Compact convex sets where all continuous
convex functions have continuous envelopes

and some results on split faces.

Asvald Lima

Abstract

It is well known that a compact convex set K 1s a Bauer
simplex if and only if for every continuous convex function f
on K, the upper envelope f 1s continuous and affine (4]. 1In
this paper we shall study compact convex sets with the property
that ; is merely continuous for every continuous convex function
f and we shall see how they are related to Bauer simplexes.
Furthermore we shall generalize some results of E.M. Alfsen and

T.B Andersen [3] (cf. also [2]) and M. Rogalski [15] to obtain

new characterizations of Bauer simplexes by faces.

My Theorem 5 1s based on a recent result of J. Vesterstrgm
(Theorem 2.1 in [17]). I am indebted to J. Vesterstrgm who kindly
.communicated to me a preliminary version of [17] during the prepa-
ration of this paper. I also want to thank E. Alfsen and T. B.

Andersen for helpful comments.



1. Preliminaries and notation.

Let K be a compact convex set in a real locally convex
Hausdorff space E.

We shall use the following symbols:

BeK: the set of extreme points in K.

C(K): the Banach space of continuous real-valued
functions on K.

A(K): the Banach space of continuous affine real-
valued functions on K.

P(X): the uniformly closed convex cone of continuous
convex real-valued functions on K.

If X 1is a compact subset of K, then we shall denote by
M(X) the Banach space of all signed (Radon-)measures on X, and

by MT(X) the w*-compact convex set of normalized positive

(Radon-) measures on X.

A signed measure u on K 1is said to be a boundary measure

if |u| is maximal in Choquet's ordering of positive measures.
cf. [6] or [2]. The linear subspace of M(K) of all (signed)
boundary measures 1is denoted by Q, and Q, = inM:(K).

If x € K, then

+
Moo= {peM;(K): [ fdu=1f(x), all fe€A(K)}
K
* .
and Qx = Mx(\Ql. Mx is a w -¢ompact convex set and Qx is a
+
face in M, , Just as Q; 1is a face in M;(K). See e.g.[2].

If 116M:(K), then the barycenter of u is the unique point

x €K, such that ue€M_, and we shall write x = r(u). See e.g. [2].

The map r: M:(K) + K defined by u ™ r(u) 1s continuous and
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affine. See e.g. [13]. Clearly this map 1s surjective since
r(e,) = x for all x€K. Note, however, that the restricted map
from Q1 to K 1s also surjective by virtue of the Choquet-
Bishop-de Leeuw theorem [5],[6]. In particular it follows that
the restriction r_, of the barycenter map to the set M:(Sgi)

containing Q, wi1ll also be surjective,

If f,g: K+ R, then f < g means that f£(x) ¢ g(x) for all
X €K.
If f: XK+ R 1s bounded, we define

E(x)
E(x)

inf{a(x): a€A(K), a > £},

sup{a(x): a< A(K), a < f}.

The function f 1is the smallest upper semi-continuous (u.s.c.)
v
concave function majorizing f. Dually f 1s the greatest lower

semi-continuous (l.s.c.) convex function majorized by f.

If S 1is a subset of K, then co(S) 1is the convex hull of

S and co(S) is the closed convex hull of S.

2 Contilnuous convex extension of functions defined on aeK.

Our first lemma can be deduced from a general theorem of
Edwards [7], but for the sake of completeness we have included
a proof.

Lemma 1l: Suppose X g'aeK is compact and let f € C(X). Then

there exists a g€ P(K) such that g|X = f.

Our method of proof 1s based on an approximation technique

used in [16].



Proof: We may suppose 0 < f < 1., Let 0 <e <1, and
let the restriction map g ~ g|X of P(K) into C(X) be denoted
by T.
Define functions f, and g, by
f(x) if xeX

£,(x)
| sup{f(y): ye X} if x€ K\X,

and

(x) if x€X

g, (x)
inf{f(y): yeX} 1if xeX\X.

"Now f >g, and f , -g;, 1s l.s.c. and concave. Since f,
v v
is l.s.c. we have fllaeK = £ IaeK and hence f, > f, > g . Let

v - ,
g; = max(gl-e,O). Then we have f, > g and g; is u.s.c. For

1

each x€K we can find a gxé.A(K) < P(K) such that By < £,

and gl(x) < gx(x). Since g is u.s.c., V_ = {y €K: gi(y) - gx(y)

< 0} 1is open and x€V . By compactness we can find X ,c+,x €K
n

such that K<€ {JV

Xy
i=1 ",
k,e P(K), g} <k, <f,, hence T(k,) <f and |[f - T(k)|| < e.

