

Tasman Extension Project Environmental Impact Statement

TERRESTRIAL FLORA ASSESSMENT

APPENDIX F

TERRESTRIAL FLORA ASSESSMENT SURFACE FACILITIES

Tasman Extension Project Environmental Impact Statement

Tasman Underground Mine – Tasman Extension Project Surface Facilities Vegetation Ecology and Impact Assessment

A report for Donaldson Coal

Colin Driscoll

HUNTER ECO ABN 25 112 984 240 PO Box 1047, Toronto, NSW 2283

Executive Summary

Donaldson Coal Pty Limited (Donaldson Coal) proposes the Tasman Extension Project which would extend current underground mining of the Fassifern seam into the West Borehole seam.

A new pit top is proposed, to provide more immediate access to the resource than would be possible from the existing Tasman underground portal. This is a report of the vegetation and flora ecology of the proposed disturbance area and immediate surrounds.

Four main vegetation communities were identified and mapped. Two of these communities were listed as endangered ecological communities in the schedules of the New South Wales (NSW) *Threatened Species Conservation Act 1995* (TSC Act). These were: *Lower Hunter Spotted Gum - Ironbark Forest* in the Sydney Basin Bioregion (LHSGIF) and *Hunter Lowland Redgum Forest* (HLRF) in the Sydney Basin Bioregion and the North Coast Bioregion. Approximately 9 ha of LHSGIF would be cleared which is just over 1% of the mapped extent of the community in the locality. The proposed disturbance area avoids the HLRF community.

Two threatened flora species were recorded in and beyond the investigation area: *Rutidosis heterogama* and *Tetratheca juncea*. The disturbance area was designed to avoid the *Tetratheca juncea* with the inclusion of a 20 m buffer. A small population of 417 *Rutidosis heterogama* plants lies within the proposed disturbance area. This population represents under 4% of the extended population in the locality.

An impact assessment (TSC Act 7-part test) concluded that the proposed action would not have a significant impact on the LHSGIF community or on *Rutidosis heterogama* such that the local occurrences would be placed at risk of extinction. No habitat isolation or fragmentation would result.

Cover: Rutidosis heterogama

со	INTENTS	
1	INTRODUCTION	1
2	SUBJECT SITE PHYSIOGRAPHY	5
3	PREVIOUS STUDIES	5
4	SURVEY AIMS AND METHODS	5
4.1	Survey Effort	6
4.2	2 Vegetation community determination and mapping	6
4.3	3 Threatened Flora	7
4	1.3.1 Threatened Species Population size determination	8
5	RESULTS	8
5.1	Vegetation communities	8
5.2	2 Biometric data	11
5.3	3 Threatened flora species	13
6	IMPACT ASSESSMENT	16
7	MITIGATION MEASURES	16
8	CONCLUSION AND RECOMMENDATIONS	16
9	REFERENCES	17
	PENDIX 1 IMPACT ASSESSMENT, THE 7-PART TEST APPLIED TO ORA SPECIES) THREATENED 20
	PENDIX 2 IMPACT ASSESSMENT, THE 7-PART TEST APPLIED TO DANGERED ECOLOGICAL COMMUNITY) AN 29
API	PENDIX 3 FLORISTIC PLOT DATA	31
API	PENDIX 4 COMBINED FLORISTIC LIST	45
API	PENDIX 5 VEGETATION COMMUNITY PROFILES	49
	PENDIX 6 HUNTER ECO LETTER ASSESSING IMPACT ON <i>RUTID</i> TEROGAMA INCLUDED IN THE EPBC REFERRAL	<i>OSIS</i> 54
API	PENDIX 7 PERSONNEL	60

FIGURES

FIGURE 1 THE INVESTIGATION AREA IN A LOCAL AND REGIONAL CONTEXT	2
FIGURE 2 THE PROPOSED TASMAN WEST BOREHOLE EXTENSION AND CURREN APPROVAL	IT 3
FIGURE 3 THE PROPERTY AND PROPOSED SURFACE FACILITIES DISTURBANCE AREA	4
FIGURE 4 NMDS ORDINATION OF THE FLORISTIC PLOTS	9
FIGURE 5 VEGETATION COMMUNITIES MAPPED ACROSS AND BEYOND THE INVESTIGATION AREA	10
FIGURE 6 RUTIDOSIS HETEROGAMA	14
FIGURE 7 TETRATHECA JUNCEA	14
FIGURE 8 AREA OF OCCUPATION AND NUMBER OF INDIVIDUALS OF THREATENED FLORA SPECIES	15

TABLES

TABLE 1 SURVEY EFFORT	6
TABLE 2. THE BRAUN-BLANQUET COVER-ABUND ANCE SCORES	6
TABLE 3 THREATENED FLORA SPECIES FROM THE ATLAS OF NSW WILDLIFE	7
TABLE 4 VEGETATION TYPES AND CLASSIFICATION	11
TABLE 5 BIOMETRIC DATA RECORDED AT VEGETATION PLOT SITES	12
TABLE 6 THE LIKELIHOOD OF THREATENED SPECIES OCCURRING WITHIN THE INVESTIGATION AREA (SOURCE TABLE 3)	E 13
TABLE 7 VEGETATION COMMUNITIES AND THREATENED SPECIES LOST	16

Tasman Underground Mine – Tasman Extension Project

Surface Facilities

Vegetation Ecology and Impact Assessment

1 Introduction

The Tasman Extension Project (the Project) would involve the extension of underground mining operations at the existing Tasman Underground Mine for an additional operational life of 15 years. Donaldson Coal Pty Limited (Donaldson Coal), owns and operates the Tasman Underground Mine. Donaldson Coal is a wholly owned subsidiary of Gloucester Coal Ltd (GCL).

The proposed mine is located approximately 20 kilometres (km) west of the Port of Newcastle in New South Wales (NSW) within the Newcastle Coalfield (**Figure 1**).

A new pit top is proposed to provide access to the West Borehole Seam and associated surface facilities required for underground coal mining and run-of-mine (ROM) coal handling. The pit top would be located off George Booth Drive approximately 2 km north-northwest of the existing Tasman Underground Mine pit top (**Figure 2**). The extent of surface disturbance within the property boundary is shown in **Figure 2**, along with current approved Fassifern mining area and the proposed West Borehole mine plan and extents. The *subject site* for this assessment consists of all area within the property boundary and also includes access and disturbance area for a downcast ventilation shaft that lies outside of the property boundary (**Figure 3**).

The pit top infrastructure would comprise of two drifts (tunnels) from the box cut at the pit top which would be constructed to allow for employee, machines and materials access to the underground roadways. It would also comprise of ROM coal handling infrastructure, administration facilities, worker amenities and stores buildings, workshop compound, bunded fuel tank area, transformer and mine infrastructure.

Development of the access road to the new pit top would involve construction of a new intersection with George Booth Drive.

An upcast ventilation shaft (from the surface to the West Borehole Seam) and associated fan and ancillary infrastructure would also be constructed. Adequate ventilation of the underground workings is essential for a safe and efficient operation. Areas where people are working would be ventilated by the mine intake entry (i.e. one of the drift entries) which provides intake air and the upcast ventilation shaft, and ventilation return (i.e. the other drift entry) which expel exhaust air after the air has circulated through the mine.

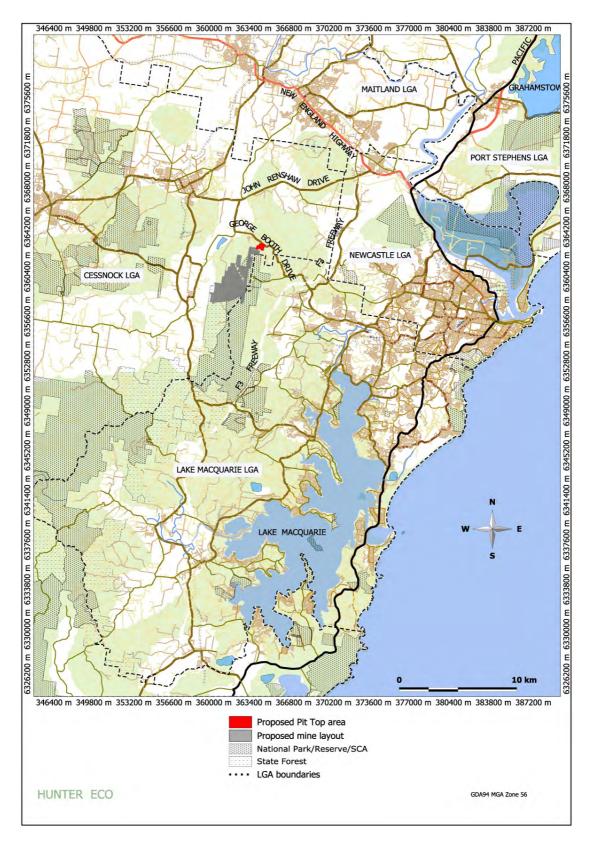
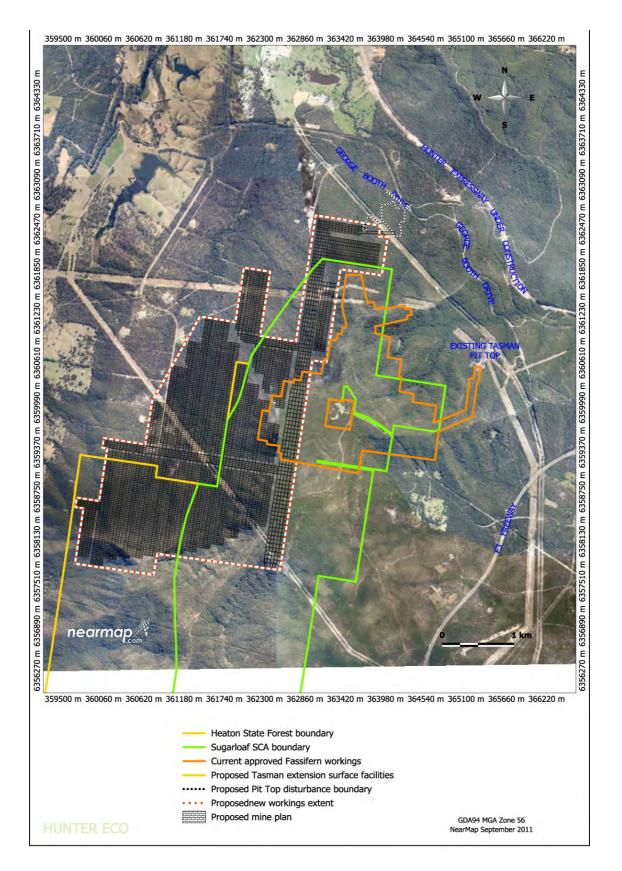



Figure 1 The investigation area in a local and regional context

Figure 2 The proposed Tasman Extension Project West Borehole workings and current approval

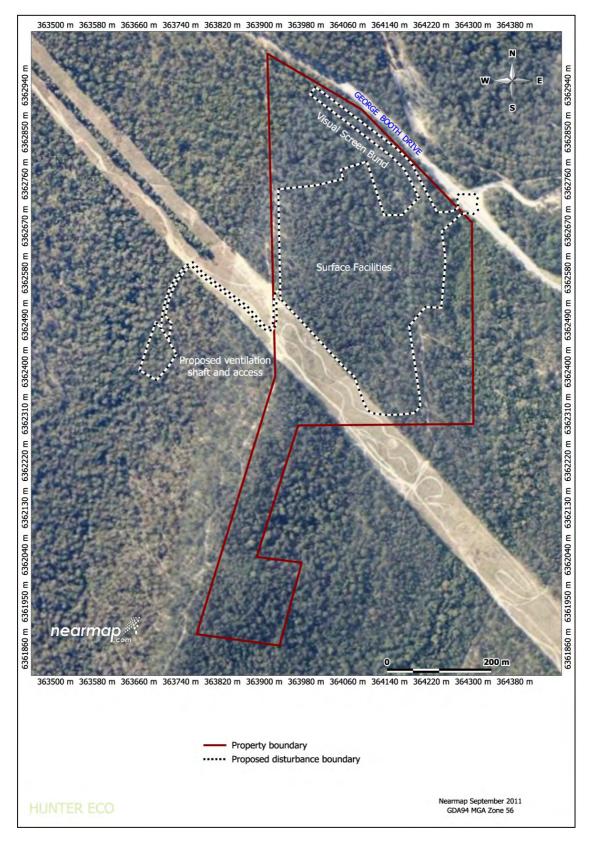


Figure 3 The property and proposed surface facilities disturbance area

2 Subject Site Physiography

The Project is located at the northern edge of the Wyong sub-region in the Sydney Basin Bioregion; at the northern edge of the Wyong sub-region of the Hunter – Central Rivers Catchment Management Authority (CMA); and at the southern end of the North Coast Botanical Division.

Data interpolated from regional historical records indicates that rainfall in the Project area is 900-1000 millimetres (mm) per year (Driscoll unpub.).

Elevation starts at around 50 metres (m) along George Booth Drive and slopes gradually south to 65 m at the transmission line easement.

Geology is Permian, Newcastle Coal Measures made up of Conglomerate, Sandstone and Tuff (NSW Department of Mineral Resources [DMR] 1999).

Soils are Killingworth erosional landscape in the eastern and southern parts, Cockle Creek alluvial in the centre and Beresfield residual landscape at the western side of the lower part near George Booth Drive (Matthie 1995).

The subject site is well forested but there is a wide transmission line easement crossing from east to west and two main bush tracks entering from George Booth Drive.

3 **Previous Studies**

The property on which the surface facilities are proposed (**Figure 3** above) was the outcome of an exchange of land from within the existing Tasman surface facilities property. In 2006 the ecological values of the subject site were investigated as part of the land exchange process (Ecobiological 2006a). The study recorded the presence and general distribution of *Tetratheca juncea* but *Rutidosis heterogama* was not recorded. A vegetation map was also prepared that identified the communities present and their approximate distribution. The current report provides greater detail than the earlier report.

Other studies of areas adjacent to, but not including, the surface facilities flora and vegetation investigation area have been Gunninah (2002) assessing flora and fauna for the proposed Tasman underground coalmine and Ecobiological (2005, 2006b, 2007a, 2007b, 2008a, 2008b, 2009a, 2009b, 2010a, 2010b, 2011a, 2011b) annual monitoring of the Tasman underground coalmine surface disturbance, compensatory habitat areas.

4 Survey Aims and Methods

This survey was primarily framed by the NSW Department of Environment and Conservation (DEC) (2004) threatened species survey guidelines. While the study area was primarily within the property boundary (**Figure 3**), for context, habitat and specific plant population continuity into the surrounding area was also evaluated. As described in the following sections, a thorough ground search was conducted and all plant species were positively identified. This method ensures that all threatened species are found, even those that might not have been previously recorded in the locality.

4.1 Survey Effort

Floristic and threatened flora data from the investigation area were collected over nine days from April 2011 to February 2012 (**Table 1**). The investigation period covered the most opportune time for locating otherwise cryptic threatened flora species.

Task
Collect plot data
Tetratheca juncea population count
Floristic meander
Rutidosis heterogama population count
Rutidosis heterogama extended population estimate
Collect Plot 12 data

Table 1 Survey effort

4.2 Vegetation community determination and mapping

A vegetation map was prepared from ground-truthed point data, floristic plot data and ground-truthed community boundary determination, applying methods developed in part by the author, as published in NSW Department of Environment and Climate Change (DECC) (2008). Vegetation community types were determined by matching floristic content to data from the NSW National Parks and Wildlife Service (NPWS) (2000) regional classification.

The investigation area was sufficiently small for a thorough field inspection. Ground-truth vegetation data were collected at several locations at which the dominant species in the canopy, shrub and ground structural layers were recorded. These points were given a tentative community classification by comparison with the NPWS (2000) community profiles.

To verify the differentiation between the identified communities, data were collected from standard 20x20 m floristic plots using the modified Braun-Blanquet cover-abundance scale (**Table 2**). These data were analysed using ordination in Primer 6 (Clarke and Gorley 2001) which grouped the plots into those whose diversity and biomass were most similar. Finally, the ecotonal boundary between each community was walked and recorded using a handheld GPS (Garmin GPS60CSx) with the data being transferred to a GIS for preparation of the final vegetation map.

Cover range	Score
<5% few individuals	1
<5% many individuals	2
5% - <25%	3
25% - <50%	4
50% - <75%	5
75% - 100%	6

 Table 2. The Braun-Blanquet cover-abundance scores

Biometric data were also collected at the floristic plot sites with the plot being extended to 20 x 50 m. Biometric community types were determined by matching the classified communities to biometric community descriptions. Biometric parameters recorded were:

- Native plant species richness (total native species present)
- Native overstorey cover
- Native midstorey cover
- Native ground cover (grasses)
- Native ground cover (other)
- Percentage regrowth (proportion of canopy species with diameter <10 centimetres [cm])
- Number of trees with habitat hollows
- Total length of fallen logs (metres)

Overall floristic content was compiled from plot data, ground-truth points, targeted meander and opportunistic observation. Meanders were designed to cross all mapped vegetation types.

4.3 Threatened Flora

Flora species and vegetation communities listed as threatened in the NSW *Threatened Species Conservation Act 1995* (TSC Act) were a particular focus of the survey. Species listed in the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) were not considered here because the Commonwealth Department of Sustainability, Environment, Water, Population and Communities determined that the Project was not a controlled action.

Initially a desktop analysis was conducted by drawing threatened flora records from the Atlas of NSW Wildlife data base for an area within a radius of 5 km of the subject site boundary (**Table 3**).

Family	Scientific Name	Common Name	TSC Act Status ¹
Asteraceae	Rutidosis heterogama	Heath Wrinklewort	V
Elaeocarpaceae	Tetratheca juncea	Black-eyed Susan	V
Myrtaceae	Eucalyptus parramattensis subsp. decadens	Earp's Gum	V
Myrtaceae	Callistemon linearifolius	Netted Bottle Brush	V
Myrtaceae	Eucalyptus glaucina	Slaty Red Gum	V
Proteaceae	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	V

Table 3 Threatened flora species from the Atlas of NSW Wildlife	
Extracted September 2011	

Threatened Species Status under the TSC Act (current at 21 March 2012). V = vulnerable

4.3.1 Threatened Species Population size determination

The population size of threatened flora species was determined by directly counting individuals. To achieve this, transects were walked that ensured all of the area was visually inspected. At each encounter with the target species the number of individuals was recorded, a small piece of flagging tape was dropped on each and a length of tape tied to a shrub. This process all but eliminated the possibility of double counting. A waypoint was taken with a handheld GPS (Garmin GPS Map60CSx) fitted with an antenna booster. Resolution was 3 - 6 m radius so all individuals within that radius could be counted as the number occurring at that waypoint.

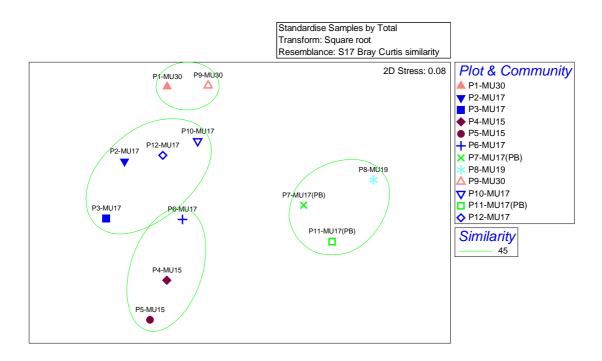
Tetratheca juncea grows in sometimes dense clonal patches where it is difficult to determine what constitutes an individual. A standard method (used here) was developed (Payne *et al.* 2002) where an individual (referred to as a clump) was any group of stems separated from the next nearest by 30 cm or more.

There are similar problems when counting *Rutidosis heterogama* with plants often occurring in dense groups. It is unknown whether these are clonal groups or a consequence of germination of seed that generally disperses close to the parent plant. There is no convention for counting this species so a best estimate was made of individuals in dense patches. A record from the Atlas of NSW Wildlife database pointed to a group of the species occurring in the powerline easement south east of the investigation area. This group was located and counted. Plants were also discovered along both sides of George Booth Drive and counting continued through there. The NSW Atlas records indicated that the population north of George Booth Drive might be continuous for some distance beyond the counted population. A wide area was then surveyed along parallel transects around 70 m apart to determine the approximate extent of the entire population. The number of plants in this wider area was estimated by extrapolation of the density of plants in the area of detailed count.

5 Results

Overall, the habitat was found to be moderately disturbed by rubbish dumping, vehicle tracks and firewood collecting. **Appendix 4** lists the 155 flora species, from 47 families, recorded across the surveyed area. There were only five weed species present.

5.1 Vegetation communities


Four vegetation communities were mapped across the investigation area (profiled in **Appendix 5**). These were:

- MU15 Coastal Foothills Spotted Gum Ironbark Forest;
- MU17 Lower Hunter Spotted Gum Ironbark Forest (including a paperbark variant, MU17(p);
- MU19 Hunter Lowland Redgum Forest; and
- MU30 Coastal Plains Smooth-barked Apple Woodland.

The composition of two of these communities was consistent with the following endangered ecological communities (EEC) listed in the NSW TSC Act:

- MU 17, Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin Bioregion; and
- MU19, Hunter Lowland Redgum Forest in the Sydney Basin and NSW North Coast Bioregions.

