Scholars Academic Journal of Pharmacy (SAJP)

Sch. Acad. J. Pharm., 2013; 2(2):89-93

©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Review Article

Pharmacological Review of *Flacourtia sepiaria* (Ruxb.)

Sanjeeb Kumar Patro^{1*}, Padmacharan Behera¹, Posa Mahesh Kumar¹, D.Sasmal¹, Ranjan Kumar Padhy², S. K. Dash²

¹Department of pharmaceutical sciences, BIT, Mesra, Ranchi.835215 ²College of pharmaceutical sciences, Bramhapur (Mohuda), Ganjam, Odisha.760002

*Corresponding author Sanjeeb Kumar Patro

Email: sanjeeb.sms@gmail.com

Abstract: The medicinal plants are widely used by the traditional medical practitioners for curing various diseases in their day to day practice. *Flacourtia sepiaria* (Flacourtiaceae) is the most useful traditional medicinal plant in India. Although there is no such Phytopharmacological activities has been carried out but, still it is considered as a valuable source of unique natural products for development of medicines and targeting against various diseases. Each part of its allied species i.e., (leaves, bark, stem, fruits, root and even whole plant) of the *Flacourtia indica* has demonstrated several pharmacological activities including Anti-Inflammatory, Antimicrobial, Antioxidant, Hepatoprotective, Antimalarial, Anti-Diabetic, Anti asthmatic and Antibacterial Activity. The present review highlights a literature on botanical and pharmacological discussion of Flacourtia sepiaria.

Keywords: Flacourtia sepiaria, *Flacourtia indica*, Phytoconstituents, Phytopharmacology, Indigenous medicinal plant.

INTRODUCTION:

A large proportion of the population in many developing countries relies on traditional herbal practioners to meet their primary health care needs. Amidst wide range of availability of modern i.e. medicines, herbal medicines synthetic appropriately the herbal drugs or herbals often retain their popularity for their intense historical and cultural values. In view of the increasing demand of these herbal drugs, the issues regarding their safety, efficacy and quality maintenance in industrialized and developing countries as well are cropped up. These herbals and their isolated compounds i.e. the bio-active principles, have demonstrated spectra of biological activities. Therapeutic data on such herbals are comprehensive from the medico folk lore literatures of many regions as recorded from time to time.

Flacourtia sepiaria (Ruxb.), synonym of Flacourtia indica (Burm. f.) Merr, Flacourtia ramontchi L'Herit. (Family- Flacourtiaceae), commonly known as 'Tuturi' or 'Bainchi' or 'Katai'. It is an indigenous medicinal plant widely distributed in India and Bangladesh [1]. This plant has been reported as an answer for the treatment of functional disorders like rheumatoid arthritis and gout. The areal part of plant i.e., its fruits are edible; the bark triturated in sesamum oil is used as aliniment in rheumatism. This tree yields an antidote to snake -bites from an infusion of the leaves and roots. In indo china, the liquid from the infusion the roosted or grilled leaves of Flacourtia sepiaria given to women after parturition [2]. The allied species of the plant fruits are used as appetizing, diuretic, and digestive, in jaundice and enlarged spleen. Barks are used for the treatment of intermittent fever. Roots are used in nephritic colic and gum is used in

cholera [1, 3]. Previous Phytochemical investigation on its allied species of plant (F. indica) resulted in the isolatation of β -sitosterol (a well-known phytosterol), β -sitosterol- β - Dglucopyranoside, ramontoside, butyrolactone lignan disaccharide, flacourtin, coumarin such as scoparone and aesculetin [3-5]. Thin layer chromatographic screening and isolation of phytochemicals from F. indica showed the presence of flavonoids, poly phenols and other compounds [3-6].

PLANT DESCRIPTION:

1.1.1. Family : Salicaceae

1.2. Taxonomy:

Domain : Eukarvota Kingdom : Plantae : Viridaeplantae Subkingdom Phylum : Tracheophyta Subphylum : Euphyllophytina Infraphylum : Radiatopses : Magnoliopsida Class : Rosidae Subclass Superorder : Violanae Order : Malpighiales Family : Salicaceae Tribe : Flacourtieae Genus : Flacourtia Specific epithet : sepiaria - Roxb.

Botanical name : Flacourtia sepiaria Roxb.

Vernacular Names:

Hindi. : kondai

Eng. : Governors Plum, Madaraskara Plum

Ori. : Tuturi. Sansk. : kinkini. Guj. : Kankata Kan. : Llumanika, Dodda Gejjalakai

Mal. : Conoron.

Mar. : Kaker, Bhekal.

