

Prepared by

Dr. Gary Evett, Professor of Biophysical Sciences, WNC-Fallon Campus

Edited by

Dr. Steve Carman, Professor of Biophysical Sciences,
WNC-Carson Campus
and
Dr. Elizabeth Tattersall, Instructor of Biophysical Sciences, WNC-Douglas Campus for

CHEM 121, General Chemistry I

Fall 2014

CHEMICAL NOMENCLATURE

The International Union of Pure \& Applied Chemists (IUPAC) has established rules for naming chemical compounds (chemical nomenclature). Therefore, uniformity is achieved in chemistry especially in the scientific literature. Different nomenclature rules are used for inorganic and organic compounds.

INORGANIC NOMECLATURE

I. NAMING IONIC COMPOUNDS

Monoatomic cations are named by the elemental name followed by ion.
Ca^{2+} calcium ion

Many transition metal cations have more than one charge. In this case when naming these cations the "stock nomenclature system" is used by writing a roman numeral in parenthesis after the elemental name.

$$
\begin{array}{lll}
\mathrm{Fe}^{2+} \text { iron }(\mathrm{II}) \text { ion } & \mathrm{Cu}^{1+} \text { copper (I) ion } & \mathrm{Hg}_{2}{ }^{2+} \text { mercury (I) ion } \\
\mathrm{Fe}^{3+} \text { iron (III) ion } & \mathrm{Cu}^{2+} \text { copper (II) ion } & \mathrm{Hg}^{2+} \text { mercury (II) ion }
\end{array}
$$

An older method is also used to distinguish between cations that can vary in charge, using the 2 most common oxidation states ("charges"). The Latin root of the elemental name is followed by -ic or -ous. The -ic ending indicates a larger positive charge than ous.

Fe^{2+} ferrous ion	Cu^{1+} cuprous ion	$\mathrm{Hg}_{2}{ }^{2+}$ mercurous ion
Fe^{3+} ferric ion	Cu^{2+} cupric ion	Hg^{2+} mercuric ion

The older nomenclature is not used much in chemistry texts, but it is used commonly to label chemical bottles containing ionic compounds.

Monoatomic anions are named by replacing the end of the element with -ide.

Cl chlorine atom
Cl^{-}chloride ion

Many anions are polyatomic ions. Some of these also end in -ide.
OH^{-}hydroxide ion
CN^{-}cyanide ion

Most polyatomic ions are oxyanions meaning they contain oxygen with other elements. If two oxyanions are in a common series, the ion with more oxygens ends in -ate (the originating acid name ends in -ic) and the ion with one less oxygen ends in -ite (the originating acid name ends in-ous).
NO_{3}^{-}nitrate ion SO_{4}^{2-} sulfate ion
NO_{2}^{-}nitrite ion
SO_{3}^{2-} sulfite ion

Some polyatomic anions form a common series with four different oxyanions.
ClO_{4}^{-}perchlorate ion (from perchlorlC acid)
ClO_{3}^{-}chlorate ion
ClO_{2}^{-}chlorite ion
ClO^{-}hypochlorite ion (from hypochlorOUS acid)
per___ ate means the most oxygen atoms in the ion - usually 4 ate means one less oxygen than per__ate
ite means one less oxygen than -ate
hypo_ ite means one less oxygen than -ite (least oxygen atoms in the ion) - usually 1

Hydrogen ion, H^{+}, can be added to polyatomic anions one step at a time until a neutral acid is produced. Each added H^{+}neutralizes one negative charge.
PO_{4}^{3-} phosphate ion
HPO_{4}^{2-} hydrogenphosphate ion
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$dihydrogenphosphate ion
$\mathrm{H}_{3} \mathrm{PO}_{4}$ phosphoric acid

When naming ionic compounds, also known as salts, the cation is named first followed by the name of the anion. The word ion is dropped from each ion name. Subscripts representing how many ions are in the empirical formula are not named with ionic nomenclature, because they can be figured out by logic. So remember with salts DO NOT USE PREFIXES TO NAME THE SUBSCRIPTS.

