Compact convex sets where all continuous convex functions have continuous envelopes and some results on split faces.

Asvald Lima

Abstract

It is well known that a compact convex set K is a Bauer simplex if and only if for every continuous convex function f on K, the upper envelope f is continuous and affine [4]. In this paper we shall study compact convex sets with the property that f is merely continuous for every continuous convex function f and we shall see how they are related to Bauer simplexes.

Furthermore we shall generalize some results of E.M. Alfsen and T.B Andersen [3] (cf. also [2]) and M. Rogalski [15] to obtain new characterizations of Bauer simplexes by faces.

My Theorem 5 is based on a recent result of J. Vesterstrøm (Theorem 2.1 in [17]). I am indebted to J. Vesterstrøm who kindly communicated to me a preliminary version of [17] during the preparation of this paper. I also want to thank E. Alfsen and T. B. Andersen for helpful comments.

1. Preliminaries and notation.

Let K be a compact convex set in a real locally convex Hausdorff space E.

We shall use the following symbols:

 $\partial_{\rho}K$: the set of extreme points in K.

C(K): the Banach space of continuous real-valued functions on K.

A(K): the Banach space of continuous affine real-valued functions on K.

P(K): the uniformly closed convex cone of continuous convex real-valued functions on K.

If X is a compact subset of K, then we shall denote by $\mathbb{M}(X)$ the Banach space of all signed (Radon-)measures on X, and by $\mathbb{M}_1^+(X)$ the w*-compact convex set of normalized positive (Radon-) measures on X.

A signed measure μ on K is said to be a <u>boundary measure</u> if $|\mu|$ is maximal in Choquet's ordering of positive measures. Cf. [6] or [2]. The linear subspace of M(K) of all (signed) boundary measures is denoted by Q, and $Q_1 = Q \cap M_1^+(K)$.

If $x \in K$, then

$$M_{x} = \{ \mu \in M_{1}^{+}(K) : \int_{K} f d\mu = f(x), \text{ all } f \in A(K) \}$$

and $Q_X = M_X \cap Q_1$. M_X is a w^* -compact convex set and Q_X is a face in $M_1^+(K)$. See e.g.[2].

If $\mu \in M_1^+(K)$, then the <u>barycenter</u> of μ is the unique point $x \in K$, such that $\mu \in M_X^-$, and we shall write $x = r(\mu)$. See e.g. [2]. The map $r: M_1^+(K) \to K$ defined by $\mu \hookrightarrow r(\mu)$ is <u>continuous</u> and

affine. See e.g. [13]. Clearly this map is surjective since $r(\varepsilon_{x}) = x$ for all $x \in K$. Note, however, that the restricted map from Q_{1} to K is also surjective by virtue of the Choquet-Bishop-de Leeuw theorem [5],[6]. In particular it follows that the restriction r_{e} of the barycenter map to the set $M_{1}^{+}(\overline{\vartheta_{e}K})$ containing Q_{1} will also be surjective.

If f,g: $K \to \mathbb{R}$, then f < g means that f(x) < g(x) for all $x \in K$.

If $f: K \rightarrow R$ is bounded, we define

$$\hat{f}(x) = \inf\{a(x): a \in A(K), a > f\},$$

$$f(x) = \sup\{a(x): a \in A(K), a < f\}.$$

The function f is the smallest upper semi-continuous (u.s.c.) concave function majorizing f. Dually f is the greatest lower semi-continuous (l.s.c.) convex function majorized by f.

If S is a subset of K, then co(S) is the convex hull of S and co(S) is the closed convex hull of S.

2. Continuous convex extension of functions defined on $\theta_e K$.

Our first lemma can be deduced from a general theorem of Edwards [7], but for the sake of completeness we have included a proof.

Lemma 1: Suppose $X \subseteq \partial_e K$ is compact and let $f \in C(X)$. Then there exists a $g \in P(K)$ such that $g \mid X = f$.

Our method of proof is based on an approximation technique used in [16].

<u>Proof:</u> We may suppose $0 < f \le 1$. Let $0 < \epsilon < 1$, and let the restriction map $g \hookrightarrow g \mid X$ of P(K) into C(X) be denoted by T.

Define functions f_1 and g_1 by

$$f_1(x) = \begin{cases} f(x) & \text{if } x \in X \\ \sup\{f(y): y \in X\} & \text{if } x \in K \setminus X, \end{cases}$$

and

$$g_1(x) = \begin{cases} f(x) & \text{if } x \in X \\ \\ \inf\{f(y): y \in X\} & \text{if } x \in K \setminus X. \end{cases}$$

Now $f_1 \geq g_1$ and f_1 , $-g_1$ is l.s.c. and concave. Since f_1 is l.s.c. we have $f_1 | \partial_e K = f_1 | \partial_e K$ and hence $f_1 \geq f_1 \geq g_1$. Let $g_1' = \max(g_1 - \varepsilon, 0)$. Then we have $f_1 > g_1'$ and g_1' is u.s.c. For each $x \in K$ we can find a $g_x \in A(K) \subseteq P(K)$ such that $g_x < f_1$ and $g_1'(x) < g_x(x)$. Since g_1' is u.s.c., $V_x = \{y \in K: g_1'(y) - g_x(y) < 0\}$ is open and $x \in V_x$. By compactness we can find $x_1, \dots, x_n \in K$ such that $K \subseteq \bigcup_{i=1}^n V_{x_i}$. Define $k_1 = \max(g_{x_1}, \dots, g_{x_n})$. Then $k_1 \in P(K)$, $g_1' < k_1 < f_1$, hence $T(k_1) < f$ and $||f - T(k_1)|| < \varepsilon$.