Punj. : kingaro, sherwam

Tam. : Sottaikala, Kanru, Kattukala. Tel. : Conrew, Mulu Tiruman.

Related Species of F. sepiaria

- Flacourtia afra Pic.Serm.
- Flacourtia amalotricha A.C.Sm.
- Flacourtia amara Span.
- Flacourtia aulakocarpa Hassk.
- Flacourtia balansae Gagnep.
- Flacourtia benthamii Tul.
- Flacourtia calophylla Benth. ex Eichl.
- Flacourtia campbelliana Roxb.
- Flacourtia camptoceras Miq.
- Flacourtia cataphracta.
- Flacourtia cavaleriei H.Lév.
- Flacourtia celastrina H.B. & K.
- Flacourtia cerasifera Zippel. ex Slooten.
- Flacourtia chinensis Clos.
- Flacourtia cinerea H.B. & K. ex Hemsl.
- Flacourtia cordata H.B. & K.
- Flacourtia cordifolia Roxb.
- Flacourtia corollata Blanco.
- Flacourtia crenata Wall.
- Flacourtia cuphlebia Merr.
- Flacourtia degenori A.C.Sm.
- Flacourtia digyna Benth. ex Eichl.
- Flacourtia edulis Schumach. & Thonn.
- Flacourtia elegans Tul.
- Flacourtia elliptica Warb.
- Flacourtia euphlebia.
- Flacourtia ferox Wall. ex Voigt.
- Flacourtia flavescens Willd.
- Flacourtia flexuosa H.B. & K.
- Flacourtia gambecola Clos.
- Flacourtia helferi Gamble ex Ridl.
- Flacourtia heterophylla Turcz.
- Flacourtia hilsenbergii C.Presl.
- Flacourtia hirtiuscula Oliv.
- Flacourtia indica.
- Flacourtia inermis.
- Flacourtia integrifolia Merr.
- Flacourtia jangomas.
- Flacourtia japonica Hort. ex Lavall.
- Flacourtia kelampagine Eeden.
- Flacourtia kinabaluensis Sleumer.
- Flacourtia kirkii Burtt Davy.
- Flacourtia lanceolata Slooten.
- Flacourtia latifolia T.Cooke.
- Flacourtia lenis Craib.
- Flacourtia lucida Salisb.
- Flacourtia ludiifolia H.Perrier.
- Flacourtia magallanensis Elmer.
- Flacourtia megaphylla Ridl.

- Flacourtia mollipila Sleumer.
- Flacourtia mollis Hook.f. & Thomson
- Flacourtia montana Zipp. ex Span.
- Flacourtia nitida Benth.
- Flacourtia nivea Moon
- Flacourtia obcordata Roxb.
- Flacourtia obtusa Hochst. ex Clos
- Flacourtia obtusata Hochst, ex A.Rich.
- Flacourtia occidentalis Blatt.
- Flacourtia oppositifolia Gagnep.
- Flacourtia ovata Gillespie
- Flacourtia papuana Pulle
- Flacourtia parviflora Blanco
- Flacourtia parvifolia Merr.
- Flacourtia peninsularis Elmer ex Merr.
- Flacourtia perrottetiana Clos.
- Flacourtia prunifolia H.B. & K.
- Flacourtia quintuplinervis Turcz.
- Flacourtia racemosa Siebold & Zucc.
- Flacourtia ramontchi
- Flacourtia rhamnoides Burclt. ex DC.
- Flacourtia rindianica Slooten.
- Flacourtia rotundifolia Roxb.
- Flacourtia rukam.
- Flacourtia sapida Roxb.
- Flacourtia spiculifera Tul.
- Flacourtia stigmarota Wall.
- Flacourtia subintegra A.C.Sm.
- Flacourtia sulcata Elmer.
- Flacourtia sumatrana Planch. ex Hook.f.
- Flacourtia territorialis Airy Shaw.
- Flacourtia thorelii Gagnep.
- Flacourtia timorensis Zipp. ex Span.
- Flacourtia tomentella Miq.
- Flacourtia tomentosa C.Presl.
- Flacourtia velutina Tul.
- Flacourtia vitiensis (Seem.) A.C.Sm.
- Flacourtia vogelii Hook.f.
- Flacourtia wightiana Wall.
- Flacourtia zippelii Slooten

