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Abstract 
Molecular phylogenetics has revolutionized the taxonomy of crustose lichens and revealed an 

extensive amount of cryptic diversity. Resolving the relationships between genera in the crustose 

lichen family Tephromelataceae has proven difficult and the taxon limits within the genus Calvitimela 

are only partly understood. In this study, I tested the monophyly of Calvitimela and investigated 

phylogenetic relationships at different taxonomic levels. To ultimately contribute towards a more 

natural classification of the genus, I used an integrative taxonomic approach. Freshly collected 

material from Norway and fungarium specimens of all species currently assigned to Calvitimela 

(including available holotype, isotype and lectotype material) formed the foundations for the study. 

Additional population sampling of Calvitimela melaleuca sensu lato across Norway was performed. 

Chemical and morphological characters were analyzed to test their diagnostic values in the genus. 

More than 300 sequences from five different loci (ITS, LSU, MCM7, mtSSU, TEF1-α) were produced 

and used, together with existing molecular data, to infer phylogenetic relationships in Calvitimela. The 

divergence time estimates from molecular dating were used as an assisting tool to circumscribe natural 

taxa. Additionally, the potential reasons for non-phylogenetic signal were explored. My molecular 

phylogenetic results show deeply divergent lineages in Calvitimela. Morphological characters are 

uncovered as overlapping between divergent subgenera in the genus, whereas chemical characters are 

informative at the level of subgenera, but largely homoplastic at species level. Moreover, the subgenus 

Calvitimela is found to constitute four distinct genetic lineages, and detailed morphological 

examinations of C. melaleuca s. lat. reveal differences between taxa previously assumed to be 

morphologically cryptic. Population level analyses of C. melaleuca s. lat. corroborate the species to be 

paraphyletic. Furthermore, young evolutionary ages and signs of gene tree discordance indicate a 

recent divergence and possibly incomplete lineage sorting in the subgenus Calvitimela. Phylogenetic 

analysis of the mtSSU suggests that the Antarctic species C. uniseptata belongs in Lecania 

(Ramalinaceae). I also find molecular evidence for C. septentrionalis being sister to C. cuprea. In the 

subgenus Severidea, one new grouping is recovered as a highly supported sister to C. aglaea. Lastly, 

two fertile specimens are found to be phylogenetically nested within the sorediate species C. cuprea. I 

discuss the need for an updated classification of Calvitimela and the role of cryptic diversity in an 

evolutionary context. Through generic circumscription and species delimitation I argue for a practical 

taxonomy in Calvitimela. 
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1 Introduction 
 

Calvitimela Hafellner is a circumpolar lichen genus in the family Tephromelataceae (Lecanorales, 

Lecanoromycetes) inhabiting rocks in primarily alpine and arctic regions. Members of the Tephromelataceae 

are crustose lichens with green algal (chlorococcoid) photobionts and lecideine or lecanorine (only in 

Tephromela M. Choisy) apothecia. The family consists of the genera Tephromela, Calvitimela, Mycoblastus 

Norman and Violella T. Sprib. Together, these four genera constitute a well-supported monophyletic group, 

that is, they share a common ancestor (Spribille et al. 2011a; Bendiksby et al. 2015). Historically, however, 

the species now assigned to Calvitimela were placed in the huge, classical genus Lecidea Ach., for instance by 

Fries (1874; as Lecidea strips L. armeniacae) and Magnusson (1931; as “Lecidea armeniaca- und elata-

Gruppe''). Hertel & Rambold (1985) split the ‘calvitimelas’ out from Lecidea and placed them in the genus 

Tephromela. The generic name Tephromela had recently been resurrected by Hafellner (1984) for a small 

group of species split out from Lecanora Ach. Hafellner (1984), at the same time, described the new 

monotypic family Tephromelataceae. Hence, in the taxonomy of Hertel & Rambold (1985), Tephromela 

contains both species with lecideine and lecanorine apothecia, a character which is often used at the generic or 

family level. Hafellner and Türk (2001) then removed the species having lecideine apothecia (i.e., the 

‘calvitimelas’) from Tephromela and introduced the new genus Calvitimela. In the most recent update on 

ascomycete taxonomy, Lücking et al. (2017) recognized 10 species of Calvitimela (Fig. 1A-I, the species C. 

septentrionalis (Hertel & Rambold) McCune is not depicted), 10 of Mycoblastus, 30 of Tephromela, and two 

of Violella.  

 In the influential molecular phylogenetic works on the Lecanoromycetes by Miadlikowska et al. 

(2006; 2014), they found Mycoblastus and Tephromela grouping together as the sister group to the 

morphologically diverse families Lecanoraceae and Parmeliaceae. Arup et al. (2007) were the first to show 

that Calvitimela grouped together with these two genera (i.e., Mycoblastus and Tephromela) while 

investigating the sister group relations of the Parmeliaceae. Their phylogenetic results, based on DNA 

sequences of the nuclear ribosomal cistron, the ITS and LSU markers, indicated a heterogeneous clade 

consisting of the three genera, that is, both Calvitimela and Mycoblastus were recovered as paraphyletic. In a 

photobiont study of the T. atra group by Muggia et al. (2008), C. armeniaca together with Mycoblastus 

sanguinarius were recovered as sister taxa to the core Tephromela. A few years later, Spribille et al. (2011a) 

described the genus Violella and found Calvitimela, Tephromela and Violella to constitute a well-supported 

monophyletic entity with Mycoblastus as their closest relative. 
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Figure 1. The species currently belonging to Calvitimela (except C. septentrionalis), A: Calvitimela aglaea (Sommerf.) Hafellner 

(O-L-173831), B: C. armeniaca (DC.) Hafellner (O-L-195741), C: C. austochilensis Fryday (MSC-0057474), D: C. cuprea Hau-

gan & Timdal (O-L-179616), E: C. livida Haugan & Timdal (O-L-163835), F: C. melaleuca (Sommerf.) R. Sant (O-L-195711) 

G: C. perlata (Haugan & Timdal) R. Sant (O-L-163770), H: C. talayana (Haugan & Timdal) M.P. Andreev (O-L-225289), I: C. 

uniseptata G. Thor (UPS-L-838893). Photos: Einar Timdal and Markus O. Fjelde.

In their molecular phylogenetic study of Calvitimela sensu lato, based on three nuclear markers (ITS, 

7()��Į��0&0����%HQGLNVE\�HW�DO���������SRLQWHG�WR�WD[RQRPLF�FKDOOHQJHV�DW�GLIIHUHQW�WD[RQRPLF�OHYHOV�LQ�

need of more in-depth studies: (1) The largely unresolved phylogenetic relationships between the genera 

Tephromela and Violella�DQG�WKH�VXEJHQHUD�LQWURGXFHG�E\�%HQGLNVE\�HW�DO����������L�H���Calvitimela subgen. 

Calomela, Calvitimela, Paramela, and Severidea) and (2) the taxonomic challenges of the subgenus Calviti-

mela (i.e., Calvitimela sensu stricto), which included a paraphyletic C. melaleuca (see Fig. 1), uninformative 

morphology, and a confusing pattern of secondary metabolites.