Define k, = max(gx1,°--,gxn). Then

Furthermore 0 < k, <1 and

0 < e (£-T(k,)) < 1.

Suppose for induction that we have found Ky 00,k € P(K)
such that for 1 = 1l,¢°°,n:
(2.1) 0 <k, < el=t
(2.2) T(k teeetky) < f

(2.3) £ - (e #eeotr) ]| <



Then we have
(2.4) 0 < eTHE-T(k +oeevk )) < 1,

and we can repeat the argument above to get kﬁ+1€:P(K) such that

0 < k° < 1

n+l

-n
T(kl4p) < € (£-T(k +ooetk ))

™ (£-T(k +oeetk ) = k! ] < e

Defining k .4 = enkﬁ+1, we see that (2.1), (2.2) and (2.3) are
fulfilled with n+l 1in place of n. Hence there exists a sequence

{ki}:=1 C P(K) such that (2.1), (2.2) and (2.3) are fulfilled for
every 1.
(<]
Defining g = ) k,, we have geP(K) and g|X = f, and the
i=1
proof is complete.

Corollary 2: The following statements are equivalent

(1) aeK 1s closed
(11) There exists for every fe.C(aeK) a ge&P(K) such that
glaeK = f.
(1i1) There exists for every f € P(X) a ge -P(K) such that

gl3 K = f£[3 K.

Proof: (1) => (ii) follows from Lemma 1.
(i1) => (iii) is obvious.
(111) = (1) For f€ C(K) we define

B, = {x€K: £(x) = £(x)}.

It is well known that 3 K =M{B.: f€P(K)} [13]. Now it follows



from (iii) that 9. K =B, for f<P(K), hence 3 K< n{Bf:

fe P(K)} = BeK. The proof is complete.
Remark 3: If aeK is closed, then by Corollary 2 every

re A(M’;(—Kae )) 1s of the form goP, for some geP(K). (If 3K

is closed then 3 K and aeMt(aeK) are homeomorphic by r,.)

3. Continuous convex functions with continuous envelopes.

Let X be a compact convex set in a Hausdorff locally convex

space and let p: X - K be a continuous, surjective and affine map.

Proposition 4: Let K,X and p be as above. If f: X+ R

is u.s.c. and concave, then for each y€ K we have
sup{f(x): xep *(y)} = inf{g(y): ge A(K), gop > f}.

Definition: If f: X »R 1s u.s.c. we define fP: K + R by

P(y) = sup{f(x): xep'l(y)}
for each y €kK.

Proof: Let o€R. To each y&K there exists a xep ' (y)

such that fP(y) = f(x). Hence we have

{yek: fP(y) > a} = p({xeX: £(x) > al)
such that fP 1s u.s.c.
Let (y,,y2,2) €KxKx[0,1] and let x,,x,€X be
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N
such that p(xi) =y; and fp(yi) f(xi).- Then we have:

PPy, + (1-My,) >
f(ax, + (l—A)xz) >
Af(x,) *+ (1-M)£(x,)
AEP(y) + (1-MTP(y,)

A
‘such that fP 1is concave,
It follows that

f‘p(y) = inf{g(y) : geA(X), g > E‘.p}

and since for every g<A(K), g > P 1f and only if gop > £,

we have

gp(y) inf{g(y) : ge A(K), gop > f}.

The proof is complete.

Observation: Let K,X and p be as apbove and let fe€ C(K).

/\ A &p
If we define g = fop, then we have f = g*, Suppose k e- P(K)
: A~
and k > f, Then we have fop<kop, hence fop <g=7fop <kop

and f < ép < k. Thus we have f = gp.

Theorem 5: Let K,X and p Dbe as above. The following

statements are equivalent:

(1) p is open

(11) EpeC(K) for every fe C(X)
(111) Epﬁ -P(K) for every fe-P(X)
(1iv) fPe -P(K) for every f € A(X)

(v) p({x€X : £(x) > 0}) 1s open in K for every f €A(X).



