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Abstract

We present in this work a method of creating high-quality corpora
from collections of user generated content, which we apply on a
snapshot of Wikipedia to create a very large corpus. Both our
software implementation and the corpus are released to the public.
Our approach makes use of both machine learning and hand-written
rules to remove a large portion of content that have little value
for most information retrieval on natural language processing tasks.
This work also contains a survey of several state of the art sentence
boundary detectors and we develop methods of improving their
performance by taking advantage of layout information. Finally, we
perform a quantitative comparison with a corpora created with an
earlier tool.
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Chapter 1

Introduction

Wikipedia is a free, on-line encyclopedia that currently has over 4 million
articles in its English version.1 It covers a broad range of topics and the
quality of the writing is on the whole better than most other user generated
content. There are several localised versions, and articles are often explicitly
linked to their counterpart in other languages. Its great size is the result
of user contributions, where visitors are encouraged to create and improve
articles.

Articles are internally written in a markup language, dubbed wiki
markup. The language is designed to be easy to learn and unobtrusive,
many of the directives resemble conventions occasionally used when text
formatting is unavailable. Modifications to Wikipedia articles take effect
immediately.

Markup languages are used to assign properties to different parts of
documents. This is usually done in order to specify the appearance (e.g.
This text should be typeset in italics) of different parts of a document,
but the assigned property can in principle be anything. Some directives of
wiki markup have a mostly visual effect, while others are used to assign
properties that are meaningful when interpreting the text, like: “this text
is in Spanish” or “this is an abbreviation”.

Its size combined with its permissive license,2 gives Wikipedia the
potential to be an important resource for the natural language processing
(NLP) and information retrieval (IR) communities. Unfortunately due to
its internal format, Wikipedia does not easily lend itself as source material
for such tasks. One obstacle is the structure of the markup language, which

1http://www.wikipedia.org
2CC-BY-SA 3.0 Unported License available at http://en.wikipedia.org/wiki/

Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_
License
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despite its low barrier to entry for humans, has some features that make it
best viewed as a programming language. Due to how the different markup
directives interact with each other, a naive strategy of simply ignoring the
more complex elements will result in invalid markup.

There is also the problem of identifying which content is relevant for
further analysis, as there is no clear segregation of the main content from
meta-information, navigation elements and so on. The elements that typical
NLP or IR applications will not be interested in are usually referred to as
noise and often appear in the form of navigational aids (e.g. “For other uses,
see Tail (disambiguation).”) or meta information (for instance the often seen
“[citation needed]”), but there are many other types of noise in the above
informal sense.

This chapter provides an outline for this thesis and an overview of
a system we have developed for extracting the linguistic content from
Wikipedia that is relevant for common NLP and IR tasks.

1.1 Problem Definition

In this thesis we will develop a method of building corpora by extracting
the textual content from the English Wikipedia. We will implement this
method and release the software and the corpus. The content we extract
is enriched with selected markup elements that are potentially useful when
creating NLP and IR systems. We also aim to filter out as much of the
non-interesting content as possible. As we will describe in the following
chapters, making the distinction between interesting and non-interesting
content is not always easy, neither on the conceptual level of defining what
constitutes “interesting” and “non-interesting” nor on the implementation
level.

Our system is in many ways intended to be an improved version
of Corpus Clean (Ytrestøl, 2009), an earlier effort on creating a corpus
builder for Wikipedia that was used in the creation of the WeScience and
WikiWoods (Ytrestøl et al., 2009; Flickinger et al., 2010) corpora. Like our
system, Corpus Clean preserves the markup directives that were deemed
relevant for further linguistic analysis while discarding others. However,
Corpus Clean is unable to interpret some of the more complex directives
of wiki markup, for instance template inclusions. The results of improper
template handling can be observed by looking for fragments of wiki markup
in WikiWoods. Corpus Clean had an heuristic approach to page cleaning
and discarded article sections based on their heading, as a result of this
both WikiWoods and WeScience contain more noise than necessary. We
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will come back to Corpus Clean (Section 2.3.3) and the corpora created
with it (Section 2.2.2).

Wikipedia is a rich resource of structured data, however the use of
“textual content” above means that we will have a NLP centred approach.
We will not make any effort to retrieve structured information for instance
by exploiting the inter article link structure or parsing “information boxes”
(tabular structures with short labeled phrases) and the like. There are
several interesting initiatives in this field as for instance “DBpedia” (Auer
et al., 2007).

1.1.1 Relevant Linguistic Content

Unfortunately, most Wikipedia articles have some content that would
contribute very little, if not be out right detrimental, to any downstream
usage of our corpus.

CleanEval (a shared task discussed in Section 1.2) used an allegory of
cleaning for the process of removing unwanted content from web pages.
Using the term “dirt” when referring to unwanted content follows naturally
from use of the word “cleaning”. Alternatively, if one use the metaphor of
detecting a signal (the relevant linguistic content, one can use the term
“noise” for the unwanted content. There are several varieties of noise:
such as navigational aids, meta information, non-textual content or textual
content with no grammatical structure.

A notion related to that of noise is “boilerplate”. Wikipedia itself
describes boilerplate as: “any text that is or can be reused in new contexts
or applications without being changed much from the original.”.3 In the
context of web content it takes on a slightly broader meaning of frequently
repeated, mostly auto-generated, content like copyright notices, navigation
bars and so on. Some, but not all, of the content that we consider dirty is
boilerplate in this sense. For instance collections links, bibliographies and
such are usually not considered boilerplate, but fall within our definition of
noise. As we will see below the term is often used to refer to all unwanted
content.

The content we do wish to retrieve are spans of text that contain
information about the subject matter of the article and that have a form
that requires grammatical analysis for interpretation. Such content will be
described as “clean” or “relevant linguistic content”.

Figure 1.1 shows three parts of the article “Context-free grammar” as
it appeared on 15 September 2012. The parts that are highlighted do not

3http://en.wikipedia.org/wiki/Boilerplate_(text)

http://en.wikipedia.org/wiki/Boilerplate_(text)
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Figure 1.1: Parts of the article “Context-free grammar”

meet our criteria for relevant linguistic content. Those in gray are not the
result of markup directives and no special processing are needed to remove
them.

1 The header, left-hand navigation bar and the footer (not shown) are
generated by the Mediawiki server and are not included in the wiki
markup.

2 All articles have their title as their top level heading — this is not
explicitly present in the article source. We generate this and insert it
into the corpus.

3 This is a “message box” that contains meta information, and we consider
these to be noise. It it is created by the inclusion of the template
“Refimprove” in the article source. Templates are pages that are
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intended to be included in other pages. Some of them simply contain
static markup that is shown at the place of their inclusion, while
others make use of the more complex features of wiki markup. Our
approach to templates is described in Section 2.1.3.

4 Like the navigational frame, the table of contents is not in the
article source, but auto-generated from the article structure and not
something we want in the corpus.

5 These are “language links” that link to articles of the same topic in other
languages, they are rendered on the navigation bar instead of where
they appear in the markup. They are navigational elements and are
removed.

6 Footnotes are usually used for bibliographic references, but are also used
for regular footnotes. All footnotes are removed.

7 These links lead to the page editor and are not present in the article
source.

8 Most articles have one or more sections for references, footnotes,
external links etc. that contain little relevant linguistic content. The
identification of such sections cannot be done by simply looking at
the markup, our approach to is discussed later in Chapter 4.

9 A “navigation box”, this is a navigational aid that links to articles with
related topics. It is not uncommon for an article to have one or more
navigation boxes, these are usually found near the end of an article.
As with all other navigational elements, we consider them noise.

1.2 Background: Clean and Dirty Text
There has been several earlier efforts on extracting content from noisy web
documents. Below we will look at how some earlier efforts defined the
classes clean and dirty text.

1.2.1 CleanEval

The CleanEval shared task was held in 2007 with the objectives of (a)
removing boilerplate from arbitrary web pages and (b) recovering some
of the basic page structure (Baroni et al., 2008). In preparation for this
task 741 English and 713 Chinese web pages were manually cleaned. The
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annotator guidelines that were used are summarised as follows in Pomikálek
(2011, p. 21):

In short, the CleanEval guidelines instruct to remove boilerplate
types such as:

• Navigation

• Lists of links

• Copyright notices

• Template materials, such as headers and footers

• Advertisements

• Web-spam, such as automated postings by spammers

• Forms

• Duplicate material, such as quotes of the previous posts in
a discussion forum

Some of these boilerplate types are not a problem when cleaning Wikipedia
articles: The navigation bar surrounding most of the article (item 1 in
Figure 1.1) is easily dealt with by either using the wiki markup as a starting
point or by taking advantage of the common XHTML structure shared by
the articles. Advertisements and spam are exceedingly rare on Wikipedia
and it seems like there is little point in attempting to identify them. Forms
(i.e. pages that accepts input from the user) are non-existent in the main
articles. Duplicate content mainly exists in the form of templates, and the
problems posed by them are different than those of identifying quoted text.
Our approach used in the second phase of cleaning is inspired by one of the
systems (namely NCLEANER) participating in this shared task.

1.2.2 KrdWrd

KrdWrd (Steger and Stemle, 2009) is a system for annotating web pages
and building web corpora. One of its components is a Firefox plugin that
makes it possible to annotate pages in a browser where they appear as
they normally do. Its annotation guidelines4 are based on those used in
CleanEval (Steger and Stemle, 2009; Pomikálek, 2011) and uses the terms
“good” and “bad” for text that should be included in a corpus and not
respectively. The requirements for clean text is stricter in the KrdWrd
guidelines than they are in the CleanEval guidelines, as the following

4https://krdwrd.org/manual/html/node6.html

https://krdwrd.org/manual/html/node6.html
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types of boilerplate is added in addition to what was already considered
boilerplate in CleanEval: Incomplete sentences, text in foreign languages,
text containing file names and other “non-words” and enumerations (unless
it is a complete sentence). Meta-information is not explicitly mentioned,
but it likely falls under the general description of boilerplate: “Generally
speaking, boilerplate is everything that [. . . ] could be left out without
changing the general content of the page.”

The annotation guidelines also include a third category, “uncertain”, for
text that do not match the criteria for “good” or “bad” text. Annotators
are instructed to mark captions, headings, labels and so on as uncertain.

By only including full sentences, what constitutes clean text according
to KrdWrd resembles our notion of relevant linguistic content. The most
striking difference is that headings are not considered clean, another
difference is that “non-words” and text in foreign languages are to be
annotated as “bad”. Strictly speaking, no content is removed from the
web pages during the annotation, but there no way of knowing why an
element is marked as “uncertain” (headings are always marked as uncertain,
which effectively leaves them un-annotated). In our view it is better to
include these elements and try to label them appropriately (our approach
is described in Chapter 3).

The Canola corpus, which we will refer to later in Section 4.3.2, is
one of the resources created using the KrdWrd system. This corpus is
consists of 216 web pages that have each been annotated by 5-12 annotators
(Pomikálek, 2011, p. 38).

1.2.3 L3S-GN1

The L3S-GN1 data set (Kohlschütter et al., 2010)5 is a collection of
manually annotated news articles collected from Google News. It
was created to serve as a gold standard for evaluating page cleaning
approaches. The annotations in L3S-GN1 marks the page content as either:
“. . . headline, fulltext, supplemental (text which belongs to the article but
is not fulltext, such as image captions etc.), user comments, related content
(links to other articles etc.). Unselected text is regarded not content
(boilerplate).” (Kohlschütter et al., 2010, p. 443).

The “related content” class would be considered noise for our purposes
and would also be considered as boilerplate by the CleanEval and KrdWrd
annotation guidelines. The “supplemental” class seems to fill a similar role
as the “uncertain” class used by KrdWrd with the exception of headings that

5Available at: http://www.L3S.de/~kohlschuetter/boilerplate

http://www.L3S.de/~kohlschuetter/boilerplate
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Figure 1.2: Overview of our system

are annotated as “headline”. Of the sets we are aware of, “user comments”
is unique for L3S-GN1.

1.3 Thesis Overview
The next chapter discusses the structure of Wikipedia and gives a brief
introduction to wiki markup and its significance for downstream processes.
Furthermore it surveys earlier efforts in extracting content from Wikipedia
and some tools capable of processing wiki markup.

The rest of this thesis closely mirrors the structure of our system that
is sketched in Figure 1.2. Chapter 3 describes the first three stages starting
with how we process a database snapshot of Wikipedia in order to extract
the wiki markup. In the “Template processing” stage (Section 3.3) we
discard a substantial amount of noise by selectively expanding templates,
which is the first phase of cleaning. Some templates contain information
that is valuable to downstream users, for instance those that are used to
mark up dates or inline citations, and we explicitly include the presence of
those in the corpus. The final wiki markup is then parsed and each article
is then split at the section level in the “Parsing and section identification”
stage (Section 3.4).

The second phase of cleaning is done by classifying content as either
relevant linguistic content or noise and is described in Chapter 4. This
is the “Content selection” stage in the sketch. We make use of machine
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learning in our approach in order to recognise types of noise we have not
encountered ourselves. After this stage all remaining content should ideally
be clean.

Before we create a corpus all text is split into sentences in the “Sentence
segmentation” stage described in Chapter 5. Here we test a range of tools
and perform experiments with different approaches for harnessing markup.
We perform our tests on WeScience, a corpus consisting of 100 Wikipedia
articles with gold standard sentence segmentation.

Finally in Chapter 6 we describe the end product of running our system
on a Wikipedia snapshot: A large high-quality corpus with little noise
and where the more interesting wiki markup directives are annotated with
Grammatical Markup Language (GML), a low-verbosity language that is
designed to cover the linguistically relevant directives from several other
popular markup languages like wiki markup, HTML and LATEX.

1.4 Summary of Main Results
Below is a quick summary of the main results in this thesis:

• We have developed a method for creating high-quality corpora
from collections of user generated content. We also make an
implementation and a large corpora based on a database snapshot
of Wikipedia available.

• Our approach to templates, a class of markup directives that have
program-like properties, makes it feasible to apply a relatively
low number of hand-written rules on a large majority of template
inclusions.

• We furthermore describe an effective, both in throughput and
in classification accuracy, method of identifying relevant linguistic
content.

• We present a survey of sentence segmenting tools and offer several
methods of using the markup elements (or layout information) as a
way of increasing their performance.





Chapter 2

Background and Motivation

This chapter provides relevant background for the project, including a run
down of the organization of pages on Wikipedia and an introduction to wiki
markup. Some of the markup elements in the article source do have some
linguistic significance and will be included in the corpus. We will (in Section
2.2) examine some of the previous efforts on either directly using Wikipedia
as a resource for NLP research or creating a community resource from it.
Section 2.3 discusses existing tools for processing wiki markup, these are
both academic and commercial.

2.1 Format and Structure of Wikipedia

Wikipedia runs on Mediawiki1, this software was originally developed for
Wikipedia but is now used by several other wikis. Pages are written in a
markup language, called wiki markup, and are converted to XHTML when
presented to a visitor. It is possible to download compressed snapshots,
also called “dumps”, that contain the wiki markup for articles and templates
from http://dumps.wikimedia.org/. In order to compare our work with
WeScience and WikiWoods (see Section 2.2.2), we have chosen to use the
same snapshot2 from 2008 that was used in the creation of those corpora.
The approach described here can be used on newer Wikipedia dumps as
well as dumps from other Mediawiki wikis.

Pages are organised by type into namespaces, the notation used to refer
to pages in a namepsace is “Namespace:Page”, but the namespace part can
be left out when referring to pages in the main namespace (also called “the
nameless namespace”). When we use the term “article” we refer to the

1http://www.mediawiki.org
2Available at http://moin.delph-in.net/WikiWoods
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Table 2.1: Pages per namespace in our snapshot

Namespace Function Pages Redirects

Nameless The main namespace, this is were
the articles are placed.

2,496,177 2,964,714

File All images, sound files and other
uploaded files have a page de-
scribing their licence, revision his-
tory and so on. These pages and
the uploaded files live in the “File”
namespace.

825,955 63

Category A category is a list of pages, a
page is included in a category by
linking to it.

389,980 201

Wikipedia Pages concerning editing poli-
cies, coordination efforts, various
projects etc.

308,669 57,070

Template Templates 144,933 29,244
Portal Portals are collections of links to

various articles with a common
theme.

56,036 3,886

MediaWiki Files that are used in the user
interface (css files, links in the
navigation frame and so on).

901 16

Help Pages explaining how to use and
contribute to Wikipedia.

193 240

Book This namespace is for collecting
articles into books that can be
exported or printed using the
Collection extension.

0 1

User Personal pages for contributors. 0 0
Special Pages with special functions, like

user lists and create a permanent
link to the current article. This
is a virtual namespace, meaning
that the pages here are generated
on the fly.

n/a n/a

Media Direct links to the files in the
“File” namespace, this is virtual
namespace.

n/a n/a
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pages in this namespace. Table 2.1 shows the distribution of regular pages
and redirects for each of the namespaces used by Wikipedia. Some of the
namespaces are not included in the dump at all, others are very scarcely
populated. Each namespace has a corresponding “talk” namespace (e.g.
“Talk”, “Template talk”, “Help talk” and so on) that is used for collaboration
and discussion among the page authors. This is done by editing a page in the
talk namespace with the same name as the page being discussed, for instance
discussion on “Albert Einstein” takes place in “Talk:Albert Einstein”. Pages
in the talk namespaces are not included in the dump.

Since our goal is to mine content from the articles our main interest is
the pages in the main namespace. But in order to correctly parse the wiki
markup for those pages we also need access to the templates, and these
pages reside in the “Template” namespace.

2.1.1 Short Primer on Wiki Markup

Figure 2.1: Wikipedia’s page editor

Hypothetically, a page made up of nothing but plain text will in most
cases appear as one would expect when processed by the Mediawiki engine,
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Figure 2.2: A simple page in Wikipedia

but most articles make use of at least some markup to indicate topical
structure, create links and basic formatting. The most basic markup
directives resemble conventions sometimes used in place of formatting in
plain text. For instance lines that start with * or # are displayed as list
elements, while –––– will create a horizontal line. Two consecutive newlines
are treated as a paragraph break. Plain URLs are converted into links and
inter-article links are specified by double square brackets. Figure 2.1 shows
a sample of the wiki markup and Figure 2.2 how it appears when rendered.

As one would expect from a system that outputs XHTML, the
characters less than (<) and greater than (>) are usually replaced by
XML entities (&lt; and &gt;). The exception are when they are
part of a certain subset of permitted XHTML tags. These tags pass
trough the parser unchanged and can be assigned attributes like this
<span class="plainlinks">...</span>. Some elements, for instance
tables (<table>...</table> or {|...|}), can be created by both regular
XHTML tags and wiki markup. Wikipedia uses the extension “Math”
that adds support for rendering mathematical formulas by enclosing LATEX
statements in <math> tags.

Starting a page with #REDIRECT [[Albert Einstein]] creates a
redirect to the page enclosed in square brackets. When a redirect is accessed
normally the content of the target article is shown instead with a small
notice on the top of the informing the viewer that they have been redirected.
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This directive is often used in order to let searches and links using different
naming conventions lead to the same article (for instance both “Einstein”
and “A. Einstein”3 are both redirect to “Albert Einstein”). Is is also used to
create short convenient aliases for pages with long titles, like in our dump
where Template:Harvtxt redirects to Template:Harvard citation text.
Redirects function in all namespaces and they are honoured during template
expansion.

Mediawiki is extremely permissive and robust when it parses the markup
and we are not aware of any way to construct wiki source that does not
render (although the rendered result might differ from what was intended).
Wikipedia maintains a markup guide at http://en.wikipedia.org/wiki/
Help:Wiki_markup, but the language is not formally defined4.

2.1.2 Linguistically Relevant Markup

Some markup directive contain information that can be useful for several
NLP tasks. In-text links from Wikipedia was exploited in Nothman (2008)
for named entity recognition, Section 2.2.1 takes a closer look at this effort.
Spitkovsky et al. (2010) took advantage of anchors and text styles when
training an unsupervised dependency parser and got a marked increase
in parsing accuracy. It seems reasonable to believe that using selected
markup elements as parsing constraints will also be useful for parsing in
general. If we look beyond the markup elements used in Nothman (2008)
and Spitkovsky et al. (2010), wiki source often contain templates that can
be used to identify text as dates, in text citations, in a foreign language and
so on. Markup also plays an important role, in what is often considered a
pre-processing task, sentence segmentation. We discribe our approach to
segmenting marked up text in Chapter 5.

In our system we attempt to enable such approaches by retaining
markup elements that we consider might be of use to downstream
processors. Each type of markup element is treated in one of the following
ways:

1. Included as a GML tag: These are the elements that usually have some
semantic meaning, they generally fall into tree sub-categories: Text
styles (bold, italic, etc), logical tags (list, abbreviation, paragraph, ...)
and various link types. This process is referred to as ersatzing.

3http://en.wikipedia.org/wiki/Einstein and http://en.wikipedia.org/
wiki/A._Einstein As of Sept. 16. 2012.

