Mechanical Principles in Orthodontic Force Control

Two Types of Orthodontic Appliances: Removable vs. Fixed

3

Fixed appliances

- Bands
- Brackets
- Wires
- Accessory appliances

Brackets

Metal bracket

• 24K plating gold bracket

5

Brackets

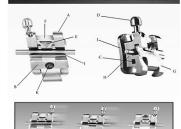
Clear Bracket

Plastic brackets

- · Staining and discoloration
- Poor dimensional stability
- Larger friction

7

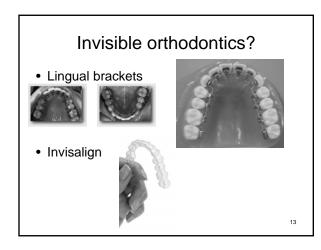
Ceramic brackets

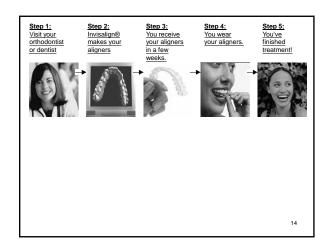

- Advantages over plastic brackets:
 - Durable, resist staining
 - Can be custom-molded
 - Dimensionally stable
- Disadvantages over metal brackets:
 - Bulkier than metal bracket
 - Fractures of brackets
 - Friction is bigger than that in metal bracket
 - Wear on teeth contacting a bracket
 - Enamel damage on debonding

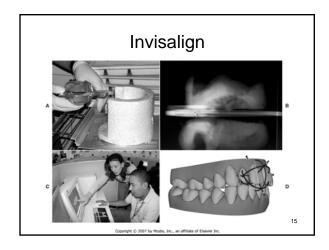
• Metal-reinforced ceramic bracket

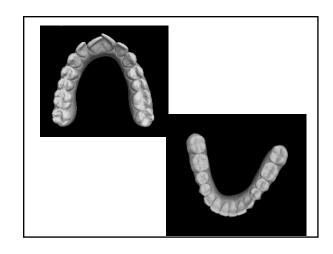
9

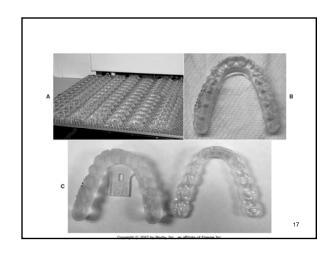
Self ligating bracket IN-OVATION'S ADVANTAGES

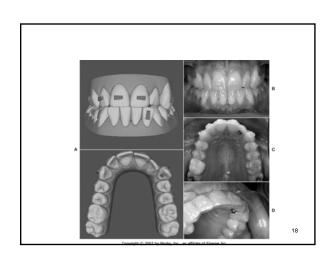

Self ligating bracket



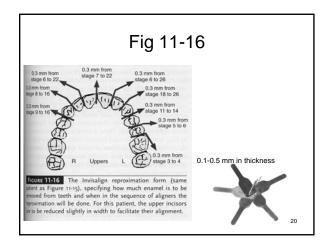

"Smart" Clips





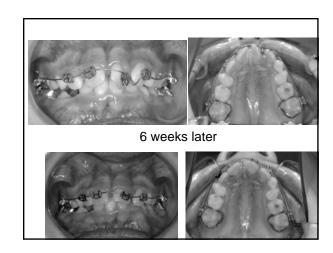


Clear aligner therapy (CAT) applicability


CAT performs well:

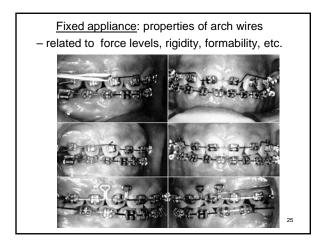
- Mild-moderate crowding with IPR or expansion
- Posterior dental expansion
- Close mild-moderate spacing
- Absolute intrusion (1 or 2 teeth only)
- Lower incisor extraction for severe crowding
- Tip molar distally

CAT does not perform well:


- Dental expansion for blocked-out teeth Extrusion of incisors*
- High canines
 Severe rotations (particularly) of round teeth)
- •Leveling by relative intrusion •Molar uprighting (any teeth with large undercuts)
- •Translation of molars*
- •Closure of premolar

extraction spaces*

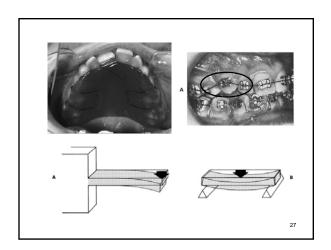
Invisalign vs. braces

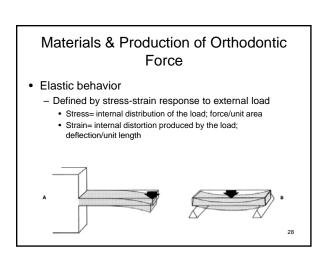

- patients treated with Invisalign relapsed more than those treated with conventional fixed appliances.
 - Kuncio D, et al. Angle Orthod 2007;77: 864-9

