
Report - Final results: INT2021-02 Characterisation of protected coral interactions

Stefan Meyer

Client Report for Conservation Services Programme, Department of Conservation
Proteus Client Report: 173
September 28, 2023

REPORT PRODUCED BY: PROTEUS

PO Box 7 Outram, 9062 New Zealand

E: info@proteus.co.nz http://www.proteus.co.nz

© PROTEUS 2023

Citation: Meyer, S. (2023). Report - Final results: INT2021-02 Characterisation of protected coral interactions. Report for Conservation Services Programme, Department of Conservation, Proteus Client Report: 173. Proteus, Outram, New Zealand.

Disclaimer: This report is intended for our client, Conservation Services Programme, Department of Conservation (csp@doc.govt.nz), for a specific purpose. It may contain relevent information for others but Proteus and its employees do not guarantee that the report is appropriate for other purposes, or without flaw of any kind, and therefore disclaims all liability for any error, loss or other consequence which may arise from your relying on any information in this report.

Front cover photo: Cup coral (Courtesy of Department of Conservation).

1	Summary	. 5
2	Introduction	. 7
3	Methods	. 8
3.1	Data preparation	8
3.2	Species grouping	11
3.3	Data summaries and spatial mapping	12
3.4	Coral captures dashboard	12
3.5	Statistical analysis	13
4	Results	17
4.1	Data imputation	17
12	Data quality	22

4.3	Overall coral captures	25
4.4	Species group-specific coral catch	34
4.5	Temporal distribution of coral catch (bottom trawl fisheries)	38
4.6	Model fitting	44
4.7	Fisher-reported coral captures	56
5	Discussion	61
	Bibliography	66
6	Appendix	67
6.1	Description of coral groups	67
6.2	Coral catch weight by fishing method and target species	70
6.3	Time series for black coral, lace coral, and gorgonian captures	71
6.4	Spatial distribution of protected coral species group captures bottom-trawl fisheries	in 75
6.5	Spatial distribution of coral captures for seven groups represent mix of morphological and/or taxonomic division in bottom-traffisheries	_
6.6	Spatial distribution of 12 individual taxa with known species distrition in bottom-trawl fisheries	bu- 90
6.7	Model fitting: Diagnostics and estimates	103
6.7.1	Logistic GAM	103
6.7.2	GAM fitted to Box-Cox transformed coral catch weight data	121
6.8	Fisher-reported coral captures	136

This study focused on analyzing the spatio-temporal distribution of observed coral captures in New Zealand's commercial fisheries between the 2007–08 and 2019–20 fishing years. The majority (99%) of reported coral catch was attributed to bottom trawl fisheries. The study specifically examined trends in protected coral species groups, including black corals, gorgonians, lace corals, and stony corals.

The study suggests that the current grouping of protected coral species into stony corals, black corals, lace corals, and gorgonians is currently adequate to assess coral-fisheries interactions broadly at a high taxonomic level. However, we recommend further differentiating of stony corals into stony cup corals and stony branching corals, as the latter have higher catch rates within bottom trawl fisheries. Further, disaggregating the stony coral group revealed that branching corals were typically caught within Fishery Management Areas (FMAs) 6 and 9, while cup-forming corals were typically caught within FMA 4.

The analysis highlights the limitations of using catch weight as a measure of the impact of fishing on coral habitats. Large coral captures are often subjectively estimated, and the accuracy of reported catch weights is questionable. Therefore, catch weight is not considered a reliable indicator of fishery impact on coral communities. We suggest assessing the risk of commercial fishing on corals based on presence-absence data of coral captures.

The evaluation of coral bycatch data and presence-absence data suggests that stony corals are the most commonly reported group of corals in observed bycatch within and outside

6 1. Summary

the Exclusive Economic Zone (EEZ), with much lower occurrences in observed bycatch of the other groups. Further, stony corals are predominantly caught in bottom trawl fisheries that target orange roughy in the North-East Chatham Rise region. The analysis of stony coral catch weights did not reveal a clear pattern over the assessed period, although the first three years stood out with particularly high reported catch weights. However, caution is necessary when interpreting these findings due to inconsistent methods of determining catch weights. While the analysis of presence-absence data can help identify risk areas of coral catch in commercial fisheries, it does not provide a comprehensive measure of the actual impact on coral communities. Factors such as habitat destruction, physical damage, and post-capture mortality should be considered. The study emphasizes the need for standardized protocols for determining coral catch weights and exploring alternative indicators that capture the broader ecological implications of fishing on coral habitats.

In this project, protected coral bycatch records stored in the Centralised Observer Database (COD) for the 2007–08 to 2019–20 fishing years were collated and analysed to assess coral interactions with commercial fisheries in New Zealand (in and outside the Exclusive Economic Zone (EEZ)), and how this relates to predicted coral distributions, so as to assess the risk of coral interactions for various fishery strata (e.g., target fishery, fishing method, etc.). Further, fisher-reported data (within the EEZ) were evaluated to determine its usefulness to improve our understanding of the extent of coral bycatch across New Zealand fisheries. Capture locations were mapped, and captures were summarized to identify areas and/or factors with increased risk for coral-fisheries interactions. Where possible, the visual assessment of risk factors was supported via statistical analysis (limited to data within the EEZ) to quantify the relative effect of risk factors on coral taxa. An interactive dashboard was developed, allowing DOC and other potential end-users to dynamically explore the results and to restructure outputs different from those provided in the static report.

Objectives

- 1. To improve our understanding of the historical and current extent of, and variation in, protected coral bycatch across multiple fisheries and fishing methods.
- 2. To improve our understanding of the risks of fishing to protected corals and how those risks vary temporally and spatially.
- 3. To understand which coral taxa are most vulnerable to interactions with commercial fisheries.
- 4. To inform focus areas / fisheries for mitigation efforts.
- 5. To inform development of a risk assessment.

3.1 Data preparation

Observer-reported coral captures. Coral catches within commercial fisheries are not contained within the Protected Species Captures Database (PSCDB) (Abraham and Berkenbusch, 2019), as well as not recorded on Protected Species Interaction forms. Instead, they are documented on a Benthic Materials form, and this data is stored within the Centralised Observer Database (COD). Therefore, the Centralised Observer Database (COD) was used to characterise the extent and variation of coral bycatch across New Zealand's commercial fisheries. The collection of coral samples by observers commenced in 2007 to enable post hoc expert verification of the coral ID reported by observers and updates to bycatch databases. Therefore, coral-fisheries interactions were updated for the 2007–08 to 2019–20 fishing years.

An extract of observed captures (including attributes such as fishing locations) from the COD were supplied by the Ministry for Primary Industries (MPI). The following data preparation steps were applied:

- Observer-reported coral identifications were substituted with expert-based coral identifications when these were available (both provided in COD extract).
- Existing and missing start fishing event locations (i.e., coordinates) were imputed from fishing locations from the PSCDB which has been subject to rigorous data cleansing (e.g., fixing erroneous locations) and imputation of missing locations

(Abraham and Berkenbusch, 2019).

- Remaining missing start fishing event locations (i.e., coordinates) were imputed from other data sources in the following sequence: (1) end fishing locations from COD, (2) centroid locations for statistical areas reported in PSCDB (if available for a fishing event), (3) centroid locations for Fishery Management Areas (FMAs) reported in PSCDB (if available for a fishing event).
- Missing start FMAs were imputed using FMAs reported in the PSCDB (if available for a fishing event) or by intersecting recorded or updated coordinates with a spatial layer for FMAs.
- Missing start statistical areas were imputed using statistical areas reported in the PSCDB (if available for a fishing event) or by intersecting recorded or updated coordinates with a spatial layer for statistical areas.
- Missing target species were imputed using target species reported in the PSCDB (if available for a fishing event).

In addition to the detailed analysis of observer reported coral bycatch, fisher-reported data were evaluated for its usefulness to further our understanding of coral bycatch. There are two prime considerations during this evaluation: 1) the accuracy of the reported species identifications; and 2) the representativeness of fisher-reported data, relative to the COD data.

Additionally, it is important to note that the coral catch weight reported by observers was not consistently measured via a single standardized approach across capture events. The provided excerpt of observer-recorded coral captures includes a column (method_analysis_desc) that describes the methods employed to determine the catch weight, typically used for determining the weight of fish. The methods utilized encompass direct weighing of the catch, estimation of the catch through subsamples, and visual estimates. These methods are further described in the results section of this report to evaluate the overall quality of the available coral catch data for this assessment.

3. Methods

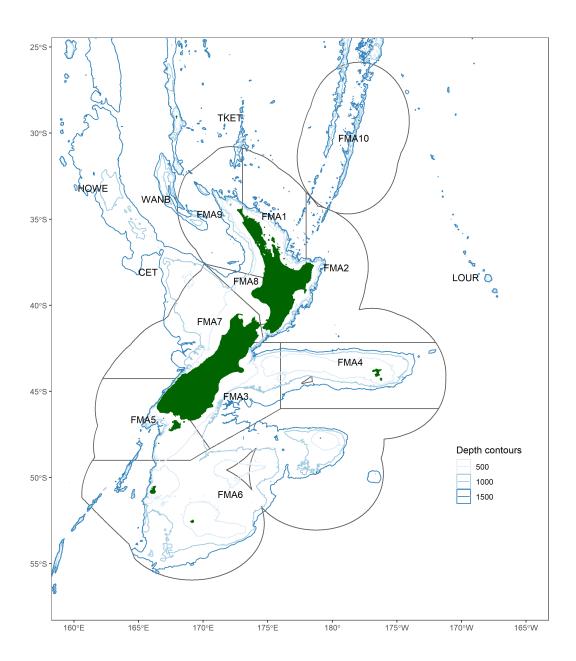


Figure 3.1: Fishery management areas (FMAs) and areas outside the 200 nautical mile EEZ; acronyms outside EEZ are: CET (outside the EEZ on the Challenger Plateau), HOWE (Lord Howe Rise), LOUR (Louisville Ridge), TKET (Three Kings Rise), and WANB (Wanganella Bank).

Fisher-reported coral captures. Fisher-reported species identifications are potentially less reliable, or reported at a higher taxonomic level, than observer-reported captures that have been subsequently verified by an expert. However, fisher-reported data may cover a greater breadth of fishing activities than observed effort, thereby provide a greater overview of coral-fisheries interactions. COD and fisher-reported data are each based on a different sampling process and are therefore subject to different potential biases. Although fishers are legally obliged to report protected species bycatch (i.e., fisher-reported bycatch data is self-selected), under-reporting may occur, hence not necessarily reflecting the true level of bycatch occurring across all fishing events. Observers only monitor a fraction of all fishing events, so observed fishing events do not necessarily represent a random sample of all fishing events (e.g., some FMA or target species could be over-represented). Hence, both data sets were treated separately.

For fisher-reported captures, a file was provided by MPI that included reported catch weight (in kg) of Cnidaria taxa and information such as fishing start location, target species, etc., for the fishing years 2001–02 (one capture) and 2008–09 to 2020–21. Data checking and processing steps were applied to the dataset of fisher-reported captures. First, a visual assessement was carried out to check whether the fisher-reported FMA lines up with the actual reported fishing location of each fishing event. In some cases, when there was a mismatch between reported FMA and fishing location (i.e., there are a few events with reported FMA3 but according to coordinates it should be FMA5), the FMA was imputed based on the fishing location. Furthermore, some fishing events had FMAs assigned but, based on visual assessment, their actual fishing location was outside the EEZ (e.g., some occurred along Louisville Ridge). These fishing events, and all other events outside the EEZ, were removed from the assessment of fisher-reported coral captures. Finally, missing FMAs were obtained by matching the reported fishing location by intersecting recorded coordinates with a spatial layer for FMAs.

3.2 Species grouping

The coral species identifications used in this project reflect a mixture of observer-based and expert-based identifications (i.e., when a sample was kept for post-hoc expert identification). Therefore, identification might not be accurate to the lowest taxonomic level. Further, not all specimens were identified to species level. To account for the ease of species identification and some potential inaccuracy in species identification, higher taxonomic level groups were specified in an initial scoping meeting with the Conservation Services Programme (CSP). Two alternate species groupings were developed, and results for each

12 3. Methods

will be presented in this report:

1. Four protected coral groups (stony corals, black corals, gorgonians, and lace corals) plus coral rubble (separately for live and dead coral rubble)

2. Seven groups that represent a mix of morphological and/or taxonomic division

Coral groups and assigned species are described in Appendix Table 6.1. In addition, results were compiled for 12 individual taxa (species level) corresponding to those used in species distribution models by Anderson et al. (2020) and including representatives from the four protected coral groups.

3.3 Data summaries and spatial mapping

Coral bycatch was summarised for observer data by FMA, target fishery, species group (e.g., stony corals, black corals, gorgonians, and lace corals), fishing method, and fishing year. For a more in-depth assessment of coral-fisheries interactions, spatial maps were compiled for all years combined per species (group), and time series plots of coral bycatch were compiled for FMAs with a high level of reported coral catch.

To contextualize the results of the statistical analysis, additional spatial data layers were compiled: FMA (source: MPI), summarised number of fishing events (number of fishing events sumarised by 0.2° latitude x 0.2° longitude cells), bathymetry (source: NZ 250m gridded bathymetric data set; NIWA; (Mitchell et al., 2012)), and sea surface temperature, chlorophyll-a, and turbidity (source: NASA's OceanColor Web; (NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, 2018)). Maps were generated using the R-packages sf (Pebesma et al., 2018) and raster (Hijmans, 2022).

Fisher-reported catch weights of corals were summarised by protected coral species groups, fishing year, and FMA. Catch rates for fisher-reported data were not calculated, because a dataset for all commercial fishing in New Zealand was not provided to us.

3.4 Coral captures dashboard

A dashboard was developed that can be used via a web-browser to provide greater ability to investigate the capture data by dynamically creating maps and tables (Figure 3.2). The dashboard was developed using the R-package flexdashboard (Iannone et al., 2020), and

includes the following features:

- A panel for mapping observed captures with the option to add other layers such as FMA, number of fishing events at capture locations, etc.
- A panel showing annual trends of captures and capture rates which can be dynamically grouped by different strata
- A panel showing tables of total observed captures which can be dynamically grouped by different strata
- Data filter options (e.g., species, fishing method, fishing year) to customize the data being tabularized and mapped
- Download option for each map, plot, and table

Instructions for the use of the dashboard and content are provided on the dashboard's landing page.

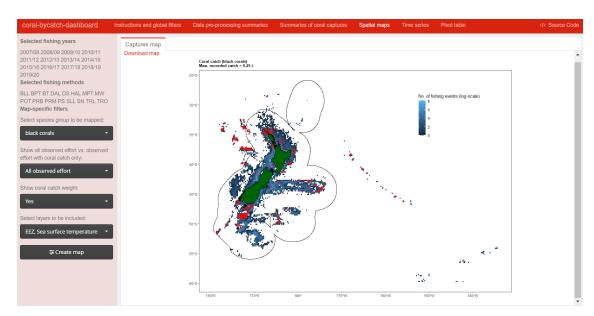


Figure 3.2: Screenshot of the coral bycatch dashboard's captures mapping feature.

3.5 Statistical analysis

Generalized Additive Models (GAMs) were used to analyze observed coral catch data for four protected coral species groups: stony corals, lace corals, black corals, and gorgonians. Two separate models were developed for each coral group: (1) a logistic GAM model to assess the presence or absence of observed coral catch per fishing event, and (2) a GAM model using Box-Cox transformed coral catch weights for fishing events with observed coral catch. The Box-Cox transformation was neccessary to satisfy the assumption of normally distributed data.

14 3. Methods

Both models were implemented within a GAM framework, allowing for the inclusion of non-linear relationships between coral catch (presence and catch weight) and environmental covariates. The selection of covariates was done in consultation with DOC and aimed to incorporate factors influencing both the distribution of coral species and spatio-temporal fishing activity.

The chosen covariates included bathymetry, chlorophyll-a, and sea surface temperature, as these variables have been found to correlate with coral distribution (Baird et al., 2013) and fishing activity (Wiryawan et al., 2020; Sachoemar et al., 2012; Welliken et al., 2018; Sambah et al., 2021). Thus, they play a crucial role in determining areas where coral-fishery interactions may occur. Fishing method and FMA were also considered, as different fishing methods are expected to have varying degrees of interaction with corals. Fishing year and month were included to account for temporal and interannual variations in coral catch. Initially, turbidity was considered as a covariate, but it was later excluded from the model fitting process, because preliminary analysis indicated that turbidity and chlorophyll-a were confounded.

For bottom trawl fisheries, the fishing method was combined with the target fishery to gain a more detailed understanding of which target fisheries pose the highest risk to corals in New Zealand. The five bottom trawl target fisheries with the highest observed coral catch (across all species) were identified. A covariate called "method_group" was created, consisting of five separate bottom trawl methods for each of the top-five target fisheries, along with a bottom trawl group representing all other target species combined. No specific target species groups were created for other fishing methods (coral catch weight per target species for each method is provided in Appendix Table 6.2). Fishing methods without any observed coral captures were excluded from the model fitting process, e.g., surface-longlining, purse seine, drop or dan lines, trolling lines, trot lines, handlines. Table 3.1 provides an overview of the final method-target species variables used in the analysis. Additionally, it is important to note that the bottom trawl methods MPT, BPT, and BT were combined into a single bottom trawl group, and a similar approach was taken for the mid-water trawl method (refer to Table 4.3 for a description of fishing methods).

Table 3.1: Description of the method-target species variable used in the statistical analysis of coral catch. Shown are also catch weight and number fo fishing events per group between the 2007–08 and 2019–20 fishing years. Acronyms for target species are: ORH (Orange roughy, *Hoplostethus atlanticus*), SSO (Smooth oreo *Pseudocyttus maculatus*), SQU (Arrow squid, *Nototodarus sloanii & N. gouldi*), BOE (Black oreo, *Allocyttus niger*), SWA (Silver warehou, *Seriolella punctata*).

method_group ^a	Catch weight (t)	Number of fishing events
bottom_trawl_ORH	112.729	11855
bottom_trawl_SSO	39.896	3836
bottom_trawl_SQU	36.946	20620
bottom_trawl_other_targets	4.749	67679
bottom_trawl_BOE	3.302	2234
bottom_trawl_SWA	1.434	3120
set_netting	0.666	8347
midwater_trawl	0.556	59705
bottom_longlining	0.350	9741
pots	0.002	1088
danish_seining	0.000	249

^aBottom trawl methods MPT, BPT, and BT were combined into a single bottom trawl group.

The logistic regression model for presence and absence of observer-reported coral captures was as followed:

$$log(\frac{P}{(1-P)}) \sim s(bathymetry, k = 4) + s(chlor_a, k = 4) + s(sst, k = 4)$$

where $log(\frac{P}{(1-P)})$ is the log-odds of coral catch occurring during a fishing event.

The smooth terms s(bathymetry, k = 4), $s(chlor_a, k = 4)$, and s(sst, k = 4) allow for potential non-linear relationships between the odds-ratio of coral catch and each environmental covariate. The term $s(fishing_year, method_group, bs = "re")$ denotes a random fishing year effect interacting with the combined fishing method and target fishery variable, since annual coral catch can vary independently for each fishing method and target fishery. The fixed effect $method_group$ for the combined fishing method and target fishery variable accounts for different fishery-coral interaction per fishing method and also to account for fishing method-specific fishing effort units. The fixed effects month

3. Methods

and *start_obs_fma* allow for different fishing effort (and hence fishery-coral interactions) throughout the year and fishery management areas (as a proxy for the spatial distribution of fishing activity).

The goodness of fit for the logitics regression model was assessed using the Hosmer-Lemeshow test (Hosmer Jr et al., 2013). Data were split into 20 groups based on predicted probabilities of coral catch. Within each group the observed and expected proportions of coral catch (both presence and absence) were calculated and visually assessed.

The model for coral catch weight on fishing events with observer-reported coral captures used the same variables and was as followed:

where $(catch^{\lambda}-1)/\lambda$) is the Box-Cox-transformed coral catch weight for fishing events with reported coral catch. The Box-Cox power transformation λ was numerically derived using the boxcox function by the R package MASS (Venables and Ripley, 2002). Standard Q-Q plots were used to assess the model fit. Additionally, predicted catch weights were visually compared against actual observations.

Particularly for stony corals, very high catch weights were reported on some fishing events, and these were based on eyeball estimates. Therefore, we also fitted both models to an alternative data set for stony corals that included only reported captures smaller than one tonne (referred to as the reduced data set). Results for model fits to a reduced and full data set of stony corals were compared to understand the potential implications of very large, unverified coral captures on the model results.

4.1 Data imputation

Between the fishing years 2007–08 and 2019–20, a total of 188 967 fishing events were reported in the Centralised Observer Database (COD), out of which 7371 events included documented coral captures (Table 4.1). Several data imputation procedures were carried out to address missing information (Table 4.2). For one fishing event (0.001% of all events), the missing fishing effort record was obtained from the Protected Species Capture Database (PSCDB). However, for 60 records (0.031% of all events), fishing effort could not be obtained from any other sources. Units for fishing effort are described in Table 4.3.

Missing FMAs were determined for 93.648% of all fishing events by intersecting the reported start positions with spatial polygons representing FMAs. Existing FMA records were overwritten to remove any potential instances of false reporting (assuming the start positions were more accurate). Similarly, areas outside the EEZ were recreated by intersecting the reported start positions with spatial polygons for areas outside the EEZ, which was applied to 4.907% of all fishing events.

Manual changes were made for 0.041% of all fishing events, including changing the area code ET (representing the general outside EEZ code) to SOET (occluded area in FMA4) based on visual assessment of actual fishing locations. Additionally, one event had the area code changed from LOUR (Louisville Ridge) to FMA2 after visual assessment of fishing locations. The FMA code remained missing for 0.021% of all fishing events.

The COD start fishing locations (latitude and longitude) were replaced or imputed (if

missing) with start locations from the PSCDB for 90.158% of all fishing events. In some cases, missing start locations in COD were imputed using fishing end locations from the COD for 0.018% of all fishing events. The start fishing location remained missing for 0.055% of all fishing events.

Observed coral species codes were replaced with codes based on expert identification for 0.464% of all fishing events, or 9% of all observer-reported coral codes. Note, not all observer reports have associated coral specimens returned for expert identification, and updates of expert verification of observer reports to COD can be sporadic. To make the data as current and reliable as possible, 2019-20 was selected as the last fishing year in the study. Statistical areas were imputed by matching fishing start positions against spatial polygons for 93.714% of all fishing events, while outside EEZ area codes were used for 6.251% of all fishing events. Missing target species were imputed using target species codes reported in the PSCDB for 5.756% of all fishing events.

In the case of trawl fisheries, most records only reported the general code for trawling, while additional information on bottom- and midwater-trawling was available in a separate column (gear code). Therefore, for all trawl fishing events, the fishing method was updated using the actual gear code for 80.957% of all fishing events. For 0.015% of all fishing events, the gear code (and thus the fishing method) was obtained from the PSCDB. A detailed description of all fishing methods can be found in Table 4.3.

Table 4.1: Summary of fishing events and coral catch (all methods) per FMA and outside EEZ areas between the 2007–08 and 2019–20 fishing years; Outside EEZ acronyms are: CET (Challenger Plateau), HOWE (Lord Howe Rise), LOUR (Louisville Ridge), SOET (occluded area in FMA 4), WANB (Wanganella Bank), TKET (Three Kings Rise).

FMA	No. of observed events	No. of observed events with coral catch	Perc. of observed events with catch	Catch weight (t) a	Catch rate (tonnes per 100 events)
Within EEZ					
FMA4	18800	1129	6.01	93.017	0.495
FMA9	12495	435	3.48	20.668	0.165
FMA6	30839	887	2.88	42.378	0.137
FMA5	26032	821	3.15	26.281	0.101
FMA3	25588	637	2.49	3.195	0.012
FMA2	6604	153	2.32	0.46	0.007
FMA1	13080	317	2.42	0.671	0.005
FMA7	33541	248	0.74	0.276	0.001
FMA8	11086	43	0.39	0.05	0
FMA10	11	0	0	0	0
Outside EEZ					
LOUR	2277	760	33.38	19.917	0.875
WANB	843	364	43.18	2.923	0.347
TKET	117	46	39.32	0.298	0.254
HOWE	3458	677	19.58	1.901	0.055
CET	4108	833	20.28	1.390	0.034
SOET	88	21	23.86	0.012	0.013
All areas	188967	7371	3.9	213.436	0.113

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

Table 4.2: Summary of data imputation applied to observed fishing events in COD between the 2007–08 and 2019–20 fishing years; shown are affected variables, imputation step (blank fields: no data imputation applied), number of affected events, and percentage of affected events.