Furthermore $0 < k_1 < 1$ and

$$0 < \varepsilon^{-1}(f-T(k_1)) \le 1.$$

Suppose for induction that we have found $k_1, \dots, k_n \in P(K)$ such that for $i = 1, \dots, n$:

(2.1)
$$0 < k_{i} < \epsilon^{i-1}$$

(2.2)
$$T(k_1 + \cdots + k_4) < f$$

(2.3)
$$\|f - T(k_1 + \cdots + k_i)\| < \epsilon^i$$

Then we have

(2.4)
$$0 < \varepsilon^{-n}(f-T(k_1 + \cdots + k_n)) < 1,$$

and we can repeat the argument above to get $k_{n+1}^* \in P(K)$ such that

$$\begin{aligned} &0 < k_{n+1}' < 1 \\ &T(k_{n+1}') < \varepsilon^{-n}(f - T(k_1 + \cdots + k_n)) \\ &\|\varepsilon^{-n}(f - T(k_1 + \cdots + k_n)) - k_{n+1}'\| < \varepsilon. \end{aligned}$$

Defining $k_{n+1} = \varepsilon^n k_{n+1}$, we see that (2.1), (2.2) and (2.3) are fulfilled with n+1 in place of n. Hence there exists a sequence $\{k_i\}_{i=1}^{\infty} \subseteq P(K)$ such that (2.1), (2.2) and (2.3) are fulfilled for every i.

Defining $g = \sum_{i=1}^{\infty} k_i$, we have $g \in P(K)$ and g | X = f, and the proof is complete.

Corollary 2: The following statements are equivalent:

- (i) $\partial_e K$ is closed
- (ii) There exists for every $f \in C(\partial_e K)$ a $g \in P(K)$ such that $g | \partial_e K = f$.
- (iii) There exists for every $f \in P(K)$ a $g \in -P(K)$ such that $g \mid \partial_{p} K = f \mid \partial_{p} K$.
 - Proof: (i) => (ii) follows from Lemma 1.
 (ii) => (iii) is obvious.

(iii) \Rightarrow (i) For $f \in C(K)$ we define

 $B_{f} = \{x \in K: f(x) = \hat{f}(x)\}.$

It is well known that $\partial_e K = \bigcap \{B_f : f \in P(K)\} [13]$. Now it follows

from (iii) that $\overline{\partial_e K} \subseteq B_f$ for $f \in P(K)$, hence $\overline{\partial_e K} \subseteq \bigcap \{B_f : f \in P(K)\} = \partial_e K$. The proof is complete.

Remark 3: If $\partial_e K$ is closed, then by Corollary 2 every $f \in A(M_1^+(\overline{\partial_e K}))$ is of the form $g \circ r_e$ for some $g \in P(K)$. (If $\partial_e K$ is closed then $\partial_e K$ and $\partial_e M_1^+(\overline{\partial_e K})$ are homeomorphic by r_e .)

3. Continuous convex functions with continuous envelopes.

Let X be a compact convex set in a Hausdorff locally convex space and let $p: X \to K$ be a continuous, surjective and affine map.

<u>Proposition 4:</u> Let K,X and p be as above. If $f: X \to \mathbb{R}$ is u.s.c. and concave, then for each $y \in K$ we have

 $\sup\{f(x): x \in p^{-1}(y)\} = \inf\{g(y): g \in A(K), g \circ p > f\}.$

<u>Definition</u>: If $f: X \to \mathbb{R}$ is u.s.c. we define $\hat{f}^p: K \to \mathbb{R}$ by $\hat{f}^p(y) = \sup\{f(x): x \in p^{-1}(y)\}$

for each $y \in K$.

Proof: Let $\alpha \in \mathbb{R}$. To each $y \in \mathbb{K}$ there exists a $x \in p^{-1}(y)$ such that $\hat{f}^p(y) = f(x)$. Hence we have

 $\{y \in K: \hat{f}^p(y) \ge \alpha\} = p(\{x \in X: f(x) \ge \alpha\})$ such that \hat{f}^p is u.s.c.

Let $(y_1,y_2,\lambda) \in K \times K \times [0,1]$ and let $x_1,x_2 \in X$ be

such that $p(x_i) = y_i$ and $\hat{f}^p(y_i) = f(x_i)$. Then we have:

$$\hat{f}^{p}(\lambda y_{1} + (1-\lambda)y_{2}) \ge f(\lambda x_{1} + (1-\lambda)x_{2}) \ge \lambda f(x_{1}) + (1-\lambda)f(x_{2}) = \lambda \hat{f}^{p}(y_{1}) + (1-\lambda)\hat{f}^{p}(y_{2})$$

such that f^p is concave.

It follows that

$$\hat{f}^p(y) = \inf\{g(y) : g \in A(K), g > \hat{f}^p\}$$

and since for every $g \in A(K)$, $g > \hat{f}^p$ if and only if $g \circ p > f$, we have

$$\hat{f}^{p}(y) = \inf\{g(y) : g \in A(K), g \circ p > f\}.$$

The proof is complete.

Observation: Let K,X and p be as above and let $f \in C(K)$. If we define $g = \widehat{f \circ p}$, then we have $\widehat{f} = \widehat{g}^p$. Suppose $k \in P(K)$ and $k \geq f$. Then we have $f \circ p \leq k \circ p$, hence $f \circ p \leq g = \widehat{f \circ p} \leq k \circ p$ and $f \leq \widehat{g}^p \leq k$. Thus we have $\widehat{f} = \widehat{g}^p$.

 $\underline{\text{Theorem 5:}}$ Let K,X and p be as above. The following statements are equivalent:

- (i) p is open
- (ii) $\hat{f}^{p} \in C(K)$ for every $f \in C(X)$
- (111) $\hat{f}^{p} \in -P(K)$ for every $f \in -P(X)$
 - (iv) $\hat{f}^p \in -P(K)$ for every $f \in A(X)$
 - (v) $p(\{x \in X : f(x) > 0\})$ is open in K for every $f \in A(X)$.