Markus Fjelde
2



         
 

3 

 
 
Figure 2. A schematic illustration of the phylogenetic relationships between the genera and subgenera in the 

Tephromelataceae (left), and between the lineages in the subgenus Calvitimela (right), based on results by Bendiksby et 

al. (2015). 

 

The idea that lichens are symbiotic partnerships has been around since the late 1800s (Schwendener 

1869); a symbiosis between one fungal (the mycobiont) and one algal and/or cyanobacterial component (the 

photobiont). Due to rules by the International Code of Botanical Nomenclature, starting in 1950, the 

taxonomy of lichens is based on the fungal component. This has come to shape the way lichenologists view 

and study lichens. That is with a focus on the main (usually ascomycete) fungus of the lichen.  

The traditional way of circumscribing lichen species based on morphological and chemical traits are 

still central in lichen taxonomy. Crustose lichens have few morphological characters on which to base 

taxonomic conclusions. For this group, therefore, the use of thin layer chromatography (TLC), which is a 

method for documenting differential expression of secondary metabolites (hereafter referred to as 

“chemistry”), has been essential for species recognition and delimitation (see e.g., Culberson 1969 and 

references therein). However, not all lichens have detectable or informative chemistry (see LaGreca et al. 

2020 and references therein), and even when including all available morphological and TLC data, the 

combination may not be enough to reach sensible species hypothesis.  

The advent of DNA sequencing and molecular phylogenetics, enabling the analyses of evolutionary 

relationships based on many more characters, has essentially revolutionized the taxonomy of crustose lichens. 

Moreover, an extensive amount of so-called cryptic species has been revealed using molecular phylogenetics 
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(e.g., Crespo and Lumbsch 2010, Singh et al. 2015, Schneider et al. 2016, Leavitt et al. 2016; Haugan & 

Timdal 2019). Cryptic species are here understood as taxa that cannot readily be distinguished 

morphologically, with evidence (usually molecular) that suggest they are on different evolutionary trajectories 

(Struck et al. 2018a). Following the discovery of cryptic species, not rarely, overlooked diagnostic 

morphology becomes evident (e.g., Frolov et al. 2016). Such species are then often referred to as semi- or 

pseudocryptic species (e.g., Mann & Evans 2008). Two related concepts in lichenology are the terms “species 

pair” and “sibling species”. The former refers to the phenomenon when two lichens only differ by their 

reproductive strategy (see Poelt 1970; Mattson & Lumbsch 1989), where a “primary species” produces sexual 

reproductive structures and a “secondary species” reproduce by asexual propagules or fragmentation. The 

latter refers to a special case of cryptic species: “…Species recognized primarily by cryptic or non-

morphological discontinuities” (Culberson 1986), essentially meaning morphological indistinguishable taxa 

with for instance different chemistries. Today, a more restricted definition of sibling species refers to cryptic 

species that are monophyletic (Lumbsch & Leavitt et al. 2011).   

The current recommended way to circumscribe fungal species is through a combination of a 

genealogical, phenotypical, geographical and/or recombinational approach (i.e., integrative taxonomy; 

Lücking et al. 2020). Practically this process includes first establishing species hypotheses through for 

instance a phylogenetic species concept and often using a genealogical concordance approach if multiple 

genes are available (see Taylor et al. 2000). Ultimately, the idea is that collection of data to investigate if other 

sources of evidence support the initial hypotheses will provide a robust framework for recognizing species. 

 A wide array of genetically informative markers exists and are frequently used in molecular 

systematic research. Many important markers are ribosomal, like the nuclear small and large subunits (LSU 

and SSU) or the mitochondrial small subunit (SSU). The universal barcode for fungi, the nuclear ribosomal 

internal transcribed spacer region (ITS) is one of the most applied genetic regions for molecular studies of 

lichens. It is a non-coding multi-copy region of the ribosomal cistron, consisting of the ribosomal RNA 5.8S, 

which is flanked by the two often highly variable intron regions ITS1 and ITS2 (Schoch et al. 2012). A few 

protein coding genes have been used in Calvitimela and related groups in previous studies (Spribille et al. 

2011; Bendiksby et al. 2015) such as the mini-chromosome maintenance factor 7 (MCM7) and the 

transcription elongation factor 1-α (TEF1-α). TEF1-α has been shown to be quite variable and sufficient at 

resolving species to generic relationships in the Tephromelataceae. Where MCM7 also partly shares these 

characteristics, Spribille et al. (2011b) showed a detectable level of substitution saturation with MCM7 when 

investigating the species Mycoblastus sanguinarius. When multiple changes have occurred along a string of 

DNA sequence that leads to underestimation of genetic distances, saturation of substitution is said to have 

happened (Philippe et al. 2011). This can result in unrelated taxa to be wrongly inferred as closely related 

through homoplasy. In the data used for phylogenetic reconstruction, structured noise like this is often referred 

to as non-phylogenetic signal (Philippe et al. 2011). 

 The efforts to decipher the tree of life lies more and more in the hands of molecular phylogeneticists. 

The probabilistic methods for phylogenetic tree inference such as Maximum Likelihood (ML) and Bayesian 
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inference have become increasingly important tools for phylogenetics in the last few decades. With new and 

faster algorithms, like those implemented in RAxML-NG (Kozlov et al. 2019) and the access to high 

performance computing clusters, it has become faster and easier to reconstruct hypotheses about the 

evolutionary past. Population genetics is also a useful tool for investigating the genetic differentiation 

between, and within, populations of lichen forming fungi (review: Werth 2010). When taxa are 

morphologically cryptic, population genetics can help quantify evolutionary change that can uncover 

underlying differences between them.  

 Molecular dating has become increasingly popular and is a valuable technique for understanding at 

which time scales evolutionary processes occur. It has even been proposed that a temporal approach to 

classify lichen groups could serve as an objective way of circumscribing taxonomic units (Divakar et al. 

2017). Many methods for performing molecular dating analyses now exist with the different implementations 

in the software BEAST (Bouckaert et. al 2019) being widely used.   

 In this study, I use an integrative taxonomic approach to reach a better understanding 

of Calvitimela; the ultimate aim being to contribute towards a more natural classification of the genus. I 

combine molecular phylogenetics with studies of morphology and chemistry to study Calvitimela from the 

level of genus circumscription, through species delimitation and phylogenetic interrelationships, to population 

structure in C. melaleuca. The study is based on a broad and global taxon sampling with additional population 

sampling of C. melaleuca s. lat. from Norway. Much effort has been put into identifying phylogenetically 

informative morphological and chemical characters, including in-depth investigations of seemingly cryptic 

species. Lastly, I explore the sources of non-phylogenetic signal in the molecular data, and asses the genetic 

marker’s ability to resolve phylogenetic relationships at different taxonomic levels.  
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2 Material and Methods 

2.1 Taxon sampling 
 

For this study I have investigated all currently recognized Calvitimela species through a global sampling 

approach. I have included both freshly collected material and fungarium specimens from various institutions 

(O, GZU, KGLO, MSC, QFA, UPS, WIS; Figs. 3 and 4; Table S1). In the summers of 2019 and 2020, the 

lichen group at O conducted fieldwork at a wide range of localities in Norway. Around 200 Calvitimela 

specimens were collected during this field work. I collected samples by hammer and chisel and dried them in 

paper bags before they were brought to O for further investigation. Two independent sampling schemes of C. 

melaleuca were performed. First, connected with the global sampling as described above, extensive collection 

of fresh material in Norway and fungaria material from around the world. Secondly, a population level 

sampling of C. melaleuca in Norway. Population samples were collected at four different localities (Fig. 11; 

Table S2). Small thallus fragments were taken from 20 individuals at each locality within a radius of up to 5 

meters using a sterile knife. Throughout this thesis, I explicitly use the taxonomy of Bendiksby et al. (2015), 

referring to the subgenera they introduced. 