Variable	Imputation	No. of events	Percentage of events
effort		191163	99.968
effort	unresolved	60	0.031
effort	effort from PSCDB taken	1	0.001
fma	start position matched against FMA layer	179078	93.648
fma	start position matched against outside-eez-area layer	9383	4.907
fma		2643	1.382
fma	ET changed to SOET	78	0.041
fma	FMA unresolved	41	0.021
fma	manual fix from LOUR to FMA2	1	0.001
lat	replaced with start latitude from PSCDB	172404	90.158
lat		18680	9.769
lat	start latitude unresolved	106	0.055
lat	replaced with end latitude from COD	34	0.018
long	replaced with start longitude from PSCDB	172404	90.158
long		18680	9.769
long	start longitude unresolved	106	0.055
long	replaced with end longitude from COD	34	0.018
species_obs		190336	99.536
species_obs	replaced with expert identification	888	0.464
stats_areas	start position matched against stats area layer	179203	93.714
stats_areas	outside EEZ areas used	11953	6.251
stats_areas		64	0.033
stats_areas	stats area unresolved	4	0.002
target		180218	94.244
target	target species from PSCDB used	11006	5.756
trawl_method	COD gear code used	154810	80.957
trawl_method		36385	19.027
trawl_method	replaced with gear code from PSCDB	29	0.015

Table 4.3: Description of methods and fishing effort and catch rate units.

Agranum	Description	Fishing offert unit	Catch rate unit
Acronym	*	Fishing effort unit	
MPT	Midwater pair trawl	no. of tows	t per 100 tows
BPT	Bottom pair trawl	no. of tows	t per 100 tows
PRM	Midwater trawls fitted with	no. of tows	t per 100 tows
	a patented Modular Harvest System		
PRB	Bottom trawls fitted with	no. of tows	t per 100 tows
	a patented Modular Harvest System		
BT	Bottom Trawl (single)	no. of tows	t per 100 tows
MW	Midwater Trawl (single)	no. of tows	t per 100 tows
POT	Pots unspecified,	no. of pots	t per 100 pots
	includes Rock lobster pots		
	and/or cod pots		
DS	Danish Seine	no. of tows	t per 100 tows
PS	Purse Seine	no. of tows	t per 100 tows
TRO	Trolling lines	no. of lines	t per 100 lines
BLL	Bottom Longline	no. of hooks	t per 10,000 hooks
SLL	Surface Long Line (tunas etc.)	no. of hooks	t per 10,000 hooks
DAL	Drop or Dan Lines	no. of hooks	t per 10,000 hooks
HAL	Handlines	no. of hooks	t per 10,000 hooks
TRL	Trot Lines	no. of hooks	t per 10,000 hooks
SN	Set Net	net length in meter	t per 10,000 meter

4.2 Data quality

For 0.3% of all capture events in the assessed data, the method used to determine the coral catch weight was not documented. Approximately 23% of capture fishing events approximated the catch weight (e.g., exact count of catch times the estimated or averaged weight of a specimen). In 2% of assessed capture events, the reported coral catch weight was based on what is described as a vessel figure (Table 4.4). For 0.28% of assessed capture events, the catch weight was determined through a full measurement of the catch, where it was weighed in its entirety. Approximately 50% of assessed capture events reported coral catch weight based on eyeball estimates, which accounted for 88% of the reported coral catch weight between the 2007–08 and 2019–20 fishing years.

Figure 4.1 illustrates the observed annual catch weight for stony corals by method and the type of catch weight estimation. Generally, reported stony coral catch weight based on eyeball estimates was considerably higher compared to other methods used to determine coral catch weights. This discrepancy was particularly noticeable for bottom trawling in the 2008–09 fishing year, where the total stony coral catch weight exceeded 60 tonnes for capture events with eyeball estimates, in contrast to only 0.2 tonnes when based on fully weighed coral catch after hauling. However, higher-than-usual stony coral catch during the 2008–09 fishing year was also recorded when based on fully weighed coral catch and approximated catch weight. Similar patterns were observed for the other three protected coral groups (Figures 6.1 to 6.3).

Table 4.4: Description of methods to determine coral catch weight by observers between the 2007–08 and 2019–20 fishing years. Column grouping: Estimation methods grouped into categories used for Figure 4.1.

Estimation method	Grouping	Catch weight (t)	Number of reported capture events
Eyeball estimate	Eyeball estimate	173.526	3067
Vessel figure	Vessel figure	5.251	102
Weighed in full	Weighed in full	5.18	1520
Calculated by deduction (the total catch weight minus the weights of all other species)	Approximated	4.648	4
Exact count of bins x estimated or average weight of a bin	Approximated	2.881	60
Inexact count of bins x estimated or average weight of a bin	Approximated	2.774	15
Eyeball estimate of greenweight x species composition (from time sampling)	Eyeball estimate	2.11	17
Exact count of fish x estimated or average weight of a fish	Approximated	1.907	871
Inexact count of fish x estimated or average weight of a fish	Approximated	0.582	364
NA	Unknown	0.554	19
Accurate full count of bins x average weight (obtained from a random sample of bins in a previous appropriate tow in this trip)	Approximated	0.349	4
Accurate full count of bins x average weight of bins obtained from a random sample of bins in this tow.	Approximated	0.31	2
Measured dimensions of catch x average density x species composition	Approximated	0.024	1
Accurate full count of fish x average weight obtained from a random sample from this tow.	Approximated	0.006	5
Accurate full count of fish x average weight obtained from a random sample of fish in a previous appropriate tow in this trip	Approximated	0.004	5

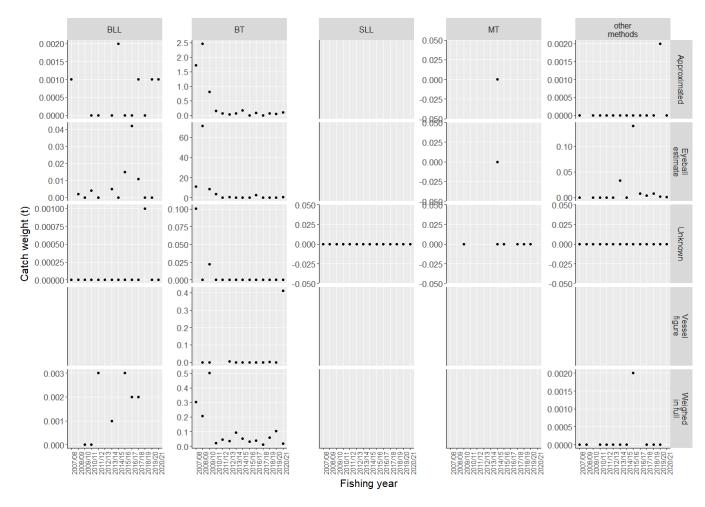


Figure 4.1: Time series of observed stony coral catch weight by fishing method and methodology to determine catch weight as recorded by observers.

4.3 Overall coral captures

In what follows is an overview of observed fishing effort and captures of all coral taxa combined to assess the general distribution of coral-fishery interactions across management areas within and outside the EEZ (Fig. 3.1) and across fishing methods. A summary of coral captures per species group is provided in the subsequent section.

Between the 2007–08 to 2019–20 fishing years, single bottom trawling (BT) was the fishing method with the highest number of observed fishing events (103,819 events), followed by mid-water trawling, (MW; 56,544 events), bottom-longlining (BLL; 9434 events), set-netting (SN; 4202 events), single bottom trawl fitted with a Modular Harvest System (PRB; 4202 events), surface-longlining (SLL; 3979 events), and purse seining (PS; 1473 events). For all other methods, the number of observed fishing events was fewer than 1000 events (range: 1 to 859 events) (Table 4.5). Within the EEZ, the top-five areas with the highest number of observed fishing events (predominantly BT) were: FMA7, FMA6, FMA5, FMA3, and FMA4. Outside the EEZ, observed fishing effort with more than 1000 observed fishing events occurred predominantly in the areas Challenger Plateu (CET), Lord Howe Rise (HOWE), and Wanganella Bank (WANB) (Table 4.5).

Table 4.5: The number of observed fishing events between 2007–08 and 2019–20 fishing years by location (inside the EEZ by FMA and outside the EEZ) and fishing method. The following areas were considered outside of the EEZ: CET (Challenger Plateau), HOWE (Lord Howe Rise), LOUR (Louisville Ridge), SOET (occluded area in FMA 4), WANB (Wanganella Bank), TKET (Three Kings Rise).

	BT	MW	BLL	SN	PRB	SLL	PS	POT	PRM	DS	TRO	DAL	BPT	HAL	TRL	MPT	Totals
Within EEZ																	
FMA7	11188	19843	470	190	200	1378	131	5	66		68		1			1	33541
FMA6	19439	9873	1438	1,0	44	1570			15		00		30			•	30839
FMA5	15270	8321	359	1424	49	518		17	10			33	41				26032
FMA3	15019	4736	897	3373	760	19	13	738	12		1	12	8				25588
FMA4	15161	1430	1985	3373	190	17	13	27	1		•	12	6				18800
FMA1	6096	96	2458	8	1979	1166	1008	16		249		3	Ü		1		13080
FMA9	8630	2171	280	119	802	230	219	2			17	24		1	•		12495
FMA8	483	7376	647	2340	1	6	84	48			101						11086
FMA2	2821	2122	461	6	173	650	18	6	333		5	1	1		7		6604
FMA10	2021		.01	Ü	1,0	11	10	Ü	555			•	-		•		11
Outside EEZ																	
CET	3792	22	136		4	1						85		68			4108
HOWE	2902	554												2			3458
LOUR	2261		13								3						2277
WANB	680		162											1			843
TKET	75		42														117
SOET	2		86														88
Totals	103819	56544	9434	7460	4202	3979	1473	859	427	249	195	158	87	72	8	1	188967

Overall, fisheries targeting orange roughy have the highest interaction with corals. For these fisheries, 3579 out of 7371 observed fishing events reported coral captures with most

captures occurring along the Challenger plateu (CET), Louisville Ridge (LOUR), Lord Howe Rise (HOWE), FMA4, Wanganella Bank (WANB), and FMA9 (Table 4.6).

Within the EEZ, the top-four FMAs with highest total catch and catch rates were 0.495 tonnes of coral per 100 observed events in FMA4, 0.165 tonnes in FMA9, 0.137 tonnes in FMA6, and 0.101 tonnes in FMA5 (Table 4.1). The top-two targeted species (based on coral catch weight) in each of these FMAs were primarily deepwater species (Table 4.6): orange roughy (*Hoplostethus atlanticus*) and scampi (*Metanephrops challengeri*) (FMA4), orange roughy and tarakihi (*Nemadactylus macropterus & N. rex*) (FMA9), smooth oreo (*Pseudocyttus maculatus*) and black oreo (*Allocyttus niger*) (FMA6), and arrow squid (*Nototodarus sloanii & N. gouldi*) and school shark (*Galeorhinus galeus*) (FMA5).

Outside the EEZ, the highest coral catch rate of 0.875 tonnes per 100 observed events occurred along the Louisville Ridge compared to the second highest catch rate of 0.347 tonnes on the Wanganella Bank (Table 4.1). Fisheries in all areas outside the EEZ targeted predominantly orange roughy (Table 4.6).

Table 4.6: The number of observed fishing events (all methods) with reported coral catch, by area and target species between the 2007–08 and 2019–20 fishing years; refer to 4.1 for outside EEZ acronym descriptions.

Note	Target	FMA1	FMA2	FMA3	FMA4	FMA5	FMA6	FMA7	FMA8	FMA9	CET	HOWE	LOUR	SOET	TKET	WANB	Totals
SQU	ORH	124	59	3	518	7	73	98	1	316	812	488	747			333	3579
SSO	SQU																
SCI	HOK	7	16	304	144	25	31	32									559
HAK	SSO			51	55	17	237										360
BOE	SCI	2	16		278		5										301
BYN	HAK			4		15	107	82									208
LIN	BOE			7	4	3	176						2				192
BYS 9 3 8	BYX	1	27	1	16					21	1	78					145
SWA	LIN	1	5	27	31	25	34	6		2							131
SCH 24 13 88 1 1 6 108	BYS	9	3		8					3	4	102	1				130
S 101 1 6 108 108 108 88	SWA			60	16	51											127
TAR 34 6 9 2 4 77 2 37 488 88 600 62 2 4 77 2 62 62 55 50 62 59 59 59 59 59 59 59 59 59 59 59 59 59 50 52 50 52 50 50 50 50 50 50 50 50 50 50 50 45 40	SCH			24	13	88		1		1							127
OEO 2 4 77 ************************************																	
WWA 2 55 5		34	6					2		37							
JMA					4												
PTO							5										
CDL 9 18				6		2		17	30	4							
YBO 15 9 13 5 45 45 42 42 42 42 42 42 42 43 43 43 44 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>52</td> <td></td>							52										
BAR		9	18								7	8				4	
SPO 39 2 TRE 10 4 24 38 HPB 1 1 1 6 13 21 ATO 2 21 21 21 21 BNS 4 1 2 7 20 SPE 13 4 7 12 HAP 1 2 5 4 7 12 RSN 2 5 4 10 4 12 </td <td></td> <td>45</td> <td></td> <td></td>															45		
TRE 10 4 24 1 6 13 21 ATO 1 1 1 1 21 21 BNS 4 1 2 8 7 20 SPE 13 4 4 7 13 BAS 1 2 5 4 4 4 7 12 HAP 1 2 5 4 4 4 7 12 RSN 2 6 2 8 8 4 1 12 RSN 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9					9			5									
HPB ATO ATO ATO ATO BNS A I BNS A I I BNS BAS I HAP II BAS BAS I HAP II BAS BAS I HAP II BAS				39		2											
ATO BNS		10							4	24							
BNS								1			1		6			13	
SPE 13 4 7 12 HAP 1 2 5 4 4 12 RSN 2 10 12 NOS 6 2 8 RBY 5 3 8 8 SBW 8 8 8 GUR 1 1 5 7 WAR 7 7 7 JDO 5 5 5 6 2 RBT 1 1 1 5 6 2 7 7 WAR 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9														21		-	
BAS 1		4		1	10						8					/	
HAP 1 2 5 10 12 RSN 2 6 2 8 RBY 5 3 8 8 8 SBW 8 8 8 8 GUR 1 1 5 7 JDO 5 5 5 7 RBT 1 1 1 1 2 RCO 2 2 2 2 SBO 1 1 1 1 1 FLA 1 1 1 1 1 CRA 1 1 1 1 1 SKI 1 1 1 1 1 MDO 1 1 1 1 1 MIX 1 1 1 1 1 TRU 1 1 1 1 1					13											-	
RSN 2 NOS 6 2 RBY 5 3 SBW 8 8 GUR 1 1 5 WAR 7 7 JDO 5 5 5 RBT 1 1 1 2 RCO 2 2 1 1 1 FLA 1 1 1 1 1 FLA 1 1 1 1 1 SOR 1 1 1 1 1 SKI 1 1 1 1 1 MDO 1 1 1 1 1 MIX 1 1 1 1 1 1 TRU 1 <t< td=""><td></td><td></td><td></td><td>2</td><td>-</td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>4</td><td></td><td></td><td>/</td><td></td></t<>				2	-					4			4			/	
NOS 6 2 RBY 5 3 SBW 8 GUR 1 1 5 WAR 7 7 JDO 5 5 5 RBT 1 1 1 2 RCO 2 2 2 2 SBO 1 1 1 1 FLA 1 1 1 1 CRA 1 1 1 1 SOR 1 1 1 1 WINI 1 1 1 1 MIX 1 1 1 1 TRU 1 1 1 1				2	3					10			4				
RBY 5 3 SBW 8 GUR 1 1 5 WAR 7 7 JDO 5 5 5 RBT 1 1 1 2 RCO 2 2 2 SBO 1 1 1 1 FLA 1 1 1 1 CRA 1 1 1 1 SOR 1 1 1 1 SKI 1 1 1 1 MDO 1 1 1 1 MIX 1 1 1 1 TRU 1 1 1 1		2				6	2			10							
SBW 8 GUR 1 1 5 7 WAR 7 7 7 JDO 5 5 5 RBT 1 1 1 2 RCO 2 2 2 1 1 1 SBO 1 1 1 1 1 1 CRA 1		5	3			0	2										
GUR 1 5 7 WAR 7 7 JDO 5 5 RBT 1 1 1 RCO 2 2 2 SBO 1 1 1 FLA 1 1 1 CRA 1 1 1 SOR 1 1 1 SKI 1 1 1 UNI 1 1 1 MDO 1 1 1 MIX 1 1 1 TRU 1 1 1		3	3				Q										
WAR 7 JDO 5 RBT 1 1 2 RCO 2 2 2 SBO 1 1 1 FLA 1 1 1 CRA 1 1 1 SOR 1 1 1 SKI 1 1 1 UNI 1 1 1 MDO 1 1 1 MIX 1 1 1 TRU 1 1 1		1					0	1		5							
JDO 5 RBT 1 1 1 2 RCO 2 2 2 2 SBO 1 1 1 1 FLA 1 1 1 1 CRA 1 1 1 1 SOR 1 1 1 1 SKI 1 1 1 1 UNI 1 1 1 1 MDO 1 1 1 1 MIX 1 1 1 1 TRU 1 1 1 1									7	3							
RBT 1 1 1 2 RCO 2 2 2 SBO 1 1 1 FLA 1 1 1 CRA 1 1 1 SOR 1 1 1 SKI 1 1 1 UNI 1 1 1 MDO 1 1 1 MIX 1 1 1 TRU 1 1 1		5							,								
RCO 2 SBO 1 FLA 1 CRA 1 SOR 1 SKI 1 UNI 1 MDO 1 MIX 1 TRU 1		3		1		1											
SBO 1 1 FLA 1 1 CRA 1 1 SOR 1 1 SKI 1 1 UNI 1 1 MDO 1 1 MIX 1 1 TRU 1 1						•											
FLA 1 1 CRA 1 1 SOR 1 1 SKI 1 1 UNI 1 1 MDO 1 1 MIX 1 1 TRU 1 1				_											1		
CRA 1 1 SOR 1 1 SKI 1 1 UNI 1 1 MDO 1 1 MIX 1 1 TRU 1 1								1							_		
SOR 1 1 SKI 1 1 UNI 1 1 MDO 1 1 MIX 1 1 TRU 1 1									1								
SKI 1 UNI 1 MDO 1 MIX 1 TRU 1												1					
UNI 1 1 MDO 1 1 MIX 1 1 TRU 1 1								1									
MDO 1 1 MIX 1 1 TRU 1 1										1							
MIX 1 1 1 1 1 1																	
TRU 1 1				1													
Totals 317 153 637 1129 821 887 248 43 435 833 677 760 21 46 364 7371																	
	Totals	317	153	637	1129	821	887	248	43	435	833	677	760	21	46	364	7371

The methods by which coral captures were reported between the 2007–08 and 2019–20 fishing years were: BT, BLL, MW, SN, PRB, PRM, and BPT (Table 4.7). For all other methods, there existed no reports of coral captures on observed fishing events. Bottom trawling had the highest number of observed fishing events (6615 events) and by far the highest weight of observed captured corals (211.58 tonnes) between 2007–08 to 2019–20 fishing years. Thus, the observed capture rate was 0.204 tonnes per 100 trawl events. For all other methods with reported coral catch, the number of fishing events with reported coral catch ranged from 11 (out of 87 observed BPT events) to 271 (out of 9435 BLL events) events. Some bottom-trawlers used alternative gear configurations: (1) BPT and (2) PRB. The coral catch rates were 0.007 and 0.006 tonnes per 100 trawls, respectively (but note the small number of observed fishing events relative to the usually applied BT. Catch rates are note compareable across all fishing methods because of different units for fishing effort.

Within the EEZ, the top-four management areas with highest reported coral catch were: FMA4, FMA6, FMA5, and FMA9 (range: 20.668 to 93.017 tonnes of reported coral catch), and 99% of reported coral catch in these areas was for single bottom trawl fisheries (Table 4.8). Outside the EEZ, most coral catch was reported for the Louisville Ridge (19.981 tonnes compared to 26.452 tonnes for all outside-EEZ areas combined).

Table 4.7: Summary of fishing effort and total coral catch in tonnes per method between the 2007–08 and 2019–20 fishing years. Method acronyms and associated units for effort and catch rate are described in Table 4.3. Rows are ordered by number of events with catch.

Fishing method	Total observed effort	Catch weight (t) a	Catch rate	No. of observed events	No. of observed events with coral catch	Perc. of events with catch
BT	103828	211.58	0.204	103828	6615	6.37
BLL	40146737	0.37	0	9435	271	2.87
MW	56545	0.49	0.001	56545	178	0.32
SN	7035965	0.65	0.001	7460	159	2.13
PRB	4202	0.26	0.006	4202	114	2.71
PRM	427	0.09	0.02	427	11	2.58
BPT	87	0.01	0.007	87	11	12.64
POT	884	0	0	884	11	1.24
DS	249	0	0	249	1	0.4
DAL	10089	0	0	158	0	0
HAL	1165	0	0	72	0	0
MPT	1	0	0	1	0	0
PS	1473	0	0	1473	0	0
SLL	6037979	0	0	3979	0	0
TRL	10625	0	0	8	0	0
TRO	200	0	0	200	0	0

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

Table 4.8: Observer-reported coral catch weight in tonnes between 2007–08 and 2019–20 fishing years by location (inside the EEZ by FMA and outside the EEZ) and fishing method. The following areas were considered outside of the EEZ: CET (Challenger Plateau), HOWE (Lord Howe Rise), LOUR (Louisville Ridge), SOET (occluded area in FMA 4), WANB (Wanganella Bank), TKET (Three Kings Rise).

	BT a	MW	BLL	SN	PRB	SLL	PS	POT	PRM	DS	TRO	DAL	BPT	HAL	TRL	MPT	Totals
Within EEZ																	
FMA4	92.864	0.032	0.116		0.005			0	0				0				93.017
FMA6	42.249	0.015	0.113		0				0				0.001				42.378
FMA5	25.47	0.351	0.011	0.445	0	0		0				0	0.004				26.281
FMA9	20.618	0.001	0.012	0	0.037	0	0	0			0	0		0			20.668
FMA3	2.925	0.038	0.035	0.194	0.001	0	0	0.002	0		0	0	0.001				3.196
FMA1	0.422	0	0.032	0	0.216	0	0	0		0		0			0		0.67
FMA2	0.43	0.006	0.014	0	0	0	0	0	0.01		0	0	0		0		0.46
FMA7	0.179	0.01	0.009	0.002	0	0	0	0	0.075		0		0			0	0.275
FMA8	0.026	0.017	0	0.007	0	0	0	0			0						0.05
FMA10						0											0
Outside EEZ																	
LOUR	19.917		0.001								0						19.918
WANB	2.906		0.017											0			2.923
HOWE	1.884	0.017												0			1.901
CET	1.389	0.001	0.001		0	0						0		0			1.391
TKET	0.298		0														0.298
SOET	0		0.012														0.012
Totals	211.577	0.488	0.373	0.648	0.259	0	0	0.002	0.085	0	0	0	0.006	0	0	0	213.438

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

Figures 4.2 and 4.3 show the spatial distribution of fishing activity for all fishing methods combined and for trawling only, respectively. Observed fishing effort occurred along the NZ coastline and offshore (e.g., Auckland Islands shelf, Campbell Plateu and Louisville ridge) (Fig. 4.2). Most observed fishing activity was bottom trawling (Fig. 4.3 and Table 4.7) and reflected the general distribution of total bottom trawl fishing activity (not shown here). Fishing events with observed coral catch typically occurred around seamount features, along margins and on flat tops of slopes or rises (Figs. 4.4 and 4.5).

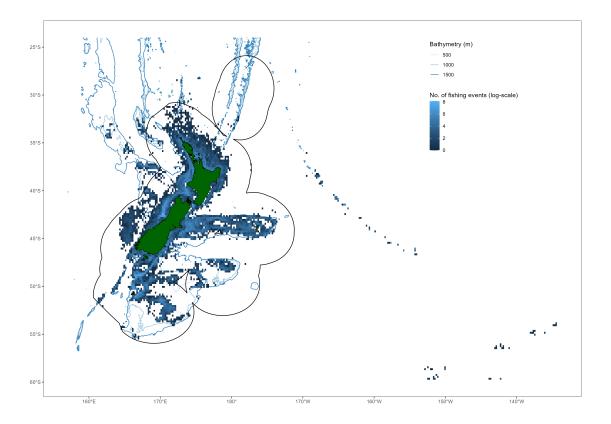


Figure 4.2: Distribution of observed fishing events for all methods (0.2° latitude x 0.2° longitude cells) between the 2007–08 and 2019–20 fishing years.