The floristic content of the sampled plots was classified by comparison with the community profiles in NPWS (2000). **Figure 4** shows ordination results with plots grouped according to similarity of floristic content and biomass. Data for all plots are provided in **Appendix 3**.

Figure 4 nMDS ordination of the floristic plots

Non-metric multi-dimensional scaling (nMDS) shows the 12 plots grouped according to their floristic similarity. The ellipses are from an underlying hierarchical agglomerative cluster analysis. Symbol colours indicate the vegetation community in which the plot was recorded.

Figure 4 shows Plot 6 lying between the MU17 Lower Hunter Spotted Gum – Ironbark Forest and MU15 Coastal Foothills Spotted Gum – Ironbark Forest groups, which is explained by its location at the interface between these two communities, as seen in the **Figure 5**. A dense midstorey of paperbarks has brought Redgum Plot 8 into the same group as MU17 paperbark variant, even though the main canopy species were different.

Figure 5 Vegetation communities mapped across and beyond the investigation area

Survey points, plots and transects also shown. The surrounding vegetation map is part of a wider 5 km x 6.5 km area that includes the extent of proposed underground workings.

5.2 Biometric data

The biometric vegetation system links local community classification with NSW state-wide broad groups (**Table 4**). Quantitative data are provided in the form of benchmark values for several diversity and structural parameters and these data have been compiled in **Table 5**.

Biometric Veg Type	Keith Formation	Keith (2004) Class	NPWS (2000)
HU551 Spotted Gum - Grey Ironbark open forest on the foothills of the Central Coast, Sydney Basin	Grassy woodlands	Coastal Valley Grassy Woodlands	MU15 Coastal Foothills Spotted Gum - Ironbark Forest
HU629 Spotted Gum - Broad-leaved Ironbark grassy open forest of dry hills of the lower Hunter Valley, Sydney Basin	Dry sclerophyll forests (shrub/grass sub- formation)	Hunter-Macleay Dry Sclerophyll Forests	MU17 Lower Hunter Spotted Gum - Ironbark Forest (EEC)
HU546 Forest Red Gum - Rough-barked Apple open forest on poorly drained lowlands of the Central Coast, Sydney Basin	Forested Wetlands	Coastal Floodplain Wetlands	MU19 Hunter Lowlands Redgum Forest (EEC)
HU622 Smooth- barked Apple - Red Bloodwood open forest on coastal plains on the Central Coast, Sydney Basin	Dry sclerophyll forests (shrubby sub-formation)	Sydney Coastal Dry Sclerophyll Forests	MU30 Coastal Plains Smooth- barked Apple Woodland

Table 4	Vegetation	types	and	classification
		-,		

Benchmark values for each parameter are in parentheses.									
				% Cover					
Biometric type	Plot	Native Species Richness	Canopy	Shrub	Grass	Other ground	Fallen logs (m)	% Regrowth	Habitat trees
HU551	4	44 (41)	40 (15-40)	25 (5-10)	50 (30-40)	5 (20-40)	82 (5)	50	1 (3)
HU551	5	45 (41)	40 (15-40)	50 (5-10)	10 (30-40)	10 (20-40)	37 (5)	25	3 (3)
HU629	2	34 (38)	30 (15-40)	1 (3-15)	50 (30-60)	0 (10-25)	31 (10)	50	1 (1.2)
HU629	3	38 (38)	20 (15-40)	50 (3-15)	25 (30-60)	25 (10-25)	11 (10)	75	1 (1.2)
HU629	6	43 (38)	30 (15-40)	0 (3-15)	3 (30-60)	3 (10-25)	35 (10)	50	0 (1.2)
HU629	7	55 (38)	20 (15-40)	70 (3-15)	50 (30-60)	10 (10-25)	46 (10)	50	0 (1.2)
HU629	10	33 (38)	30 (15-40)	1 (3-15)	90 (30-60)	2 (10-25)	7 (10)	100	1 (1.2)
HU629	11	42 (38)	5 (15-40)	80 (3-15)	25 (30-60)	5 (10-25)	21 (10)	0	0 (1.2)
HU629	12	35 (38)	40 (15-40)	5 (3-15)	80 (30-60)	5 (10-25)	91 (10)	75	2 (1.2)
HU546	8	54 (15)	10 (15-65)	70 (1-5)	60 (0-90)	5 (2-90)	27 (10)	0	0 (0.8)
HU622	1	47 (35)	20 (18-45)	5 (5-30)	90 (1-30)	0 (3-30)	9 (70)	100	1 (3)
HU622	9	36 (35)	30 (18-45)	2 (5-30)	90 (1-30)	5 (3-30)	24 (70)	100	0 (3)

Table 5 Biometric data recorded at vegetation plot sites

5.3 Threatened flora species

An evaluation of the species listed in **Table 3** above against their know habitat requirements resulted in an assessment of likelihood of occurrence in the Project area presented in **Table 6**. Habitat preference information was drawn from the following online resources:

- http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/home_sp ecies.aspx
- http://plantnet.rbgsyd.nsw.gov.au/

Scientific Name	Distribution and habitat	Likelihood of occurring
	Recorded from Warnervale	
Rutidosis heterogama	to Kurri and far northern	Recorded within and around
Ruthosis neterogunia	NSW. Grows in heath, open	the subject site.
	forest and grasslands.	
	Recorded from Wyong to	
Tetratheca juncea	Bulahdelah. Grows in heath,	Recorded within and around
Tetratheca juncea	open woodland and coastal	the subject site.
	sands.	
	In the local area this species	
Eucalyptus parramattensis	is a characteristic species in	Unlikely as suitable habitat is
subsp. <i>decadens</i>	the EEC Kurri Sand Swamp	not present.
•	Woodland in the Sydney	
	Basin Bioregion.	
Callistomon linearifolius	Recorded from Sydney to	Suitable babitat present
Callistemon linearifolius	Nelson Bay. Grows in dry	Suitable habitat present.
	sclerophyll forest.	
	Recorded from Maitland to	A small amount of suitable habitat in the area where
Eucaluptus algusing		
Eucalyptus glaucina	Casino. Grows on deep, well-watered soils.	Forest Redgums are growing outside of the disturbance
	well-watered solls.	
	Recorded from Sydney to	area.
Gravillag parviflorg subsp	Kurri. Grows in sandy or	
Grevillea parviflora subsp. parviflora	light clay soils in heath,	Suitable habitat is present.
μαινητοια	woodland or forest.	

Table 6 The likelihood of threatened species occurring within theinvestigation area (source Table 3)

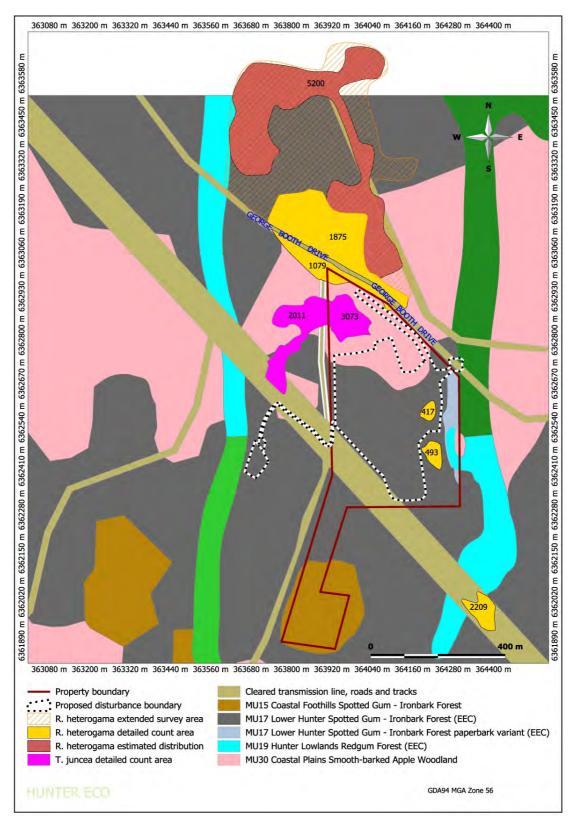

Two threatened flora species, *Rutidosis heterogama* (**Figure 6**) and *Tetratheca juncea* (**Figure 7**), were recorded within, and extending beyond, the proposed disturbance area (**Figure 8**).

Figure 6 Rutidosis heterogama

Figure 7 Tetratheca juncea

Figure 8 Area of occupation and number of individuals of threatened flora species Total plants counted or estimated in each group are shown.

417 individuals

There were over 11,000 *Rutidosis heterogama* plants of which two groups of 417 and 493 were within the investigation area. The group of 417 plants was within the proposed disturbance area. Distribution of the species extended beyond the investigation area with 2209 plants to the south and more than 8000 to the north, extending across John Renshaw Drive.

The *Tetratheca juncea* population extended well beyond the investigation area and consisted of 5084 clumps, of which 3073 were within the investigation area and 2011 outside.

6 Impact assessment

Rutidosis heterogama

Table 7 lists the direct impact resulting from total clearing of the surface facilitiesinfrastructure area.

Table 7 Vegetation communities and timeatened species lost					
Community or species	Loss				
MU17 Lower Hunter Spotted Gum – Ironbark Forest EEC	8.9 ha				
MU 30 Coastal Foothills Smooth-barked Apple Woodland	2.3 ha				

Table 7 Vegetation communities and threatened species lost

Impact assessment for flora species and vegetation communities listed as
threatened in the NSW TSC Act was prepared through the application of the
7-part test (Appendix 1). Appendix 6 also provides a letter from Hunter Eco
assessing the potential impacts of the Project on Rutidosis heterogama for the
EPBC Act Referral.

7 Mitigation Measures

Land clearance and management procedures will be conducted in accordance with the current *Tasman Flora and Fauna Management Plan* (Ecobiological 2007c). This plan includes measures for pre-clearing surveys and revegetation of disturbed areas that would not be in use following construction.

Measures specific to the subject site, and not included in Ecobiological (2007c), are protocols to protect the *Tetratheca juncea* and *Rutidosis heterogama* populations from damage. This should include fencing around buffer areas, specific induction of plant operators and any other relevant personnel, and regular inspection to ensure damage is being avoided.

8 Conclusion and Recommendations

The conclusion of the impact assessments (**Appendix 1**) was that there would be no significant impact on either the threatened species *Rutidosis heterogama* and *Tetratheca juncea* or the Lower Hunter Spotted Gum – Ironbark Forest EEC as a consequence of establishing the Project surface facilities.

The loss of habitat would not have an impact on threatened species that might be present under favourable circumstances, or at some time in the future. None of the habitat types to be cleared were unique to the site or within the immediate locality. Rather than waste a biological resource and research opportunity, experimental translocation is recommended for the 417 *Rutidosis heterogama* individuals located in the disturbance area. These plants could easily be moved adjacent to the next nearest population just 70 m to the south. This experiment should include both translocation of as many of the plants as can readily be retrieved, and collection and planting of seed. A formal plan should be prepared for approval by the NSW Office of Environment and Heritage prior to any work commencing and, the principles in Vallee *et al.* (2004) should be applied.

9 References

Bhattacharya, M., Primack, R.B. & Gerwein, J. (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? *Biological Conservation*, **109**, 37-45.

Clarke, K.R. and Gorley, R.N., (2001). PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. 91 pp.

DEC (2004) *Threatened Species Survey and Assessment: Guidelines for developments and activities (working draft)*. New South Wales Department of Environment and Conservation, Hurstville, NSW.

DECC (2007) *Threatened species assessment guidelines. The assessment of significance*. New South Wales Government Gazette No. 10.

DECC (2008) Vegetation of the Cessnock-Kurri Region, Survey, Classification & Mapping, Cessnock LGA, New South Wales, Department of Environment and Climate Change (NSW), Sydney.

DMR (1999) Lower North East Region 1:250,000 scale equivalent geology (Iner5ge_p (polygons) and Iner5ge_l (lines or arcs) geological coverage comprising the area covered by parts of the Dorrigo, Tamworth, Hastings, Singleton and Newcastle 1:250 000 sheet areas, Hunter Coalfield and Newcastle Coalfield Regional Geology 1:100 000 sheet areas and part Sydney 1:250 000 sheet area. CRA project Lower North East. NSW Department of Mineral Resources.

Ecobiological (2005) *Tasman Underground Coalmine Compensatory Habitat Baseline Report.* A report to Newcastle Coal Company September 2005.

Ecobiological (2006a) *Ecological attributes of two portions of land at the northern end of the Sugarloaf Range*. A report to Newcastle Coal Company December 2006.

Ecobiological (2006b) *Tasman Underground Coalmine Flora and Fauna monitoring annual report.* A report to Newcastle Coal Company December 2006.

Ecobiological (2007a) *Tasman Underground Coalmine. Stage 1 Subsidence Management Plan Ecology Assessment.* A report to Newcastle Coal Company June 2007.

Ecobiological (2007b) *Tasman Underground Coalmine proposed revised compensatory habitat area*. A report to Newcastle Coal Company March 2007.

Ecobiological (2007c) Tasman Flora and Fauna Management Plan.

Ecobiological (2008a) 2008 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2008b) 2008 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2009a) 2009 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2009b) 2009 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2010a) 2010 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2010b) 2010 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2011a) 2011 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2011b) 2011 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Gunninah Environmental Consultants (2002) Tasman Project Proposed Underground Coal Mine Flora and Fauna Assessment.

Keith D. (2004) *Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT.* NSW Government.

Matthie L.E. (1995) *Soil Landscapes of the Newcastle 1:100 000 Sheet* Report, Department of Land and Water Conservation, Sydney.

Morgan, J.W. (1995a) Ecological studies of the endangered *Rutidosis leptorrhynchoides*. I. Seed production, soil seed bank dynamics, population density and their effect on recruitment. *Australian Journal of Botany* 43: 1-11.

Morgan, J.W. (1995b) Ecological studies of the endangered *Rutidosis leptorrhynchoides*. II. Patterns of seedling emergence and survival in a native grassland. *Australian Journal of Botany* 43: 13-24.

NPWS (2000) *Vegetation Survey, Classification and Mapping Lower Hunter and Central Coast Region.* Version1.2. A project undertaken for The Lower Hunter and Central Coast Regional Environment Management Strategy CRA Unit Sydney Zone National Parks and Wildlife Service.

Payne, R.J., Stevenson, D., & Wellington, R. (2002) *A standardised method for counting Black-eyed Susan populations.* Unpublished Report.

Vallee, L., Hogbin, T., Monks, L., Makinson, B., Matthes, M., and Rosetto, M. (2004) *Guidelines for the Translocation of Threatened Plants in Australia*. Australian Network for Plant Conservation, Canberra.

Young, A.G. & Murray, B.G. (2000) Genetic bottlenecks and dysgenic geneflow into re-established populations of the grassland daisy *Rutidosis leptorrhynchoides*. *Australian Journal of Botany* 48(3): 409-416.

Young, A.G., Brown, A.H.D., & Zich, F.A. (1999) Genetic structure of fragmented populations of the endangered daisy *Rutidosis leptorrhynchoides. Conservation Biology* 13: 256-265.

Young, A., Miller, C., Gregory, E., & Langston, A. (2000). Sporophytic selfincompatibility in diploid and tetraploid races of *Rutidosis leptorrhynchoides* (Asteraceae). *Australian Journal of Botany* 48(5): 667-672.

Young A.G., Hill J.H., Murray B.G., and Peakall R. (2002) Breeding system, genetic diversity and clonal structure in the subalpine forb *Rutidosis leiolepis* F. Muell. (Asteraceae) *Biological Conservation* 106 71–78.

Appendix 1 Impact assessment, the 7-part test applied to threatened flora species

The subjects of this impact assessment are flora species that were either recorded within the subject site, or suitable habitat was considered as possibly present (**Table 4** of the main report), therefore species possibly occurring. As required by DECC (2007) the focus of the 7-part test is local, dealing with the immediate impact on species or communities that occur within, adjacent to, or continuous with the proposed disturbance area.

Callistemon linearifolius

(a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

Following careful searching, no *Callistemon linearifolius* were found in the subject site. No viable local population was present so would not be placed at risk of extinction.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

No endangered population of this species has been listed.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

Not applicable

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not applicable

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality, It is unknown whether the habitat to be removed would be suitable for the species. The fact that the species is not growing there could indicate either that the habitat is unsuitable or that the species has not yet dispersed there. Furthermore, a detailed vegetation map prepared for a 5 km x 6.5 km area that includes the extent of the proposed new underground workings revealed that there was 550 ha of MU15, 700 ha of MU17 and 980 ha of MU30 habitat connected to that within the subject site. The proposed action would not result in habitat loss, fragmentation or alteration that would impact on the long-term survival of the species.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No recovery plan has been prepared for this species.

The following actions are recommended for the recovery of this species: (http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/profile.aspx?id=10129)

1. Search for the species in suitable habitat in areas that are proposed for development or management actions, protect any such site found.

The subject site was searched for this species and none were found.

2. Protect known habitat from clearing or disturbance.

No known habitat would be cleared or disturbed.

3. Determine response of species to fire and develop and promote a recommended fire regime.

Beyond the scope of this investigation.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Key threatening processes relevant to the species under consideration involved would be: *The Clearing of Native Vegetation.*

Grevillea parviflora subsp. parviflora

(a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

Following careful searching, no *Grevillea parviflora* subsp. *parviflora* were found in the investigation area. No viable local population was present so would not be placed at risk of extinction.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

No endangered population of this species has been listed.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

Not applicable

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not applicable

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality,

It is unknown whether the habitat to be removed would be suitable for the species. The fact that the species is not growing there could indicate either that the habitat is unsuitable or that the species has not yet dispersed there. Furthermore, a detailed vegetation map prepared for a 5 km x 6.5 km area that includes the extent of the proposed new underground workings revealed that there was 550 ha of MU15, 700 ha of MU17 and 980 ha of MU30 habitat connected to that within the subject site. The proposed action would not result in habitat loss, fragmentation or alteration that would impact on the long-term survival of the species.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No recovery plan has been prepared for this species.

The following actions are recommended for the recovery of this species: (http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/profile.aspx?id=10373)

- **1.** Ensure that personnel planning and undertaking road maintenance are able to identify the species and are aware of its habitat. Not applicable to this project.
- 2. Reinstate an appropriate fire regime (either restrict fire or undertake ecological burns as required).
 A bushfire management plan is to be prepared for the project.
- 3. Ensure that this species is considered in all planning matters on land that contains or may contain populations. The investigation area was carefully searched for the species and none was found.
- **4.** Mark and fence off sites during development/road maintenance activities. The investigation area was carefully searched for the species and none was found.
- 5. Undertake weed control using methods that will not impact on populations of G. parviflora subsp. parviflora (avoid spraying in the vicinity of the plants and either hand pull weeds or cut and paint them). The investigation area was carefully searched for the species and none was found.
- **6.** Ensure these populations and this habitat are protected. The investigation area was carefully searched for the species and none was found.
- 7. Mark known sites and potential habitat onto maps used for planning maintenance work.
 The investigation area was carefully searched for the species and none was found.
- **8.** Conduct searches in potential habitat for new populations. The investigation area was carefully searched for the species and none was found.
- (g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Key threatening processes relevant to the species under consideration involved would be: *The Clearing of Native Vegetation*

Rutidosis heterogama

(a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

This assessment has been drawn from an assessment of the potential impact of the Project on this species undertaken as part of the EPBC Referral in November 2011, included in full as Appendix 6 of this report.

The area of occupation of *Rutidosis heterogama* was found to be 17.6 ha, made up of four groups (**Figure 8** of the main report). Two of these groups, containing 417 and 493 plants, were within the investigation area. The group containing 417 plants occurs within the infrastructure disturbance area and so would be lost as a result of the proposed action.

There is no published information on the biology of *Rutidosis heterogama*. However, studies of the biology and genetics of its also threatened congeners *Rutidosis leptorrhynchoides* and *Rutidosis leiolepis* (from southern NSW and Victoria) provide useful insights (Morgan 1995a, 1995b; Young *et al.* 1999; Young & Murray 2000; Young *et al.* 2000; Young *et al.* 2002). The pappus (structures at the top of Asteraceae seed to aid in wind dispersal) on *Rutidosis* seed is in the form of rudimentary scales and seed are dispersed within a short distance (0.5 m of the plant) and generally germinate within that area. Seed are only viable in soil for about four months. Clonality exists but varies with species and location so there is little evidence of clonality in *Rutidosis leptorrhynchoides* while *Rutidosis leiolepis* can be significantly clonal, particularly at higher elevations. It is unknown whether, or to what degree, *Rutidosis heterogama* is clonal.

Pollinators are native bees and other insects; during the field survey native bees, moths, flies and beetles were observed on flowers. *Rutidosis* are genetically self-incompatible. However it has been shown that in small populations (<200 individuals) self-incompatibility can break down with consequential inbreeding potentially leading to local extinction. Genetic studies have also shown the potential for locally adaptive genotypes in geographically separated populations. This being so, any group of *Rutidosis heterogama* plants existing in genetic isolation from any others would be an important population because of the potential uniqueness of its genotype.

With seed dispersal being limited to such short distances and having a short period of viability, genetic transfer between populations would be restricted to pollen transfer. Genetic isolation would occur at separation distances beyond which pollen would be transferred. This then raises a question as to the structure of the George Booth Drive population as mapped. It is conceivable that George Booth Drive itself has already had a significant fragmenting effect on the original population. It has been demonstrated, for example, that Bumble Bees will not under normal circumstances cross a road (Bhattacharya *et al.* 2003) and these are much larger insects than *Rutidosis* pollinators. However, the possibility exists that, at least on rare occasions, pollen is transferred across the road, thus maintaining genetic heterogeneity between the groups of *Rutidosis heterogama* on either side of George Booth Drive.