Proof: (1) => (11). 1In the proof of Proposition U4 we
showed that Ep is u.s.c. 1if f& C(X). Let a&R and observe
that p({x€X: f(x) > a}) = {yeK: E‘p(y) > a}es Thus we have
that fP 1is 1.s.c.

(11) => (11i) => (iv) is obvious since it follows as in the
proof of Proposition 4 that Ep is concave when f 1is concave.

(iv) <=> (v) 1is obvious.

(iv) <=> (1) follows from Proposition 4 and Theorem 2.1 in
[17J, and the proof is complete.

Remark 6: The deep part of Theorem 5, (iv) => (i) 1is due

to J. Vesterstrgm [17].
It is easy to give a direct proor of (1ii) = (1).

Definltlon: We shall say that K 1s a CE-compact convex

set if f 1s continuous for every fE€P(K).

Observation: Suppose K 1s a CE-compact convex set and let

F be a closed face In K. Then F 1s a CE-compact convex set.

Proof: If geP(F), then by Corollary 2 and Tietze's theorem
there exists a f€P(K) such that flSeF = g|3 F. Now we have

A s ~
g = f|F = £|F, and the proof is complete.

Theorem 7: The statements (1) - (v) below are related as

follows: (i) => (i1) <=>(1ii) <=>(iv) =>(v).
(1) K 1is a Bauer simplex.
(11) There exists a CE-compact convex set X and an open,

continuous,surjective and affine map p: X -+ K,
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4+, —
(1i1) r.: Ml(aeK) + K is open
(iv) K 1s a CE-compact convex set.
(v) aeK is closed.
Proof':

(1) => (11). Let X = M;(3K) and let p =r,. If Kisa

Bauer simplex, then r is a homeomorphism by a theorem of Bauer [ﬁ].

e

(i1) = (iv). If fe€P(K), then by Theorem 5 and the observa-
tion before Theorem 5, E is continuous.

(iv) => (v). Follows from Corollary 2.

(iv) => (1i1). By Remark 3 and the observation before Theorem 5,
~

if fEA(M':(BeK)), then fP = g for some geP(K). (iii) now

follows from Theorem 5.

(111) => (11) 1s obvious, and the proof is complete.

Remark 8: We will later give two examples where (v) in Theorem
7 is satisfied but not (iv).

If K 1s a square in 7R2, then obvioulsy (iv) in Theorem 7 1is
satisfied but not (i).

If X 1is a CE-compact convex set, then since BeK is closed
we have M:(ng) = M:(aeK) = Q.

J. Vesterstrgm proved in [17] that (iii) <=> (iv), but his proof

is quite different from that of mine.

Definition: A subset S of K 1is called a g-face if S 1is

a union of faces in K.
The term o-face was introduced by Goullet dé Rugy in [10].

Closed o-faces were also studied by Alfsen in [1] under the name
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stable subsets.

If f €C(K) we define
AME) = tuemy (5K u(r) = flr ()l

L p——
We have that A(f) is a.o-face in M1(3eK)’ in fact if

W= Ay, + (1-A)v,e A(f) with A€[0,1] and v ,v, € M (5K), then

Az (v,))+(1-1)E(r (v,))

v

W1 (£) + (1M, (£) = u(f) = f(r (W) =

FOhr (v,))+(1-0)r(v,)) 2 AB(z (v))+ (1-2) E(r_(v,))

such that f(re(vi)) = vi(f), i.e. viéiA(f).

Proposition 9: The following are equivalent

(1) K is a CE-compact convex set.
A A
(11) If f€'C(aeK) then f 1s continuous and f]aeK =f.
(1ii) ACf) 1s a w -closed o-face in M:(aeK) for every
f€e P(K).
Proof':

(1) => (1i). Suppose (i) is fulfilled and let fEiC(BeK). By
Theorem 7 and Corollary 2, f = gIBeK for some g€P(K), and by

~

Theorem 7 f = g 1s continuous.
(i1) = (1) 4is trivial.

(1) => (111). If fEP(K) we define ¢a: M:'('a‘;ﬁ) > R by
by ¢f(p) = g(re(u)) - pu(f). Then ¢f(u) > 0 for every u (see
e.g. [2] ) and A(F) = ¢f-1(0). Hence A(f) 1is closed since f

is continuous.
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(111) => (i). Let fe&€P(X) and let aeR. We only need to
Pl ——
show that f 1is l.s.c. The set {uélM:(aeK) : u(f) < o} 1is closed
and hence A, = {u€EAN(E) : () = f(re(u)) < a} 1s compact. Thus
ro(A,) 1s compact. Since for f&€P(K), r (A(f)) =K [2], it
easlly follows that re(Aa) = {x€K : f(x) <o}, Thus f 1s 1l.s.c.

and the proof is complete.