2.2 Morphology and Chemistry 
 

I examined the material morphologically under dissecting microscopes and compared against expert-

controlled fungarium specimens. When available, type material was included (Table 1). Spore size was 

measured for selected specimens (Table S1). Thin cross sections of apothecia showing individual asci were 

cut and placed in a drop of 5% potassium hydroxide (KOH), and spore sizes were measured under light 

microscopes using immersion oil and 100X magnification. The spore size measurements were based on a 

single and suitable cross section (i.e., with at least 15 visible spores) from one apothecium per individual. All 

anatomically studied specimens were checked for crystals under polarized light. Amyloid reactions were 

tested after pretreatment with KOH, with a modified Lugol's solution, where water was replaced by 50% lactic 

acid.  

 Thin-layer chromatography (TLC) was performed on nearly all included specimens of Calvitimela 

(see Table S1) in accordance with the methods of Culberson (1972), Menlove (1974), and Culberson & 

Johnson (1982). Secondary chemistry was examined using the solvent systems A, B' and C and run-on glass 

plates for identifying fatty acids.  
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Figure 3.  Map showing my taxon sampling of Calvitimela�LQ�1RUZD\��LQFOXGLQJ�H[LVWLQJ�UHFRUGV�DW�2��DQG�UHFRUGV�IURP�¿HOG-
work in the summers of 2019 and 2020. Colored points representing the six different species known to Norway. The distribution 
map was made in R using the packages rnaturalearth (South 2017) and sp (Pebesma & Bivand 2005; Bivand et al. 2013).
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2.3 Molecular work 

2.3.1 DNA extraction, PCR, and sanger sequencing 
 

I extracted genomic DNA from dried tissue (apothecia and/or thallus) using the E.Z.N.A plant kit (Omega 

Bio-tek, Inc., Norcross, Georgia, U.S.A.), following the manufacturers guidelines except for a few 

modifications (as described by Bendiksby & Timdal 2013). I continued with polymerase chain reaction (PCR) 

using Illustra PuReTaq Ready-To-Go beads (GE Healthcare, Buckinghamshire, UK) following the protocol 

described by Kistenich et al. (2018), with modified volumes for each reaction: 0.3 μl of both primers and a 

total mixture volume of 11.8 μl, to which 0.7 μl DNA template was added. Primers are listed in Table 2. The 

following nuclear genetic regions were amplified: the internal transcribed spacer region (ITS1, 5.8S, ITS2), 

and the large subunit (LSU) of the nuclear ribosomal rRNA, the DNA replication licensing factor mini-

chromosome maintenance factor 7 (MCM7), and the translation elongation factor 1-α (TEF1-α). Additionally, 

I amplified the mitochondrial ribosomal small subunit (mtSSU) using internal primers (mtSSU-RhiF, mtSSU-

RhiR) when amplification was poor. The following PCR cycling conditions were used: 95 °C for 7 min, 35 

cycles of 95 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min, followed by 72 °C for 7 min. For the LSU marker 

slightly different cycling conditions were used: 95 °C for 7 min, 35 cycles of 95 °C for 30 s, 68-58 °C (touch 

down) for 30 s, 72 °C for 1 min, followed by 72 °C for 5 min.  
 
Table 2. All primers used in the study and their associated loci, their nucleotide sequences (in 5’-3’ direction), and their 
references.  

 
 I cleaned PCR products as described in Kistenich et al. (2018), with Illustra ExoProStar Clean-Up Kit 

(GE Healthcare, Buckinghamshire, UK), following the manufacturers guidelines, expect using a 10× dilution 
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of enzymes. The cleaned PCR products were sent for Sanger sequencing at Macrogen Europe (Amsterdam, 

The Netherlands) and the sample preparation was performed in line with the company’s instructions. 

2.4 Analyses 

2.4.1 Assembly, alignment, and model testing 
 

I assembled the sequences using Geneious Prime version 2020.1.2 (https://www.geneious.com/). An initial 

identity control was performed by searching our local BLASTn database (all lichen sequences in GenBank 

downloaded 2020-05-14 merged with all lichen sequences produced at O). I aligned sequences using Muscle 

(Edgar 2004) in Aliview (Larson 2014). To remove poorly aligned regions and make the trimming process 

reproducible I trimmed the alignments with Gblocks (Castresana, 2000; Talavera & Castresana, 2007) using 

the option for less stringent selection: allow gap position within the final blocks. The ITS sequences of the C. 

melaleuca populations aligned easily, and only the ends were manually trimmed away. Moreover, the 

alignments used for haplotype network construction and calculating population genetic metrics were reduced 

(see 2.4.3). Model testing was performed using PartitionFinder2 (Lanfear et al. 2016) applying the greedy 

algorithm (Lanfear et al. 2012), linked branch lengths and the starting Maximum Likelihood (ML) tree by 

PhyML (Guindon et al. 2010). Best fitting evolutionary substitution models were selected based on the small 

sample size corrected Akaike Information Criterion (AICc). The alignments of protein coding genes (MCM7 

and TEF1-α) were partitioned according to codon positions, and the ribosomal marker (ITS) by the introns 

and ribosomal part (i.e., ITS1, 5.8S, ITS2). The alignments of the nuclear regions ITS, MCM7 and TEF1-α 

were concatenated applying the same partitions as described above.  

2.4.2 Phylogenetic inference 
 

I constructed ML phylogenetic trees of individual alignments (ITS, LSU, MCM7, mtSSU, TEF1-α) and 

concatenated alignments (ITS + MCM7 + TEF1-α) with 10 random starting trees and 1000 bootstrap 

replicates using RAxML-NG-MPI v. 1.0.2. (https://github.com/amkozlov/raxml-ng/releases/tag/1.0.2; Kozlov 

et al. 2019). All gene alignments (except LSU and mtSSU) were also subjected to Bayesian inference using 

the mpi version of MrBayes 3.2.7a (github.com/NBISweden/MrBayes/ tree/v3.2.7a; Ronquist et al. 2012). 