4There are work being done to create a specification, see http://www.mediawiki.
org/wiki/Markup_spec.

http://en.wikipedia.org/wiki/Help:Wiki_markup
http://en.wikipedia.org/wiki/Help:Wiki_markup
http://en.wikipedia.org/wiki/Einstein
http://en.wikipedia.org/wiki/A._Einstein
http://en.wikipedia.org/wiki/A._Einstein
http://www.mediawiki.org/wiki/Markup_spec
http://www.mediawiki.org/wiki/Markup_spec
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Figure 2.3: Pictures from the article “Albert Einstein”

2. Replaced by an empty GML tag: Markup elements that are replaced
are those that can be used as a sentence constituent while not having
any content that is immediately useful. In-line images are the only
elements that are handled this way.

3. Only its content is included: This option is used for elements like the
<span> and <center> tags, that often contain linguistic content, but
the semantics of this content is not affected by their presence.

4. Neither the element nor its content are included: Some markup
elements never contain any relevant linguistic content and are
considered noise, category links5, horizontal lines, certain templates
etc. We also remove certain elements that some times are clean,
namely image captions and tables. The reasoning behind this is
explained below.

5Used to include an article in a category, these are rendered in a box at the end of
the page
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For some markup elements it is not immediately clear how they should
be treated, for instance both image captions and table cells occasionally
contain relevant linguistic content. The caption for the left image in figure
2.3 is very short and does not qualify as relevant linguistic content, while the
caption for the other picture is a complete sentence containing information
not present in the main text of the article. Images and their captions are
removed at the cost of losing a few relevant phrases, as keeping them would
introduce unwanted content. The exception to this are in-line images that
are replaced with an ersatz token, as they often are a constituent in a
sentence and removing them would leave behind ill-formed sentences. In
a somewhat similar vein the content of table cells can be fairly long spans
of natural language or something that is obviously non-linguistic (dates,
numbers, etc). Unfortunately, the meaning of a phrase in a table cell is
often highly dependent on row and column headings and without it those
phrases will have little value for a semantic parser. A complete list of the
different syntactic elements and how they are treated is in Appendix A.

2.1.3 Templates

Templates are pages that can be included in other pages, a common example
is “Fact” that contains the phrase “citation needed”, it is used to draw
attention to statements that should cite a source of some kind. There are
other templates that are more advanced, like the many “information box”
templates, that take several parameters and expand into a table like box of
labels and short descriptions.

Including, or “expanding”, a template in wiki source text is done
by placing the template name between double curly brackets, as for
example {{SomeTemplate}}. This will cause Mediawiki to insert the
page “SomeTemplate” in the current article, if “SomeTemplate” is a
redirect the page it redirects to will be inserted in its stead. Templates
reside in the “Template” namespace, but it’s possible to include any
page by explicitly specifying the namespace it is in, as for example
{{User:Username/SomePage}} or for the main (nameless) namespace:
{{:SomeArticle}}. If used in an article, the last example would result
in a article including another, a technique sometimes used to maintain long
“List of”6 articles.

Template inclusion happens before most of the other markup is
processed. When discussing this subset of wiki markup it is useful to give
it a name in order to be able to easily contrast it with the “regular wiki

6E.g. “List of asteroids/1-1000”
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Listing 2.1: The definition for “Flag”
{{ country data {{{1|}}}
| country flag2
| name = {{{ name |{{{1|}}}}}}
| variant = {{{ variant |{{{2|}}}}}}
| size = {{{ size |}}}
}}<noinclude >{{ documentation }}</noinclude >

markup”, we will in this thesis refer to it as “template markup”. Even
though, as we will become apparent in Section 2.1.3.1, it is the part of wiki
markup that is furthest from what one usually considers markup.

Since template markup is evaluated before the regular parsing takes
place, it is possible for templates to expand into whole or partial markup
elements. For example the frequently used “End” expands into |}, the
directive for end of a table. Removing this template, as is often done in naive
approaches to wiki markup processing, will mean that everything up to the
next section header is interpreted to be in a single table cell, something
that has the potential to cause large portions of relevant linguistic content
to be discarded. There are also several templates that insert the markup
for table start ({|), the removal of those would make the table body appear
as regular text containing several vertical bars (|). Something that will
introduce a lot of noise into the corpus, a problem that can be seen in the
WikiWoods corpus (see section 2.3.3).

2.1.3.1 More Advanced Templates

While many templates simply insert static text into an article, Mediawiki
offers several features that can be used to create more intricate templates.
The most important of these features are: argument passing, evaluation of
mathematical expressions and conditional execution.

Listing 2.1 shows the wiki markup for “Flag”, a template that accepts
both positional and named parameters. Each of them are represented as
numbers or strings inside of triple curly braces, where their default value
follows directly after the horizontal bar, i.e. {{{1|}}} refers to the first
positional argument and its default value is the empty string. Had it not
been set, the default value would have been “undefined” which means that
the variable would have been expanded to the literal “{{{1}}}”.
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Listing 2.3: The expansion of {{Flag|China}}
{{ country data China
| country flag2
| name = China
| variant =
| size =
}}

Anything between <noinclude> and </noinclude> is only interpreted
when the template is viewed directly, a facility often used to document the
usage of the template (usually by including the template “Documentation”).
If invoked like this {{Flag|China}} this template expands into the text
shown in listing 2.3.

The result of this expansion is, as shown in Listing 2.3, contained
between double curly brackets. Creating the markup for including another
template: “Country data China”. It is one of the many templates that
are not intended for direct inclusion in articles, their usage resembles that
of subroutines in programs: They allow for code re-use (both “Flag” and
“Flagicon” include “Country data . . . ” templates) and makes it possible to
split problems into smaller and more manageable chunks. The final result,
via a few other templates, is the markup for a tiny image of the Chinese
flag followed by a link to the article “People’s Republic of China”.

Recursive template inclusions are limited by Mediawiki in that a
template can only include itself once7, either directly or via other templates,
and that expansion stops when the call-stack reaches a certain depth 8.

Wikipedia uses the extension “ParserFunctions” that makes flow control
and mathematical operations available to the Wikipedia authors. These
are evaluated before the regular markup and can be used to conditionally
expand templates. Listing 2.2 shows most of “Fb r”, a template that is used
to create a stylised cell in a table (“FB r” stands for “football result”). This
template is somewhat atypical as the author has indented and commented
their code. The HTML-style comments start at the right side of each line
and end about two thirds across the page from the left on the next. The
code in this example shows the resemblance between Mediawiki templates
and other programming languages. One thing lacking in ParserFunctions
that one would expect from a fully fledged programming language is loops,

7http://en.wikipedia.org/w/index.php?title=Help:Template&oldid=
478928626 As of Feb 26. 2012.

8http://www.mediawiki.org/w/index.php?title=Manual:\protect\T1\
textdollarwgMaxTemplateDepth&oldid=196093 As of Feb 26. 2012.

http://en.wikipedia.org/w/index.php?title=Help:Template&oldid=478928626
http://en.wikipedia.org/w/index.php?title=Help:Template&oldid=478928626
http://www.mediawiki.org/w/index.php?title=Manual:\protect \T1\textdollar wgMaxTemplateDepth&oldid=196093
http://www.mediawiki.org/w/index.php?title=Manual:\protect \T1\textdollar wgMaxTemplateDepth&oldid=196093


2.2. PREVIOUS WORK 31

a limitation that seems like a sensible move considering that anyone can edit
Wikipedia pages and it would be desirable if it were impossible to create
pages that would never finish rendering.

2.2 Previous Work

There has been much effort both on using Wikipedia as a resource as well
as making its content more accessible for researchers. The creation of the
WeScience andWikiWoods corpora are probably the projects that resembles
our the most. This section will provide an overview of some of the earlier
uses of Wikipedia in NLP.

2.2.1 Wikipedia for Named Entity Recognition

How links between Wikipedia articles might be used as a tool in named
entity recognition was examined by Nothman (2008). One example he
gives is the sentence “Holden is an Australian automaker based in Port
Melbourne, Victoria” where each of the proper nouns link to an article
that, when classified, can be used to identify the type of entity they refer
to (Nothman, 2008, p. 33-34).

While his objective is different from ours, there are some similarities
in the general approach: extract the article markup from a Wikipedia
dump, parse it in order to extract the linguistic content, and detect sentence
boundaries. This makes it worthwhile to take a look at his methods. He
examined several processing systems, including WikiXML and mwlib (both
discussed below in Section 2.2.3 and 2.3.2), before deciding to use mwlib
as a basis for creating a parser. This choice seems to be motivated by the
fact that mwlib offers access to the processed wiki markup as a parse tree
(Nothman, 2008, p. 40).

For sentence segmentation he used the Punkt (Kiss and Strunk,
2006) implementation included in the “Natural Language Toolkit”9. Its
performance is informally summed up as “generally produced reasonable
sentence breaks”, but it is also noted that it struggled some times when
facing abbreviations directly followed by a word that it deemed to be a
frequent sentence starter (Nothman, 2008, p. 41-42). We did test NLTK’s
Punkt implementation and several other sentence boundary detectors on
the WeScience corpus to determine which segmenter to use in our system.
The results of these experiments are presented in Chapter 5.

9http://www.nltk.org/

http://www.nltk.org/
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Listing 2.4: One sentence from WeScience
[10011140] |* '''Recursion ''' or '''iteration ''': A

[[ recursive algorithm ]] is one that invokes (makes
reference to) itself repeatedly until a certain
condition matches , which is a method common to
[[ functional programming ]].

2.2.2 WikiWoods and WeScience

WeScience10 and WikiWoods11 are corpora created from a Wikipedia dump
from July 2008. WeScience consists of 100 articles in the NLP domain with
gold standard sentence segmentation (Ytrestøl et al., 2009). WikiWoods is
a larger corpus that contains around 1.3 million articles (Flickinger et al.,
2010). Corpus Clean (described in section 2.3.3) was used in the creation
of both of them. Corpus Clean is not capable of fully parsing wiki markup
and as a consequence of this WikiWoods contains an unnecessary amount
of noise. It makes some steps to remove dirty sections, but both of these
corpora have a relatively high concentration of sections with little relevant
linguistic content.

They both have the same line-based format with one sentence per line,
with some of the original wiki markup preserved. Listing 2.4 shows one line
from WeScience. Enclosed in square brackets is a unique sentence identifier,
where the last digit was initially set to zero in order to make room for manual
adjustments of the sentence segmentation. The sentence itself starts after
the vertical bar and continues for the rest of the line (Ytrestøl et al., 2009;
Flickinger et al., 2010).

2.2.3 WikiXML

WikiXML is a collection of Wikipedia articles in XML format created by
The University of Amsterdam. Both the collection itself and the conversion
software are available at their website12. The conversion software consists
of a modified version of Mediawiki and a post-processing script in Perl. The
files in the collection are in valid XML that resembles the XHTML generated
by Mediawiki and are viewable with a web browser. The results of template
inclusions are for the most part marked as such. Template parameters are
also included when the software was able to extract them. The spans

10http://moin.delph-in.net/WeScience
11http://moin.delph-in.net/WikiWoods
12http://ilps.science.uva.nl/WikiXML/

http://moin.delph-in.net/WeScience
http://moin.delph-in.net/WikiWoods
http://ilps.science.uva.nl/WikiXML/
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that are included from templates are, a bit awkwardly, represented by
pairs of self-closing tags: <wx:template id="wx_t1" ... /> marks the
beginning of an expansion, and <wx:templateend start="wx_t1"/>marks
the end. Where the id and start parameters are used to match them
up. Since templates can expand into anything, this is probably one of
the best ways of including them and still generating valid XML. We feel
that templates are one of the reasons that XML is not a good choice for
representing content that originated as wiki markup, something that is
discussed in more detail later in Section 6.1.

The table of contents, edit-links and the frame surrounding the article
are removed, no other steps are taken to remove boilerplate and other noise.
This stands in stark contrast to our approach. Our aim is to produce a
corpus that can be used “out of the box” and in order to achieve this we
have a much more aggressive approach when it comes to article cleaning.

Parsing well formed XML is a less daunting task than parsing Mediawiki
markup and WikiXML could probably fit in as a first step in a wiki-text
processing pipeline, but we decided against using WikiXML this way since
we felt that the increased complexity by having an extra step would out-
weigh the convenience of parsing XML. The fact that the preservation of
template inclusions is not reliable, as stated on their web page, also spoke
against building upon WikiXML.

Using WikiXML was a candidate approach for processing a dump in
Nothman (2008), but it was considered to be “excessively slow” (Nothman,
2008, p. 38) and mwlib was used instead.

2.3 Tools for processing Wikipedia Dumps

We will in this section review some of the existing tools for processing
Wikipedia snapshots and parsing wiki markup. Wwlib and Corpus Clean
have already been mentioned above, but will be examined more closely.
The Wikimedia Foundation maintains a list of several wiki parsers13, but
unfortunately most of the tools listed there are either limited in scope or
too immature to be of immediate use for us.

13http://www.mediawiki.org/wiki/Alternative_parsers

http://www.mediawiki.org/wiki/Alternative_parsers
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2.3.1 DumpHTML

DumpHTML is a tool that was used by the Wikimedia Foundation to create
static HTML dumps of Wikipedia. The tool itself is maintained 14 even
though static dumps are no longer offered.

DumpHTML uses the Mediawiki rendering engine, something that
makes it dependent on a properly configured database back-end. It outputs
XHTML files that are similar to what is presented when visiting Wikipedia.
This means that the XHTML pages include several elements that are not
present in the wiki markup, such as navigational bars, copyright notices,
table of contents etc. Just like the regular Mediawiki, DumpHTML expands
templates transparently and there is generally no way to tell which content
is generated by a template inclusion from the content in the article source.
This is undesirable because some of the wiki markup can be helpful in the
semantic analysis of the text and it increases the difficulty of distinguishing
genuine authored text from phrases inserted by templates.

Modifying Mediawiki so that it doesn’t generate navigation bars, etc
is fairly straightforward and WikiXML shows that it’s possible to retain
some information of template usage. Had we decided on an approach using
dumpHTML, we could probably take advantage of some of the code in
WikiXML. We will discuss why we chose not to build on the Mediawiki
engine in our system below.

2.3.2 Mwlib

Mwlib is the result of a collaboration between the Wikimedia Foundation
and Pediapress.15 It is used in the conjunction with the extension
“Collection” that adds the functionality to create collections of articles that
can either be ordered as a printed book or exported into several document
formats. It was successfully used to process a Wikipedia dump in Nothman
(2008). Mwlib is implemented in Python and C and is actively maintained.

In the early stages of this work we examined the available tools for
manipulating Mediawiki markup (late 2011) and at that time mwlib was one
of two parsers on The Wikimedia Foundation’s list of parsers that offered
access to the syntax tree. The other was the perl module “Perl Wikimedia
Toolkit”, but it was not considered as it was labelled as “Little functional”.
At the time of writing a few new tools have been added, a cursory glance
gives the impression that these are still a bit immature (low percentage of

14http://svn.wikimedia.org/viewvc/mediawiki/trunk/extensions/DumpHTML/
As of Sept 14. 2012 the latest commit was about 6 weeks old.

15http://wikimediafoundation.org/wiki/Wikis_Go_Printable

http://svn.wikimedia.org/viewvc/mediawiki/trunk/extensions/DumpHTML/
http://wikimediafoundation.org/wiki/Wikis_Go_Printable
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Listing 2.5: Excerpt from WikiWoods
[1000898100080] |=== Round 1===
[1000898100090] ||- bgcolor ="# CCCCFF" | '''Home team ''' |

...
[1000898100100] |=== Round 2===
[1000898100110] ||- bgcolor ="# CCCCFF" | '''Home team ''' |

...
[1000898100120] |=== Round 3===
[1000898100130] ||- bgcolor ="# CCCCFF" | '''Home team ''' |

...
[1000898100140] |=== Round 4===

successful parses or missing support for some of the popular extensions) to
be of practical use for us.

Support for working with dumps was removed from mwlib with the
release of version 0.14. A third party module providing this functionality is
available at https://github.com/doozan/mwlib.cdb.

2.3.3 Corpus Clean

Corpus Clean was used in the creation of the WeScience and WikiWoods
corpora (Ytrestøl et al., 2009; Flickinger et al., 2010). It consists of several
Python scripts and an open-source tool, Tokenizer16, that is used to detect
sentence boundaries. It operates on files with wiki markup.

Not all of the content in an article makes it through the pipeline, as
Corpus Clean makes an effort to only include clean text in the resulting
corpus. This cleaning is done by removing some types of markup elements
like tables, images and, with a few exceptions, templates. In addition
to this a heuristic approach is used to remove sections that contain little
grammatical text (Ytrestøl, 2009).

Since it operates on the textual level by repeatedly matching and
replacing strings in its input with regular expressions, it is unable to perform
proper template handling. Corpus Clean has a white-list of six templates
that are kept in the text but the default action is to remove them. While
templates are a frequent source of noise, uncritically removing them will
introduce errors into the wiki markup that it is hard to recover from. This
is due to their ability to expand into any syntactic elements (as mentioned
in section 2.1.3). For instance, searching for | in WikiWoods yields several
examples of stray table cells that Corpus Clean has failed to remove because

16Available athttp://www.cis.uni-muenchen.de/~wastl/misc/

https://github.com/doozan/mwlib.cdb
http://www.cis.uni-muenchen.de/~wastl/misc/
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of this. One example of this is shown in Listing 2.5, this fragment is taken
from the article “1936 VFL season” as it appears in WikiWoods. Corpus
Clean could not detect the tables since it did not examine the content of the
surrounding templates “Start box” and “End box” that expand into table
begin ({|) and table end (|}).

Tokenizer is not markup-aware, so it struggles when tasked with
segmenting text that was written with a specific layout in mind (i.e.
containing markup). It often fails to insert sentence breaks when
encountering formatting that would normally cause a human reader to
interpret a span of text as a separate sentence. Ytrestøl mentions lists as
one type of markup that could cause this problem. Corpus Clean’s solution
to this is to forcefully insert a sentence break in such cases. Other sources
of errors were missing or unusual punctuation and confusing headers and
captions with the main text (Ytrestøl, 2009, p. 8-9). We have a somewhat
similar approach, but since we have access to a parse tree we have the
opportunity to take greater advantage of the markup when finding sentence
boundaries.



Chapter 3

Article Extraction and Parsing

The steps “Markup extraction”, “Template processing” and “Parsing and
section identification” sketched in Figure 3.1 will be described in more
detail in this chapter. These stages obtain article source and process it
in a way that leaves us with each article section represented as a tree. A
data structure that it is convenient to work with in and that will be used
in the remaining stages. A large part of this chapter will be dedicated to
the choices we have made concerning templates and the reasoning behind
them. Templates are both a source for noise and for linguistically significant
markup, something that we have taken advantage of in our system.

Figure 3.1: Overview of our system
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Table 3.1: Comparison of dumpHTML and mwlib

dumpHTML mwlib

time needed to build a “text
extractor”

approx. 12 hours approx. 5 hours

documentation excellent minimal
code readability poor good
implementation language php python
parsing approach series of string

manipulations
building a parse
tree

template capabilities good good
parsing correctness almost guaran-

teed
good

3.1 Choosing a Wiki Parser

As discussed in Section 2.3, a number of packages for processing wiki
markup are available. Seeing as markup processing was bound to be a
central part of our system we wanted to make sure we picked the right
tool. After doing an initial survey of the available tools we narrowed the
candidates down to dumpHTML (outlined in Section 2.3.1) and mwlib
(outlined in Section 2.3.2). Both of these have properties that we considered
desirable:

• DumpHTML uses the Mediawiki rendering engine, which is the closest
thing there is to a formal specification of wiki markup.

• mwlib builds a parse tree, where it seemed reasonable to us that
having the parse articles represented in a familiar data structure would
simplify further processing.

We were however unsure how we should weigh these characteristics. In
the spirit of our general approach of gathering data when in doubt, we
performed an experiment of extracting all printable text from 1,000 articles.
The primary objective was to gauge the amount of effort it would take to
build this simple program using each of the two candidates.

It took substantially more time and effort to extract content from articles
by modifying dumpHTML than it took when using mwlib. The two main
reasons for this were: (a) that dumpHTML depends on an operational
installation of Mediawiki, including the same extensions used by Wikipedia.
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Though the procedure for setting this up is well documented, 1 carrying it
out still took some time. Seeing as we had set out to build a system that
could be reused by others, having it depend on Mediawiki and a number
of extensions was not desirable. And (b) even though Mediawiki’s inner
workings are thoroughly documented2 we had some difficulties making sense
of the source code. Most of the parsing is done by loading the article source
into memory as a string and gradually rewriting it until it is a valid XHTML
document.

Working with mwlib was a much more straightforward. It builds an
abstract syntax tree while parsing, so extracting the text from an article was
simply a matter of supplying the article name to the parser and traversing
the resulting tree. The documentation3 is mostly geared towards system
administrators, so the main focus is on installing the library and configuring
it so that it functions with an existing mediawiki setup. The code itself is
generally readable.

Table 3.1 gives an overview of dumpHTML and mwlib and summarises
this experiment. The result of which was that we decided to use mwlib to
process wiki markup.