<u>Proof:</u> (i) \Rightarrow (ii). In the proof of Proposition 4 we showed that \hat{f}^p is u.s.c. if $f \in C(X)$. Let $\alpha \in \mathbb{R}$ and observe that $p(\{x \in X: f(x) > \alpha\}) = \{y \in K: \hat{f}^p(y) > \alpha\}$. Thus we have that f^p is l.s.c.

- (ii) \Rightarrow (iii) \Rightarrow (iv) is obvious since it follows as in the proof of Proposition 4 that \hat{f}^p is concave when f is concave.
 - (iv) \iff (v) is obvious.
- (iv) <=> (i) follows from Proposition 4 and Theorem 2.1 in [17], and the proof is complete.

Remark 6: The deep part of Theorem 5, (iv) \Rightarrow (i) is due to J. Vesterstrøm [17].

It is easy to give a direct proof of (iii) => (i).

<u>Definition:</u> We shall say that K is a CE-compact convex set if f is continuous for every $f \in P(K)$.

Observation: Suppose K is a CE-compact convex set and let F be a closed face in K. Then F is a CE-compact convex set.

<u>Proof:</u> If $g \in P(F)$, then by Corollary 2 and Tietze's theorem there exists a $f \in P(K)$ such that $f \mid \partial_e F = g \mid \partial_e F$. Now we have $\hat{g} = \widehat{f} \mid F = \widehat{f} \mid F$, and the proof is complete.

Theorem 7: The statements (i) - (v) below are related as follows: (i) \Longrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) \Longrightarrow (v).

- (i) K is a Bauer simplex.
- (ii) There exists a CE-compact convex set X and an open, continuous, surjective and affine map $p: X \to K$.

- (iii) $r_e: M_1^+(\overline{\partial_e K}) \to K \text{ is open}$
 - (iv) K is a CE-compact convex set.
 - (v) $\partial_{\rho}K$ is closed.

Proof:

- (i) => (ii). Let $X = M_1^+(\overline{\partial_e K})$ and let $p = r_e$. If K is a Bauer simplex, then r_e is a homeomorphism by a theorem of Bauer [4].
- (ii) \Longrightarrow (iv). If $f \in P(K)$, then by Theorem 5 and the observation before Theorem 5, \hat{f} is continuous.
 - (iv) => (v). Follows from Corollary 2.
- (iv) => (iii). By Remark 3 and the observation before Theorem 5, if $f \in A(M_1^+(\overline{\partial_e K}))$, then $\hat{f}^p = \hat{g}$ for some $g \in P(K)$. (iii) now follows from Theorem 5.
 - (iii) => (ii) is obvious, and the proof is complete.
- Remark 8: We will later give two examples where (v) in Theorem 7 is satisfied but not (iv).
- If K is a square in \mathbb{R}^2 , then obviously (iv) in Theorem 7 is satisfied but not (i).
- If K is a CE-compact convex set, then since $\partial_e K$ is closed we have $M_1^+(\overline{\partial_e K}) = M_1^+(\partial_e K) = Q_1$.
- J. Vesterstrøm proved in [17] that (iii) <=> (iv), but his proof is quite different from that of mine.

<u>Definition:</u> A subset S of K is called a σ -face if S is a union of faces in K.

The term σ -face was introduced by Goullet de Rugy in [10]. Closed σ -faces were also studied by Alfsen in [1] under the name

stable subsets.

If $f \in C(K)$ we define

$$\Lambda(\mathbf{f}) = \{ \mu \in M_1^+(\overline{\partial_e K}) \colon \mu(\mathbf{f}) = \hat{\mathbf{f}}(\mathbf{r}_e(\mu)) \}.$$

We have that $\Lambda(f)$ is a.o-face in $M_1^+(\overline{\partial_e K})$, in fact if $\mu = \lambda \nu_1 + (1-\lambda)\nu_2 \in \Lambda(f) \text{ with } \lambda \in [0,1] \text{ and } \nu_1,\nu_2 \in M_1^+(\overline{\partial_e K}), \text{ then }$

$$\begin{split} & \lambda \hat{\mathbf{f}}(\mathbf{r}_{e}(\nu_{1})) + (1-\lambda)\hat{\mathbf{f}}(\mathbf{r}_{e}(\nu_{2})) \geq \\ & \lambda \nu_{1}(\mathbf{f}) + (1-\lambda)\nu_{2}(\mathbf{f}) = \mu(\mathbf{f}) = \hat{\mathbf{f}}(\mathbf{r}_{e}(\mu)) = \\ & \hat{\mathbf{f}}(\lambda \mathbf{r}_{e}(\nu_{1})) + (1-\lambda)\mathbf{r}_{e}(\nu_{2})) \geq \lambda \hat{\mathbf{f}}(\mathbf{r}_{e}(\nu_{1})) + (1-\lambda)\hat{\mathbf{f}}(\mathbf{r}_{e}(\nu_{2})) \end{split}$$

such that $\hat{f}(r_e(v_1)) = v_1(f)$, i.e. $v_1 \in \Lambda(f)$.

Proposition 9: The following are equivalent:

- (i) K is a CE-compact convex set.
- (ii) If $f \in C(\partial_e K)$ then \hat{f} is continuous and $\hat{f} | \partial_e K = f$.
- (iii) $\Lambda(f)$ is a w*-closed σ -face in $M_1^+(\overline{\partial_e K})$ for every $f \in P(K)$.

Proof:

- (i) \Rightarrow (ii). Suppose (i) is fulfilled and let $f \in C(\partial_e K)$. By Theorem 7 and Corollary 2, $f = g | \partial_e K$ for some $g \in P(K)$, and by Theorem 7 $\hat{f} = \hat{g}$ is continuous.
 - $(ii) \Rightarrow (i)$ is trivial.
- (1) \Rightarrow (iii). If $f \in P(K)$ we define $\phi_f \colon M_1^+(\overline{\partial_e K}) \to \mathbb{R}$ by by $\phi_f(\mu) = \hat{f}(r_e(\mu)) \mu(f)$. Then $\phi_f(\mu) \geq 0$ for every μ (see e.g. [2]) and $\Lambda(f) = \phi_f^{-1}(0)$. Hence $\Lambda(f)$ is closed since f is continuous.