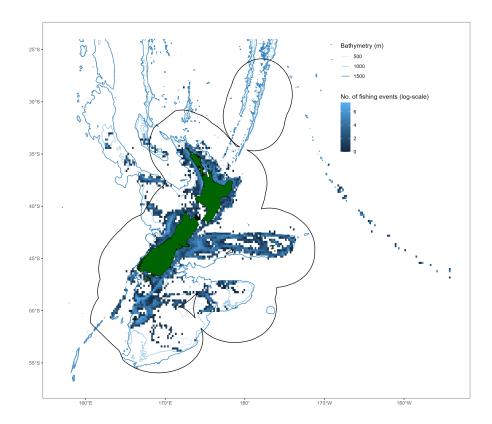


Figure 4.3: Distribution of observed fishing events (i.e., number of tows) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) between the 2007–08 and 2019–20 fishing years.

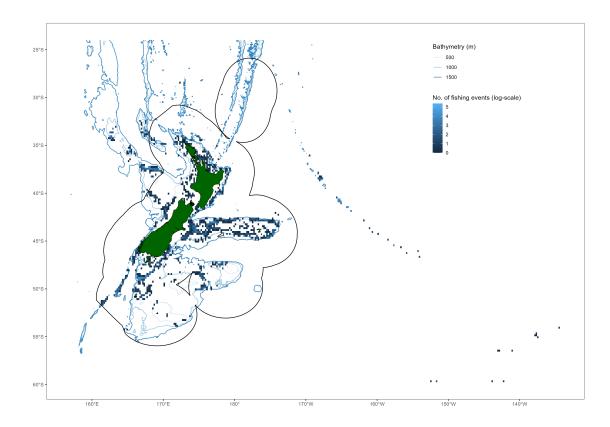


Figure 4.4: Distribution of observed fishing events with reported coral catch for all methods (0.2° latitude x 0.2° longitude cells) between the 2007–08 and 2019–20 fishing years.

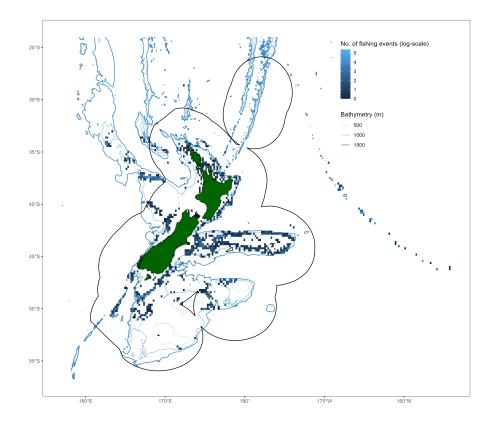


Figure 4.5: Distribution of observed fishing events (i.e., number of tows) with reported coral catch for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) between the 2007–08 and 2019–20 fishing years.

4.4 Species group-specific coral catch

Bottom trawl fisheries reported 99% of all observed coral catch (Tables 4.9–4.10). Based on observed catch weights, stony corals were the predominant coral group (131.078 tonnes or approximately 76% across all protected coral species groups) caught on observed fishing events between the 2007–08 and 2019–20 fishing years (Table 4.9). Branching stony corals comprised most of the stony coral captures (Table 4.10). All other coral groups were caught in a smaller order of magnitude (range: 3.633 to 13.250 tonnes; Table 4.9). Except for stony corals, alternative species grouping by morphology and/or taxonimic division does not indicate substantial changes in results when, for example, splitting gorgonians into three separate groups (Table 4.10). In some cases, zero tonnes of returned coral catch were recorded for danish seining (DS), but was reported as a method with coral catch. For the species with known species distributions, stony branching corals accounted for most of the observed coral catch, ranging from 10.051 to 33.008 tonnes (for all fishing methods combined) compared to 0.013 to 2.433 tonnes for all other species assessed here (Table 4.11).

Table 4.9: Coral catch weight (in tonnes) for each protected species groups between the 2007–08 and 2019–20 fishing years. Unspecified coral catch: based on MPI taxa code used for unspecified coral catch (COU); Unidentified: no code provided in COD.

Coral group	BT^a	BPT	PRB	MW	PRM	BLL	SN	DS	POT	Total
Stony corals	130.705	0.005	0.064	0.042		0.098	0.162	0.000	0.002	131.078
Unspecified coral catch	12.923	0.001	0.033	0.039		0.080	0.174			13.250
Gorgonians	11.685		0.003	0.073	0.085	0.072	0.008			11.926
Unidentified	5.769	0.000	0.000	0.002		0.001	0.002			5.774
Lace corals	5.671		0.135	0.000		0.036	0.044			5.886
Black corals	3.102		0.025	0.282		0.033	0.191			3.633
Total	169.855	0.006	0.260	0.438	0.085	0.320	0.581	0.000	0.002	171.547

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

Within bottom trawl fisheries, stony corals had the highest capture rate (0.126 tonnes per 100 tows) whereas for all other species groups the capture rate ranged between 0.003 and 0.012 tonnes per 100 tows (Table 4.12). Overall, coral captures were observed around seamounts or sloping areas (Appendix Figs. 6.4–6.31). Catch rates and distribution maps of observed coral captures in trawl fisheries suggest that trawl fishing predominally overlaps with distribution hotspots for stony corals and to some extent lace corals (concentrated in small areas within FMA1 and FMA4). For example, the species *Madrepora oculata*, *Solenosmilia variabilis*, *Goniocorella dumosa*, *Enallopsammia rostrata* and *Oculina vir*-

Table 4.10: Coral catch weight (in tonnes) for each species group based on morphotype and/or taxonomic division between the 2007–08 and 2019–20 fishing years.

Coral group	BT^a	SN	BLL	MW	PRB	PRM	BPT	POT	DS	Total
Corar group	БТ	311	DLL	101 00	1 KD	I IXIVI	DII	101	DS	10141
Stony corals - branching	82.224	0.146	0.076	0.034	0.023					82.503
Stony corals - cup	9.974	0.001	0.011	0.002	0.039		0.005	0.002	0	10.034
Gorgonians - calcaxonia	8.59	0.005	0.041	0.014	0.001	0				8.651
Lace corals	5.671	0.044	0.036	0	0.135					5.886
Black corals	3.102	0.191	0.033	0.282	0.025					3.633
Gorgonians - scleraxonians	2.505	0.002	0.008	0.017						2.532
Gorgonians - others	0.044		0.007	0.022	0	0.085				0.158
Total	112.11	0.389	0.212	0.371	0.223	0.085	0.005	0.002	0	113.397

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

Table 4.11: Coral catch weight (in tonnes) for seven species used in species distribution modelling by REF between the 2007–08 and 2019–20 fishing years.

Species	Protected species group	Morphotype group	BT	BPT	PRB	MW	PRM	BLL	SN	DS	POT	Total
Solenosmilia variabilis	stony corals	stony corals - branching	33.004			0.002		0.001				33.007
Goniocorella dumosa	stony corals	stony corals - branching	22.482		0.002			0.071	0.006			22.561
Enallopsammia rostrata	stony corals	stony corals - branching	16.464		0.02	0		0.001				16.485
Madrepora oculata	stony corals	stony corals - branching	9.948					0.001	0.102			10.051
Paragorgia arborea	gorgonians	gorgonians - scleraxonians	2.411			0.017		0.003	0.002			2.433
Keratoisis spp.	gorgonians	gorgonians - calcaxonia	2.012		0.001	0		0.015				2.028
Primnoa	gorgonians	gorgonians - calcaxonia	0.231			0.003		0.017				0.251
Lepidisis spp.	gorgonians	gorgonians - calcaxonia	0.169									0.169
Leiopathes	black corals	black corals	0.147			0.001		0.015				0.163
Corallium	gorgonians	gorgonians - scleraxonians	0.094					0.005				0.099
Bathypathes	black corals	black corals	0.078					0				0.078
Errina spp	lace corals	lace corals	0.044			0			0.001			0.045
Stylaster spp	lace corals	lace corals	0.013					0				0.013
Total	-	-	87.097	0	0.023	0.023	0	0.129	0.111	0	0	87.383

gosa are described as the dominant habitat-forming cold-water Scleractinia (i.e., stony corals) within the New Zealand (Cairns, 1995; Tracey et al., 2011). These species are described as occuring at seamount features, along slope margins and on flat tops of slopes or rises (Squires, 1965; Dawson, 1984), which are areas that overlap with the NZ trawl fisheries (see Appendix Figs. 6.4–6.31 for observed fraction of trawl fisheries). In fact, all these stony coral species, except for *Oculina virgosa*, were among the top-four stony coral species caught in trawl fisheries between the 2007–08 and 2019–20 fishing years. In contrast, black corals are known to occur deep water, hence the lower catch rates within trawl fisheries.

Table 4.12: Coral catch rate (tonnes per 100 events) for each protected species group between the 2007–08 and 2019–20 fishing years.

Coral group	ВТ	PRM	BPT	PRB	MW	SN	BLL	DS	РОТ
Stony corals	0.126		0.006	0.002	0	0	0	0	0
Unspecified coral catch	0.012		0.001	0.001	0	0	0		
Gorgonians	0.011	0.02		0	0	0	0		
Unidentified	0.006		0	0	0	0	0		
Lace corals	0.005			0.003	0	0	0		
Black corals	0.003			0.001	0.001	0	0		
Mean	0.027	0.02	0.002	0.001	0	0	0	0	0

Table 4.13: Coral catch rate (tonnes per 100 events) for each species group based on morphotype and/or taxonomic division between the 2007–08 and 2019–20 fishing years. Note that unidentified corals and coral rubble are not included in this summary.

Coral group	ВТ	BPT	PRB	PRM	BLL	DS	MW	SN	POT
Stony corals - branching	0.079		0.001		0		0	0	
Stony corals - cup	0.01	0.006	0.001		0	0	0	0	0
Gorgonians - calcaxonia	0.008		0	0	0		0	0	
Lace corals	0.005		0.003		0		0	0	
Black corals	0.003		0.001		0		0.001	0	
Gorgonians - scleraxonians	0.002				0		0	0	
Gorgonians - others	0		0	0.02	0		0		
Mean	0.015	0.006	0.001	0.01	0	0	0.0001	0	0

Coral rubble. In addition to coral species catch, coral rubble accounted for a considerable amount of recorded coral catch in the COD. For bottom trawl fisheries, 48.304 tonnes of coral catch was recorded between the 2007–08 and 2019–20 fishing years. The data can further be disaggregated into live coral rubble or dead coral rubble, resulting in 6.342 tonnes and 35.381 tonnes, respectively.

Table 4.14: Coral catch rate (tonnes per 100 events) for seven species used in species distribution modelling by REF between the 2007–08 and 2019–20 fishing years.

Species	Protected species group	Morphotype group	ВТ	BPT	PRB	MW	PRM	BLL	SN	DS	POT
Solenosmilia variabilis	stony corals	stony corals - branching	0.032			0		0			
Goniocorella dumosa	stony corals	stony corals - branching	0.022		0			0	0		
Enallopsammia rostrata	stony corals	stony corals - branching	0.016		0	0		0			
Madrepora oculata	stony corals	stony corals - branching	0.01					0	0		
Paragorgia arborea	gorgonians	gorgonians - scleraxonians	0.002			0		0	0		
Keratoisis spp.	gorgonians	gorgonians - calcaxonia	0.002		0	0		0			
Primnoa	gorgonians	gorgonians - calcaxonia	0			0		0			
Lepidisis spp.	gorgonians	gorgonians - calcaxonia	0								
Leiopathes	black corals	black corals	0			0		0			
Corallium	gorgonians	gorgonians - scleraxonians	0					0			
Bathypathes	black corals	black corals	0					0			
Errina spp	lace corals	lace corals	0			0			0		
Stylaster spp	lace corals	lace corals	0					0			
Mean			0.006								

4.5 Temporal distribution of coral catch (bottom trawl fisheries)

To analyze the temporal trend in coral bycatch, only data from bottom trawl fisheries (BT, BPT, PRB) were used, as they accounted for 99% of all reported coral catch during the assessed period. The trend analysis focused solely on the protected coral species groups: black corals, gorgonians, lace corals, and stony corals. Table 4.15 shows the time series of catch weight for stony corals, which had the highest overall catch weight, across all bottom trawl fisheries in each FMA. No clear trend in stony coral catch was evident between the 2007–08 and 2019–20 fishing years. However, the first three fishing years had particularly high reported catch weights, especially the 2008–09 fishing year, which recorded 75.186 tonnes of stony coral catch for all areas combined, accounting for 57% of all stony coral catch (130.772 tonnes) reported during the entire assessed period. This high catch weight was predominantly reported in FMA4 (45.383 tonnes), although higher than usual stony coral catch was also observed in FMA6 and FMA9. Excluding the 2008–09 fishing year, the total stony coral catch (within and outside the EEZ) ranged from 0.53 to 13.848 tonnes. Within the EEZ, the FMAs with the highest reported coral catch weight were FMA4, FMA6, and FMA9, accounting for 96% of all coral catch within the EEZ. Outside the EEZ, 86% of reported coral catch weight came from the Louisville Ridge. When excluding the unusual catch weight during the 2008–09 fishing year, all areas rank similarly, but FMA6 would have the highest reported catch weight for stony corals within the EEZ.

Table 4.15: Time series of observed coral catch weight (bottom trawl fisheries only) in tonnes for stony corals in each FMA between the 2007–08 and 2019–20 fishing years. Total catch weight per FMA is shown for all fishing years and additionally for all years but with the 2008–09 fishing year excluded.

Fishing year	FMA4	FMA6	FMA9	FMA5	FMA3	FMA2	FMA1	FMA7	FMA8	LOUR	WANB	CET	HOWE	Totals ^a
2007/08	4.448	8.7		0.004	0.231		0.006	0.014			0.07	0.002	0.019	13.494
2008/09	45.383	15.147	13.316	0.016	0.126	0.001	0.012	0.001			0.857	0.263	0.064	75.186
2009/10	2.952	2.843	3.739	0.01	0.06	0.153	0			3.673	0.024	0.262	0.132	13.848
2010/11	0.07	0.866	2.585	0.029	0.255	0.11	0.012	0.002		1.852	0.128	0.061	0.016	5.986
2011/12	0.005	0.105		0.011	0.044	0.017		0.002		0.166	0.075	0.095	0.005	0.525
2012/13	0.401	0.115	0.001	0.03	0.132	0.002		0.007		0.407	1.074	0.042	0.241	2.452
2013/14	0.053	0.147	0.063	0.092	0.067	0	0.002	0.003	0.02	0.203				0.65
2014/15	0.11	0.029	0.003	0.071	0.153	0.011	0.003	0.015		0.552	0.056	0.035	0.343	1.381
2015/16	0.143	0.009	0.005	0.002	0.037		0.02	0.002		8.01		0.127	0.001	8.356
2016/17	0.357	0.407	0.02	2.004	0.006	0.004	0.036	0.027		3.867	0.04	0.116	0.022	6.906
2017/18	0.016	0.04	0	0	0.016			0.002		0.835	0.042	0.046	0.016	1.013
2018/19	0.185	0.086	0.012	0.078	0.043	0.001	0	0.002		0.005		0.025	0.008	0.445
2019/20	0.115	0.158	0.01	0.002	0.022	0.021	0.11	0.001		0.069	0.011	0.01	0.001	0.53
Totals	54.238	28.652	19.754	2.349	1.192	0.32	0.201	0.078	0.02	19.639	2.377	1.084	0.868	130.772
Totals (without 2008/09)	8.855	13.505	6.438	2.333	1.066	0.319	0.189	0.077	0.02	19.639	1.52	0.821	0.804	55.586

^aNote that 50% of captures events were based on eyeball estimates, and that only 29 capture events (total catch weight was 143 tonnes of stony corals and unidentified corals in bottom trawl fisheries) contained coral catch larger than one tonne, and three capture events over 10 tonnes (all three during the 2008–09 fishing year).

For black corals, gorgonians, and lace corals, the total observed catch weights were considerably smaller compared to stony corals, and no clear trends in observed coral catch weights were evident (see Tables 4.16–4.18). One exception was the 2008–09 fishing year. Here, catch weights were unusually high for gorgonians and lace corals (approximately 15 and 76 times higher, respectively) compared to all other fishing years (Tables 4.16–4.17). The reported catch weights for gorgonians and lace corals between the 2007–08 and 2019–20 fishing years ranged from 0.137 to 6.587 tonnes and 0.001 to 5.016 tonnes, respectively. For black corals, the observed catch weight ranged from 0.019 to 1.416 tonnes, with the highest catch weight observed in the 2019–20 fishing year.

Table 4.16: Time series of observed coral catch weight (bottom trawl fisheries only) in tonnes for gorgonians in each FMA between the 2007–08 and 2019–20 fishing years.

Fishing year	FMA4	FMA6	FMA9	FMA5	FMA3	FMA1	FMA2	FMA7	HOWE	WANB	CET	LOUR	TKET	Totals
2007/08	0.008	0.107		0.005	0.032	0.032	0		0.002	0.01	0			0.196
2008/09	5.216	0.606	0.028	0.008	0.007	0.014	0	0.001	0.345	0.356	0.006			6.587
2009/10	0.482	0.618	0.143	0.146	0.031	0.006	0.002	0	0.062	0.004	0.002	0.017		1.513
2010/11	0.12	0.056	0.007	0.005	0.008	0.03	0.005	0.001	0.146	0.035	0.004	0.009		0.426
2011/12	0	0.129	0.122	0.01	0.001	0.006	0	0.002	0.005	0.067	0.001	0.004		0.347
2012/13	0.003	0.011	0.007	0.012	0.008	0		0.001	0.028	0.005	0.002	0.001		0.078
2013/14	0.004	0.005	0.003	0.005	0.095	0.002		0	0.004		0	0		0.118
2014/15	0.127	0.89	0.047	0.002	0.005	0.001	0.003	0.007	0.043	0	0.083	0.004		1.212
2015/16	0.009	0.006	0.04	0.083	0.004	0.001		0	0.055		0.011	0.009		0.218
2016/17	0.151	0.044	0.002	0.001	0.001	0.006	0.016	0.009	0.015	0.006	0.005	0.046		0.302
2017/18	0.001	0.087	0.008	0.003	0.005	0.001	0	0.006	0.017	0.003	0.004	0.002		0.137
2018/19	0.002	0.154	0.079	0.026	0.057	0.003	0		0.012		0.005	0	0.04	0.378
2019/20	0.074	0.009	0.054	0.003	0.023	0	0.004	0.001	0.001		0.001	0		0.17
Totals	6.197	2.722	0.54	0.309	0.277	0.102	0.03	0.028	0.735	0.486	0.124	0.092	0.04	11.682

Table 4.17: Time series of observed coral catch weight (bottom trawl fisheries only) in tonnes for lace corals in each FMA between the 2007–08 and 2019–20 fishing years.

Fishing year	FMA4	FMA1	FMA6	FMA5	FMA8	FMA9	FMA2	FMA3	WANB	CET	HOWE	LOUR	Totals
2007/08	0		0.009										0.009
2008/09	5.005		0			0			0.008	0.001	0.002		5.016
2009/10	0.006		0.002	0.002					0	0			0.01
2010/11	0.001	0	0.05									0	0.051
2011/12	0.001		0	0.001					0	0		0	0.002
2012/13	0		0.013	0.001				0	0			0.001	0.015
2013/14		0.004	0	0			0				0.003		0.007
2014/15	0		0	0.001		0.001			0.002				0.004
2015/16	0.5		0	0.001									0.501
2016/17	0		0	0.025						0.002		0.002	0.029
2017/18	0		0	0	0.006	0.001				0.002			0.009
2018/19		0.145		0				0					0.145
2019/20	0.001		0					0		0			0.001
Totals	5.514	0.149	0.074	0.031	0.006	0.002	0	0	0.01	0.005	0.005	0.003	5.799

Table 4.18: Time series of observed coral catch weight (bottom trawl fisheries only) in tonnes for black coral in each FMA between the 2007–08 and 2019–20 fishing years.

Fishing year	FMA5	FMA4	FMA6	FMA9	FMA3	FMA1	FMA7	FMA2	HOWE	CET	LOUR	WANB	TKET	Totals
2007/08		0.018	0.002			0.007	0.01		0.006	0.001		0.002		0.046
2008/09		0.053	0.004	0.002		0.006		0	0.047	0.004		0.016		0.132
2009/10	0	0.029	0.011	0.006		0.003			0.022	0.009	0.004	0		0.084
2010/11			0.004	0	0	0.007		0.007	0.033	0.018	0.011	0.005		0.085
2011/12	0.001	0.007	0.001	0.012	0	0.011	0.001	0.004	0.006	0.01	0.006	0		0.059
2012/13	0.002	0.001	0		0.002	0	0		0.071	0.02	0.003	0.001		0.1
2013/14		0.001	0.002			0.006			0.007	0.001	0.002			0.019
2014/15	0	0.001	0	0.016		0.001	0.006	0.001	0.028	0.004	0.003	0.004		0.064
2015/16	0.411	0.005	0.002		0.004	0	0.006		0.011	0.041	0.004			0.484
2016/17	0.001	0.013	0.002	0.023		0.007	0		0.006	0.015	0.024			0.091
2017/18	0.103	0.006	0.101	0.016	0	0.008	0		0.017	0.017	0.002	0		0.27
2018/19	0.176	0.004	0	0.003	0.05	0.003		0.005	0.006	0.016	0.001		0.008	0.272
2019/20	1.371	0.011		0.008	0.01	0.004	0.002	0.008	0.001	0.001	0			1.416
Totals	2.065	0.149	0.129	0.086	0.066	0.063	0.025	0.025	0.261	0.157	0.06	0.028	0.008	3.122

Figure 4.6 displays the time series of observed coral capture rates in bottom trawl fisheries for the top-five areas (within and outside the EEZ) with the highest average catch rates across all coral groups and fishing years: FMA4, FMA6, FMA9, Louisville Ridge (LOUR), and Wanganella Bank (WANB). The same time series with square-root transformed catch rates is shown in Figure 4.7. Overall, no clear trends in observed coral catch rates were apparent. For all coral groups within FMA4, the 2008–09 fishing year exhibited the highest catch rates across all study years. For instance, the observed catch rate for stony corals in the 2007–08 fishing year was about four tonnes per 100 tows but remained close to zero in all other years (Figure 4.6).

Observed stony coral capture rates were generally low in other areas, except for the 2008–09 to 2010–11 fishing years in FMA9 with close to five tonnes per 100 tows, more than 20 tonnes per 100 tows in Wanganella Bank during the 2012–13 fishing year, and a high capture rate close to 5 tonnes per 100 tows in Louisville Ridge during the 2015–16 fishing year (Figure 4.6). Similarly, peak capture rates were found for the other three coral groups in the same years and in some other years albeit in a lower order of magnitude.

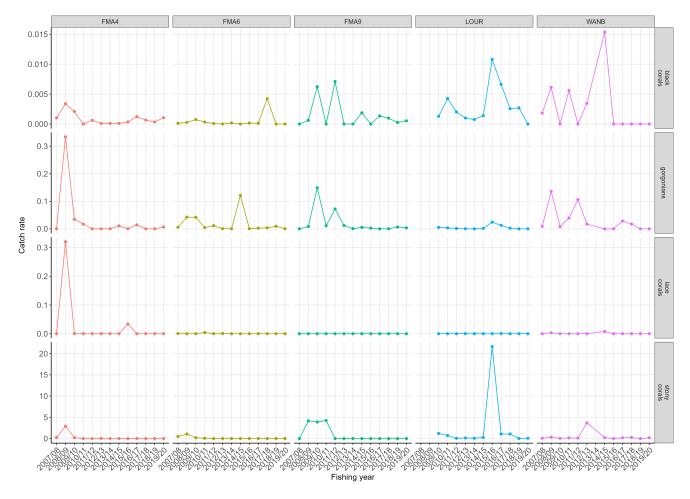


Figure 4.6: Time series of observed coral catch rate (bottom trawl fisheries only) for all protected species coral groups combined (i.e., black corals, gorgonians, lace corals, and stony corals) reported in top-five areas with highest mean total coral catch rate across all protected coral species groups between the 2007–08 and 2019–20 fishing years. Note the different y-axis scale for each coral group.