3.2 Markup Extraction

Recall from the outline of our system sketched in Figure 1.2 that the first
step is “Markup Extraction”. Our system can read markup from aWikipedia
dump or from plain files with wiki markup. When reading from plain files
the article name is either inferred from the file name, for instance when
reading from a file named “Albert Einstein.mw” the article name will set
to “Albert Einstein”. Or it can be set by adding article tags at the start of
each file, like this: <article>Albert Einstein</article>. This is not a
proper wiki markup directive and it is used solely for convenience. Article
tags are removed before any further processing of the markup. Article tags
are also used by Corpus Clean to indicate the start of a new article and its
title.

Extraction from a snapshot is done by first creating a “Constant
database” with the “mw-buildcdb” utility bundled with mwlib, this database
then functions as a back-end for mwlib (the usual choice for back-end is a
live Mediawiki instance with the Collection extension installed).

1http://www.mediawiki.org/wiki/Manual:Importing_XML_dumps
2http://www.mediawiki.org/wiki/Manual:Code
3http://mwlib.readthedocs.org/en/latest/index.html

http://www.mediawiki.org/wiki/Manual:Importing_XML_dumps
http://www.mediawiki.org/wiki/Manual:Code
http://mwlib.readthedocs.org/en/latest/index.html
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3.3 Templates

Template expansion is one of the first steps in parsing wiki markup and
plays an important part in the removal of noise. As described in section
2.1.3 some templates have program-like features and they can also expand
into arbitrary strings. This means that the result of an expansion can
include things like partial wiki markup directives and partial sentences,
and that simply removing templates will lead to ill-formed markup and loss
of content. A result of this is that proper interpretation of templates is
essential for our system.

Since mwlib is capable of expanding templates (although we had to make
some adjustments to its template system, described in Sections 3.3.3 and
3.3.5 below) we can do proper inclusions when the need arises. We make
use of this flexibility to clean articles by removing templates that we know
introduce noise and by enriching the corpus by making the presence of those
that might be useful for further linguistic processing explicit.

3.3.1 As a Source of Noise

Template inclusions create a lot of noise, as they are commonly used to
insert boilerplate both inside running text (e.g. “Citation needed”) and as
separate block elements (for instance the boxes shown in Figure 1.1). In
order to create a corpus that is as clean as possible we try to remove as
many of the noise-introducing templates as possible. However care must be
taken so that we do not remove templates that expand into partial markup
elements or parts of relevant linguistic content. As can be seen by examining
the WikiWoods corpus (for an example see Listing 2.5), being too aggressive
in removing templates is counter-productive as it will introduce noise.

3.3.2 As Cues for Downstream Programs

Some templates can not only expand into parts of natural text, but their
presence could also aid further linguistic analysis. Take for instance the
template “Lang”. The documentation gives the following example4:

She said: “{{lang|fr|Je suis française.}}”.

This template is used to indicate the language of a span of text. If it
is expanded then the task of figuring out that “Je suis française” is not
English is passed on to downstream language processing systems. Not only

4italics has been removed for clarity.
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is it desirable to keep such templates for their added value, but removing
them fully will often leave behind gaps in the original text. This has the
potential to transform relevant linguistic content into noise, for instance the
above example would end up as “She said: ”.

3.3.3 Our Strategy

Being too defensive and expanding all templates will waste a good
opportunity to remove a substantial amount of noise as the content of
templates like “Fact”5 will be inserted into the articles. On the other hand,
removing too many of them will not only cost us useful content, but will
actually introduce noise (as was the case with Corpus Clean). When our
system encounters a template, it will take one of three actions:

• It can be expanded as normal, and we will call this action expand.

• It can be removed completely, and we will call this action remove.

• The invocation can be left in the corpus alongside its expanded form,
we will call this action keep. The example used above would look like
this in the markup language we use in our corpus (GML) is: bx¦Je
suis française.¦Lang¦fr¦Je suis française.¦xc.

We created a modified version of the template sub-system in mwlib
that is capable of these three actions and we manually inspected the
most commonly used templates in order to create a list of rules, where
each template were assigned one of the above actions. When our system
encounters a template not covered by this list it expands it as normal,
since that is the safest approach for dealing with unknown templates. The
look-up operation is aware of redirects (described in section 2.1.1) between
templates, so a rule defined for “Harvard citation text”6 will be honoured
for all templates that redirects to it, for instance “Harvtxt”. A positive side
effect of this is that inclusions of redirects templates are normalised to the
name of their target, so downstream applications do not need to have any
knowledge about inter-template redirects.

When deciding how each template should be treated we used the
following guidelines:

1. Can the presence of this template be helpful for further natural
language processing? keep.

5Expands into the text “[Citation needed]”
6Creates an in-text Harvard style citation.
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2. Do we know that this template creates noise and that it can be
removed without breaking markup? remove.

3. Do we know that this template creates noise and that it can be
removed without altering sentence structure? remove.

4. Does the template reside in the main namespace (i.e is it an article)?
remove.

5. If none of the above, expand.

The reason for not removing inclusions of pages in the main namespace
(point 4) is that we are already including all articles. Expanding those
template inclusions would lead to repetitions of the same content in the
corpus.

3.3.4 Finding the Most Used Templates

The efficiency of the above strategy depends on the coverage of our set of
rules. In the dump we are using, the Template namespace contains over
140,000 pages (as shown in Table 2.1). Since there is no way of determining
the appropriate action for a template without doing a manual inspection,
we could not create rules for all of them. The next best thing seemed to be
to find the most frequently used templates and write rules for those.

As described in section 2.1.3, where {{Flag|China}} expanded into
the markup for including {{Country data China}}, templates can be
invoked indirectly. We wanted to capture both modes of inclusion in our
examination. Using the template handling mechanism in mwlib as a starting
point we counted all inclusions in our snapshot. The direct inclusions are
found by feeding the article source to the first step of mwlib’s template
facility, where this creates a tree where each node is either a template
invocation (a Template-object containing the template name and a list of
arguments) or a text string. In order to get the count of both direct and
indirect inclusions, we passed this tree into the next stage of the template
system (called “flattening” in mwlib terminology). The flattening stage
recursively expands any templates in the tree and creates a list of tokens,
where the beginning and end of each template expansion is represented.
Since templates can expand into the markup for including other templates,
the flattening is repeated as necessary. See Listing 3.1 for an example of
the tokens created during template expansion.

One special case at this point is the wiki <ref> element that is used to
create end-notes. Template inclusions inside of these were ignored as they
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Figure 3.2: Distribution of templates
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are mostly used to create references, often by using one of the many cite
templates, that we would remove anyway. Comparing the counts with and
without the contents of <ref> showed that the treatment of this tag only
marginally affected the top-100 lists.

This inspection showed that there are more than 90,000 templates that
are included at least once from articles (that is pages from the main
namespace) in our dump. Figure 3.2 shows the frequency of template
inclusions after ranking by the number of direct or total number of inclusions
plotted in log-scale. Notice how relatively few templates stand for a large
number of inclusions. The most frequently used template is expanded over
a million times while the 100th most included is used less than 20,000 times.

The steep increase in the number of inclusions meant that writing rules
for a few of the highest ranking templates would cover a large amount of
the actual inclusions. It was however unclear if the best approach would be
to order by direct or total inclusions. When sorting by total inclusions some
templates rose towards the top that could otherwise have gone by unnoticed.
Take for instance the template “Ambox” that creates a message box. There
are several templates that functions as wrappers and do little more than



44 CHAPTER 3. ARTICLE EXTRACTION AND PARSING

Table 3.2: Most included templates

Direct Total Name Description Action

1256248 1375733 Flagicon A small flag remove
520927 520982 Reflist List of references remove
409021 415170 Cite web Reference to a web site remove
227473 227578 Fact “[Citation needed]” remove
216303 217974 Cite journal Reference to a journal remove
198974 207888 Convert Converts between

units
keep

186172 275796 Mp {{Mp|x|n}} shows x
to nth power

expand

185066 203211 Cite book Creates a reference remove
129606 421673 Flag Small flag next to a

link to a nation.
expand

129244 130316 Succession box Expands into table
cells

expand

including it with predefined parameters (one of them is “Refimprove” shown
at the top of Figure 1.1). Any rule written for “Ambox” will indirectly affect
all of these wrappers and increase the coverage of our rules. On the other
hand, not all of the templates that showed up when sorting this way were
that interesting. There are for instance many templates with names like
“Country data Norway”, “Country data Sweden” and so on that get their
vast majority of inclusions via “Flag” and “Flagicon”, templates that occur
frequently enough to warrant their own rules. The high ranking of such
templates pushes other potentially interesting templates down the list.

In order to get the best of both worlds we examined the 100 most
frequently included templates using both ways of counting, this resulted
in a list of 155 templates that we each assigned with one of the three rules:
“keep”, “remove” or “expand”. Table 3.2 shows first the ten entries in this
list and is included in Appendix B in its entirety.

We remove the most frequently included template, “Flagicon”, com-
pletely as it expands into a small image of a flag and we do not anticipate
this being used as a grammatical constituent. “Flag” resembles “Flagicon”
in some ways and expands into a icon of a flag followed by a link to a nation.
We expand this template as it could be used as part of a sentence. “Cite
web”, “Cite journal” and “Cite book” all create bibliography entries, which
we do not consider to be relevant linguistic content and are removed. The
template “Convert” is used to change from one measuring unit to another
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(e.g. {{convert|3.21|kg|lb}} expands into 3.21 kilograms (7.1 lb)).
We keep this template since its presence does signify that the expanded
text is a “quantity of something”.

3.3.4.1 Naming Conventions

One of the templates we examined was “Asbox”, which expands into a notice
saying “This article is a stub. You can help Wikipedia by expanding it.” It
is used in short articles and has two uses: it encourages people to add more
content to the article, and it adds the article to one or more stub categories.
Within Mediawiki’s browsable category system, stub categories are used to
group articles that need attention. This template is only explicitly included
10 times, but its total number of inclusions are a bit higher than 59,000.
When doing some initial surveys of our snapshot we found 500,000 articles
where the source code consists of less than 1,000 characters. When including
articles of up to 2,000 characters in their markup gave a total 1,200,000.

Casually browsing Wikipedia gives the impression that most of the short
articles have such a notice, but “Asbox” was not included nearly enough
to be the source of more than a fraction of those. Even if we take into
consideration that many of the short articles were disambiguation pages or
not consider stubs for some other reason.

A closer examination of the template counts revealed several thousand
templates that had a similar function and followed the naming convention
“<something>stub” (“England-cricket-bio-stub”, “Astronomy-stub”, . . . ),
their combined number of direct inclusions was 1,268,560 which is slightly
more than the current number one “Flagicon”.

In order to find other groups of templates that followed a naming
convention we looked for frequently used sub-strings in template names.
Each sub-string occurring in template names was assigned a score that
equalled the sum of direct inclusions of all matching templates, and the
resulting list was then sorted by this score. The number of expansions
for each template was only counted once even if it could be matched with
several sub-strings. This was to avoid getting the results cluttered with
very similar groups that had little variation in the names they matched (e.g
“stub”, “-stub”, “b-stub”, ...). The 100 most expanded templates were not
included as they had already been accounted for.

The first attempt had no special treatment for white-space characters
and other frequent word boundaries, as we wanted to see find naming
conventions even if they spanned several words. Unfortunately this gave a
high score to many uninteresting sub-strings that matched several unrelated
templates, for instance: “s of ”. Splitting names on word boundaries gave
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Table 3.3: Template naming conventions

Inclusions Matching
regexp

Description Action

1268560 stub$ Adds a notice saying that this
article is a stub

remove

581244 ˆinfobox Creates an information box remove
68355 ˆlang Indicates that a span if text is of

a given language
keep

54706 county A navigation box for American
counties

remove

28958 ˆcite Creates a citation remove
28316 ˆpbb PBB = Protein Box Bot, infor-

mation boxes about proteins
remove

26971 line$ Information box about a sub-
way/rail/bus line

remove

19432 ˆauto Displays a quantity of something
in a given measuring unit

keep

17240 expand$ Same function as /stub$/ remove
12375 communes$ Information boxes for French

communes
remove

11715 ˆIPA Displays text in IPA notation keep
9640 ˆpolitics Navigation boxes for politics re-

lated articles
remove

a much more interesting list of candidates. Out of the 50 highest scoring
patterns the naming conventions shown in Table 3.3 were assigned a rule
other than expand. The complete list is in Appendix B.

3.3.4.2 Final Additions to the Rules

Finally, the templates that were kept by Corpus Clean were added to the
list. Most of these were marked as “keep” except “IPA notice”, which creates
a box with a short introduction to IPA, and “IAST” and “IAST1” that both
expand into “Lang” that is kept. The inclusion of “IPA notice” appears to
be a result of using a regular expression to match the other IPA templates
without being aware of that specific template. Corpus Clean also kept
templates that created in-line Harvard style citations, most of these have a
redirect with a shorter name for convenience for instance “Harvtxt” redirects
to “Harvard citation text”. Since Corpus Clean only looks for the shorter
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name of the redirect, all inclusions using the full name are lost.
There have been a few additions to the rules-set as we have uncovered

other templates that should not be expanded. The grand total of direct
template inclusions from the main namespace in our dump is in excess of
14 million, where about 10 million of these are of templates that are covered
by our rules. As the coverage of the rules increases the gain from adding
new rules becomes smaller. This is because the majority of the remaining
templates are rarely used.

3.3.5 Modifications to Mwlib’s Template System

As mentioned in Section 3.3.3 we had to do some modifications to mwlib’s
template system in order to carry out the actions “keep”, “remove” and
“expand”. We also had to do some tweaking in order to increase the speed
of the template expansions. In order to explain these modifications we first
need to take a look at how templates are expanded by mwlib. The template
sub-system has two stages; The first is a pass over the article source creates
a parse tree where each node is either a Template-object or a unicode string.
Templates extend the python built-in Tuple where the template name is
the first element and any parameters are in a list as the second element.

The second stage is to “flatten” this tree, that is to traverse it and
include the content of all the templates. Any template inclusions done by
these templates are parsed and flattened themselves. This results in a list
of tokens, named “marks” internally in mwlib.

Most of these tokens are regular strings containing wiki markup. The
rest indicate the beginning and end of template expansions (signalled
by mark_start and mark_end tokens) or positions where it might be
necessary to insert extra newlines to ensure that statements that need
to be at the beginning of a line are interpreted correctly (signalled by
mark_maybe_newline).

Listing 3.1 shows the first few marks when expanding {{Flag|China}}.
By examining the start and end-marks we can see that “China” was
expanded into “Country data china” that in turn expanded into an image
and a link via the expansion of “Country flag2”. The <mark 'dummy'>’s
are used to pad the list during flattening and have no impact on the
expanded markup. The final wiki markup is then created from this list
by concatenating the string-tokens and selectively inserting newlines where
there is a mark_maybe_newline.

The actions “remove” and “expand” are easily implemented by making
a pass over the list of marks. Whenever there is a mark_start for a
template that should be removed, it and all marks up to and including the
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Listing 3.1: Marks created during the expansion of {{Flag|China}}
<mark_start "u'flag '">
<mark_start "u'country data China '">
<mark_argument "u' country flag2\\n'">
u'<span class =" flagicon ">[[ Image:'
u"Flag of the People 's Republic of China.svg"
u'|'
<mark_maybe_newline 'maybe_newline '>
u'22x20px '
<mark 'dummy '>
u'|'
u'border '
u' |'
u"Flag of the People 's Republic of China"
u']]& nbsp;</span >[['
u"People 's Republic of China"
u'|'
u'China '
u']]'
<mark_end "u'country flag2 '">
<mark_end "u'country data China '">
<mark_end "u'flag '">

corresponding mark_end are removed. No action is necessary for templates
that should be expanded normally.

Implementing “keep” required a bit more work since we need both
the expanded form of the template and the invocation parameters.
Unfortunately for us the parameters are normally discarded during
flattening. We solved this by implementing a alternate flatten procedure
for the Template class that inserts mark_arguments into the list of marks.
The expansion of {{Flag|China}} with this modification is shown in listing
3.2 (see Listing 2.1 for its definition). Notice that the arguments sent to
“Country data” and “Flagicon2” preserved in the stream of tokens. When
we iterate over the marks we emit strings with the expanded form, template
name, and any parameters for templates where the rules say “keep”. Any
template inclusions embedded in the arguments are expanded as normal.

The second change we made to the template system was motivated by
performance issues. When we first started counting template inclusions it
took almost five days to expand all the inclusions from the articles in the
dump. Even though we were aware that the finished system would run
several concurrent processes, expanding templates would only be one of the
several sub-tasks that it must do. While looking for ways to increase the
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Listing 3.2: Marks created during the expansion of {{Flag|China}} with
the arguments preserved.
<mark_start "u'flag '">
<mark_argument "u'China '">
<mark_start "u'country data China '">
<mark_argument "u' country flag2\\n'">
<mark_argument "u' name = China\\n'">
<mark_argument "u' variant = \\n'">
<mark_argument "u' size = \\n'">
<mark_start "u'country flag2 '">
<mark_argument 'u" alias = People\'s Republic of China\\n"'>
<mark_argument "u' shortname alias = China\\n'">
<mark_argument 'u" flag alias = Flag of the People\'s

Republic of China.svg\\n"'>

[snip ...]

<mark_argument "u' variant = \\n\\n'">
u'<span class =" flagicon ">[[ Image:'
u"Flag of the People 's Republic of China.svg"
u'|'
<mark_maybe_newline 'maybe_newline '>
u'22x20px '
<mark 'dummy '>
u'|'
u'border '
u' |'
u"Flag of the People 's Republic of China"
u']]& nbsp;</span >[['
u"People 's Republic of China"
u'|'
u'China '
u']]'
<mark_end "u'country flag2 '">
<mark_end "u'country data China '">
<mark_end "u'flag '">
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Figure 3.3: Article structure before and after section identification

performance we found out that mwlib caches templates and that this cache
is purged every time an article is parsed. By preserving the content of the
cache between the pages, the running time went down to about two days
at the cost of increased memory consumption.

3.4 Section Identification

When the template handling is done the resulting template-free wiki
markup is parsed, and the parse tree is destructively split into sections.

Mwlib considers a section to be a heading and everything up to the
next heading of the same or lower level. We have opted to view the article
structure in a different way as sketched in Figure 3.3: A section consists
of a heading and all that follows up to the next heading, no matter its
level. This means that all sections are in separate parse trees and that
they never contain other sections, something that simplifies the section
classification step as the classifier does not need to have any notion of sub-
sections. It is worth keeping in mind that no information is lost by this
transformation as the original structure is easily recoverable by traversing
the list of sections backwards. If the next section that has the same level
as the current one is its sibling, those with a higher level is the child of a
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sibling and those with a lower level is a parent. We employ this technique
in the last stage of our system in order to completely leave out sections with
little relevant linguistic content on the condition that they do not have any
children carrying “clean” text. We include the heading of these sections in
order to preserve the structure of the article.

We will repeatedly need to produce string representations of the section
trees. This is in order to communicate with third-party programs and, off
course, when creating the final representation of our corpus. This is done by
traversing the syntax trees and emitting text nodes and markup directives
when appropriate. Since this process is done several times, we name the
four different ways we can treat each markup element in order to facilitate
discussions on this topic in the following chapters.

When creating a string representations of a sections, we must choose
between the following actions detailed in Section 2.1.2:

keep Insert some markup into the string so the existence of this node is
visible. Any children are dealt with depending on their type.

remove Do not insert any markup for this node. Children are treated
according to their type.

purge Do not include this node or its children in the string.

ersatz Replace this node with a token string and do not include any
children.





Chapter 4

Content Selection

This Chapter explains the “Content selection” stage in our system of which
an overview is sketched in Figure 4.1. At this point articles have been
parsed and the resulting parse trees have been split into smaller section-
wise branches. During the parsing we removed a substantial amount of
noise by selectively discarding certain templates (as detailed in Section 3.3).
Unfortunately, there are still plenty of noise left that we can not identify
by only looking at the markup. This noise is not generated by known
templates or other specific markup directives. Examples of this type of
noise are bibliographies, result listings form sporting events, footnotes and
so on.

Figure 4.1: Overview of our system

53
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We will examine some earlier efforts on noise removal which with the
exception of Corpus Clean all operate on ordinary web pages. While
there are large overlaps between extracting clean text from Wikipedia
articles and from web pages there are also some fundamental differences
(as mentioned in Section 1.2): Some types of content are practically non-
existent on Wikipedia like advertisements and web-forms, while copyright
notices, navigation bars and so on are not an issue since we base our
approach on processing the article source. We do, on the other hand, have
to deal with noise in the form of bibliographies, various listings, and so on,
which are probably more common in Wikipedia than on most web pages.