Theorem 10: Let K be a metrizable CE-compact convex set and

suppose that X 1is a simplex and that p: X =+ K 1s a continuous,
surJective and affine map. Then there exists a contlnuous, surjective

and affine map ¢: X » M:(aeK) = Q, such that p = r,o d.

M eK)

Proof: We define a multivalued map ¢: X +» 2

(

+
1
by

Y(x) = ;e-l(p(x)). Since p and r, is affine it is easily seen

that ¢ 1is convex, i.e.

Ap(x) + (L-2)v(y) € p(rx+(1-A)y)
when (x,y,\)€XxX x[0,1].

If U'Q_MT(E;K) is open, then p'l(re(U)) is open in X since
r, 1s an open map by Theorem 7. The statement xezp'l(re(U)) is
equivalent to re'l(p(x)) E»re'!(re(U)), which in turn is equivalent
to Y(x)AU # ¢. This shows that
{x€X: Y(x)NU # g} = p~ (r (V).

Hence ¢ 1s l.s.c.
Now it follows by Lazar's selection theorem [12] (ecf.[18] or [10]
for a simple proof) that there exists a continuous affine function
+—— -
¢: X ~» M1(36K) such that ¢(x) € ro 1(p(x)) for all x€X. Obviously
BeMt(BeK) < ¢(x), hence ¢ 1is surjective. Now we have p = r,o¢

and the proof is complete.
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Theorem 11: Let K be a CE-compact convex set. If F <K

is a face, then F 1is a face.

Proof: If S =3 KAF, then S 1s a closed o-face and we have
co(S) c F. Let xe€F. Every discrete measure on K representing
X 1s supported by F, and since the set of discrete measures in Mx
is dense in M, (cef. [2]) 1t follows that every representing measure
for x 1s supported by F. If ueQx, then u 1s supported by S,
and hence x& co(S). This shows that F < co(S) and F = co(S).

Let G< K be a closed o-face. Then we have that Xg (the
characteristic function to G) is u.s.c. and convex, and by Proposi-
tion 5.6 in [10] we have for all x €K:

(3.1) Xo(x) = sup u(X.) = sup u(Xn)
G UC—MX G ueQx G

From this it follows that 6o(G) = xG"(l) and in particular

F = co(8) = ;(s'l(l).

Define
P

{fec(a K): 0 <f <1 and f|S =1},

Then P 1s a convex set, and {f‘}fe p converges at every point
x€d K to Xg(x) = X (x).
By Proposition 9 f and }( are continuous for every f€P. If

we define for every f€P a set F. by

Ff = {x €K: g‘(x) = Iv‘(x) = 1}.

then F is closed for every fE€P.

f
Let fe€P and let x,y,z€K and A€ [0,1] be such that

X = Ay + (1-A)z €EF Then we have that

f.
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]
it

£(x) = Oy + (1-0)2) > AT(y) + (1-)F(z) >
M(y) + (1-0F(2) > FOy + (1-0)z) = Fx) = 1

Hence

-
n

A v A v
£(y) = £(y) = £(z) = £(z)
SO y,Z e:Ff. This shows that each Ff is a closed g-face, and hence

fl{Ff: fe P} is a closed o-face.

By the known formulas (see e.g. [2])

(3.2) ﬂx)=sm>u@)
ueQx

and

(3.3) E(x) = inf u(f)
ueQx

which hold for every f€P and all x€K, and by the density of F

in F, we have F SN {F.: feP}.

Suppose x& K\F. Then Qs(x) <1 and by (3.1), (3.2), (3.3)

and Theorem 7.1 in [9] (or Lemma 5.4 in [10])we get that:

1> xs(x) = sup u(x_) = sup inf u(f)
UE Qy neq, feb

inf sup u(f) = inf f£(x)
f&PueQx feP

Hence we can find a f€P such that xef.Ff. Thus we have that
F = N{F,: fEP}, and F must be a closed o-face. But since
F 1s convex, F 1s a closed face (see e.g.[1l]), and the proof

is complete.
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b, Split faces and Bauer simplexes.