With the potential for genetic material to be exchanged between all of the mapped groups, however infrequently, they would all comprise the local population and given its size, it can be assumed to be viable. Loss of the 417 plants that occur within the infrastructure disturbance area would not place the remainder of the local population at risk of extinction.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

No endangered population of this species has been listed.

HUNTER ECO

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

Not applicable

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not applicable

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality,

The amount of known habitat to be removed would be 0.2 ha. No habitat fragmentation or isolation would occur.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No recovery plan has been prepared for this species.

The following actions are recommended for the recovery of this species: (http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/profile.aspx?id=10737)

1. Stay on formed tracks when visiting heath areas to avoid trampling plants. The group of plants retained within the investigation area will be protected from disturbance.

2. Photograph wildflowers instead of picking or collecting them.

The group of plants retained within the investigation area will be protected from disturbance.

3. Protect areas of habitat from frequent fire.

A bushfire management plan will be prepared.

4. *Identify roadside populations and protect during roadside maintenance works.*

No roadside populations occur within the investigation area.

5. Protect areas of heath and moist open forest from clearing and development.

Clearing of habitat will be restricted to only that necessary for the project. All other areas of habitat will be protected.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Key threatening processes relevant to the species under consideration involved would be: *The Clearing of Native Vegetation*

Tetratheca juncea

(a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

A substantial population was found to be present within, and continuing beyond, the bounds of the investigation area (**Figure 8** of the main report). The infrastructure disturbance area was designed to avoid any *Tetratheca juncea* through provision of a 20 m buffer between disturbance boundary and the area occupied by the plants. Consequently, a viable local population of the species would not be placed at risk of extinction.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

No endangered population of this species has been listed.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

Not applicable

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not applicable

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality,

The proposed action would not result in any habitat modification, isolation or fragmentation.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No recovery plan has been prepared for this species.

The following actions are recommended for the recovery of this species: (http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/profile.aspx?id=10799)

1. Reinstate an appropriate fire regime which protects the species from frequent fire.

A bushfire management plan will be prepared.

- **2.** Install stormwater control mechanisms to prevent off-site impacts from development upslope of populations.
- A stormwater management plan will be prepared.
- **3.** Undertake weed control as required using removal methods that will not impact on the species (hand pull or cut and paint weeds).

A weed management plan will be prepared.

4. Protect and actively manage large populations and those at the limit of the species range through conservation mechanisms such as covenanting and the preparation/implementation of site-specific vegetation management plans.

A vegetation management plan will be prepared.

5. Improve vegetative connectivity within and between populations through revegetation/regeneration programs.

Existing connectivity will not be modified.

6. Monitor population health and numbers for any changes (refer to counting method in the references).

A Tetratheca juncea management and monitoring plan will be prepared.

7. Undertake targeted searches for the species in known or potential habitat during its flowering period prior to any clearing or development.

A targeted search for the species was conducted resulting in the discovery of the species within and outside of the investigation area.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Key threatening processes relevant to the species under consideration involved would be: *The Clearing of Native Vegetation*

Appendix 2 Impact assessment, the 7-part test applied to an Endangered Ecological Community

The subject of this impact assessment is EEC that was recorded within the subject site. As required by DECC (2007) the focus of the 7-part test is local, dealing with the immediate impact on communities that occur within, adjacent to, or continuous with the proposed disturbance area.

Lower Hunter Spotted Gum – Ironbark Forest

(a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

Not applicable to the consideration of an EEC.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

Not applicable to the consideration of an EEC.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Clearing the infrastructure area would result in the loss of just under 9 ha of this EEC, which needs to be placed in context with the surrounding habitat. In addition to the subject site, a vegetation map has been prepared over a 5 km x 6.5 km area that includes both the subject site and the area of the proposed underground mine. This wider area map was prepared using the same methods described in Section 4.2 of the main report and showed that the 9 ha of EEC to be cleared was part of just over 700 ha of the community.

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality, Just under 9 ha of this community would be cleared for the surface facilities and this area is at the eastern edge of over 700 ha of this community. Consequently, there would be no habitat fragmentation or isolation. The clearing would not have a negative impact on the long-term survival of this community in the locality.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

No recovery plan has been prepared for this species.

The following actions are recommended for the recovery of this species: (http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/profile.aspx?id=10942)

- 1. Promote public involvement in restoration activities.
- **2.** Ensure that the fire sensitivity of the community is considered when planning hazard reduction and asset management burning.
- **3.** Protect habitat by minimising further clearing of the community. This requires recognition of the values of all remnants in the land use planning process, particularly development consents, rezonings and regional planning.
- 4. Promote regeneration by avoiding prolonged or heavy grazing.
- 5. Fence remnants where necessary to protect from off-road vehicle use and rubbish dumping.
- 6. Weed control.
- 7. Undertake restoration including bush regeneration and revegetation.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The key threatening process, *The Clearing of Native Vegetation*, would be in operation with 8.9 ha of MU17 Lower Hunter Spotted Gum – Ironbark Forest proposed to be cleared.

Introduction and establishment of Exotic Rust Fungi of the order Pucciniales pathogenic on plants of the family Myrtaceae is a key threatening process with the potential to impact on Myrtaceous species. These fungi are generically referred to as 'Myrtle Rust'. None was found during the field surveys for this assessment. Dispersal vectors for Myrtle Rust appear to include wind and direct physical transfer by humans or animals having had contact with infected plants. Management plans should include awareness of this threat and measures to minimise the risk of transfer from infected areas.

Appendix 3 Floristic Plot Data

CA = Cover Abundance (Table 2 above) **Plot 1**

Scientific Name	Family Name	CA
Vittadinia cuneata	Asteraceae	1
Pandorea pandorana	Bignoniaceae	2
Allocasuarina littoralis	Casuarinaceae	2
Lepidosperma laterale	Cyperaceae	1
Ptilothrix deusta	Cyperaceae	2
Hibbertia aspera	Dilleniaceae	2
Hibbertia empetrifolia	Dilleniaceae	2
Lissanthe strigosa	Epacridaceae	1
Daviesia ulicifolia	Fabaceae (Faboideae)	1
Dillwynia retorta	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Podolobium aciculiferum	Fabaceae (Faboideae)	1
Pultenaea euchila	Fabaceae (Faboideae)	2
Acacia elongata	Fabaceae (Mimosoideae)	1
Acacia myrtifolia	Fabaceae (Mimosoideae)	1
Goodenia hederacea	Goodeniaceae	1
Goodenia heterophylla	Goodeniaceae	1
Gonocarpus teucrioides	Haloragaceae	2
Pratia purpurascens	Lobeliaceae	2
Logania pusilla	Loganiaceae	2
Lomandra confertifolia subsp. rubiginosa	Lomandraceae	1
Lomandra glauca	Lomandraceae	1
Lomandra multiflora	Lomandraceae	1
Lomandra obliqua	Lomandraceae	3
Angophora costata	Myrtaceae	4
Corymbia gummifera	Myrtaceae	4
Eucalyptus sparsifolia	Myrtaceae	3
Acianthus fornicatus	Orchidaceae	1
Pterostylis sp.	Orchidaceae	1
Dianella caerulea	Phormiaceae	1
Dianella longifolia	Phormiaceae	1
Bursaria spinosa	Pittosporaceae	1
Aristida vagans	Poaceae	2
Cymbopogon refractus	Poaceae	1
Dichelachne rara	Poaceae	1
Echinopogon caespitosus	Poaceae	2
Entolasia stricta	Poaceae	3

Scientific Name	Family Name	CA
Eragrostis brownii	Poaceae	1
Imperata cylindrica	Poaceae	3
Joycea pallida	Poaceae	3
Panicum simile	Poaceae	1
Tetratheca juncea	Poaceae	2
Themeda australis	Poaceae	2
Persoonia levis	Proteaceae	1
Xanthorrhoea latifolia	Xanthorrhoeaceae	1

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Alternanthera denticulata	Amaranthaceae	1
Vittadinia cuneata	Asteraceae	1
Lepidosperma laterale	Cyperaceae	1
Acrotriche divaricata	Epacridaceae	1
Lissanthe strigosa	Epacridaceae	1
Phyllanthus hirtellus	Euphorbiaceae	1
Dillwynia retorta	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Podolobium aciculiferum	Fabaceae (Faboideae)	1
Pultenaea villosa	Fabaceae (Faboideae)	1
Acacia elongata	Fabaceae (Mimosoideae)	1
Goodenia hederacea	Goodeniaceae	1
Lomandra confertifolia subsp. rubiginosa	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	3
Lomandra filiformis subsp. filiformis	Lomandraceae	1
Lomandra glauca	Lomandraceae	1
Lomandra multiflora	Lomandraceae	2
Geitonoplesium cymosum	Luzuriagaceae	1
Corymbia maculata	Myrtaceae	4
Eucalyptus fibrosa	Myrtaceae	3
Eucalyptus punctata	Myrtaceae	2
Eucalyptus umbra	Myrtaceae	1
Acianthus fornicatus	Orchidaceae	1
Billardiera scandens	Pittosporaceae	1
Bursaria spinosa	Pittosporaceae	1
Aristida vagans	Poaceae	2
Dichelachne rara	Poaceae	1
Entolasia stricta	Poaceae	3
Joycea pallida	Poaceae	4

Scientific Name	Family Name	CA
Microlaena stipoides	Poaceae	1
Panicum simile	Poaceae	1
Themeda australis	Poaceae	2

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	1
Alternanthera denticulata	Amaranthaceae	1
Vittadinia cuneata	Asteraceae	1
Pandorea pandorana	Bignoniaceae	1
Maytenus silvestris	Celastraceae	2
Lepidosperma laterale	Cyperaceae	2
Hibbertia obtusifolia	Dilleniaceae	1
Phyllanthus hirtellus	Euphorbiaceae	1
Daviesia ulicifolia	Fabaceae (Faboideae)	1
Desmodium rhytidophyllum	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Hovea linearis	Fabaceae (Faboideae)	1
Podolobium aciculiferum	Fabaceae (Faboideae)	1
Podolobium ilicifolium	Fabaceae (Faboideae)	1
Swainsona galegifolia	Fabaceae (Faboideae)	1
Acacia parvipinnula	Fabaceae (Mimosoideae)	1
Goodenia hederacea	Goodeniaceae	1
Lomandra confertifolia subsp. pallida	Lomandraceae	3
Lomandra cylindrica	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	2
Lomandra multiflora	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	1
Corymbia gummifera	Myrtaceae	1
Corymbia maculata	Myrtaceae	3
Eucalyptus fergusonii	Myrtaceae	1
Eucalyptus fibrosa	Myrtaceae	3
Eucalyptus punctata	Myrtaceae	2
Eucalyptus umbra	Myrtaceae	1
Syncarpia glomulifera	Myrtaceae	1
Dianella longifolia	Phormiaceae	2
Bursaria spinosa	Pittosporaceae	1
Entolasia stricta	Poaceae	3
Imperata cylindrica	Poaceae	1
Joycea pallida	Poaceae	3
Panicum simile	Poaceae	1
Themeda australis	Poaceae	1

Scientific Name	Family Name	CA
Persoonia linearis	Proteaceae	1
Macrozamia reducta	Zamiaceae	4

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Adiantum aethiopicum	Adiantaceae	2
Alternanthera denticulata	Amaranthaceae	1
Caesia parviflora	Anthericaceae	1
Polyscias sambucifolia	Araliaceae	1
Lagenifera stipitata	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Pandorea pandorana	Bignoniaceae	1
Allocasuarina torulosa	Casuarinaceae	1
Hibbertia empetrifolia	Dilleniaceae	1
Doryanthes excelsa	Doryanthaceae	2
Desmodium gunnii	Fabaceae (Faboideae)	2
Desmodium rhytidophyllum	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Podolobium ilicifolium	Fabaceae (Faboideae)	1
Lindsaea microphylla	Lindsaeaceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	1
Lomandra longifolia	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	2
Corymbia maculata	Myrtaceae	4
Eucalyptus acmenoides	Myrtaceae	3
Eucalyptus fibrosa	Myrtaceae	1
Eucalyptus placita	Myrtaceae	1
Eucalyptus punctata	Myrtaceae	2
Eucalyptus siderophloia	Myrtaceae	1
Acianthus fornicatus	Orchidaceae	2
Pterostylis reflexa	Orchidaceae	1
Pterostylis sp.	Orchidaceae	2
Dianella caerulea	Phormiaceae	1
Dianella longifolia	Phormiaceae	1
Aristida vagans	Poaceae	2
Dichelachne rara	Poaceae	1
Entolasia stricta	Poaceae	2
Imperata cylindrica	Poaceae	1
Joycea pallida	Poaceae	2
Oplismenus imbecillis	Poaceae	1

Scientific Name	Family Name	CA
Panicum pygmaeum	Poaceae	1
Poa labillardierei var. labillardierei	Poaceae	2
Themeda australis	Poaceae	2
Galium propinquum	Rubiaceae	1
Smilax glyciphylla	Smilacaceae	1
Cayratia clematidea	Vitaceae	1
Macrozamia reducta	Zamiaceae	3

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Adiantum aethiopicum	Adiantaceae	2
Caesia parviflora	Anthericaceae	1
Platysace lanceolata	Apiaceae	2
Vittadinia cuneata	Asteraceae	1
Pandorea pandorana	Bignoniaceae	1
Allocasuarina torulosa	Casuarinaceae	1
Maytenus silvestris	Celastraceae	1
Davallia solida var. pyxidata	Davalliaceae	1
Hibbertia empetrifolia	Dilleniaceae	1
Hibbertia scandens	Dilleniaceae	1
Dioscorea transversa	Dioscoreaceae	1
Breynia oblongifolia	Euphorbiaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Podolobium ilicifolium	Fabaceae (Faboideae)	1
Acacia maidenii	Fabaceae (Mimosoideae)	2
Lomandra confertifolia subsp. rubiginosa	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	1
Lomandra longifolia	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	2
Myrsine variabilis	Myrsinaceae	1
Corymbia maculata	Myrtaceae	4
Eucalyptus acmenoides	Myrtaceae	2
Eucalyptus fergusonii	Myrtaceae	1
Eucalyptus fibrosa	Myrtaceae	1
Eucalyptus placita	Myrtaceae	1
Eucalyptus punctata	Myrtaceae	2
Syncarpia glomulifera	Myrtaceae	1
Acianthus fornicatus	Orchidaceae	1
Pterostylis reflexa	Orchidaceae	1

Scientific Name	Family Name	CA
Pterostylis sp.	Orchidaceae	2
Dianella caerulea	Phormiaceae	2
Billardiera scandens	Pittosporaceae	1
Pittosporum revolutum	Pittosporaceae	1
Entolasia stricta	Poaceae	1
Imperata cylindrica	Poaceae	1
Joycea pallida	Poaceae	2
Oplismenus imbecillis	Poaceae	1
Poa labillardierei var. labillardierei	Poaceae	2
Platycerium superbum	Polypodiaceae	1
Persoonia linearis	Proteaceae	1
Galium binifolium	Rubiaceae	1
Macrozamia reducta	Zamiaceae	3

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Alternanthera denticulata	Amaranthaceae	1
Caesia parviflora	Anthericaceae	1
Lagenifera gracilis	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Pandorea pandorana	Bignoniaceae	2
Maytenus silvestris	Celastraceae	1
Lepidosperma laterale	Cyperaceae	1
Hibbertia empetrifolia	Dilleniaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Pultenaea villosa	Fabaceae (Faboideae)	1
Goodenia hederacea	Goodeniaceae	1
Lomandra confertifolia subsp. rubiginosa	Lomandraceae	2
Lomandra cylindrica	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	2
Lomandra filiformis subsp. filiformis	Lomandraceae	1
Lomandra longifolia	Lomandraceae	1
Lomandra multiflora	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	2
Corymbia maculata	Myrtaceae	4
Eucalyptus acmenoides	Myrtaceae	1
Eucalyptus fergusonii	Myrtaceae	3
Eucalyptus fibrosa	Myrtaceae	1
Eucalyptus punctata	Myrtaceae	2

Scientific Name	Family Name	CA
Syncarpia glomulifera	Myrtaceae	1
Acianthus fornicatus	Orchidaceae	1
Dianella caerulea	Phormiaceae	2
Dianella longifolia	Phormiaceae	1
Billardiera scandens	Pittosporaceae	1
Bursaria spinosa	Pittosporaceae	1
Aristida vagans	Poaceae	1
Austrodanthonia tenuior	Poaceae	1
Entolasia stricta	Poaceae	1
Imperata cylindrica	Poaceae	2
Joycea pallida	Poaceae	1
Panicum pygmaeum	Poaceae	1
Panicum simile	Poaceae	1
Poa labillardierei var. labillardierei	Poaceae	1
Themeda australis	Poaceae	2
Persoonia linearis	Proteaceae	1
Macrozamia reducta	Zamiaceae	2

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	1
Alternanthera denticulata	Amaranthaceae	1
Caesia parviflora	Anthericaceae	1
Centella asiatica	Apiaceae	1
Hydrocotyle laxiflora	Apiaceae	1
Hydrocotyle tripartita	Apiaceae	1
*Senecio madagascariensis	Asteraceae	1
Euchiton gymnocephalus	Asteraceae	1
Lagenifera gracilis	Asteraceae	1
Allocasuarina torulosa	Casuarinaceae	1
Casuarina glauca	Casuarinaceae	1
Maytenus silvestris	Celastraceae	1
Polymeria calycina	Convolvulaceae	2
Carex gaudichaudiana	Cyperaceae	1
Lepidosperma laterale	Cyperaceae	1
Leucopogon muticus	Epacridaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Pultenaea villosa	Fabaceae (Faboideae)	1
Acacia falcata	Fabaceae (Mimosoideae)	1

Scientific Name	Family Name	CA
Acacia longifolia	Fabaceae (Mimosoideae)	1
Gonocarpus teucrioides	Haloragaceae	1
Pratia purpurascens	Lobeliaceae	2
Lomandra confertifolia subsp. pallida	Lomandraceae	1
Lomandra cylindrica	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	1
Lomandra longifolia	Lomandraceae	2
Lomandra multiflora	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	1
Angophora bakeri	Myrtaceae	1
Angophora floribunda	Myrtaceae	1
Callistemon salignus	Myrtaceae	2
Corymbia maculata	Myrtaceae	1
Eucalyptus fibrosa	Myrtaceae	1
Eucalyptus resinifera	Myrtaceae	1
Melaleuca decora	Myrtaceae	5
Melaleuca linariifolia	Myrtaceae	2
Melaleuca nodosa	Myrtaceae	2
Melaleuca styphelioides	Myrtaceae	3
Oxalis exilis	Oxalidaceae	1
Dianella caerulea	Phormiaceae	1
Bursaria spinosa	Pittosporaceae	1
Aristida vagans	Poaceae	1
Echinopogon ovatus	Poaceae	1
Entolasia stricta	Poaceae	1
Eragrostis brownii	Poaceae	1
Microlaena stipoides	Poaceae	2
Oplismenus aemulus	Poaceae	1
Oplismenus imbecillis	Poaceae	2
Panicum simile	Poaceae	1
Poa labillardierei var. labillardierei	Poaceae	1
Themeda australis	Poaceae	2
Ranunculus lappaceus	Ranunculaceae	1

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	1
Cheilanthes sieberi	Adiantaceae	1
Centella asiatica	Apiaceae	1
*Taraxacum officinale	Asteraceae	1
Eclipta platyglossa	Asteraceae	1
Epaltes australis	Asteraceae	1
Euchiton gymnocephalus	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Dichondra repens	Convolvulaceae	1
Polymeria calycina	Convolvulaceae	2
Carex gaudichaudiana	Cyperaceae	2
Gahnia clarkei	Cyperaceae	1
Lepidosperma laterale	Cyperaceae	1
Glochidion ferdinandi	Euphorbiaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Pultenaea retusa	Fabaceae (Faboideae)	1
Acacia falcata	Fabaceae (Mimosoideae)	1
Acacia longifolia	Fabaceae (Mimosoideae)	1
Acacia ulicifolia	Fabaceae (Mimosoideae)	1
Gonocarpus teucrioides	Haloragaceae	1
Juncus usitatus	Juncaceae	1
Pratia purpurascens	Lobeliaceae	2
Lomandra confertifolia subsp. pallida	Lomandraceae	1
Lomandra cylindrica	Lomandraceae	1
Lomandra longifolia	Lomandraceae	1
Angophora costata	Myrtaceae	1
Callistemon linearis	Myrtaceae	1
Callistemon salignus	Myrtaceae	3
Corymbia maculata	Myrtaceae	1
Eucalyptus tereticornis	Myrtaceae	3
Leptospermum polygalifolium	Myrtaceae	2
Melaleuca decora	Myrtaceae	3
Melaleuca linariifolia	Myrtaceae	3
Melaleuca styphelioides	Myrtaceae	3
Melaleuca thymifolia	Myrtaceae	2
Oxalis exilis	Oxalidaceae	1
Dianella caerulea	Phormiaceae	1
Dianella longifolia	Phormiaceae	1
Bursaria spinosa	Pittosporaceae	1