4.1 Hand-Crafted Rules vs. Machine
Learning

There are several ways to classify content as clean or dirty; Corpus Clean
used a heuristic approach where it discarded a section, and in some cases
the rest of the article if it had a heading that was usually used for sections
with little relevant linguistic content (Ytrestøl, 2009, p. 9). A downside
of using hand-written rules is that these rules will be skewed towards the
instances of noisy text seen by the author. The page cleaning tool jusText,
which will be reviewed in Section 4.3.2, uses more general criteria when
detecting noise. These criteria include, for instance, link density and the
frequency of function words. Rules of this kind might be less vulnerable to
this effect as they depend on the more generalised properties, but they still
depend on some assumptions about the characteristics of clean and dirty
content.

Conversely, an approach using machine learning might be able to identify
“dirty” sections that would slip past a set of explicit rules, possibly by using
characteristics of the two classes that do not stand out enough for a human
to identify them. The criteria determining if something is relevant linguistic
content or not are determined by training on existing samples, that could
very well be collected using an heuristic methods, and the classifier would
hopefully then be able to generalise from this data.

Figure 4.2 illustrates schematically how a classifier using machine
learning might have a more fine grained view of what is relevant linguistic
content or not than a classifier using hand-written rules. The separation
of clean (coloured blue) and dirty (coloured gray) content follows a few
straight lines for the heuristic classifier as it depends on a limited, hand-
picked, set of characteristics for both classes. The classifier to the right
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Figure 4.2: Separation of clean and dirty sections using heuristic rules and
machine learning

Heuristic rules Machine learning

that relies on machine learning has a more granular separation of clean and
dirty content, as shown in the figure by the curved border between the two
classes.

4.2 Background: N-gram Models

N-gram models play an important role in the remainder of this chapter
as they have been used in previous efforts on page cleaning (namely
NCLEANER that is reviewed in Section 4.3.1) and are used in our system
(described in Section 4.4). Therefore, we will spend a few paragraphs
detailing them here. An N-gram model gives an estimate of the probability
of events by examining it and a finite number of previous events.

Before we can describe n-gram models we need to say a few words about
conditional probabilities. The probability (P ) of event A given event B is:

P (A|B) =
P (A ∩B)

P (B)
(4.1)

Where P (A ∩B) is probability of both A and B taking place. Multiplying
both sides of Equation 4.1 with the denominator (P (B)) gives us the
following:

P (A|B)P (B) = P (A ∩B) (4.2)

We can then use the chain rule to find the probability for multiple events:

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B) (4.3)
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The chain rule can be restated as follows, whereW is the sequence of events
of length k:

P (W ) =
k∏
i=1

P (wi|wi−1
1 ) (4.4)

A Markov assumption is that the probability of an event only depends
on a finite number of previous events. We can use this to estimate the
probability of a sequence in the following way:

P (W ) ≈
n∏
i=1

P (wi|wi−1
i−(n−1)) (4.5)

N-gram models use the Markov assumption to estimate the probability
of an event by examining the probability of the event given the n−1 events
before it. The term order is used to refer to the size of n. Unigram models
(i.e. n = 1) do not use the history when finding the probability and consider
all events to be independent (Jurafsky and Martin, 2009, p. 120-125). An
n-gram is a sequence of events of length n.

The events can in principle be anything, but at least when used in NLP
they are often words or characters. The probabilities are determined by
training the model, and this is in turn done by counting the n-grams of
length n and n − 1 in a data set. The probability of an n-gram, say “dogs
chase cats”, is calculated by dividing the number of times it occurred in the
training data by the count of the shorter n-gram “dogs chase”:

P (cats|dogs chase) = C(dogs chase cats)

C(dogs chase)
(4.6)

The probability for whole sequences is estimated using Equation 4.5.
From the description above a sequence that was not in the training

data (for instance “dogs chase buses”) would get an estimate of zero as
C(dogs chase buses) = 0. This is undesirable as this is something that is
bound to happen due to the great variation of natural language. The way
this is handled is by shifting some of the probability mass from the known
n-grams over to the unseen ones. This is a technique called smoothing. We
discuss smoothing algorithms in Section 4.5.2.2 as we test several of these
techniques in our experiments.

4.2.1 Perplexity

Measuring the perplexity gives us an impression of how well a language
model describes a string. The perplexity (PP ) of a string of words
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Table 4.1: Top-five performers in the “Text-only” part of
CleanEval

System Score

Victor (Marek et al., 2007) 84.1
GenieKnows (Weizheng and Abou-Assaleh, 2007) 83.4
Kimatu (Saralegi and Leturia, 2007) 83.4
Hofmann and Weerkamp (2007) 83.0
StupidOSa(Evert, 2007) 82.9
Htmlcleaner (Girardi, 2007) 82.5
Chakrabarti et al. (2007) 80.9
FIASCO (Bauer et al., 2007) 73.5
Conradie 60.2
a NCLEANER participated under the name of StupidOS.

W = {w1w2...wk} with a model of order n is calculated as follows:

PP (W ) = k

√√√√ k∏
i=1

1

P (wi|wi−1
i−(n−1))

(4.7)

That is the probability of string normalised by the number of words in
it. Since the probability is in the denominator a lower perplexity means a
better prediction of the set (Jurafsky and Martin, 2009, p. 129-131).

4.3 Previous Work
There have been several initiatives for extracting linguistic content from
on-line sources. The CleanEval shared task (outlined in Section 1.2) that
was held in 2007 prompted the creation of several tools that employed
a range of different techniques. One of the participants, NCLEANER,
will be detailed below as our approach borrows heavily from it. We will
also examine Corpus Clean, which was the tool used to create the corpora
WikiWoods and WeScience from a Wikipedia snapshot. Finally we will look
at JusText, that is a newer algorithm for page cleaning (Pomikálek, 2011)
which outperforms all of the participants in CleanEval.

4.3.1 NCLEANER

NCLEANER (Evert, 2008) was one of the participating systems in the
CleanEval shared task. It has an uncomplicated architecture but, as shown
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in Table 4.1, it was still competitive with the top performers on the “Text-
only” part of the competition. The scoring metric used was modified
Levenshtein edit distance divided by file length (Baroni et al., 2008). The
average score in the “Text-only” part was 79.3. NCLEANER is available
for download.1

NCLEANER classifies text by running it through two character-level
n-gram models, one that is trained on unwanted text (the “dirty” model)
and one that is trained on the desired content (the “clean” model). The
probability scores received from these models are then compared and the
class is determined by observing which model gives the highest probability.
The granularity of this classification is paragraphs, headings and list items.

A few preproccesing steps are performed before the segments are fed
to the language models: The first step removes a set of HTML elements
(images, comments and JavaScripts) and replaces line break tags (<br>)
with paragraph tags (<p>). Markers that help with the identification of
headings and list items in step three are inserted. The second step converts
the HTML into plain text using Lynx (a text-only web browser). In the
third step all non-Ascii characters are replaced with the tilde character
(~) and the page is split into the three segment types mentioned above.
Segments that can be identified as noise by heuristic measures are removed.
One such heuristic is “blocks where multiple fields are separated by vertical
bars” (Evert, 2008, p. 3490). The remaining segments are then classified by
comparing the probability scores given by the two language models.

The units that are classified (paragraph, header and list item) are the
same as those used in the document restructuring task in CleanEval. While
it might be sensible to classify entire paragraphs, it seems a bit strange to
classify typically short elements as headings and list items as clean or dirty
without examining their context. Especially when considering that the
scores given to short segments could be greatly affected by the presence of
a single word that is often seen in boilerplate, like “home” or “click”. One
could imagine cases where this would lead to a heading being classified as
noise while a paragraph directly following it is classified as clean.

4.3.2 JusText

JusText (Pomikálek, 2011) is an algorithm that takes a heuristic approach
to cleaning web pages. A Python implementation2 and a live demonstration
page3 are available on-line. It makes two passes over the page, where the

1http://webascorpus.sourceforge.net/
2http://code.google.com/p/justext/
3http://nlp.fi.muni.cz/projects/justext/

http://webascorpus.sourceforge.net/
http://code.google.com/p/justext/
http://nlp.fi.muni.cz/projects/justext/
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first pass classifies segments when they are long enough and the heuristics
for doing so are fulfilled with a large enough margin. The remaining
segments are marked as “short” or “near-good”, and these are classified in
the second pass by examining their neighbours. The intuition is that clean
segments are usually surrounded by other clean segments and vice versa.

Segmentation is done by splitting the page on block elements, and the
features used in the first pass are length, link density and density of function
words. As with NCLEANER, the segments that gets classified can be quite
small (e.g. headings, table cells and so on), but jusText attacks this problem
by deferring the classification of those to the second pass which does not
examine their content at all.

JusText was developed after CleanEval and outperforms all of the
participants on the data set used in the shared task. It was also tested
alongside some of the tools that participated in CleanEval (including
NCLEANER) on the Canola corpus (Steger and Stemle, 2009) and L3S-
GN1 data set (both are described in Section 1.2). JusText is among the
best performers on all of these data sets (Pomikálek, 2011, p. 47–51), but
it is difficult to pick the best system from these tests due to different tools
coming out on top for different data sets and scoring metrics.

There are also some differences in what content is considered clean in
the different sets. In L3S-GN1 all content “annotated as one of the five main
content classes” (Pomikálek, 2011, p. 50) was considered clean. Presumably
this includes the class “related content” that is used for links to other articles
as often seen on on-line news sites, this is something that would be marked
as boilerplate in the other data sets. Additionally, the KrdWrd guidelines
call for annotating all content that is not comprised of complete English
sentences as noise, which is a requirement that is not in the CleanEval
guidelines.

4.3.3 Corpus Clean

The tool used in the creation of the WeScience and WikiWoods corpora
(Ytrestøl et al., 2009) (described in Section 2.2.2) has a simple heuristic
approach to section classification. As mentioned in Section 2.3.3, Corpus
Clean removes article sections after only examining their heading. Like
jusText, it uses the intuition that noise is usually surrounded by more noise,
and whenever it encounters one of the following section headings, it discards
the rest of the article:

• related web sites

• external links
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• bibliography

• footnotes

Furthermore, the following section headings trigger the removal of the rest
of the article as long as the same heading is not repeated later in the text:

• see also

• notes

• references

• sources

These rules aims to leverage the article conventions in use on Wikipedia.
However, they are tuned to the articles examined during their creation.
While we use machine learning in our approach to noise reduction, we
used heuristic rules not too different from those used by Corpus Clean for
collecting test and training data. The content of these data sets are limited
by our abilities to formulate good heuristics, but this is mitigated by our
classifiers ability to generalise. The process of collection training data is
described in Section 4.5.1 below and our classifier is described in Section
4.4.2.

4.4 Our Approach
Our approach is inspired by NCLEANER (outlined in Section 4.3.1). Even
though it was not the winner of CleanEval it was competitive with the
other participants (as seen in Table 4.1) while at the same time not being
particularly resource intensive. In addition, its general architecture is not
tied to any specific format. Basing our approach on a pair of n-gram models
also leaves the door open for extending our classifier by using its output as
a feature for a classifier using another type of machine learning.

We use two character-level n-gram models for classifying content, where
the classification is done by comparing the probabilities given to the text
by the models. If the model trained on relevant linguistic content gives the
highest likelihood, the text is kept. If the model trained on noise gives the
highest probability, the content is discarded.

Even though NCLEANER is publicly available we do not use it as
the classifier in our system, but have instead opted to used the SRI
Language Modelling Toolkit (SRILM) (Stolcke et al., 2011). Since we
already have parse trees of the articles the effort of doing the preproccesing
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ourselves is about the same as creating HTML files that can be classified
by NCLEANER. Doing the preprocessing ourselves also has the advantage
of freeing us from the limited set of markup elements used by NCLEANER
(<h>, <l> and <p>) by allowing us to use any format we see fit for
during classification. We believe this is important for performance as the
density and composition of markup is often noticeably different for “clean”
and “dirty” text. We also expect that SRILM (implemented in C++)
outperforms NCLEANER (implemented in Perl) in terms of speed, which is
important considering that we are operating on a snapshot of the complete
Wikipedia.

We have chosen to view article sections as singular units for the purpose
of classification as this granularity has several advantages. One of them is
that we will not be classifying very short spans of text that can be vulnerable
to the presence of atypical properties that can lead to misclassification. For
instance headings without any context. This could also lead to some some
odd situations where a heading is classified as dirty while the rest of the
section is classified as clean.

Another advantage is that we do not run the risk of splitting sentences,
take for instance this sentence that starts in a regular paragraph and ends
as a list from the article “Cons”:

. . . Such a list can be created in three steps:

1. Cons 3 onto nil, the empty list

2. Cons 2 onto the result

3. Cons 1 onto the result

Removing the three steps would remove a large part of the last sentence of
the preceding paragraph, making it ungrammatical and effectively turning
it into noise.

There was also the practical matter of obtaining training and test data
(detailed in Section 4.5.1), which we generated by matching sections in our
dump to a number of criteria. It turned out that finding good heuristics for
“clean” and “dirty” sections was not as trivial as it may sound, and we had
to run two iterations before we were satisfied with the results. Specifying
criteria for smaller, sub-section, chunks of clean and dirty content would
probably have been harder.

There is however one disadvantage to classifying such large chunks of
content: That even though most sections are made up of a single type of
content, there will inevitably be some sections that contain both relevant
linguistic content and noise. We will return to these “mixed” sections
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Listing 4.1: A section after preproccesing.
<h3>C++ Library </h3>
<p><ul><li><NamedURL >Crypto ++</NamedURL > A comprehensive

C++ semi -public -domain implementation of encryption and
hash algorithms. FIPS validated </li >

<li><NamedURL >Chris Lomont 's version of AES under the zlib
License </NamedURL ></li ></ul ></p>

in Section 4.6 where we take another look at what constitutes relevant
linguistic content.

4.4.1 Preproccesing

Recall from Chapter 3 that at this stage articles are internally represented
as individual parse trees in our system and that these trees are never nested.
In addition, all template inclusions are either removed, expanded or made
explicit (as detailed in Section 3.3.3). The templates that we keep are now
represented as regular text nodes in a parse tree.

Before they can be classified a string representation must be created for
each section. This corresponds to the preproccesing done by NCLEANER.
It differs from the approach taken by Evert (2008) in that we have chosen
a much more verbose format for these strings, as shown in the example
in Listing 4.1. We have done so because we believe that the classification
step would benefit from the presence of markup, as this does in a way
make certain features like markup density and link count available to our
classifier. We build these strings so that they contain the markup that has
some linguistic relevance, while elements that introduce noise are silently
ignored (tables, purely navigational elements and so on, see Appendix A
for a complete list).

With a few minor exceptions this string contains the same information
as the final GML representation that will be used in the corpus. The reason
for not using GML was that it only existed on the conceptual stage when
we constructed this part of the system. But the conceptional separation
between these strings and the final representation is intentional as some
page elements might be useful cues to the classifier even if we do not want
to include them in the corpus. One example might be “category links” that
are usually found near the end of an article and are used to include an
article in a category or images that do not follow the normal text flow.

Any sections where the string representation only contains a heading
are not evaluated by the classifier, but their inclusion in the corpus is
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instead determined by whether or not they have any clean sub-sections
(as described in Section 3.4). The string could be empty because there
were two consecutive headings in the articles source, something that is not
uncommon on Wikipedia. Other reasons could be that all content was
removed during the template expansion or that all remaining content was
in the form of markup elements that are not included in the classification.

4.4.2 The Classifier

As mentioned above, we use SRILM to build and apply our n-gram models.
SRILM supports a range of smoothing techniques, which alongside the n-
gram order and quality of the training data have a major impact on the
performance. We experimented with different configurations (discussed in
Section 4.5), before settling in the one we use in our system.

SRILM has the ability to run as a server, this is convenient for us as
we can start two servers (one for each model) and connect to these from
any number of concurrent processes. The network protocol is text-based
and fairly straightforward: The client sends an n-gram where words are
separated by spaces and the server responds with the logarithm of the
probability. It is up to the client to multiply (or sum since log(x)+ log(y) is
equivalent to x× y) the replies in order to get the probability for the whole
string.

In order to operate on the character level we reformat the string
by inserting spaces between all non white-space characters. It is then
converted to Ascii by passing it to Python’s string.encode('ascii',
'backslashreplace'), which replaces non-Ascii characters with a back-
slash followed by a hexadecimal number (e.g. the character ø is replaced by
\xf8), in order to prevent any encoding issues. A sentence-start (<s>) and
sentence-end (</s>) token is then put at the beginning and end of each line
respectively.

A telnet session with a server loaded with the dirty model, where we get
the probability for the top level heading “Notes” (<s> < h 1 > N o t e s
< / h 1 > </s> after preproccesing and formatting) is shown in Listing
4.2. Line one shows the salutation sent by the server upon connecting.
Following on line two is the first ngram from our heading, which gets a
probability close to one (10−0.0021 ≈ 0.9952). This is an effect of the format
used during the classification where almost all lines starts with a tag, and
hence the first bigram is almost always <s> <. Also, notice how some of
the n-grams receive extremely low probabilities (line 6 and line 26). There
is also a smaller dip for the n-gram h 1 > N (line 10) compared to that of
its neighbours, as was not in the training set and the server had to back off
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Listing 4.2: Telnet session with a SRILM server.
1 probserver ready
2 <s> <
3 -0.00210638
4 <s> < h
5 -0.627294
6 <s> < h 1
7 -5.48345
8 < h 1 >
9 -0.09691
10 h 1 > N
11 -2.84527
12 1 > N o
13 -0.546763
14 > N o t
15 -0.397856
16 N o t e
17 -0.181237
18 o t e s
19 -0.386462
20 t e s <
21 -0.333785
22 e s < /
23 -0.00273824
24 s < / h
25 -0.263875
26 < / h 1
27 -5.48344
28 / h 1 >
29 -0.653212
30 h 1 > </s>
31 -0.39794

until it finally found a matching bi-gram.
Some care must be taken when communicating with the server in order

to get a decent performance, while passing too few n-grams at once leads
to a lot of transmission overhead, passing too many before reading the
replies leads to a deadlock as the server blocks when its output buffer is
full. Implementation-wise this meant that we had to do some tuning in
order to find the optimal amount of data to pass to socket.sendall(),
which is the function used to send data over a network connection.
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4.5 Finding the Optimal Configuration

The performance of our classifier depends on several factors, where the most
important are:

The training data The amount and quality of the training data, and as
we mentioned in Section 4.4 even the format of text being classified
plays an role. We did two iterations where we collected training data
from our Wikipedia dump.

N-gram order If the order is to small, the model will not adapt very well
to the training data. On the other hand we risk over-fitting by using
a too high order and the models will be less able to generalise.

Smoothing The language model implementation in SRILM also features
several smoothing algorithms. Smoothing is done in order to minimise
the problem of estimating the probability for n-grams that were not
in the training data.

We conducted several test where we varied adjusted all of these parameters
in order to find the configuration most suited for our use.

4.5.1 Collecting Test and Training Data

Our approach requires two language models, and before we can generate
those we must acquire some data to train them on. This is done by selecting
article sections from our dump by comparing them to a clean and dirty
heuristic. Before defining those we examined all articles in order to find the
distribution of section headings and their average length. The motivation
for doing so was the expectation that there is a correlation between the
length of a section and whether or not it is clean. Heading levels were taken
into account in this survey, so the headings created by the wiki markup
== Notes == and === Notes === (second and third level heading “Notes”)
were counted separately. This list turned out to be quite handy and it was
referenced directly by the script we developed for collecting the training
data.

The similar structure of many of the articles means that often-
repeated section headings are good indications of sections being noise (e.g.
“References” and “Notes”). A intuition that also Corpus Clean based its
classification on. Intuitively, the converse also seemed true: Rare headings
are usually clean. In addition we also expected clean sections to be longer,
especially after the removal of noise-introducing templates (see Section
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3.3) and the preproccesing (described in Section 4.4.1 above) as both will
normally discard more content from dirty sections than from clean ones.

When developing our heuristics we had to strike a balance between
quantity and quality. Using a greedy heuristic would get us a large
amount of training data, but it would contain more impurities than the sets
collected by a less greedy heuristic. After we had done some preliminary
experimentation we did some additional tuning to find this balance.

The format of the test and training data is the same as the one used
during classification (described in Sections 4.4.1 and 4.4.2), except that we
do not add the sentence-start and sentence-end tokens as these are added
implicitly by SRILM during training.

4.5.1.1 The Heuristics

We will start by detailing the original heuristics. The sections included in
the “clean set” matched the following criteria:

• It did not include any lists

• and it had more than four paragraphs

• and it had a unique heading

Training material for the dirty model consisted of article sections with the
following qualities:

• It had one of the following-second level headings (frequencies in
parentheses):

– Works (13823)

– Deaths (11372)

– Births (10832)

– Publications (8232)

• Or:

– it had a heading that is used more than 5000 times

– and the average length of sections with this heading is less than
750 characters.

