Chemical	Name:	
	Lab Section:	
Nomenclature	Date:	Sign-Off

Prepared by

Dr. Gary Evett, Professor of Biophysical Sciences, WNC-Fallon Campus

Edited by

Dr. Steve Carman, Professor of Biophysical Sciences, WNC-Carson Campus and Dr. Elizabeth Tattersall, Instructor of Biophysical Sciences, WNC-Douglas Campus

for

CHEM 121, General Chemistry I

Fall 2014

CHEMICAL NOMENCLATURE

The International Union of Pure & Applied Chemists (IUPAC) has established rules for naming chemical compounds (chemical nomenclature). Therefore, uniformity is achieved in chemistry especially in the scientific literature. Different nomenclature rules are used for inorganic and organic compounds.

INORGANIC NOMECLATURE

I. NAMING IONIC COMPOUNDS

Monoatomic cations are named by the elemental name followed by ion.

Ca²⁺ calcium ion

Many transition metal cations have more than one charge. In this case when naming these cations the "stock nomenclature system" is used by writing a roman numeral in parenthesis after the elemental name.

Fe ²⁺ iron (II) ion	Cu ¹⁺ copper (I) ion	Hg ₂ ²⁺ mercury (I) ion
Fe ³⁺ iron (III) ion	Cu ²⁺ copper (II) ion	Hg ²⁺ mercury (II) ion

An older method is also used to distinguish between cations that can vary in charge, using the 2 most common oxidation states ("charges"). The Latin root of the elemental name is followed by –ic or –ous. The –ic ending indicates a larger positive charge than – ous.

Fe ²⁺ ferrous ion	Cu ¹⁺ cuprous ion	Hg ₂ ²⁺ mercurous ion
Fe ³⁺ ferric ion	Cu ²⁺ cupric ion	Hg ²⁺ mercuric ion

The older nomenclature is not used much in chemistry texts, but it is used commonly to label chemical bottles containing ionic compounds.

Monoatomic anions are named by replacing the end of the element with –ide.

Cl chlorine atom Cl⁻ chloride ion

Many anions are **polyatomic ions**. Some of these also end in –ide.

OH⁻ hydroxide ion CN⁻ cyanide ion Most **polyatomic ions** are oxyanions meaning they contain oxygen with other elements. If two oxyanions are in a common series, the ion with more oxygens ends in –ate (the originating acid name ends in –ic) and the ion with one less oxygen ends in –ite (the originating acid name ends in –ous).

NO_3^- r	itrate ion	SO_{4}^{2-}	sulfate ion
NO_2^- r	nitrite ion	SO_{3}^{2-}	sulfite ion

Some **polyatomic anions** form a common series with four different oxyanions.

- ClO_4^- perchlorate ion (from perchlorIC acid)
- ClO_3^- chlorate ion

 ClO_2^- chlorite ion

ClO⁻ hypochlorite ion (from hypochlorOUS acid)

per____ ate means the most oxygen atoms in the ion – usually 4

____ate means one less oxygen than per__ate

____ite means one less oxygen than -ate

hypo__ite means one less oxygen than -ite (least oxygen atoms in the ion) - usually 1

Hydrogen ion, H^+ , can be added to polyatomic anions one step at a time until a neutral acid is produced. Each added H^+ neutralizes one negative charge.

PO_{4}^{3-}	phosphate ion
HPO_{4}^{2-}	hydrogenphosphate ion
$H_2PO_4^-$	dihydrogenphosphate ion
H_3PO_4	phosphoric acid

When naming ionic compounds, also known as salts, the cation is named first followed by the name of the anion. The word ion is dropped from each ion name. Subscripts representing how many ions are in the empirical formula are not named with ionic nomenclature, because they can be figured out by logic. So remember with salts DO NOT USE PREFIXES TO NAME THE SUBSCRIPTS.

CaCl ₂	Calcium chloride	not calcium dichloride.
$Ca_3(PO_4)_2$	Calcium phosphate	not tricalcium diphosphate

Even though ionic crystalline solids contain ions, the sum of the positive charges equals the sum of the negative charges so the salt crystals are neutral. Since the size of a salt crystal can vary, a neutral empirical formula is used to represent a salt crystal.