Scientific Name	Family Name	CA
*Plantago lanceolata	Plantaginaceae	1
Aristida vagans	Poaceae	1
Cymbopogon refractus	Poaceae	3
Echinopogon caespitosus	Poaceae	1
Entolasia stricta	Poaceae	1
Eragrostis brownii	Poaceae	1
Eragrostis leptostachya	Poaceae	1
Imperata cylindrica	Poaceae	2
Oplismenus imbecillis	Poaceae	1
Paspalidium distans	Poaceae	1
Poa labillardierei var. labillardierei	Poaceae	1
Themeda australis	Poaceae	2
Ranunculus lappaceus	Ranunculaceae	1
Exocarpos cupressiformis	Santalaceae	1
Dodonaea triquetra	Sapindaceae	1
Veronica sp.	Scrophulariaceae	1

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Polyscias sambucifolia	Araliaceae	1
Lagenifera gracilis	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Allocasuarina littoralis	Casuarinaceae	3
Lepidosperma laterale	Cyperaceae	1
Hibbertia aspera	Dilleniaceae	1
Leucopogon juniperinus	Epacridaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Desmodium rhytidophyllum	Fabaceae (Faboideae)	1
Dillwynia retorta	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Pultenaea retusa	Fabaceae (Faboideae)	1
Pultenaea villosa	Fabaceae (Faboideae)	1
Acacia myrtifolia	Fabaceae (Mimosoideae)	1
Acacia ulicifolia	Fabaceae (Mimosoideae)	1
Goodenia hederacea	Goodeniaceae	1
Goodenia heterophylla	Goodeniaceae	1
Gonocarpus teucrioides	Haloragaceae	1
Lomandra multiflora	Lomandraceae	1
Lomandra obliqua	Lomandraceae	2

Scientific Name	Family Name	CA
Geitonoplesium cymosum	Luzuriagaceae	2
Angophora costata	Myrtaceae	3
Corymbia gummifera	Myrtaceae	3
Eucalyptus fibrosa	Myrtaceae	1
Eucalyptus resinifera	Myrtaceae	3
Melaleuca styphelioides	Myrtaceae	1
Aristida vagans	Poaceae	2
Entolasia stricta	Poaceae	4
Joycea pallida	Poaceae	4
Panicum simile	Poaceae	2
Themeda australis	Poaceae	3
Persoonia linearis	Proteaceae	1
Xanthorrhoea latifolia	Xanthorrhoeaceae	1

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Alternanthera denticulata	Amaranthaceae	1
Lagenifera gracilis	Asteraceae	1
Ozothamnus diosmifolius	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Lepidosperma laterale	Cyperaceae	2
Ptilothrix deusta	Cyperaceae	3
Lissanthe strigosa	Epacridaceae	1
Phyllanthus hirtellus	Euphorbiaceae	1
Desmodium gunnii	Fabaceae (Faboideae)	1
Dillwynia retorta	Fabaceae (Faboideae)	2
Glycine clandestina	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Pultenaea euchila	Fabaceae (Faboideae)	1
Pultenaea villosa	Fabaceae (Faboideae)	1
Goodenia heterophylla	Goodeniaceae	2
Gonocarpus teucrioides	Haloragaceae	2
Pratia purpurascens	Lobeliaceae	1
Lomandra cylindrica	Lomandraceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	1
Lomandra glauca	Lomandraceae	1
Lomandra multiflora	Lomandraceae	1
Lomandra obliqua	Lomandraceae	2
Geitonoplesium cymosum	Luzuriagaceae	2
Corymbia maculata	Myrtaceae	4
Eucalyptus fibrosa	Myrtaceae	4

Scientific Name	Family Name	CA
Dianella caerulea	Phormiaceae	1
Dianella longifolia	Phormiaceae	1
Bursaria spinosa	Pittosporaceae	3
Aristida vagans	Poaceae	2
Joycea pallida	Poaceae	4
Panicum simile	Poaceae	1
Themeda australis	Poaceae	4

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	2
Cheilanthes sieberi	Adiantaceae	1
Alternanthera denticulata	Amaranthaceae	1
Centella asiatica	Apiaceae	2
Epaltes australis	Asteraceae	1
Euchiton gymnocephalus	Asteraceae	1
Lagenifera gracilis	Asteraceae	1
Vittadinia cuneata	Asteraceae	1
Dichondra repens	Convolvulaceae	1
Polymeria calycina	Convolvulaceae	1
Carex gaudichaudiana	Cyperaceae	1
Hibbertia empetrifolia	Dilleniaceae	1
Glycine microphylla	Fabaceae (Faboideae)	1
Hardenbergia violacea	Fabaceae (Faboideae)	1
Acacia longifolia	Fabaceae (Mimosoideae)	1
Gonocarpus teucrioides	Haloragaceae	1
Juncus usitatus	Juncaceae	1
Pratia purpurascens	Lobeliaceae	1
Lomandra filiformis subsp. coriacea	Lomandraceae	1
Lomandra longifolia	Lomandraceae	2
Lomandra multiflora	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	1
Eucalyptus fibrosa	Myrtaceae	3
Eucalyptus saligna	Myrtaceae	1
Melaleuca decora	Myrtaceae	2
Melaleuca linariifolia	Myrtaceae	1
Melaleuca nodosa	Myrtaceae	4
Melaleuca styphelioides	Myrtaceae	4
Acianthus fornicatus	Orchidaceae	1
Pterostylis sp.	Orchidaceae	1
Oxalis exilis	Oxalidaceae	1
Dianella caerulea	Phormiaceae	1

Scientific Name	Family Name	CA
Dianella longifolia	Phormiaceae	1
Bursaria spinosa	Pittosporaceae	1
*Setaria sphacelata	Poaceae	1
*Sporobolus africanus	Poaceae	1
Digitaria breviglumis	Poaceae	1
Echinopogon ovatus	Poaceae	1
Entolasia stricta	Poaceae	1
Eragrostis brownii	Poaceae	1
Imperata cylindrica var. major	Poaceae	2
Panicum simile	Poaceae	1

Scientific Name	Family Name	CA
Pseuderanthemum variabile	Acanthaceae	1
Lepidosperma laterale	Cyperaceae	1
Phyllanthus hirtellus	Euphorbiaceae	1
Pratia purpurascens	Lobeliaceae	1
Persoonia linearis	Proteaceae	1
Macrozamia reducta	Zamiaceae	1
Alternanthera denticulata	Amaranthaceae	1
Dillwynia retorta	Fabaceae (Faboideae)	1
Glycine clandestina	Fabaceae (Faboideae)	1
Glycine microphylla	Fabaceae (Faboideae)	1
Acacia elongata	Fabaceae (Mimosoideae)	1
Acacia linifolia	Fabaceae (Mimosoideae)	1
Lomandra confertifolia subsp. rubiginosa	Lomandraceae	1
Lomandra obliqua	Lomandraceae	1
Geitonoplesium cymosum	Luzuriagaceae	1
Dianella caerulea	Phormiaceae	1
Dianella longifolia	Phormiaceae	1
Cymbopogon refractus	Poaceae	1
Panicum simile	Poaceae	1
Paspalidium distans	Poaceae	1
Gonocarpus teucrioides	Haloragaceae	2
Lissanthe strigosa	Epacridaceae	2
Podolobium aciculiferum	Fabaceae (Faboideae)	2
Pultenaea villosa	Fabaceae (Faboideae)	2
Lomandra filiformis subsp. coriacea	Lomandraceae	2
Lomandra multiflora subsp. multiflora	Lomandraceae	2
Bursaria spinosa	Pittosporaceae	2
Aristida vagans	Poaceae	2
Eucalyptus punctata	Myrtaceae	3

Scientific Name	Family Name	СА
Eucalyptus acmenoides	Myrtaceae	3
Entolasia stricta	Poaceae	3
Joycea pallida	Poaceae	3
Themeda australis	Poaceae	4
Corymbia maculata	Myrtaceae	4
Eucalyptus fibrosa	Myrtaceae	4

Appendix 4 Combined Floristic List

Family Name	Scientific Name
Acanthaceae	Pseuderanthemum variabile
Adiantaceae	Adiantum aethiopicum
Adiantaceae	Cheilanthes sieberi
Amaranthaceae	Alternanthera denticulata
Anthericaceae	Caesia parviflora
Apiaceae	Platysace lanceolata
Apiaceae	Centella asiatica
Apiaceae	Hydrocotyle laxiflora
Apiaceae	Hydrocotyle tripartita
Araliaceae	Polyscias sambucifolia
Asteraceae	Vittadinia cuneata
Asteraceae	Lagenifera stipitata
Asteraceae	Lagenifera gracilis
Asteraceae	*Senecio madagascariensis
Asteraceae	Euchiton gymnocephalus
Asteraceae	*Taraxacum officinale
Asteraceae	Eclipta platyglossa
Asteraceae	Epaltes australis
Asteraceae	Ozothamnus diosmifolius
Bignoniaceae	Pandorea pandorana
Casuarinaceae	Allocasuarina littoralis
Casuarinaceae	Allocasuarina torulosa
Casuarinaceae	Casuarina glauca
Celastraceae	Maytenus silvestris
Convolvulaceae	Polymeria calycina
Convolvulaceae	Dichondra repens
Cyperaceae	Lepidosperma laterale
Cyperaceae	Ptilothrix deusta
Cyperaceae	Carex gaudichaudiana
Cyperaceae	Gahnia clarkei
Davalliaceae	Davallia solida var. pyxidata
Dilleniaceae	Hibbertia aspera
Dilleniaceae	Hibbertia empetrifolia
Dilleniaceae	Hibbertia obtusifolia
Dilleniaceae	Hibbertia scandens
Dioscoreaceae	Dioscorea transversa
Doryanthaceae	Doryanthes excelsa
Epacridaceae	Lissanthe strigosa
Epacridaceae	Acrotriche divaricata
Epacridaceae	Leucopogon muticus

Family Name	Scientific Name
Epacridaceae	Leucopogon juniperinus
Euphorbiaceae	Phyllanthus hirtellus
Euphorbiaceae	Breynia oblongifolia
Euphorbiaceae	Glochidion ferdinandi
Fabaceae (Faboideae)	Daviesia ulicifolia
Fabaceae (Faboideae)	Dillwynia retorta
Fabaceae (Faboideae)	Glycine clandestina
Fabaceae (Faboideae)	Glycine microphylla
Fabaceae (Faboideae)	Hardenbergia violacea
Fabaceae (Faboideae)	Podolobium aciculiferum
Fabaceae (Faboideae)	Pultenaea euchila
Fabaceae (Faboideae)	Pultenaea villosa
Fabaceae (Faboideae)	Desmodium rhytidophyllum
Fabaceae (Faboideae)	Hovea linearis
Fabaceae (Faboideae)	Podolobium ilicifolium
Fabaceae (Faboideae)	Swainsona galegifolia
Fabaceae (Faboideae)	Desmodium gunnii
Fabaceae (Faboideae)	Pultenaea retusa
Fabaceae (Mimosoideae)	Acacia elongata
Fabaceae (Mimosoideae)	Acacia myrtifolia
Fabaceae (Mimosoideae)	Acacia parvipinnula
Fabaceae (Mimosoideae)	Acacia maidenii
Fabaceae (Mimosoideae)	Acacia falcata
Fabaceae (Mimosoideae)	Acacia longifolia
Fabaceae (Mimosoideae)	Acacia ulicifolia
Goodeniaceae	Goodenia hederacea
Goodeniaceae	Goodenia heterophylla
Haloragaceae	Gonocarpus teucrioides
Juncaceae	Juncus usitatus
Lindsaeaceae	Lindsaea microphylla
Lobeliaceae	Pratia purpurascens
Loganiaceae	Logania pusilla
Lomandraceae	Lomandra confertifolia subsp. rubiginosa
Lomandraceae	Lomandra glauca
Lomandraceae	Lomandra multiflora
Lomandraceae	Lomandra obliqua
Lomandraceae	Lomandra filiformis subsp. coriacea
Lomandraceae	Lomandra filiformis subsp. filiformis
Lomandraceae	Lomandra confertifolia subsp. pallida
Lomandraceae	Lomandra cylindrica
Lomandraceae	Lomandra longifolia
Luzuriagaceae	Geitonoplesium cymosum

Family Name	Scientific Name
Myrsinaceae	Myrsine variabilis
Myrtaceae	Angophora costata
Myrtaceae	Corymbia gummifera
Myrtaceae	Eucalyptus sparsifolia
Myrtaceae	Corymbia maculata
Myrtaceae	Eucalyptus fibrosa
Myrtaceae	Eucalyptus punctata
Myrtaceae	Eucalyptus umbra
Myrtaceae	Eucalyptus fergusonii
Myrtaceae	Syncarpia glomulifera
Myrtaceae	Eucalyptus acmenoides
Myrtaceae	Eucalyptus placita
Myrtaceae	Eucalyptus siderophloia
Myrtaceae	Angophora bakeri
Myrtaceae	Angophora floribunda
Myrtaceae	Callistemon salignus
Myrtaceae	Eucalyptus resinifera
Myrtaceae	Melaleuca decora
Myrtaceae	Melaleuca linariifolia
Myrtaceae	Melaleuca nodosa
Myrtaceae	Melaleuca styphelioides
Myrtaceae	Callistemon linearis
Myrtaceae	Eucalyptus tereticornis
Myrtaceae	Leptospermum polygalifolium
Myrtaceae	Melaleuca thymifolia
Myrtaceae	Eucalyptus saligna
Orchidaceae	Acianthus fornicatus
Orchidaceae	Pterostylis sp.
Orchidaceae	Pterostylis reflexa
Oxalidaceae	Oxalis exilis
Phormiaceae	Dianella caerulea
Phormiaceae	Dianella longifolia
Pittosporaceae	Bursaria spinosa
Pittosporaceae	Billardiera scandens
Pittosporaceae	Pittosporum revolutum
Plantaginaceae	*Plantago lanceolata
Poaceae	Aristida vagans
Роасеае	Cymbopogon refractus
Poaceae	Dichelachne rara
Poaceae	Echinopogon caespitosus
Poaceae	Entolasia stricta
Poaceae	Eragrostis brownii

Family Name	Scientific Name
Poaceae	Imperata cylindrica
Роасеае	Joycea pallida
Роасеае	Panicum simile
Роасеае	Tetratheca juncea
Poaceae	Themeda australis
Poaceae	Microlaena stipoides
Poaceae	Oplismenus imbecillis
Poaceae	Panicum pygmaeum
Poaceae	Poa labillardierei var. labillardierei
Poaceae	Austrodanthonia tenuior
Poaceae	Echinopogon ovatus
Poaceae	Oplismenus aemulus
Poaceae	Eragrostis leptostachya
Poaceae	Paspalidium distans
Poaceae	*Setaria sphacelata
Poaceae	*Sporobolus africanus
Poaceae	Digitaria breviglumis
Poaceae	Imperata cylindrica var. major
Polypodiaceae	Platycerium superbum
Proteaceae	Persoonia levis
Proteaceae	Persoonia linearis
Ranunculaceae	Ranunculus lappaceus
Rubiaceae	Galium propinquum
Rubiaceae	Galium binifolium
Santalaceae	Exocarpos cupressiformis
Sapindaceae	Dodonaea triquetra
Scrophulariaceae	Veronica sp.
Smilacaceae	Smilax glyciphylla
Vitaceae	Cayratia clematidea
Xanthorrhoeaceae	Xanthorrhoea latifolia
Zamiaceae	Macrozamia reducta

Appendix 5 Vegetation Community Profiles

Descriptions follow, of the characteristics of the mapped vegetation communities. As noted in Section 4.2 of the main report, the community classification used was that of NPWS (2000).

MAP UNIT	MU15	
MAP NAME	Coastal Foothills Spotted Gum – Ironbark Forest	
CONSERVATION STATUS	Not listed as threatened	
	AREAS	
Disturbance Area	Investigation Area	Locality
None	3.2 ha	550 ha
	<image/>	
Canopy	Corymbia maculata, Eucalyp	tus fergusonii, Eucalyptus
	acmenoides, Eucalyptus umb	
Shrubs	Macrozamia reducta, Acacia	
	excelsa, and Podolobium ilici	
Ground	Themeda australis, Entolasia	a stricta and Joycea pallida
Significant Species	None recorded	

Significant Species

MAP UNIT	MU17		
MAP NAME	Lower Hunter Spotted Gum	– Ironbark Forest	
CONSERVATION STATUS	-		
	the Sydney Basin Bioregion		
	AREAS		
Disturbance Area	Investigation Area	Locality	
8.9 ha	13.3 ha	724 ha	
	DESCRIPTION		
Canopy	Eucalyptus fibrosa, Corymbia	a maculata Eucalyntus	
		<i>punctata, Eucalyptus umbra, Eucalyptus sparsifolia,</i> with scattered <i>Eucalyptus placita</i> and <i>Eucalyptus</i>	
	fergusonii		
Shrubs	Podolobium ilicifolium, Pulter	naea euchila, Bursaria	
	spinosa, Acacia ulicifolia and	-	
Ground	Joycea pallida, Themeda aus		

Rutidosis heterogama

MAP UNIT	MU17(p)			
MAP NAME	Lower Hunter Spotted Gum – Ironbark Forest			
CONSERVATION STATUS	EEC, Lower Hunter Spotted			
	the Sydney Basin Bioregion			
	AREAS			
Disturbance Area	Investigation Area	Locality		
None	0.8 ha	0.8 ha		
Canopy	DESCRIPTION Scattered Eucalyptus fibrosa	a over a dense mixture of		
Canopy	paperbarks containing Melal styphelioides, Melaleuca noo Callistemon salignus as well	<i>leuca linariifolia, Melaleuca dosa, Melaleuca decora</i> and		
Shrubs	Sparse: Bursaria spinosa, A			
	empetrifolia			
Ground	Sparse: Imperata cylindrica,	-		
Significant Species	Entolasia stricta, Cheilanthe	5 5100011		
Significant Species	None recorded			

MAP UNIT	MU19		
MAP NAME	Hunter Lowland Redgum Forest		
CONSERVATION STATUS	EEC, Hunter Lowland Redgum Forest in the Sydney		
	Basin and NSW North Coast	Bioregions	
	AREAS		
Disturbance Area	Investigation Area	Locality	
None	0.3 ha	113 ha	
	DESCRIPTION		
Canopy	Emergent <i>Eucalyptus teretic</i>		
	Eucalyptus resinifera with a Melaleuca linariifolia, Melaleu	5	
	decora, Callistemon salignus		
Shrubs	Sparse: Acacia longifolia, Ac		
	ulicifolia, Melaleuca thymifolia, Bursaria spinosa,		
	Leptospermum polygalifolia		
Ground	Sparse: Aristida vagans, Im	perata cylindrica, Entolasia	
	stricta, Centella asiatica, Cymbopogon refractus,		
	Polymeria calycina		
Significant Species	None recorded		

MAP UNIT	MU30		
MAP NAME	Coastal Plains Smooth-barked Apple Woodland		
CONSERVATION STATUS	Not listed as threatened		
	AREAS		
Disturbance Area	Investigation Area	Locality	
2.3 ha	6.6 ha	978 ha	
DESCRIPTION			
Canopy	Corymbia gummifera, Angop sparsifolia, Eucalyptus umbra		
Shrubs	Pultenaea euchila, Acacia ulio		
	Dillwynia retorta, Persoonia l		
Ground	Entolasia stricta, Themeda Lomandra obliqua, Xantho caerulea		
Significant Species	Tetratheca juncea		

Appendix 6 Hunter Eco letter assessing impact on *Rutidosis heterogama* included in the EPBC Referral

Gloucester Coal Donaldson Mine PO Box 2275 Greenhills NSW 2323

Attn. Tony Sutherland

28 November 2011

Dear Tony

Proposed extension to Tasman Mine, new pittop area.

<u>Commonwealth</u> *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) threatened flora species impact assessment – *Rutidosis heterogama*.

During field flora surveys of the proposed pittop area a number of *Rutidosis heterogama* plants were recorded. Identification was confirmed to this researcher by the NSW Herbarium and specimens from the site are lodged there. The species is listed as vulnerable in the EPBC Act and this impact assessment has been prepared following the EPBC Act significant impact criteria for a vulnerable species.

The concept of an 'important population' is central to this assessment and is described in the *Environment Protection and Biodiversity Conservation Act 1999* Matters of National Environmental Significance Significant Impact Guidelines 1.1 as:

...a population that is necessary for a species' long-term survival and recovery. This may include populations identified as such in recovery plans, and/or that are:

- *key source populations either for breeding or dispersal;*
- populations that are necessary for maintaining genetic diversity; and/or
- populations that are near the limit of the species range.

To determine whether the George Booth Drive population of *Rutidosis heterogama* qualifies as an *important population* its biology and wider distribution should be considered.

The species was thought to be extinct until rediscovered in the late 1980's (Benson 1991). Since then, in the Sydney Basin Bioregion alone, the species has been recorded in large numbers from Warnervale, Mandalong, Howes Valley, Kurri Kurri and coastal grasslands from Wybung in the south to Newcastle; it is also found in northern NSW. The George Booth Drive population is not near the limits of the species range.