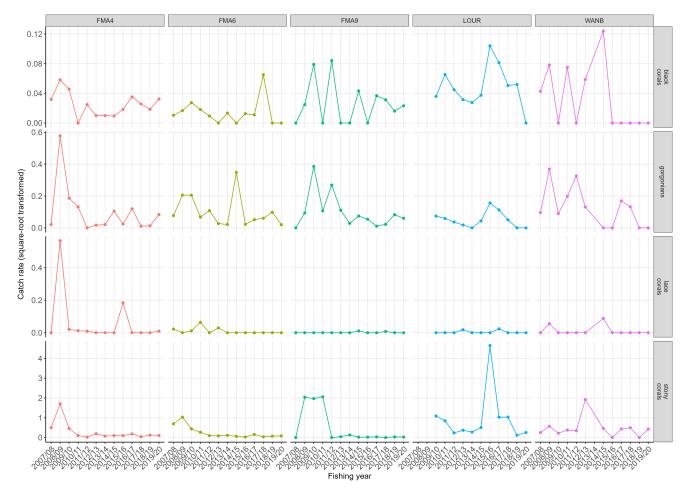


Figure 4.7: Time series of square-root transformed observed coral catch rate (bottom trawl fisheries only) for all protected species coral groups combined (i.e., black corals, gorgonians, lace corals, and stony corals) reported in top-five areas with highest mean total coral catch rate across all protected coral species groups between the 2007–08 and 2019–20 fishing years. Note the different y-axis scale for each coral group.

4.6 Model fitting

The logistic GAM fitted to the presence-absence data performed well for all four coral groups, accurately predicting both the presence and absence of coral catch on fishing events (see Appendix 6.7). However, the GAM fitted to Box-Cox transformed catch weights was unable to produce estimates that allowed for the prediction of actual observed catch weight, possibly due to the wide range of observed catch weights likely caused by inconsistencies in how catch weights were determined, despite the transformation to ensure normally-distributed data. Therefore, only the results for the logistic GAM will be discussed here, but model estimates for the GAMs fitted to Box-Cox transformed catch weights are provided in Appendix 6.7.

For stony corals, the logistic GAM suggested a mean probability of coral catch on a fishing event of 0.012 (95% confidence interval (CI): 0.006–0.021) based on back-transformed log-odds (Appendix Table 6.3) to the probability scale. The assessment of the smooth term for bathymetry (Figure 4.8) suggested a high chance of stony coral captures from approximately 800 meters and deeper, which seemed unusual. Given that branching and cup-forming stony corals have different depth profiles, the same model was refitted to presence-absence data separately for branching and cup-forming stony corals. Figure 4.9 suggests an increasing probability of branching stony coral captures at depth between approximately 600 to 1500 meters, after which the probability gradually declines (though notice the wide uncertainty for the smooth term beyond 2000 m depth). According to the model, cup-forming stony coral captures are more likely to occur at depths below 1000 meters, peaking again beyond 2000 m, although the observations at this depth were scarce. (Figure 4.10). Also note that bathymetry reflects ocean depth at the start of each fishing event and does not neccessarily reflect the actual depth at which the coral was captured.

The smooth terms for SST and chlorophyll-a imply that stony coral captures are more likely to occurr in less productive areas relative to inshore areas and increase towards warmer ocean temperatures (e.g., from and beyond the Chatham Rise). Partial effects plot for all other remaining coral groups implied similar effects, but due to the low number of observations, were subject to considerable uncertainty (see Appendix 6.7). However, the partial effects plots for bathymetry for these coral groups suggests that most captures occur at depth between 1000 and 1500 meters. Similar results were obtained when fitting the same model to presence-absence data of stony coral captures for catch weights less than 1000 tonnes (Appendix Table 6.4).

Based on the logistic GAM fitted separately to data for branching stony corals and cup-forming stony corals, the average probability for stony coral catch was 0.002 (95% CI: 0.001–0.005) and 0.006 (95% CI: 0.003–0.011), respectively, for bottom trawl fisheries

targeting orange roughy in FMA4 during July, at ocean depth close to zero meters, SST close to eight degrees celsius and chlorophyll-a around $0.160~mg_m^{-3}$ (i.e., at predictor values for the estimated intercept term for the model). However, the actual range of probability varies depending on location and by fishing year. For example, the probability of cup-forming stony coral catch for bottom trawl fisheries targeting orange roughy in FMA4 during July ranged from 0.002~(95%~CI:~0.001-0.006) (depth: 1425.017~m, SST: 15.19~degrees celsius, chlorophyll-a: $0.419~mg_m^{-3}$, fishing year: 2020-21) to 0.080~(95%~CI:~0.052-0.112) (depth: 783.313~m, SST: 14.919~degrees celsius, chlorophyll-a: $0.413~mg_m^{-3}$, fishing year: 2009-10).

Figures 4.11 to 4.14 present the predicted probabilities of coral catch per 0.2° grid cells averaged from the 2007–08 to 2019–20 fishing years. The predicted probabilities of coral captures were representative of actual observations (Figure 4.15). As suggested by the model estimates, for stony corals, the highest chance of observed coral catch occurred within FMA4, specifically between 1000 and 1500 m deep (Figure 4.11). These areas are frequently fished by bottom trawl fisheries targeting orange roughy. There was no significant difference in the chance of stony coral catch across other bottom trawl target species (Appendix Table 6.3). As expected, there was a significantly lower probability of coral catch in mid-water trawl fisheries (the probability reduced to less than 0.001). Other fishing methods showed no significant differences, but the direction of the effects indicated fewer coral captures in all other fishing methods compared to bottom trawling. Across FMAs, there were certain areas with particularly high probabilities of coral catch, often found around seamounts at depths between 1000 and 1500 meters. For all other coral groups, the chance of being caught in observed fishing events was low compared to stony corals (see Appendix 6.7 and Figures 4.12 to 4.14), although areas around seamounts tended to have higher levels of coral bycatch. Splitting stony corals into branching and cup-forming stony corals suggests some areas of high branching stony corals within FMA6 and FMA9 (Figure 4.16).

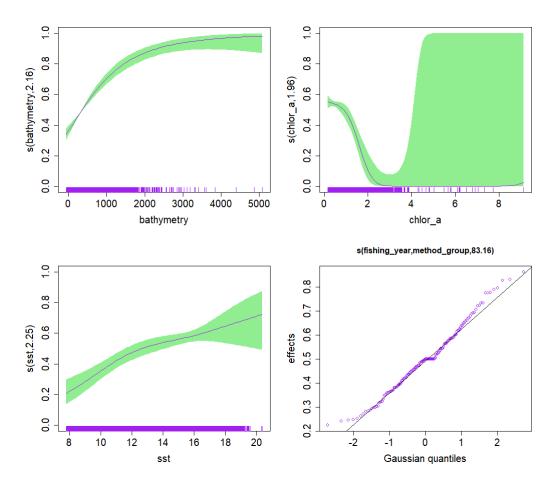


Figure 4.8: Partial effects from logistic GAM fitted to presence-absence data of stony coral captures in all fishing methods.

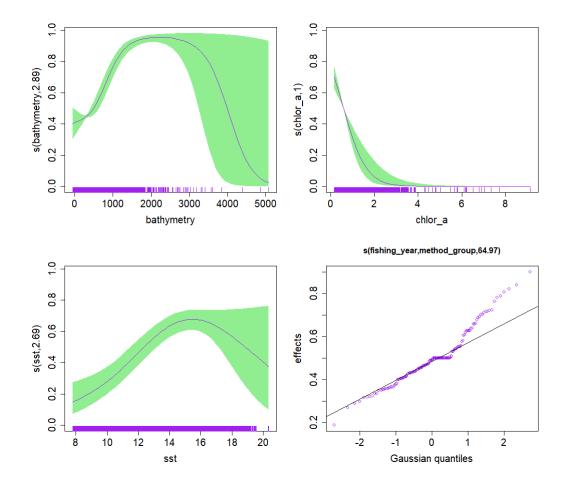


Figure 4.9: Partial effects from logistic GAM fitted to presence-absence data of branching stony coral captures in all fishing methods.

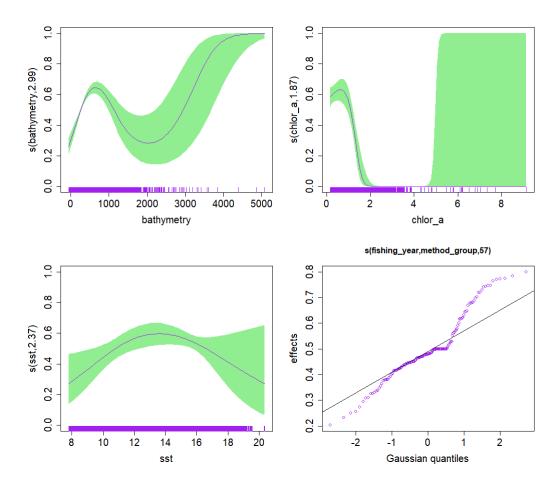
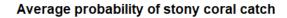



Figure 4.10: Partial effects from logistic GAM fitted to presence-absence data of cup-forming stony coral captures in all fishing methods.

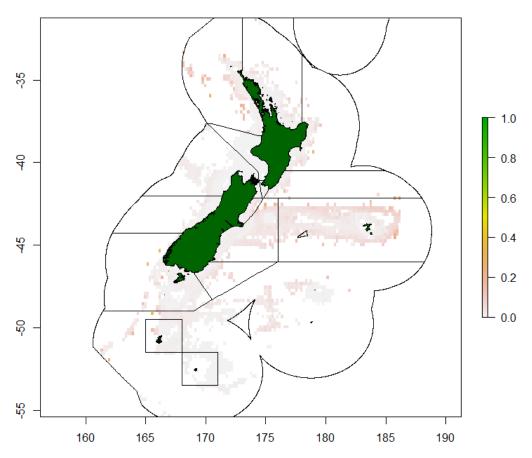


Figure 4.11: Average probability of stony coral catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells), between the 2007–08 and 2019–20 fishing years.

Average probability of black coral catch

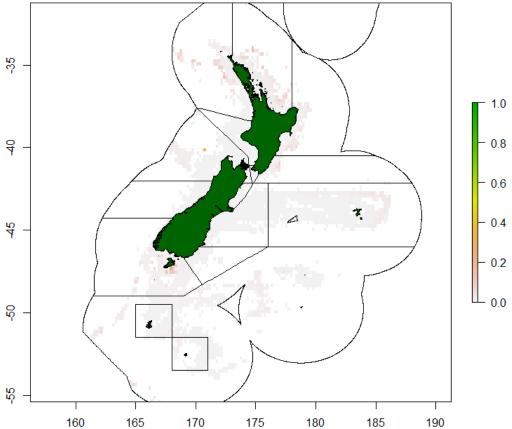
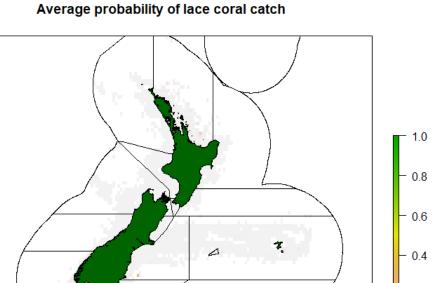



Figure 4.12: Average probability of black coral catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells), between the 2007–08 and 2019–20 fishing years.

-55

0.2

0.0

Figure 4.13: Average probability of lace coral catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells), between the 2007–08 and 2019–20 fishing years.

Average probability of gorgonian catch 1.0 0.8 0.6 0.4 0.2 0.0

Figure 4.14: Average probability of gorgonian catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells), between the 2007–08 and 2019–20 fishing years.

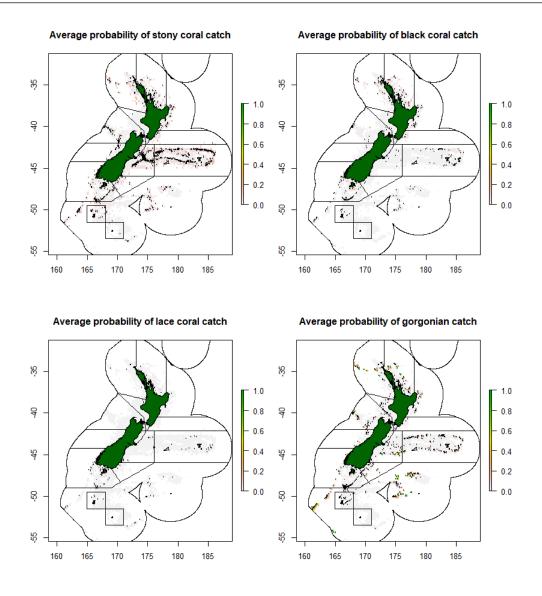


Figure 4.15: Average probability of coral catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells) plus actual observed captures (black dots) for the four protected coral species groups, stony corals, black corals, lace corals, and gorgonians, between the 2007–08 and 2019–20 fishing years.

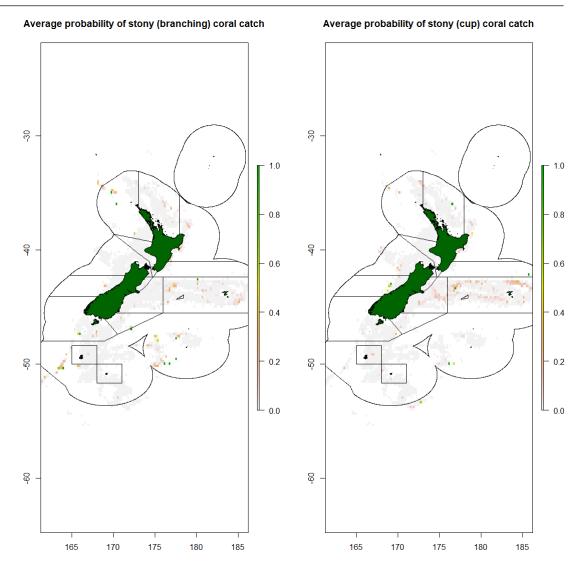


Figure 4.16: Average probability of coral catch on observed fishing events per grid cell (0.2° latitude x 0.2° longitude cells) separately for braching stony corals and cup-forming stony corals between the 2007–08 and 2019–20 fishing years.

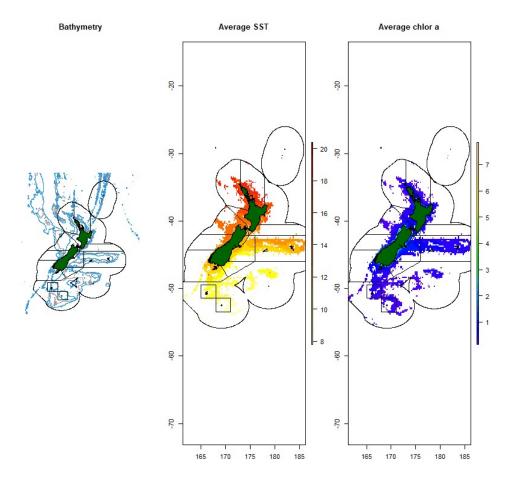


Figure 4.17: Environmental covariates used for model fitting. For SST (degress celsius) and chlorophyll-a (mg_m^{-3}), the average value per grid cell (0.2° latitude x 0.2° longitude cells) between the 2007–08 and 2019–20 fishing years is shown.

4.7 Fisher-reported coral captures

The reported coral captures provided by fishers included data from the fishing years 2008–09 to 2020–21 (Figure 4.18), and the corresponding catch weights per protected coral species group are presented in Table 4.19. A comprehensive list of all reported species can be found in Appendix Table 6.15. It is important to note that a direct comparison between fisher-reported and observer-reported catch is only possible through catch rates. However, we were not provided with a complete record of all commercial fishing events, which means that catch rates for fisher-reported coral catch could not be calculated. Nevertheless, it is expected that fisher-reported coral catch would be higher, because it encompasses the entirety of fishing activities, whereas observer monitoring covers only a fraction of total fishing activity.

The majority of reported coral captures did not specify the taxa. Among those with species identification, stony corals comprised most of the fisher-reported coral captures (17.490 out of 82.972 tonnes) (Table 4.19). The total fisher-reported coral catch, including unspecified coral catch, amounted to 89.972 tonnes. This is lower than the total coral catch reported by observers during the same time period (137.367 tonnes) as shown in Table 4.20. The annual fisher-reported coral captures were generally within the same order of magnitude as the observer-reported coral captures. One exception was the 2008–09 fishing year, where observer-reported coral captures amounted to 95.034 tonnes, compared to 17.320 tonnes reported by fishers. During the 2015–2016 and 2016–2017 fishing years, fishers reported coral captures that were an order of magnitude higher than the observer-reported coral captures. Similarly, the fisher-reported captures by FMA were comparable to those reported by observers, except for FMA4, where observers reported approximately twice the amount of coral catch compared to fishers. Overall, the expectation that more coral captures would occur in the dataset of fisher-reported captures compared to observer-reported captures was not met.

Figure 4.19 shows fisher-reported coral catch weight by FMA and fishing year. The high values for fisher-reported captues during the 2008–2009 and 2015–2016 fishing years were predominatly reported within FMA4, whereas high captures in the 2016–2017 fishing years were mainly reported in FMA6 and FMA9.

Figure 4.18: Spatial distribution of fisher-reported coral captures within the EEZ, between the 2008–09 and 2020–21 fishing years. Capture events are color-coded by start FMA of the fishing event.

Table 4.19: Fisher-reported coral captures grouped by protected coral groups between the 2008–09 and 2020–21 fishing years.

Catch weight (t)
69.898
17.490
1.641
0.607
0.336
89.972

Table 4.20: Fisher-reported coral captures grouped by fishing year.

Fishing year	Fisher-reported catch weight (t)	Observer-reported catch weight (t)
2008–2009	17.320	95.034
2009–2010	8.238	11.328
2010–2011	8.237	4.343
2011–2012	1.953	0.877
2012–2013	3.090	1.405
2013-2014	3.725	0.635
2014–2015	2.477	1.601
2015–2016	13.916	2.119
2016–2017	22.634	3.254
2017–2018	0.781	0.52
2018–2019	2.970	1.201
2019-2020	1.598	2.188
2020-2021	2.903	12.862
Total	89.842	137.367

Table 4.21: Fisher-reported coral captures grouped by fishery management area (FMA) between the 2008–09 and 2020–21 fishing years.

FMA	Fisher-reported catch weight (t)	Observer-reported catch weight (t)
FMA4	37.563	73.537
FMA9	22.670	20.551
FMA6	20.378	23.121
FMA5	3.782	17.595
FMA3	3.498	1.454
FMA2	0.867	0.417
FMA1	1.027	0.553
FMA7	0.170	0.113
FMA8	0.023	0.026
Unknown	18.116	
Total	108.071	137.367

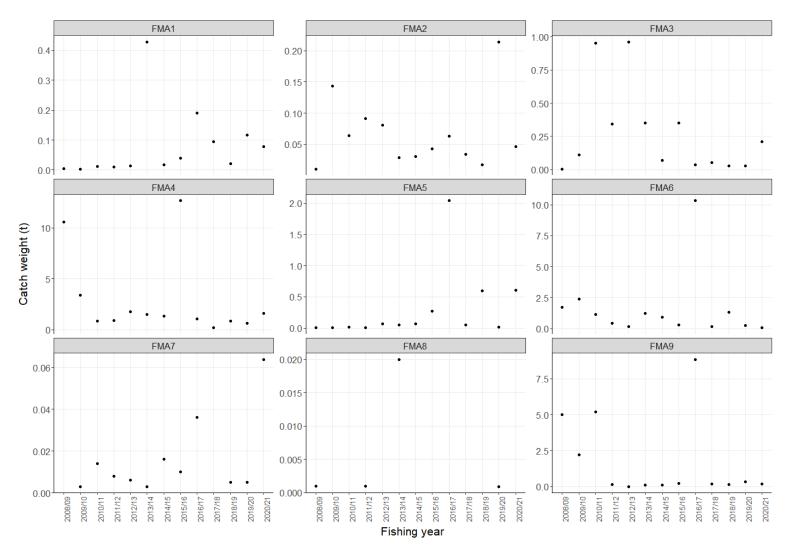


Figure 4.19: Fisher-reported annual coral catch weight by fishery management area.

This study examined the spatio-temporal distribution of observed coral captures from 2007–08 and 2019–20 fishing years, with bottom trawl fisheries responsible for 99% of reported captures during this period. The analysis focused on trends in protected coral species groups, including black corals, gorgonians, lace corals, and stony corals. There was not a clear temporal trend in stony coral catch weights from 2007–08 to 2019–20, although there was particularly high reported catch weights during the first three fishing years; however, these results should be interpreted with caution because of the inconsistent methods of determining catch weights.

The assessment of coral bycatch data recorded in the COD, along with the analysis of presence-absence data of coral bycatch, suggested a low chance of observed coral captures in New Zealand's commercial fisheries within and outside the Exclusive Economic Zone (EEZ), except for stony corals, which are predominantly caught in bottom trawl fisheries targeting orange roughy in the North-East Chatham Rise.

Overall, the protected coral species grouping appears sufficient to assess coral-fisheries interactions. However, it would be beneficial to further differentiate stony corals into stony cup corals and stony branching corals, as the latter are caught at a rate almost ten times higher within bottom trawl fisheries. This distinction is supported by separate logistic GAMs for branching and cup-forming stony corals, where depth profiles for captures for each species align with the actual depth profile for each taxonomic group. This suggests the existence of higher risk areas for branching corals within FMA6 and FMA9, while cup-forming corals are typically caught within FMA4.

5. Discussion

Despite the findings that align with previous studies, caution is warranted given the sparseness of the data and particularly the potential bias in estimated coral catch weights given that particuarly large coral catch is usually based on eyeball estimates. Nonetheless, extremely high captures of corals have been previously reported. For example, Cryer and Geange (2018) analysed coral bycatch data and captures over 100kg from bottom trawl and bottom line fisheries in the SPRFMO area, and found no evidence that reported weights were incorrect upon reviewing observer comments and images. Further, Anderson and Clark (2003) analysed data collected by fisheries observers in New Zealand fisheries between October 1997 and August 2000 in the South Tasman Rise orange roughy fishery, and in some trawls coral captures ranged between one and 15 tonnes. However, the authors also note that it was general practice that very large coral captures were released by opening the cod-end on the stern-ramp, hence these high numbers of reported catch are likely to be subject to subjective guessing of the actual catch weight. The largest captures of corals were reported based on eyeball estimates of catch weights, and for 50% of all reported coral catch weights the actual method to determine catch weight was based on eyeball estimates. Based on that, catch weight is currently not a good measure of fishery impact on coral communities.

We recommend assessing the chance coral bycatch in commercial fishing using presence-absence data of coral captures. The logistic GAM performed well and suggested a high chance for stony corals captures in trawl fisheries targeting organe roughy, particularly within FMA4. Other variables that could have been included in the model were, for example, fishing duration and actual tow depth (for trawl fisheries). However, these variables are not always available for all fishing events (e.g., end time of fishing is often not recorded) resulting in the loss of valuable data for the model fitting. If used for predicting coral captures on unobserved fishing events (not done in this study), we suggest to including a random effect for vessel key to account for gear configurations and general fishing behaviour that has not been accounted for in the models fitted here.

While the analysis of presence-absence data of coral captures can help identify risk areas of coral catch in commercial fisheries, it does not provide a comprehensive measure of the actual impact of fishing on coral communities. Bottom trawling, for example, is known to cause damage to sessile invertebrate fauna (Koslow et al., 2001; Rise, 2002). However, the presence of coral bycatch alone does not indicate the extent of damage or mortality to coral habitats. To assess the impacts of fishing on coral habitats, an evaluation of affected coral habitats, such as transect studies in areas of low and high risk of coral catch, would be required (e.g., Van Dolah et al. (1987)). Additionally, catch weight alone does not provide a comprehensive understanding of the ecological consequences and potential harm inflicted on coral communities. Other factors, including habitat destruction, physical damage, and post-capture mortality, should be considered when assessing the impacts of

fishing on coral habitats.