(iii) \Rightarrow (i). Let $f \in P(K)$ and let $\alpha \in R$. We only need to show that \hat{f} is l.s.c. The set $\{\mu \in M_1^+(\overline{\partial_e K}) : \mu(f) \leq \alpha\}$ is closed and hence $A_\alpha = \{\mu \in \Lambda(f) : \mu(f) = \hat{f}(r_e(\mu)) \leq \alpha\}$ is compact. Thus $r_e(A_\alpha)$ is compact. Since for $f \in P(K)$, $r_e(\Lambda(f)) = K$ [2], it easily follows that $r_e(A_\alpha) = \{x \in K : \hat{f}(x) \leq \alpha\}$. Thus \hat{f} is l.s.c. and the proof is complete.

Theorem 10: Let K be a metrizable CE-compact convex set and suppose that X is a simplex and that p: $X \to K$ is a continuous, surjective and affine map. Then there exists a continuous, surjective and affine map $\phi\colon X \to M_1^+(\overline{\partial_e K}) = Q_1$ such that $p = r_e \circ \phi$.

Proof: We define a multivalued map $\psi: X \to 2$ by $\psi(x) = r_e^{-1}(p(x))$. Since p and r_e is affine it is easily seen that ψ is convex, i.e.

$$\lambda \psi(x) + (1-\lambda)\psi(y) \subseteq \psi(\lambda x + (1-\lambda)y)$$

when $(x,y,\lambda) \in X \times X \times [0,1]$.

If $U \subseteq M_1^+(\overline{\partial_e K})$ is open, then $p^{-1}(r_e(U))$ is open in X since r_e is an open map by Theorem 7. The statement $x \in p^{-1}(r_e(U))$ is equivalent to $r_e^{-1}(p(x)) \subseteq r_e^{-1}(r_e(U))$, which in turn is equivalent to $\psi(x) \cap U \neq \emptyset$. This shows that

$$\{x \in X: \psi(x) \cap U \neq \emptyset\} = p^{-1}(r_e(U)).$$

Hence ψ is l.s.c.

Now it follows by Lazar's selection theorem [12] (cf.[18] or [10] for a simple proof) that there exists a continuous affine function $\phi\colon X \to M_1^+(\overline{\partial_e K})$ such that $\phi(x) \in r_e^{-1}(p(x))$ for all $x \in X$. Obviously $\partial_e M_1^+(\overline{\partial_e K}) \subseteq \phi(x)$, hence ϕ is surjective. Now we have $p = r_e \circ \phi$ and the proof is complete.

Theorem 11: Let K be a CE-compact convex set. If $F \subseteq K$ is a face, then \overline{F} is a face.

<u>Proof:</u> If $S = \partial_e K \cap \overline{F}$, then S is a closed σ -face and we have $\overline{co}(S) \subseteq \overline{F}$. Let $x \in F$. Every discrete measure on K representing x is supported by F, and since the set of discrete measures in M_X is dense in $M_X(cf. [2])$ it follows that every representing measure for x is supported by \overline{F} . If $\mu \in Q_X$, then μ is supported by S, and hence $x \in \overline{co}(S)$. This shows that $F \subseteq \overline{co}(S)$ and $\overline{F} = \overline{co}(S)$.

Let $G \subseteq K$ be a closed σ -face. Then we have that χ_G (the characteristic function to G) is u.s.c. and convex, and by Proposition 5.6 in [10] we have for all $x \in K$:

(3.1)
$$\hat{\chi}_{G}(x) = \sup_{\mu \in M_{X}} \mu(\chi_{G}) = \sup_{\mu \in Q_{X}} \mu(\chi_{G})$$

From this it follows that $\overline{co}(G) = \hat{\chi}_{G}^{-1}(1)$ and in particular $\overline{F} = \overline{co}(S) = \hat{\chi}_{S}^{-1}(1)$.

Define

$$P = \{f \in C(\partial_e K): 0 \le f \le 1 \text{ and } f | S = 1\}.$$

Then P is a convex set, and $\{f\}_{f \in P}$ converges at every point $x \in \partial_e K$ to $\chi_s(x) = \hat{\chi}_s(x)$.

By Proposition 9 \hat{f} and \hat{f} are continuous for every $f \in P$. If we define for every $f \in P$ a set F_f by

$$F_f = \{x \in K: \hat{f}(x) = f(x) = 1\}.$$

then F_f is closed for every $f \in P$.

Let $f \in P$ and let $x,y,z \in K$ and $\lambda \in [0,1]$ be such that $x = \lambda y + (1-\lambda)z \in F_f$. Then we have that

$$1 = \hat{f}(x) = \hat{f}(\lambda y + (1-\lambda)z) \ge \lambda \hat{f}(y) + (1-\lambda)\hat{f}(z) \ge \lambda \hat{f}(y) + (1-\lambda)\hat{f}(z) \ge \hat{f}(\lambda y + (1-\lambda)z) = \hat{f}(x) = 1$$

Hence

$$1 = \hat{f}(y) = \hat{f}(y) = \hat{f}(z) = \hat{f}(z)$$

so y,z \in F_f. This shows that each F_f is a closed σ -face, and hence $\bigcap \{F_f\colon f\in P\} \text{ is a closed } \sigma\text{-face.}$

By the known formulas (see e.g. [2])

(3.2)
$$\hat{f}(x) = \sup_{\mu \in Q_x} \mu(f)$$

and

(3.3)
$$f(x) = \inf_{\mu \in Q_x} \mu(f)$$

which hold for every $f \in P$ and all $x \in K$, and by the density of \overline{F} in \overline{F} , we have $\overline{F} \subseteq h \{F_f : f \in P\}$.

