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This Example Sheet involves questions that require significant extensions of the material covered
in lectures. Most are optional; on the other hand, several are core results, which are chosen to
illustrate the richness and flexibility of forcing and set-theoretic methods.

1 Absoluteness Results

(i) Show that the following properties are expressible by Σ1 -formulas:
(a) α is not a cardinal;
(b) cf(α) ≤ β ;
(c) α is singular;
(d) | x | ≤ | y | .

(ii) Show that the following properties are expressible by Π1 -formulas:
(a) α is a cardinal;
(b) cf(α) is regular;
(c) α is weakly inaccessible (i.e. α 6= λ+ for all λ );
(d) y = P (x) ;
(e) the formula Vx = y .

2 Well-founded Relations and Absoluteness of P -names

An L∈ -formula ϕ(v) is downward absolute (respectively, upward absolute) if whenever M
is a transitive class, (∀x ∈ M)(ϕ(x)→ ϕ(x)M) (respectively, (∀x ∈ M)(ϕ(x)M → ϕ(x)) .
A class M is an inner model of ZF if M is transitive, Ord ⊆ M , and for every axiom
ϕ of ZF , M |= ϕ (i.e. ZF ` ϕM ).

(i) Show that Σ1 -formulas are upward absolute and Π1 -formulas are downward abso-
lute.

(ii) Prove that if V |= (κ is an inaccessible cardinal ) , then A |= (κ is an inaccessible
cardinal ) whenever A is an inner model of ZF .

(iii) Let R be a binary relation over X . Prove that R is well-founded if and only if there
is an order-preserving function ρ : X → Ord : xRy → ρ(x) < ρ(y) . Deduce that
the property “R is well-founded” is ∆1 and hence absolute for standard transitive
models of ZF .

(iv) Formulating carefully any relevant results about absoluteness of definitions by trans-
finite recursion, deduce that the property “ τ is a P -name” is absolute for transitive
models of ZF . [Hint. Recast the definition of P -name as a definition by transfinite
recursion over a well-founded relation.]

3 Models of Fragments of ZFC ; Closure Properties

For a cardinal κ , let Hκ be the family of sets hereditarily of cardinality less than κ .
1Comments, improvements and corrections will be much appreciated; please send to ok261@cam.ac.uk; rev.

14/12/2014.
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(i) Prove if κ = cf(κ) > ℵ0 , then Hκ |= ZFC− , where ZFC− is the theory whose
axioms are those of ZFC without the Power Set axiom.

(ii) Deduce that no proof of the existence of R avoids some non-trivial use of the Power
Set axiom. [Hint. Consider Hℵ1 .]

(iii) Assume κ = cf(κ) ≥ ℵ2 . Let M be a countable elementary submodel of (Hκ,∈) .

(a) Suppose ϕ(v) is an L∈ -formula with free variable v (possibly with parameters
from M ) such that in any model of ZFC− there is exactly one element that
satisfies ϕ(v) . Show that if a ∈ Hκ and Hκ |= ϕ[a] , then a ∈M .

(b) The ordinals ω and ω1 belong to M .
(c) If {a,A,B, f} ⊆M,a ∈ A and f : A→ B is a function (in V ), then f(a) ∈M .
(d) If X ∈M is countable (in V ), then X ⊆M .
(e) For every α ∈ ω1 ∪ {ω1} , α ∩M is an ordinal.
(f) If A = {Aα : α < ω1} ∈M , then Aα ∈M for every α ∈ ω1 ∩M .

4 Replacement Schema and Power Set Axiom in Generic Extensions

Suppose G ⊆ P is generic over M .

(i) Prove that for each L∈ -formula ϕ,M[G] |= Replacementϕ . [Hint. Find a bounding
ordinal δ ∈M such that V M

δ contains a set of P -names whose values are sufficient
to provide all the required elements in M [G] .]

(ii) Prove that M[G] |= PowerSet . [Hint. For y ⊆ x, y ∈ M [G] , let τ = {(r, ρ) ∈ P ×
range(ẋ) : r  (ρ ∈ ẏ)} ; show τ [G] = y ; let u̇ = {(p, σ) : σ ∈M,σ ⊆ P×range(ẋ)} .
Check that P (x)M[G] ⊆ u and explain why this suffices.]

5 Concerning Forcings, Anti-chains and Generic Sets

Suppose that P is a forcing in a model M of ZFC .