Fisher-reported coral captures were lower but in the same order of magnitude than observer-reported captures. A direct comparison via catch rates was not possible due to the lack of data. However, the general assumption was that more coral catch should be contained in fisher-reported catch data because observer-reoprted data only contain a fraction of all fishing activity. Observer coverage could not be calculated in this project due to lack of required data but observer coverage in, for example, trawl fisheries targeting orange roughy within New Zealand's EEZ ranged between 11.5% and 43.9% between the 2007–08 and 2019–20 fishing years (retrieved from https://protectedspeciescaptures.nz/PSCv6/released/birds/orange-roughy-trawl/all-vessels/eez/2002-03-2019-20/). Hence, fisher-reported coral captures appear to be under-reported. Some differences in reported coral catch weights between fishers and observers could arise from different data entry forms. For example, observers can enter actual catch weight values into the current PSI interaction form, alternative sheets (e.g., Other table in COD) require minimum value of 1 kg. In contrast, fishers can report catch weight values down to 0.1kg.

The dashboard developed in this project provides the ability to update the results of this project quickly, which allows the identification of changes in the overall pattern of coral captures in New Zealand's commercial fisheries. Further, alternative summaries than those created in this report can be created for further data exploration. However, the lack of standardized protocols for determining coral catch weights introduces uncertainty and potential bias in the results of this analysis. It is crucial to address this issue by developing clear data collection protocols for coral catch in fisheries to ensure consistency and improve the reliability of future studies, and to look at solutions to determine the amount of large amount of bycatch that cannot be easily measured (e.g., through photo documentation). To overcome the limitations of catch weight as a sole measure, future research should explore alternative indicators that capture the broader ecological implications of fishing on coral habitats. For example, metrics such as the extent of habitat damage, species composition changes, and abundance of target and non-target species can provide valuable insights into the ecological effects of fishing activities on coral habitats (Hixon et al., 2014; Thurstan et al., 2017).

- Abraham, E. R. & Berkenbusch, K. (2019). *Preparation of Data for Protected Species Capture Estimation, Updated to 2017-18*. Ministry for Primary Industries.
- Anderson, A., Stephenson, F., & Behrens, E. (2020). Updated habitat suitability modelling for protected corals in New Zealand waters. *NIWA report prepared for Department of Conservation (DOC)*, *NIWA CLIENT REPORT 2020174WN*.
- Anderson, O. F. & Clark, M. R. (2003). Analysis of bycatch in the fishery for orange roughy, *Hoplostethus atlanticus*, on the South Tasman Rise. *Marine and Freshwater Research*, 54(5):643–652.
- Baird, S., Tracey, D., Mormede, S., & Clark, M. (2013). The distribution of protected corals in New Zealand waters. *NIWA client report to the Department of Conservation no. WLG2012*, 43:96.
- Cairns, S. D. (1995). The marine fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa). New Zealand Oceanographic Institute Memoir.
- Cryer, M. & Geange, S. (2018). Review of benthic sampling and bycatch data, including vme taxa, in SPRFMO bottom fisheries. 6th Proceedings of the Scientific Committee Puerto Varas, Chile, 9-14 September 2018.
- Dawson, E. W. (1984). The benthic fauna of the Chatham Rise: an assessment relative to possible effects of phosphorite mining. *Geologisches Jahrbuch. Reihe D. Mineralogie*, *Petrographie, Geochemie, Lagerstättenkunde*, (65):209–231.
- Hijmans, R. J. (2022). raster: Geographic Data Analysis and Modeling. R package version 3.5-15.

- Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). *Applied logistic regression*, volume 398. John Wiley & Sons.
- Iannone, R., Allaire, J., & Borges, B. (2020). *flexdashboard: R Markdown Format for Flexible Dashboards*. R package version 0.5.2.
- Koslow, J., Gowlett-Holmes, K., Lowry, J., O¹Hara, T., Poore, G., & Williams, A. (2001). Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. *Marine Ecology Progress Series*, 213:111–125.
- Mitchell, J. S., Mackay, K. A., Neil, H. L., Mackay, E. J., Pallentin, A., & Notman, P. (2012). Undersea New Zealand, 1:5,000,000. NIWA chart. *Miscellaneous Series No.* 92.
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group (2018). Sea-viewing wide field-of-view sensor (seawifs) ocean color data; 2018 reprocessing. nasa ob.daac, Greenbelt, MD, USA. [Online; Accessed on 08/04/2022].
- Pebesma, E. J. et al. (2018). Simple features for R: standardized support for spatial vector data. *R J.*, 10(1):439.
- Rise, L. H. (2002). Descriptive analysis of orange roughy fisheries in the Tasman Sea outside the New Zealand EEZ Lord Howe Rise, Northwest Challenger Plateau, and South Tasman Rise from 1986-87 to the end of the 20001 fishing year.
- Sachoemar, S. I., Yanagi, T., & Aliah, R. S. (2012). Variability of sea surface chlorophyll-a, temperature and fish catch within Indonesian region revealed by satellite data. *Marine Research in Indonesia*, 37(2):75–87.
- Sambah, A. B., Muamanah, A., Harlyan, L. I., Lelono, T. D., Iranawati, F., & Sartimbul, A. (2021). Sea surface temperature and chlorophyll-a distribution from Himawari satellite and its relation to yellowfin tuna in the Indian Ocean. *Aquaculture, Aquarium, Conservation & Legislation*, 14(2):897–909.
- Squires, D. F. (1965). Deep-water coral structure on the Campbell Plateau, New Zealand. In: *Deep Sea Research and Oceanographic Abstracts*, volume 12, pages 785–788. Elsevier.
- Tracey, D. M., Anderson, O. F., & Naylor, J. R. (2011). A guide to common deepsea invertebrates in New Zealand waters. Ministry of Fisheries.
- Van Dolah, R. F., Wendt, P. H., & Nicholson, N. (1987). Effects of a research trawl on a hard-bottom assemblage of sponges and corals. *Fisheries research*, 5(1):39–54.
- Venables, W. N. & Ripley, B. D. (2002). *Modern Applied Statistics with S*, (fourth ed.). Springer. ISBN 0-387-95457-0.

5. Discussion

Welliken, M. A., Melmambessy, E. H., Merly, S. L., Pangaribuan, R. D., Lantang, B., Hutabarat, J., & Wirasatriya, A. (2018). Variability chlorophyll-a and sea surface temperature as the fishing ground basis of mackerel fish in the arafura sea. In: *E3S Web of Conferences*, volume 73, page 04004. EDP Sciences.

Wiryawan, B., Loneragan, N., Mardhiah, U., Kleinertz, S., Wahyuningrum, P. I., Pingkan, J., Wildan, Timur, P. S., Duggan, D., & Yulianto, I. (2020). Catch per unit effort dynamic of yellowfin tuna related to sea surface temperature and chlorophyll in Southern Indonesia. *Fishes*, 5(3):28.

6.1 Description of coral groups

6. Appendix

Table 6.1: Description of coral groups summarized in this study.

Name	Scientific name	MPI code	Protected coral groups	Morphotypes	SDM groups
Ath	Assethancesia	ACC			_
Acanthogorgiid coral Acanthogorgiid coral	Acanthogorgia spp. Acanthogorgiidae	ACC ACD	gorgonians gorgonians	gorgonians - others gorgonians - others	
Bushy bamboo coral	Acanella spp.	ACN	gorgonians	gorgonians - calcaxonia	
Black coral	Antipathella spp.	AHL	black corals	black corals	
Acanthogorgiid coral	Anthogorgia spp.	ANA	gorgonians	gorgonians - others	
Anthothelid coral	Anthothela spp.	ANB	gorgonians	gorgonians - others	
Anthothelid coral	Anthothelidae	AND	gorgonians	gorgonians - others	
Plexaurid sea fan	Astrogorgia spp.	ASD	gorgonians	gorgonians - others	
Black coral	Antipathes spp.	ATP	black corals	black corals	
Bamboo coral	Keratoisis spp.	BOO	gorgonians	gorgonians - calcaxonia	Keratoisis spp.
Black coral Caryophyllia spp.	Bathypathes spp. Caryophyllia spp.	BTP CAY	black corals stony corals	black corals stony corals - cup	Bathypathes
Caryophyma spp. Coral rubble	N/A	CBB	coral rubble	stony corais - cup	
Coral rubble - dead	N/A	CBD	coral rubble - dead		
Stony branching corals	Families Dendrophylliidae & Oculinidae & some spp. in family Caryophylliidae	CBR	stony corals	stony corals - branching	
Golden corals	Chrysogorgia spp.	CHR	gorgonians	gorgonians - calcaxonia	
Whip corals	Cirrhipathes spp.	CIR	black corals	black corals	
Clumping cup coral	Cladopsammia spp.	CLA	stony corals	stony corals - cup	
Callogorgia spp.	Callogorgia spp.	CLG	gorgonians	gorgonians - calcaxonia	
Precious corals	Corallium spp.	CLL	gorgonians	gorgonians - scleraxonians	Corallium
Ambrosia cup coral	Caryophyllia (Caryophyllia) ambrosia	CMB	stony corals	stony corals - cup	
Black corals Flabellum cup corals	Antipatharia (Order) Flabellum spp.	COB	black corals stony corals	black corals stony corals - cup	
Conopora spp.	Conopora spp.	COO	lace corals	lace corals	
Stylasterids (hydrocorals)	Stylasteridae (Family)	COR	lace corals	lace corals	
White hydrocoral	Calyptopora reticulata	CRE	lace corals	lace corals	
Cryptelia spp.	Cryptelia spp.	CRY	lace corals	lace corals	
Calyptrophora spp.	Calyptrophora spp.	CTP	gorgonians	gorgonians - calcaxonia	
Stony cup corals	Families Flabellidae & Fungiacyathidae & some spp. in family Caryophyllidae	CUP	stony corals	stony corals - cup	
Stony branching coral	Dendrophyllia spp.	DDB	stony corals	stony corals - branching	
Crested cup coral	Desmophyllum dianthus	DDI	stony corals	stony corals - cup	
Black coral	Dendropathes spp.	DDP	black corals	black corals	
Black coral	Dendrobathypathes spp.	DEN	black corals	black corals	
Bottlebrush coral Stony branching coral	Dasystenella spp. Eguchipsammia japonica	DSY EJA	gorgonians stony corals	gorgonians - calcaxonia stony corals - branching	
Deepwater branching coral	Enallopsammia rostrata	ERO	stony corals	stony corals - branching	Enallopsammia rostrata
Red hydrocorals	Errina spp.	ERR	lace corals	lace corals	Errina spp
Apertum cup coral	Flabellum (Ulocyathus) apertum	FAP	stony corals	stony corals - cup	Ентик эрр
Fungiacyathus spp.	Fungiacyathus spp.	FUG	stony corals	stony corals - cup	
Bushy hard coral	Goniocorella dumosa	GDU	stony corals	stony corals - branching	Goniocorella dumosa
Gorgonian octocoral coral	Gorgonian (order) in Order Alcyonacea	GOC	gorgonians	,	
Anthothelid coral	Iciligorgia spp.	ICI	gorgonians	gorgonians - others	
Iridescent coral	Iridogorgia spp.	IRI	gorgonians	gorgonians - calcaxonia	
Bamboo corals	Isididae (Family)	ISI	gorgonians	gorgonians - calcaxonia	
Bamboo coral	Isidella spp.	ISP	gorgonians	gorgonians - calcaxonia	
Javania spp.	Javania spp.	JAA	stony corals	stony corals - cup	
Jasonisis	Jasonisis	JAS	gorgonians	gorgonians - calcaxonia	* *
Black coral Black coral	Leiopathes spp.	LEI	black corals	black corals	Leiopathes
Bamboo coral	Lillipathes spp. Lepidisis spp.	LIL LLE	black corals gorgonians	black corals gorgonians - calcaxonia	Lepidisis spp.
Bushy lace coral	Lepidopora spp.	LPP	lace corals	lace corals	Есріцізіз эрр.
Spiny white hydrocorals	Lepidotheca spp.	LPT	lace corals	lace corals	
Leiopathes black coral	Leiopathes secunda	LSE	black corals	black corals	Leiopathes
Branching sea fan coral	Metafannyella spp.	MEF	gorgonians	gorgonians - calcaxonia	
Worm-commensal bamboo coral	Minuisis spp.	MIN	gorgonians	gorgonians - calcaxonia	
Madrepora coral	Madrepora oculata	MOC	stony corals	stony corals - branching	Madrepora oculata
Plexaurid sea fan	Muriceides spp.	MRI	gorgonians	gorgonians - others	
Metallic coral	Metallogorgia spp.	MTL	gorgonians	gorgonians - calcaxonia	
Rasta coral	Narella spp.	NAR	gorgonians	gorgonians - calcaxonia	
Deepwater branching coral	Oculina virgosa	OVI PAB	stony corals	stony corals - branching gorgonians - scleraxonians	Paragorgia arboras
Bubblegum coral Bamboo bottlebrush coral	Paragorgia arborea Primnoisis antarctica	PAN	gorgonians gorgonians	gorgonians - scieraxonians gorgonians - calcaxonia	. aragorgia arootea
Primnoid sea fan	Parastenella spp.	PLD	gorgonians	gorgonians - calcaxonia	
Sea fans	Plexauridae (Family)	PLE	gorgonians	gorgonians - others	
Sea feather	Plumigorgia spp.	PLG	gorgonians	gorgonians - calcaxonia	
Plumarella spp.	Plumarella spp.	PLL	gorgonians	gorgonians - calcaxonia	
Plexaurid sea fan	Placogorgia spp.	PLO	gorgonians	gorgonians - others	
Primnoella spp.	Primnoella spp.	PML	gorgonians	gorgonians - calcaxonia	
Primnoa spp.	Primnoa spp.	PMN	gorgonians	gorgonians - calcaxonia	Primnoa
Plexaurid sea fan	Paracis spp.	PRF	gorgonians	gorgonians - others	
Plexaurid sea fan Whip-like primnoid	Paramuricea spp. Primpoella	PRG PRH	gorgonians	gorgonians - others gorgonians - calcaxonia	
Whip-like primnoid Primnoidae (Family)	Primnoella Primnoidae (Family)	PRI	gorgonians gorgonians	gorgonians - calcaxonia gorgonians - calcaxonia	
Black coral	Parantipathes spp.	PTP	black corals	black corals	
WHIP-LIKE GOLDEN CORAL		RAD	gorgonians	gorgonians - calcaxonia	
Red encrusting polyps	Rhodelinda gardineri	RGA	gorgonians	gorgonians - others	
Stony corals	Scleractinia (Order)	SIA	stony corals	5 6	
Black coral	Stylopathes spp.	SLP	black corals	black corals	
Black coral	Saropathes spp.	SRO	black corals	black corals	
Black coral	Stichopathes spp.	STI	black corals	black corals	
Rose lace corals	Stylaster spp.	STL	lace corals	lace corals	Stylaster spp
Solitary bowl coral	Stephanocyathus platypus	STP	stony corals	stony corals - cup	
Stephanocyathus spiniger	Stephanocyathus spiniger	STS	stony corals	stony corals - cup	
Deepwater branching coral	Solenosmilia variabilis	SVA	stony corals	stony corals - branching	Solenosmilia variabilis
Plexaurid sea fan	Swiftia spp.	SWI	gorgonians	gorgonians - others	
Black coral	Triadopathes spp.	TDP THO	black corals	black corals	
Bottlebrush coral Encrusting polyps	Thouarella spp. Telestula spp.	TLA	gorgonians gorgonians	gorgonians - calcaxonia gorgonians - others	
		TLO	gorgonians gorgonians	gorgonians - others	
				o - 5 Ounclo	
Long polyp soft corals Branching bushy coral	Telesto spp.	TOK		gorgonians - calcaxonia	
Branching bushy coral	Telesto spp. Tokoprymno spp.		gorgonians black corals	gorgonians - calcaxonia black corals	
	Telesto spp.	TOK	gorgonians		
Branching bushy coral Trissopathes spp.	Telesto spp. Tokoprymno spp. Trissopathes spp.	TOK TPT TRH TYL	gorgonians black corals	black corals	
Branching bushy coral Trissopathes spp. Gorgonian coral Black coral Deep-sea purple gorgonian	Telesto spp. Tokoprymno spp. Trissopathes spp. Trachymuricea spp. Tylopathes spp. Victorgorgia spp.	TOK TPT TRH TYL VCT	gorgonians black corals gorgonians	black corals gorgonians - others black corals gorgonians - others	
Branching bushy coral Trissopathes spp. Gorgonian coral Black coral	Telesto spp. Tokoprymno spp. Trissopathes spp. Trachymuricea spp. Tylopathes spp.	TOK TPT TRH TYL	gorgonians black corals gorgonians black corals	black corals gorgonians - others black corals	

70 **6. Appendix**

6.2 Coral catch weight by fishing method and target species

Table 6.2: Coral catch weight in tonnes (t) for the top-five target species per fishing method. Note that for some methods and target species, coral captures were reported in the COD but observers entered '0' for catch weight, resulting in a total sum of reported coral catch of 0 tonnes.

Fishing method	Target species	Catch weight (t)
Bottom longlining	Ling	0.16
Bottom longlining	Patagonian toothfish	0.097
Bottom longlining	Snapper	0.033
Bottom longlining	School shark	0.029
Bottom longlining	Hapuku	0.013
Bottom trawl	Orange roughy	112.729
Bottom trawl	Smooth oreo	39.896
Bottom trawl	Arrow squid	36.946
Bottom trawl	Black oreo	3.302
Bottom trawl	Silver warehou	1.435
Danish seining	Gurnard	0
Danish seining	Snapper	0
Danish seining	Tarakihi	0
Danish seining	John dory	0
Danish seining	Rig	0
Midwater trawl	Arrow squid	0.277
Midwater trawl	Hoki	0.108
Midwater trawl	Barracouta	0.09
Midwater trawl	Redbait	0.031
Midwater trawl	Jack mackerel	0.028
Other methods	Jack mackerel	0
Other methods	Blue mackerel	0
Other methods	Trevally	0
Other methods	Skipjack tuna	0
Other methods	Kahawai	0
Pots	Ling	0.002
Pots	Rock lobster	0
Pots	Unknown	0
Pots	Blue cod	0
Pots	Hagfish	0
Set netting	School shark	0.587
Set netting	Rig	0.068
Set netting	Common warehou	0.007
Set netting	Ling	0.003
Set netting	Bluenose	0.001

6.3 Time series for black coral, lace coral, and gorgonian captures

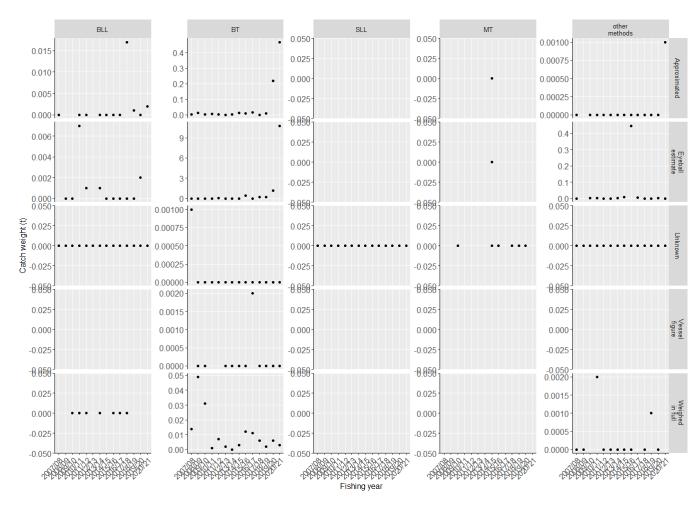


Figure 6.1: Time series of observed black coral catch weight by fishing method and methodology to determine catch weight as recorded by observers.

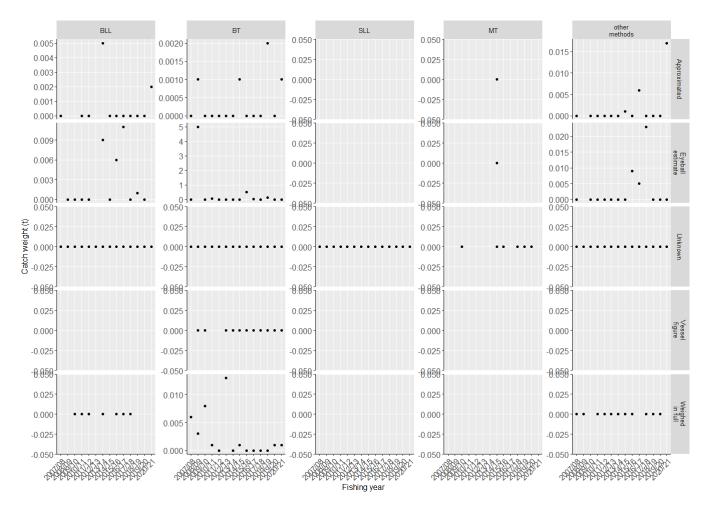


Figure 6.2: Time series of observed lace coral catch weight by fishing method and methodology to determine catch weight as recorded by observers.

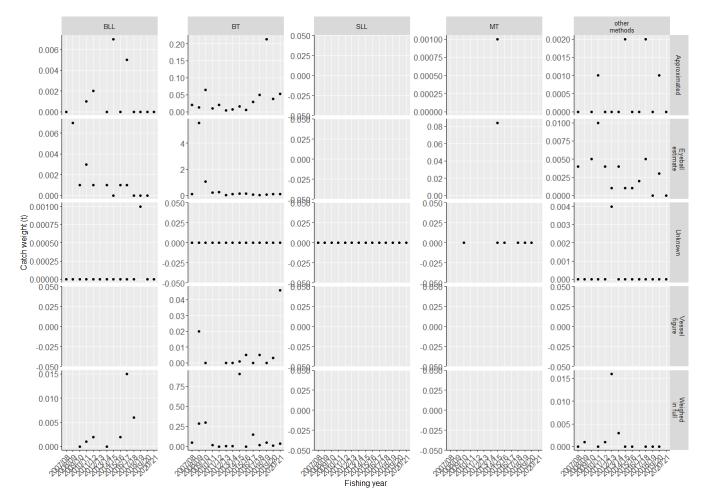


Figure 6.3: Time series of observed gorgonian catch weight by fishing method and methodology to determine catch weight as recorded by observers.