Phylogenetic analyses were carried out on the computer cluster Bioint01 (bioint01.hpc.uio.no) at the 

University of Oslo.  For the separate gene trees, the Metropolis-Coupled Markov Chain Monte Carlo (MC3) 

was run for 10 million generations (12 for the concatenated and 8 for the population alignment) with 4 

separate chains and 4 individual runs sampling every 100th tree. Convergence and proper parameter mixing 

were assessed by inspecting trace plots in Tracer 1.7.1 (Rambaut et. al 2018), and by monitoring the value of 

the Average Standard Deviation of Split Frequencies (ASDSF) as the chains progressed. I assumed 
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convergence of the chains when a value of ASDSF < 0.01 was reached. The burnin values for tree 

summarization were set manually at the nearest round generation (e.g., 1 million or 2.5 million) after the 

ASDSF value had dropped under 0.01. Bayesian gene trees were summarized using the contype option 

allcompat, whereas the trees inferred from the concatenated dataset were summarized using the halfcompat 

option to get a 50 % majority rule consensus tree. 

Molecular dating was performed using a two-step secondary calibration. Firstly, a molecular dating 

was performed on a dataset of the major groups in the Lecanoromycetes using the DNA sequences of LSU 

and mtSSU retrieved from GenBank (see Fig. S4). Secondly, I performed a dating analysis on a subset of the 

Tephromelataceae data (see Table S1) excluding the outgroup and reducing the number of accessions in well 

sampled groups (i.e., Severidea and subgenus Calvitimela). In both calibration steps, ML phylogenies were 

inferred using the same methods as described above, except only partitioning by each genetic region (i.e., 

LSU, mtSSU and ITS, MCM7, TEF1-α). The ML topologies were transposed to ultrametric using the function 

chronopl () in the package ape (Paradis & Schliep 2019) in R version 4.0.3. (R Core Team 2020) applying the 

calibrations described below. The software BEAUTi implemented in BEAST 2.6.3 (Bouckaert et. al 2019) 

was used for setting up all the molecular dating analyses. The different gene partitions were defined with 

unlinked substitution models, unlinked clock models and linked trees. The following substitution models were 

used for the Tephromelataceae data ITS: GTR+G, MCM7: TVMef+G and TEF1-α: SYM+I+G, setting the 

number of gamma categories to 4 and the number of invariant sites to be estimated (for substitution models 

used for the Lecanoromycetes data see Fig. S4). The ultrametric ML topologies were used as guiding tree 

topologies. I used four calibration points from Nelsen et al. (2019) in the initial analysis of the 

Lecanoromycetes dataset (Fig. S4). Calibration priors were set by using the 95% highest posterior density 

(HPD) intervals for the crown age estimates inferred by Nelsen et al. (2019). These were used as upper and 

lower bounds on uniformly distributed priors. The following initial secondary calibration priors were set: 

Lecanoromycetes 199.7–303.0 million years ago (Ma), Telochistales 76.9–151.8 Ma, Caliciales 50.3–167.1 

Ma and Cladoniineae 36.8–85.8 Ma. Most recent common ancestor (MRCA) priors were applied to the crown 

node of the Tephromelataceae in the first analysis and to the ingroup (all taxa except Mycoblastus) in the 

second analysis. I carried out two independent runs in BEAST 2.6.3 (Bouckaert et. al 2019) for both the 

Lecanoromycetes and Tephromelataceae data; one run with a log normal relaxed clock and one with a strict 

molecular clock. The age estimation (41.7–116.5 Ma) from the relaxed clock analysis on the crown node of 

Tephromelateaceae was used to calibrate the root node on the subset of the Tephromelataceae data (Table S1). 

For the Lecanoromycetes data the posterior was summarized with a maximum clade credibility (MCC) tree 

and median heights, using the software TreeAnnotator implemented in BEAST 2.6.3. Moreover, for the 

Tephromelataceae data, summarization was done onto the ultrametric ML topologies (see above) with both 

median and common ancestor heights (CA). All MCMC runs were run for 50 million generations, logging the 

trace and trees every 104th generation. I only discuss nodes relevant for answering the questions set in this 

thesis, specifically, excluding Mycoblastus and Tephromela.  
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 I visualized phylogenetic trees in Dendroscope 3.7.5 (Huson & Scornavacca 2012) to confirm 

outgroup relationships and use the collapse function to inspect topologies with collapsed branches (with a 

cutoff bootstrap value of 75). I used Figtree 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) to visualize and 

export tree files and pdfs for later editing in Adobe InDesign (Adobe Inc. 2021). Chemical and geographical 

characters were manually mapped on to the resulting phylogeny of the concatenated data, in addition to 

bootstrap values from the ML analysis of the same dataset. Chemical data was manually mapped on to the ITS 

topology of the C. melaleuca populations. 

2.4.3 Population genetics 
 

The haplotype network was constructed based on the parsimony criterion using the function haploNet () in the 

R package pegas (Paradis 2010). The nucleotide diversity (π) was calculated in R using the function nuc.div () 

in pegas. The measures of population divergence (dXY and FST) were obtained by creating an object of class 

“genome” of the population alignment and retrieving the relevant summary statistics using the R package 

PopGenome (Pfeifer et al. 2014). Aiming to only capture the haplotypes of C. melaleuca, the outgroup, and 

accessions of C. armeniaca were removed from the alignment before haplotype network construction. Five 

data points (1_3, 1_14, 1_20, 3_7, 3_10; see Table S2) were excluded from the calculation of population 

genetic statistics, since they were seemingly not a part of the true populations sampled at each locality (see 

section 3.4). However, they were included in the haplotype network construction to assess the total number of 

haplotypes across all sampled individuals of the C. melaleuca populations. 

2.4.4 Data exploration 
 

The R environment was used for exploration of both the phenotypic (1) and molecular (2) data, respectively. 

(1) Spore size variation was investigated by plotting the mean width against the mean length for each 

observation (i.e., the mean of all 15 measurements for every individual measured) and fitting a line with the 

stat_smooth () function implemented in ggplot2 (Wickham 2016) using the method “loess”, and a value of 1.5 

for span. To search for potential taxon specific patterns ascribed to just spore length or spore width, boxplots 

for each were made by plotting the widths and lengths against taxa using ggplot2 (Wickham 2016). (2) 

Substitution saturation plots were created by calculating the number of transitions and transversions at the 

third codon positions (MCM7 and TEF1-α) and the variable regions of ITS (ITS1 and ITS2) using the titv () 

function in the package Spider (Brown et al. 2012) and plotting against the F84 distance calculated with 

dist.dna () in the package ape. The rationale behind including a saturation plot of ITS was to compare, 

between the nuclear markers, at which level of genetic distance substitutions occur. Segregating sites and base 

frequencies were calculated with the functions seg.sites () and base.freqs (), respectively, in the package ape. 
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3 Results 

3.1 Morphology and chemistry 
 

I obtained spore sizes for 33 individuals from different fertile Calvitimela specimens with five individuals per 

taxon, except C. cuprea (N = 3), C. melaleuca clade III (N = 2) and C. perlata (N = 4), including the lectotype 

of C. melaleuca (Fig. 5; Table 1; Table S1). The largest differences in spore size occurred between C. perlata 

and all other taxa (Fig. 5). In addition, a difference between C. melaleuca I and C. melaleuca II was observed. 