(i) Prove that a set G ⊆ P is generic over M if and only if for every maximal anti-chain
A ∈M of P, | G ∩A |= 1. [Hint. One direction uses AC.]

(ii) Assume that the forcing P has a least element 0P . A set D ⊆ P is:

(a) pre-dense above p ∈ P if (∀q ∈ P )(q ≥ p→ (∃d ∈ D)(d and q are compatible);
D is pre-dense if D is pre-dense above 0M ;

(b) dense above p ∈ P if (∀q ∈ P )(q ≥ p → (∃d ∈ D)(d ≥ q) . So D is dense in P
if D is dense above 0M .

Suppose that E is pre-dense in P and G ⊆ P is generic over M . Show that
G ∩ E 6= ∅ .
Suppose that E is pre-dense above q ∈ P and G ⊆ P is generic over M . Show that
if q ∈ G , then G ∩ E 6= ∅ .

(iii) Deduce that the following are equivalent for a directed downward closed set G ⊆
P,P ∈M where M is a transitive model of ZFC .

(a) G is generic in P over M ;
(b) G ∩D 6= ∅ for every dense open set D ⊆ P in M ;
(c) G ∩ C 6= ∅ for every dense subset C ⊆ P in M ;
(d) G ∩B 6= ∅ for every pre-dense subset B ⊆ P in M ;
(e) G ∩A 6= ∅ for every maximal anti-chain A ⊆ P in M .
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(iv) Suppose that M is a CTM of ZFC, P ∈M , E ⊆ P , E ∈M , and G is generic over
M . Prove that either G ∩ E 6= ∅ or (∃q ∈ G)(∀r ∈ E)(r and q are incompatible).
[Hint. Consider {p ∈ P : (∃r ∈ E)(r ≤ p)} ∪ {q ∈ P : (∀r ∈ E)(r and q are
incompatible)} ∈M .]

(v) Suppose M is a CTM of ZFC and P ∈M is a separative forcing. Prove that there
are 2ℵ0 generic sets in P over M .

6 Optional. Forcing, Chain Conditions, and Elementary Submodels

For a forcing P , a cardinal κ is large enough (for P ) if κ = cf(κ) > ℵ1 and the set of
dense subsets of P belongs to Hκ (so in particular, P , the conditions in P and every
dense subset of P all belong to Hκ ). For a set N , a condition p ∈ P is called N –generic
if for every D ∈ N which is a dense subset of P , D ∩N is pre-dense above p .

Suppose that κ is large enough for P . Prove the following are equivalent:

(i) P has the countable chain condition;
(ii) for every countable elementary submodel N of Hκ , 0P is N –generic;

(iii) every countable subset X of Hκ is contained in an elementary submodel N of Hκ
such that 0P is N –generic.

[Hint. For (i) ⇒ (ii) , consider an A ∈ N maximal relative to the property of being an
anti-chain contained in D . For (iii)⇒ (i) , show if A ∈ N is a maximal anti-chain, then
A = {p ∈ P : (∃q ∈ A)(q ≤P p)} ∈ N is dense.]

7 The Forcing Relation

Suppose that P is a non-trivial forcing, p, q ∈ P , and ϕ is a formula in the vocabulary
of ZFC which may contain P–names. Show:

(i) if p P ϕ and p ≤P q , then q P ϕ ;
(ii) if q P ϕ for every q ≥P p such that p 6= q , then p P ϕ ;

(iii) if (@r)(p ≤P r ∧ r P ϕ) , then p P ¬ϕ ;
(iv) (∃r)(p ≤P r)(r decides ϕ) , i.e. either r P ϕ or r P ¬ϕ .
(v) if p does not decide ϕ , then

∧
i=1,2(∃ri)(p ≤P ri)(r1 P ϕ) ∧ (r2 P ¬ϕ) .

8 Names

Suppose G ⊆ P is generic over M .

(i) Suppose σ, τ ∈MP . Show σG ∪ τG = (σ ∪ τ)G .

(ii) Suppose τ ∈ MP and range(τ) ⊆ {ṅ : n ∈ ω} . Let σ = {〈p, ṅ〉 : (∀q ∈ P )(〈q, ṅ〉 ∈
τ → p ⊥ q)} . Show that σG = ω \ τG . [Hint. The set {r ∈ P : (∃p ≤ r)(〈p, ṅ〉 ∈
σ ∨ 〈p, ṅ〉 ∈ τ)} is dense.]