6.4 Spatial distribution of protected coral species group captures in bottom-trawl fisheries

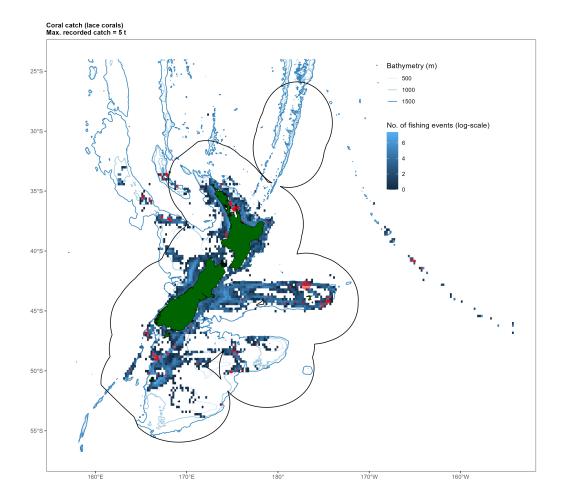


Figure 6.4: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the lace corals tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

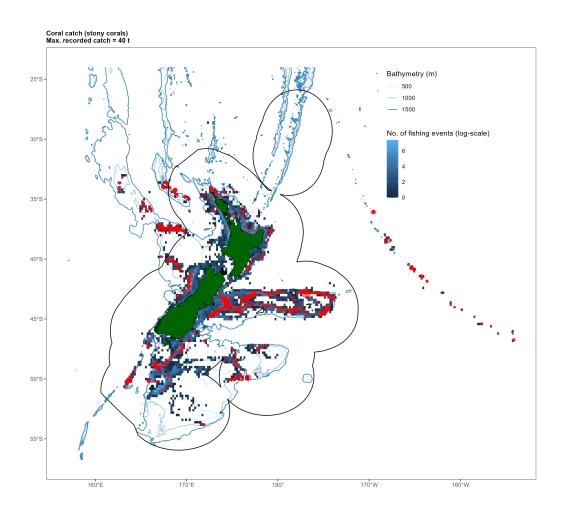


Figure 6.5: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the stony corals tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

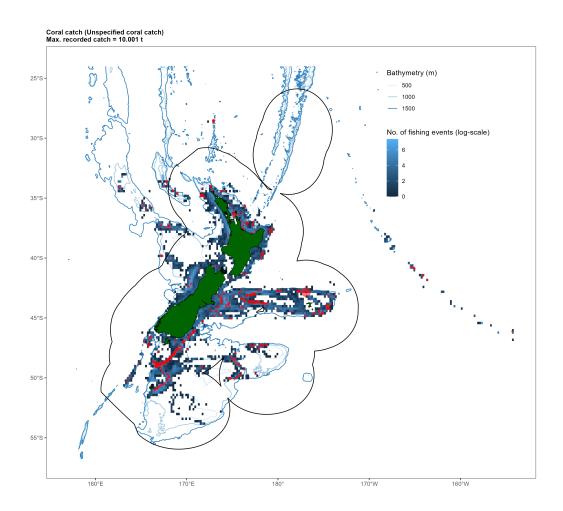


Figure 6.6: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the tow catch weights (t) for unidentified true corals (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

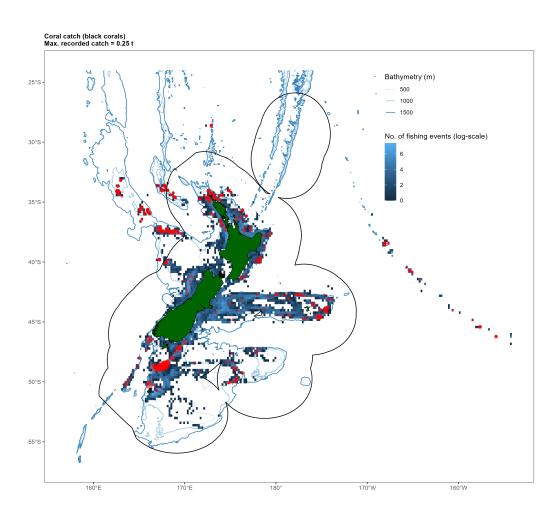


Figure 6.7: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the black coral tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

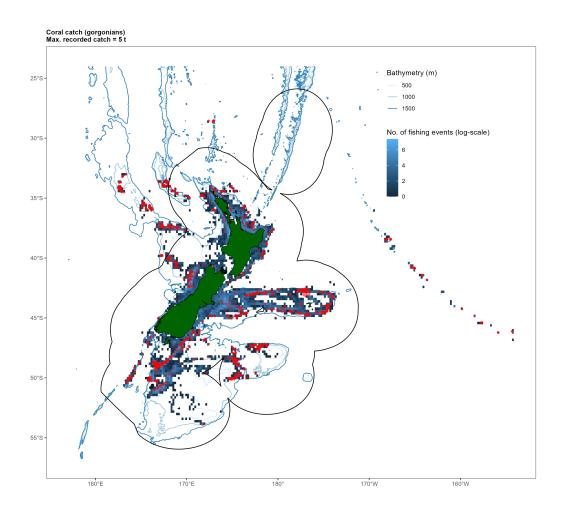


Figure 6.8: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the gorgonian tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

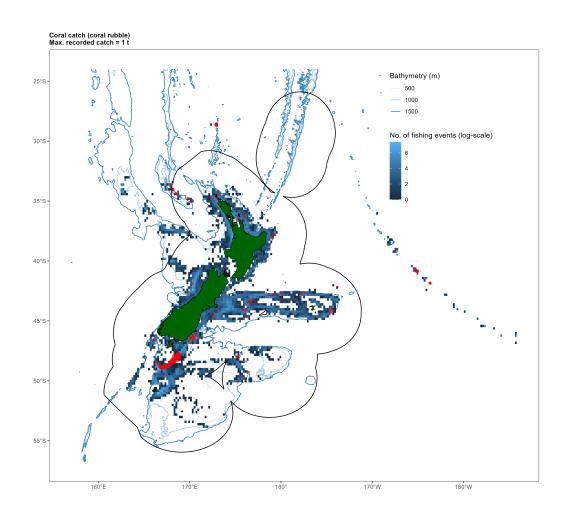


Figure 6.9: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the tow catch weights (t) for coral rubble (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

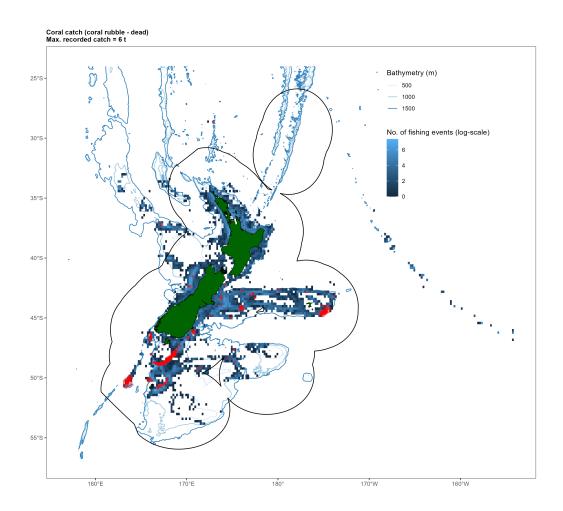


Figure 6.10: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the tow catch weights (t) for dead coral rubble (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

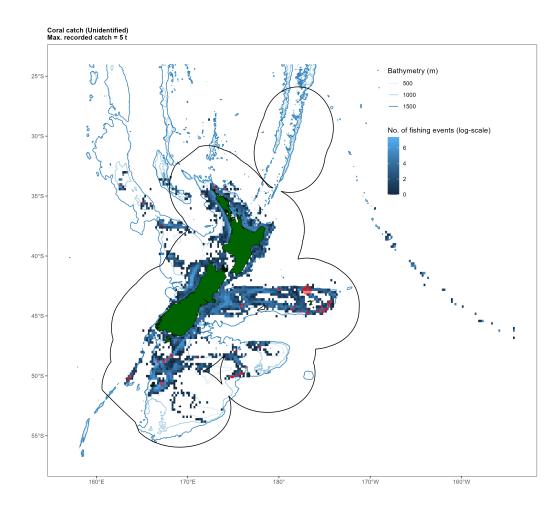


Figure 6.11: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the tow catch weights (t) for unidenitfied catch (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

6.5 Spatial distribution of coral captures for seven groups representing mix of morphological and/or taxonomic division in bottom-trawl fisheries

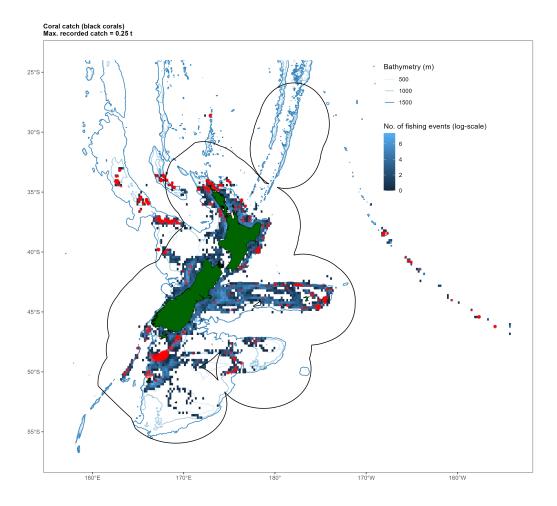


Figure 6.12: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the black coral tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

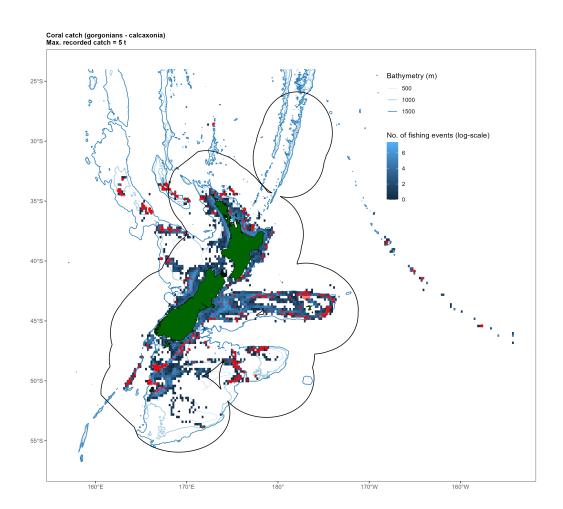


Figure 6.13: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the gorgonians (clcaxonia branching) tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

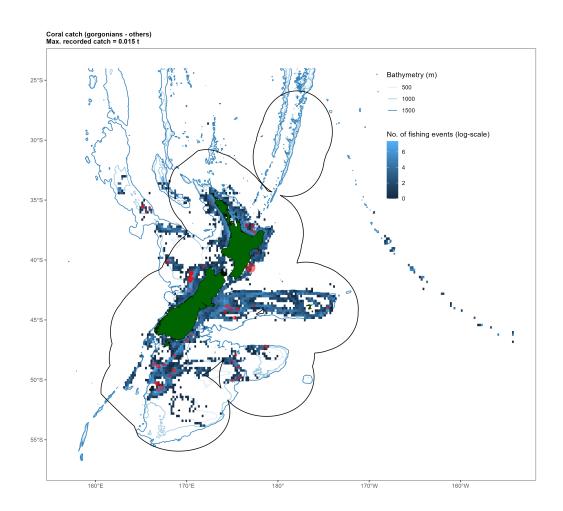


Figure 6.14: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the gorgonians (other branching) tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

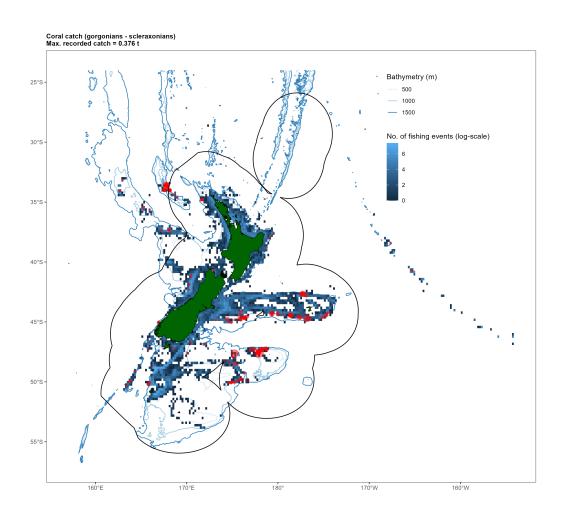


Figure 6.15: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the gorgonians (scleraxonians-branching) tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

Figure 6.16: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the lace coral tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

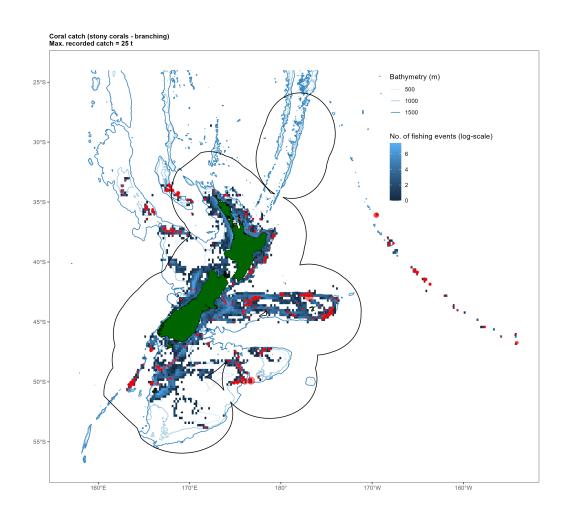


Figure 6.17: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the stony coral (branching) tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

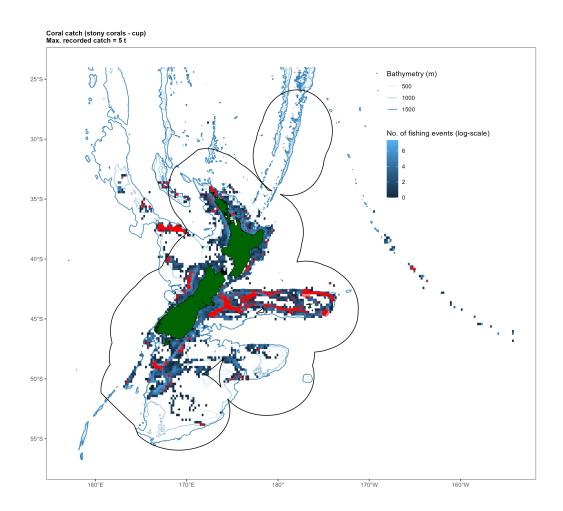


Figure 6.18: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the stony coral (cup) tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

6.6 Spatial distribution of 12 individual taxa with known species distribution in bottom-trawl fisheries

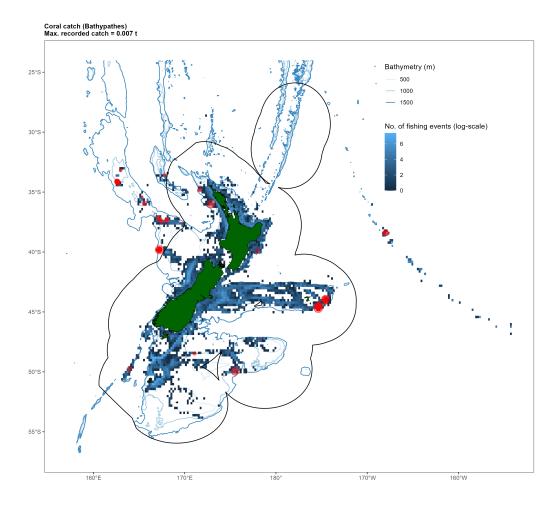


Figure 6.19: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Bathypathes* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

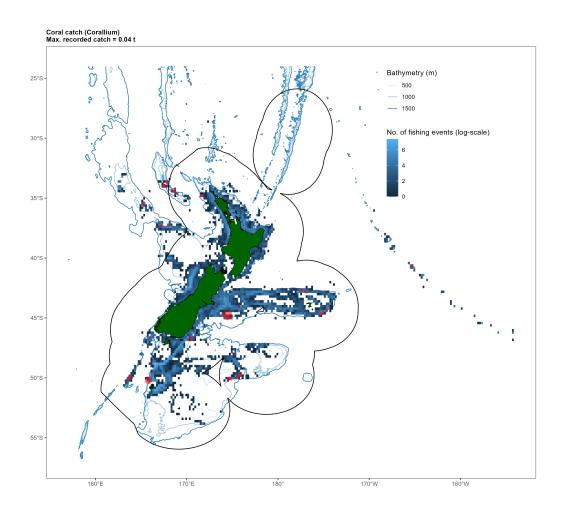


Figure 6.20: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Corallium* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

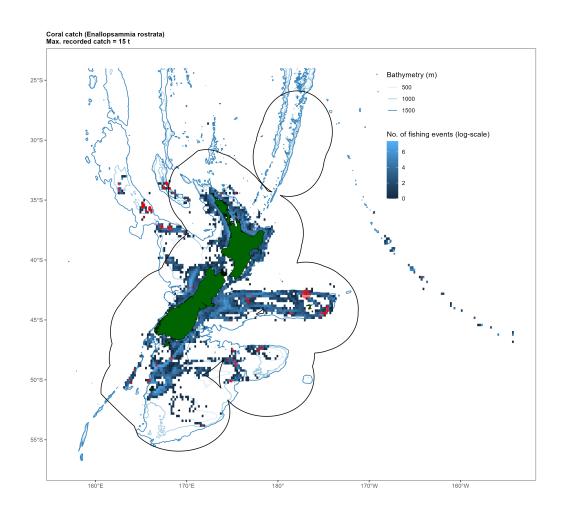


Figure 6.21: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Enallopsammia* rostrata tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

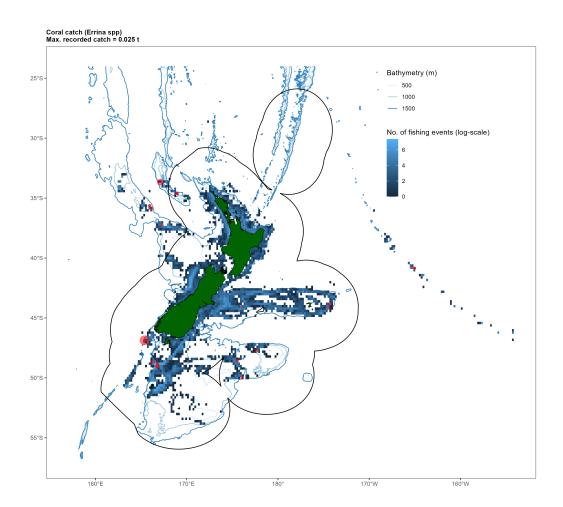


Figure 6.22: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Errina* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

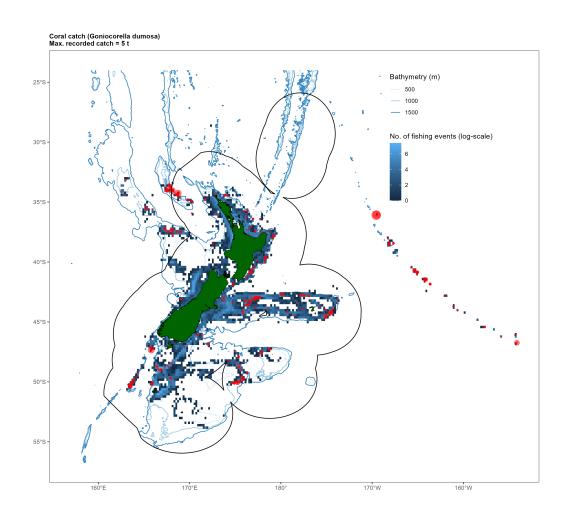


Figure 6.23: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Goniocorella dumosa* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

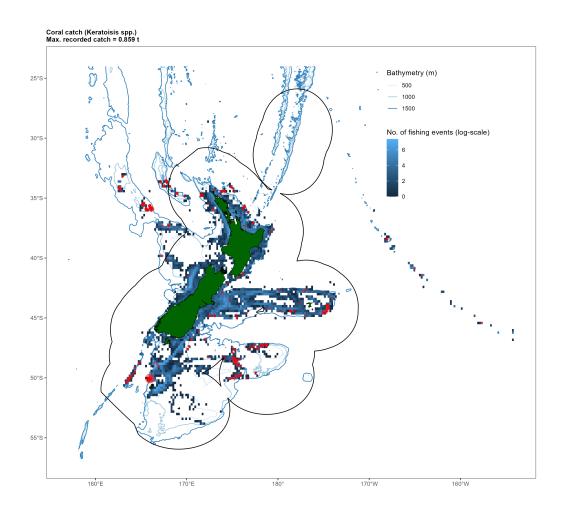


Figure 6.24: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Keratoisis* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

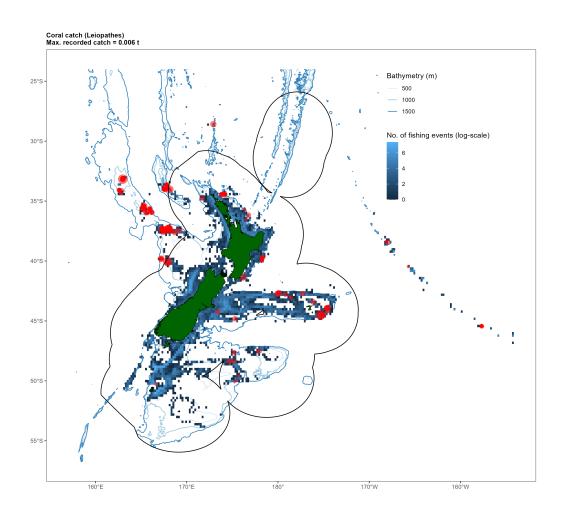


Figure 6.25: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Leiopathes* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

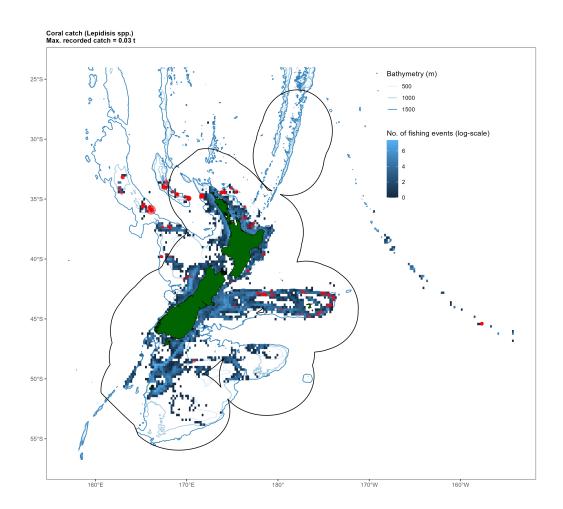


Figure 6.26: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Lepidisis* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

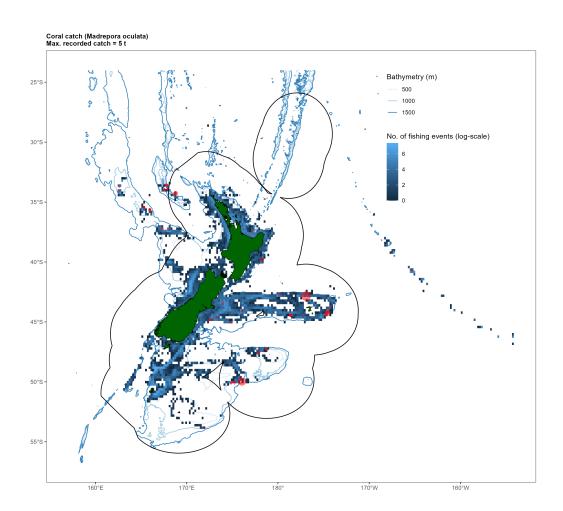


Figure 6.27: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Madrepora oculata* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

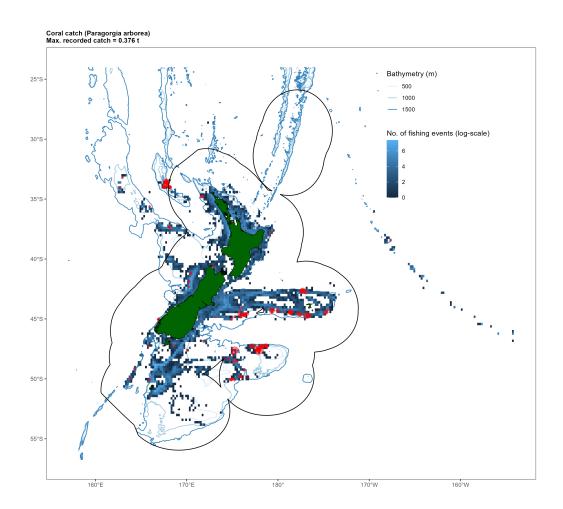


Figure 6.28: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Paragorgia arborea* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

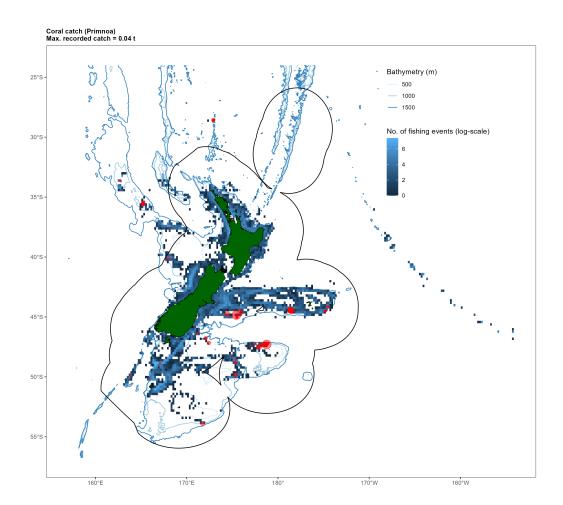


Figure 6.29: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Primnoa* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

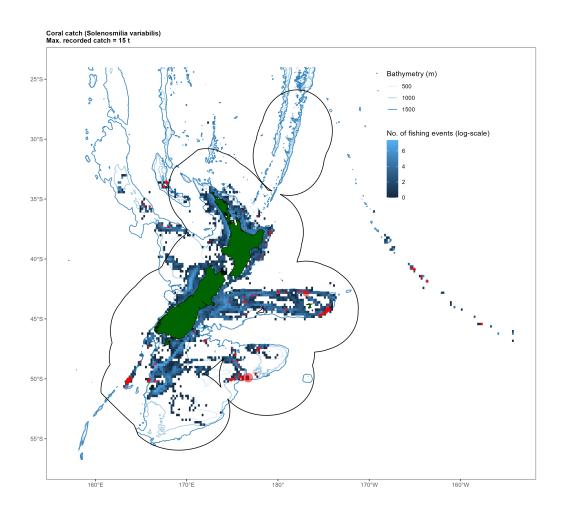


Figure 6.30: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Solenosmilia* variabilis tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

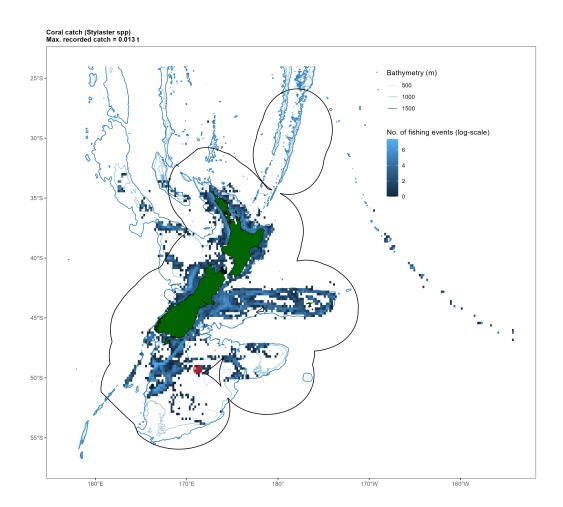


Figure 6.31: Distribution of observed fishing events (i.e., number of trawls) for bottom-trawl fisheries (0.2° latitude x 0.2° longitude cells) and the *Stylaster* tow catch weights (t) (red circles: size is proportional to the maximum recorded catch), between the 2007–08 and 2019–20 fishing years.

