science Department, due in 2001.

[JK00] Christian Jacobi and Daniel Kröning. Proving the correctness of a complete micro-
processor. In Proc. of the 30. Jahrestagung der Gesellschaft f̈ur Informatik. Springer,
2000.

[JLMC97] Somesh Jha, Yuan Lu, Marius Minea, and Edmund M. Clarke. Equivalence checking
using abstract BDDs. In Proc. of IEEE ICCD ’98, pages 332–337. IEEE, 1997.

[KP97] Joerg Keller and Wolfgang J. Paul. Hardware Design, Formaler Entwurf digitaler
Schaltungen, volume 15 of Teubner-Texte zur Informatik. Teubner, 1997.

[Krö01] Daniel Kröning. Formal Verification of Pipelined Microprocessors. PhD thesis, Saar-
land University, Computer Science Department, 2001.

[Min95] Paul S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical
Report TM-110167, NASA Langley Research Center, 1995.

[MLK98] J Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the
AMD5K86 floating point division program. IEEE Transactions on Computers,
47(9):913–926, 1998.

[MP95] Silvia M. Mueller and Wolfgang J. Paul. The Complexity of Simple Computer Archi-
tectures. Springer, 1995.

70

BIBLIOGRAPHY BIBLIOGRAPHY

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture. Complexity and
Correctness. Springer, 2000.

[OSR92] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In 11th
International Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752. Springer, 1992.

[OZGS99] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compli-
ance of floating-point hardware. Intel Technology Journal, Q1, 1999.

[Pra95] V. R. Pratt. Anatomy of the pentium bug. In TAPSOFT’95, volume 915, pages 97–
107, Aarhus, Denmark, 1995. Springer-Verlag.

[PVS] PVS bugs. http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/, Bugs #474, 529, 538, 551.

[Rus98] David M. Russinoff. A mechanically checked proof of IEEE compliance of the float-
ing point multiplication, division and square root algorithms of the AMD-K7 proces-
sor. LMS Journal of Computation and Mathematics, 1:148–200, 1998.

[Rus99] David M. Russinoff. A mechanically checked proof of correctness of the AMD K5
floating point square root microcode. Formal Methods in System Design, 14(1):75–
125, January 1999.

[Rus00] David M. Russinoff. A case study in formal verification of register-transfer logic
with ACL2: The floating point adder of the AMD Athlon processor. In FMCAD-00,
volume 1954 of LNCS. Springer, 2000.

[SBE88] V. Stavridou, H. Barringer, and D.A. Edwards. Formal specification and verification
of hardware: A comparative case study. In Proceedings of the 25th ACM/IEEE con-
ference on Design Automation, pages 197–204, 1988.

[Sta99] Ted Stanion. Implicit verification of structurally dissimilar arithmetic circuits. In
Proc. of IEEE ICCD ’99, pages 46–50. IEEE, 1999.

[VAM] The VAMP processor homepage. http://www-wjp.cs.uni-sb.de/projects/verification/.

[Xil00] Xilinx, Inc. Virtex-E 1.8V Field Programmable Gate Arrays, Preliminary Product
Specification, 2000.

71