There is no published information on the biology of *Rutidosis heterogama*. However, studies of the biology and genetics of its also threatened congeners *Rutidosis leptorrhynchoides* and *Rutidosis leiolepis* (from southern NSW and Victoria) provide useful insights (Morgan 1995a, 1995b; Young et al. 1999; Young & Murray 2000; Young et al. 2000; Young et al. 2002). The pappus (structures at the top of Asteraceae seed to aid in wind dispersal) on Rutidosis seed is in the form of rudimentary scales and seed are dispersed within a short distance (0.5 m of the plant) and generally germinate within that area. Seed are only viable in soil for about four months. Clonality exists but varies with species and location so there is little evidence of clonality in *Rutidosis leptorrhynchoides* while *Rutidosis leiolepis* can be significantly clonal, particularly at higher elevations. It is unknown whether, or to what degree, *Rutidosis heterogama* is clonal.

Pollinators are native bees and other insects; during the field survey native bees, moths, flies and beetles were observed on flowers. *Rutidosis* are genetically self-incompatible. However it has been shown that in small populations (<200 individuals) self-incompatibility can break down with consequential inbreeding potentially leading to local extinction. Genetic studies have also shown the potential for locally adaptive genotypes in geographically separated populations. This being so, any group of *Rutidosis heterogama* plants existing in genetic isolation from any others would be an important population because of the potential uniqueness of its genotype.

With seed dispersal being limited to such short distances and having a short period of viability, genetic transfer between populations would be restricted to pollen transfer. Genetic isolation would occur at separation distances beyond which pollen would be transferred. This then raises a question as to the structure of the George Booth Drive population as mapped. It is conceivable that George Booth Drive itself has already had a significant fragmenting effect on the original population. It has been demonstrated, for example, that Bumble Bees will not under normal circumstances cross a road (Bhattacharya *et al.* 2003) and these are much larger insects than *Rutidosis* pollinators. However, the possibility exists that, at least on rare occasions, pollen is transferred across the road, thus maintaining genetic heterogeneity between the groups of *Rutidosis heterogama* on either side of George Booth Drive.

Considering the foregoing, when assessing the impact of the Action, a conservative approach would be to consider there being two separate *Rutidosis heterogama* populations, north and south of George Booth Drive. Since the Action would have no impact on the northern population the potential for impact on the southern population is assessed.

An action is likely to have a significant impact on a vulnerable species if there is a real chance or possibility that it will:

lead to a long-term decrease in the size of an important population of a species;

The current southern population totals 4198 subdivided into four groups. The Action would result in the loss of one group of 417 plants or about 10% of this population. Against that loss, a large portion of the remainder of the population will be conserved in perpetuity which should facilitate an increase in numbers. It is unlikely that the Action will result in a long-term decrease in the size of this population.

• reduce the area of occupancy of an important population;

The total area of occupancy, being the area in which the species occurs, of the southern population is 2.5 ha of which 0.2 ha or 8% would be lost. However there is adequate habitat available into which the remainder of the population could expand. It is therefore unlikely that the loss of 0.2 ha will effectively reduce the area of occupancy.

fragment an existing important population into two or more populations;

It is probable that the Action, through the construction of a main access from George Booth Drive, will result in fragmentation of the southern population into one component bordering George Booth Drive and two south of the disturbance area.

• adversely affect habitat critical to the survival of a species;

This concerns the species as a whole and the Action would not adversely affect habitat critical to its survival, the species is far too widespread.

• disrupt the breeding cycle of an important population;

The breeding cycle of the remainder of the southern population would not be disrupted by the proposed Action. Each separate component of this population would remain in its current habitat.

modify, destroy, remove or isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline;

Again this concerns the species as a whole and the Action would not alter the habitat of the remaining southern population in any way that would result in the species declining.

• result in invasive species that are harmful to a vulnerable species becoming established in the vulnerable species' habitat;

The Action would not result in invasive species becoming established in the southern population habitat.

• introduce disease that may cause the species to decline; or

The Action would not result in any disease being introduced that may cause the species to decline.

• interfere substantially with the recovery of the species.

The Action would result in the loss of 417 individuals. The remaining 700 individuals within Donaldson Coal land (i.e. 493 individuals to the south and 207 individuals in the north) would not be cleared as a result of the Action and would be conserved when the land is transferred to the NSW Office of Environment and Heritage following completion of the Action. The area has recently been subject to habitat modification and loss as a consequence of four wheel drive and motor bike activity and firewood collection. Following the recent transfer of this land to Donaldson Coal, these activities are now restricted enhancing the prospects of the groups of plants expanding in number.

Furthermore, the southern group of 2209 individuals will be conserved in perpetuity by the RTA as part of the compensatory offset package for the Hunter Expressway and the individuals within the George Booth Drive Road reserve are afforded some level of protection.

Conclusion

The loss of 417 *Rutidosis heterogama* plants, 10% of an important population, would not result in the long-term decline of the population or threaten the species as a whole. Habitat conservation and restoration measures associated with the Action should assist with the recovery of the species in the local area.

This assessment has been conducted from the most conservative position that George Booth Drive forms an effective barrier to pollen transfer from the southern to the northern group of plants. As described above, the possibility exists that, at least on rare occasions, pollen is transferred across the road, thus maintaining genetic heterogeneity throughout the entire approximately 11,000 plants. In the circumstance that the groups of *Rutidosis heterogama* on either side of George Booth Drive are a connected population, the potential impacts of the Action would be less than those described above.

Yours Faithfully HUNTER ECO

Colin Driscoll

Colin Driscoll Environmental Biologist NSW OEH Scientific Licence S10565

References

Benson, J. (1991) The effect of 200 years of European settlement on the vegetation and flora of New South Wales. *Cunninghamia*, **2**, 343-370.

Bhattacharya, M., Primack, R.B. & Gerwein, J. (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? *Biological Conservation*, **109**, 37-45.

Morgan, J.W. (1995a) Ecological studies of the endangered *Rutidosis leptorrhynchoides*. I. Seed production, soil seed bank dynamics, population density and their effect on recruitment. *Australian Journal of Botany* 43: 1-11.

Morgan, J.W. (1995b) Ecological studies of the endangered *Rutidosis leptorrhynchoides*. II. Patterns of seedling emergence and survival in a native grassland. *Australian Journal of Botany* 43: 13-24.

Young, A.G. & Murray, B.G. (2000) Genetic bottlenecks and dysgenic geneflow into re-established populations of the grassland daisy *Rutidosis leptorrhynchoides*. *Australian Journal of Botany* 48(3): 409-416.

Young, A.G., Brown, A.H.D., & Zich, F.A. (1999) Genetic structure of fragmented populations of the endangered daisy *Rutidosis leptorrhynchoides. Conservation Biology* 13: 256-265.

Young, A., Miller, C., Gregory, E., & Langston, A. (2000). Sporophytic selfincompatibility in diploid and tetraploid races of *Rutidosis leptorrhynchoides* (Asteraceae). *Australian Journal of Botany* 48(5): 667-672.

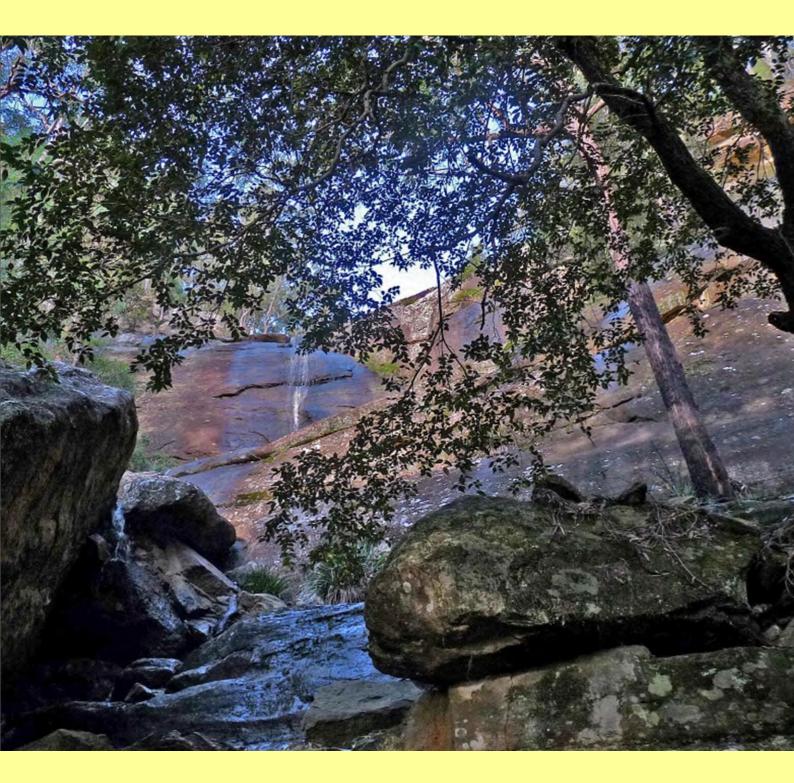
Young A.G., Hill J.H., Murray B.G., and Peakall R. (2002) Breeding system, genetic diversity and clonal structure in the subalpine forb *Rutidosis leiolepis* F. Muell. (Asteraceae) *Biological Conservation* 106 71–78.

Appendix 7 Personnel

Task	Person	Experience
Entire project	Colin Driscoll BSc	>30 years flora and
		fauna surveys in the
		Hunter and Central Coast

TERRESTRIAL FLORA ASSESSMENT MINING AREA

Tasman Extension Project Environmental Impact Statement



Tasman Underground Mine – Tasman Extension Project Mining Area Vegetation Ecology and Impact Assessment

A report for Donaldson Coal

Colin Driscoll

HUNTER ECO · ABN 25 112 984 240 PO Box 1047, Toronto, NSW 2283

EXECUTIVE SUMMARY

The Tasman Extension Project (the Project) would involve the extension of underground mining operations at the existing Tasman Underground Mine for an additional operational life of 15 years. Coal would be extracted from the West Borehole Seam using bord and pillar partial extraction methods in combination with some full extraction.

Vegetation communities were mapped across an investigation area that included the surface over the proposed new mine. Floristic data were also collected. Species listed as threatened in the schedules of the New South Wales (NSW) *Threatened Species Conservation Act 1995* were a particular target of the investigation. Following formal application, a delegate of the Commonwealth Minister for Sustainability, Environment, Water, Population and Communities declared the Project was "Not a Controlled Action". Therefore the Project does not require assessment and approval under the Commonwealth *Environment Protection and Biodiversity Conservation Act, 1999*.

The vegetation across the investigation area was found to be in as good condition as could be expected having had a history of timber harvesting and with considerable Lantana incursion.

One threatened flora species, *Tetratheca juncea*, was recorded within the bounds of the underground mine. Four endangered communities (EEC) were also recorded: Hunter Lowland Redgum Forest in the Sydney Basin and NSW North Coast Bioregions (HLRF); Lower Hunter Spotted Gum – Ironbark Forest in the Sydney Basin Bioregion (LHSGIF); River-Flat Eucalypt Forest on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner Bioregions (RFEF); and Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions (LRF). Three of these communities were determined to be groundwater dependent ecosystems (GDE).

The mine plan included subsidence control zones that were established in order to protect sensitive communities (EEC and GDE), and potentially unstable topography, from the effects of significant subsidence.

Application of the NSW TSC Act 7-part test concluded that the Project would have no significant impact on threatened flora or endangered communities.

Cover: Escarpment along RF Gully 5

CONTENTS

1 THE PROJECT	1
2 LOCALITY AND ENVIRONMENT	5
3 PREVIOUS STUDIES	8
4 SURVEY AIMS AND METHODS	8
4.1 Survey effort	9
5 THREATENED FLORA AND ENDANGERED COMMUNITIES	9
6 RESULTS	10
6.1 Floristics	10
6.2 Threatened Flora Species	10
6.3 Vegetation Communities	12
6.4 Lowland Rainforest	15
6.5 Groundwater Dependent Ecosystems	15
7 IMPACT ASSESSMENT	16
8 CONCLUSION AND RECOMMENDATIONS	19
9 REFERENCES	20
APPENDIX 1 VEGETATION COMMUNITY FLORISTIC LISTS	23
APPENDIX 2 RAINFOREST GULLIES FLORISTIC LIST	30
APPENDIX 3 VEGETATION COMMUNITY PROFILES	33
APPENDIX 4 IMPACT ASSESSMENT, THE 7-PART TEST	43
APPENDIX 5 PERSONNEL	47

FIGURES

FIGURE 1 THE MINING AND INVESTIGATION AREAS IN A REGIONAL CONTEXT	2
FIGURE 2 THE GENERAL ARRANGEMENT OF THE PROJECT	3
FIGURE 3 TOPOGRAPHY, FLORA AND VEGETATION INVESTIGATION BOUNDARY MINE PLAN AND MAIN STREAMLINES	Y, 6
FIGURE 4 SLOPE ACROSS THE MINING AREA AND SURROUNDS	7
FIGURE 5 VEGETATION COMMUNITIES AND THREATENED SPECIES	11
FIGURE 6 PROPOSED SUBSIDENCE CONTROL ZONES AND MAXIMUM SUBSIDENCE ZONES	17
FIGURE 7 CATCHMENTS SUBJECTED TO SUBSIDENCE AND COVER DEPTH	18

TABLES

TABLE 1 THREATENED FLORA SPECIES FROM THE ATLAS OF NSW WILDLIFE	9
TABLE 2 THE LIKELIHOOD OF THREATENED FLORA SPECIES OCCURRING WIT THE INVESTIGATION AREA	HIN 12
TABLE 3 COMMUNITY INDICATOR SPECIES USED TO CLASSIFY RDP	13
TABLE 4 CONFUSION MATRIX VEGETATION MAP RELIABILITY TEST	14
TABLE 5 VEGETATION COMMUNITIES EXTANT OVER THE INVESTIGATION ARE (IA) AND MINING AREAS (MA)	EA 14

Tasman Underground Mine – Tasman Extension Project

Mining Area

Vegetation Ecology and Impact Assessment

1 The Project

Donaldson Coal Pty Limited (Donaldson Coal), owns and operates the Tasman Underground Mine. Donaldson Coal is a wholly owned subsidiary of Gloucester Coal Ltd (GCL).

The Tasman Extension Project (the Project) would involve the extension of underground mining operations at the existing Tasman Underground Mine for an additional operational life of 15 years.

The Project is located approximately 20 kilometres (km) west of the Port of Newcastle in New South Wales (NSW) within the Newcastle Coalfield (**Figure 1**). The Project is located approximately 6 km south-southeast from the town of Kurri Kurri within the Cessnock and Lake Macquarie Local Government Areas (LGAs) (**Figure 1**).

The majority of the Project area comprises land reserved as the Sugarloaf State Conservation Area (SCA) and Heaton State Forest (**Figures 1 and 2**). Crown land and privately-owned land occurs within the western and northern portions of the area of the Project.

The main activities associated with the development of the Project would include:

- continued underground mining of the Fassifern Seam using a combination of total and partial pillar extraction methods within Mining Lease (ML) 1555;
- underground mining of the West Borehole Seam using a combination of total and partial pillar extraction methods;
- production of run of mine (ROM) coal up to 1.5 million tonnes per annum;
- development of a new pit top facility, associated ROM coal handling infrastructure and intersection with George Booth Drive (**Figure 2**);
- development of ventilation surface infrastructure;
- continued transport of Fassifern Seam ROM coal from the existing Tasman Underground Mine pit top to the Bloomfield Coal Handling and Preparation Plant (CHPP) via truck on public and private roads to approximately 2015 (inclusive);
- transport of West Borehole Seam ROM coal from the new pit top to the Bloomfield CHPP via truck on public and private roads;
- progressive development of sumps, pumps, pipelines, water storages and other water management equipment and structures;

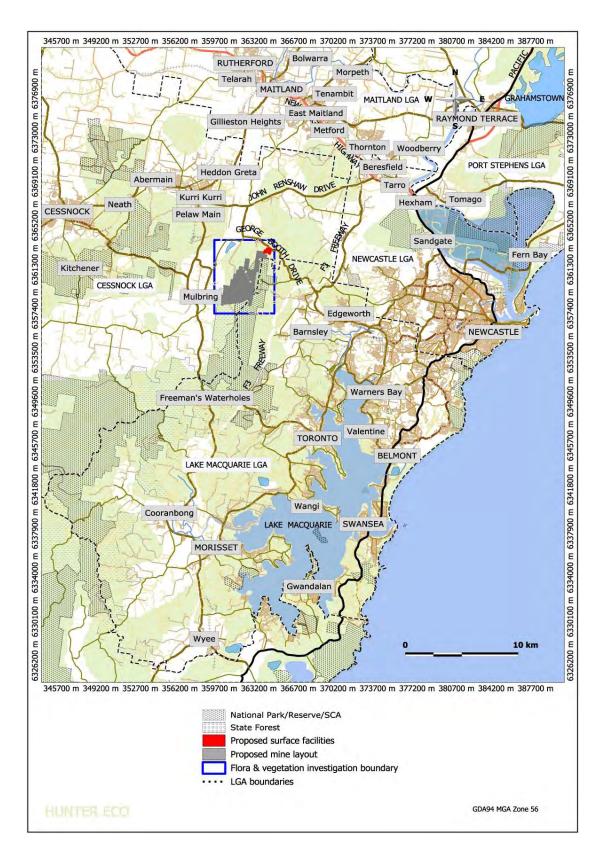


Figure 1 The mining and investigation areas in a regional context

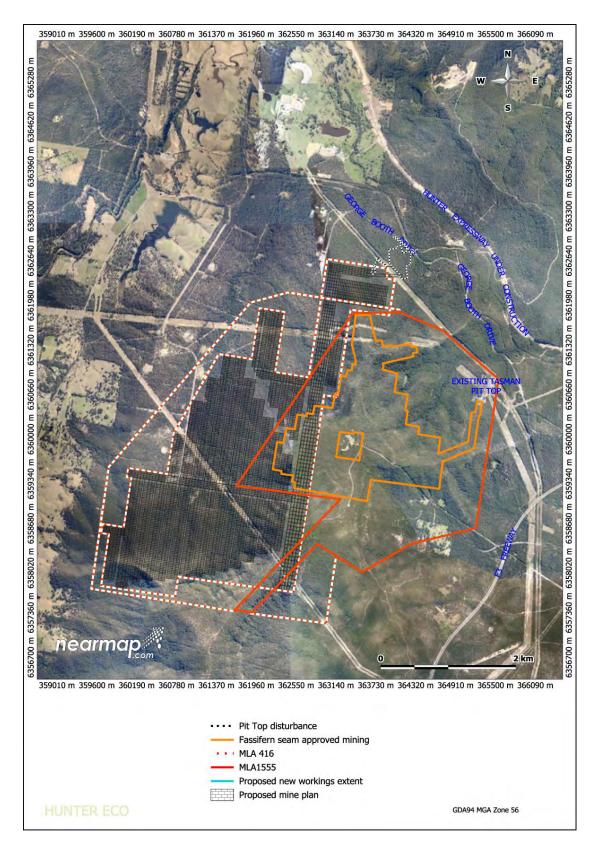


Figure 2 The general arrangement of the Project

- ongoing exploration activities;
- ongoing surface monitoring, rehabilitation and remediation of subsidence effects; and
- other associated minor infrastructure, plant, equipment and activities.

The general arrangement of the Project is shown on **Figure 2**, including extents of underground mining in the West Borehole Seam and the extent of surface disturbance within the pit top boundary.

The Project would involve mining of the West Borehole Seam using bord and pillar mining methods with secondary extraction. Bord and pillar mining is an underground mining method which involves the extraction of coal using 'first workings' from a network of underground roadways (known as 'panels'), leaving behind pillars of coal to support the roof of the mine. Secondary extraction from the remaining pillars of coal would be conducted using a combination of partial and total extraction. Partial extraction involves the removal of coal either in the form of partial removal of remaining coal pillars or the removal of alternate pillars. Total pillar extraction is an extension of partial extraction whereby as much coal as can safely and economically be mined is removed from each panel.

The Project is a proposed extension of underground mining operations at the Tasman Underground Mine for an additional operational life of approximately 15 years.

Extraction of coal by bord and pillar mining methods results in the vertical and horizontal movement of the land surface. The land surface movements are generally referred to as subsidence effects. The type and magnitude of subsidence effects is dependent on a range of variables which include the mine geometry and topography, the layout of unmined pillars, the number of seams mined, the coal recovery from each seam, the nature of the superincumbent strata and other geological factors.

A combination of total and partial pillar extraction methods maximise the efficiency and recovery of the coal resource while allowing for adjustment of extraction to manage subsidence impacts. The bord and pillar mining method facilitates minimisation and management of potential subsidence impacts on significant surface features. The indicative underground mining area within the West Borehole Seam is shown on **Figure 2**.

The West Borehole seam is the basal coal unit of the Newcastle Coal Measures and is located approximately 175 metres (m) below the Fassifern Seam currently mined at the approved Tasman Underground Mine. The depth of the West Borehole Seam below the surface ranges from approximately 50 m to over 400 m.

The existing Tasman Underground Mine was declared "Not a Controlled Action" on 9 May 2002 (2001/253).

The Project was referred to the Commonwealth Department of Sustainability, Environment, Water Population and Community (SEWPaC) under the *Environment Protection and Biodiversity Conservation Act* 1999 (EPBC Act) on 5 December 2011.

On 10 January 2012, a delegate of the Commonwealth Minister for Sustainability, Environment, Water, Population and Communities declared the Project was "Not a Controlled Action" (2011/6211). Therefore the Project does not require assessment and approval under the EPBC Act.