The reason for creating special rules for some headings was that they were
in the top 40 most frequently used headings, but they were on average a
bit too long (around 1000 characters) to be caught by the heuristic rules.
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Manually inspecting the data collected from the original heuristics
revealed that there some clean sections had made it into the dirty set. To
mitigate this we created a new set of heuristics that we called “the refined
heuristics”. The difference between the refined heuristics and the first set of
rules (which we now refer to as “the original heuristics”) is that we added a
blacklist of all the headings we found in the dirty set that were not obviously
dirty. In addition we no longer included sections with the heading “Works”.
The headings added to the blacklist were:

• Awards

• Geography

• Education

• Transportation

• Personal life

• Family

• Trivia

• Results

• People

• Achievements

• Transport

4.5.1.2 The Data Sets

Table 4.2 shows the different data sets with their “clean” (C) and “dirty” (D)
sub-sets that were used in the training and evaluation of the classifier. The
sets train_A, train_B and train_C were extracted from the dump using
the rules discussed above, and the smaller training sets are proper subsets
of the larger ones. The sets test_A and test_B were by setting aside some
of the material extracted in the creation of the training sets and were used
to measure the predictive powers of the models as well as the performance
of the classifier.

When querying the CDB (the storage facility employed by mwlib) for
articles it returns a list of names that has several long spans that are
sorted alphabetically. Since there are several naming conventions in use
on Wikipedia, as for instance the articles named “List of” that mostly share
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Table 4.2: Training and test sets

Class Set File size Sections Description

C train_A 1,100 MB 208,000 the largest training
setD 1,706,000

C train_B 700 MB 139,000 about two thirds of
train_AD 1,124,000

C train_C 350 MB 69,000 about a third of
train_AD 562,000

C test_A 120 MB 23,000 for evaluating the
modelsD 190,000

C test_B 15 MB 3,000 for evaluating the
classifierD 2 MB

C the gold standard 500 KB 243 annotated by tree
annotatorsD 100 KB 63

C the silver standard 800 KB 273 annotated by a single
annotatorD 200 KB 144

a similar structure, it is important to stratify the training data. This
is to ensure that none of the sets created from the data have different
compositions. Our script for extracting the data sets randomised the list of
articles before it started collecting sections.

As seen in Table 4.2 number of sections in the “dirty” sub-sets greatly
outnumbers the sections in the corresponding “clean” sub-set in the sets that
are balanced on size (i.e train_A, train_B, train_C and test_A). This
is a result of sections that consists of relevant linguistic content usually
being longer than sections that mostly consists of noise. The “template
processing” stage (detailed in Section 3.3) also removes far more content
from the noisy sections, and the same applies for the preprocessing for the
classification (detailed in Section 4.4.1).

The same can be observed by examining file sizes for the “clean” and
“dirty” components for test_B. This set was compiled so that it would have
the same number of sections of each class. This was in order to test the
classifier without having to do any weighing when analysing the results.

The gold standard were created by manually classifying sections as
clean or dirty. The gold standard was created by collecting sections from
test_B that were mistakenly classified at least once by two differently
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configured classifiers (detailed in Section 4.5.2). As a result this set contains
sections that are particularly difficult as can be seen by the results from
our experiments below. The sections in this set were manually classified
by three human annotators any disagreements were resolved by using the
classification reached by the majority. During the annotation it became
apparent that not only were some sections difficult to classify even for
humans, but that our notion of relevant linguistic content was not developed
fully. We will discuss some examples of difficult sections in Section 4.6
below.

The sets described so far only contain sections that were collected by our
heuristic rules. While experimenting on those did give us some indication
on how good or bad the different configurations are, their composition are
not like most articles in the dump. In order to find how the classifier would
perform in practice one annotator classified all sections from a hundred
randomly chosen articles creating what we call the silver standard.

4.5.2 Experiments

Having decided to take a similar approach to content classification as
NCLEANER (Evert, 2008) and to base our approach on SRILM (Stolcke
et al., 2011) we now needed to find the best possible parameters for our n-
gram models. We also needed to know if the best configuration performed
well enough for our purpose. Even though NCLEANER got decent results
in the CleanEval shared task it was not guarantied that the performance
would be on the same level with our implementation on different domains
and data format.

Our experiments tested the following configuration parameters: Type
and quantity of training data, n-gram order and smoothing algorithm.
These tests were carried out on several test-sets namely test_A, test_B,
the gold standard and the silver standard (all described in Section 4.5.1.2).
These data sets all have different properties.

4.5.2.1 Evaluation Metrics

Before assessing the results of our experiments we need to establish suitable
metrics as well as methods of comparing them. We will use perplexity
(introduced in Section 4.2.1), F-measure and the sign test when reporting
and discussing our results (both detailed in the immediately following
sections).
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F-Measure We use F-measure (or Fβ-score) to give us an idea of how
well a given configuration is at identifying clean and dirty sections. The
Fβ-score is a measure of how well a system is at identifying items from a
target class. Since we are classifying sections the target class can either be
clean sections (if we view our system as a “clean classifier”) or dirty sections
(if we view our system as a “dirty classifier”). Before describing how we
calculate the F-measure we need to define the following terms:

True Positives (TP): The number of items correctly identified as the
target class.

False Positives (FP): The number of items wrongly identified as the
target class.

False Negatives (FN): The number of items in the target class that were
not identified.

We use these values to find the precision (P) and recall (R), which is defined
as:

P =
TP

TP + FP
(4.8) R =

TP

TP + FN
(4.9)

Using different values for β in the Fβ-score results in a different weighing
of weighing precision and recall. We use a value of 1 which puts equal
importance on both. When β = 1 the F-measure is given by the harmonic
mean of precision and recall4:

F1 =
2PR

P +R
(4.10)

(Jurafsky and Martin, 2009, p. 489).
Our classifier can both be viewed as a system that identifies clean

sections and as system that identifies dirty sections, and which configuration
gets the highest score can depend on which view we take when calculating
the F-measure. When reporting the results of our experiments below we
calculate the Fβ-score both ways and report the macro average.

Sign Test When finding the optimal combination of training set, order
and smoothing algorithm it is often useful to tell if one configuration is
significantly better than the other. We use the sign test to determine
significance.

4For other values of β: Fβ = (β2+1)PR
β2P+R .
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When comparing configuration A and configuration B we do a pairwise
comparison of the outcomes (a list like (a1, b1), (a2, b2), . . .). The null
hypothesis is that there is no difference between them. In that case, A and
B both have the same probability of having made the right classification
for any pair that differs. The alternate hypothesis is that configuration A
is better and that for each pair with different classifications the probability
for configuration A being correct is greater than the probability of B being
correct. The null hypothesises (H0) and the alternate hypothesis (H0) can
be expressed as:

H0 : P (Correct A) = P (Correct B) = 0.5 (4.11)
H1 : P (Correct A) > P (Correct B) (4.12)

If the null hypothesis is correct, the outcomes will have a binomial
distribution. The significance probability (p) for configuration A having w
correct outcomes out of m with a base probability k is found by summing
up the probability of getting w or more correct outcomes:

p =
m∑
i=w

(
m

i

)
ki(1− k)m−i (4.13)

(Johnson and Bhattacharyya, 2010, p. 591-596). We use the significance
probability of 0.05 to determine if the difference between to configurations
is significant.

The sign test is applicable to any set of observations as long as they
can be compared pairwise. However, since pairs with similar outcomes are
discarded the effective sample space is reduced. Our classifier returns a
positive or negative real number for wanted and unwanted content which
could be viewed as a measure of how confident the classifier is in its decision.
Unfortunately, high confidence does not mean that a given classification is
actually better. We can therefore not use this in order to employ tests that
are statistically more powerful like for instance the Wilcoxon signed-rank
test.

Listing 4.3 on the next page shows a Python script that uses the sign
test to check for significance. The tuple outcomes contains the pairwise
classifications made by configuration A and B, these are boolean values that
are true for correct classifications and false otherwise. Only the outcomes
that differs for a and b are included in the test (line 7). The variables m and
w will at the end of the loop hold the numbers of different outcomes and the
number of correct outcomes for configuration A. In line 12 we use Equation
4.13 to find the likelihood of doing equally or better with a coin-toss by
summing up the probability of getting w-out-of-m or more correct outcomes
with a probability 0.5.
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Listing 4.3: The sign test implemented in Python
1 import scipy.stats
2
3 k = 0.5
4 outcomes = ((a1, b1), (a2 , b2), ...)
5
6 for a, b in outcomes:
7 if a != b:
8 m += 1
9 if a:
10 w += 1
11
12 p = scipy.stats.binom.sf(w - 1, m, k)

4.5.2.2 Experimental Setup

We tested classifier performance on the test sets detailed in Section 4.5.1.2.
They were build for the combinations of different training sets (also detailed
in Section 4.5.1.2), different n-gram orders (2, 3, 4, 5 and 10) and the
smoothing algorithms detailed below. When describing these algorithms we
will use the form used by Chen and Goodman (1998) with some modification
so they match the notation used elsewhere in this thesis.

Add one

P+1(wi|wi−1
i−n+1) =

1 + C(wii−n+1)

|V |+ C(wi−1
i−n+1)

(4.14)

As shown in Equation 4.14 add one smoothing modifies the probability of
an n-gram by adding a constant of one to its count. In order to keep the
sum of probabilities from exceeding one the size of the vocabulary (V ), that
is number of different events observed, is added to the count of the n − 1
events in the denominator. This is an uncomplicated way of ensuring that
all estimates, including those of n-grams not seen in the training data, will
be greater than zero. A downside of this approach can be that the too much
of the probability mass is moved to unseen n-grams.

Witten-Bell (Witten and Bell, 1991).

PWB(wi|wi−1
i−n+1) = λwi−1

i−n+1P (wi|wi−1
i−n+1)+

(1− λwi−1
i−n+1)PWB(wi|wi−1

i−n+2) (4.15)
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Where P is the maximum likelihood estimation as presented in Equation
4.6 and 1− λwi−1

i−n+1 is defined as:

1− λwi−1
i−n+1 =

N(wi−1
i−n+1•)

N(wi−1
i−n+1•) + C(wii−n+1)

(4.16)

In Equation 4.16, N is the number of unique n-grams matching a given
sequence, where the symbol • matches any event. The probabilities from
P (wi|wi−1

i−n+1) and PWB(wi|wi−1
i−n+2) are weighed by Equation 4.16, which is

close to one for low frequency n-grams and close to zero for high frequency
n-grams. For unseen n-grams, only the estimation from the lower order
model is used.

This smoothing algorithm was developed for statistical data compres-
sion. This is a task where the tokens operated on are usually fixed-length
byte sequences instead of words. This might be an advantage for character
level models.

Constant Discount (Ney and Essen, 1991).

PCD(wi|wi−1
i−n+1) =

max(C(wii−n+1)−D, 0)
C(wi−1

i−n+1)
+ (1− λwi−1

i−n+1)PCD(wi|wi−1
i−n+2)

(4.17)

Where D is the discount and the interpolation factor (1− λwi−1
i−n+1) is:

1− λwi−1
i−n+1 =

D

C(wi−1
i−n+1)

N(wi−1
i−n+1•) (4.18)

The discounting parameter (D) is subtracted from all counts and the
interpolation factor in Equation 4.18 is an estimate for the probability of
the n-gram being unknown. We use a discounting constant of one in our
experiments.

The models smoothed with constant discount were a lot smaller than
similar combinations of the same n-gram order and amount training data.
This made it possible to run tests using 15-gram models for this smoothing
method. The reduction in size was a result of setting the discounting
parameter to one, which led to all n-grams that were only seen once during
training to have their count discounted to zero (Ney and Essen, 1991,
p. 826), which in turn cased SRILM to discard them.
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Kneser-Ney (Kneser and Ney, 1995).

PKN(wi|wi−1
i−n+1) =

max(C(wii−n+1)−D, 0)
C(wi−1

i−n+1)
+ (1− λwi−1

i−n+1)
N(•wii−n+2)

N(•wi−1
i−n+2•)
(4.19)

Where the interpolation factor is the same as for constant discount
(Equation 4.18). Kneser-Ney smoothing is similar to constant discount
except for that the probability is interpolated with a value determined
by how many different events have been observed after wi−1

i−n+2 SRILM
does have a command line parameter for the discounting value for Kneser-
Ney smoothing. It is possible to estimate this during training by letting
D = n1

n1+2n2
where n1 and n2 are the number of events that occurred once

and twice during training (Ney et al., 1994; Chen and Goodman, 1998).

Modified Kneser-Ney (Chen and Goodman, 1998). This is an
modification of Kneser-Ney where the discount value varies for depending
on how often a given n-gram is seen. The interpolation factor is changed
to:

1− λwi−1
i−n+1 =

D1N1(w
i−1
i−n+1•) +D2N2(w

i−1
i−n+1•) +D3+N3+(w

i−1
i−n+1•)

C(wi−1
i−n+1)

(4.20)

Where D1, D2, and D3+ are the discount for n-grams seen once, twice or
more and N1, N2, and N3+ are the number of unique seen one, twice or
more.

4.5.2.3 Results

Figure 4.3 shows the perplexity from different configurations of our classifier
on test_A that is a set created with the same heuristics as the training data
and balanced so the “clean” and “dirty” parts are roughly the same size.
Perplexity is measured separately on the “clean” and “dirty” sections of the
test set and the results was then averaged. The most striking observation
in this plot are the high perplexity given by the higher order add one-
smoothed models. We should note that the extent of this increase is visually
exaggerated by the step in n-gram order from 5 to 10. The other smoothing
methods are almost indistinguishable. It is also interesting to see that the
perplexity remains stable for the different training sets. This is probably
because even the smallest of our training sets, train_B, is quite large with
a size of 350 MB.
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Figure 4.3: Perplexity on test_A
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Figure 4.4: F1-score on test_B
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Figure 4.5: F1-score on the gold standard
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The macro averaged F1-scores for different configurations on the set
test_B is shown in Figure 4.4. Test_B was created in the same way
as the training sets, but is balanced so it has 3,000 sections of each
class. As in Figure 4.3, add one stands out with noticeably lower scores
for configurations with an n-gram order three or higher. Except for the
configurations using add one, we once again see that the amount of training
data have little effect on the lower order models.

The scores on this test set are extremely high, but unfortunately they do
not reflect the actual performance of the classifier. The sections in test_B
are very similar to those in the training sets since they were all created
using the same heuristic method and do not reflect the actual composition
of Wikipedia.

The gold standard is one of the two test sets have been hand corrected
by human annotators. This set consists of sections that that were collected
using the original heuristics (the revision of the heuristics is detailed in
Section 4.5.1.1) and that wrongly classified by at least one configuration.
The sections in this set are considerably harder than the sections in test_B
and the silver standard and this can be seen by the overall lower score shown
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Figure 4.6: F1-score on the silver standard

0.8500

0.8600

0.8700

0.8800

0.8900

0.9000

0.9100

0.9200

0.9300

0.9400

0.9500

0.9600

2 3 4 5 10 15

C B A C B A C B A C B A C B A C B A

A
v
er

ag
e 

F
1

N-gram order

Training set

Add one
Constant discount

Modified Kneser-Ney
Kneser-Ney
Witten-Bell

in Figure 4.5.
Add one generally out-performs the other smoothing methods on this

set except for the configurations using models with an n-gram order 10.
Classifiers using trigram models seem to do worse than those using models
of n-gram order two and tree. This is likely to be a result of the composition
of this set. The gold standard was created from sections that one of two
candidate classifiers using 15-gram and trigram models got wrong. This
plot seems to suggest using add one smoothing and an n-gram order of four
or five. We will return to this test and do significance testing on the results
in Section 4.5.2.4.

Figure 4.6 shows the performance on the silver set, which was created by
manually annotating the sections for a hundred randomly chosen articles.
The silver standard is the set that is likely to most similar to the rest of
the dump as it contain was not extracted using the heuristic rules.

Yet again the highest scoring configuration uses add one smoothing.
For most of the smoothing algorithms the performance drops steadily when
the n-gram order increases beyond three. The configurations using bigram
models all get the same F1-score on this test, but their classifications differ
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on individual sections.

4.5.2.4 Discussion

We have run tests with multiple classifiers on different sets in order to pick
the one with the best performance for our system. Our test sets have very
different properties and as one might expect a different configuration comes
out on top for each of them. We will briefly summarise our finding below
and we argue for our choice of parameters for our classifier.

When testing on test_A and test_B (shown in Figures 4.3 and 4.4) there
are relatively small improvements from increasing the amount of training
data. On the gold and silver standards there is no apparent correlation
between the size of the training set and performance. In fact, several
configurations trained on the smallest training set (train_C) outperform
similar configurations trained on larger sets (i.e. train_B and train_A).
We should keep in mind that these sets are fairly small and that a change
of just a few different classifications is clearly visible on these plots. Take
for instance the dropping performance of 5-gram models smoothed with
modified Kneser-Ney (shown in blue) in Figure 4.6 as the amount of training
data increases. This is a decrease in average F1-score is from 0.9262 to
0.9146, that is the result of the classifier making four extra mistakes.

We put more emphasis on the results on the silver and gold standards
then on the sets generated from the heuristic rules as their distribution
of relevant linguistic content and noise is hand made. In addition the
silver standard should match the rest of Wikipedia as it was collected from
randomly selected articles. On all of our experiments, the results from the
classifiers using add one smoothing are the most eye catching. They perform
poorly on test_A (shown in Figure 4.3) and test_B (shown in Figure 4.4),
but they often get the best scores on the manually annotated sets (shown
in Figures 4.5 and 4.6).

Table 4.3 and Table 4.4 displays the best performing configurations
organised by n-gram order for on the gold and silver standard. They also
include the best configuration that does not use add one smoothing for
the n-gram order of the best performer for comparison. The rightmost
column shows the significance probability resulting from comparing it with
the best configuration using the sign test (detailed in Section 4.5.2.1). As
on the plots, the performance of add one smoothed models stands out.

We use add one smoothed 4-gram models that are trained on the
largest training set (train_A) in our system. This decision is motivated
by its good performance on both the gold and silver standard. It is
outperformed by similar configurations using less training data on both sets,
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Table 4.3: Significance for the best performing (F1: 0.8584)
configuration (add one smoothed 5-gram models trained on train_A)
on the gold standard.

Order Training set Smoothing F1-score Significance

2 train_A Add one 0.7705 <0.05
3 train_A Add one 0.7154 <0.05
4 train_C Add one 0.8442 -
10 train_C Kneser-Ney 0.7690 <0.05
15 train_A Constant discount 0.7674 <0.05

Table 4.4: Significance for the best performing (F1: 0.9523) configu-
ration (add one smoothed 4-gram models trained on train_B) on the
silver standard.

Order Training set Smoothing F1-score Significance

2 any any 0.9331 -
3 train_B Add one 0.9466 -
5 train_A Add one 0.9438 -
10 train_B Kneser-Ney 0.9062 <0.05
10 train_B Modified Kneser-Ney 0.9062 <0.05
15 train_A Constant discount 0.9868 <0.05

but the differences in performance is minimal. Our chosen configuration
is outperformed on the gold standard by 5-gram models using add one
smoothing. Since we feel that the silver standard represents the content of
our snapshot better we put more weight on the results on this set.

Admittedly we did not expect add one smoothing to perform this
well compared to the other, more sophisticated, smoothing techniques we
pitted it against. Besides for the sense of completeness, our motivation for
including add one in our tests was this brief mention of it by Stolcke et al.
(2011):

The latter [additive smoothing] is useful for instructive purposes,
and can give better results when the goal is not to minimize
model perplexity (e.g., when using N-gram models for classifi-
cation tasks).

Add one smoothing was clearly outperformed by several of the smoothing
algorithms we employed (absolute discount, Kneser-Ney and modified
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Table 4.5: Classifier performance with the original and refined heuristics

Original Refined

Order Test_Bo Gold standard Test_Br Gold standard

2 0.9753B+ C+ 0.7426A+ 0.9703B+ 0.7705A+

3 0.9797Bw Cw 0.6002B+ 0.9845Bk Bkk Ck 0.7154A+

4 0.9828B+ 0.6948D+ 0.9867Bkk 0.8442C+

5 0.9848Bw 0.7109C+ 0.9883Ak 0.8584A+

10 0.9878Bk 0.6208B+ 0.9910Bk 0.7690Ck

15 0.9880Bc 0.5774Ac 0.9892Ac 0.7674Ac

+ Add one c Constant discount w Witten-Bell k Kneser-Ney
kk Modified Kneser-Ney A Train_A B Train_B C Train_C D Train_D

Kneser-Ney) in the experiments performed by Vatanen et al. (2010),
where they used character level n-gram models for language identification.
Although, both the size of training data (the U.N. Universal Declaration
of Human Rights) and the size of the text segments that they classified
(5-21 characters) were significantly smaller than what we used for our
experiments.

4.5.2.5 Evaluating the Heuristics

As previously mentioned in Section 4.5.1.1 we fine-tuned the heuristics used
for collecting test and training data in order to make these sets “purer” (i.e.
representative of the distribution we want to model). Purer sets came at
the price of smaller size and the largest training set (train_A) shrank from
1.5 GB to 1.1GB.

The best performing configurations for both the original and revised
heuristics are shown in Table 4.5. The scores shown are the macro average
of F1 for “clean” and “dirty” sections. Test_Bo and test_Br are created
with the original and revised heuristics respectively. The set train_D was
a small training set used during our initial rounds of experimentation. It
had a size of 150MB and consisted of sections extracted with the original
heuristics.