If F 1s a non-empty subset of K then F' = u{G: G 1is a

face in K and GAF = @} 1is called the complementary set of F.

A complementary set is a o-face and it is a face if and only

1f it is convex (see e.g. [10][2]).

If F 1is a proper closed face in K, then for every x€K

there exists a convex combination
(4.1) x = Ay + (1-\)z vwhere yé€F, zeF', A < Xg(x)

(see e.g. [2]). The face F 1is said to be a spllit face if F' is

a face and 1f for every x€K \(FUF') y and A in the above
decomposition (4.1) are uniquely determined. The face F 1s said

to be a parallel face 1f F' is a face and if for every x €K \(FUF'),

A 1n the above decomposition (4.1) 1s uniquely determined.

For results on split and parallel faces see [2], [3], [11], [14]
and [15]. Every split face is a parallel face and a closed face F
in KX 1s parallel if and only if Xp is affine.

In [3] it is proved that the collection of all split faces 1is
closed under finite convex hulls and arbitrary intersections. Thus
the collection of all sets Fr13eK where F 1s a split face,

satisfies the axioms of closed sets for a topology, which is called

the faclal topology on_ 3 K. The faclal topology is compact and 1t

1s Hausdorff i1f and only if K 1is a Bauer simplex.

If x €K, then the smallest face of K contalning x will be

denoted by face (x).
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Remark 12: It is easy to see that if x1,°",xne;axK and

all {xi} are split faces, then the set co (xl,ooo,xn) is a face
in K and that this set is a Bauer simplex. In particular 1if

X eco(x1,°°°,xn), then x has a unique maximal representing measure

on K.

Proposition 13: Let K be a CE-compact convex set. Suppose

that B < 3 K and that {x} is a split face for every x€B. Then

the set co(B) is a face in K and this set is a Bauer simplex.

Proof: co(B) is a convex o-face and hence a face. By Theorem
11 co(B) 1s a face.

We have B c 3 Knco(B), co(B) = co(B) and by Milman's theorem
it follows that aeEG(B) = B. Let geC(B) and let fec(a K) be
an extension of g to aeK. By Proposition 9 % is continuous, so
g' = %lF is a continuous concave extension on g to co(B). By
formula (3.2) and Remark 12 g' 1s affine on co(B). Thus by
continuity, g' is affine on co(B). This proves that co(B) 1s a

Bauer simplex, and the proof is complete.

Corollary 14: The following are equivalent:

(1) X is a Bauer simplex.
(11) K 1s a CE-compact convex set and the set

SF(K) = {xeaaeK: {x} 1s a split face} 1s dense in 3 K.

Remark 15: There exist compact convex sets K, and K, such

that
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(1) 9.K, 1s closed, X; 1s an o-polytope but no CE-compact
convex set.
(11) BeK2 is closed, K, 1s no a-polytope and no CE-compact

convex set.

The compact convex sets in Proposition 20 in [15] and in

Theorem 6.4 in [3] satisfy the assertions.

Remark 16: The compact convex set K, 1in Remark 15 constructed

by M. Rogalski [15] has the property that 9 K, 1s homeomorphic
to [0,1]. Rogalski showed that every irrational number in [0,1]
1s a split face (Corollary 25) and he left it as an open problem
whether the rational numbers are split faces. By Theorem 2.12 in
[11] it follows that the rational numbers in [D,l] are not split
faces.

Proposition 17: The following statements hold in a compact

convex set K.

(a) A subset S < K 1is a closed o-face if and only if Xg is u.s.c.

and convex.

(b) The collection of all closed o-faces in K 1s closed under finite
unions and arbitrary intersections. Hence the collection of all
sets of the form SFWSeK, where S 1s a closed o-face, satisfies

the axioms of closed sets for a topology on BeK.
(¢) There 1s for each x €K a smallest o-face, S(x), contailning x.

(d) Each face is a o-face and iIf F 1s a face in K and S 1s a

o-face in F, then S 1is a o-face in K.

(e) If SC K 1s a closed subset, then S 1s a o-face if and only

if for every x€S and every ueMx, p 1s supported by S.
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(f) If Sc K is a closed o-face, then SN3 K # § and 1f SC 3K,

then 8Sn aeK consists of more than one point.