CaCl_{2}	Calcium chloride	not calcium dichloride.
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	Calcium phosphate	not tricalcium diphosphate

Even though ionic crystalline solids contain ions, the sum of the positive charges equals the sum of the negative charges so the salt crystals are neutral. Since the size of a salt crystal can vary, a neutral empirical formula is used to represent a salt crystal.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ the cation is Al^{3+} and the anion is SO_{4}^{2-} so the name is aluminum sulfate.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ this neutral empirical formula represents $2 \mathrm{Al}^{3+}$ for every $3 \mathrm{SO}_{4}^{2-}$ in the salt

To make a neutral formula from ions the crossover method is used.
Al^{3+} and SO_{4}^{2-} becomes $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
The 3 superscript from the aluminum ion will become the subscript for the sulfate and, the 2 superscript from the sulfate will become the subscript on the aluminum atom to produce the neutral salt formula $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$. When more than one polyatomic ion is needed in the formula, the subscript is placed outside of parenthesis. In the neutral salt formula, superscripted charges are not used to represent ions in the empirical formula. They are omitted. One can tell it is a salt formula because the metal is always first in the formula and the nonmetal is always second in the formula.

II. NAMING BINARY MOLECULAR COMPOUNDS

Binary molecular compounds contain covalent bonds between two different nonmetal atoms. Greek prefixes are used to indicate the number of atoms of each element in the molecule. The Greek prefixes are:

TABLE 1. Prefixes Used in Binary Molecular Compounds

Prefix	Meaning
Mono	1
Di	2
Tri	3
Tetra	4
Penta	5
Hexa	6
Hepta	7
Octa	8
Nona	9
Deca	10

Common names are still used to name some molecules such as the ones in Table 2.

TABLE 2. Common name

Water
Ammonia
Hydrogen peroxide
Nitric oxide
Nitrous oxide

Formula
$\mathrm{H}_{2} \mathrm{O}$
NH_{3}
$\mathrm{H}_{2} \mathrm{O}_{2}$
NO
$\mathrm{N}_{2} \mathrm{O}$

RULES FOR NAMING BINARY MOLECULAR COMPOUNDS

1. The elemental name of the most metallic atom is written first (the one farther to the left in a period or the one farthest down a group).
2. For the second element in the molecule, the ending is dropped from the elemental name and -ide is added. For example, chlorine becomes chloride.
3. Greek prefixes are used to indicate the number of atoms of each element. If there is only one atom of the first element, then the mono is dropped. If the prefix ends in a or 0 , and the second element begins with a vowel the a or o is often dropped from the prefix.
$\mathrm{Cl}_{2} \mathrm{O}_{7}$ Dichlorine heptoxide
CO_{2} Carbon dioxide

III. NAMING ACIDS

Acids are named according to the anion they contain.

Anion ending -ide	Acid name hydro \qquad ic acid
Cl^{-}	HCl
chloride	hydrochloric acid
per ___ ate	per___ic acid
ClO_{4}^{-}	HClO_{4}
perchlorate	perchloric acid
-ate	__ic acid
NO_{3}^{-}	HNO_{3}
nitrate	nitric acid
-ite	_ous acid
ClO_{2}^{-}	HClO_{2}
chlorite	chlorous acid

\qquad ite
hypo \qquad ous acid
ClO^{-}
hypochlorite
HClO
hypochlorous acid

IV. NAMING SOME SIMPLE ORGANIC COMPOUNDS

We will just learn to name a few organic compounds.
Alkanes consist of only carbon and hydrogen and all the bonds are single.

Prefixes for alkanes
meth- means one carbon
eth- means two carbons
prop- means three carbons

Name	Formula	Structural Formula
Methane	CH_{4}	H
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	

Propane
$\mathrm{C}_{3} \mathrm{H}_{8}$

Alcohols have an -OH group bound to a carbon atom. The name ends in -ol. With propanol, locant numbers are used to distinguish whether the - OH group is on $\mathrm{C}-1$ or $\mathrm{C}-$ 2. Locant numbers are always separated form letters with a dash.

Methanol
$\mathrm{CH}_{4} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{OH}$

Ethanol
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

1-Propanol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

2-Propanol (isopropyl alcohol)
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$