Interestingly, the n-gram order for the best performing classifiers trained
on the original heuristics for gold standard and test_B are at the opposite
extremes. This could be a sign of the models learning how to predict the
“impure” training data, which is a drawback when operation on the gold
standard.

There is an improvement in the performance on test_B with the revised
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heuristics. There are two possible factors behind this: There are no longer
any sections included in the wrong part of test_B that the classifier gets
penalised for getting right. That is, the training sets and test sets are
now more uniform and easier for the classifier. The other factor is an
actual improvement in performance. If we compare the scores on the
gold standard, where an increased score does mean an actual performance
gain, we see that trading quantity for quality paid off. We only used the
refined heuristics from that time on and all the results reported from our
classification experiments use the revised heuristics unless otherwise stated.

4.6 Revisiting Relevant Linguistic Content
As mentioned in Section 4.5.1.2 we created a set with gold standard section
classification. The content of this set was selected by two classifier with an
n-gram order of 3 and 15 on test_Bo, which was created from the original
heuristics and collecting the sections that were wrongly classified at least
once.5 We also added 10% extra sections to serve as controls.

Listing 4.4: A clean section
<h1>Catharose de Petri </h1>
<p><Strong >Catharose de Petri </Strong > (real name Henriette

Stok Huyser 1902 -1990) was a Dutch born mystic and
co -founder of the <ArticleLink >Lectorium
Rosicrucianum </ ArticleLink >, an international esoteric
school based on <ArticleLink >Gnostic </ ArticleLink > ideas
of <ArticleLink >Christianity </ ArticleLink >.</p>

<p>Catharose de Petri founded the Lectorium in
<ArticleLink >1935 </ ArticleLink > with two other Dutch
mystics , <ArticleLink >Jan van Rijckenborgh </ ArticleLink >
and his brother Zwier Willem Leene after meeting them as
a member of the Dutch branch of <ArticleLink >Max
Heindel </ ArticleLink >'s <ArticleLink >Rosicrucian
Fellowship </ ArticleLink >. The three broke away from
Heindel 's interpretation of the
<ArticleLink >Rosicrucian </ ArticleLink > message to form
their own movement , the <Emphasized >Lectorium
Rosicrucianum </ Emphasized >.</p>

[... snip]

Three human annotators classified each section as clean or dirty. Any
conflicting classifications were resolved by voting. The annotators were
not aware of which part of test_B the sections originally came from. The

5Our first strategy for choosing n-gram parameters involved studying two different
configurations. This was then abandoned for the approach detailed in Section 4.5.
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Listing 4.5: A section containing both clean and dirty text
1 <h2>Cutting -Edge Research </h2>
2 <p>The hospital 's activities include comprehensive research

in the laboratory , in the treatment setting , and in the
community throughout the hospital and its research
institutes .</p>

3 <p>The majority of the basic laboratory research conducted
at the hospital takes place in <NamedURL >The Saban
Research Institute </NamedURL >.</p>

4 <p>The Saban Research Institute is the largest and most
productive pediatric research center in the western
United States , ranking fifth in the nation in federal
funding for pediatric research at stand -alone pediatric
facilities , including from federal agencies , like the
<ArticleLink >National Institutes of Health </ ArticleLink >
and the <ArticleLink >Centers for Disease Control and
Prevention </ ArticleLink >.</p>

5 <p><Strong >Current Research Programs Include:</Strong ></p>
6 <p>• <NamedURL >Cancer Research </NamedURL ></p>
7 <p>• <NamedURL >Cardiovascular Research </NamedURL ></p>
8 <p>• <NamedURL >Community Health Outcomes and Intervention

Research </NamedURL ></p>
9 <p>• <NamedURL >Developmental Biology </NamedURL ></p>
10 <p>• <NamedURL >Gene , Immune , & Stem Cell

Therapy </NamedURL ></p>
11 <p>• <NamedURL >The Stem Cell Project </NamedURL ></p>
12 <p>• <NamedURL >Imaging Research </NamedURL ></p>
13 <p>• <NamedURL >Microbial Pathogens </NamedURL ></p>
14 <p>• <NamedURL >Neuroscience </NamedURL ></p>
15 <p>• <NamedURL >Institute for the Devloping

Mind </NamedURL ></p>

annotation was split into two runs. In the first run, the calibration run,
only 10 % of the set was classified. The purpose of this was to discover
any different views on what is relevant linguistic content by the annotators.
The inter-annotator agreement for the set as a whole was 88.9%.

Recall from Section 1.1.1 that the content we wish to retrieve are spans
of text that contain information about the subject matter of the article
and that have a form that requires grammatical analysis for interpretation.
Listing 4.4 shows the first half of Section 1 in the calibration set, which
easily fulfils the requirements for being relevant linguistic content.

The section shown in Listing 4.5 starts out as clean, but half of it
(starting from line 5) is simply a list of links. A result of using sections
as the smallest unit that is classified is that we must occasionally chose
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between discarding relevant linguistic content or keeping some noise. In
these cases it comes down to how much dirt we are willing to put up with
in order to get the clean content. There are also some peculiar use of markup
in this section like using paragraphs and the bullet character to create a
list, but this is to be expected due to the diverse group of non-experts that
maintains the articles on Wikipedia. This section was deemed clean by the
annotators.





Chapter 5

Sentence Segmentation

This chapter details the “Sentence segmentation” stage in our system. As
can be seen in Figure 5.1 this is the last stage before the actual corpus
generation. At this point, articles are already parsed and split into sections,
and the sections with little relevant linguistic content are marked as such.

Throughout this thesis we use the term “sentence” when we refer to a
unit of text that is convenient for further language processing. While this
will often be a sentence in the strict grammatical meaning of the word, it
also includes things like a single-word headings, list items and so on. The
definition offered for the term “text-sentence” by Nunberg (1990, p. 22)
seem to be good description of the units of text we want to identify:

Figure 5.1: Overview of our system

85
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But none of them [other definitions of “sentence”] deals with
what we will call the “text-sentence,” which is the fundamental
unit of text-grammatical structure (and not incidentally, of
instruction of writing. The text-sentence is that unit of written
text that is customary presented as bracketed by a capital letter
and a period (though those properties are not criterial).

The reason for performing sentence boundary detection during the
creation of the corpus is that most NLP tools expect their input to be
separated into sentences. Additionally, this is one of the many types of
language processing that benefits from the presence of markup and, more
generally, access to layout information so it makes sense to do this while we
still have access to all of the markup elements.

The generation of the GML markup that makes it into the corpus
is done immediately after sentence boundary detection. Since we use a
combination of heuristic rules and a third-party tool that is not markup-
aware, the sentence boundaries returned from this tool must be merged
with the internal representation used in our system. We will introduce an
algorithm for doing this in Section 5.3.

5.1 Choosing a Sentence Segmenter

In order to find a sentence boundary detector suitable for our setup, we
tested several candidate systems. They are shown in Table 5.1 where they
are labelled with their general approach to finding sentence boundaries:
rule based (R), unsupervised (U) or supervised (S). With the exception of
GATE (that can operate on HTML), these tools are not markup aware. The
sentence splitter in LingPipe has two configurations, one tuned for “general
text” and one tuned for the bio-medical domain. We test them both and
refer to them as “LingPipe (general)” and “LingPipe (medical)”. We used
the implementation and the pre-trained model in NLTK (Bird et al., 2009)
for Punkt.

With the exception of the GATE sentence splitter, all of these tools
have already been tested on several corpora including the WeScience
corpus (Ytrestøl et al., 2009) in an earlier collaborative effort (Read et al.,
2012). Table 5.2 shows the character level F1-score for the best performing
configuration for each system on different corpora. Besides WeScience
(WS), the corpora used in these experiments were: The Brown Corpus
(Francis and Kucera, 1982), the Conan Doyle Corpus (CDC) (Morante and
Blanco, 2012), the GENIA Corpus (Kim et al., 2003), Wall Street Journal
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Table 5.1: Candidate systems

System

CoreNLPR http://nlp.stanford.edu/software/corenlp.shtml
GATER http://gate.ac.uk
LingPipeR http://alias-i.com/lingpipe/
MxTerminatorS Reynar and Ratnaparkhi (1997),

ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
OpenNLPS http://opennlp.apache.org
PunktU Kiss and Strunk (2006),

http://nltk.org/api/nltk.tokenize.html
SplittaS Gillick (2009), http://code.google.com/p/splitta
RASPR Briscoe et al. (2006),

http://ilexir.co.uk/applications/rasp/
TokenizerR http://www.cis.uni-muenchen.de/~wastl/misc/
R Rule based
S Supervised machine learning
U Unsupervised machine learning

Table 5.2: Results from our earlier experiments (Read et al., 2012). Only the
best result from the different setups for each system is displayed.

Brown CDC GENIA WSJ WS WNB WLB

CoreNLP 93.6 98.3 99.0 94.8 97.9 96.4 90.9
LingPipe (general) 96.6 99.1 98.6 98.7 98.1 96.1 94.2
LingPipe (medical) 94.5 97.2 99.8 90.9 98.0 95.6 94.5
MxTerminator 96.5 98.6 98.5 98.5 97.2 95.9 92.2
OpenNLP 96.6 98.6 98.8 99.1 97.9 96.5 92.0
Punkt 96.4 98.7 99.3 98.3 97.7 96.7 94.5
RASP 96.8 99.1 98.9 99.0 99.1 96.6 94.6
Splitta 95.4 96.7 99.0 99.2 98.9 95.5 93.4
Tokenizer 96.9 99.2 98.9 99.2 99.2 96.8 94.9

http://nlp.stanford.edu/ software/corenlp.shtml
http://gate.ac.uk
http://alias-i.com/lingpipe/
ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
http://opennlp.apache.org
http://nltk.org/api/nltk.tokenize.html
http://code.google.com/p/splitta
http://ilexir.co.uk/applications/rasp/
http://www.cis.uni-muenchen.de/~wastl/misc/
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(Marcus et al., 1993) (WSJ) and web blogs in the NLP (WNB) and Linux
(WLB) domains from the WeSearch Data Collection (Read et al., 2012).

One of the tools, Tokenizer, outperformed the others on all corpora
except for the GENIA Corpus. This corpus is in the biomedical domain
for which the best performing system, LingPipe (medical), is tuned for.
For those corpora that contained markup (WeScience, Linux blogs and
NLP blogs) all tools benefited from forcing sentence breaks around selected
markup directives. This improvement was most distinct on WeScience
where the average increase in F1-score was almost nine points (as opposed
to 1.2 and 1.8 points on average for WNB and WLB). The relatively high
density of markup directives in Wikipedia articles is a likely cause for this,
as some sentence boundaries are not terminated by punctuation, but are
separated from the rest of the text by its appearance or placement (e.g.
headings and list items). These are almost impossible to detect by only
examining the text itself.

The reason for running new tests on these tools is that our objective is
to find the best fit for our specific setup and not to give general measures
of performance on marked up text. The practical differences between our
current setup and that used earlier will be detailed below in Section 5.1.1.

5.1.1 Experimental Setup

We removed all markup from the text before running it trough the boundary
detectors. Any attempts at benefiting from the presence of markup was
done as pre and post -processing steps. The WeScience corpus (introduced
in Section 2.2.2) has gold standard sentence boundaries and was created
from the same Wikipedia snapshot that we are using in this work. This
makes it an invaluable resource for evaluating sentence segmenters. We ran
all the candidates shown in Table 5.1 on pure-text versions of WeScience
created from the original article markup. The sentence boundaries were
then compared with the gold standard in WeScience.

Although we did not consider using Corpus Clean (Ytrestøl et al., 2009)
for detecting sentence boundaries, we did include it in our test as we felt
it would be informative to compare its performance to that of the other
systems. Our approach for measuring its performance was slightly different
than for the other tools. We created segmented pure-text by running it
on the same set of articles that are in WeScience and performing the same
conversion to pure text as we did for the gold standard sentence boundaries
(detailed below in Section 5.1.1.1). It should be noted that since our gold
standard was created by manually correcting the sentence breaks inserted
by Corpus Clean it is likely to be strongly biased towards this tool.
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5.1.1.1 Corpus Preparation

Recall from Section 2.2.2 that WeScience uses a format with one sentence
per line and that each line starts with a sentence identifier. To obtain a
gold-standard for sentence segmentation we created a markup-free version
of WeScience by removing the sentence identifiers and parsing each line as
a separate page. Each of these tiny trees were then traversed as outlined
in Section 3.4 where all nodes ware either removed (no markup is emitted,
but any content is included) or purged (no text is emitted for the node
and its children). Template inclusions were treated according to the rules
developed in Section 2.1.3. Since Corpus Clean strips out all but a few
templates, our template handling can be summarised (using the terms
introduced in Section 3.3.3) by stating that we used the remove action
for “IPA notice” (that produces a visual box with links to pages detailing
the phonetic alphabet) and the keep action for others. This is different form
the corpus preparation in our earlier experiments where all the remaining
templates were expanded. Finally, any newlines introduced by our system
were removed and empty strings were discarded.

Ideally we would have created an unsegmented pure-text version
of WeScience by using a similar approach as that described above.
Unfortunately, paragraph breaks are not included in WeScience. Since they
are strong indicators of a sentence boundaries, not taking them into account
in our experiments would yield an artificially high error rate. We have
instead created the unsegmented version from the original article source.

When we created the gold standard we had to do some minor
adjustments: We removed the <blockquote> tags at the beginning of
WeScience sentences 10800560, 10800680 and 10800760 as they caused parse
errors in the immediately following headings. These errors caused our tool
to ignore those sections when creating the unsegmented set from the original
article source. The wiki markup directive for heading (balanced pairs of
equals signs) must be placed at the beginning of a line to have any effect.1

Unlike the preparation done by Read et al. (2012), code listings that
spanned several lines (i.e. the contents of <code>-tags) were not included.
The reason for discarding them was that since they would not be included
in our corpus, we were not interested in how the different systems coped
with their content.

1HTML-style headings (<h1>, <h2>, etc.) do not have this restriction.
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5.1.2 Results and Discussion

We used character level F1-score (described in Section 4.5.2.1) where the
target class were sentence boundaries as the performance measure. This
enabled us to take all the gold standard sentence breaks into account
instead of only those that occurred directly after a limited set of punctuation
characters. This is similar to the experiments in Read et al. (2012).

Since the unsegmented and gold standard segmented versions of the
test corpus ware generated from different sources they were not perfectly
aligned. The mis-alignments appeared to be the result of differences in
our system and Corpus Clean and some manual corrections done in the
creation of the corpus. The tool-induced differences were mostly due to
inconsistencies in the template handling done by Corpus Clean where some
template inclusions were removed for templates that were otherwise kept.
Some HTML and XML tags that were escaped by <nowiki>-tags were also
missing.

In order to cope with these differences we created a scoring script that
that had a recovery mechanism that it used when the files it was comparing
got out of sync. This recovery was done by looking ahead until it found a
span of text that matched both files and continuing the scoring from that
position. Sentence breaks that occurred inside of text that were only in one
of the files were not taken into account when calculation the F1-score.

We created a baseline by running the tools on a pure-text version of
WeScience without doing any pre- or post-processing beyond ensuring that
headings were followed by a single newline and that paragraph were followed
by two consecutive newlines.

In the next run we aimed to get the best performance possible out of
the tools by strategically forcing sentence breaks and by rewriting quote
characters. Sentence boundaries was inserted before and after each block
element as in most cases a disruption of the text flow is indicative of a
sentence break. This was also done if for elements that we would not include
in the corpus (for instance tables and horizontal lines). For most of the tools
forcing sentence breaks was done by inserting paragraph breaks (i.e. double
newlines). LingPipe, CoreNLP and MxTerminator do not interpret empty
lines as the indication of a new paragraph (Read et al., 2012), so we forced
sentence breaks by splitting the corpus into separate files for these tools.

We rewrote quote characters for the tools that benefited from this in our
previous experiments (Read et al., 2012). The two rewriting schemes were:
(1) “ASCII”, which meant replacing unicode quotes (code points U+2018,
U+2019, U+201C and U+201D) with their ASCII counterparts (' and "). And
(2) “LATEX”, which meant using LATEX-style directional quotes (`` and '').
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Table 5.3: Performance of sentence boundary detectors

Baseline Forced SB

System F1-score Quotes F1-score Skipped Sec

OpenNLP 0.9258 0.9796 493 1.6
GATE 0.9135 0.9681 2856 21.3
LingPipe (medical) 0.8998 0.9802 530 1.2
LingPipe (general) 0.9033 ASCII 0.9813 497 1.1
CoreNLP 0.8404 LATEX 0.9692 499 1.5
MxTerminator 0.8396 0.9703 496 1.4
Punkt 0.9168 0.9709 495 11.1
Splitta 0.8794 ASCII 0.9894 534 16.3
Tokenizer 0.9383 0.9931 494 0.4
RASP 0.9324 ASCII 0.9903 542 0.4

The results from our experiments are displayed in Table 5.3. The
F1 measure for each tool with minimal preprocessing is shown below the
heading “Baseline”, while the score achieved when forcing sentence breaks
are shown under the heading “Forced SB”. The “Quote” column indicates
the quote rewriting scheme used. As can be seen from the results, quote
rewriting and forcing sentence boundaries increases the performance for all
tools.

The column “Sec” displays the time in seconds each system needed to
process the WeScience corpus as one single file and the number of characters
skipped by the scoring-script is shown in the “Skipped” column. For most
tools, the variations in this column mostly stems from different amounts of
white-spaces in the out-of-sync text. The GATE sentence splitter stands out
in this respect as the scoring script had to skip more than five times as many
characters as for any other tool. This is because GATE occasionally leaves
a few characters out (typically numerals and quotes) from the sentence
annotations which effectively makes them disappear.

As stated above in Section 5.1.1.1, we also tested the performance of
Corpus Clean. It gets an F1-score of 0.9977, which is far more impressive
than the preliminary error rate of approximately 4% reported by Ytrestøl
et al. (2009, p. 190). It should be noted that the gold-standard sentence
boundaries in WeScience was created by manually adjusting the sentence
breaks identified by Corpus Clean. This means that it is likely that our
gold standard has a considerable bias towards it. We will examine some of
the procedures used by Corpus Clean to improve the sentence segmentation
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Table 5.4: Effect of different ad-hoc rules

Rule TP FP FN F1-score

1 Boundaries around block elements 13876 127 67 0.9931
2 No newlines in <math>-tags 13876 72 67 0.9950
3 Splice enumerations 13876 62 67 0.9954
4 Single-sentence <code> and <math> 13877 55 66 0.9957
5 Single-sentence pre-formatted blocks 13876 39 67 0.9962
6 Single-sentence inline nodes 13540 34 403 0.9841

Corpus Clean 13892 18 46 0.9977

to see if the are transferable to our system below in Section 5.2.
The best performing candidate, tokenizer, is the same system used by

Corpus Clean in the creation of the WeScience corpus. This is likely to give
it an advantage as the sentence boundaries inserted by it were in a way
presented as the default choice for the annotators. Still, we use tokenizer
in out system due to its high score and quick execution time. In our earlier
experiments it was the highest scoring system on the all corpora except for
the GENIA Corpus, which makes us believe that its performance is not a
result of it being used in the creation of the gold standard.

5.2 Fine Tuning

Having picked a sentence segmenter for our system we did an error analysis
in order to find ways of increasing its performance. Table 5.4 shows the
cumulative effect of applying different heuristic rules. Corpus Clean is
included for comparison. The first rule of forcing sentence breaks around
block elements is the same approach described above. We use the Rules 1
to 4 in our system.

The Mediawiki extension “Math” renders “math-mode” LATEX statements
that are contained by <math>-tags. Since the markup for equations can
become fairly long and complex, Wikipedia authors often use newlines to
make it more readable. These newlines have no effect on how the equation
is displayed. Removing all newlines from math statements (Rule 2) before
passing the text to tokenizer greatly reduced the number of false positives
from 127 to 72.

Even though wiki markup has facilities for creating numbered list, it is
not uncommon to use other markup directives and starting each list element
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with a number to create something with a similar appearance. Tokenizer
tends to insert sentence boundaries after numbers followed by a full stop.
Rule 3 is to remove sentence breaks after sentences that only consists of a
number and a full stop.

Rules 4 and 5 are to remove any sentence breaks inserted inside
<code>-tags, <math>-tags and pre-formatted text. While this bears some
resemblance to Rule 2, it is more aggressive as newlines inside of <code>
and pre-formatted blocks do have an effect on the visual appearance of the
article. It also means that we are removing all sentence breaks inserted
by tokenizer inside these markup elements. For pre-formatted text, this
also carries the risk of overriding “visual sentence breaks” (i.e. newlines)
intentionally placed there by the Wikipedia authors. This works well on
WeScience that has a lot of articles with a technical subject matter where
pre-formatted text is often used for pseudo code, makeshift diagrams and
so on. We are however unsure of how well this rule generalises for the rest
of Wikipedia so we do not make use of it in our system.