 $Al_2(SO_4)_3$ the cation is Al³⁺ and the anion is SO_4^{2-} so the name is aluminum sulfate.

 $Al_2(SO_4)_3$ this neutral empirical formula represents 2 Al³⁺ for every 3 SO_4^{2-} in the salt

To make a neutral formula from ions the crossover method is used.

Al³⁺ and SO_4^{2-} becomes $Al_2(SO_4)_3$

The 3 superscript from the aluminum ion will become the subscript for the sulfate and, the 2 superscript from the sulfate will become the subscript on the aluminum atom to produce the neutral salt formula $Al_2(SO_4)_3$. When more than one polyatomic ion is needed in the formula, the subscript is placed outside of parenthesis. In the neutral salt formula, superscripted charges are not used to represent ions in the empirical formula. They are omitted. One can tell it is a salt formula because the metal is always first in the formula and the nonmetal is always second in the formula.

II. NAMING BINARY MOLECULAR COMPOUNDS

Binary molecular compounds contain covalent bonds between two different **nonmetal** atoms. Greek prefixes are used to indicate the number of atoms of each element in the molecule. The Greek prefixes are:

Prefix	Meaning
Mono	1
Di	2
Tri	3
Tetra	4
Penta	5
Hexa	6
Hepta	7
Octa	8
Nona	9
Deca	10

TABLE 1. Prefixes Used in Binary Molecular Compounds

Common names are still used to name some molecules such as the ones in Table 2.

TABLE 2. Common name Formula

Water	H ₂ O
Ammonia	NH ₃
Hydrogen peroxide	H_2O_2
Nitric oxide	NO
Nitrous oxide	N_2O

RULES FOR NAMING BINARY MOLECULAR COMPOUNDS

- 1. The elemental name of the most metallic atom is written first (the one farther to the left in a period or the one farthest down a group).
- 2. For the second element in the molecule, the ending is dropped from the elemental name and -ide is added. For example, chlorine becomes chloride.
- 3. Greek prefixes are used to indicate the number of atoms of each element. If there is only one atom of the first element, then the mono is dropped. If the prefix ends in a or o, and the second element begins with a vowel the a or o is often dropped from the prefix.
- Cl₂O₇ Dichlorine heptoxide
- CO₂ Carbon dioxide

III. NAMING ACIDS

Acids are named according to the anion they contain.

Anion ending	Acid name
-ide	hydroic acid
Cl ⁻	HCl
chloride	hydrochloric acid
perate	peric acid
ClO_4^-	<i>HClO</i> 4
perchlorate	perchloric acid
-ate	<u>ic</u> acid
NO ₃ -	HNO_3
nitrate	nitric acid
-ite	ous acid
ClO_2^-	<i>HClO</i> 2
chlorite	chlorous acid

hypo____ite ClO⁻ hypochlorite hypo____ous acid *HClO* hypochlorous acid

IV. NAMING SOME SIMPLE ORGANIC COMPOUNDS

We will just learn to name a few organic compounds. **Alkanes** consist of only carbon and hydrogen and all the bonds are single.

Prefixes for alkanes meth- means one carbon eth- means two carbons prop- means three carbons

Alcohols have an –OH group bound to a carbon atom. The name ends in –ol. With propanol, locant numbers are used to distinguish whether the –OH group is on C-1 or C-2. Locant numbers are always separated form letters with a dash.

Methanol CH₄O or CH₃OF

Ethanol $C_2H_6O \text{ or } C_2H_5OH$

6

2-Propanol (isopropyl alcohol) CH₃CHOHCH₃

Helpful Reference Materials

COMMON IONS

Positive lons (Cations)

1+ Ammonium (NH₄⁺) Cesium (Cs⁺) Copper(I) or cuprous (Cu⁺) Hydrogen (H⁺) Lithium (Li⁺) Potassium (K⁺) Silver (Ag⁺) Sodium (Na⁺)