Proof: (a), (b), (c) and (d) are easy to prove.

(e) 1s proved in [1].

It only remains to prove (f).

Let S < K be a closed o-face. Let {S } .y be all closed
o-faces in K such that Sf7Sa # @ for each g€&€I. Then by Zorn's
lemma the family {SflSa}a€:I has a minimal element S_ . Suppose
X,y € S, and x # y. Let fe A(K) and f(x) < f(y). Then

{ze:So: f(z) = sug f(v)} 1s a non-empty closed g-face by (e)
Ve
o)

and this set i1s properly contained in So' Since SO is minimal,
SO can not contain more than one element, and this element must be

extreme in K, since XS is convex. Hence we have S/)aeK # 0.
o)

Suppose S ¢ 3 K. Let xeSM K and let ye€S\3 K. There
exists a f€ A(X) such that f(x) < f(y). Hence the set

S, = {z€8: f£(z) = sup f(v)}
ve S

1s a closed o-face by (e) and x48,. Let z €S, Nd K. Then

ZESN BeK and z # x, and the proof 1s complete.

Definition: The topology on SeK described in (b) above will

be called the o-face topology and it will be denoted by the letter o.

Proposition 18: aeK with the topology o 1s a compact T1

space, and o0 1s Hausdorff if and only if aeK is closed.

Proof': Trivially o 1s Tl. It is also easily seen that aeK

is compact in the topology o. (The proof 1is the same as that of
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Proposition 4.2 in [3]).

Obviously the identity map H:(aeK, rel.top.) =+ (aeK,c) is
continuous and bljective, and hence if aeK is compact then I

1s a homeomorphism. Thus if aeK is closed, then o 1is Hausdorff.

Suppose now that aeK is not closed, and let :ce'a;K \aeK.
Then by (f) S(x)r)aeK will consist of more than one point. Let
{xa} < 3 K be a net that converges to x, and let zeS(x)naeK.
Let S be a closed ¢g-face such that zeaeK \S. If xe€S, then
S(x)< S and hence z&S. Thus x4 S, so K\S 1s an open
neighbourhood of x, and hence there exists an a, such that

xd573eK\‘S for all a > « This shows that x =+ 2z in the

o.
o-face topology for all zEZS(x)flaeK, so o can not be Hausdorff,

and the proof 1s complete.

Remark 19: The idea to the proof of Proposition 18 has been

taken from [8]. We also could have proved the proposition as

Lemma 6.1 in [3] was proved.

Definltion: Following [2] we shall say that K satisfies

Stgrmer's axiom 1f for every family {Fa} of split faces in K,

the set co(UF,) 1is a split face in K.
a

We will now prove a generalization of Theorem II.7.19 in [2]

and of Corollary 38 in [15].

Theorem 20: The followlng statements are equivalent:

(1) K 1s a Bauer simplex.
(i1) If F 1is any face in X, then F 1s a split face.
(111) K satisfles Stgrmer's axiom and every extreme point in

K 1is a split face.
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(iv) If B C 3. K, then co(B) 1s a split face.
(v) If BC 3K, then co(B) 1s a parallel face.
(vi) The faclal topology on 9, K 1s Hausdorff.
(vi1) If f€A(K), then there exists a split face F such

that Fn BeK = Ber){xeK: £ (x) < 0}.

Proof: (1) => (i11) => (111) 1is proved in [2] (Theorem II.7.19
and Theorem II.6.22).

(1i1) => (iv) => (v) 1is trivial.

(iv) => (vi). Suppose B< 3 K 1s relatively closed. Then
§naeK = B. By (iv), F = co(B) = co(B) is a split face. By
Milman's theorem we have that aeF & B and since F 1is a face,
we have that 3. F < 3 KnB = B. Hence 3.F = B. Thus the facial
topology on aeK equals the relative topology on 3eK.

(vi) => (iv). 9,k 1s Hausdorff in the topology o since o
is afiner topology than the facial topology. By Proposition 18 BeK
1s closed. Let B C 3 K. Then we have that B¢ 3. K and
Go(B) = co(B). B 1s closed in the facial topology, and hence there
exists a split face F such that BeF = Ff78eK = B. Thus we have
F = co(B).

(v) => (1). Just as in the proof of (iv) —s (vi) we get that
if B c BeK is relatively closed, then B 1is of the form
B = Fr)BeK = BeF where F 1s a parallel face. Thus o 1is

Hausdorff and, by Proposition 18, BeK is closed.