6.7 Model fitting: Diagnostics and estimates

6.7.1 Logistic GAM

Stony corals

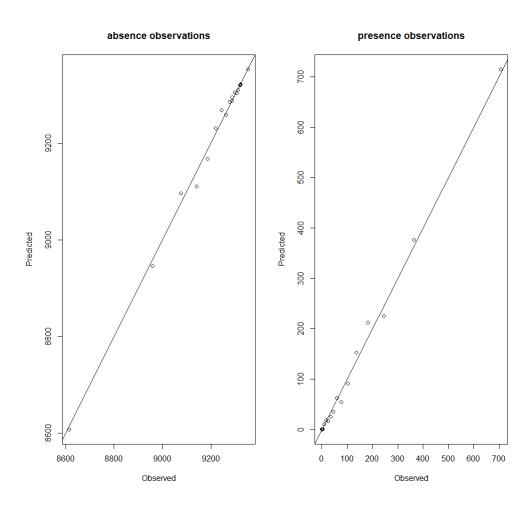


Figure 6.32: Predictive checking of logistic GAM fitted to presence-absence stony coral catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

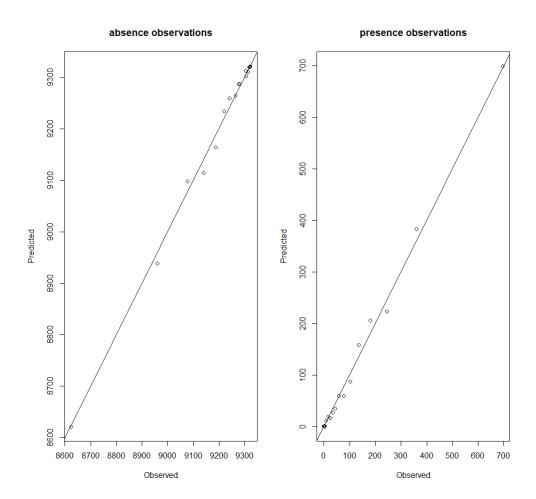


Figure 6.33: Predictive checking of logistic GAM fitted to presence-absence black coral catch in all fishing methods (for model fitted to data with catch weights smaller than 1 tonne). Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.3: Model estimates for logistic GAM fitted to presence-absence data of stony coral catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
		0.000	1.1.2.60	A 4 6 1 1 1 1
(Intercept)	-4.441	0.309	-14.369	< 2e-16***
method_groupbottom_longlining	-0.573	0.419	-1.366	0.172
method_groupbottom_longlining	-0.573	0.419	-1.366	0.172
method_groupbottom_trawl_BOE	0.028	0.446	0.062	0.95
method_groupbottom_trawl_other_targets	0.223	0.389	0.574	0.566
method_groupbottom_trawl_SQU	-0.519	0.426	-1.217	0.224
method_groupbottom_trawl_SSO	0.029	0.401	0.072	0.942
method_groupbottom_trawl_SWA	0.578	0.426	1.358	0.174
method_groupdanish_seining	0.175	1.256	0.14	0.889
method_groupmidwater_trawl	-4.268	0.594	-7.188	0***
method_grouppots	-0.51	0.797	-0.64	0.522
method_groupset_netting	-0.217	0.479	-0.453	0.65
month1	0.257	0.121	2.127	0.033*
month2	-0.481	0.141	-3.413	0.001***
month3	-0.123	0.137	-0.901	0.368
month4	0.046	0.136	0.34	0.733
month5	0.175	0.118	1.485	0.138
month6	0.257	0.114	2.262	0.024*
month8	-0.407	0.158	-2.571	0.01*
month9	0.36	0.128	2.813	0.005**
month10	-0.055	0.121	-0.453	0.651
month11	-0.056	0.12	-0.467	0.64
month12	0.078	0.12	0.647	0.518
start_obs_fmaFMA1	-1.607	0.37	-4.347	0***
start_obs_fmaFMA2	-0.932	0.223	-4.177	0***
start_obs_fmaFMA3	0.185	0.103	1.804	0.071
start_obs_fmaFMA5	-0.428	0.127	-3.379	0.001***
start_obs_fmaFMA6	0.069	0.161	0.432	0.665
start_obs_fmaFMA7	-1.36	0.164	-8.285	< 2e-16***
start_obs_fmaFMA8	-3.852	1.043	-3.691	0***
start_obs_fmaFMA9	-0.475	0.324	-1.466	0.143

Table 6.4: Model estimates for logistic GAM fitted to presence-absence data of stony coral catch with only including captures smaller than 1 tonne. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 10 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-4.496	0.309	-14.554	< 2e-16***
method_groupbottom_longlining	-0.578	0.418	-1.382	0.167
$method_groupbottom_trawl_BOE$	0.04	0.445	0.089	0.929
$method_groupbottom_trawl_other_targets$	0.218	0.388	0.561	0.575
$method_groupbottom_trawl_SQU$	-0.528	0.425	-1.242	0.214
$method_groupbottom_trawl_SSO$	0.001	0.4	0.002	0.998
$method_groupbottom_trawl_SWA$	0.566	0.425	1.333	0.183
method_groupdanish_seining	0.159	1.255	0.127	0.899
method_groupmidwater_trawl	-4.273	0.593	-7.206	0***
method_grouppots	-0.527	0.795	-0.663	0.508
method_groupset_netting	-0.229	0.478	-0.479	0.632
month1	0.322	0.106	3.048	0.002**
month2	-0.413	0.128	-3.221	0.001**
month3	-0.071	0.124	-0.571	0.568
month4	0.113	0.122	0.926	0.354
month5	0.234	0.102	2.29	0.022*
month6	0.321	0.104	3.085	0.002**
month7	0.06	0.122	0.497	0.619
month8	-0.36	0.157	-2.294	0.022*
month9	0.415	0.119	3.483	0***
month11	0.011	0.104	0.106	0.916
month12	0.132	0.105	1.265	0.206
start_obs_fmaFMA1	-1.577	0.372	-4.243	0***
start_obs_fmaFMA2	-0.913	0.224	-4.085	0***
start_obs_fmaFMA3	0.185	0.103	1.794	0.073.
start_obs_fmaFMA5	-0.447	0.127	-3.513	0***
start_obs_fmaFMA6	0.063	0.161	0.392	0.695
start_obs_fmaFMA7	-1.348	0.165	-8.195	0***
start_obs_fmaFMA8	-3.831	1.044	-3.672	0***
start_obs_fmaFMA9	-0.473	0.326	-1.452	0.146

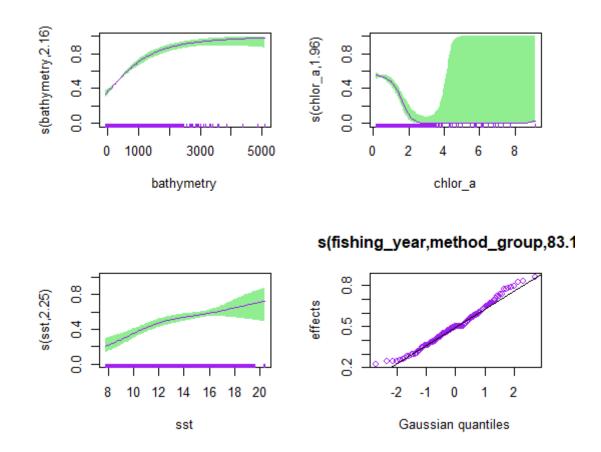


Figure 6.34: Partial effects from logistic GAM fitted to presence-absence data (only for catch weight smaller than 1 tonne) of stony coral captures in all fishing methods.

Branching stony corals

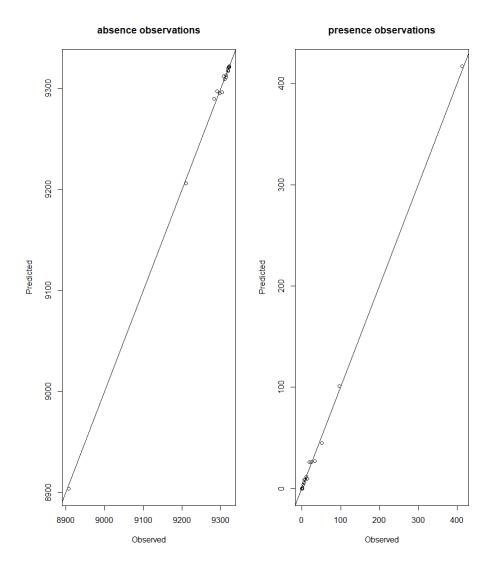


Figure 6.35: Predictive checking of logistic GAM fitted to presence-absence branching stony coral catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.5: Model estimates for logistic GAM fitted to presence-absence data of branching stony coral catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-6.15E+00	3.93E-01	-15.643	< 2e-16***
method_groupbottom_longlining	-7.34E-02	4.72E-01	-0.155	0.877
method_groupbottom_trawl_BOE	9.52E-01	4.69E-01	2.03	0.042*
method_groupbottom_trawl_other_targets	9.32E-01 1.34E-01	4.17E-01	0.321	0.042
method_groupbottom_trawl_SQU	3.88E-02	5.12E-01	0.321	0.748
method_groupbottom_trawl_SSO	9.85E-01	4.18E-01	2.359	0.018*
method_groupbottom_trawl_SWA	8.84E-01	5.74E-01	1.541	0.013
method_groupdanish_seining	-4.80E+01	4.48E+06	0	0.123
method_groupmidwater_trawl	-3.06E+00	6.94E-01	-4.415	0***
method_grouppots	-4.70E+01	2.04E+06	0	1
method_groupset_netting	9.98E-01	6.15E-01	1.621	0.105
month1	-1.88E-01	1.97E-01	-0.953	0.103
month2	-8.20E-01	2.24E-01	-3.663	0.54
month3	-3.20E-01 -2.21E-01	2.06E-01	-1.072	0.284
month4	-2.21E-01 -3.50E-01	2.15E-01	-1.631	0.204
month5	-5.23E-01	2.00E-01	-2.61	0.103
month6	-5.20E-02	1.85E-01	-0.281	0.009
month8	-5.20E-02 -5.01E-01	2.76E-01	-1.817	0.069.
month9	-1.55E-01	2.40E-01	-0.645	0.519
month10	-2.12E-01	1.85E-01	-1.145	0.252
month11	-7.77E-01	2.08E-01	-3.742	0.232
month12	-4.78E-01	2.05E-01	-2.332	0.02*
start_obs_fmaFMA1	-3.51E-01	6.49E-01	-0.54	0.589
start_obs_fmaFMA2	3.96E-01	3.45E-01	1.148	0.251
start_obs_fmaFMA3	-1.90E-01	2.47E-01	-0.768	0.442
start_obs_fmaFMA5	2.26E-01	2.46E-01	0.918	0.359
start_obs_fmaFMA6	1.23E+00	2.82E-01	4.372	0.557
start_obs_fmaFMA7	-2.84E+00	4.52E-01	-6.282	0***
start_obs_fmaFMA8	-2.68E+00	1.12E+00	-2.393	0.017*
start_obs_fmaFMA9	4.54E-01	5.75E-01	0.79	0.43

Cup-forming stony corals

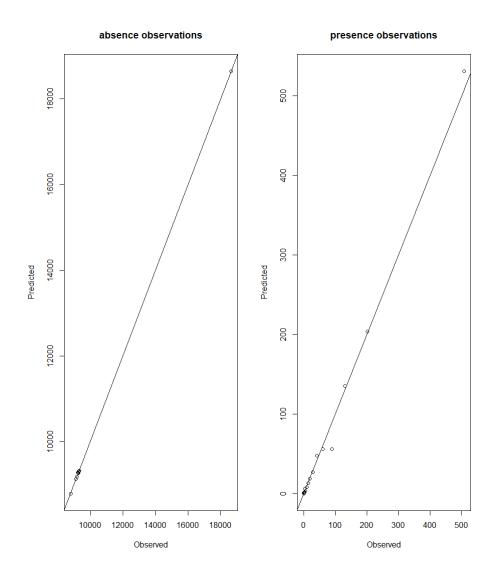


Figure 6.36: Predictive checking of logistic GAM fitted to presence-absence cupforming stony coral catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.6: Model estimates for logistic GAM fitted to presence-absence data of cup-forming stony coral catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-5.18E+00	3.66E-01	-14.161	< 2e-16***
method_groupbottom_longlining	-1.68E+00	4.90E-01	-3.42	0.001***
method_groupbottom_trawl_BOE	-9.83E-01	6.12E-01	-1.606	0.108
method_groupbottom_trawl_other_targets	-4.07E-02	4.05E-01	-0.101	0.92
method_groupbottom_trawl_SQU	-1.21E+00	4.88E-01	-2.467	0.014*
method_groupbottom_trawl_SSO	-1.48E+00	5.09E-01	-2.916	0.004**
method_groupbottom_trawl_SWA	3.21E-01	4.46E-01	0.719	0.472
method_groupdanish_seining	5.73E-01	1.25E+00	0.457	0.648
method_groupmidwater_trawl	-4.61E+00	7.22E-01	-6.389	0***
method_grouppots	-4.99E-01	8.02E-01	-0.621	0.534
method_groupset_netting	-1.68E+00	7.51E-01	-2.232	0.026*
month1	3.98E-01	1.65E-01	2.415	0.016*
month2	-5.51E-01	2.03E-01	-2.714	0.007**
month3	-3.40E-01	2.08E-01	-1.636	0.102
month4	3.63E-02	1.95E-01	0.186	0.852
month5	5.32E-01	1.58E-01	3.374	0.001***
month6	2.83E-01	1.59E-01	1.78	0.075.
month8	-5.63E-01	2.20E-01	-2.564	0.01*
month9	3.62E-01	1.71E-01	2.124	0.034*
month10	-2.30E-02	1.73E-01	-0.133	0.894
month11	2.30E-02	1.68E-01	0.137	0.891
month12	3.13E-01	1.61E-01	1.943	0.052.
start_obs_fmaFMA1	-5.05E-01	5.77E-01	-0.875	0.382
start_obs_fmaFMA2	-6.93E-01	3.24E-01	-2.14	0.032*
start_obs_fmaFMA3	2.27E-01	1.23E-01	1.847	0.065.
start_obs_fmaFMA5	-9.95E-01	1.73E-01	-5.76	0***
start_obs_fmaFMA6	-1.06E+00	2.54E-01	-4.182	0***
start_obs_fmaFMA7	-8.93E-01	2.23E-01	-4.008	0***
start_obs_fmaFMA8	-5.40E+01	6.30E+05	0	1
start_obs_fmaFMA9	1.66E-01	5.18E-01	0.32	0.749

Black corals

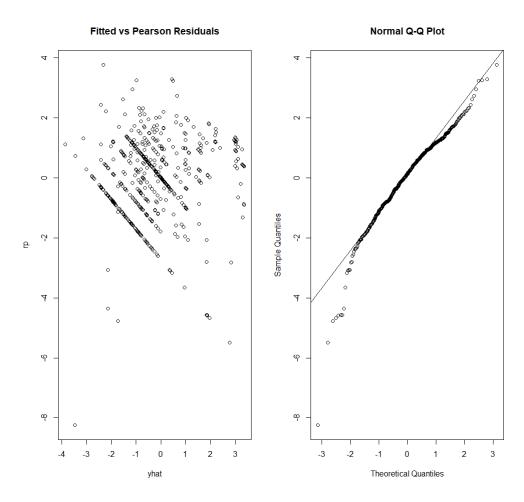


Figure 6.37: Predictive checking of logistic GAM fitted to presence-absence black coral catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.7: Model estimates for logistic GAM fitted to presence-absence data of black coral catch. Base cases for fixed effect were: bottom_trawl_SQU (method_group), 2 (month), and FMA5 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-5.249	0.551	-9.534	< 2e-16***
method_groupbottom_longlining	0.686	0.693	0.991	0.322
method_groupbottom_trawl_BOE	1.384	0.790	1.751	0.08.
method_groupbottom_trawl_ORH	1.130	0.707	1.597	0.11
method_groupbottom_trawl_other_targets	0.175	0.654	0.268	0.788
method_groupbottom_trawl_SSO	1.166	0.752	1.550	0.121
method_groupbottom_trawl_SWA	0.314	0.803	0.391	0.696
method_groupdanish_seining	-74.640	4484000.000	0.000	1
method_groupmidwater_trawl	-1.282	0.681	-1.881	0.06.
method_grouppots	-71.490	2039000.000	0.000	1
method_groupset_netting	0.864	0.781	1.106	0.269
month1	0.533	0.177	3.009	0.003**
month3	0.273	0.182	1.502	0.133
month4	-0.132	0.212	-0.624	0.533
month5	-0.373	0.212	-1.762	0.078.
month6	-0.751	0.223	-3.368	0.001***
month7	-0.926	0.259	-3.578	0***
month8	-0.501	0.304	-1.648	0.099.
month9	-0.193	0.283	-0.684	0.494
month10	-0.029	0.194	-0.151	0.88
month11	-0.374	0.216	-1.733	0.083.
month12	-0.298	0.225	-1.328	0.184
start_obs_fmaFMA1	-1.514	0.787	-1.922	0.055.
start_obs_fmaFMA2	-1.688	0.565	-2.985	0.003**
start_obs_fmaFMA3	-1.924	0.316	-6.094	0***
start_obs_fmaFMA4	-2.209	0.354	-6.245	0***
start_obs_fmaFMA6	-1.225	0.353	-3.473	0.001***
start_obs_fmaFMA7	-3.314	0.532	-6.227	0***
start_obs_fmaFMA8	-4.891	0.770	-6.355	0***
start_obs_fmaFMA9	-2.350	0.731	-3.214	0.001**

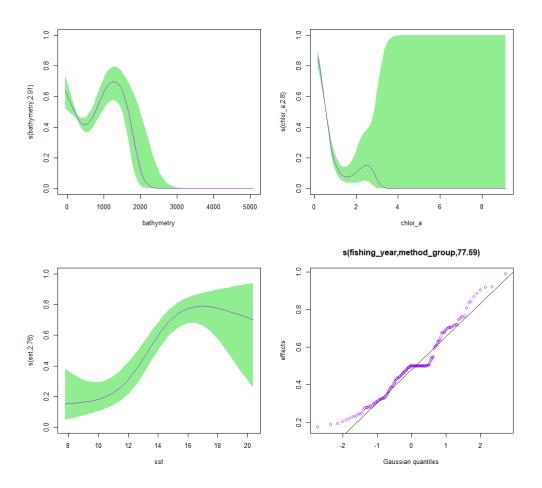


Figure 6.38: Partial effects from logistic GAM fitted to presence-absence data of black coral captures in all fishing methods.

Lace corals

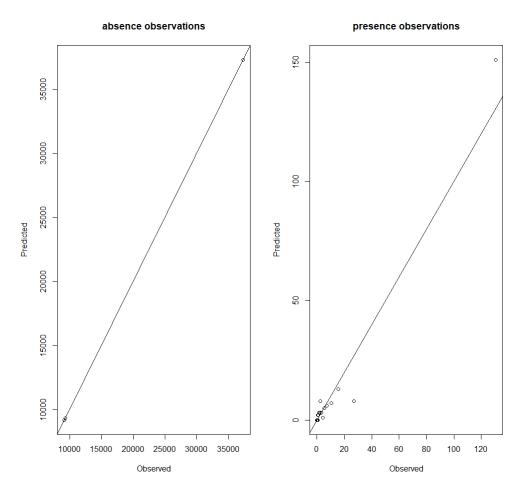


Figure 6.39: Predictive checking of logistic GAM fitted to presence-absence lace coral catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.8: Model estimates for logistic GAM fitted to presence-absence data of lace coral catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Total cont)	9.25E : 00	6.07E.01	11.002	. O. 16***
(Intercept)	-8.35E+00	6.97E-01	-11.982	<2e-16***
method_groupbottom_longlining	1.48E+00	7.36E-01	2.009	0.044*
method_groupbottom_trawl_BOE	-9.31E-02	8.63E-01	-0.108	0.914
method_groupbottom_trawl_other_targets	3.36E-01	7.10E-01	0.473	0.636
method_groupbottom_trawl_SQU	-3.30E-02	8.12E-01	-0.041	0.968
method_groupbottom_trawl_SSO	-1.33E+00	8.98E-01	-1.477	0.14
method_groupbottom_trawl_SWA	8.41E-01	9.45E-01	0.89	0.374
method_groupdanish_seining	-4.06E+01	4.48E+06	0	1
method_groupmidwater_trawl	-1.48E+00	9.03E-01	-1.639	0.101
method_grouppots	-3.90E+01	2.04E+06	0	1
method_groupset_netting	2.07E+00	7.95E-01	2.598	0.009**
month1	2.61E-01	4.81E-01	0.542	0.588
month2	-9.55E-01	5.50E-01	-1.735	0.083.
month3	3.87E-01	4.78E-01	0.81	0.418
month4	3.42E-01	4.89E-01	0.699	0.485
month5	7.20E-01	4.67E-01	1.543	0.123
month6	-8.59E-01	6.12E-01	-1.403	0.161
month8	2.75E-01	5.74E-01	0.479	0.632
month9	8.03E-02	5.40E-01	0.149	0.882
month10	4.70E-01	4.77E-01	0.985	0.325
month11	6.28E-01	4.63E-01	1.357	0.175
month12	6.23E-01	4.70E-01	1.326	0.185
start_obs_fmaFMA1	1.35E+00	6.22E-01	2.162	0.031*
start_obs_fmaFMA2	-1.58E+00	1.08E+00	-1.462	0.144
start_obs_fmaFMA3	-1.91E-01	4.02E-01	-0.475	0.635
start_obs_fmaFMA5	9.58E-01	3.82E-01	2.51	0.012*
start_obs_fmaFMA6	5.14E-01	5.60E-01	0.918	0.359
start_obs_fmaFMA7	-3.80E+01	3.64E+05	0	1
start_obs_fmaFMA8	-1.85E+00	7.64E-01	-2.419	0.016*
start_obs_fmaFMA9	-1.31E+00	7.52E-01	-1.74	0.082.

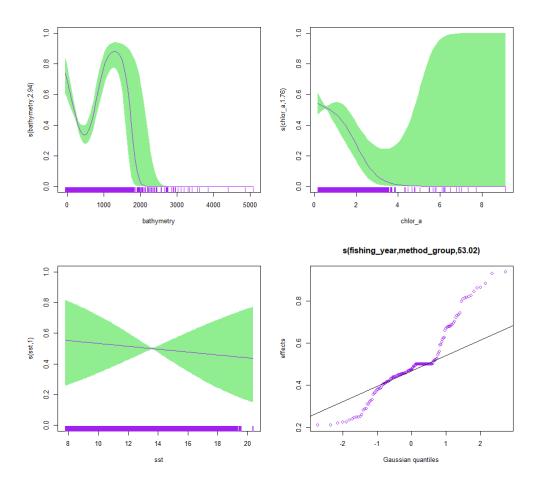


Figure 6.40: Partial effects from logistic GAM fitted to presence-absence data of lace coral captures in all fishing methods.