2 Locality and Environment

The Project is located at the northern edge of the Wyong sub-region in the Sydney Basin Bioregion; at the northern edge of the Wyong sub-region of the Hunter – Central Rivers Catchment Management Authority (CMA); and at the southern end of the North Coast Botanical Division.

Data interpolated from regional historical records indicates that rainfall in the Project area is 900-1000 millimetres (mm) per year (Driscoll unpub.).

The land under which mining is proposed varies in elevation from just less than 50 m to 370 m AHD. It is bordered on the east, south and west by the main Sugarloaf range and ridges, with the land falling into a wide central valley through which the majority of the catchment flows (**Figure 3**), ultimately into Wallis Creek, some 14 km downstream, and finally into the Hunter River. Slope varies from flat to very steep (**Figure 4**) and includes bands of exposed, often precipitous, sandstone escarpment.

Overall, geology across the underground mining area consists of the Sydney Basin Newcastle Sequence. The main Sugarloaf range and ridges are Triassic age, Narrabeen Group, sedimentary sandstone, shale and tuff. The remainder of the area is Permian age, Singleton Supergroup, Newcastle Coal Measures and Adamstown, Moon Island Beach or Boolaroo subgroups. Adamstown and Moon Island Beach are conglomerate and Boolaroo is sedimentary (NSW Department of Mineral Resources [DMR] 1999).

Soil is Beresfield residual, Awaba associated and Killingworth erosional landscapes on the side slopes and lower areas. These are acidic soils of low fertility and generally highly erodible. Sugarloaf colluvial landscape comprising shallow soils with rocky outcrops occurs on the upper rugged escarpments and ridgetops (Matthie 1995).

The majority of the land over the proposed mining area is well vegetated and, as will be shown later in this report, includes open heath, dry sclerophyll forest, wet sclerophyll forest and mesic rainforest.

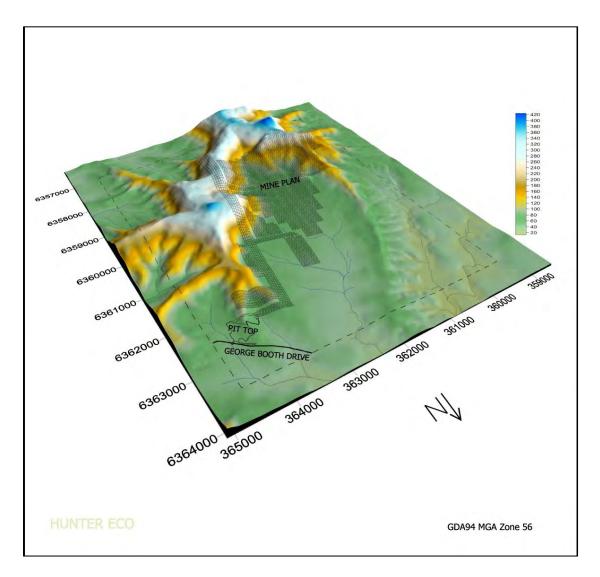
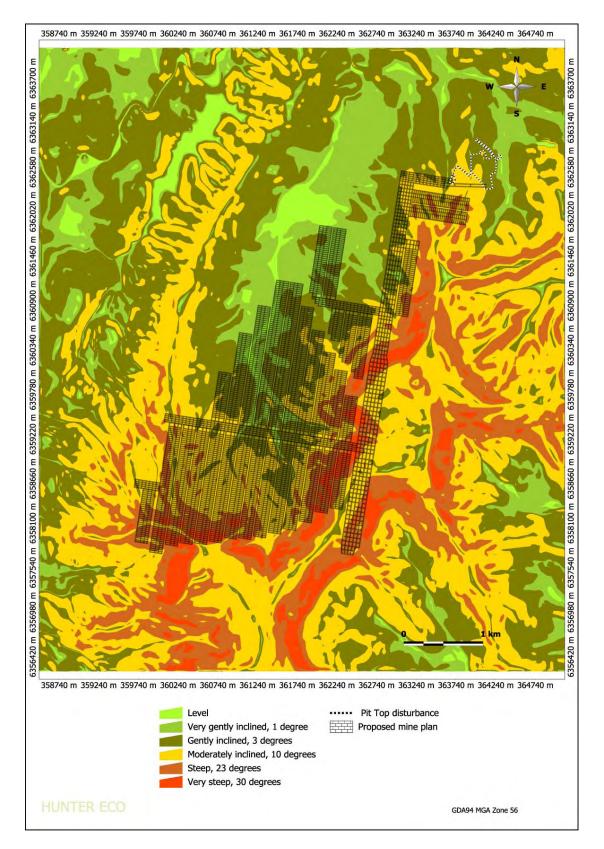



Figure 3 Topography, flora and vegetation investigation boundary, mine plan and main streamlines

Figure 4 Slope across the mining area and surrounds

Slope classes are from McDonald *et al.* (1998) with mean slopes shown for each class.

3 Previous Studies

A broad regional vegetation classification and mapping report (NSW National Parks and Wildlife Service [NPWS] 2000) included the current Project area. The vegetation community classification from this study has become the reference classification for most subsequent local vegetation studies. Mapping in NPWS (2000) was modelled and determined to be suitable for broad scale assessment at a scale of 1:25,000 (Nicholls *et al.* 2002).

Bell and Driscoll (2009) mapped the vegetation of Sugarloaf SCA, the northern end of which was within the Project flora and vegetation investigation area (**Figures 1 and 3**). Raw field data from Bell and Driscoll (2009) was included in the data used to generate the final vegetation map for the Project.

Other studies of areas adjacent to, but not including, the Project flora and vegetation investigation area have been Gunninah Environmental Consultants (2002) assessing flora and fauna for the existing Tasman Underground Mine and Ecobiological (2005, 2006a, 2006b, 2007a, 2007b, 2008a, 2008b, 2009a, 2009b, 2010a, 2010b, 2011a, 2011b) annual monitoring of the Tasman Underground Mine surface disturbance, compensatory habitat areas, and reporting on the ecological values of two parcels for a land swap for establishing the proposed new surface facilities for the Project.

4 Survey Aims and Methods

This survey was directed at determining the vegetative habitat types and floristic content across the investigation area shown on **Figures 1 and 3**. Because no vegetation clearing is proposed across the mining surface area (apart from very minor clearing/lopping associated with monitoring) the primary, and probably only, potential for impact would be from subsidence. Subsidence has the potential to create cracks in the underlying strata. This can have a significant impact on groundwater dependent ecosystems (GDE) through downward diversion of subsurface water, thus depriving these specialised ecosystems of water. Consequently GDE were a particular target for this investigation.

Flora species and ecological communities listed as threatened in the NSW *Threatened Species Conservation Act 1995* (TSC Act) were a primary survey target. Threatened flora species were recorded opportunistically and threatened vegetation communities were mapped as part of the overall vegetation mapping process.

A vegetation map was prepared from ground-truthed point data, floristic plot data and ground-truthed community boundary determination, applying methods developed in part by the author, as published in Bell and Driscoll (2008). Vegetation community types were determined by matching floristic content to data from the NPWS (2000) regional classification. High resolution aerial photography was used to identify areas of potential GDE and these areas were closely investigated. The first step in preparing the vegetation map was to collect ground-truth data referred to as rapid data points (RDP). These point locations contain a presence only record of the dominant species in the canopy, shrub and ground structural layers. All available roads and tracks were traversed by vehicle or on foot and at intervals RDP data were recorded against waypoints using a handheld GPS (Garmin Map60CSx) fitted with an antenna booster. The targeted GDE areas, mainly gullies and drainage lines, were walked, as were large trackless areas, with RDP being recorded.

RDP were uploaded into a GIS and were given a preliminary classification according to the NPWS (2000) regional classification, based on floristic content. The point data were then used to create polygons representing the different vegetation communities. The vegetation map was refined with the assistance of aerial photograph interpretation where different patterns could be reasonably interpreted as different vegetation types.

4.1 Survey effort

Field data were collected over the month of August 2011. *Tetratheca juncea* was in flower and recorded at this time, as was *Rutidosis heterogama*. The other likely threatened flora species were not cryptic and could be recorded at any time of the year.

5 Threatened Flora and Endangered Communities

A desktop analysis was conducted by drawing from the Atlas of NSW Wildlife data base for an area within 5 km of the investigation boundary (**Table 1**).

Family	Scientific Name	Common Name	Status ¹
Asteraceae	Rutidosis heterogama	Heath Wrinklewort	V
Elaeocarpaceae	Tetratheca juncea	Black-eyed Susan	V
Fabaceae (Mimosoideae)	Acacia bynoeana	Bynoe's Wattle	E1
Myrtaceae	Eucalyptus parramattensis subsp. decadens	Earp's Gum	V
Myrtaceae	Callistemon linearifolius	Netted Bottle Brush	V
Myrtaceae	Angophora inopina	Charmhaven Apple	V
Myrtaceae	Eucalyptus glaucina	Slaty Red Gum	V
Proteaceae	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	V

Table 1 Threatened flora species from the Atlas of NSW Wildlife

Note:

Data were extracted September 2011 for an area within 5 km of the investigation area. Species in **bold** have been reported from within the investigation area.

Threatened species status under the TSC Act (current as at 21 March 2012). V = Vulnerable E = Endangered

Endangered Ecological Communities (EEC) possibly occurring within the investigation area were determined from the detailed vegetation community classification and mapping of Bell and Driscoll (2008) for the Cessnock-Kurri area. This mapping overlapped the north west corner of the current investigation area.

There were nine probable EEC:

- River-Flat Eucalypt Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions;
- Central Hunter Grey Box Ironbark Woodland in the NSW North Coast and Sydney Basin Bioregions;
- Kurri Sand Swamp Woodland in the Sydney Basin Bioregion;
- Hunter Lowland Redgum Forest in the Sydney Basin and New South Wales North Coast Bioregions;
- Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions;
- Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin Bioregion;
- Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions;
- Central Hunter Ironbark Spotted Gum Grey Box Forest in the NSW North Coast and Sydney Basin Bioregions; and
- Quorrobolong Scribbly Gum Woodland in the Sydney Basin Bioregion.

6 Results

Overall, the vegetation was in very good condition. Exceptions were in the lowland riparian habitat and some elevated rainforest areas where Lantana was prolific. In most areas there was evidence of past timber harvesting such as old logging trails, remnant stumps and timber on the ground, and the predominance of relatively young (<50 yr) trees.

6.1 Floristics

Appendix 1 lists the 230 flora species, from 63 families, recorded across the investigation area, and the vegetation communities in which they occurred. Only one weed species was recorded. **Appendix 2** lists the 78 rainforest species and the gullies where these were recorded. A few Red Cedar (*Toona ciliata*) were found, indicating that these areas would have been logged in the past.

6.2 Threatened Flora Species

Three threatened flora species were recorded within the investigation area: *Grevillea parviflora* subsp. *parviflora*, *Rutidosis heterogama* and *Tetratheca juncea* (**Figure 5**). These three species are listed as vulnerable in both the TSC Act and the EPBC Act. Only *Tetratheca juncea* was present within the limits of the mining area.

A comprehensive floristic search was not conducted across the investigation area. To assess the likelihood that other threatened flora species were present, the habitat preferences of the species listed in **Table 1** above were examined. **Table 2** provides information on the likelihood of these species occurring in the mapped habitat types.

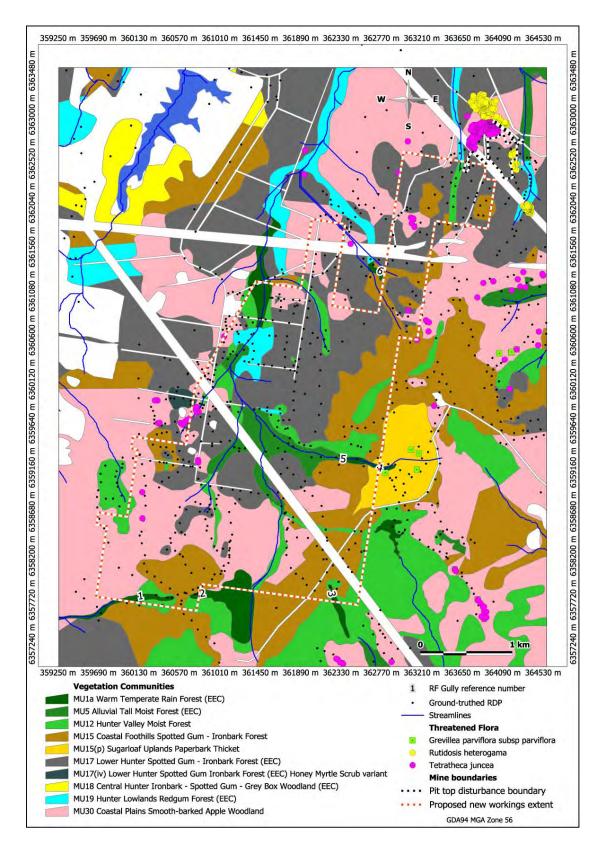


Figure 5 Vegetation communities and threatened species

Scientific Name	Distribution and habitat	Likelihood of occurring
Rutidosis heterogama	Recorded from Warnervale to Kurri and far northern NSW. Grows in heath, open forest and grasslands.	Recorded within the investigation area.
Tetratheca juncea	Recorded from Wyong to Bulahdelah. Grows in heath, open woodland and coastal sands.	Recorded within the investigation area.
Acacia bynoeana	Recorded from the Nowra region to the Lower Hunter Valley. Grows in heath, open forest and grasslands. Generally in sandy or lateritic soils.	Unlikely as suitable habitat was not present.
Angophora inopina	Recorded from Wyong to Karuah. Grows in open dry woodland in sandy and often lateritic soil. Generally in association with Scribbly Gums and Red Bloodwood.	Unlikely as suitable habitat was not present.
Eucalyptus parramattensis subsp. decadens	In the local area this species is a characteristic species in the EEC Kurri Sand Swamp Woodland in the Sydney Basin Bioregion.	Unlikely as suitable habitat was not present.
Callistemon linearifolius	Recorded from Sydney to Nelson Bay. Grows in dry sclerophyll forest.	Suitable habitat present.
Eucalyptus glaucina	Recorded from Maitland to Casino. Grows on deep, well-watered soils.	Suitable habitat in the areas where Forest Redgums were growing. Community MU19.
Grevillea parviflora subsp. parviflora	Recorded from Sydney to Kurri. Grows in sandy or light clay soils in heath, woodland or forest.	Recorded within the investigation area.

Table 2 The likelihood of threatened flora species occurring within the investigation area (source Table 1)

Habitat preference information was drawn from the following online resources:

- http://www.threatenedspecies.environment.nsw.gov.au/tsprofile/home_ species.aspx
- http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl
- http://plantnet.rbgsyd.nsw.gov.au/

6.3 Vegetation Communities

As described in Section 3, the vegetation map was developed from ground-truthed data points coded according to their species content to match communities in the NPWS (2000) classification. **Table 3** lists the species that were common to both the NPWS (2000) community profiles and the RDP.

Just over 1000 ground-truthed RDP contributed to the final vegetation map (**Figure 5** above).

Community (NPWS 2000)	Сапору	Mid layer and shrubs	Ground and vines
MU1a	Eucalyptus saligna, Acmena smithii, Guioa semiglauca, Backhousia myrtifolia	Synoum glandulosum, Neolitsea dealbata, Trochocarpa laurina, Gymnostachys anceps	Doodia aspera, Adiantum formosum, Cissus antarctica, Ripogonum fawcettianum
MU5	Eucalyptus saligna, Eucalyptus acmenoides, Syncarpia glomulifera	Glochidion ferdinandi, Melaleuca styphelioides, Alphitonia excelsa, Backhousia myrtifolia	Cissus antarctica, Oplismenus imbecilus, Lomandra longifolia, Calochlaena dubia
MU12	Corymbia maculata, Eucalyptus punctata, Angophora floribunda, Eucalyptus siderophloia	Allocasuarina torulosa, Melaleuca styphelioides, Myrsine variabilis	Adiantum aethiopicum, Themeda australis, Oplismenus imbecilus, Microlaena stipoides, Dichondra repens
MU15	Corymbia maculata, Eucalyptus umbra, Eucalyptus siderophloia	Allocasuarina torulosa, Persoonia linearis, Daviesia ulicifolia, Melaleuca nodosa	Imperata cylindrica, Entolasia stricta, Themeda australis
MU15(p)*	Corymbia maculata	Melaleuca nodosa	-
MU17	Eucalyptus fibrosa, Corymbia maculata, Eucalyptus punctata, Eucalyptus sparsifolia	Daviesia ulicifolia, Acacia parvipinnula, Melaleuca nodosa, Lissanthe strigosa, Persoonia linearis	Entolasia stricta, Themeda australis, Lepidosperma laterale
MU17(iv)*	Eucalyptus fibrosa, Corymbia maculata,	Melaleuca erubescens	Entolasia stricta, Microlaena stipoides, Ptilothryx deusta, Themeda australis
MU 18	Eucalyptus crebra, Corymbia maculata, Eucalyptus moluccana	Daviesia ulicifolia	No ground species recorded
MU19	Eucalyptus tereticornis, Eucalyptus amplifolia, Eucalyptus globoidea, Eucalyptus punctata	No shrub species in common between RDP and the profile for this community	Microlaena stipoides, Imperata cylindrica, Themeda australis, Entolasia stricta, Lomandra
	Angophora costata, Corymbia	Allocasuarina littoralis,	longifolia, Entolasia stricta, Themeda
MU30	gummifera, Eucalyptus umbra, Eucalyptus resinifera, Eucalyptus piperita	Anocasuarma intorans, Banksia spinulosa, Acacia myrtifolia, Dodonaea triquetra, Lambertia formosa, Dillwynia retorta, Xanthorrhoea latifolia	australis, Lomandra obliqua, Pteridium esculentum, Pimelea linifolia, Gonocarpus tetragynus, Mirbelia rubiifolia

Table 3 Community indicator species used to classify RDP

* These communities were not described in NPWS (2000).

Reliability of the final vegetation map was tested using a confusion matrix (**Table 4**). This analysis tests how many RDP lie within the vegetation polygon matching the community code. It is the equivalent of randomly choosing a location and shows the likelihood that the vegetation at that location would be what was mapped for there. For example, of the 24 RDP coded as MU1a, 11 are located within MU1a polygons, five within MU5 and seven within MU12. These three communities are moist and the analysis demonstrates ambiguity in determining which community is represented by RDP from within these. By contrast, of the 277 RDP coded as MU17, 97% lie within polygons mapped as MU17.

	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30	Total RDP	% correct
MU1a	11	5	7	0	0	0	0	0	24	48
MU5	2	27	4	1	0	0	1	4	44	69
MU12	0	2	72	2	0	0	0	0	88	95
MU15	0	0	2	211	2	0	1	13	244	92
MU17	0	1	0	6	251	0	2	0	277	97
MU18	0	0	0	0	1	11	0	0	30	92
MU19	0	0	2	0	0	0	41	0	62	95
MU30	0	0	8	4	2	1	1	367	413	96

Table 4 Confusion matrix vegetation map reliability test

Note:

Community codes embedded in the RDP data are in the left hand column and those in the vegetation map polygons are in the top row. The right hand column shows the percentage of RDP that lie within the correctly matching vegetation polygon. See main text for more details.

MU15 includes MU15(p) and MU17 includes MU17(iv).

Approximately 3000 ha of the 3500 ha investigation area were vegetated and consisted of 10 vegetation communities (**Tables 3 and 5**) of which six were determined to be EEC's. Detailed floristic content of each community is presented in **Appendix 1** and community profiles are presented in **Appendix 3**.

The proposed mining area covers just under 940 ha of vegetated and cleared land. **Table 5** includes the 878 ha of vegetation communities within that area. These are the communities that would be subject to varying amounts of subsidence.

Community (NPWS 2000)	EEC	IA (ha)	MA (ha)
MU1a Coastal Warm Temperate –Sub Tropical Rainforest (EEC)	Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions	57	19
MU5 Alluvial Tall Moist Forest (EEC)	River-Flat Eucalypt Forest on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner Bioregions	73	43
MU12 Hunter Valley Moist Forest	Not an EEC	345	85
MU15 Coastal Foothills Spotted Gum - Ironbark Forest	Not an EEC	550	191
MU15(p) Sugarloaf Uplands Paperbark Thicket	Not an EEC	65	7
MU17 Lower Hunter Spotted Gum - Ironbark Forest (EEC)	Lower Hunter Spotted Gum - Ironbark Forest in the Sydney Basin Bioregion	724	285
MU17(iv) Lower Hunter Spotted Gum Ironbark Forest (EEC) Honey Myrtle Scrub variant	Lower Hunter Spotted Gum - Ironbark Forest in the Sydney Basin Bioregion	5	<1
MU 18 Central Hunter Ironbark - Spotted Gum - Grey Box Woodland (EEC)	Central Hunter Ironbark – Spotted Gum - Grey Box Forest in the NSW North Coast and Sydney Basin Bioregions	102	0
MU19 Hunter Lowlands Redgum Forest (EEC)	Hunter Lowland Redgum Forest in the Sydney Basin and NSW North Coast Bioregions	113	17
MU30 Coastal Plains Smooth-barked Apple Woodland	Not an EEC	978	231
Total		3012	878

Table 5 Vegetation communities extant over the investigation area (IA) and mining areas (MA)

6.4 Lowland Rainforest

The vegetation community mapped as MU1a, *Coastal Warm Temperate – Sub Tropical Rainforest* is generally consistent with the NSW Scientific Committee (2006) determination for the EEC Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions. This habitat was highly restricted in the upper reaches of sheltered gullies (**Figure 5** above). These areas meet the condition described by Floyd (1990) as being at the limits of Lowland Rainforest with low moisture and soil nutrient status. The floristic content of these gullies (**Appendix 2**) was consistent with the Floyd (1990) Dry Rainforest suballiance *30. Backhousia myrtifolia – Acmena smithii* and the Warm Temperate Rainforest *Ceratopetalum apetalum* and *Schizomeria ovata* along with *Tristaniopsis laurina*. These Floyd (1990) alliances and suballiances are referenced in NSW Scientific Committee (2006).