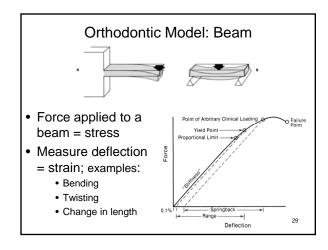
Wires

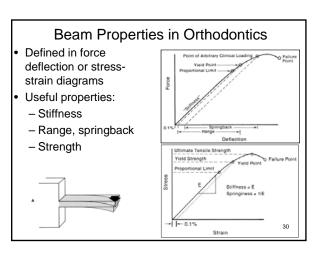
- Type:
 - NiTi wire (Nickel-Titanium wire)
 - TMA wires (Titanium-Molybdenum-Alloy)
 - Stainless steel wire
- Shape
 - Round wire
 - Rectangular wire

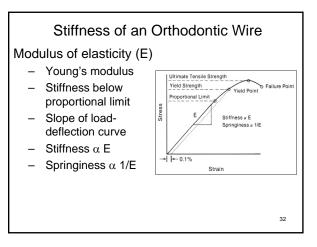
Wire

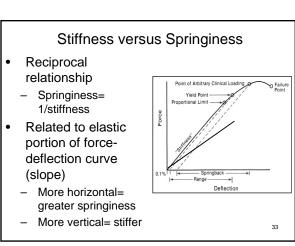


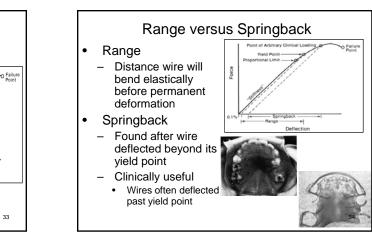

General Characteristics of Orthodontic Forces

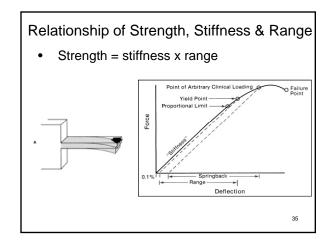

- · Optimal: light, continuous
 - Ideal material
 - Maintains elasticity
 - Maintains force over a range of tooth

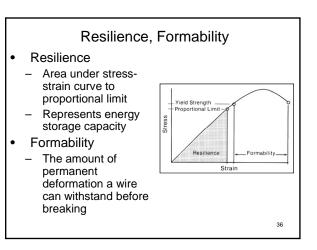

movement

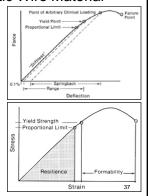






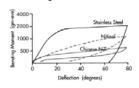


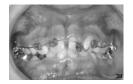

Bending Properties of an Orthodontic Wire Defined by 3 points 1. Proportional limit Point at which permanent deformation is first observed Similar to "elastic limit" Ultimate Tensile Strength 2. Yield strength Yield Strength Yield Point Point at which 0.1% Proportional Limit deformation occurs 3. Ultimate tensile (yield) Stiffness α E strength Maximum load wire can sustain → - 0.1% Strain



Ideal Orthodontic Wire Material

- Deflection properties:
 - High strength
 - Low stiffness (usually)
 - High range
- High formability
- Other properties:
 - Weldable, solderable
 - Reasonable cost
- No one wire meets all criteria!
 - Select for purpose required

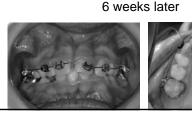



Wire Materials

- Precious metal alloys
 - Before 1950's: gold alloys, corrosion resistant
- Stainless steel, cobalt-chromium (elgiloy®) alloys
 - Improved strength, springiness
 - Corrosion resistant: chromium
 - Typical: 18% chromium, 8% nickel
- Nickel-titanium (NiTi) alloys
 - 1970's applied to orthodontics
 - Demonstrates exceptional springiness
 - · Two special properties: shape memory, superelasticity

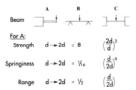
Austenitic NiTi (A-NiTi)

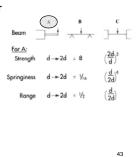
- Introduced 1980's
 - Demonstrate superelasticity
 - Large reversible strains
 - Over wide range of deflection, force nearly constant
 Van desirable above terials.
 - Very desirable characteristic
 - Non-elastic stress-strain (force deflection) curve
 - E.g., Chinese Ni-Ti

