## Examples 1

1. see Prop (2.2). If $f, g: X \rightarrow Y$ are continuous and $Y$ Hausdorff then $\{x \in X \mid f(x)=g(x)\}$ is closed in $X$.
2. Let $G$ be a group and $\mathcal{L}$ a non-empty family of normal subgroups s.t. if $K_{1}, K_{2} \in \mathcal{L}$ and $K_{3}$ is a normal subgroup containing $K_{1} \cap K_{2}$ then $K_{3} \in \mathcal{L}$. Let $\mathcal{T}$ be the family of all unions of sets of cosets $K g$ with $K \in \mathcal{L}, g \in G$. Show that $\mathcal{T}$ is a topology on $G$ and that $G$ is a topological group with respect to this topology. Show also that $\mathcal{L}$ is the set of open normal subgroups of $G$ with respect to this topology.
3. Lemma (1.1)(c). $G$ a topological group. To prove:

Every open subgroup of $G$ is closed.
Every closed subgroup of finite index is open.
If $G$ compact, every open subgroup of $G$ has finite index.
4. Prop (1.3)(b). G a compact, totally disconnected topological group. To prove:
A subset of $G$ is both closed and open if and only if it is a union of finitely many cosets of open normal subgroups.
5. Recall if $S \subseteq G$ then the centralizer of $S$ is

$$
C_{G}(S)=\{g \in G \mid g s=s g \quad \forall s \in S\}
$$

and the normalizer of a subgroup $H$ is

$$
N_{G}(H)=\left\{g \in G \mid g^{-1} h g \in H \& g h g^{-1} \in H \quad \forall h \in H\right\} .
$$

Suppose $G$ is a Hausdorff topological group.
(a) Prove that centralizers of subsets and normalizers of closed subgroups are closed.
(b) Prove that each closed abelian subgroup $A$ is contained in a maximal closed abelian subgroup (i.e. the family of closed abelian subgroups containing $A$, partially ordered with respect to inclusion, has a maximal element).
(c) Prove that if there is a series

$$
1=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G
$$

such that $G_{i} / G_{i+1}$ is abelian for each $i$, then there is such a series consisting of closed subgroups. (Consider closures).
6. $G$ a profinite group and $X \leq G$, then

$$
\bar{X}=\cap\left\{K \mid X \leq K \leq_{0} G\right\} .
$$

7. Let $X$ be a dense subgroup of a topological group $G$ (i.e. $\bar{X}=G$ ). Prove that $N=\overline{N \cap X}$ for each open subgroup $N$ of $G$.
8. If $G$ is finite what is the profinite completion of $G$ ?
9. Give an example of a group which has trivial pro- $p$ completions for each $p$ but a non-trivial profinite completion (or describe the properties such a group should have).