F. sepiaria is a species found from the Punjab eastward to Bihar, the Deccan and the southern Peninsula. This plant is an erect branched, more or less spiny busy shrub of small tree, growing to a height of 3 meters. Spins are slender and scattered, up to 2 cm long. A small shrub bearing purplish, sweetish fruit about the size of a small cherry, and is edible. Fruit of the plant is red or brown, dark pinky when ripe. Again its fruit has a pleasant, subacid flavor when perfectly ripe, but the unripe fruit is extremely astringent. The bark of F. sepiaria is yellowish-red thin. This tree yields an antidote to snake-bites from an infusion of the leaves and roots: the bark triturated in sesamum oil is used as a liniment in rheumatism. However its allied species i.e.,

F. indica are given in jaundice and enlarged spleen. After child birth among the poor the seeds are grind to powder with turmeric and rubbed all over the body to prevent rheumatic pains from exposure to damp winds. Gum is administered along with other ingredients in cholera [7].

Trees or shrubs, deciduous or rarely evergreen, dioecious, rarely polygamous. Leaves alternate, rarely subopposite, usually petiolate, simple; stipules persistent or caducous. Catkins erect or pendulous; each flower usually with a cupular disc or 1 or 2(or 3) nectariferous glands. Male flowers with 2-many stamens; filaments filiform, free or united; to connate; anthers 2(or 4) -loculed, dehiscing longitudinally. Female flowers with 1 pistil, sessile or stipitate; ovary superior, 1- or 2-loculed; ovules several to many, anatropous, with a 1 integument; style 1, 2 in Chosenia; stigmas 2-4. Capsule dehiscing by 2-4(or 5) valves; placenta and inside wall of ovary with long hairs. Seeds 4-numerous, glabrous; hairs and seeds simultaneously deciduous when capsule matures. Three genera and about 620 species: mainly N hemisphere, a few in S hemisphere; three genera and 347 species (236 endemic) in China, including at least nine hybrids and at least one introduced speies.

Phytochemical studies

From literature, there is presence of one phytochemical constitute i.e., phenolic glycoside was established where as phytochemical studies carried out on Flacourtia indica have reported the identification of some phytoconstituents like: Phenolic glycosides, lignan and sterol like β-sitosterol, polysaccharide, Flavonoids and Condensed tannins, Alkaloids, terpenoids and sugars, Coumarin such as scoparone and aesculetin other. compounds Flacourtin, like Pyrocatechol, Homaloside D, Poliothrysoside, sitosterol, β-D-glucopyranoside, Ramantoside & Butyrolactone lignan disaccharides.

Folkloric / ethnomedicinal claims:

- ➤ In Madagascar, the bark triturated in sesamum oil is used as aliniment in rheumatism and gout.
- As an antidote to snake –bites from an infusion of the leaves and roots.
- ➤ In indo china, the liquid from the infusion the roosted or grilled leaves given to women after parturition.
- The ashes of the roots are used for kidney ailment.
- The fruit is used for appetizing, carminative, bilious disorders and to relieve nausea and vomiting.
- > The leaves are useful in pruritus scabies.
- > The fruit is a pleasant, acidic taste and is very refreshing.

> Dried leaves are used in asthma, bronchitis and hepatic disorders.

Edible uses : In India, fruits consumed as

food by local people.

Useful parts : Leaves, barks and roots.

: Fruit is astringent.

: Dried leaves considered

carminative, tonic and astringent.

Mode of application : External / Internal.

THERAPEUTIC USES:

The leaves and barks of F. sepiaria are used as various disorders like liver disorder, rheumatoid arthritis and treatment of gout. However, its allied species i.e., the roots of F. indica are sweet, refrigerant, depurative, alexipharmic and diuretic. They are useful in vitiated conditions of pitta and vata apathies, poisonous bites, skin diseases, pruritus, erysipelas, strangury, nephropathy and psychopathy. The leaves are useful in pruritus and scabies. The fruits are sweet, appetizer, digestive and diuretic, and are useful in stranguery jaundice, gastropathy and splenomegaly.

PHARMACOLOGICAL ACTIVITIES:

'From the literatures, only one pharmacological activity was established for F.sepiaria. However, the various pharmacological activities of its other allied species i.e., F. indica and F. jangomas as imbibed from literatures are accounted as follows.

In vitro Antioxidant Activity [9]

Tyagi et al. reported screening of *in vitro* antioxidant activity on F. indica leaves. The results of phytochemical tests showed the presence of alkaloids, tannins, saponins, flavonoids, glycosides, phenolic compounds, terpenoids and steroids. The antioxidant activity was evaluated using methanolic and aqueous extracts. F. indica was found to possess potent free radical scavenging and antioxidant activity.