2+

Barium (Ba²⁺) Cadmium (Cd²⁺) Calcium (Ca²⁺) Chromium(II) or chromous (Cr²⁺) Cobalt(II) or cobaltous (Co²⁺) Copper(II) or cupric (Cu²⁺) Iron(II) or ferrous (Fe²⁺) Lead(II) or plumbous (Fb²⁺) Magnesium (Mg²⁺) Manganese(II) or manganous (Mn²⁺) Mercury(I) or mercurous (Hg₂²⁺)

Mercury(II) or mercuric (Hg²⁺) Strontium (Sr²⁺) Nickel(II) (Ni²⁺) Tin(II) or stannous (Sn²⁺) Zinc (Zn²⁺)

3+

Aluminum (Al³⁺) Chromium(III) or chromic (Cr³⁺) Iron(III) or ferric (Fe³⁺)

Negative lons (Anions)

1-

Acetate $(C_2H_3O_2^{-})$ Bromide (Br^{-}) Chlorate (ClO_3^{-}) Chloride (Cl^{-}) Cyanide (CN^{-}) Dihydrogen phosphate $(H_2PO_4^{-})$ Fluoride (F^{-}) Hydride (H^{-}) Hydrogen carbonate or bicarbonate (HCO_3^{-}) Hydrogen sulfite or bisulfite (HSO₃⁻) Hydroxide (OH⁻) Iodide (I⁻) Nitrate (NO₃⁻) Nitrite (NO₂⁻) Perchlorate (ClO₄⁻) Permanganate (MnO₄⁻) Thiocyanate (SCN⁻)

2–

Carbonate (CO_3^{2-}) Chromate (CrO_4^{2-}) Dichromate $(Cr_2O_7^{2-})$ Hydrogen phosphate (HPO_4^{2-}) Oxide (O^{2-}) Peroxide (O_2^{2-}) Sulfate (SO_4^{2-}) Sulfide (S^{2-}) Sulfide (SO_3^{2-})

3–

Arsenate (AsO_4^{3-}) Phosphate (PO_4^{3-})

1A H+	2A									ЗA	4A	5A	6A	7A H-	Ν
Li ⁺												N ³⁻	O ^{2–}	F-	O B
Na+	Mg ²⁺	l	Trar	nsitio	n me	etals				A1 ³⁺		P3-	S ²⁻	C1-	E
K+	Ca ²⁺		Cr ³⁺	Mn ²⁺	Fe ²⁺ Fe ³⁺	Co ²⁺	Ni ²⁺	Cu ⁺ Cu ²⁺	Zn²+				Se ^{2–}	Br-	Ģ
Rb+	Sr ²⁺						1	Ag+	Cd ²⁺		Sn ²⁺		Te ^{2–}	I-	A S E S
Cs+	Ba ²⁺						Pt ²⁺	Au ⁺ Au ³⁺	Hg2+ Hg2+		Pb ²⁺	Bi ³⁺			S

NOMENCLATURE WORKSHEET

Name the following io	nic compounds. Complete	before leaving lab.
KMnO4	Al(NO ₃)3	
Na2CrO4	MgO	
AgCl	AIN	
Na2O	Ca3(PO4)2	
NaC2H3O2	K3N	
CuSO4	LiH2PO4	
Sn(ClO)4		
Give the formula for t	he following ionic compour	ıds.
Sodium carbonate		
nickel (III) sulfide		
Sodium bicarbonate		
Calcium sulfide		
Calcium sulfate		
Iron (III) hydroxide		

9

Name the following molecules.

<u></u>	NH ₃	
PCl5	Cl ₂ O7	
02	P ₄ O ₁₀	
Cl2	H2	
N ₂ O ₅	H2O2	
СО	SO ₂	
	a for the following molecules.	
Antimony tribromide	-	
Antimony tribromide Pentaphosphorus pe	2	
Antimony tribromide Pentaphosphorus pe Phosphorus triiodide	e	_

Name the following acids

H ₂ SO ₄	
HCl	
HClO ₄	
	_
HBr	
НІ	
	-
HNO3	
	_
HClO ₃	
HC ₂ H ₃ O ₂ or CH ₃ COOH (or HOAc)	

11

Name the following organic molecules

Added 21 September 2014, 2005 hours, PDT.