6.5 Groundwater Dependent Ecosystems

Groundwater Dependent Ecosystems (GDE) are ecosystems which are dependent in whole or in part on water reserves held in the ground. These water reserves form the saturated part of the aquifer soil matrix that sits below the 'water table' or 'phreatic surface', and are differentiated from water bound in the soil matrix in the unsaturated zone above the water table. A common source of water for GDE is base flow which originates with rainfall that soaks into the soil. In areas such as the Sugarloaf Range complex with its ridges and valleys, this subsurface water flows to the valley centre where it can continue downstream both under ground (groundwater) or on the surface depending on the amount of impervious rock present. This groundwater continues to flow, often well after rain events and is the source of water for the species that make up a GDE. Depending on the topography, GDE can be confined to narrow enclosed gullies or expand across wide areas. At lower, flatter areas, unconstrained alluvial aquifers can form.

The GDE in the investigation area consisted of MU1a *Coastal Warm Temperate – Sub Tropical Rainforest*, MU5 *Alluvial Tall Moist Forest* and possibly MU15(p) *Sugarloaf Uplands Paperbark Thicket*. The area mapped as MU15(p) in **Figure 5** featured skeletal soil over sandstone which means that rainfall soaking into the soil quickly meets the underlying impervious rock. This results in a larger amount of flow into the main drainage line than would be the case for deeper soil. The drainage line (Rainforest Gully 5 on **Figure 5**) being fed by this area consisted of a series of rock pools, riffs and cascades at the upper elevation, truncated by a near vertical escarpment about 30 m high that the water flowed over. Below this, the stream continued as a series of rocky ponds until it met alluvium. The vegetation along this stream was typical of the mesic vegetation in the other drainage lines surveyed with the exception of Water Gum (*Tristaniopsis laurina*) growing in the upper reaches below the escarpment. This species does not occur elsewhere in the elevated gullies of the investigation area and is an indication that this stream had almost permanent water. The rainforest in gully 5 transitioned into a wide area of riparian MU5 *Alluvial Tall Moist Forest* dominated by Sydney Bluegum (*Eucalyptus saligna*) with an open ferny ground cover. Further downstream, the same community developed a dense mesic midstorey (see **Appendix 1** for overall floristic content).

7 Impact Assessment

The main potential for impact on flora species and vegetation communities would be from subsidence. Impacts to GDE and riparian vegetation can occur if stream flow is altered through bed-cracking or ponding. Streamflow and aquifers can also be impacted away from their immediate location if surface and/or sub-surface flow into these areas is diverted underground by deep cracking. *Alteration to the natural flow regimes of rivers and streams and their floodplains and wetlands* is a key threatening process listed in schedule 3 of the NSW TSC Act.

Localised destruction of vegetation is also possible where subsidence results in destabilisation of exposed rocky escarpments resulting in major rock falls.

The mine plan has been specifically designed to avoid having direct impact on these potentially unstable areas as well as the main areas occupied by GDE. Subsidence control zones have been established where barrier pillars are left to add support to the overburden and minimise subsidence (**Figure 6**).

However, potential exists for water inflow to be diverted underground and away from supplying the riparian communities and GDE (refer to paragraphs below for further discussion and clarification). **Figure 7** shows the location of the areas of greatest subsidence in relation to the catchments feeding the central streamline along which the GDE and riparian vegetation are located. The total catchment area for the main stream is about 1560 ha and the area of catchment potentially effected by major subsidence is about 700 ha, close to 45%.

Ditton Geotechnical Services (DGS 2012) have provided a subsidence report for the Project. The amount of subsidence is expected to be at maximum over areas of total panel extraction with the level of subsidence varying with depth of cover. The anticipated range is 0.58 m to 1.27 m over the flatter areas of the mining lease where cover depth ranges from 55 to 185 m. DGS (2012) report that similar mining methods in similar conditions used in the Abel underground mine have resulted in about the same levels of subsidence.

There would be a wave pattern to subsidence along a transect at right angles to the mined panels with the greatest subsidence in the centre of a panel reducing across the barrier pillar and increasing to the centre of the next panel. **Figure 7** suggests that this pattern could result in changes to water flow down the hillside to the small ephemeral drainage lines and finally into the main creek. The severity of the impact on water availability to the GDE would depend on how much diversion into underground workings occurred. Table 21 in DGS (2012) indicates that at cover depths of < 50 m it is *likely* that connective cracking will occur, at cover depths of 50 – 80 m it is *possible*, at cover depths of 80 – 100 m it is *unlikely* and at cover depths of >100 m it is *very unlikely*.

Figure 6 Proposed subsidence control zones and maximum subsidence zones

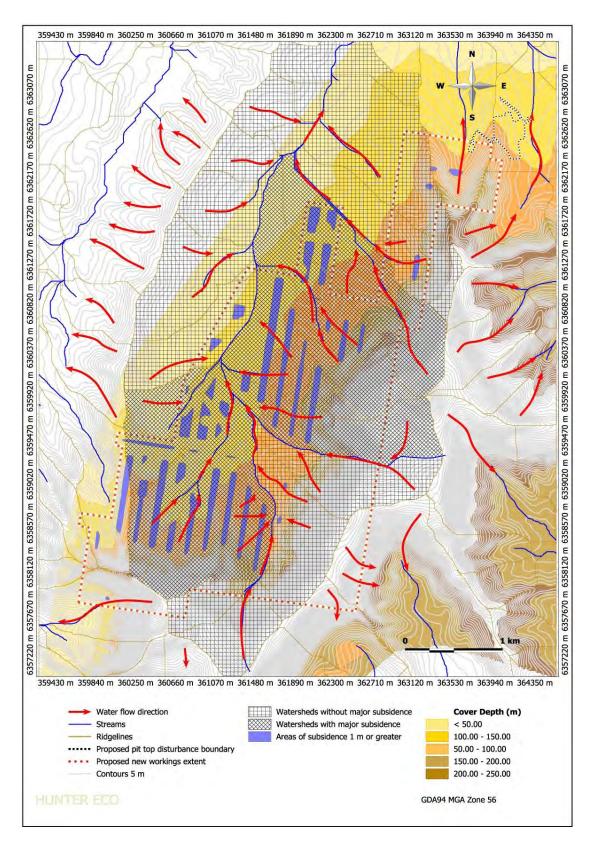


Figure 7 Catchments subjected to subsidence and cover depth

Ponding within existing creek channels is another potential outcome from subsidence with a worst-case scenario of 0.5 – 1.0 m depth ponds being formed above the centre of some of the full extraction panels. Out-of-channel depressions may also become ponded. However, DGS (2012) notes that the most likely outcome would in-channel ponded depressions in drainage lines feeding the main creek.

The impact of this altered hydrology on the associated vegetation would vary depending on the severity of the subsidence event, and the remedies available. Referring back to **Figure 6**, it can be seen that the majority of the vegetation over full extraction panels is MU17 *Lower Hunter Spotted Gum – Ironbark Forest* and MU30 *Coastal Plains Smooth-barked Apple Woodland*. Empirical observation suggests that both these communities can tolerate a range of conditions as expressed in their varying composition. They can present as dry open forest or moist shrubby forest. They are not GDE, so as with a lot of Australian vegetation, they have adapted to a wide range of water availability. Changes in topography from subsidence are not all going to be permanent. Over time subterranean cracks will seal with a combination of siltation and vegetation detritus. Even surface ponded depressions will silt up to varying degrees. Plant species, adapted to high water availability will establish in the same way that happens in naturally eroded depressions in streamlines.

For a long-term detrimental impact to occur to local populations of threatened flora species, changes to habitat would need to be widespread and themselves long-term. There is no recorded experience of this occurring as a consequence of the mining methods chosen for the Project. The worst that might happen would be localised loss of individual plants, an event that would be unlikely to place a local population at risk of extinction.

There would be no clearing associated with the underground mining that would lead to habitat fragmentation or isolation. Consequently, the corridor values of the ecology investigation area would be maintained.

A formal impact assessment applying the 7-part test of the NSW *Threatened Species Conservation Act 1995* to threatened flora species and endangered ecological communities is provided in **Appendix 4**. The assessment was applied to species known to occur or considered likely to occur within the mining limits (**Table 2**). All mapped EEC were assessed.

8 Conclusion and Recommendations

In conclusion, this impact assessment has shown that no lasting damage is likely to be caused by the Project to any threatened flora species or EEC. This includes those species and habitat that lie within the Sugarloaf SCA and State Forest. However, it is recommended that the current Tasman Flora and Fauna Monitoring Plan (Ecobiological 2007) is extended to include monitoring the condition of the rainforest, riparian and LHSGIF communities that occur over the Project mining area. Baseline data, collected for as long as possible prior to mining and subsidence, should be obtained so that post-subsidence comparisons can be made.

Management plans should also include awareness of the threat of infection by Myrtle Rust, and measures to minimise the risk of transfer from infected areas. See OEH (2011) for detailed management of this pathogen.

9 References

Bell, S.A.J. and Driscoll, C. (2009) *Vegetation and floristics of Sugarloaf State Conservation Area, Lake Macquarie, New South Wales*. Draft report to Department of Environment & Climate Change (Bulga).

Bell, S.A.J. and Driscoll, C. (2008) *Vegetation of the Cessnock-Kurri Region, Survey, Classification & Mapping, Cessnock LGA, New South Wales*. Department of Environment and Climate Change (NSW), Sydney.

Ditton Geotechnical Services (2012) *Subsidence Predictions and General Impact Assessment for the Proposed Pillar Extraction Panels at Tasman Extension Project*. DGS Report No. TAS-005/1.

DMR (1999) Lower North East Region 1:250,000 scale equivalent geology (Iner5ge_p (polygons) and Iner5ge_l (lines or arcs) geological coverage comprising the area covered by parts of the Dorrigo, Tamworth, Hastings, Singleton and Newcastle 1:250 000 sheet areas, Hunter Coalfield and Newcastle Coalfield Regional Geology 1:100 000 sheet areas and part Sydney 1:250 000 sheet area. CRA project Lower North East. NSW Department of Mineral Resources.

Ecobiological (2005) *Tasman Underground Coalmine Compensatory Habitat Baseline Report.* A report to Newcastle Coal Company September 2005.

Ecobiological (2006a) *Tasman Underground Coalmine Flora and Fauna monitoring annual report.* A report to Newcastle Coal Company December 2006.

Ecobiological (2006b) Ecological attributes of two portions of land at the northern end of the Sugarloaf Range. A report to Newcastle Coal Company December 2006.

Ecobiological (2007a) *Tasman Underground Coalmine. Stage 1 Subsidence Management Plan Ecology Assessment*. A report to Newcastle Coal Company June 2007. Ecobiological (2007b) *Tasman Underground Coalmine proposed revised compensatory habitat area*. A report to Newcastle Coal Company March 2007.

Ecobiological (2007c) Donaldson Coal Flora and Fauna Management Plan.

Ecobiological (2008a) 2008 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2008b) 2008 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2009a) 2009 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2009b) 2009 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2010a) 2010 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2010b) 2010 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Ecobiological (2011a) 2011 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Disturbance Area, Mt Sugarloaf, NSW.

Ecobiological (2011b) 2011 Annual Flora and Fauna Monitoring Report: Tasman Underground Coalmine Compensatory Habitat Area, Sugarloaf, NSW.

Floyd, A. (1990) *Australian rainforests in New South Wales*. Volume 2. (Surrey Beatty and Sons: Sydney.)

Gunninah Environmental Consultants (2002) *Tasman Project Proposed Underground Coal Mine Flora and Fauna Assessment*.

Matthie, L.E. (1995) *Soil Landscapes of the Newcastle 1:100 000 Sheet* Report. Department of Land and Water Conservation, Sydney.

McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1998) *Australian Soil and Land Survey Field Handbook*. Second Edition (Australian Collaborative Land Evaluation Program, CSIRO Land and Water, Canberra).

Nicholls A.O., Doherty, M.D., and Newsome, A.E. (2002) *Evaluation of Data, Modelling Techniques and Conservation Assessment Tools for the Lower Hunter Central Coast Regional Biodiversity Conservation Strategy*. CSIRO Sustainable Ecosystems. NPWS (2000) *Vegetation Survey, Classification and Mapping Lower Hunter and Central Coast Region.* Version 1.2. A project undertaken for The Lower Hunter and Central Coast Regional Environment Management Strategy CRA Unit Sydney Zone National Parks and Wildlife Service.

NSW Scientific Committee (2006) *Lowland Rainforest in NSW North Coast and Sydney Basin Bioregion - endangered ecological community listing.* Department of Environment and Climate Change (NSW).

OEH (2011) *Management plan for Myrtle Rust on the national parks estate*. Prepared by the NSW Office of Environment and Heritage.

Appendix 1 Vegetation Community Floristic Lists

MU15 includes species recorded in the variant MU15p and MU17 includes species recorded in MU17(iv)

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Adiantaceae								
Adiantum aethiopicum	\checkmark		\checkmark					
Adiantum diaphanum	\checkmark							
Adiantum formosum	\checkmark	\checkmark	\checkmark					
Adiantum hispidulum	\checkmark							
Pellaea falcata			\checkmark					
Pellaea paradoxa			\checkmark					
Apocynaceae								
Parsonsia straminea	\checkmark							
Araceae								
Gymnostachys anceps	\checkmark		\checkmark					\checkmark
Araliaceae								
Astrotricha latifolia	\checkmark	\checkmark	\checkmark	\checkmark				
Astrotricha obovata			\checkmark	\checkmark	\checkmark			\checkmark
Polyscias murrayi	✓							
Arecaceae								
Livistona australis	✓							
Aspleniaceae								
Asplenium australasicum	\checkmark							
Asteliaceae								
Cordyline stricta	✓							
Asteraceae								
Cassinia quinquefaria					\checkmark			
Olearia elliptica					\checkmark			
Athyriaceae								
Lunathyrium petersenii	\checkmark							
Blechnaceae								
Blechnum cartilagineum	✓	\checkmark						~
Doodia aspera	✓	\checkmark	\checkmark					
Casuarinaceae								
Allocasuarina littoralis			\checkmark	\checkmark				~
Allocasuarina torulosa	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			~
Celastraceae								
Elaeodendron australe	✓							
Convolvulaceae								
Dichondra repens			~					\checkmark
Cunoniaceae								
Aphanopetalum resinosum	✓	<u> </u>						
Callicoma serratifolia	· ·		\checkmark					
Ceratopetalum apetalum	✓		~					
Schizomeria ovata	✓ ✓	<u> </u>						

MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
\checkmark							
		\checkmark					
		\checkmark					\checkmark
		\checkmark					
							\checkmark
	\checkmark						
		\checkmark	~				
				~			
			~	~			\checkmark
							\checkmark
	\checkmark	\checkmark					
		\checkmark	~	~		~	\checkmark
\checkmark	\checkmark	\checkmark					
		\checkmark					\checkmark
		\checkmark		\checkmark		\checkmark	
							\checkmark
\checkmark							
\checkmark							
		\checkmark	\checkmark	\checkmark			\checkmark
\checkmark		\checkmark					
\checkmark	\checkmark						
							\checkmark
							\checkmark
		\checkmark	\checkmark				\checkmark
							\checkmark
			\checkmark	\checkmark			\checkmark
							\checkmark
\checkmark							
		\checkmark					\checkmark
\checkmark	\checkmark						
	\checkmark	\checkmark					
~	\checkmark	\checkmark	\checkmark				\checkmark
\checkmark							
				\checkmark			
1	1		1	1	1	1	1
					Image: state of the state of	Image: state of the state of	NNN<

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Fabaceae (Faboideae)								
Bossiaea obcordata								\checkmark
Bossiaea rhombifolia								\checkmark
Daviesia squarrosa				\checkmark	\checkmark			\checkmark
Daviesia ulicifolia			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Daviesia umbellulata					\checkmark			\checkmark
Dillwynia retorta					\checkmark			\checkmark
Gompholobium latifolium								\checkmark
Indigofera australis			~	~				
Jacksonia scoparia			~	~	~			\checkmark
Mirbelia rubiifolia								\checkmark
Podolobium aciculiferum				~	~			\checkmark
Podolobium ilicifolium			~	~	~			\checkmark
Pultenaea euchila				~	~			\checkmark
Pultenaea retusa				\checkmark				
Pultenaea spinosa								\checkmark
Pultenaea villosa			~	~	~			\checkmark
Swainsona galegifolia			~	~				
Fabaceae (Mimosoideae)								
Acacia elongata					~			\checkmark
Acacia falcata				~	~			
Acacia fimbriata	\checkmark	~	~	~	~		\checkmark	\checkmark
Acacia implexa	\checkmark		~					
Acacia irrorata				~				
Acacia linifolia			~	~	~			\checkmark
Acacia longifolia			\checkmark	\checkmark			\checkmark	\checkmark
Acacia maidenii			\checkmark					
Acacia myrtifolia								\checkmark
Acacia parvipinnula			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Acacia stricta				\checkmark	\checkmark			
Acacia ulicifolia			\checkmark	\checkmark	\checkmark			\checkmark
Pararchidendron pruinosum								
var. pruinosum	\checkmark							
Flacourtiaceae								
Scolopia braunii	\checkmark	\checkmark						
Goodeniaceae								
Goodenia ovata			\checkmark					
Haloragaceae								
Gonocarpus tetragynus				\checkmark				\checkmark
Lamiaceae								<u> </u>
Prostanthera incisa	\checkmark		~					
Lauraceae								<u> </u>
Cryptocarya glaucescens		√						∣
Cryptocarya microneura	~	√	✓		ļ	ļ	ļ	
Cryptocarya rigida	\checkmark							∣
Neolitsea dealbata	\checkmark							

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Lomandraceae								
Lomandra confertifolia					\checkmark			~
Lomandra filiformis					~			
Lomandra glauca								~
Lomandra longifolia	\checkmark	~	~	~			\checkmark	
Lomandra multiflora subsp. multiflora								\checkmark
Lomandra obliqua					\checkmark			\checkmark
Luzuriagaceae								
Geitonoplesium cymosum	\checkmark							
Malvaceae								
Hibiscus heterophyllus	\checkmark							
Meliaceae								
Synoum glandulosum subsp. glandulosum	~		\checkmark					
Toona ciliata	\checkmark							
Menispermaceae								
Stephania japonica	\checkmark							
Monimiaceae								
Wilkiea huegeliana	\checkmark							
Moraceae								
Ficus coronata	\checkmark	\checkmark		\checkmark				
Ficus rubiginosa	\checkmark							
Myrsinaceae								
Myrsine variabilis	\checkmark		\checkmark					
Myrtaceae								
Acmena smithii	\checkmark	\checkmark						
Angophora bakeri								\checkmark
Angophora costata	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
Angophora floribunda	\checkmark							
Backhousia myrtifolia	\checkmark	\checkmark	\checkmark	\checkmark				
Callistemon linearis					\checkmark			\checkmark
Callistemon pinifolius					\checkmark			\checkmark
Callistemon salignus	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Callistemon shiressii			\checkmark					
Corymbia gummifera			\checkmark	\checkmark	\checkmark			\checkmark
Corymbia maculata	\checkmark							
Eucalyptus acmenoides	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Eucalyptus amplifolia						\checkmark	\checkmark	
Eucalyptus capitellata								\checkmark
Eucalyptus crebra				\checkmark	\checkmark	\checkmark		
Eucalyptus eugenioides							\checkmark	
Eucalyptus fergusonii	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
Eucalyptus fibrosa			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Eucalyptus globoidea		√	~		\checkmark		\checkmark	~
Eucalyptus moluccana				~	~	~	\checkmark	1