(iii) Suppose A is an anti–chain in P and for each a ∈ A, τa is a P–name. Show there
exists a P–name τ such that for every a ∈ A , if a ∈ G , then τ [G] = τa[G] , and
τ [G] = ∅ if G ∩ A = ∅ . [Hint. Suppose τa = {(qa,j , τa,j) : j < ia} . Consider the
P–name τ = {(r, τa,j) : a ∈ A, j < ia, r ≥ qa,j , and r ≥ a} . This provides a useful
way of constructing names from other names indexed by elements of anti–chains.]
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9 Nice Names and Bounds for the Continuum

Suppose P ∈ M and G ⊆ P is generic over M . A name τ ∈ MP is a nice name for a
subset x of σ ∈ MP if τ =

⋃
{Aπ × {π} : π ∈ range(σ)} , where Aπ is an anti–chain in

P .

(i) Prove that for all σ, ρ ∈ MP there exists a nice name τ such that P (ρ ⊆ σ →
ρ = τ) . [Hint. For π ∈ range(σ) , let Aπ be maximal relative to the properties
(1) (∀p ∈ Aπ)(p P π ∈ ρ) and (2) Aπ is an anti–chain in P ; refer to a previous
Question to check that τ as defined works.]

(ii) Suppose (P is a c.c.c. forcing and λ is a cardinal )M . Let κ∗ = (| P |λ)M . Then
(2λ ≤ κ∗)M[G] . [Hint. Count the number of nice names for the members of P (λ)M[G] ,
remembering that P has the countable chain condition.]

(iii) Deduce that if (λ is a cardinal and λℵ0 = λ)M , then there is a generic extension
M[H] such that (2ℵ0 = λ)M[H] .

10 Forcing and the Independence of Diamond

(i) Prove that the theory ZFC + ♦ is relatively consistent. [Hint. It may be easier
to verify ♦ in its functional form (see Example Sheet 3). Let I = {〈α, ζ〉 : ζ <
α < ωM

1 } and consider the forcing Q = Fn(I, 2,ℵM
1 ) . Show that Q is countably

complete, and that if G is generic over M , then in M[G] , a ♦–sequence is provided
by 〈(

⋃
G)α : α < ω1〉 . For this, noticing that Q adds no new ω –sequences and

ℵM
1 = ℵM[G]

1 , define a sequence of ordinals and conditions forcing an arbitrary club
to intersect the family of guesses for a function f : ω1 → ω1 . (Refer to Kunen, Set
Theory, chapter VII, or Shelah, Proper and Improper Forcing, chapter 1, if difficulties
arise. Remark: ♦ is true in L (as was explained in the talk by Professor Mathias);
this was the earliest proof of its consistency, due to Jensen.)]

(ii) Deduce that ♦ is independent of ZFC .

(iii) Show if (λ is a cardinal and λℵ0 = λ and ♦)M , then there is a generic extension
M[H] such that M[H] |= (2ℵ0 = λ and there is a Suslin tree).

(iv) Suppose that M |= (P is a c.c.c. forcing and | P |≤ ℵ1 and ♦ ). Prove that for every
G ⊆ P generic over M , M[G] |= ♦ . [Hint. In M , use ♦ to guess nice names for
subsets of ω1 .]

(v) Deduce that ♦ does not imply V = L .
(vi) Suppose that M |= (P is a c.c.c. forcing) and M[G] |= ♦ , where G ⊆ P is generic

over M . Show that M |= ♦ . [Hint. Recall the equivalent characterisations of ♦
from Example Sheet 3 and the lemma about approximating functions in c.c.c. generic
extensions.]

(vii) Optional. Prove that ♣ is independent of ZFC .

11 Adding Cohen Reals and Suslin Trees

(i) A tree T is ever-branching if for every s ∈ T , the set {t ∈ T : s ≤T t} is not
linearly ordered. Let M be a CTM such that (T is an ever-branching Suslin tree )M .
Suppose that (P = Fn(λ × ω, 2,ℵ0) ∧ λ ≥ ℵ0)M . Prove that for any set G ⊆ P
generic over M , M[G] |= (T is a Suslin tree).
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(ii) Deduce that there is a model of ZFC in which there is a Suslin tree but CH fails.