Hepatoprotective Activity [10,11,12]

Varkey et al. [10] reported that F. indica leaves possess activity methotrexate induced hepatotoxicity on rats. The acute toxicity study was performed in petroleum ether extract of aerial parts, results indicated that dose of 1750 mg/ kg was tolerated in mice. Methotrexate induced hepatotoxicity characterized by significant alterations in marker enzymes for liver function and oxidative stress were observed. F. indica treatment in a dose of 350mg/kg orally for 5 days significantly improved level of marker enzymes for liver function and oxidative stress. Histopathological studies revealed a relative degree of reversal of Methotrexate induced necrosis was observed.

Nazneen et al. [11] reported hepatoprotective properties of the petroleum ether, ethyl acetate and

methanol extracts of aerial parts of F. indica in rat models. The significant reduction of the SGOT and SGPT were exhibited by petroleum ether and ethyl acetate extracts at a single oral dose of 1.5 g/kg of body weight with a reduction of 29.0% SGOT & 24.0% SGPT level by petroleum ether extract, and 10.57% SGOT & 6.7% SGPT level by ethyl acetate extract when compared to paracetamol (3 g/kg of body weight) treated animals. Petroleum ether and ethyl acetate extracts showed good recovery of paracetamol induced necrosis in histopathological examination. methanol extract obtained by successive cold extraction did not show any remarkable effect. It was reported that hepatoprotective effects exhibited by petroleum ether and ethyl acetate extract might be mediated by the inhibition of microsomal drug metabolizing enzymes.

Gnanaprakash et al. [12] hepatoprotective activity of aqueous extract of leaves of F. indica against carbon tetrachloride induced hepatotoxicity. Animals were pretreated with the aqueous extract of F. indica (250 & 500 mg/kg body weight) for one week and then challenged with CCl4 (1.5 ml/kg BW) in olive oil (1:1, v/v) on 7th day. Serum marker enzymes (ALP, AST, ALT, Total protein, Total Bilirubin) and TBARS level were estimated in all the study groups. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP, Total Protein, Total Bilirubin and lipid peroxides (TBARS) were tested in both CCl4 treated and extract.

Antimalarial Activity [13]

A M Kaou et al. [13] reported phytochemical studies on the aerial parts of F.indica and investigated three compounds pyrocatechol, homaloside D and poliothrysoside isolated from this plant. The in vitro antiplasmodial activity on the chloroquine-resistant strain of Plasmodium falciparum and the cytotoxicity on two complementary human cells lines (THP1, HepG2), of AcOEt extract obtained after liquid/liquid extraction of the decoction and pure compounds were evaluated. The results elucidated as the poliothrysoside isolated from the extract had strong antiplasmodial activity and a good selectivity index (>28) similar to chloroquine.

Antibacterial Activity [14]

G C Sarker et al. [14] reported *in vitro* antibacterial screening by disc diffusion method against two Gram positive and two Gram negative bacteria by chloroform soluble fraction of Flacourtia jangomas and Flacourtia sepiaria. Chloroform fraction of *Flacourtia indica* found to possess no activity against E. coli and Bacillus cereus.

Anti-Diabetic Activity [15]

A K singh et al. [15] investigated the acute and subacute antidiabetic effect of the two different doses (200 and 400 mg/kg b.w.) of Flacourtia jangomas extracts in streptozotocin induced diabetic rats. Fasting blood glucose level, body weight and serum lipid profiles were evaluated in normal and diabetic rats. The extract significantly reduces the fasting blood glucose

level and increases the glycogen level as compared to diabetic control. Serum lipid profile had shown a significant improvement in the treatment group.

Anti-Inflammatory and Antimicrobial Activity [16]

S Lalsarea et al. [16] evaluated antiinflammatory activity and antimicrobial activity of Flacourtia ramontchi by Carrageenan induced rat paw model and cup and plate method respectively with chloroform, methanol and hydromethanolic extracts. The results indicated that all extracts chloroform, methanol and hydromethanolic of the leaves have antiinflammatory activity. Methanol extract possess broadspectrum antimicrobial activity at concentration 10000 g/ml whereas hydromethanolic and chloroform extracts having less antimicrobial activity.

Anti-Asthmatic Potential [17]

S Tyagi et al.[17] reported that ethanolic extract showed anti-ashmatic activity. When guinea pigs exposed to histamine significant increase in preconvultion time was observed due to pretreatment with F. indica. The bronchodilating effect was comparable to ketotifen fumarate. The antiasthamatic effect suggested that anti-asthmatic activity could be due to its bronchodilator and cell stabilising property.