The sister taxa C. melaleuca II and C. armeniaca had smaller spore sizes compared to C. melaleuca I and III, 

where spore width was the most distinguishing measure. The rest of the taxa had a general tendency to overlap 

in both spore length and width. 

A morphological comparison between lineages in the subgenus Calvitimela uncovered a difference in 

thallus color between the two taxa C. melaleuca I and II (Fig. 6). The taxon C. melaleuca I exhibited white to 

occasionally light brown thallus color, whereas C. melaleuca II showed yellow to sometimes brownish-yellow 

thallus color. Only two specimens, one freshly collected (O-L-228122; Table S1; Fig. 6E), and one slightly 

older (QFA-0635917; Table S1) specimen of the clade C. melaleuca III were observed, and both had a thallus 

morphology resembling C. armeniaca (Fig. 6A-B) more than C. melaleuca s. lat (i.e., C. melaleuca I, II and 

III), with beige colored thallus (not observed for the older specimen due to color degradation) with areolae 

edges becoming “melanin” pigmented and appearing black to dark gray. Other morphological traits did not 

show any potential of predicting the phylogenetic clade in the subgenus Calvitimela. Some specimens were 

misidentified in the field, or had incorrect names in GenBank, see the footnotes of Table S1 for a full list of 

these vouchers. Members of C. melaleuca s. lat. showed a general tendency to grow in similar habitats when 

collected in the field. 

One newly discovered clade, C. sp., in Severidea (Fig. 7A) was collected multiple times and in the 

field identified as C. perlata. In addition, two specimens (OL-228131; Fig. 7C and OL-228193) collected as 

C. melaleuca and C. aglaea respectively, were both fertile with whitish areolae, and they likely represent a 

new morphotype of the sorediate C. cuprea (Fig. 7B-C). 

Chemistry profiles were acquired from selected specimens (Fig. 10; Table 3; Table S1). I identified 

the aromatic substances alectorialic acid, atranorin, norstictic acid, protocetraric acid, psoromic acid, stictic 

acid and usnic acid; the triterpene zeorin; and the fatty acids bourgeanic acid, norrangiformic acid, 

rangiformic acid, roccellic acid, and two unknown fatty acids; and two unknown acids.  
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Figure 5. Spore size variation in Calvitimela. (A) Spore widths plotted against spore lengths from the mean of indi-
vidual specimens measured, with a schematic topology of the relationships between taxa. (B) Spore length, and (C) 
spore width boxplots showing the interquartile range of the data, with whiskers corresponding to the   maximum and 
minimum values, and the centered black line corresponding to the median. The color coding indicate the different taxa.
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Figure 6. The different morphologies occurring in the subgenus Calvitimela, A: C. armeniaca (O-L-228166), B: 
C. armeniaca (O-L-228197) C: C. melaleuca II (O-L-225749), D: C. melaleuca I (O-L-225809) E: C. melaleu-
ca III (O-L-228122) F: C. melaleuca I (O-L-228123). Scale bars = 5 mm. Photos: Einar Timdal and Markus O. 
Fjelde.
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Figure 7. Curiosities from Severidea. A: the newly discovered clade C. sp. from Sigdal, Norway (O-L-200938). 
B: The sorediate C. cuprea (O-L-208192) from Gammalgruvan copper mine in Sweden C: The fertile C. cuprea 
(O-L-228131) from Saltdalen, Norway. Scale bars = 5 mm. Photos: Einar Timdal.
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The two specimens that likely represent a new fertile morphotype of C. cuprea had the same chemistry as C. 

cuprea (atranorin, norstictic acid and stictic acid) and were recovered as nested within the C. cuprea clade 

(Fig. 10). The combination of atranorin, bourgeanic acid and usnic acid commonly occurred in C. aglaea. 

Stictic acid was also recorded in specimens of C. aglaea even with the absence of bourgeanic acid and usnic 

acid. Calvitimela perlata contained norrangiformic and rangiformic acid, two unknown substances, and zeorin 

(single occurrence). Calvitimela talayana exhibited atranorin, bourgeanic (single occurrence), norrangiformic 

acid, rangiformic acid and usnic acid. The subgenus Calvitimela displayed a lot of variation in chemistry. 

Calvitimela armeniaca usually contained alectorialic acid and roccellic acid, psoromic acid (single 

occurrence) and rarely protocetraric acid. In C. melaleuca I psoromic acid, roccellic acid, alectorialic acid 

(rare), protocetraric acid (rare), and a few occurrences of two unknown fatty acids were recorded. Calvitimela 

melaleuca II contained alectorialic acid, norstictic acid, norrangiformic acid, psoromic acid, rangiformic acid 

and roccellic acid to varying degrees, plus some rare occurrences of two unknown fatty acids. Calvitimela 

melaleuca III only displayed roccellic acid.   
 In total eight different substances were recorded from the population samples of C. melaleuca, five 

fatty acids: norrangiformic acid, rangiformic acid, roccellic acid and two unknown fatty acids, and three 

aromatic substances: atranorin, norstictic acid, and psoromic acid (Fig. 11; Table S2). In addition, a few 

occurrences of unknown acids were recorded (Table S2). In general, there was a lack of correlation between 

chemistries and phylogenetic clades (Fig. 10). However, individuals from population 1 tended to contain 

norstictic acid, norrangiformic acid, and rangiformic acid, and an unknown fatty acid (UNF2), whereas these 

substances were rare for the rest of the populations.  

 

3.2 Molecular data 

3.2.1 Genetic markers and amplification 
 

I obtained 301 sequences: 171 from ITS (including 75 from the C. melaleuca populations), 12 from LSU, 51 

from MCM7, 13 from mtSSU, and 54 from TEF1-α (Table S1). I experienced multiple copies of the LSU in 

the PCR products during gel electrophoresis with all Calvitimela amplicons. Due to low PCR success rate and 

the unclear phylogenetic signal from the mtSSU, I was unable to present a reasonable interpretation of these 

sequences (Fig. S2). Despite multiple attempts, I was not able to obtain sequence data for the species C. 

austochilensis. I was however able to acquire one mtSSU sequence from the Antarctic C. uniseptata and my 

phylogenetic analyses strongly support C. uniseptata to belong in the genus Lecania (Ramalinaceae; Fig. S3).  
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3.2.2 Alignments and substitution models 
 

The alignments consisted of the sequences produced during this study and existing sequences mined from 

GenBank (Table S1). After the trimming of the different alignments, they consisted of the following number 

of accessions and total sequence lengths: ITS 181 and 501, MCM7 113 and 489, TEF1-α 110 and 804, 

population alignment (ITS) 81 and 588. The inferred substitution models differed amongst the loci and their 

partitions (Table 4).  

Table 4. Metrics of the three nuclear loci (ITS, MCM7, TEF1-α) with number of accessions and the separate partitions 

used, where CP = Codon Position. Number of sites and segregating sites (including outgroup), base frequencies, and 

selected substitution models are shown for each partition and locus. The same information is shown for the alignment of 

population samples used for phylogenetic inference. 