The final rule we tested was Rule 6, which is to remove any sentence
breaks inside of links and markup directives for changing the appearance
of text that are shorter than 35 characters. It was based on the intuition
that these elements rarely cross sentence boundaries. Inter-article links
have previously been used for recognising named entities on Wikipedia
(Nothman, 2008), and it seems sensible to not allow sentence breaks
within those. Links and inline style directives can also match grammatical
constituents (Spitkovsky et al., 2010) which should not be split between
sentences. Although in both of the aforementioned efforts the sentence
segmentation was done as a preprocessing step and markup that spanned
a sentence boundary was either discarded or split in two.

While this rule does result in a slight reduction of the number of false
positives, it creates enough false negatives to lower the F1-score. Most
of the errors introduced by this rule fell into one of two categories: The
first one being the way we disallowed sentence boundaries by bracketing
the content of a markup element with markers (<___ and ___>) before
processing the text with tokenizer. We then removed the markers and
any newlines between them afterwards. A downside to this approach
was that when used on the first, capitalised, word of a sentence it would
“hide” the capitalisation from tokenizer and preventing it from inserting a
sentence break. The other source of errors was that there were sentences
that either ended inside of a directive or that were completely engulfed
by one. Take for instance this sentence from the article “Artificial
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intelligence”:2 * The [[artificial brain]] argument: ''The brain
can be simulated.''. Tokenizer would correctly add a sentence boundary
immediately after the full stop, which Rule 6 would remove as it cleared all
sentence breaks inside of style directives. Errors in both categories can be
reduced by finding another method of disallowing sentence breaks and by
making an exception for markup elements ending in a punctuation mark.
We did not pursue this further due to time constrains and the fairly low
potential gain of only five less false positives.

As can be seen in Table 5.4, with an F1-score of 0.9977 Corpus Clean
still has an edge on our system on the WeScience corpus. While there is
still room for improvements of the sentence segmentation in our system
there are some methods employed by Corpus Clean that we will not adapt.
Like for instance forcing sentence boundaries after the string “.org. ” and
years (i.e. two or four consecutive digits) followed by a full stop. We feel
those address issues that are specific to the articles in WeScience and we
are unsure of how well they will generalise to the rest of Wikipedia.

5.3 Restoring Markup
After first using tokenizer to detect the sentence boundaries in a markup-
free string representation of an article section. We must then combine its
output with the parse tree representation used internally in our system in
order to create sentences that are marked up with GML.

This is done in two phases. The first phase is shown in Listing 5.1
and consists of traversing the parse tree and constructing a sequence of
tokens. The definition for this token type is seen in lines 1-4. A token
has two attributes: A reference to a node in the parse tree and type that
is either 'start' or 'end'. The function for traversing the parse tree
(build_tokens()) takes a tree and a reference to a sequence of tokens as
parameters. If the node is a simple text leaf, it is added to the sequence
and no new recursive calls are made (lines 7-9). For any other node types
a start token (line 11) is added. The function then call itself recursively
for any child nodes (lines 13-15) before adding a end token (line 19). Some
nodes carry their textual content in one of several possible properties that
is extracted by the function getDisplayText() that is called in line 17.

The algorithm for merging the pure text strings generated from tokenizer
with the token sequence constructed by build_tokens() is displayed in
Listing 5.2. The functions getMarkupStart() and getMarkupEnd() return

2two consecutive straight quotes is the wiki markup directive for rendering text in
italics.
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Listing 5.1: build_tokens()
1 class Token:
2 def __init__(self , node , type):
3 self.node = node
4 self.type = type
5
6 def build_tokens(node , tokens):
7 if isinstance(node , basestring):
8 tokens.append(node)
9 return
10
11 tokens.append(Token(node , 'start'))
12
13 if node.children:
14 for c in tree.children:
15 build_tokens(c, tokens)
16 else:
17 tokens.append(getDisplayText(node))
18
19 tokens.append(Token(node , 'end'))

the opening and closing parts of a GML-tag for a given node. For example
if the parameter is an “italics text style” node, these functions return the
strings b/¦ and ¦/c. The values (PURGE, KEEP, REMOVE and ERSATZ) that are
stored in the action property of the nodes represent the actions described
in Section 2.1.2. To recap them briefly:

Purge means that the node is not included in the output.

Keep means that the markup for both the node and its children is included.

Remove means that no markup is created for the node itself, but that its
children are included as normal.

Ersatz means that the node is replaced with a self-closing tag.

For each sentence a number of tokens are iterated over by the inner
loop starting at line 11. Markup for each sentence is accumulated in the
markup variable, which is added to the list res each time the inner loop
terminates (line 43). If the skip_until variable has been set by a starting
node with the action purge or replace, no markup is produced until the
corresponding end token is found (lines 14-15). If the token is a string, it
is appended to the markup string (lines 19-29).
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Listing 5.2: markup_sentences()
1 def markup_sentences(sentences , tokens):
2 token_fragment = 0
3 token_i = 0
4 res = []
5
6 for sentence in sentences:
7 skip_until = None
8 closing = False
9 markup = ''
10
11 while token_i < len(tokens):
12 token = tokens[token_i]
13
14 if skip_until:
15 if skip_until == token.node:
16 skip_util = None
17 continue
18
19 elif isinstance(token , basestring):
20 nodetext = token[token_frag :]
21 sentence_frag , node_frag = matchstring(sentence ,

nodetext)
22 markup = sentence[sentence_frag :]
23 sentence = sentence[sentence_frag :]
24 if not sentence.strip ():
25 closing = True
26 else:
27 token_frag += node_frag
28 break
29 elif token.type == 'start' and closing:
30 if not token.node.action == REDUCE:
31 break
32 elif node.action == PURGE and token.type == 'start':
33 skip_until = token.node
34 elif node.action == KEEP:
35 if token.type == 'start':
36 markup += getMarkupStart(token.node)
37 else:
38 markup += getMarkupEnd(token.node)
39 elif node.action == ERSATZ and token.type == 'start':
40 markup += getMarkupStart(token.node)
41 skip_until = token.node
42 elif node.action == REMOVE:
43 pass
44
45 token_i += 1
46
47 res.append(markup)
48 return res
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The markup for most nodes is appended to markup as they appear in
the sequence except when closing is set to True. This happens when all
of the current sentence has been copied over to markup (lines 24-25). When
closing is True only closing tags and tags for nodes that are ersatzed are
added, while start tokens cause the inner loop to exit (lines 29-31). This
means that as many closing tags are included at the end of a sentence as
possible. Or to put it another way, a sentence will never begin with one or
more closing tags.

The case where a node with the ersatz action appears between sentences
is ambiguous, as that node has not been seen by the sentence segmentor.
The motivation for appending them to the last sentence is that it prevents
sentences from being marked up like this: bimgc¦pcbp¦Foo bar. Which
would be interpreted as “inline image”, “end paragraph”, “start paragraph”
followed by the text “Foo Bar”. We will return to the details of GML in
Section 6.1 and the full list of markup directives is provided in Appendix A.





Chapter 6

The Corpus

In this chapter we will describe our corpus, which we have named
“WikiWoods 2.0”. Section 6.1 details the Grammatical Markup Language
(GML) that we use in our corpus. Section 6.2 describes its organisation.
The final step of our system (sketched in Figure 6.1) which is “Corpus
generation”. An extrinsic evaluation and a comparison with the first release
of the WikiWoods corpus is done in Section 6.3.

Figure 6.1: Overview of our system

99
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Listing 6.1: The first few sentences from the article “Advanced Encryption
Standard” marked up with GML.

1 b document¦Advanced Encryption Standard¦document c
2 bp¦In b >¦cryptography¦>c , the b*¦Advanced Encryption

Standard¦* c ( b*¦AES¦* c), also known as b*¦Rijndael¦* c ,
is a b >¦block cipher¦>c adopted as an b >¦encryption¦>c
standard by the b >¦U.S. government¦>c.

3 It has been analyzed extensively and is now used worldwide ,
as was the case with its predecessor , the b >¦Data
Encryption Standard¦>c (DES).

4 AES was announced by b >¦National Institute of Standards and
Technology¦>c (NIST) as U.S. b >¦FIPS¦>c PUB 197 (FIPS
197) on b >¦November 26¦>c b >¦2001¦>c after a 5-year
standardization process in which fifteen competing
designs were presented and evaluated before Rijndael was
selected as the most suitable (see b >¦Advanced
Encryption Standard process¦>c for more details).

5 [...]¦p c

6.1 GML
The work in defining GML was started by Flickinger et al. (2010), but
this is the first complete description of the language. GML is intended to
serve as an abstraction layer between other markup languages and NLP
tools while at the same being easily parsable for both human and machine
readers. It is capable of representing those markup directives that can
have a linguistic significance, i.e. impact grammatical analysis, found in
several other markup languages like wiki markup, HTML, and LATEX. The
existence of conversion software from these languages to GML would make
it possible to use GML as an intermediate format for markup-aware NLP
tools. The conversion software for one of these languages, viz. wiki markup,
is presented in this work.

Human readability is accommodated by making GML a low-verbosity
language: Most markup elements are named by a single character and there
are only three “magical” characters:

Left delimiter b (LEFT FLOOR, U+230A)

Right delimiter c (RIGHT FLOOR, U+230B)

Middle delimiter ¦ (BROKEN BAR, U+00A6)

They are chosen because their appearance is distinctly different from the
most other commonly used characters and because they see relatively little
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use, i.e. usage of GML does not introduce a need for escaping of any
“standard” characters, as for example in XML. Like XML and HTML, GML
uses tags to assign properties to portions of text. Opening tags in GML
begin with the left delimiter, which is followed by the name of a markup
element and end with the middle delimiter. The corresponding closing tag
begins with the middle delimiter followed (arguably redundantly) by the
element name and is terminated by the right delimiter. For instance, in the
second line in Listing 6.1 the element “bold” (*) is used on the abbreviation
“AES” by surrounding it with an opening (b*¦) and a closing tag (¦*c).

In the spirit of human readability most markup directives consist of a
single character and most of these have a glyph that is visually distinct
from the rest of the text. Listing 6.1 shows an example taken from the first
paragraph of the article “Advanced Encryption Standard”. On the first line
we see the name of the article surrounded by document tags. This element
signifies the beginning of a new source document and doubles as a top-level
heading. As with HTML tags, GML tags can nest. An example of this
is shown in line 2, which starts with an opening paragraph tag (bp¦) that
continues through the rest of this listing and contains several other markup
elements. Several link elements (>) also appear in this markup sample.

For elements where we are certain that they never contain any relevant
linguistic content but that we still want to keep, we ersatz (recall the four
possible actions from Section 3.4) them with a self closing tag. An empty
GML-tag starts with the left delimiter that is followed by the element name
and the right delimiter. Currently the only type of element for which we use
this action are inline images (img), for which the self closing tag is bimgc.

It is possible to assign additional properties to a markup element by
adding attributes to the closing tag. One element that uses attributes is
headings, where the attribute is its level. The GML-representation of a
second-level heading “Notes” looks like this b=¦Notes¦2¦=c. Storing this
information in the closing tag might seem surprising, at first, but has the
benefit of ensuring that the actual content of an element always appears
directly after the first middle delimiter.

Since we hope to see GML used on other sources of user generated
content, there are no restrictions on how the tags are nested. It is for
instance permissible for GML-tags to partially overlap like this b*¦bold
b/¦and¦*c italics¦/c. This makes it possible to represent markup that is
either written “sloppily” or in a language that does not have any restrictions
on proper nesting, i.e. strict tree structure of markup elements, without
normalising it. The way templates function makes wiki markup one of the
languages where proper nesting is not guaranteed.

While the three control characters used in GML do not occur in most
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text, they do occasionally do. They can be escaped by surrounding them
with the left and right delimiter like this:

Escaped LEFT FLOOR bbc

Escaped RIGHT FLOOR bcc

Escaped BROKEN BAR b¦c

6.1.1 Markup Elements

Some markup directives have been introduced in Section 6.1 above and
there is a complete list of the markup elements in wiki markup and GML in
Appendix A. This section contains the motivation for why certain elements
were included in the corpus while others were not.

Tables Recall from Section 2.1.2 that tables are not included in the corpus
even though it is not uncommon for tables to contain longer spans
of running text. This is because of the interaction between row and
column headings and the content of a table cell which makes it difficult
to interpret this text.

Images Most of the images are discarded with their caption as mentioned
in Section 2.1.2. This means that we may occasional lose sentences
with relevant linguistic content, but as with the textual content of
table cells the captions often refer to the content of its image in a way
that is difficult to process correctly. Images that appear in the normal
text flow often take the role of a sentence constituents and removing
those would lead to a sentence potentially becoming ungrammatical.
Inline images are ersatzed with an image-tag (bimgc).

Links and formatting We include links and most of the markup direc-
tives for changing the appearance of text, as there are several possible
ways to take advantage of these in NLP. Inter-article links have been
used for named entity recognition (Nothman, 2008) and both links and
text formatting directives can be indicative of sentence constituents
(Spitkovsky et al., 2010). Flickinger et al. (2010) point out that italics
can indicates a use-mention distinction or text in a foreign language.

Structural elements Some markup elements are used to indicate article
structure. Perhaps the most prominent ones are headings (document
and =) and paragraphs (p). These might not always be interesting for
a researchers that are examining linguistic phenomena, their presence
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makes it easier for a human to make sense of an article. Since these
elements are identified by the surrounding tags little effort is needed
to ignore them should it be necessary.

Semantic tags Some markup elements do not explicitly declare how
text should be rendered, but rather how their content should be
interpreted. Examples of such markup elements in Wikipedia include
<cite>, <var> and <abbr> that are used to signify that some text
is a citation, a variable or an abbreviation. It seems likely that
the presence of these markup elements can contribute to downstream
processing and we include all such elements in our corpus.

Templates Our treatment of templates is detailed in Section 3.3. Those
templates that we feel add value to the corpus are included
with the GML element x. For instance the template inclusion
{{Convert|62|kg|lb|abbr=on}} is represented like this: bx¦62 kg
(140 lb)¦Convert¦62¦kg¦lb¦abbr=on¦xc. As always in GML, the
text intended for display (i.e. the expanded form) comes immediately
after the opening tag. The name of the template and its invocation
parameters are included as attributes on the closing tag.

Code listings and equations As with images, we discard code listings
that introduces a visual break the normal text flow (i.e. <source>-
tags). Math elements (<math>) and source code snippets (<code>)
that appear in the normal text flow are, as with images, often sentence
constituents that should not be removed. We do however include the
contents of these elements in order to make the corpus more readable
for humans — on the assumption that inline code segments tend to
be very short.

6.2 Corpus Generation and Structure

The final stage of our system is “Corpus generation”. Recall from Section 5.3
that the last that was done in the previous stage, “Sentence segmentation”,
was to combine the sentence breaks found by a text-only tool (tokenizer)
with the tree representation used internally by our system. This process
resulted in a list of GML marked up strings, where each string is one
separate sentence. Before the corpus is generated the articles are sorted
alphabetically, and superfluous white space characters are removed.

Our corpus is organised in the same way as WeScience and Wiki-
Woods 1.0. It is organised into segments which each hold 100 articles,
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Figure 6.2: Article and Sentence identifiers

where each sentence is on a single line. Each of the segments has a unique
five digit-identifier, with the lowest identifier being 00101.

Figure 6.2 shows how a sentence will appear in our corpus. Each
line start with the article and sentence identifiers which are enclosed by
square brackets, and are followed by a horizontal bar separating it from the
sentence. The sentence identifier is a seven digit number, where the first
digit (marked “P”) is a placeholder that is always set to one. We have set
aside the first hundred article identifiers for the articles in the WeScience
corpus. Sentence identifiers are unique within an article and are globally
unique when combined with an article identifier. The last digit (marked “D”)
in the sentence identifier defaults to zero in order leave room for manual
corrections of the sentence segmentation (Ytrestøl, 2009; Flickinger et al.,
2010).

6.3 Evaluation and Comparison with
WikiWoods 1.0

Table 6.1 displays some figures on the original release of WikiWoods and
our corpus (WikiWoods 2.0), which contains almost twice as many articles
as WikiWoods 1.0. This difference is likely the result of the different
approaches to article selection taken by Corpus Clean and our system. Only
articles of at least 2,000 characters are included in WikiWoods 1.0, whereas
in our work we included all articles that had at least one section that made
it through the “Content selection” stage (detailed in Chapter 4). In terms
of the number of sentences and word-tokens, the corpora are roughly the
same size. That indicates that our system discards far more content than
Corpus Clean from most articles. And that this is replaced with content
from short articles.

The average sentence length is longer in WikiWoods 2.0 than in
WikiWoods 1.0. One would expect that sections with a high level of noise
would on average contain shorter sentences than clean sections. As noise
often appears in the form of lists of links, reference lists (after the removal of
“Cite”-templates) and so on, which usually consist of short sentences (often
a single word). In order to quantify this, we collected the sections that
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Table 6.1: Figures from WikiWoods 1.0 and WikiWoods
2.0

WikiWoods 1.0 WikiWoods 2.0

Number of articles 1,289,187 2,451,272
Number of sentences 55,221,131 51,169,566
Number of tokensa 843,215,993 850,972,241
Avg. sentence length 15.27 16.63
a Tokenized by white space.

Listing 6.2: The short article “"J" Is for Judgment” as it appears in
WikiWoods 2.0.
[1000013900000] | b document¦"J" Is for Judgment¦document c
[1000013900010] | bp¦ b*¦ b/¦"J" Is for Judgment¦/ c¦* c is the

tenth novel in b >¦Sue Grafton¦>c 's "Alphabet" series of
mystery novels and features b >¦Kinsey Millhone¦>c , a
private eye based in b >¦Santa Teresa , California¦>c.¦p c

would normally be discarded in the “Content selection” stage from 10,000
randomly chosen articles. This resulted in a collection of a little more than
18,000 “dirty” sections of about 92,000 sentences. The average sentence
length for these sections were about five, which is far lower than for both
the corpora. We interpret this as an indication of our corpus containing less
noise, which is often manifests itself as enumerations and other very short
sentences, and more full sentences of grammatical English.

As mentioned above, we do not place a minimum length restriction or
any other arbitrary limits on articles and have instead opted to include all
articles that have at least one clean section. The reason for this is twofold:
First, we believe that short articles, even those containing just a heading
and a single sentence, often contain relevant linguistic content. Listing 6.2
shows one such single-sentence article, which contains grammatical English
that describes the article subject. This is also true of disambiguation pages,
that is pages that links to articles detailing different meanings of the same
term, which might seem to be an obvious source of noise. Take for instance
the article “Giant Steps (disambiguation)” shown in Listing 6.3, it starts
with a short definition and continues with a list of other possible meanings.1

1Admittedly, the content in disambiguation pages is often redundant as the different
meanings of the word are usually more thoroughly explained in the linked articles. But
this is not always the case: In the article in Listing 6.3 the last link does not point to an
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Listing 6.3: The short article “Giant Steps (disambiguation)” as it appears
in WikiWoods 2.0.
[1084145300000] | b document¦Giant Steps

(disambiguation)¦document c
[1084145300010] | bp¦ b*¦ b/¦ b >¦Giant Steps¦>c¦/ c¦* c is a 1960

album by jazz musician b >¦John Coltrane¦>c.¦p c
[1084145300020] | bp¦ b*¦Giant Steps¦* c may also refer to:¦p c
[1084145300030] | bp¦ b•¦ b#¦ b >¦Giant Steps (band)¦>c , dance

pop duo from England that consisted of vocalist Colin
Campsie and bassist/keyboardist George McFarlane¦# c

[1084145300040] | b#¦ b >¦ b/¦Giant Steps¦/ c ( b/¦Boo Radleys¦/ c
album)¦>c , the third album by b >¦The Boo Radleys¦>c¦# c

[1084145300050] | b#¦ b >¦ b/¦Giant Steps¦/ c (book)¦>c ,
autobiography of b >¦Kareem Abdul -Jabbar¦>c , which he
co -authored with Peter Knobler¦# c

[1084145300060] | b#¦ b >¦"Giant Steps" (composition)¦>c , the
first track on the album of the same name by John
Coltrane¦# c

[1084145300070] | b#¦ b >¦ b/¦Giant Steps¦/ c (Gentle Giant
album)¦>c , a compilation album by b >¦Gentle
Giant¦>c¦# c¦•c¦p c

While short pages contribute a great deal of relevant linguistic content to
WikiWoods 2.0 there might be use-cases where they are not as interesting as
longer articles. Someone who is aiming to perform a discourse level analysis
on Wikipedia articles or wishes to study rhetorical structure might want to
discard all articles of less than a certain threshold of sentences. Due to our
line-based and readable format, this should be an straightforward task.

The other reason for not having any set criteria for including articles
is that we already have a well-functioning classifier for identifying non-
relevant content. As detailed in Section 4.1, an approach using machine
learning (such as ours) is often able to generalise from the samples seen
during training. Whereas an approach using hand-written rules might be
limited to the types of noise seen by its author.