CONCLUSION

Flacourtia sepiaria (Flacourtiaceae) is the most useful traditional medicinal plant in India. Although there is no such Phytopharmacological activities has been carried out but, still it is considered as a valuable source of unique natural products for development of medicines and targeting against various diseases. Each part of its allied species i.e., (leaves, bark, stem, fruits, root and even whole plant) of Flacourtia indica has demonstrated several pharmacological activities including Anti-Inflammatory, Antimicrobial. Antioxidant. Hepatoprotective, Antimalarial, Anti-Diabetic, Anti asthmatic and Antibacterial Activities and Most of therapeutic effects explained due to the presence of glycosides, tannins, Sugar, flacourtin, β-sitosterol, ββ-D-glucopyranoside, sitosterolramontoside, butyrolactone lignan disaccharide, coumarin such as scoparone and aesculetin etc. So its quantification of the individual phytoconstituents as well as pharmacological profile based on in vitro, in vivo studies and on clinical trials should be further investigated.

REFERENCES

- 1. Kirtikar KR and Basu BD; Indian Medicinal Plants, 3rd edition Vol II, Singh and MP Singh Publications. 1998: 220.
- 2. Perry L.M. and Metzger J; Medicinal Plants of East and Southeast Asia, Attributed Properties and Uses, The MIT Press Cambridge, 1980: 155.

- 3. Nazneen M, Mazid MA, Kundu JK, Bachar SC, Rashid MA and Datta BK; Protective effects of *Flacourtia indica* aerial parts extracts against paracetamol-induced hepatotoxiciy in rats, J Biol Sci., 2002,11(2):183-187.
- **4.** Satyanarayana V, Kurupadanam GL and Srimanaraya G; A butyrolactone lignin disaccharide from Flacourtia ramontchi, Phytochemistry, 1991, 30:1026-1029.
- **5.** Bhaumik PK, Guha KP, Biswas GK and Mukherjee B; Flacourtin, a phenolic glucoside ester from *Flacourtia indica*, Phytochemistry, 1987, 26:3090-3091.
- **6.** KoKate CK; Pharmacognosy, 18th ed, Nirali prakashan, 2002:276.
- Nadkarni KM; Indian Meteria Medica, 2nd edition vol I, Popular Prakashan pvt.ltd, Mumbai, 1927: 555.
- **8.** The Ayurvedic Pharmacopoeia of India, 1st edition Part I Volume IV, edition, National Institute of Science Communication, New Delhi, 1999: 118-119.
- Tyagi SN, Rakshit, Singh A, Raghvendra, Saxena A and Patel BD; *In vitro* Antioxidant Activity of Methanolic and Aqueous Extract of F.indica Merr, American- Eurasian Journal of Scientific Research, 2010, 5(3):201-206.
- **10.** Vaidyaratnam PS and Sala AV; Indian medicinal plants, Vol III, Orient Longman Pvt Ltd, Chennai, 1999:43-44.
- **11.** Varkey J and Thomas J; Protective effect of F.indica (burm.F) merr., In Methotrexate

- Induced Hepatotoxicity, An International Journal of Advances in Pharmaceutical Sciences, 2011, 2(2 3):115-123.
- 12. Gnanaprakash K; Aqueous Extract of F. indica Prevents Carbon Tetrachloride Induced Hepatotoxicity in Rat, International Journal of Biological and Life Sciences, 2010, 6(1):51-55
- **13.** Kaou AM, Mahiou-Leddet V, Canlet C, Debrauwer L and Hutter S; Antimalarial compounds from the aerial parts of *Flacourtia indica* (Flacourtiaceae), Journal of Ethnopharmacology, 2010, 130(2): 272-274.
- **14.** Sarker GC, Zahan R, Alam BM, Islam MDS, Mosaddik MA and Haque ME K; Antibacterial activity of Flacourtia jangomas and Flacourtia Sepiaria, Int J of Pharm & Life Sci., 2011, 2(7):878-883.
- **15.** Singh AK and Singh J; Evaluation of antidiabetic potential of leaves and steam of Flacourtia jangomas in streptozotocininclude diabetic rats, Indian J Pharmacol, 2010, 42(5):301-305.
- 16. Lalsare S, Verma PK, Khatak M, Ranjan S, Rajurakar S and Gurav SS; Anti-Inflammatory and Antimicrobial activity of Flacourtia Ramontchi Leaves, Int J Drug Dev & Res., 2011, 3(2):308-313.
- 17. Tyagi S, Singh M, Singh D, Yadav I, Singh S and Mansoori MH; Anti-Asthamatic Potential of F.indica Merr., African Journal of Basic & Applied Sciences, 2011, 3(5):201-204.