Let x€K and let wu, V€Q,. Since we can view u and Vv as
positive regular Borel measures, if u(X) = v(X) for each compact

set X C 93 K, then we have u = v. Hence x has a unique maximal

representing measure.




Suppose X C 3 _K 1s compact. Then by (v), F = co(X) is a
parallel face. Since XF is affine, the set of functions
{aa} = {a€A(X): a > XF} 1s directed downwards and {aa} converges

pointwise to XF. Hence we have

WD = u(F) = uixp) = w0 = Um u(a) = n vla)

V(X)) = vxg) = v(F) =v(X).

(iv) => (vii). Let f€A(K) and define B = {x<K: f(x) < 0}.
Bn3 K 1s relatively closed and F = ES(Br\aeK) is a split face

by (i1v) such that FITBeK = BeF = BIWBeK.

(vii) = (vi). Let x,ye? K and x # y. Then we can find

a fe€ A(K) such that f(x) < 0 < f(y). Define sets

oe)
"

{zek: f£(x) < 0}.

and

Q
n

{zeK: £(z) > 0},

Let Fx and Fy be spllt faces such that Fx/)aeK = Bf)BeK and
Fy(qaeK = ijaeK. Now we have that K = BUC such that
aeK = aeKKT(FxLJFy) = aeFxL}aer. This shows that the facial

topology is Hausdorff, and the proof is complete.

Remark 21: The equivalence of (i) and (vi) was proved by

E. Alfsen and T.B. Andersen in [3]. 1In [3] (vi) = (1) was proved
by showing that (vi) implies that every feLC(aeK) has a continuous
affine extention to K.

In [15] M. Rogalski proved the equivalence of (1) and (1ii)

for a large class of compact convex sets.
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Proposition 22: Let F be a closed face in a compact convex

set K. The followlng statements are equivalent

(1) F 1s a split face.
(11) If G 1is any face in K, then co(FuG) 1s a face in K.
(111) For all z€F', co(FuUuface(z)) 1s a face in K.
Proof':

(1) => (i1). Let G be a face in K and let u,v €K and

a€ <0,1> be such that
z = ou + (l-a)veco(FuG).

If z€FuUG, then u,ve€F UG, so we will suppose that

z €co(FUG) \(FVG). Then =z has a decomposition
z = Ax + (1-)\)y
where x€F, y€G and A€ <0,1>. By (4.1),

y = vy, + (1-v)y,

where y1€F, y,€F' and vye [0,1> , and hence

z = Ax + (1-))vy, + (1-2)(1-v)y,

where (A +(1-A)y)"(x; + (1-\)yy,) € F.
By (4.1)
u = Bu, + (1-B)u,,
v = 8v, + (1-8)v,
where u,, v,€F, u,, v,eF' and B,5€[0,1].

Hence we have that

z = ofu, + (l-a)év, + a(l-plu, + (1-a)(1-68)v,
where (aB + (1-a)8)~'(aBu, + (1-0)év,)EF
and (1-a8-(1-0)68)" ' (a(1-8)u, *+ (1-0)(1-8)v,) GF'.
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If B=d6 =0, then u,ve€F', and hence z€F'. Since X # 0,
this 1s impossible, so not both B and 6 are zero. By the
uniqueness of the decomposition of z after F and F', we find
that

y, = (1-aB=-(1-a)8)~ (a(1-B)u, + (1-a)(1-8)v,),

and since y,EF'NG we have that u,,v,€G. Thus we have that
u,ve co(FUG), and hence co(FUG) is a face.
(11) => (11i) 1s trivial.

(111) => (i1). Without loss of generality, we can suppose that
for some f €E°, f_ # 0, we have that K< £ ~'(1).

First we want to show that if ze&€F', then
F'Nco(FdUface(z)) = face(z).

Suppose UEF'N co(FuUface (z)). Then
u = ou; + (1-adu,

where u,€F, u,€ face(z) and ae |—O,l]. Since u€F', we have
that u = u,& face(z) and hence F'nco(FU face(z)) € face(z). The

other inclusion 1s trivial.

Next we want to show that F' 1is a face. We only need to

show that F' 1s convex. Suppose 2,,z,€F' and A€<0,1> and let
x = Az, + (1-))z,.