Remark: So the existence of Suslin trees does not imply CH (nor a fortiori ♦ ).
The proof that CH does not imply Suslin trees is due to Jensen.

12 Optional. Cohen Reals add Suslin Trees.

Suppose that P is a separative countable forcing and M is a CTM. Prove Shelah’s theo-
rem: in every P -generic extension of M , there is a Suslin tree. In particular, the Cohen
forcing adds a Suslin tree.

Remark: This result provides a direct proof by forcing of the relative consistency of the
failure of Suslin’s Hypothesis. Adding Cohen reals has ♦–like combinatorial consequences;
it is far from innocuous.

13 The Levy Collapse

The Levy collapse is the forcing Lv(κ) defined as follows:

{p : p is a finite function, dom(p) ⊆ κ× ω , and (∀〈α, n〉 ∈ dom(p))(p(α, n) ∈ α)}

with the partial ordering p ≤ q iff p ⊆ q .
Suppose that κ is strongly inaccessible in the countable transitive model M .

(i) What is the cardinality of a maximal anti-chain in Lv(κ) ?
(ii) What is the largest cardinal λ for which Lv(κ) is λ–closed?
(iii) Which cardinals are preserved and which are collapsed under forcing with Lv(κ) ?

(iv) Let H be generic in Lv(κ) over M . Prove that κ = ℵM[H]
1 .

(v) Suppose κ is strongly inaccessible in the CTM M and let H be generic in Lv(κ) over
M . Prove that KH holds in the generic extension M [H] . [Hint. Use the previous
part and refer to Example Sheet 3.] Comments: Con(ZFC + KH) can be proved
from Con(ZFC) but a more complicated forcing is involved (see Kunen, chapter VII,
Exercise H19). However, Con(ZFC + ¬KH) , which requires an iterated forcing
argument, does require the hypothesis of the existence of a strongly inaccessible
cardinal, because ¬KH implies ℵ2 is inaccessible in L (see Kunen, Chapter VII,
Exercise B9).

14 Zermelo, Strong Inaccessibility and Second-Order Set Theory

(i) Suppose κ = cf(κ) > ℵ0 . Prove that κ is a strongly inaccessible cardinal if and
only if Vκ = Hκ .

(ii) Suppose κ = cf(κ) > ℵ0 . Show that if (Hκ,∈) is a model of ZFC , then κ is a
strongly inaccessible cardinal.

(iii) Let ZFC2 denote the second-order axiomatic system obtained from ZFC in which
the Replacement Schema is expressed as the following single axiom with a universal
second-order quantifier: (∀C)(∀z∀u∀v)(〈z, v〉 ∈ C∧〈z, u〉 ∈ C ⇒ v = u)⇒ ∃x∀y(y ∈
x ⇔ ∃z(z ∈ a ∧ 〈z, y〉 ∈ C)) , i.e. if C is a functional class and a is a set, then
{C(z) : z ∈ a} , the image of a under C , is also a set. The intended interpretation
of the second-order variables ranges over arbitrary subsets of the domain. Notice
that models of ZFC2 are well-founded.
Show that if κ is a cardinal such that Vκ |= ZFC2 , then κ is strongly inaccessible.
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(iv) For each strongly inaccessible cardinal κ , there is up to isomorphism exactly one
model of ZFC2 with the set of ordinals of order type κ , namely, (Vκ,∈) . [Hint.
Mostowski Collapse; induction on rank.]

15 The Generalized ∆ -System Lemma

(i) Suppose that λ < κ = cf(κ) and
∧
α<κ α

λ < κ . Prove that if | A |= κ and x ∈ A
implies | x |< λ , then there exists B ⊆ A such that | B |= κ and (∃r)(∀x ∈ B)(x 6=
y → x∩ y = r) . [Hint. This is a standard result. WLOG,

⋃
A ⊆ κ and some fixed

ρ < λ is the order type of every x = 〈x(ξ) : ξ < ρ〉 ∈ A . Using
∧
α<κ α

λ < κ and
κ = cf(κ) , let ξ0 be the minimal ξ such that {x(ξ) : ξ ∈ A} is cofinal in κ ; let
σ = sup{x(η) + 1 : x ∈ A ∧ η < ξ0} , so (*) x � ξ0 ⊆ σ < κ ; now define by induction
{x(α) : α < κ} such that xα(ξ0) > max{σ, sup{xβ(η) : β < α ∧ η < ρ}} . Use (*)
and σλ < κ to refine {x(α) : α < κ} and extract a root r ⊆ σ .]