 

 The amount of segregating sites decreased from ITS (65%) through TEF1-α (60%) with the lowest 

amount of segregating sites present in MCM7 (45%). The amounts of missing data (Fig. 8) for the different 

markers increased from MCM7 (2.04%) through TEF1-α (5.81%), with the highest amount present in ITS 

(18.68%). 
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Figure 8. Missing data and nucleotide variability for the different alignments. The top diagram shows the amount of 

standardized segregating sites (number of segregating sites divided by sequence length) for each of the three nuclear loci. 

The bottom diagram indicates the amount of missing data (between 0 and 1) where yellow displays the amount of actual 

missing sites, and green displays percentage of gaps. 

 
The saturation plots show a transition and transversion saturation plateau reached at a F84 distance of around 

1 for the MCM7 gene (Fig. 9A). For the TEF1-α gene, an approximate linear increase of both substitution 

types over the F84 distance was observed (Fig. 9B). TEF1-α also showed an absence of substitutions in the 

range of approximately 0.15 and 0.25 F84 distance. Little to no difference was observed between outgroup 

inclusion/exclusion for the different saturation plots, and only plots excluding the outgroup taxa are shown. 

Substitutions were distributed within F84 distances of 0 and 0.5 for ITS, 0 and 3 for MCM7 (the majority 

within 0 to 1) and between 0 and 1 for TEF1-α.  
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3.3 Phylogenetic relationships 

3.3.1 Gene tree topologies 
 
The bayesian MC3 runs for the separate gene trees converged at slightly above 3 million generations (for ITS), 

slightly above 1.6 (for MCM7) and just below 1 million (for TEF1-α), all with effective sample size (ESS) 

values well above 200 for all parameters. The different gene trees (ITS, MCM7, TEF1-α) showed congruent 

topologies with respect to the major diverging lineages (Fig. S1) using ML, with no supported (>75 BS) 

incongruencies (Fig. S1). However, one TEF1-α sequence of C. melaleuca III grouped as supported sister to 

C. armeniaca and C. melaleuca II. Whereas the three ITS sequences from the same clade grouped as 

supported sister to C. melaleuca I. ITS had poor bootstrap support values (< 60) in all deeper nodes of the 

topology. MCM7 had strong support for the ingroup/outgroup relationship (BS = 97) and intermediate support 

(BS = 75) for a monophyletic Tephromelataceae. TEF1-α showed near robust support (BS = 85) for 

ingroup/outgroup and low support (BS = 68) for a monophyletic Tephromelataceae. All gene trees share an 

important feature, intermediate branch lengths are short and generally low supported by bootstrap resampling. 

Comparatively, the bayesian gene trees of ITS and TEF1-α showed much higher support (PP) among these 

short branches at intermediate to deep topological levels. MCM7 however, showed similar branch support 

(PP) to bootstrap resampling with only a small to moderate overall increase in PP’s at all internodes.  

3.3.2 Concatenated topology 
 
The Bayesian MC3 runs converged at just below 8 million generations, with ESS values well above 200 for all 

parameters. The deeper nodes in the Tephromelataceae were unresolved (Fig. 10). All included genera and 

subgenera were highly supported, respectively, except for a moderately supported Mycoblastus (BS = 64). 

Their interrelations, however, remain largely unresolved and unsupported by bootstrapping. A clade of 

Calvitimela subgenera Calomela, Paramela, and Severidea, and the genus Violella, was supported only 

moderately by posterior probability (PP = 0.92). A sister-relation between Calomela and Violella was only 

marginally supported by posterior probability (PP = 0.5).  