6.3.1 Extrinsic Evaluation

In order to determine if the proportion of relevant linguistic content is
larger in our corpus than WikiWoods 1.0 we measured the parsability of our
corpora using the LinGO English Resource Grammar (ERG) (Flickinger,

existing article and the removal of this disambiguation page could potentially erase that
knowledge from the corpus.
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Table 6.2: Figures from the samples from WikiWoods 1.0
and WikiWoods 2.0

WikiWoods 1.0 WikiWoods 2.0

Number of articles 130,000 129,469
Number of sentences 5,076,028 4,259,116
Number of tokensa 82,232,331 76,637,757
Avg. sentence length 16.20 17.99
a Tokenized by white space.

2000) against earlier results on the original WikiWoods. Before we discuss
the results from the parsing we will spend a few paragraphs on the
preparation and composition of the samples.

The articles in the first edition of WikiWoods are organised in segments.
Each segment consists of 100 articles and have a unique five-digit identifier.
We collected a sample of 1,300 segments from WikiWoods 1.0. We selected
segments with six as the middle digit in their identifier, which amounts
to selecting one hundred consecutive segments out of every thousand in
order to get a stratified sample. The articles articles corresponding to these
segments in WikiWoods 1.0 in their “raw” form (each article in a separate
file containing the article name and the wiki markup) were then processed
by our system creating GML representations of the articles.

The figures for the samples corresponding to those shown in Table 6.1
are displayed in Table 6.2. Slightly more than 500 articles got completely
removed by our classifier, so the samples contain are about the same size in
that regard. But when looking at the sentence and token count it becomes
apparent that the classifiers have removed a substantial amount of content.
For WikiWoods 2.0 as a whole the added content from the shorter articles
replaces the content discarded in the “Content selection”-phase, but since
there are no short articles in the segments from WikiWoods 1.0 the size of
the WikiWoods 2.0 sample is smaller in terms of tokens and sentences.

As with the corpora as a whole, the average sentence length is longer in
our corpus than in the original release of WikiWoods. As stated above we
take this to mean that WikiWoods 2.0 is a “cleaner” corpus as noise often
consists of short sentences. Figure 6.3 shows the distribution of sentences
by length in the two samples. This plot shows how the cleaning performed
by our system have produced a sample with a proportionally larger number
of long sentences. The distribution of sentences longer than 15 words are
almost identical in the two samples.

A GML pre-processing module was added to the ERG, which exploits
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Figure 6.3: Sentence distribution by length
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markup in essentially the same manner as the existing Wiki module: Math
and code elements are replaced with placeholders, the same is done for
templates indicating a foreign language. With the exception of the pre-
processing modules, the setups were identical for parsing both samples.2

The ERG is able to parse 88.38% of the sentences in WikiWoods 1.0,
while the coverage on our corpus is slightly lower: 87.37% where about seven
percent of the failures are due to resource exhaustion and morphology and
lexical look-up errors. This slight drop in coverage might seem surprising at
first. But recall from Figure 6.3 that our system removes a large number of
short sentences (consisting of 10 or fewer words), which in effect shifts the
distribution of the sample towards longer sentences. Since longer sentences
are more difficult to parse than short ones, the fact that the coverage is
about the same for both samples seems to indicate that the content of
WikiWoods 2.0 is of a higher quality.

A plot showing the percentage of successful parses by sentence length for
both samples is displayed in Figure 6.4. Notice how the coverage for each

2I am indebted to Stephan Oepen for his effort in adapting the ERG to GML and
for parsing the samples.
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Figure 6.4: Parsing coverage by sentence length
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sentence length is almost identical. Together with the proportionally higher
number of “long” sentences in the sample from WikiWoods 2.0 (shown in
Figure 6.3) this indicates that longer sentences stands for a larger percentage
of successful parses in WikiWoods 2.0.





Chapter 7

Conclusion

We have presented a system for generating large corpora with high-
quality linguistic content from Wikipedia, and other Mediawiki wikis, and
have demonstrated its capabilities by creating a corpus from a database
snapshot. Both our system (Wikipedia Corpus Builder) and the corpus
(WikiWoods 2.0) are available publicly.1 As stated in Chapter 1, some
of the qualities that give Wikipedia the potential to be an very important
resource for both NLP and IR are that it contains a large number of articles
and that these are generally well-written.

Chapter 2 gave an overview of how the content on Wikipedia is organised
and introduced wiki markup, which is the language that its pages are
written in. It further detailed how some of the directives in wiki markup,
namely those from the extension ParserFunctions and templates, behave
in a way that makes it best viewed as a general programming language.
These elements must be properly interpreted in order to separate genuine,
authored content from boilerplate and ensuring the correct interpretation of
other markup elements. The final part of that chapter was used to examine
earlier work on Wikipedia from an NLP standpoint as well as some of the
available tools for parsing wiki markup. We finally gave an architectural
sketch of our corpus generating system.

In Chapter 3 we performed a feasibility study of using either the
Mediawiki engine or mwlib as the basis for the markup processing
components of our system. This study resulted in our decision to use
mwlib. We then detailed the three first stages of our system (sketched
in Figure 7.1): “Markup extraction”, “Template processing” and “Parsing
and purification”. Out of these three, the “Template processing” stage was
given most attention due to the complex nature of templates and the fact

1At http://github.com/larsjsol/wcb and http://www.delph-in.net/
wikiwoods/
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Figure 7.1: Overview of our system

that they can generate both noise and extra information that can be useful
for downstream users. We also created a modified version of the template
sub-system in mwlib in order to increase performance (in terms of speed)
and to implement the different ways we handle template inclusions.

The “Content selection” stage was detailed in Chapter 4. This chapter
provided background on some of the earlier efforts on page cleaning. Our
approach of using two character-level n-gram models to classify article
sections as “clean” or “dirty” was presented along with our in-depth
experiments on the performance of different classifier configurations. Our
system uses add-one smoothed models with an n-gram order of four. The
last part of that chapter was dedicated to some of the more difficult cases
encountered by the annotators in the creation of the gold standard test
set and how they led to a more refined notion of what should constitute
relevant linguistic content.

The “Sentence segmentation” stage was detailed in Chapter 5, which
started with empirical tests of how well several existing tools perform.
This is one of several NLP tasks that benefits from the presence of
markup and we demonstrated how relatively simple measures resulted in
noticeable improvements. The latter part of Chapter 5 detailed how we
combine the sentence breaks introduced by a text-only tool with the internal
representation of articles used by our system.

Chapter 6 gave an account of GML, which is an abstract and simple
markup language that is designed for NLP tasks and that aims to strike a
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balance between human and machine readability. It further detailed the
organisation of our corpus and showed an extrinsic evaluation done by
parsing a subset from both our corpus and the original WikiWoods 1.0
corpus (Flickinger et al., 2010).

Our most important results can be summarised as follows:

• We have created very large corpus that we have made publicly
available. The combined effect of our two methods of noise removal,
selectively removing templates and markup elements and discarding
“dirty” sections, made this corpus cleaner than its predecessor. This
was shown by a quabtitative comparison to WikiWoods 1.0 by
the results from a limited extrinsic evaluation where a subset of
WikiWoods and our corpus was parsed.

• We have described a method of creating high-quality corpora from
collections of user generated content and developed an implementation
if this method that operates on database snapshots from wikis running
Mediawiki. Our implementation is freely available.

• Proper template handling is necessary for doing anything but shallow
processing of wiki markup. Furthermore, the majority of template
inclusions are of a relatively small number of templates, and this
makes it possible to affect a large number of inclusions by changing
how a relatively small number of templates are expanded.

• Our approach of using character level n-gram models for classifying
content works well on article sections. The best performing
configuration achieved an F1-score in excess of 0.95 on the “silver”
standard, which is the test set which is likely to have a similar
composition as Wikipedia as a whole. Add-one smoothed n-
gram models generally outperformed the other, more sophisticated,
smoothing algorithms used in our experiments.

• The performance of sentence boundary detectors can be greatly
increased by taking markup elements into account. Not doing so
leads to poor performance as many of the sentence breaks are often
indicated solely by markup and lacks punctuation.

7.1 Future Work
Below are some brief mentions of how the work in this thesis can be
improved or extended upon.
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Streamlining our System While our system can be used on other
Mediawiki snapshots than the one used in this work without modification,
we can not claim that it is user friendly. For instance, some of the auxiliary
scripts used to tune language models and examine the distribution of
template inclusions make some assumptions about specific file names. In
order to mitigate this we will work on improving the parameterisation
system itself, as well provide technical documentation. Our system is
available for download at http://github.com/larsjsol/wcb.

Marking up WeScience with GML The WeScience corpus (Ytrestøl
et al., 2009) was created from the same snapshot as our corpus and has
gold-standard sentence segmentation. We have not included the articles in
WeScience in the initial release of our corpus as we plan to create a GML
marked up variant of it.

Technically this could be done by using the text only variant of
WeScience that we created for evaluating the sentence segmentors (detailed
in Section 5.1.1.1) in place of tokenizer and merging the sentence breaks with
the parse trees from the same articles (this method is detailed in Section
5.3). Since we are able to parse the markup directly from WeScience, few
manual corrections should be necessary.

Markup-Aware Sentence Segmentation As shown in Chapter 5,
sentence segmentation benefits from markup awareness. However, our
current approach of forcing sentence breaks between block elements still
leave something to be desired as it breaks apart those sentences that do
span such markup elements. The sentences that are broken up by our
approach are often those that contain enumerations that are marked up as
lists.

One possible way of taking advantage of markup is to disallow sentence
breaks within certain markup elements. We tested this assumption in one
of our experiments (Rule six in Section 5.2), but due to implementation
details in our setup we were unable to properly measure the effect of this
approach. We wish to revisit this method in the future.

It would also be interesting to see if tags like <abbr> (signifying that its
content is an abbreviation) could be used to disambiguate full stops followed
by a capitalised word. This tag is only used twice in the WeScience corpus
(Ytrestøl et al., 2009), which is not enough to perform experiments on.
Unfortunately the use of this tag seems to be fairly sporadic so it might
only offer a marginal benefit in most texts.

http://github.com/larsjsol/wcb


7.1. FUTURE WORK 115

Content Selection With a Finer Granularity Since sentences can
span several markup elements, our classifier operates on articles sections.
While these usually have similar characteristics from beginning to end there
are some that contain both relevant linguistic content and noise. With our
current approach we include such sections, but finding a smaller unit for
the content selection would make it possible for our system to derive even
cleaner corpora than it does now.

Our current approach also leaves out image captions and textual content
in table cells. A part of developing a more fine-grained content selection
could be to find ways of extracting those instances that can be useful even
without the image itself or the table structure.





Glossary

article The encyclopedic articles in Wikipedia. These reside in the main
namespace.

block element Markup element that disrupts or appears outside of the
normal text flow. For instance tables, paragraphs and various lists..

boilerplate Often repeated text like navigational elements and copyright
notices, we aim to remove all boilerplate along with other types of
noise.

Canola Web corpus created with the KrdWrd framework (Steger and
Stemle, 2009).

CleanEval A shared task held in 2007 on removing boilerplate and
discovering document structure in web pages (Baroni et al., 2008).

Collection Extension for Mediawiki that adds functionality to export
articles in various document formats and order printed copies.

Corpus Clean Pipeline used to create the WeScience and WikiWoods
corpora from a Wikipedia snapshot (Ytrestøl, 2009; Ytrestøl et al.,
2009; Flickinger et al., 2010).

dirt see noise

disambiguation page Page that links to articles on the different mean-
ings of a term.

extension A plug in for Mediawiki. Most offer functionality that has no
bearing for our project, but some such as Math and ParserFunctions
adds new directives to the wiki markup.

flatten The second phase of mwlib’s template expansion, this is where the
evaluation of template inclusions take place.
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GML Grammatical Markup Language, a markup language that covers a
subset of wiki markup, HTML and LATEX. It is designed to balance
human- and machine readability in corpora.

information box A visual box with short labelled statements summaris-
ing the article, noise for our purpose.

inline element Markup element that appears within the normal text flow.
Links and text formatting are common elements if this kind..

jusText Algorithm for boilerplate removal with a heuristic approach
(Pomikálek, 2011).

KrdWrd A framework for annotating noise and clean text in web pages
(Steger and Stemle, 2009).

L3S-GN1 Amanually annotated data set created from news articles linked
from Google News, page content is marked as headline, full-text,
boilerplate, etc. (Kohlschütter et al., 2010).

Mediawiki Software that is used to run Wikipedia and other wikis.

message box A visual box usually shown at the top of an article
containing meta information. A message box is shown in Figure 1.1.

navigation box A visual box with links to other pages with related topics,
noise for our purpose. An information box is shown in Figure 1.1.

NCLEANER A boilerplate removal tool, uses two character level n-gram
models to classify spans of text either clean or dirty (Evert, 2008).

noise Content we do not want in the resulting corpus, like meta
information, bibliographies and so on. The content do want is relevant
linguistic content.

page Any page on Wikipedia, pages in the main namespaces are usually
referred to as articles.

ParserFunctions A Mediawiki extension that adds support for flow
control and basic mathematical operations.

redirect A page that forwards the visitor to another page.
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relevant linguistic content Article content in the form of natural
language that contains some information about the world. The type
of content we want to include in our corpus.

SRILM the SRI Language Modelling Toolkit, contains utilities for building
and running n-gram models (Stolcke et al., 2011). We use it to create
a classifier for clean and dirty text.

template Page intended to be included in an article or other templates,
some of them make use of the more advanced features of wiki markup
and their behavior resembles that of programs.

template markup We use this term for the directives of wiki markup that
is evaluated during template expansion.

WeScience Corpus containing 100 Wikipedia articles in the NLP domain,
created with Corpus Clean (Ytrestøl, 2009).

wiki Website where visitors can create and modify pages, the most notable
being Wikipedia.

wiki markup Markup language used to format pages on Wikipedia.

Wikimedia Foundation The organisation that runs Wikipedia and
several other wikis.

WikiWoods Corpus containing most of the articles from a Wikipedia
snapshot, created with Corpus Clean (Flickinger et al., 2010).
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Appendix A

Elements of GML and Wiki
Markup

Table A.1: Elements of wiki markup

Name Action GML element GML tag

Section keep heading b=¦text¦=c
Article keep document /

heading
bdocument¦text¦documentc

Source purge
Code keep Source code bƒ¦text¦ƒc
BreakingReturn purge
HorizontalRule purge
Index purge
Teletyped keep tele typed bt¦text¦tc
Reference purge
ReferenceList purge
Gallery purge
Center remove
Div remove
Span remove
Font remove
Strike keep strike through b-¦text¦-c
ImageMap purge
Ruby remove
RubyBase remove
RubyText remove
Continues on the next page. . .
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Table A.1: Elements of wiki markup

Name Action GML element GML tag

RubyParantheses purge
Deleted keep strike through b-¦text¦-c
Inserted keep underline b_¦text¦_c
Caption purge
Table purge
Row purge
Cell purge
Abbreviation keep abbreviation b.¦abbrevation¦extended

term (optional)¦.c
Math keep code bƒ¦text¦ƒc
DefinitionList keep definition list b:¦list items¦:c
Item keep list item b#¦text¦#c
ItemList keep list b•¦list items¦•c
DefinitionTerm keep term b:¦term¦:c
DefinitionDescription keep indent b7→¦description¦7→c
Heading keep heading b=¦text¦=c
TimeLine purge
Italic keep italic b/¦text¦/c
Bold keep bold b*¦text¦*c
Strong keep bold b*¦text¦*c
Blockquote keep quote b"¦text¦"c
Underline keep underline b_¦text¦_c
Overline keep strike through b-¦text¦-c
Sub keep subscript b,¦text¦,c
Sup keep superscript b^¦text¦^c
Small keep small b↓¦text¦↓c
Big keep big b↑¦text¦↑c
Cite keep citation bcite¦text¦citec
Var keep code bƒ¦text¦ƒc
Preformatted keep pre formatted bpre¦text¦prec
Poem keep pre formatted bpre¦text¦prec
Comment purge
URL keep link b>¦text¦>c
ArticleLink keep link b>¦text¦>c
InterwikiLink keep link b>¦text¦>c
CategoryLink purge
Continues on the next page. . .



129

Table A.1: Elements of wiki markup

Name Action GML element GML tag

ImageLink replace image bimgc
LangLink purge
NamedURL keep link b>¦text¦>c
NameSpaceLink keep link b>¦text¦>c
Paragraph keep paragraph bp¦text¦pc
Emphasized keep italics b/¦text¦/c
Hieroglyphs purge
Template n/a template bx¦expansion¦name¦arg1

(optional)¦...¦xc
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B.2 Template Naming Conventions

Table B.2: Template naming conventions

Inclusions Regex Description Action

1268560 stub$ This article is a stub... remove
581244 ^infobox Information boxes remove
137442 party Does not match a uniform class of templates expand
93215 icon$ icons, with and without text expand
68355 ^lang The slightly different pattern /^Lang-/ (this

exludes {{Lang Son Province}}) mathces
templates that all designate that some text is
of a specified language, most of these expands
to {{Lang}} via {{LangWithName}}.

keep

63412 ^football Does not match a uniform class of templates expand
54706 county Navigation boxes for American counties remove
53255 ^col Helper templates for building tables, remov-

ing them would break the wiki markup syn-
tax.

expand

50451 ^election Does not match a uniform class of templates expand
44901 squad Does not match a uniform class of templates expand
38508 list$ Does not match a uniform class of templates expand
28958 ^cite Create citations. remove
28316 ^pbb PBB = Protein Box Bot, information boxes

about mammalian proteins.
remove

26971 line$ Navigaion boxes for subway/rail/bus lines remove
26351 entry$ Most of these are used as part of informa-

tion/navigation boxes
expand

26278 ^afl Does not match a uniform class of templates expand
23226 start$ Many of these are the start of tables or divs expand
22252 color$ HTML colour codes. expand
19598 ^chembox Information boxes about chemicals, many

of these take other chembox templates as
arguments.

expand

19432 ^auto The content of these are a quantity of a
measuring unit (except {{Auto isbn}}

keep

19146 name$ Does not match a uniform class of templates expand
18836 label$ Does not match a uniform class of templates expand
18637 district Does not match a uniform class of templates expand

Continues on the next page. . .
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Table B.2: Template naming conventions

Inclusions Regex Description Action

18610 ^harvard Does not match a uniform class of templates
(but the Harvard citation variants are kept)

expand

18214 ^canadian Does not match a uniform class of templates expand
18125 box$ Does not match a uniform class of templates expand
17374 end$ Ends tables or divs. expand
17240 ^expand Resembles stub (but only 5 templates

match).
remove

17197 squad$ Does not match a uniform class of templates expand
16521 ^french Does not match a uniform class of templates expand
15221 ^party Does not match a uniform class of templates expand
14849 ^can$ Matches {{Can}} and {{CAN}}, the first is a

navigation box for a rock band and the second
expands into a canadian flag followed by a
link to the article “Canada”.

expand

14417 ^coor {{Coor URL}} will be cought and kept. keep
13487 team$ Does not match a uniform class of templates expand
12679 radio$ Does not match a uniform class of templates expand
12550 par$ Does not match a uniform class of templates expand
12397 ^chset Does not match a uniform class of templates expand
12375 communes$ Navigaion boxes for french communes. remove
12297 link$ Most of these produce links. expand
11715 ^ipa All except {{IPA-Notice}} displays text in

IPA notation.
keep

11087 ^geobox Does not match a uniform class of templates expand
10963 date$ Does not match a uniform class of templates expand
10884 colour$ HTML colour codes. expand
10828 ^geolinks Does not match a uniform class of templates expand
10507 class Does not match a uniform class of templates expand
10144 ^anime Does not match a uniform class of templates expand
9779 historic Does not match a uniform class of templates expand
9697 off$ Does not match a uniform class of templates expand
9640 ^politics Navigation boxes for politics related articles. remove
9180 with Does not match a uniform class of templates expand

198986 ^convert Converts between units keep
118854 ^nihongo Indicates that this text is in Japanese keep

Continues on the next page. . .
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Table B.2: Template naming conventions

Inclusions Regex Description Action

4960 calendar Calendars remove
8434 redirect “Foo redirtects here...” remove


	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Problem Definition
	Background: Clean and Dirty Text
	Thesis Overview
	Summary of Main Results

	Background and Motivation
	Format and Structure of Wikipedia
	Previous Work
	Tools for processing Wikipedia Dumps

	Article Extraction and Parsing
	Choosing a Wiki Parser
	Markup Extraction
	Templates
	Section Identification

	Content Selection
	Hand-Crafted Rules vs. Machine Learning
	Background: N-gram Models
	Previous Work
	Our Approach
	Finding the Optimal Configuration
	Revisiting Relevant Linguistic Content

	Sentence Segmentation
	Choosing a Sentence Segmenter
	Fine Tuning
	Restoring Markup

	The Corpus
	GML
	Corpus Generation and Structure
	Evaluation and Comparison with WikiWoods 1.0

	Conclusion
	Future Work

	Glossary
	Bibliography
	Elements of GML and Wiki Markup
	Template Lists
	Most Used Templates
	Template Naming Conventions