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Eucalyptus paniculata		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Eucalyptus piperita				\checkmark				✓
Eucalyptus placita			\checkmark	\checkmark	\checkmark			
Eucalyptus punctata	\checkmark	~	\checkmark	\checkmark	\checkmark		~	~
Eucalyptus resinifera			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Eucalyptus saligna	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Eucalyptus siderophloia		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Eucalyptus sp. aff. agglomerata								\checkmark
Eucalyptus sparsifolia			\checkmark	\checkmark	\checkmark			\checkmark
Eucalyptus tereticornis		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Eucalyptus umbra			\checkmark	\checkmark	\checkmark			\checkmark
Leptospermum juniperinum			\checkmark	\checkmark				
Leptospermum polyanthum			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Leptospermum trinervium			\checkmark	\checkmark	\checkmark			\checkmark
Melaleuca decora		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Melaleuca erubescens				\checkmark	\checkmark			
Melaleuca linariifolia		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
Melaleuca nodosa		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Melaleuca sieberi				\checkmark	\checkmark			~
Melaleuca styphelioides	\checkmark							
Melaleuca thymifolia				\checkmark	\checkmark			
Rhodamnia rubescens	\checkmark	\checkmark	\checkmark					~
Syncarpia glomulifera	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
Syzygium australe	\checkmark							
Syzygium oleosum	\checkmark	\checkmark						
Tristaniopsis laurina	\checkmark	\checkmark	\checkmark					
Oleaceae								
Notelaea longifolia	\checkmark							
Notelaea venosa	\checkmark		\checkmark					
Orchidaceae								
Cestichis reflexa	\checkmark							
Dendrobium aemulum			\checkmark					
Dendrobium speciosum	\checkmark			\checkmark				
Sarcochilus hillii	\checkmark							
Pittosporaceae								
Bursaria spinosa			\checkmark	\checkmark	\checkmark	~		~
Hymenosporum flavum	\checkmark	\checkmark						
Pittosporum revolutum	\checkmark							
Pittosporum undulatum	\checkmark							
Poaceae								
Anisopogon avenaceus								\checkmark
Aristida vagans				\checkmark	\checkmark			✓
Cleistochloa rigida		\checkmark	\checkmark	\checkmark	\checkmark			✓
Cymbopogon refractus			\checkmark		\checkmark			
Dichelachne sieberiana								\checkmark
Echinopogon ovatus			\checkmark	\checkmark				

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Entolasia stricta			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Imperata cylindrica var. major	~	~	~	~	~		~	~
Joycea pallida			\checkmark	\checkmark	\checkmark			\checkmark
Microlaena stipoides		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Notodanthonia longifolia			\checkmark					
Oplismenus imbecillis		\checkmark	\checkmark	\checkmark				
Panicum simile					\checkmark			\checkmark
Poa affinis			\checkmark	\checkmark				
Poa labillardierei var. labillardierei			~	~	~		~	~
Tetrarrhena juncea								\checkmark
Themeda australis		\checkmark	~	~	~		~	~
Polypodiaceae								
Platycerium superbum	√							
Pyrrosia confluens var. confluens	~							
Pyrrosia rupestris	\checkmark							
Proteaceae								
Banksia spinulosa				\checkmark	\checkmark			\checkmark
Grevillea montana				\checkmark				\checkmark
Grevillea parviflora subsp. parviflora				~				~
Hakea bakeriana								\checkmark
Hakea sericea								\checkmark
Isopogon anemonifolius								\checkmark
Lambertia formosa								\checkmark
Lomatia silaifolia								\checkmark
Persoonia lanceolata				\checkmark				\checkmark
Persoonia levis								\checkmark
Persoonia linearis			\checkmark	\checkmark	~			\checkmark
Rhamnaceae								
Alphitonia excelsa	\checkmark	\checkmark	\checkmark					
Pomaderris intermedia								\checkmark
Ripogonaceae								
Ripogonum album	\checkmark							
Ripogonum fawcettianum	\checkmark							
Rosaceae								
Rubus moluccanus			\checkmark					
Rubiaceae								
Cyclophyllum longipetalum	\checkmark							
Morinda jasminoides	\checkmark							
Rutaceae								
Acronychia oblongifolia	\checkmark							
Melicope micrococca	\checkmark		\checkmark					
Phebalium squamulosum			\checkmark					
Santalaceae								
Exocarpos strictus				\checkmark				

Family and Species	MU1a	MU5	MU12	MU15	MU17	MU18	MU19	MU30
Sapindaceae								
Dodonaea triquetra			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Guioa semiglauca	\checkmark		\checkmark					
Smilacaceae								
Smilax glyciphylla	~							
Sterculiaceae								
Brachychiton populneus		~		\checkmark				
Lasiopetalum parviflorum								\checkmark
Thymelaeaceae								
Pimelea linifolia				~	\checkmark			\checkmark
Tremandraceae								
Tetratheca juncea								\checkmark
Tetratheca thymifolia								\checkmark
Verbenaceae								
*Lantana camara	~	~	\checkmark				\checkmark	
Clerodendrum tomentosum	\checkmark		\checkmark					
Vitaceae								
Cissus antarctica	\checkmark	\checkmark	\checkmark					
Cissus hypoglauca	\checkmark							
Xanthorrhoeaceae								
Xanthorrhoea glauca								\checkmark
Xanthorrhoea latifolia			\checkmark		\checkmark			\checkmark
Xanthorrhoea malacophylla	~		\checkmark	\checkmark	\checkmark			\checkmark
Zamiaceae								
Macrozamia reducta			\checkmark	\checkmark	\checkmark			\checkmark
Zingiberaceae								
Alpinia caerulea		~						

Rainforest Gully Family and Species 2 1 3 4 5 6 Adiantaceae Adiantum aethiopicum \checkmark Adiantum diaphanum \checkmark \checkmark \checkmark \checkmark \checkmark Adiantum formosum \checkmark Adiantum hispidulum Araceae \checkmark \checkmark Gymnostachys anceps Araliaceae \checkmark Astrotricha latifolia Arecaceae √ Livistona australis Aspleniaceae \checkmark \checkmark Asplenium australasicum Asteliaceae \checkmark \checkmark \checkmark Cordyline stricta \checkmark Athyriaceae \checkmark \checkmark Lunathyrium petersenii Blechnaceae \checkmark Blechnum cartilagineum \checkmark \checkmark \checkmark \checkmark \checkmark Doodia aspera Celastraceae ~ Elaeodendron australe Cunoniaceae \checkmark \checkmark \checkmark \checkmark \checkmark Aphanopetalum resinosum ~ Ceratopetalum apetalum \checkmark Schizomeria ovata Cyperaceae \checkmark Carex gaudichaudiana Dicksoniaceae \checkmark Calochlaena dubia Dilleniaceae \checkmark Hibbertia scandens Dioscoreaceae \checkmark \checkmark Dioscorea transversa \checkmark \checkmark Ebenaceae \checkmark \checkmark \checkmark \checkmark Diospyros australis Elaeocarpaceae \checkmark ~ Elaeocarpus obovatus Epacridaceae Trochocarpa laurina \checkmark \checkmark \checkmark Euphorbiaceae \checkmark Claoxylon australe \checkmark \checkmark \checkmark Glochidion ferdinandi ~ Omalanthus populifolius

Appendix 2 Rainforest Gullies Floristic List

Family and Species	Rainforest Gully					
	1	2	3	4	5	6
Eupomatiaceae						
Eupomatia laurina	\checkmark	\checkmark				
Fabaceae (Mimosoideae)						
Acacia fimbriata						\checkmark
Acacia implexa						\checkmark
Pararchidendron pruinosum var. pruinosum	\checkmark					
Flacourtiaceae						
Scolopia braunii	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Lamiaceae						
Prostanthera incisa	\checkmark					
Lauraceae						
Cryptocarya microneura	\checkmark	\checkmark	\checkmark			\checkmark
Cryptocarya rigida			\checkmark			
Neolitsea dealbata	\checkmark		\checkmark	\checkmark	\checkmark	
Lomandraceae						
Lomandra longifolia	\checkmark					
Luzuriagaceae						
Geitonoplesium cymosum	\checkmark					
Malvaceae						
Hibiscus heterophyllus	\checkmark					
Meliaceae						
Synoum glandulosum	\checkmark					
Toona ciliata	\checkmark	\checkmark		\checkmark		
Menispermaceae						
Stephania japonica	\checkmark					
Monimiaceae						
Wilkiea huegeliana	\checkmark		\checkmark			
Moraceae						
Ficus coronata	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ficus rubiginosa			\checkmark	\checkmark	\checkmark	
Myrsinaceae						
Myrsine variabilis	✓			\checkmark		
Myrtaceae						
Acmena smithii			\checkmark		\checkmark	\checkmark
Backhousia myrtifolia				\checkmark	\checkmark	\checkmark
Callistemon salignus						\checkmark
Melaleuca styphelioides				\checkmark		\checkmark
Rhodamnia rubescens	\checkmark					\checkmark
Syncarpia glomulifera				\checkmark		
Syzygium australe						~
Syzygium dastrate Syzygium oleosum				~		
Oleaceae						
Notelaea longifolia					✓	
Notelaea venosa				✓	-	
Orchidaceae				<u> </u>		
Cestichis reflexa			\checkmark	<u> </u>		

Family and Species	Rainforest Gully					
	1	2	3	4	5	6
Dendrobium speciosum			\checkmark			
Sarcochilus hillii				\checkmark		
Pittosporaceae						
Hymenosporum flavum			\checkmark			\checkmark
Pittosporum revolutum	\checkmark					
Pittosporum undulatum		\checkmark	\checkmark	\checkmark	\checkmark	
Polypodiaceae						
Platycerium superbum	\checkmark					
Pyrrosia confluens var. confluens					\checkmark	
Pyrrosia rupestris	\checkmark	\checkmark	\checkmark			
Rhamnaceae						
Alphitonia excelsa						\checkmark
Ripogonaceae						
Ripogonum album	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Ripogonum fawcettianum			\checkmark		\checkmark	
Rubiaceae						
Cyclophyllum longipetalum		\checkmark				
Morinda jasminoides			\checkmark	\checkmark	\checkmark	\checkmark
Rutaceae						
Acronychia oblongifolia						\checkmark
Melicope micrococca						\checkmark
Sapindaceae						
Guioa semiglauca				\checkmark	\checkmark	
Smilacaceae						
Smilax glyciphylla					\checkmark	
Verbenaceae						
*Lantana camara	\checkmark	\checkmark				\checkmark
Clerodendrum tomentosum			\checkmark			\checkmark
Vitaceae						
Cissus antarctica	\checkmark		\checkmark			\checkmark
Cissus hypoglauca	\checkmark			\checkmark	\checkmark	\checkmark
Xanthorrhoeaceae						
Xanthorrhoea malacophylla	\checkmark					

Appendix 3 Vegetation Community Profiles

MAP UNIT	MU1a		
MAP NAME	Coastal Warm Temperate – Sub Tropical Rainforest		
CONSERVATION STATUS	EEC, Lowland Rainforest in the NSW North Coast and		
	Sydney Basin Bioregions		
	AREAS		
Investigation Ar	ea Mining Area		
57 ha	19 ha		
	DESCRIPTION		
Canopy	Eucalyptus saligna, Acmena smithii, Guioa semiglauca,		
Chruha	Backhousia myrtifolia		
Shrubs	Synoum glandulosum, Neolitsea dealbata, Trochocarpa		
Cround	laurina, Gymnostachys anceps		
Ground	Doodia aspera, Adiantum formosum, Cissus antarctica,		
	Ripogonum fawcettianum		
Significant Species	None recorded		

MAP UNIT	MU5		
MAP NAME	Alluvial Tall Moist Forest		
CONSERVATION STATUS	EEC, River-Flat Eucalypt Forest on Coastal Floodplains		
	of the NSW North Coast, Sydney Basin and South East		
	Corner Bioregions		
	AREAS		
Investigation Ar	ea Subsidence Area		
73 ha	43 ha		
	DESCRIPTION		
Сапору	Eucalyptus saligna, Eucalyptus acmenoides, Syncarpia glomulifera		
Shrubs	Glochidion ferdinandi, Melaleuca styphelioides,		
	Alphitonia excelsa, Backhousia myrtifolia		
Ground	Cissus antarctica, Oplismenus imbecilus, Lomandra		
	longifolia, Calochlaena dubia		
Significant Species	None recorded		

MAP UNIT	MU12				
ΜΑΡ ΝΑΜΕ	Hunter Valley Moist Forest				
CONSERVATION STATUS	Not listed as threatened				
	AREAS				
Investigation Ar					
345 ha	85 ha				
	DESCRIPTION				
Canopy	Corymbia maculata, Eucalyptus punctata, Angophora floribunda, Eucalyptus siderophloia				
Shrubs	Allocasuarina torulosa, Persoonia linearis, Daviesia				
	ulicifolia, Melaleuca nodosa				
Ground	Adiantum aethiopicum, Themeda australis, Oplismenus				
Circuiting at C	imbecilus, Microlaena stipoides, Dichondra repens				
Significant Species	None recorded				

MAP UNIT	MU15		
MAP NAME	Coastal Foothills Spotted Gum - Ironbark Forest		
CONSERVATION STATUS	Not listed as threatened		
	AREAS		
Investigation Ar	ea Subsidence Area		
550 ha	191 ha		
	DESCRIPTION		
Canopy	Corymbia maculata, Eucalyptus umbra, Eucalyptus		
Shrubs	siderophloia		
Shrubs	Allocasuarina torulosa, Persoonia linearis, Daviesia ulicifolia, Melaleuca nodosa		
Ground	Imperata cylindrica, Entolasia stricta, Themeda australis		
Significant Species	None recorded		
Significant Species	ווטווב ובנטו עבע		

MAP UNIT	MU15(p)			
MAP NAME	Sugarloaf Uplands Paperbark Thicket			
CONSERVATION STATUS	Not listed as threatened			
	ARE			
Investigation Ar	ea	S	ubsidence Area	
65 ha		7 ha		
	Image: Content of the sector of the secto			
Canopy			ptus sparsifolia, Eucalyptus	
		laleuca decora		
Shrubs			, pulchella, Melaleuca	
			a, Acacia ulicifolia,	
Ground	Themeda australis, Panicum simile, Entolasia stricta,			
	Pseuderanthemum variabile, Phyllanthus hirtellus			
Significant Species	Grevillea parviflora subsp. parviflora			

MAP UNIT	MU17		
MAP NAME	Lower Hunter Spotted Gum - Ironbark Forest		
CONSERVATION STATUS	EEC, Lower Hunter Spotted Gum - Ironbark Forest in		
	the Sydney Basin Bioregion		
	AREAS		
Investigation Ar	ea Subsidence Area		
724 ha	285 ha		
	DESCRIPTION		
Canopy	Eucalyptus fibrosa, Corymbia maculata, Eucalyptus		
Chryshe	punctata, Eucalyptus sparsifolia		
Shrubs	Daviesia ulicifolia, Acacia parvipinnula, Melaleuca		
Ground	nodosa, Lissanthe strigosa, Persoonia linearis		
Ground	Entolasia stricta, Themeda australis, Lepidosperma		
Cignificant Creater	laterale		
Significant Species	Rutidosis heterogama		

MAP UNIT	MU17(iv)		
MAP NAME	Lower Hunter Spotted Gum Ironbark Forest Honey		
	Myrtle Scrub variant		
CONSERVATION STATUS	EEC, Lower Hunter Spotted Gum - Ironbark Forest in		
	the Sydney Basin Bioregion		
	AREAS		
Investigation Are	ea Subsidence Area		
5 ha	< 1 ha		
	DESCRIPTION		
Canopy	Eucalyptus fibrosa, Corymbia maculata,		
Shrubs	Melaleuca erubescens		
Ground	Entolasia stricta, Microlaena stipoides, Ptilothryx		
	deusta, Themeda australis		
Significant Species	None recorded		

MAP UNIT	MU18		
MAP NAME	Central Hunter Ironbark - Spotted Gum - Grey Box		
	Woodland		
CONSERVATION STATUS	EEC, Central Hunter Ironbark - Spotted Gum- Grey Box		
	Forest in the NSW North Coast and Sydney Basin		
	Bioregions		
	AREAS		
Investigation Are			
	DESCRIPTION		
Сапору	Eucalyptus crebra, Corymbia maculata, Eucalyptus		
	moluccana		
Shrubs	Daviesia ulicifolia		
Ground	None recorded		
Significant Species	None recorded		

MAP UNIT	MU19		
MAP NAME	Hunter Lowlands Redgum Forest		
CONSERVATION STATUS	EEC, Hunter Lowland Redgum Forest in the Sydney		
	Basin and NSW North Coast Bioregions		
	AREAS		
Investigation Ar	ea Subsidence Area		
113 ha	17 ha		
	DESCRIPTION		
Canopy	Eucalyptus tereticornis, Eucalyptus amplifolia,		
Shrubs	Eucalyptus globoidea, Eucalyptus punctata		
5111 UDS	Bursaria spinosa, Acacia fimbriata, Dodonaea triquetra, Melaleuca styphelioides		
Ground	Microlaena stipoides, Imperata cylindrica, Themeda australis, Entolasia stricta, Lomandra longifolia		
Significant Species	None recorded		

MAP UNIT	MU30				
MAP NAME	Coastal Plains Smooth-barked Apple Woodland				
CONSERVATION STATUS	Not listed as threatened				
AREAS					
Investigation Are	ea	Subsidence Area			
978 ha		231 ha			
	DESCRI	PTION			
Canopy		stata, Corymbia gummifera, Eucalyptus yptus resinifera, Eucalyptus piperita			
Shrubs	-	littoralis, Banksia spinulosa, Acacia			
	myrtifolia, Dodonaea triquetra, Lambertia formosa,				
	Dillwynia reto	rta, Xanthorrhoea latifolia			
Ground	Entolasia stric	ta, Themeda australis, Lomandra obliqua,			
	Pteridium esculentum, Pimelea linifolia, Gonocarpus				
	tetragynus, Mirbelia rubiifolia				
Significant Species	Tetratheca juncea				

Appendix 4 Impact assessment, the 7-part test

Threatened Flora

This test assesses the impact of the Project on the following species:

- Callistemon linearifolius
- Grevillea parviflora subsp. parviflora
- Rutidosis heterogama
- Tetratheca juncea
- (a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

The only threatened flora species known to occur within the mining subsidence limits was *Tetratheca juncea* (**Figure 5**), although the other three species could not be confidently discounted. The viable local population of *Tetratheca juncea* would take in a wider area than those records within the subsidence limits. Subsidence is not likely to impact on this local population of *Tetratheca juncea* in a way that would place it at risk of extinction. Similarly, subsidence is unlikely to place local populations of *Callistemon linearifolius, Grevillea parviflora* subsp. *parviflora* or *Rutidosis heterogama* at risk of extinction.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

No endangered population of these species has been listed.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

Not applicable

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not applicable

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality,

No habitat would be modified to the extent that isolation or fragmentation would result. Subsidence would not have this outcome directly and even where remediation of significantly cracked areas was required, this would not result in fragmentation or isolation of habitat.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

In that there would be no impact on any of the threatened flora species that are known to occur, or are considered likely to occur, the action is consistent with recovery and threat abatement plans.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Alteration to the natural flow regimes of rivers and streams and their floodplains and wetlands is a key threatening process which could be an outcome where cracking resulted in diversion of surface water into mine workings. The potential for this to occur is recognised, and monitoring (both surface and underground) would ensure that such an occurrence was identified. Remediation measures would be undertaken where deemed appropriate.

Endangered Ecological Communities

This is a test assessing impact of the project on the following EEC's:

- Hunter Lowland Redgum Forest in the Sydney Basin and NSW North Coast Bioregions (HLRF);
- Lower Hunter Spotted Gum Ironbark Forest in the Sydney Basin Bioregion (LHSGIF);
- River-Flat Eucalypt Forest on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner (RFEF); and
- Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions (LRF).
- (a) in the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

Not applicable to the consideration of an EEC.

(b) in the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction,

Not applicable to the consideration of an EEC.

(c) in the case of an endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or

(ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

HLRF, RFEF and LRF are groundwater dependent ecosystems (GDE) and are to be protected from significant direct subsidence effects through the provision of subsidence control zones (**Figure 6**). Indirect impact could occur if cracking in subsided areas across the catchments supplying these communities (**Figure 7**) diverted sufficient water underground that they came under chronic water stress. This outcome is highly unlikely in that only about 45% of the area of these catchments would potentially be affected, and a smaller amount within that area. Remediation measures would also be available. It is likely that the action would not have an impact on these communities such that their local occurrence would be placed at risk of extinction.

The lower part of the area of total extraction east of the central creekline is dominated by LHSGIF (**Figure 6**). This is a dry forest community that would not be impacted as a whole, even by cracking connected to the underground workings. It is likely that the action would not have an impact on this community such that the local occurrence would be placed at risk of extinction.

(d) in relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the action proposed, and

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed action, and

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species, population or ecological community in the locality,

No habitat would be modified to the extent that isolation or fragmentation would result. Subsidence would not have this outcome directly and even where remediation of significantly cracked areas was required, this would not result in fragmentation or isolation of habitat.

(e) whether the action proposed is likely to have an adverse effect on critical habitat (either directly or indirectly),

No critical habitat was present.

(f) whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan,

The action is consistent with recovery and threat abatement plans in that there would be no impact on the community.

(g) whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

Alteration to the natural flow regimes of rivers and streams and their floodplains and wetlands is a key threatening process which could be an outcome where cracking resulted in diversion of surface water. Such diversion might occur over a short length of stream as a result of near-surface cracking, or longer if cracking were deeper. The potential for this to occur is recognised, and monitoring (both surface and underground) would ensure that such an occurrence was identified. Remediation measures would be undertaken where deemed appropriate.

Introduction and establishment of Exotic Rust Fungi of the order Pucciniales pathogenic on plants of the family Myrtaceae is a key threatening process with the potential to impact on Myrtaceous species within the EEC under consideration. These fungi are generically referred to as 'Myrtle Rust'. None was found during the field surveys for this assessment. Dispersal vectors for Myrtle Rust appear to include wind and direct physical transfer by humans or animals having had contact with infected plants. Management plans should include awareness of this threat and measures to minimise the risk of transfer from infected areas.

Appendix 5 Personnel

Task	Person	Experience
Entire project	Colin Driscoll BSc	>30 years flora and
		fauna surveys in the
		Hunter and Central Coast