Helpful Reference Materials

COMMON IONS		
Positive lons (Cations)	Mercury(II) or mercuric	Hydrogen sulfite or
1+	$\left(\mathrm{Hg}^{2+}\right)$	bisulfite ($\mathrm{HSO}_{3}{ }^{-}$)
Ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$	Strontium (Sr^{2+})	Hydroxide (OH^{-})
Cesium (Cs^{+}) ${ }^{\text {+ }}$	Nickel(II) ($\mathrm{Ni}^{2+}{ }^{2+}$	Iodide (I^{-})
Copper(I) or cuprous (Cu^{+})	Tin(II) or stannous (Sn^{2+})	Nitrate ($\mathrm{NO}_{3}{ }^{-}$)
Hydrogen (H^{+})	Zinc (Zn^{2+})	Nitrite ($\mathrm{NO}_{2}{ }^{-}$)
Lithium (Li^{+})	$3+$	Perchlorate ($\mathrm{ClO}_{4}{ }^{-}$)
Potassium(K^{+})	Aluminum (Al^{3+})	Permanganate ($\mathrm{MnO}_{4}{ }^{-}$)
Silver (AB^{+})	Aluminum $\left(\mathrm{Al}^{3+}\right)$	Thiocyanate (SCN^{-})
Sodium (Na^{+})	Chromium(III) or chromic $\left(\mathrm{Cr}^{3+}\right)$	2-
2+	Iron(III) or ferric (Fe^{3+})	Carbonate ($\mathrm{CO}_{3}{ }^{2-}$)
Barium (Ba^{2+})		Chromate ($\mathrm{CrO}_{4}{ }^{2-}$)
Cadmium (Cd^{2+})	Negative lons (Anions)	Dichromate ($\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$)
Calcium (Ca^{2+})	Negative lons (Anions)	Hydrogen phosphate
Chromium(II) or chromous $\left(\mathrm{Cr}^{2+}\right)$	$\stackrel{\text { 1- }}{\text { Acetate }\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)}$	$\begin{array}{r} \left(\mathrm{HPO}_{4}{ }^{2-}\right) \\ \text { Oxide }\left(\mathrm{O}^{2-}\right) \end{array}$
Cobalt(II) or cobaltous (Co^{2+})	Bromide (Br^{-})	Peroxide ($\mathrm{O}_{2}{ }^{2-}$)
Copper(II) or cupric (Cu^{2+})	Chlorate ($\mathrm{ClO}_{3}{ }^{-}$)	Sulfate ($\mathrm{SO}_{4}{ }^{2-}$)
Iron(II) or ferrous (Fe^{2+})	Chloride (Cl^{-})	Sulfide (S^{2-})
Lead(II) or plumbous (Pb^{2+})	Cyanide (CN^{-})	Sulfite ($\mathrm{SO}_{3}{ }^{2-}$)
Magnesium $\left(\mathrm{Mg}^{2+}\right)$	Dihydrogen phosphate	
Manganese(II) or manganous	$\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$	$3-$
$\left(\mathrm{Mn}^{2+}\right)$	Fluoride (F^{-})	Arsenate ($\mathrm{AsO}_{4}{ }^{3-}$)
Mercury(I) or mercurous	Hydride (H^{-})	Phosphate ($\mathrm{PO}_{4}{ }^{3-}$)
$\left(\mathrm{Hg}_{2}{ }^{2+}\right)$	Hydrogen carbonate or bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$	

NOMENCLATURE WORKSHEET

Name the following ionic compounds. Complete before leaving lab.
KMnO_{4} \qquad $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ \qquad
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$
MgO \qquad

AgCl \qquad AlN \qquad
$\mathrm{Na}_{2} \mathrm{O}$ \qquad $\mathrm{Ca3}\left(\mathrm{PO}_{4}\right)_{2}$ \qquad
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ \qquad $\mathrm{K}_{3} \mathrm{~N}$ \qquad
CuSO_{4} \qquad $\mathrm{LiH}_{2} \mathrm{PO}_{4}$ \qquad
$\mathrm{Sn}(\mathrm{ClO})_{4}$ \qquad
Give the formula for the following ionic compounds.

Sodium carbonate \qquad
nickel (III) sulfide \qquad

Sodium bicarbonate \qquad

Calcium sulfide \qquad

Calcium sulfate \qquad

Iron (III) hydroxide \qquad

Name the following molecules.

\qquad
PCl_{5} \qquad $\mathrm{Cl}_{2} \mathrm{O}_{7}$ \qquad
O_{2} \qquad $\mathrm{P}_{4} \mathrm{O}_{10}$ \qquad
Cl_{2} \qquad H_{2}
$\mathrm{N}_{2} \mathrm{O}_{5}$ \qquad $\mathrm{H}_{2} \mathrm{O}_{2}$

CO \qquad SO_{2} \qquad

Write the formula for the following molecules.

Antimony tribromide \qquad

Pentaphosphorus pentoxide \qquad

Phosphorus triiodide \qquad

Tetraphosphorus pentasulfide \qquad

Nitrogen trifluoride \qquad

Name the following acids

$\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad

HCl \qquad
HClO_{4} \qquad

HBr \qquad

HI \qquad
HNO_{3} \qquad
HClO_{3} \qquad
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ or $\mathrm{CH}_{3} \mathrm{COOH}$ (or HOAc) \qquad

Name the following organic molecules
CH_{4} \qquad

$\mathrm{C}_{2} \mathrm{H}_{6}$

, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ \qquad

Added 21 September 2014, 2005 hours, PDT.