(ii) Find a family of ℵω finite sets such that no subfamily of size ℵω has a root.

16 Optional. Moderately Large Cardinals Do Not Decide CH

A cardinal κ is called Ramsey if κ→ (κ)<ω2 , i.e. every colouring f : [κ]<ω → 2 of all the
finite subsets of κ by 2 colours has a monochromatic subset of cardinality κ . In 1961,
Scott proved that the existence of large enough cardinals contradicts the axiom V = L .
However, the Continuum Hypothesis appears to behave differently.

(i) Show that the set λ2 with the lexicographic order �lex contains no increasing or
decreasing sequences of length λ+ . [Hint. Otherwise suppose H is e.g. �lex -
increasing of size λ+ ; WLOG, H = {hα : α < λ+} and for some least γ ≤ λ,∀g, h ∈
H, g � γ 6= h � γ . Now find ξ∗ < γ such that {hα � ξ∗ : α < λ+} has cardinality
λ+ .]

(ii) Prove that 2λ 9 (λ+)22 . [Hint. Otherwise, consider a homogeneous set Y of size
λ+ for the 2 -colouring F of [λ2]2 given by F ({f, g}) = 0 if and only if f �lex g .
This is due to Sierpiński and Kurepa independently.]

(iii) Prove that if κ is a Ramsey cardinal, then κ is strongly inaccessible. [Hint.
Regularity is easy: use the colouring c({α, β}) = 0 ⇔ (∃ξ)({α, β} ⊆ Xξ) where
κ =

⋃
ζ<γ Xζ , | Xζ |< κ ; for strong inaccessibility, use the previous part.]

(iv) Prove that κ is a Ramsey cardinal if and only if for all β < κ, κ → (κ)<ωβ .
[Hint. For the hard direction, if f : [κ]<ω → β , define a 2 -colouring g as fol-
lows: g({ξ1, . . . , ξn}) = 0⇔ n = 2m∧ f({ξ1, . . . , ξm}) = f({ξm+1, . . . , ξ2m}) . Notice
if H is homogeneous for g and of cardinality κ , then g � [H]n ≡ 0 and so H is
homogeneous for f also.]

(v) Suppose that M |= (κ is a Ramsey cardinal and P is a forcing of cardinality less than
κ) . Let G be P -generic over M . Prove that M[G] |= (κ is a Ramsey cardinal).
[Hint. If M[G] |= (τG is a colouring of [κ]<ω) , and this statement is forced by
some condition p ∈ G , consider the colouring g : [κ]<ω → P (P × 2) defined by
g(a) = {〈q, x〉 : p ≤P q ∧ q  (τ(ȧ) = ẋ)} . Note that g ∈ M and P (P × 2) has
cardinality β for some β < κ (by strong inaccessibility). Use the previous part, in
M , to obtain a homogeneous set Y ∈M ; show p  (Y is homogeneous for τ) .]

(vi) Deduce that CH is independent of ZFC + (∃κ)(κ is a Ramsey cardinal).
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REMARK. This type of result in very general form is due to Levy and Solovay (1967); see
A. Kanamori, The Higher Infinite, Springer, 2009. The power of large cardinals to decide
a statement ϕ is thus circumscribed by the existence of forcings of relatively small size,
if such forcings can be used to establish the relative independence of ϕ from ZFC .

17 Optional. Embeddings and Elementary Embeddings of V

An uncountable cardinal κ is measurable if there exists a κ complete non-principal ultra-
filter U over κ . Suppose that M is a (transitive) model of ZFC . While the product
structure Mκ does not satisfy much of ZFC , the ultrapower Mκ/U of M relative to
U is a model of ZFC . Its elements are the equivalence classes (f)U of the relation ≡U
defined by g ≡U h if {α < κ : g(α) = h(α)} ∈ U for g, h ∈ Mκ . (Care is needed in the
case where M is a proper class; one uses the restricted equivalence classes consisting of
elements of least rank, a stratagem called Scott’s trick.) The mapping ιU : M → Mκ/U
defined by ιU (a) = (a∗)U where a∗(α) = a for all α < κ is an elementary embedding,
and so Mκ/U is a model of ZFC . If U is ℵ1 -complete, then Mκ/U is also well-founded
and satisfies the hypotheses of Mostowski’s Lemma. Its transitive collapse under the
Mostowski collapsing map π is denoted MU . Taking M = V , the associated mapping
jU : V → VU , defined by jU (a) = π(ιU (a∗)) is an elementary embedding of V into VU .