Suppose $x \in K \setminus \overline{F}$. Then $\hat{X}_S(x) < 1$ and by (3.1), (3.2), (3.3) and Theorem 7.1 in [9] (or Lemma 5.4 in [10]) we get that:

$$1 > \hat{\chi}_{S}(x) = \sup_{\mu \in Q_{X}} \mu(\chi_{S}) = \sup_{\mu \in Q_{X}} \inf_{\mu \in P} \mu(f)$$
$$= \inf_{\pi \in P} \sup_{\mu \in Q_{X}} \mu(f) = \inf_{\pi \in P} \hat{f}(x)$$
$$f \in P \mu \in Q_{X} \qquad f \in P$$

Hence we can find a $f \in P$ such that $x \notin F_f$. Thus we have that $\overline{F} = \bigcap \{F_f : f \in P\}$, and \overline{F} must be a closed σ -face. But since \overline{F} is convex, \overline{F} is a closed face (see e.g.[1]), and the proof is complete.

4. Split faces and Bauer simplexes.

If F is a non-empty subset of K then F' = $\cup \{G: G \text{ is a} \}$ face in K and $G \cap F = \emptyset \}$ is called the complementary set of F.

A complementary set is a σ -face and it is a face if and only if it is convex (see e.g. [10][2]).

If F is a proper closed face in K, then for every $x \in K$ there exists a convex combination

(4.1)
$$x = \lambda y + (1-\lambda)z$$
 where $y \in F$, $z \in F'$, $\lambda \leq \hat{X}_F(x)$

(see e.g. [2]). The face F is said to be a <u>split face</u> if F' is a face and if for every $x \in K \setminus (F \cup F')$ y and λ in the above decomposition (4.1) are uniquely determined. The face F is said to be a <u>parallel face</u> if F' is a face and if for every $x \in K \setminus (F \cup F')$, λ in the above decomposition (4.1) is uniquely determined.

For results on split and parallel faces see [2], [3], [11], [14] and [15]. Every split face is a parallel face and a closed face F in K is parallel if and only if \hat{X}_F is affine.

In [3] it is proved that the collection of all split faces is closed under finite convex hulls and arbitrary intersections. Thus the collection of all sets $F \cap \partial_e K$ where F is a split face, satisfies the axioms of closed sets for a topology, which is called the <u>facial topology on $\partial_e K$ </u>. The facial topology is compact and it is Hausdorff if and only if K is a Bauer simplex.

If $x \in K$, then the smallest face of K containing x will be denoted by face (x).

Remark 12: It is easy to see that if $x_1, \dots, x_n \in \partial_X K$ and all $\{x_i\}$ are split faces, then the set co (x_1, \dots, x_n) is a face in K and that this set is a Bauer simplex. In particular if $x \in co(x_1, \dots, x_n)$, then x has a unique maximal representing measure on K.

<u>Proposition 13:</u> Let K be a CE-compact convex set. Suppose that $B \subseteq \partial_e K$ and that $\{x\}$ is a split face for every $x \in B$. Then the set $\overline{co}(B)$ is a face in K and this set is a Bauer simplex.

Proof: co(B) is a convex σ -face and hence a face. By Theorem 11 $\overline{co}(B)$ is a face.

We have $\overline{B} \subseteq \partial_e K \cap \overline{co}(B)$, $\overline{co}(\overline{B}) = \overline{co}(B)$ and by Milman's theorem it follows that $\partial_e \overline{co}(B) = \overline{B}$. Let $g \in C(\overline{B})$ and let $f \in C(\partial_e K)$ be an extension of g to $\partial_e K$. By Proposition 9 \hat{f} is continuous, so $g' = \hat{f} | F$ is a continuous concave extension on g to $\overline{co}(B)$. By formula (3.2) and Remark 12 g' is affine on co(B). Thus by continuity, g' is affine on $\overline{co}(B)$. This proves that $\overline{co}(B)$ is a Bauer simplex, and the proof is complete.

Corollary 14: The following are equivalent:

- (i) K is a Bauer simplex.
- (ii) K is a CE-compact convex set and the set $SF(K) = \{x \in \partial_e K \colon \{x\} \text{ is a split face} \} \text{ is dense in } \partial_e K.$

Remark 15: There exist compact convex sets K_1 and K_2 such that

- (1) $\theta_e K_1$ is closed, K_1 is an α -polytope but no CE-compact convex set.
- (ii) $\theta_e^{\ K_2}$ is closed, K_2 is no α -polytope and no CE-compact convex set.

The compact convex sets in Proposition 20 in [15] and in Theorem 6.4 in [3] satisfy the assertions.

Remark 16: The compact convex set K_1 in Remark 15 constructed by M. Rogalski [15] has the property that $\theta_e K_1$ is homeomorphic to [0,1]. Rogalski showed that every irrational number in [0,1] is a split face (Corollary 25) and he left it as an open problem whether the rational numbers are split faces. By Theorem 2.12 in [11] it follows that the rational numbers in [0,1] are not split faces.

<u>Proposition 17:</u> The following statements hold in a compact convex set K.

- (a) A subset $S \subseteq K$ is a closed σ -face if and only if X_S is u.s.c. and convex.
- (b) The collection of all closed σ -faces in K is closed under finite unions and arbitrary intersections. Hence the collection of all sets of the form $S \cap \partial_e K$, where S is a closed σ -face, satisfies the axioms of closed sets for a topology on $\partial_e K$.
- (c) There is for each $x \in K$ a smallest σ -face, S(x), containing x.
- (d) Each face is a σ -face and if F is a face in K and S is a σ -face in F, then S is a σ -face in K.
- (e) If $S \subseteq K$ is a closed subset, then S is a σ -face if and only if for every $x \in S$ and every $\mu \in M_{_{\boldsymbol{v}}}$, μ is supported by S.