If xd& FP', then x€K\(FUF') and by (4.1)
x = 8y + (1-68)z

where y&€F, zeF' and 6€ <0,1>. Since co(FyUface(z)) 1is a face
and x€co(FUrface(z)), we have that z,,z,€F'N co(FUface(z)) =

face(z).
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Hence x = xz, + (1-)\)z, €face(z) < F'.
This contradiction shows that F' 1is a face.
Let x<€XK\(FUF') and suppose for i = 1,2 that
X = Ayyy o+ (1-A1)ui
where yie_F, uiE.F' and Aie. <0,1>.,
Since co(F Uface (u,)) 1is a face, we have that y,, u,€ co(FUrface(u,)),

and hence u,€ face(u,). Thus we have (see e.g.[1])
u, = Bu, + (1-8)z'

where z'€X and Be€ <0,1], and hence
x = Ay, (l-Al)Bu2 + (l-Al)(l-e)z'.

Let £ € E* such that f(uz) = 0. Then we have
£(2,5,) = £y, + (1-2,)(1-)z")

and since these f's separate points in E, we have
Ay, = Ay, *+ (1-2,)(1-B)z".

Now K fo_l(l) implies that

>\ )\1 + (l'Al)(l"B)

2

so Az > Al

By a dual argument, we find that u, €face(u,) and i > A,.
Hence we have A, = A, and B =1 such that u = u, and y, =¥,

and the proof 1s complete.

Remark 23: (i) => (11) 1n Proposition 22 was pointed out to

me by T. B. Andersen.




(1]

[3]

(4

(5]

(6]

(7]

(8]

(o]
[10]

REFERENCES :

E. M. Alfsen,

E. M. Alfsen,

- 24 .

On the geometry of Choquet simplexes,
Math. Scand. 15 (1964), 97-110.

Compact convex sets and boundary integrals,
Ergebnisse der Mathematik, Springer Verlag,
Germany, 1971.

E.M. Alfsen,and T. B. Andersen, Split faces of compact convex

H. Bauer,

E. Bishop and K. de Leeuw,

sets, Proc. London Math. Soc. 21 (1970)
415-442.

Kennzeichnung kompakter Simplexe mit abge-
schlossener Extremalpunktmenge, Archiv der
Mathematik, 14 (1963), 415-421.

The representation of linear functionals

by measures on sets of extreme points, Ann.
Inst. Fourier, 9(1959), 305-331.

G. Choquet and P. A. Meyer, Existence et unicité des représenta-

D.A. Edwards,

E. Effros and A.

T. W. Gamelin,

tiones intégrales dans les convexes compacts
quelcongues, Ann. Inst. Fourier, 13(1963),

139-1540

Minimum-stable wedges of semicontinuous
functions, Math. Scand. 19(1966),15-26.

Gleit, Structure in simplexes III, Trans.
Amer. Math, Soc. 142 (1969), 355-380.

Uniform algebras, Prentice-Hall, 1969.

A. Goullet de Rugy, Géometrie des simplexes, Centre de Documenta-

tion Universitaire, Paris 1968.




[11]

[22]

[23]

[14]

[25]

[16]

[17]

(28]

Hirsberg,

Lazar,

R. Phelps,

Rogalski,

Rogalskil,

Stray,

Vesterstrgm,

C. Léger,

- 25 =

A measure theoretic characterization of
parallel- and split faces and their

connection with function spaces and algebras,

Aarhus Universitet, Various Publication
Series, No. 16, 1970.

Spaces of affine continuous functions on
simplexes, Trans. Amer. Math. Soc. 134(1968)

503-525.

Lectures on Choguet's theorem,
van Nostrand 1966. |

Topologies faclales dans les convexes
compacts;:calcul fonctionnel et décompo-
sition spectrale dans le centre d'un
expace A(X), Séminaire Choquet, 1969-70.

Caracterisationdes simplexes par des
proprietes portant sur les faces fermees
et sur les ensembles compacts de points
extremaux, To appear in Math. Scand.

Approximation and interpolation, University
of 0Oslo, Preprint No. 15, 1970.

On open maps, compact convex sets, and
operator algebras, Aarhus Universitet,
Preprint No. 28, 1970-71.

Une démonstration du théordme de A.J.Lazar
sur les simplexes compacts,
C.R.Acad.Sci. Paris,265 (1967), 830-831.