(i) Scott’s Theorem; 1961

Show that if there is a measurable cardinal, then V 6= L . [Hint. Suppose that κ is
a measurable cardinal; what is the first ordinal moved by jU ? If κ is the smallest
measurable cardinal, what will it be in the ultrapower?]

(ii) Kunen’s Theorem; 1971

Prove that no non-trivial elementary embedding exists from V into V . [Hint.
Otherwise, use question 7(iv) from Example Sheet 3 to derive a contradiction; for
details, see A. Kanamori, The Higher Infinite, Springer, 2009, pages 319–320.]

REMARK. Joel Hamkins has shown very recently that every countable model of set theory
(M,∈M ) , including every well-founded model, is isomorphic to a submodel of its own
constructible universe (LM ,∈L) . In terms of embeddings (i.e. injective homomorphisms),
there is an embedding j : (M,∈M ) → (LM ,∈L) that is elementary for quantifier-free
assertions in the language of set theory. See: Hamkins, J.D., J. Math. Log., 13, 1350006
(2013) [27 pages].

18 Optional. Forcing and Partial Isomorphisms

Suppose that A and B are τ –structures in a vocabulary τ . Say that A and B are
partially isomorphic, denoted A 'p B if some non-empty family F ⊆ Part(A, B) of the
partial isomorphisms from A to B is a back-and-forth set for A and B :

(∀f ∈ F )(∀a ∈ A)(∃g ∈ F )(f ⊆ g ∧ a ∈ dom(g)) and
(∀f ∈ F )(∀b ∈ B)(∃g ∈ F )(f ⊆ g ∧ b ∈ range(g)) .

(i) Prove that if τ,A,B are countable and A 'p B , then A ' B .
(ii) Show that the converse of (i) fails. [Hint. Consider the linear orders Q and R .]
(iii) Prove that if two structures A and B are partially isomorphic, then there is a forcing

extension in which they are isomorphic.

REMARK. Partial isomorphism yields a characterization of elementary equivalence in
the infinitary language L∞,ω . For a recent introduction to these ideas, see J. Va̋a̋na̋nen,
Models and Games, Cambridge University Press, 2011.
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19 Optional. Martin’s Maximum

A forcing P is called stationary-preserving if P does not destroy stationary subsets of ω1 :
if M |= (S is a stationary subset of ω1) , then M[G] |= (S is a stationary subset of ω1) ,
whenever G is P–generic over M . Martin’s Maximum is the statement MM : for every
stationary-preserving forcing P , if (∀α < ω1)(Dα is dense open in P ), then there exists
a {Dα : α < ω1}–generic set G in P .

(i) Show that if P has the countable chain condition, then P is stationary-preserving.

(ii) Give an example of a stationary-preserving forcing that has an uncountable anti-
chain.

(iii) Prove MM implies MAℵ1 : for every c.c.c. forcing P , if {Dα : α < ω1} is a family
of dense sets in P , then there exists a {Dα : α < ω1}–generic set G in P .

(iv) Show MAℵ1 implies Suslin’s Hypothesis.

REMARK. The relative consistency strength of ZFC +MM is far stronger than that of
ZFC + MA which is equiconsistent with ZFC . MM requires a large cardinal axiom
for its consistency.

20 Optional. Normal Functions and Mahlo Cardinals

A (class) function G : Ord→ Ord is called normal if G is (strictly) increasing (α < β →
G(α) < G(β) ) and continuous (for all limit δ ∈ Ord,G(δ) =

⋃
α<δ G(α) ). A (strongly)

inaccessible cardinal κ is called (strongly) Mahlo if {α < κ : α = cf(α)} is stationary in
κ .

(i) (a) Prove in ZFC that every normal function G has a fixed point: there is δ ∈ Ord
such that G(δ) = δ .

(b) Call the statement “every normal function has a regular fixed point” the regular
fixed point axiom RFPA . Show that RFPA is not provable in ZFC .