0.
03

W
AN

20
21
_2

G
RU

M
20
21
_2

AR
M
20
21
_2
1

AF
F2
02
1_
1

AT
CL

20
21
_6

M
EL
20
21
_1
8_
S2

AG
L2
02
1_
10

SA
NG

20
21
_4

AR
M
20
21
_2
4

FU
C2

02
1_
1

M
EL
20
21
_2
4_
S2

AG
L2
02
1_
14

PE
R2

02
1_
2

M
EL
20
21
_7
_S
2

AG
L2
02
1_
5

AT
TR

20
21
_2

M
EL
20
21
_4
3_
S1

G
RU

M
20
21
_5

LI
V2

02
1_
13

LI
V2

02
1_
6

M
EL
20
21
_3
7_
S1

G
LA

20
21
_2

LI
V2
02
1_
5_
CU

P

SP
_A
GL

20
21
_2

HP
20
21
_O

G
4

M
EL
20
21
_4
6_
S1

M
EL
20
21
_3
3_
S2

AR
M
20
21
_1
6

M
EL
20
21
_2
7_
S2

LI
V2

02
1_
11

W
AN

20
21
_1

AR
M
20
21
_2
6_
S3

AG
L2
02
1_
20

AR
M
20
21
_1
8

PE
R2
02
1_
5_
SP

CU
P2
02
1_
1

TA
L2
02
1_
3

TA
L2
02
1_
4

CU
P2
02
1_
2

M
EL
20
21
_3
4_
S1

AG
L2
02
1_
21

M
EL
20
21
_4
9_
S2

LI
V2

02
1_
9

AT
CL

20
21
_2

M
EL
20
21
_5
1_
S1

M
EL
20
21
_1
6_
S2

AR
M
20
21
_9

LI
V2

02
1_
8

AR
M
20
21
_2
2

M
EL
20
21
_4
0_
S2

AR
M
20
21
_8

AG
L2
02
1_
18

LI
V2

02
1_
7

M
EL
20
21
_1
5_
S2

M
EL
20
21
_2
9_
S2

CU
P2
02
1_
4

M
EL
20
21
_5
0_
CU

P

M
EL
20
21
_5
_S
1

M
EL
20
21
_4
1_
S3

CU
P2
02
1_
6

M
EL
20
21
_1
4_
S2

M
EL
20
21
_4
2_
S1

AR
M
20
21
_1
9

AT
RA

20
21
_7

AR
M
20
21
_1
1

CU
P2
02
1_
3

AT
RA

20
21
_1

UI
20
21
_O

G
9

M
EL
20
21
_8
_S
2

PE
R2

02
1_
4

AG
L2
02
1_
22

AR
M
20
21
_1
7

CU
P2
02
1_
7

M
EL
20
21
_1
1_
S2

SA
NO

20
21
_1

AG
L2
02
1_
8

M
EL
20
21
_3
5_
AG

L

AR
M
20
21
_6

G
RU

M
20
21
_6

AG
L2
02
1_
28

AR
M
20
21
_1
4

AG
L2
02
1_
24

PE
R2
02
1_
9_
SP

SA
NO

20
21
_3

M
EL
20
21
_2
3_
S1

LI
V2

02
1_
12

AT
RA

20
21
_1
1

AG
L2
02
1_
9

AR
M
20
21
_7

PE
R2

02
1_
7

AG
L2
02
1_
12

AR
M
20
21
_1

AG
L2
02
1_
11

AG
L2
02
1_
27

AG
L2
02
1_
15

AG
L2
02
1_
13

M
EL
20
21
_2
1_
S2

M
EL
20
21
_6
_S
1

G
RU

M
20
21
_4

AT
CL

20
21
_3

AR
M
20
21
_4

AL
P2

02
1_
2

JS
20
21
_O

G5

AT
RA

20
21
_5

M
EL
20
21
_3
6_
S2

M
EL
20
21
_3
1_
S1

AS
20
21
_O

G
1

AG
L2
02
1_
6

M
EL
20
21
_5
2_
S2

M
EL
20
21
_1
9_
S1

SA
NO

20
21
_2

AR
M
20
21
_2
7

CS
20
21
_O

G
3

AF
F2
02
1_
2

AR
M
20
21
_5

TA
L2
02
1_
5

PE
R2

02
1_
8

AT
CL

20
21
_5

PS
20
21
_O

G6

SP
_A
GL

20
21
_3

AG
L2
02
1_
19

AG
L2
02
1_
2

LI
V2

02
1_
1

M
EL
20
21
_1
2_
S2

M
EL
20
21
_2
5_
S2

CU
P2
02
1_
5

AR
M
20
21
_2
0

LI
V2
02
1_
4_
CU

P

M
EL
20
21
_1
7_
S1

AG
L2
02
1_
26

M
EL
20
21
_2
8_
S2

M
EL
20
21
_9
_S
1

SA
NG

20
21
_5

AL
P2

02
1_
1

G
RU

M
20
21
_3

AR
M
20
21
_1
3

LI
V2

02
1_
10

AR
M
20
21
_1
5

M
EL
20
21
_4
7_
S2

M
EL
20
21
_3
0_
S1

M
EL
20
21
_2
_S
2

AG
L2
02
1_
7

FU
C2

02
1_
2

AR
M
20
21
_2
3_
S3

M
EL
20
21
_4
_S
1

SE
P2
02
1_
1

TA
L2
02
1_
1

PB
20
21
_O

G7

M
EL
20
21
_3
8_
S1

PE
R2

02
1_
10

AT
RA

20
21
_9

AR
M
20
21
_1
0

M
EL
20
21
_2
0_
S2

AG
L2
02
1_
17

AT
CL

20
21
_4

M
EL
20
21
_3
2_
AR

M

AT
RA

20
21
_4

SA
NG

20
21
_1

M
EL
20
21
_5
3_
S1

M
EL
20
21
_2
6_
S2

M
EL
20
21
_1
0_
S2

AR
M
20
21
_2

AG
L2
02
1_
23

AG
L2
02
1_
3

TA
L2
02
1_
6

M
EL
20
21
_3
_S
2

M
EL
20
21
_1
_S
2

TA
L2
02
1_
2

M
EL
20
21
_4
4_
S1

AT
RA

20
21
_3

AG
L2
02
1_
1

M
EL
20
21
_2
2_
S2

M
EL
20
21
_4
5_
S1

PE
R2

02
1_
3

G
RU

M
20
21
_1

M
EL
20
21
_1
3_
S2

PE
R2

02
1_
1

LI
V2

02
1_
3

JA
P2
02
1_
1

LI
V2
02
1_
2_
AG

L

AT
CL

20
21
_1

G
LA

20
21
_1

AR
M
20
21
_3

PE
R2
02
1_
6_
AG

L

AT
TR

20
21
_1

M
EL
20
21
_4
8_
S2

PE
R2

02
1_
11

AG
L2
02
1_
16

PE
R2

02
1_
12

!"
#$

%&
'
"(

)
!"

#$
%&

'
"(

)

*"
+"

%,
-
")

*"
+"

%,
-
")

#)
%)

'
"(

)
#)

%)
'
"(

)

+,
&(

"(
()

+,
&(

"(
()

.)
(&

'
"(

)
.)

(&
'
"(

)

!"
#$%&

%'
(

!"
#()

$(*
(

!"
#+,

!"
#-.

,/
*(

!"
#0(
$(1

(2
(

!"
#,*

/$(
0(

!"
#+*
,0
*2
0/%
32
($%
+

!!!! "#$
%&

"#$
%&

'#$
%&
#"#
$%(

'#$
%&
#"#
$%(

'#$
)&

'#$
)&

*+*+ "%
&

"%
&

'#%
&#"

#%(
'#%

&#"
#%(

'#)
&

'#)
&

'#$
%(
#"#
$)&

'#$
%(
#"#
$)&

'#%
(#"

#)&
'#%

(#"
#)&

,
-
./

0
#1
2
3.

45
1

,
-
./

0
3.

,#
36

.-
!3

1+
41

53
,
/.

17
#36

.-
!3

16
+/

.1
74
1

!"
#

!"
#

!$
%

!$
%

#&
'

#&
'

#!
(

#!
(

(
#!

(
#!

(&
#

(&
#

)*
&

)*
&

+,
-

+,
-

+,
.

+,
.

+*
(

+*
(

/&
+

/&
+

+(
-

+(
-

+(
.

+(
.

*"
0

*"
0

)#
&

)#
&

50
32

4+
/.

8
50

32
4+
/.

8
93

-
9.

1!
0
8

93
-
9.