(f) If $S \subseteq K$ is a closed σ -face, then $S \cap \partial_e K \neq \emptyset$ and if $S \subseteq \partial_e K$, then $S \cap \partial_e K$ consists of more than one point.

 $\frac{\text{Pro}_0 f:}{\text{(a), (b), (c)}}$ and (d) are easy to prove.

(e) is proved in [1].

It only remains to prove (f).

Let $S \subseteq K$ be a closed σ -face. Let $\{S_{\alpha}\}_{\alpha \in I}$ be all closed σ -faces in K such that $S \cap S_{\alpha} \neq \emptyset$ for each $\alpha \in I$. Then by Zorn's lemma the family $\{S \cap S_{\alpha}\}_{\alpha \in I}$ has a minimal element S_{α} . Suppose $x,y \in S_{\alpha}$ and $x \neq y$. Let $f \in A(K)$ and f(x) < f(y). Then $\{z \in S_{\alpha}: f(z) = \sup_{\alpha \in S_{\alpha}} f(\alpha)\}$ is a non-empty closed σ -face by (e) $\alpha \in S_{\alpha}$ and this set is properly contained in S_{α} . Since S_{α} is minimal, S_{α} can not contain more than one element, and this element must be extreme in K, since $X_{S_{\alpha}}$ is convex. Hence we have $S \cap \partial_{\alpha} K \neq \emptyset$.

Suppose $S \not= \partial_e K$. Let $x \in S \cap \partial_e K$ and let $y \in S \setminus \partial_e K$. There exists a $f \in A(K)$ such that f(x) < f(y). Hence the set $S_1 = \{z \in S: f(z) = \sup_{v \in S} f(v)\}$

is a closed σ -face by (e) and $x \notin S_1$. Let $z \in S_1 \cap \partial_e K$. Then $z \in S \cap \partial_e K$ and $z \neq x$, and the proof is complete.

<u>Definition:</u> The topology on $\theta_e K$ described in (b) above will be called the σ -face topology and it will be denoted by the letter σ .

Proposition 18: θ_e^K with the topology σ is a compact T_i space, and σ is Hausdorff if and only if θ_e^K is closed.

<u>Proof:</u> Trivially σ is T_1 . It is also easily seen that $\partial_e K$ is compact in the topology σ . (The proof is the same as that of

Proposition 4.2 in [3]).

Obviously the identity map $\Pi:(\partial_e K, rel.top.) \to (\partial_e K, \sigma)$ is continuous and bijective, and hence if $\partial_e K$ is compact then Π is a homeomorphism. Thus if $\partial_e K$ is closed, then σ is Hausdorff.

Suppose now that $\partial_e K$ is not closed, and let $x \in \overline{\partial_e K} \setminus \partial_e K$. Then by (f) $S(x) \cap \partial_e K$ will consist of more than one point. Let $\{x_{\alpha}\} \subseteq \partial_e K$ be a net that converges to x, and let $z \in S(x) \cap \partial_e K$. Let S be a closed σ -face such that $z \in \partial_e K \setminus S$. If $x \in S$, then $S(x) \subseteq S$ and hence $z \in S$. Thus $x \notin S$, so $K \setminus S$ is an open neighbourhood of x, and hence there exists an α_o such that $x_{\alpha} \in \partial_e K \setminus S$ for all $\alpha \geq \alpha_o$. This shows that $x_{\alpha} + z$ in the σ -face topology for all $z \in S(x) \cap \partial_e K$, so σ can not be Hausdorff, and the proof is complete.

Remark 19: The idea to the proof of Proposition 18 has been taken from [8]. We also could have proved the proposition as Lemma 6.1 in [3] was proved.

<u>Definition:</u> Following [2] we shall say that K satisfies <u>Størmer's axiom</u> if for every family $\{F_{\alpha}\}$ of split faces in K, the set $\overline{co}(UF_{\alpha})$ is a split face in K.

We will now prove a generalization of Theorem II.7.19 in [2] and of Corollary 38 in [15].

Theorem 20: The following statements are equivalent:

- (i) K is a Bauer simplex.
- (ii) If F is any face in K, then \overline{F} is a split face.
- (iii) K satisfies Størmer's axiom and every extreme point in
 K is a split face.

- (iv) If $B \subseteq a_e^K$, then $\overline{co}(B)$ is a split face.
- (v) If $B \subseteq \partial_e K$, then $\overline{co}(B)$ is a parallel face.
- (vi) The facial topology on θ_e^{K} is Hausdorff.
- (vii) If $f \in A(K)$, then there exists a split face F such that $F \cap \partial_e K = \partial_e K \cap \{x \in K: f(x) \le 0\}$.

<u>Proof:</u> (1) \Rightarrow (ii) \Rightarrow (iii) is proved in [2] (Theorem II.7.19 and Theorem II.6.22).

 $(iii) \Rightarrow (iv) \Rightarrow (v)$ is trivial.

(iv) \Rightarrow (vi). Suppose $B \subseteq \partial_e K$ is relatively closed. Then $\overline{B} \cap \partial_e K = B$. By (iv), $F = \overline{co}(B) = \overline{co}(\overline{B})$ is a split face. By Milman's theorem we have that $\partial_e F \subseteq \overline{B}$ and since F is a face, we have that $\partial_e F \subseteq \partial_e K \cap \overline{B} = B$. Hence $\partial_e F = B$. Thus the facial topology on $\partial_e K$ equals the relative topology on $\partial_e K$.