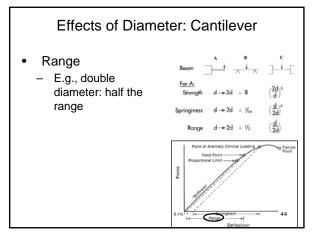


Uses of Ni-Ti Arch wires

- · Good choice:
 - Initial stages of Tx
 - Leveling and aligning (good stiffness, range)
- Poor choice:
 - Finishing (poor formability)

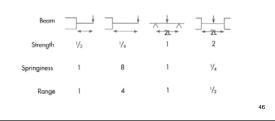

6 weeks later


Elastic Properties: Effects of Size and Shape


- · Wire properties
 - Significantly affected by wire (beam) cross section and length
 - Magnitude of change varies with wire material
 - Similar proportional changes among wire materials

Elastic Properties: Effects of Size and Shape Effects of Diameter: Cantilever

- Strength
 - Changes to third power
 - Ratio between larger to smaller beam
 - E.g., double diameter: deliver 8x strength
- Springiness
 - Changes to fourth power
 - Ratio between smaller to larger beam
 - E.g., double diameter: wire 1/16 as springy


Effects of Length (Cantilever)

- Strength
 - Decreases proportionately
 - E.g., double length: half the strength
- Springiness
 - Increase by cube of ratio
 - E.g., double length: 8x the springiness

Effects of Length (Cantilever)

- Range
 - Increases by square of ratio
 - E.g., double length: 4x the range

Spring Design

- Requires appropriate balance:
 - Heavy wire:
 - High strength, high force, low range
 - Light wire:
 - Low strength, low force, high range
- Example: removable appliance
 - Finger spring
 - High strength needed to avoid deformation
 - Force can be reduced by increasing wire length

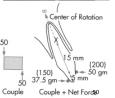
Add helix

Biomechanical <u>Design Factors</u> in Orthodontic Appliances

- Terms:
 - Force (F): load applied to object that will tend to move it to a different position in space
 - · Units: grams, ounces
 - Center of resistance (C_R): point at which resistance to movement can be concentrated
 - Object in free space: C_R=center of mass
 - Tooth root: C_R=halfway between root apex and crest of alveolar bone

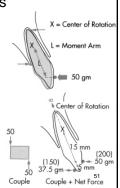
Design Factors in Orthodontic Appliances

- Moment: product of force times the perpendicular distance from the point of force application to the center of resistance
 - Units: gm-mm
 - Created when line of action of a force does not pass through the center of resistance
 - Force will translate and tend to rotate object around center of resistance



49

Design Factors in Orthodontic Appliances

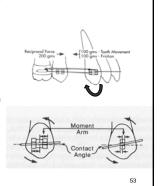

- Couple: two forces equal in magnitude but opposite in direction
 - No translation
 - Produces pure rotation around center of resistance

Design Factors in Orthodontic Appliances

- Center of rotation: point around which rotation occurs when object is being moved
 - Can be controlled with couple and force
 - Can be used to create bodily tooth movement

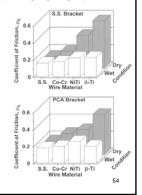
Friction

- Can dramatically affect the rate of tooth movement
- · Considerations:
 - Contact angle between orthodontic bracket and arch wire
 - 2. Arch wire material
 - 3. Bracket material



Contact Angle

- When sliding a tooth on an archwire:
 - Tooth tips
 - Further tipping prevented by moment created as bracket contacts wire
 contact angle
 - Increase contact angle = increase


resistance

 Greater force needed to overcome friction

Friction and Tooth Movement

- Effects of arch wire material
 - The greater titanium content, the more friction
 - Due to surface reactivity (chemistry)
 - Sliding resistance: titanium > stainless steel arch wires

Tooth Movement

- Effects of bracket material
 - Stainless steel: least friction
 - Titanium brackets: high friction likely
 - Ceramic:
 - Rough, hard surface
 - Increases friction
 - Ceramic with steel slot
 - · Reduced friction

Alternatives to Sliding (Friction)

Segmented mechanics or closing loops mechanics

- Activate loops
- Loops close to original shape
- Retract teeth toward space as loops close
- No sliding, no friction
- "Frictionless" mechanics

Summary

- · Ideal orthodontic forces
- · Wire properties
 - Strength, stiffness, range (springback)
 - Resilience, formability
- · Wire materials
- · Changes in diameter, length
- · Design factors
 - Force, center of resistance, moments, couples, center of rotation
 - Use of rectangular wires: couples
- Friction
 - Contact angle, wires, brackets