Gorgonians

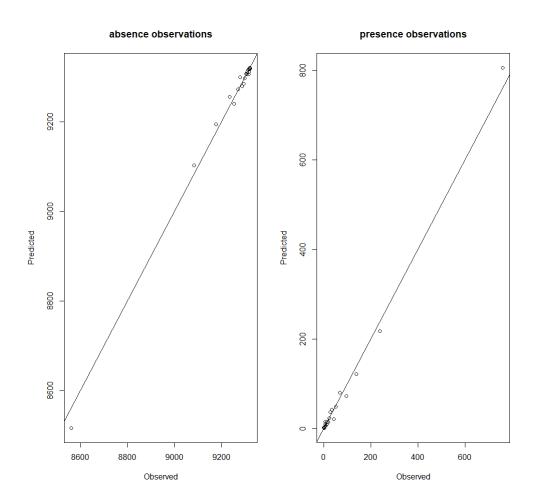


Figure 6.41: Predictive checking of logistic GAM fitted to presence-absence gorgonian catch in all fishing methods. Shown are predicted vs. observed proportion of absences, i.e., no captures (left panel) and predicted vs. observed proportion of presences, i.e., captures (right panel).

Table 6.9: Model estimates for logistic GAM fitted to presence-absence data of gorgonian catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 2 (month), and FMA5 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-5.49E+00	4.29E-01	-12.802	< 2e-16***
method_groupbottom_longlining	-7.67E-01	5.70E-01	-1.346	0.178
method_groupbottom_trawl_BOE	-7.07E-01 -4.98E-01	5.85E-01	-0.851	0.178
method_groupbottom_trawl_other_targets	-1.23E+00	5.45E-01	-2.255	0.024*
method_groupbottom_trawl_SQU	-8.93E-01	5.71E-01	-2.233	0.024
method_groupbottom_trawl_SSO	-0.93E-01 -1.01E-01	5.46E-01	-0.184	0.854
method_groupbottom_trawl_SWA	-5.32E-01	6.05E-01	-0.134	0.379
method_groupdanish_seining	-5.33E+01	4.48E+06	0.879	0.579
method_groupmidwater_trawl	-3.33E+01 -2.21E+00	5.68E-01	-3.891	0***
method_grouppots	-2.21E+00 -5.26E+01	2.04E+06	-3.891	1
method_groupset_netting	-3.20E+01 -1.74E+00	7.68E-01	-2.265	0.024*
month1	4.09E-01	1.37E-01	2.987	0.024*
month2	-2.10E-01	1.46E-01	-1.434	0.003
month3	-5.12E-03	1.43E-01	-0.036	0.132
month4	-3.12E-03 -2.19E-01	1.56E-01	-0.030	0.972
month5	-2.19E-01 -2.95E-01	1.47E-01	-2.005	0.161
month6	1.47E-02	1.47E-01 1.29E-01	0.113	0.043
month8	-3.49E-02	1.62E-01	-0.216	0.829
month9	-3.49E-02 -3.56E-01	1.78E-01	-2.001	0.829
month10	-3.50E-01 4.53E-02	1.78E-01 1.27E-01	0.358	0.721
month11	4.53E-02 6.51E-02		0.338	0.721
month11 month12	0.51E-02 1.96E-01	1.31E-01	1.442	0.02
	1.96E-01 1.20E+00	1.36E-01 4.64E-01	2.597	0.149
start_obs_fmaFMA1	1.20E+00 1.26E+00	4.64E-01 2.64E-01	4.751	0.009**
start_obs_fmaFMA2				_
start_obs_fmaFMA3	1.90E-01	1.71E-01	1.113	0.266 0***
start_obs_fmaFMA5	7.52E-01	1.64E-01	4.597	0***
start_obs_fmaFMA6	1.50E+00	1.88E-01	8.008	
start_obs_fmaFMA7	4.56E-01	2.19E-01	2.083	0.037* 0***
start_obs_fmaFMA8	1.35E+00	3.61E-01	3.746	
start_obs_fmaFMA9	1.42E+00	4.15E-01	3.433	0.001***

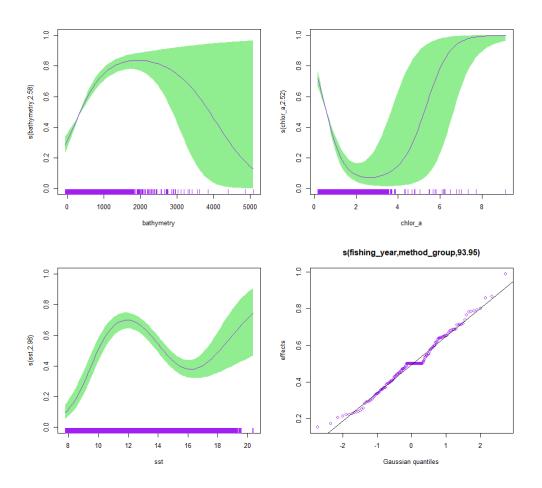


Figure 6.42: Partial effects from logistic GAM fitted to presence-absence data of gorgonian captures in all fishing methods.

6.7.2 GAM fitted to Box-Cox transformed coral catch weight data Stony corals

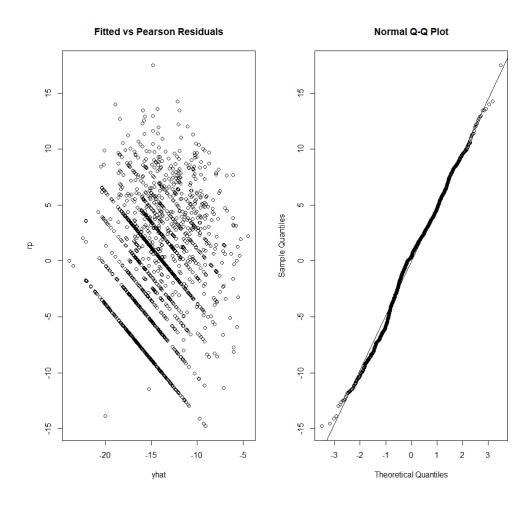


Figure 6.43: Model diagnostics for GAM fitted to stony coral catch weights.

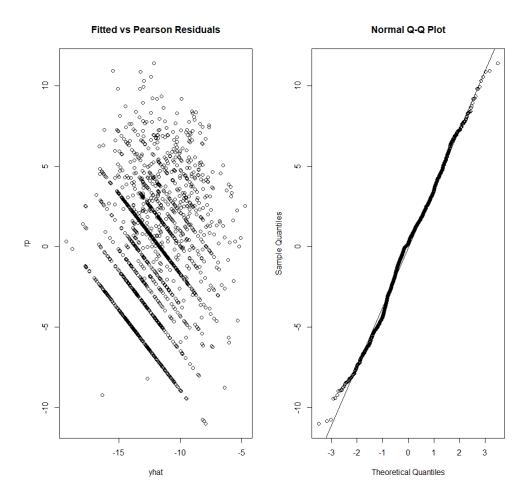


Figure 6.44: Model diagnostics for GAM fitted to stony coral catch weights (only data with catch weights smaller than 1 tonne).

Table 6.10: Model estimates for GAM fitted to stony coral catch weights on events with observed catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-16.6347	1.1466		< 2e-16***
method_groupbottom_longlining	-0.3305	1.5916		0.836
method_groupbottom_trawl_BOE	2.374	1.7705		0.18
method_groupbottom_trawl_other_targets	1.2841	1.3396		0.338
method_groupbottom_trawl_SQU	0.8524	1.7073		0.618
method_groupbottom_trawl_SSO	3.3182	1.4117		0.019*
method_groupbottom_trawl_SWA	2.4596	1.6416		0.134
method_groupdanish_seining	-3.8349	6.153		0.533
method_groupmidwater_trawl	-0.51	2.9316		0.862
method_grouppots	-5.4744	3.6571		0.135
method_groupset_netting	1.3388	2.0835		0.521
month1	0.3842	0.637		0.547
month2	0.4001	0.7414		0.589
month3	1.6524	0.7401		0.026*
month4	-0.1466	0.7253		0.84
month5	-0.3996	0.6321		0.527
month6	1.2977	0.6016		0.031*
month8	-1.3079	0.8448		0.122
month9	-0.8185	0.6938		0.238
month10	3.1222	0.6447		0***
month11	0.4475	0.648		0.49
month12	0.3976	0.6456		0.538
start_obs_fmaFMA1	2.6501	2.1733		0.223
start_obs_fmaFMA2	1.1461	1.1806		0.332
start_obs_fmaFMA3	-0.2135	0.6522		0.743
start_obs_fmaFMA5	-1.2822	0.7761		0.099.
start_obs_fmaFMA6	0.4124	0.9909		0.677
start_obs_fmaFMA7	-1.6117	0.8791		0.067.
start_obs_fmaFMA8	14.3288	5.5072		0.009**
start_obs_fmaFMA9	4.7468	1.9828		0.017*

Table 6.11: Model estimates for GAM fitted to stony coral catch weights on events with observed catch; for coral catch with only including captures smaller than 1 tonne. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 10 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-11.59527	0.84949		< 2e-16***
method_groupbottom_longlining	-0.11677	1.18463		0.921
method_groupbottom_trawl_BOE	2.05255	1.31803		0.12
method_groupbottom_trawl_other_targets	1.03971	0.99696		0.297
method_groupbottom_trawl_SQU	0.73979	1.27141		0.561
method_groupbottom_trawl_SSO	2.40808	1.05292		0.022*
method_groupbottom_trawl_SWA	2.02204	1.22207		0.098.
method_groupdanish_seining	-2.90663	4.57801		0.526
method_groupmidwater_trawl	-0.15656	2.18148		0.943
method_grouppots	-4.02281	2.72124		0.139
method_groupset_netting	1.15492	1.55116		0.457
month1	-1.90182	0.41966		0***
month2	-1.81051	0.51628		0***
month3	-0.99051	0.50911		0.052.
month4	-2.36262	0.48943		0***
month5	-2.64327	0.41311		0***
month6	-1.22859	0.43074		0.004**
month7	-2.27295	0.4835		0***
month8	-3.25242	0.61162		0***
month9	-2.94969	0.49615		0***
month11	-1.89214	0.41765		0***
month12	-2.03878	0.41705		0***
start_obs_fmaFMA1	2.23301	1.65411		0.177
start_obs_fmaFMA2	1.00774	0.88842		0.257
start_obs_fmaFMA3	-0.06993	0.48665		0.886
start_obs_fmaFMA5	-1.01128	0.58087		0.082.
start_obs_fmaFMA6	0.54568	0.74281		0.463
start_obs_fmaFMA7	-1.13012	0.65837		0.086.
start_obs_fmaFMA8	11.17088	4.10142		0.007**
start_obs_fmaFMA9	3.64827	1.51057		0.016*

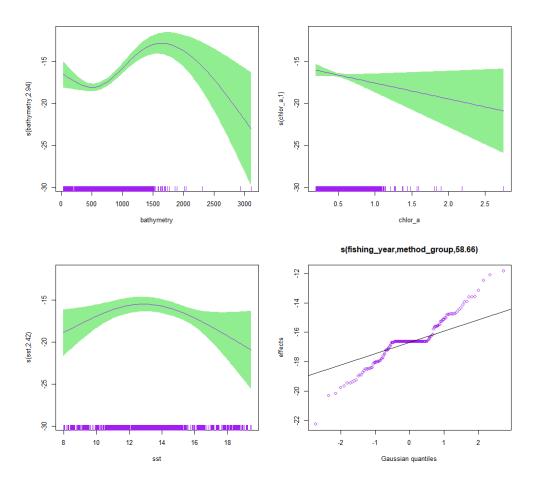


Figure 6.45: Partial effects from GAM fitted to stony coral catch weight data in all fishing methods.

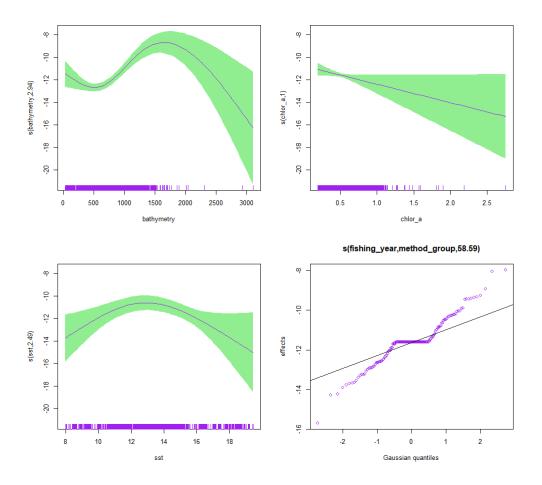


Figure 6.46: Partial effects from GAM fitted to stony coral catch weight data (only catch weights smaller thahan 1 tonne were used) in all fishing methods.

Black corals

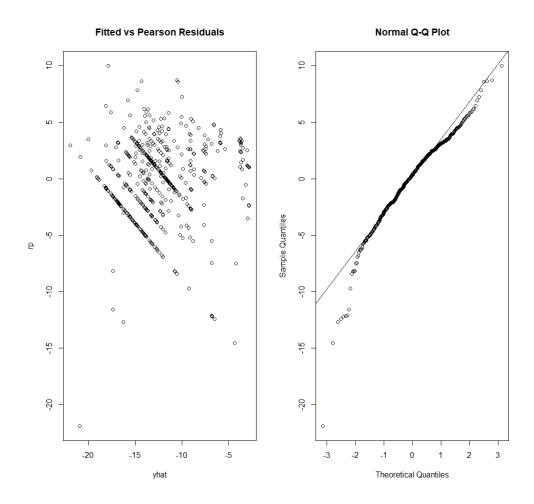


Figure 6.47: Model diagnostics for GAM fitted to black coral catch weights.

Table 6.12: Model estimates for GAM fitted to black coral catch weights on events with observed catch. Base cases for fixed effect were: bottom_trawl_SQU (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value p	-value
(Intercept)	-9.39712	1.7094		0***
method_groupbottom_longlining	-4.34803	1.88619		0.02*
$method_groupbottom_trawl_BOE$	-0.88473	2.16916		0.68
$method_groupbottom_trawl_ORH$	-3.47381	2.05937		0.09.
method_groupbottom_trawl_other_targets	-2.48597	1.74052		0.15
method_groupbottom_trawl_SSO	-2.89454	2.05169		0.16
method_groupbottom_trawl_SWA	-5.94269	2.56613		0.02*
method_groupmidwater_trawl	-3.461	1.73041		0.05*
method_groupset_netting	-0.05446	2.27874		0.98
month1	-0.63943	0.79323		0.42
month3	0.63074	0.76632		0.41
month4	-1.76495	0.98227		0.07.
month5	-1.59367	0.93157		0.09.
month6	-1.22122	1.03463		0.24
month7	-1.77454	1.13963		0.12
month8	-1.10056	1.29083		0.39
month9	-1.99002	1.22511		0.1
month10	-1.06174	0.84661		0.21
month11	-0.13096	0.94981		0.89
month12	-2.77578	0.97009		0**
start_obs_fmaFMA1	-2.98865	3.12796		0.34
start_obs_fmaFMA2	-0.26085	2.18757		0.91
start_obs_fmaFMA3	1.71571	1.4713		0.24
start_obs_fmaFMA4	3.60291	1.50137		0.02*
start_obs_fmaFMA6	-1.97059	1.7371		0.26
start_obs_fmaFMA7	-0.64593	2.1669		0.77
start_obs_fmaFMA8	-3.3235	2.97552		0.26
start_obs_fmaFMA9	-1.23216	2.88082		0.67

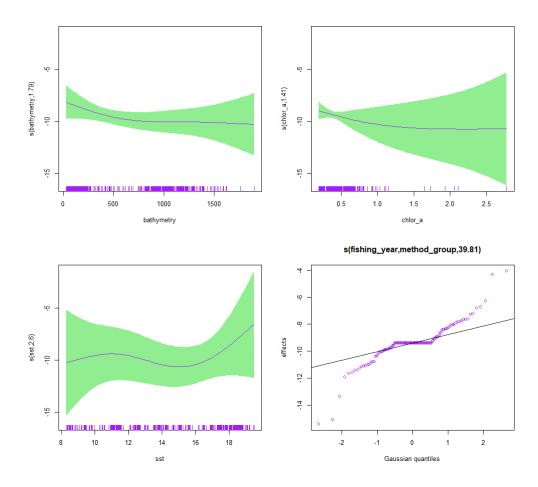


Figure 6.48: Partial effects from GAM fitted to black coral catch weight data in all fishing methods.

Lace corals

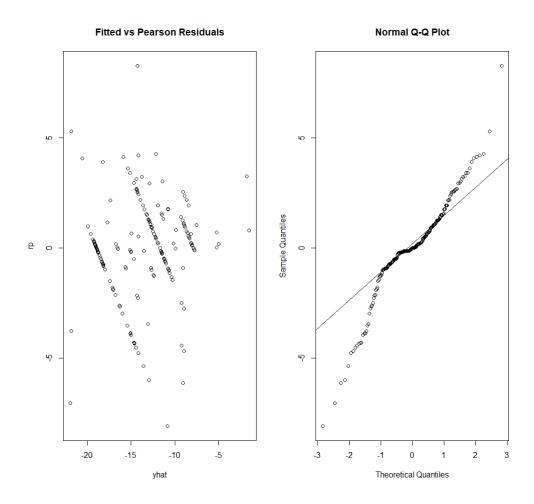


Figure 6.49: Model diagnostics for GAM fitted to lace coral catch weights.

Table 6.13: Model estimates for GAM fitted to lace coral catch weights on events with observed catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value p-value
(Intercept)	-3.93592	4.18219	0.348
method_groupbottom_longlining	-0.78743	5.51506	0.887
method_groupbottom_trawl_BOE	4.7622	6.79059	0.484
$method_groupbottom_trawl_other_targets$	-0.35656	4.71128	0.94
$method_groupbottom_trawl_SQU$	-1.11739	5.08072	0.826
$method_groupbottom_trawl_SSO$	8.96553	7.92615	0.26
$method_groupbottom_trawl_SWA$	-7.4633	6.50842	0.253
method_groupmidwater_trawl	-0.68295	6.22481	0.913
method_groupset_netting	-0.2572	5.66809	0.964
month1	-7.90366	2.78978	0.005**
month2	-12.72415	3.15275	0***
month3	-13.80417	2.8078	0***
month4	-12.09224	2.72626	0***
month5	-11.36306	2.59399	0***
month6	-12.01711	2.89125	0***
month8	-11.98042	3.56582	0.001**
month9	-5.52324	3.36777	0.103
month10	-12.59876	2.4998	0***
month11	-10.66432	2.68102	0***
month12	-8.91942	2.77003	0.002**
start_obs_fmaFMA1	1.34422	2.75001	0.626
start_obs_fmaFMA2	-9.15062	3.91573	0.021*
start_obs_fmaFMA3	6.08646	2.31408	0.009**
start_obs_fmaFMA5	1.5754	2.01372	0.435
start_obs_fmaFMA6	0.07971	2.65277	0.976
start_obs_fmaFMA8	1.32106	3.66373	0.719
start_obs_fmaFMA9	-1.72937	3.12127	0.58

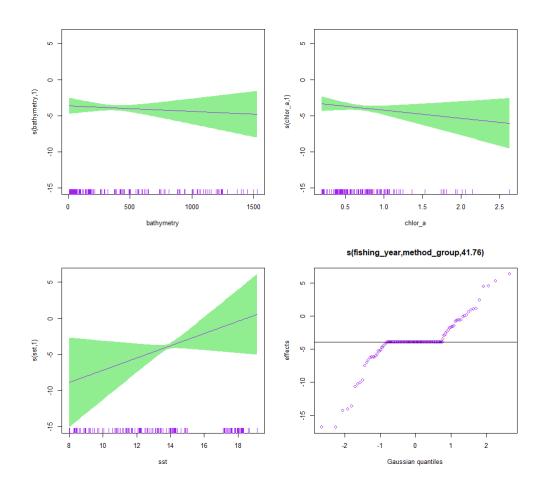


Figure 6.50: Partial effects from GAM fitted to lace coral catch weight data in all fishing methods.

Gorgonians

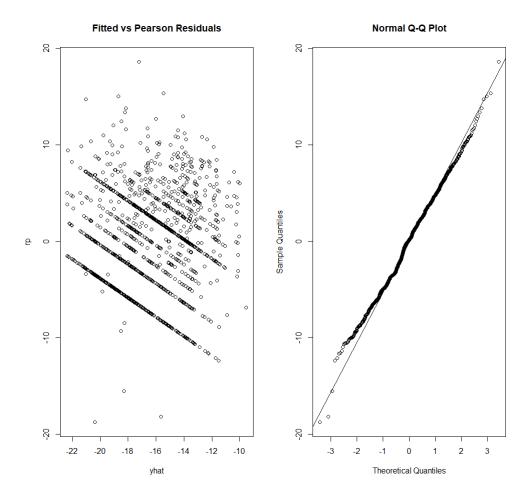


Figure 6.51: Model diagnostics for GAM fitted to gorgonian catch weights.

Table 6.14: Model estimates for GAM fitted to gorgonian catch weights on events with observed catch. Base cases for fixed effect were: bottom_trawl_ORH (method_group), 7 (month), and FMA4 (start_obs_fma).

Variable	Mean	Standard Error	z-value	p-value
(Intercept)	-17.3171	1.0398		< 2e-16***
method_groupbottom_longlining	-1.9686	1.2739		0.122
$method_groupbottom_trawl_BOE$	1.1283	1.3566		0.406
$method_groupbottom_trawl_other_targets$	-1.4986	1.0584		0.157
method_groupbottom_trawl_SQU	-0.2215	1.321		0.867
method_groupbottom_trawl_SSO	2.8669	1.0786		0.008**
method_groupbottom_trawl_SWA	-1.423	1.5714		0.365
method_groupmidwater_trawl	-0.8831	1.3485		0.513
method_groupset_netting	-3.1759	2.5197		0.208
month1	1.738	0.6888		0.012*
month2	1.4035	0.7513		0.062.
month3	2.3947	0.7165		0.001***
month4	0.8378	0.8063		0.299
month5	2.5048	0.7414		0.001***
month6	1.4027	0.6563		0.033*
month8	1.3399	0.8437		0.112
month9	1.6168	0.932		0.083.
month10	2.0401	0.6457		0.002**
month11	1.7042	0.6645		0.01*
month12	0.2676	0.7048		0.704
start_obs_fmaFMA1	0.6486	1.9611		0.741
start_obs_fmaFMA2	-1.8055	1.1891		0.129
start_obs_fmaFMA3	-1.6963	0.8411		0.044*
start_obs_fmaFMA5	-1.365	0.8093		0.092.
start_obs_fmaFMA6	-1.3199	0.9139		0.149
start_obs_fmaFMA7	-1.1355	0.9558		0.235
start_obs_fmaFMA8	1.5425	1.7693		0.383
start_obs_fmaFMA9	3.2445	1.7388		0.062.

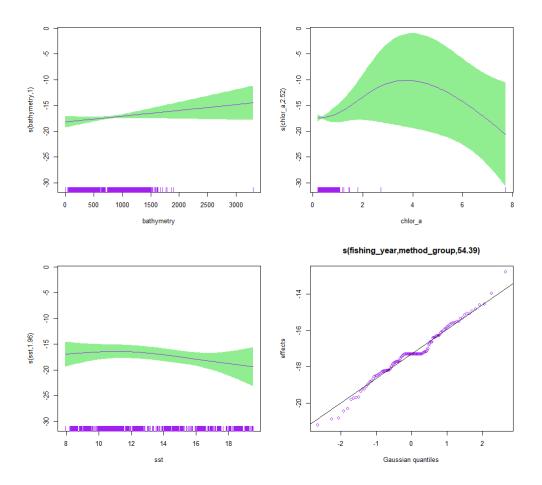


Figure 6.52: Partial effects from GAM fitted to gorgonian catch weight data in all fishing methods.

6.8 Fisher-reported coral captures

Table 6.15: Fisher-reported coral captures between the 2008–09 and 2020–21 fishing years.

Species code	Coral group	Catch weight (t)
COU	Unspecified coral catch	69.898
STP	stony corals	8.800
GDU	stony corals	5.844
ERO	stony corals	2.120
LPT	lace corals	1.000
COB	black corals	0.578
MOC	stony corals	0.401
ERR	lace corals	0.325
COR	lace corals	0.309
PAB	gorgonians	0.171
SIA	stony corals	0.158
CBR	stony corals	0.110
GOC	gorgonians	0.095
COF	stony corals	0.031
STI	black corals	0.027
DDI	stony corals	0.025
BOO	gorgonians	0.025
THO	gorgonians	0.020
PRI	gorgonians	0.014
LLE	gorgonians	0.010
STL	lace corals	0.005
COO	lace corals	0.003
PMN	gorgonians	0.002
CUP	stony corals	0.002
CHR	gorgonians	0.001
LSE	black corals	0.001
DEN	black corals	0.001
ISI	gorgonians	0.001
ACN	gorgonians	0.000