(vi) \Rightarrow (iv). $\vartheta_e^{\,K}$ is Hausdorff in the topology σ since σ is a finer topology than the facial topology. By Proposition 18 $\vartheta_e^{\,K}$ is closed. Let $B \subseteq \vartheta_e^{\,K}$. Then we have that $\overline{B} \subseteq \vartheta_e^{\,K}$ and $\overline{\operatorname{co}}(B) = \overline{\operatorname{co}}(\overline{B})$. \overline{B} is closed in the facial topology, and hence there exists a split face F such that $\vartheta_e^{\,F} = F \cap \vartheta_e^{\,K} = \overline{B}$. Thus we have $F = \overline{\operatorname{co}}(B)$.

 $(v) \Rightarrow \text{(i). Just as in the proof of (iv)} \Rightarrow \text{(vi) we get that}$ if $B \subseteq \partial_e K$ is relatively closed, then B is of the form $B = F \cap \partial_e K = \partial_e F$ where F is a parallel face. Thus σ is Hausdorff and, by Proposition 18, $\partial_e K$ is closed.

Let $x \in K$ and let μ , $\nu \in \mathbb{Q}_{X}$. Since we can view μ and ν as positive regular Borel measures, if $\mu(X) = \nu(X)$ for each compact set $X \subseteq \partial_{e}K$, then we have $\mu = \nu$. Hence x has a unique maximal representing measure.

Suppose $X \subseteq \mathfrak{d}_e K$ is compact. Then by (v), $F = \overline{co}(X)$ is a parallel face. Since \hat{X}_F is affine, the set of functions $\{a_\alpha\} = \{a \in A(K): a > X_F\}$ is directed downwards and $\{a_\alpha\}$ converges pointwise to \hat{X}_F . Hence we have

$$\begin{split} \mu(X) &= \mu(F) = \mu(X_{\overline{F}}) = \mu(\hat{X}_{\overline{F}}) = \lim_{\alpha} \mu(a_{\alpha}) = \lim_{\alpha} \nu(a_{\alpha}) \\ &= \nu(\hat{X}_{\overline{F}}) = \nu(X_{\overline{F}}) = \nu(X). \end{split}$$

(iv) => (vii). Let $f \in A(K)$ and define $B = \{x \in K: f(x) \le 0\}$. $B \cap \partial_e K$ is relatively closed and $F = \overline{co}(B \cap \partial_e K)$ is a split face by (iv) such that $F \cap \partial_e K = \partial_e F = B \cap \partial_e K$.

(vii) => (vi). Let $x,y \in \partial_e K$ and $x \neq y$. Then we can find a $f \in A(K)$ such that f(x) < 0 < f(y). Define sets

$$B = \{z \in K: f(x) < 0\}.$$

and

$$C = \{z \in K: f(z) > 0\}.$$

Let F_x and F_y be split faces such that $F_x \cap \partial_e K = B \cap \partial_e K$ and $F_y \cap \partial_e K = C \cap \partial_e K$. Now we have that $K = B \cup C$ such that $\partial_e K = \partial_e K \cap (F_x \cup F_y) = \partial_e F_x \cup \partial_e F_y$. This shows that the facial topology is Hausdorff, and the proof is complete.

Remark 21: The equivalence of (i) and (vi) was proved by E. Alfsen and T.B. Andersen in [3]. In [3] (vi) \Longrightarrow (i) was proved by showing that (vi) implies that every $f \in C(\partial_e K)$ has a continuous affine extention to K.

In [15] M. Rogalski proved the equivalence of (1) and (iii) for a large class of compact convex sets.

<u>Proposition 22:</u> Let F be a closed face in a compact convex set K. The following statements are equivalent:

- (i) F is a split face.
- (ii) If G is any face in K, then $co(F \cup G)$ is a face in K.
- (iii) For all $z \in F'$, $co(F \cup face(z))$ is a face in K.

Proof:

(i) \Rightarrow (ii). Let G be a face in K and let u,v \in K and $\alpha \in <0.1>$ be such that

$$z = \alpha u + (1-\alpha)v \in co(F \cup G)$$
.

If $z \in F \cup G$, then $u, v \in F \cup G$, so we will suppose that $z \in co(F \cup G) \setminus (F \cup G)$. Then z has a decomposition

$$z = \lambda x + (1-\lambda)y$$

where $x \in F$, $y \in G$ and $\lambda \in <0,1>$. By (4.1),

$$y = \gamma y_1 + (1-\gamma)y_2$$

where $y_1 \in F$, $y_2 \in F'$ and $\gamma \in [0,1>$, and hence

$$z = \lambda x + (1-\lambda)\gamma y_1 + (1-\lambda)(1-\gamma)y_2$$

where $(\lambda + (1-\lambda)\gamma)^{-1}(\lambda x + (1-\lambda)\gamma y_1) \in F$.

By (4.1)

$$u = \beta u_1 + (1-\beta)u_2,$$

$$v = \delta v_1 + (1-\delta)v_2$$

where $u_1, v_1 \in F$, $u_2, v_2 \in F'$ and $\beta, \delta \in [0,1]$.

Hence we have that

$$z = \alpha \beta u_1 + (1-\alpha) \delta v_1 + \alpha (1-\beta) u_2 + (1-\alpha) (1-\delta) v_2$$

where $(\alpha\beta + (1-\alpha)\delta)^{-1}(\alpha\beta u_1 + (1-\alpha)\delta v_1) \in F$

and
$$(1-\alpha\beta-(1-\alpha)\delta)^{-1}(\alpha(1-\beta)u_2 + (1-\alpha)(1-\delta)v_2) \in F'$$
.

If $\beta = \delta = 0$, then $u,v \in F'$, and hence $z \in F'$. Since $\lambda \neq 0$, this is impossible, so not both β and δ are zero. By the uniqueness of the decomposition of z after F and F', we find that

$$y_2 = (1-\alpha\beta-(1-\alpha)\delta)^{-1}(\alpha(1-\beta)u_2 + (1-\alpha)(1-\delta)v_2),$$

and since $y_2 \in F' \cap G$ we have that $u_2, v_2 \in G$. Thus we have that $u_1, v_2 \in G$ and hence $co(F \cup G)$ is a face.