(ii) (a) Suppose κ is strongly Mahlo. Show {α < κ : α is strongly inaccessible} is
stationary in κ

(b) Prove that if κ is strongly Mahlo, then Vκ |= RFPA .

21 The Axiom of Choice in L

(i) Define by transfinite recursion a ∆1 well-ordering <α of Lα for α ∈ Ord and a
Σ1 well-ordering <L of L . [Hint. The case <δ for limit δ is immediate (take
unions). For the successor case <β+1 , recall that the codes of formulas without
parameters can be identified with elements of Lω and can be well-ordered using the
lexicographic order; since the parameters of a set in Lβ+1 arise already in Lβ , they
can be well-ordered by <β . So the predicate x <β+1⇔ (x ∈ Lβ ∧ y ∈ Lβ ∧ x <β
y)

∨
(x ∈ Lβ∧y ∈ (Lβ+1 \Lβ))

∨
(x ∈ (Lβ+1 \Lβ)∧y ∈ (Lβ+1 \Lβ)∧ the first formula

defining x over Lβ precedes the first formula defining y over Lβ) . For the global
case, note that the predicate x <L y ⇔ (∃α)(x ∈ Lα ∧ x <α y) has the required
complexity.]

(ii) Deduce that V = L implies AC .

(iii) Conclude that L is a model of ZFC .

8



22 Optional. Dilworth’s Theorem and Galvin’s Conjecture

(i) Prove Dilworth’s theorem: If a partial order P has at least n2 + 1 elements for
some n < ω , then it has either a chain of size n+ 1 or an anti-chain of size n+ 1.
Equivalently, if the largest anti-chain in P has size n , then P can be decomposed
into n chains.

(ii) Suggest and prove a generalization of Dilworth’s theorem for infinite cardinals. Give
examples to support the alleged optimality of your result.

(iii) Galvin’s Conjecture

Let κD be the least cardinal κ , if it exists, such that for every partial order P , if every
suborder of P of size less than κ can be decomposed into countably many chains,
then P can also be decomposed into countably many chains. Can you eliminate
ℵ0 and ℵ1 as candidate values for κD ? Galvin’s Conjecture states that ℵ2 is a
possible value for κD . See S. Todorcevic, Combinatorial dichotomies in set theory,
Bull. Symbolic Logic, 17 (2011), 1-72.

REMARK. After the classic works of Gödel and Cohen, the following are accessible and list
many further suggestions for reading and research.

Woodin, W.H., The Continuum Hypothesis, part I, Notices Amer. Math. Soc. 48 (2001),
567-576.

Woodin, W.H., The Continuum Hypothesis, part II, Notices Amer. Math. Soc. 48 (2001),
681-690.

Woodin, W.H., Correction to: The Continuum Hypothesis. Part II, Notices Amer. Math.
Soc. 49 (2002), 46.

Dehornoy, P., Recent progress on the Continuum Hypothesis (after Woodin);

http://www.math.unicaen.fr/~dehornoy/Surveys/DgtUS.pdf

http://www.math.unicaen.fr/~dehornoy/Surveys/Dgt.pdf

Koellner, P., The Continuum Hypothesis, Stanford Encyclopaedia of Philosophy, Septem-
ber 2011;

http://www.logic.harvard.edu/EFI_CH.pdf

Steprans, J., History of the Continuum in the Twentieth Century, to appear, Vol. 6
History of Logic;

http://www.math.yorku.ca/~steprans/Research/PDFSOfArticles/hoc2INDEXED.pdf

REMARK. For research problems in set theory, go to the sources; there are some treasure
houses.

Shelah, S., On what I do not understand (and have something to say): Part I, Fund.
Math. 166 (2000), 1-82;

http://matwbn.icm.edu.pl/ksiazki/fm/fm166/fm16612.pdf
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Shelah, S., On what I do not understand (and have something to say): Part II, Math.
Japonica 51 (2000), 329-377;

http://shelah.logic.at/files/702.pdf

Fremlin, D.H., Problems;

https://www.essex.ac.uk/maths/people/fremlin/problems.pdf

Miller, A.W., Some interesting problems;

http://www.math.wisc.edu/~miller/res/problems.pdf

Todorcevic, S., Combinatorial dichotomies in set theory, Bull. Symbolic Logic, 17 (2011),
1-72.
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