(ii) => (iii) is trivial.

(iii) => (i). Without loss of generality, we can suppose that for some $f_0 \in E^*$, $f_0 \neq 0$, we have that $K \subseteq f_0^{-1}(1)$.

First we want to show that if zEF', then

 $F' \cap co(F \cup face(z)) = face(z)$.

Suppose $u \in F' \cap co(F \cup face(z))$. Then

$$u = \alpha u_1 + (1-\alpha)u_2$$

where $u_1 \in F$, $u_2 \in face(z)$ and $\alpha \in [0,1]$. Since $u \in F'$, we have that $u = u_2 \in face(z)$ and hence $F' \cap co(F \cup face(z)) \subseteq face(z)$. The other inclusion is trivial.

Next we want to show that F' is a face. We only need to show that F' is convex. Suppose $z_1, z_2 \in F'$ and $\lambda \in <0,1>$ and let

$$x = \lambda z_1 + (1-\lambda)z_2.$$

If $x \notin F'$, then $x \in K \setminus (F \cup F')$ and by (4.1)

$$x = \delta y + (1 - \delta)z$$

where $y \in F$, $z \in F'$ and $\delta \in <0,1>$. Since $co(F \cup face(z))$ is a face and $x \in co(F \cup face(z))$, we have that $z_1, z_2 \in F' \cap co(F \cup face(z)) = face(z)$.

Hence $x = \lambda z_1 + (1-\lambda)z_2 \in face(z) \subseteq F'$.

This contradiction shows that F' is a face.

Let $x \in K \setminus (F \cup F')$ and suppose for i = 1,2 that

$$x = \lambda_{1}y_{1} + (1-\lambda_{1})u_{1}$$

where $y_i \in F$, $u_i \in F'$ and $\lambda_i \in <0,1>$.

Since $co(F \cup face(u_1))$ is a face, we have that y_2 , $u_2 \in co(F \cup face(u_1))$, and hence $u_2 \in face(u_1)$. Thus we have (see e.g.[1])

$$u_1 = \beta u_2 + (1-\beta)z'$$

where $z' \in K$ and $\beta \in \{0,1\}$, and hence

$$x = \lambda_1 y_1 + (1-\lambda_1) \beta u_2 + (1-\lambda_1) (1-\beta) z'$$
.

Let $f \in E^*$ such that $f(u_2) = 0$. Then we have

$$f(\lambda_2 y_2) = f(\lambda_1 y_1 + (1-\lambda_1)(1-\beta)z')$$

and since these f's separate points in E, we have

$$\lambda_{2}y_{2} = \lambda_{1}y_{1} + (1-\lambda_{1})(1-\beta)z'$$
.

Now $K \subseteq f_0^{-1}(1)$ implies that

$$\lambda_2 = \lambda_1 + (1-\lambda_1)(1-\beta)$$

so
$$\lambda_2 \geq \lambda_1$$

By a dual argument, we find that $u_1 \in face(u_2)$ and $\lambda_1 \geq \lambda_2$. Hence we have $\lambda_1 = \lambda_2$ and $\beta = 1$ such that $u_1 = u_2$ and $y_1 = y_2$, and the proof is complete.

Remark 23: (i) => (ii) in Proposition 22 was pointed out to me by T. B. Andersen.

REFERENCES:

- [1] E. M. Alfsen, On the geometry of Choquet simplexes, Math. Scand. 15 (1964), 97-110.
- [2] E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik, Springer Verlag, Germany, 1971.
- [3] E.M. Alfsen, and T. B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. 21 (1970) 415-442.
- [4] H. Bauer, <u>Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge</u>, Archiv der Mathematik, 14 (1963), 415-421.
- [5] E. Bishop and K. de Leeuw, The representation of linear functionals by measures on sets of extreme points, Ann.

 Inst. Fourier, 9(1959), 305-331.
- [6] G. Choquet and P. A. Meyer, Existence et unicité des représentationes intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, 13(1963), 139-154.
- [7] D.A. Edwards, Minimum-stable wedges of semicontinuous functions, Math. Scand. 19(1966),15-26.
- [8] E. Effros and A. Gleit, Structure in simplexes III, Trans.

 Amer. Math. Soc. 142 (1969), 355-380.
- [9] T. W. Gamelin, Uniform algebras, Prentice-Hall, 1969.
- [10] A. Goullet de Rugy, <u>Géometrie des simplexes</u>, Centre de Documentation Universitaire, Paris 1968.

- [11] B. Hirsberg,

 A measure theoretic characterization of
 parallel- and split faces and their
 connection with function spaces and algebras,
 Aarhus Universitet, Various Publication
 Series, No. 16, 1970.
- [12] A. Lazar, Spaces of affine continuous functions on simplexes, Trans. Amer. Math. Soc. 134(1968) 503-525.
- [13] R. R. Phelps, <u>Lectures on Choquet's theorem</u>, van Nostrand 1966.
- [14] M. Rogalski, Topologies faciales dans les convexes

 compacts, calcul fonctionnel et décomposition spectrale dans le centre d'un
 expace A(X), Séminaire Choquet, 1969-70.
- [15] M. Rogalski, Caracterisationdes simplexes par des proprietes portant sur les faces fermees et sur les ensembles compacts de points extremaux. To appear in Math. Scand.
- [16] A. Stray, <u>Approximation and interpolation</u>, University of Oslo, Preprint No. 15, 1970.
- [17] J. Vesterstrøm, On open maps, compact convex sets, and operator algebras, Aarhus Universitet, Preprint No. 28, 1970-71.
- [18] M. C. Léger, Une démonstration du théorème de A.J.Lazar sur les simplexes compacts,

 C.R.Acad.Sci. Paris, 265 (1967), 830-831.