1!
0
8

1%
&

1%
&

4(

-

Markus Fjelde
26



0.
03

W
AN

20
21
_2

G
R
U
M
20
21
_2

AR
M
20
21
_2
1

AF
F2
02
1_
1

AT
C
L2
02
1_
6

M
EL
20
21
_1
8_
S2

AG
L2
02
1_
10

SA
N
G
20
21
_4

AR
M
20
21
_2
4

FU
C
20
21
_1

M
EL
20
21
_2
4_
S2

AG
L2
02
1_
14

PE
R2

02
1_
2

M
EL
20
21
_7
_S
2

AG
L2
02
1_
5

AT
TR

20
21
_2

M
EL
20
21
_4
3_
S1

G
R
U
M
20
21
_5

LI
V2

02
1_
13

LI
V2

02
1_
6

M
EL
20
21
_3
7_
S1

G
LA

20
21
_2

LI
V2
02
1_
5_
CU

P

SP
_A
G
L2
02
1_
2

H
P2
02
1_
O
G
4

M
EL
20
21
_4
6_
S1

M
EL
20
21
_3
3_
S2

AR
M
20
21
_1
6

M
EL
20
21
_2
7_
S2

LI
V2

02
1_
11

W
AN

20
21
_1

AR
M
20
21
_2
6_
S3

AG
L2
02
1_
20

AR
M
20
21
_1
8

PE
R2
02
1_
5_
SP

C
U
P2
02
1_
1

TA
L2
02
1_
3

TA
L2
02
1_
4

C
U
P2
02
1_
2

M
EL
20
21
_3
4_
S1

AG
L2
02
1_
21

M
EL
20
21
_4
9_
S2

LI
V2

02
1_
9

AT
C
L2
02
1_
2

M
EL
20
21
_5
1_
S1

M
EL
20
21
_1
6_
S2

AR
M
20
21
_9

LI
V2

02
1_
8

AR
M
20
21
_2
2

M
EL
20
21
_4
0_
S2

AR
M
20
21
_8

AG
L2
02
1_
18

LI
V2

02
1_
7

M
EL
20
21
_1
5_
S2

M
EL
20
21
_2
9_
S2

C
U
P2
02
1_
4

M
EL
20
21
_5
0_
CU

P

M
EL
20
21
_5
_S
1

M
EL
20
21
_4
1_
S3

C
U
P2
02
1_
6

M
EL
20
21
_1
4_
S2

M
EL
20
21
_4
2_
S1

AR
M
20
21
_1
9

AT
R
A2

02
1_
7

AR
M
20
21
_1
1

C
U
P2
02
1_
3

AT
R
A2

02
1_
1

U
I2
02
1_
O
G
9

M
EL
20
21
_8
_S
2

PE
R2

02
1_
4

AG
L2
02
1_
22

AR
M
20
21
_1
7

C
U
P2
02
1_
7

M
EL
20
21
_1
1_
S2

SA
N
O
20
21
_1

AG
L2
02
1_
8

M
EL
20
21
_3
5_
AG

L

AR
M
20
21
_6

G
R
U
M
20
21
_6

AG
L2
02
1_
28

AR
M
20
21
_1
4

AG
L2
02
1_
24

PE
R2
02
1_
9_
SP

SA
N
O
20
21
_3

M
EL
20
21
_2
3_
S1

LI
V2

02
1_
12

AT
R
A2

02
1_
11

AG
L2
02
1_
9

AR
M
20
21
_7

PE
R2

02
1_
7

AG
L2
02
1_
12

AR
M
20
21
_1

AG
L2
02
1_
11

AG
L2
02
1_
27

AG
L2
02
1_
15

AG
L2
02
1_
13

M
EL
20
21
_2
1_
S2

M
EL
20
21
_6
_S
1

G
R
U
M
20
21
_4

AT
C
L2
02
1_
3

AR
M
20
21
_4

AL
P2

02
1_
2

JS
20
21
_O

G
5

AT
R
A2

02
1_
5

M
EL
20
21
_3
6_
S2

M
EL
20
21
_3
1_
S1

AS
20
21
_O

G
1

AG
L2
02
1_
6

M
EL
20
21
_5
2_
S2

M
EL
20
21
_1
9_
S1

SA
N
O
20
21
_2

AR
M
20
21
_2
7

C
S2
02
1_
O
G
3

AF
F2
02
1_
2

AR
M
20
21
_5

TA
L2
02
1_
5

PE
R2

02
1_
8

AT
C
L2
02
1_
5

PS
20
21
_O

G
6

SP
_A
G
L2
02
1_
3

AG
L2
02
1_
19

AG
L2
02
1_
2

LI
V2

02
1_
1

M
EL
20
21
_1
2_
S2

M
EL
20
21
_2
5_
S2

C
U
P2
02
1_
5

AR
M
20
21
_2
0

LI
V2
02
1_
4_
CU

P

M
EL
20
21
_1
7_
S1

AG
L2
02
1_
26

M
EL
20
21
_2
8_
S2

M
EL
20
21
_9
_S
1

SA
N
G
20
21
_5

AL
P2

02
1_
1

G
R
U
M
20
21
_3

AR
M
20
21
_1
3

LI
V2

02
1_
10

AR
M
20
21
_1
5

M
EL
20
21
_4
7_
S2

M
EL
20
21
_3
0_
S1

M
EL
20
21
_2
_S
2

AG
L2
02
1_
7

FU
C
20
21
_2

AR
M
20
21
_2
3_
S3

M
EL
20
21
_4
_S
1

SE
P2
02
1_
1

TA
L2
02
1_
1

PB
20
21
_O

G
7

M
EL
20
21
_3
8_
S1

PE
R2

02
1_
10

AT
R
A2

02
1_
9

AR
M
20
21
_1
0

M
EL
20
21
_2
0_
S2

AG
L2
02
1_
17

AT
C
L2
02
1_
4

M
EL
20
21
_3
2_
AR

M

AT
R
A2

02
1_
4

SA
N
G
20
21
_1

M
EL
20
21
_5
3_
S1

M
EL
20
21
_2
6_
S2

M
EL
20
21
_1
0_
S2

AR
M
20
21
_2

AG
L2
02
1_
23

AG
L2
02
1_
3

TA
L2
02
1_
6

M
EL
20
21
_3
_S
2

M
EL
20
21
_1
_S
2

TA
L2
02
1_
2

M
EL
20
21
_4
4_
S1

AT
R
A2

02
1_
3

AG
L2
02
1_
1

M
EL
20
21
_2
2_
S2

M
EL
20
21
_4
5_
S1

PE
R2

02
1_
3

G
R
U
M
20
21
_1

M
EL
20
21
_1
3_
S2

PE
R2

02
1_
1

LI
V2

02
1_
3

JA
P2
02
1_
1

LI
V2
02
1_
2_
AG

L

AT
C
L2
02
1_
1

G
LA

20
21
_1

AR
M
20
21
_3

PE
R2
02
1_
6_
AG

L

AT
TR

20
21
_1

M
EL
20
21
_4
8_
S2

PE
R2

02
1_
11

AG
L2
02
1_
16

PE
R2

02
1_
12

!
"
#$

%!
"
&

!
"
#$

%!
"
&

!
"#

$
%&

'(
)*

(
!
"#

$
%&

'(
)*

(

!"
#$
%&'

&%(
)'
!"

!"
#'*

$
%+
,'
)'

!"
#$
%&'

&%(
)'
#""

!"
#$
%&'

&%(
)'
#""
"

#
'&

+,
),
!
-&

'
#
'&

+,
),
!
-&

'

#$#
%

'#
%

'#
%

'(
)

'(
)

%!
*

%!
*

%'
+

%'
+

+
%'

+
%'

+!
%

+!
%

&,
!

&,
!

"-
.

"-
.

"-
/

"-
/

",
+

",
+

0!
"

0!
"

"+
.

"+
.

"+
/

"+
/

,#
1

,#
1

&%
!

&%
!

&'
()

"*
+,

-
&'

()
"*
+,

-
.(

/
.,

01
'
-

.(
/
.,

01
'
-

2)
!

2)
!

Markus Fjelde
27



 
 
28 

Figure 10. Bayesian 50% majority rule consensus tree based on 183 accessions and 1794 aligned characters from the 

concatenated nuclear regions (ITS, MCM7, TEF1-α). Thick branches with different colors indicate posterior probabilities 

(PP; see figure legend). Bootstrap values from 1000 replicates are shown with colored triangles (see figure legend). 

Triangles for short branches in the subgenus Calvitimela are scaled down to reduce overplotting. The different color 

codes indicate the separate genera and subgenera in the Tephromelataceae. Major geographical zones are manually 

mapped on the phylogeny with different colors (see figure legend). The nodes “a”, “b”, and “c” highlight three supported 

groupings within the species C. aglaea. The chemistry of vouchers from Calvitimela are mapped onto the phylogeny 

with different colors in the right-hand matrix. The black squares indicate vouchers for which no TLC data was obtained. 

Abbreviations for the different lichen substances: ALE = Alectorialic acid, ATR = Atranorin, BOU = Bourgeanic acid, 

NOR = Norstictic acid, NRA = Norrangiformic acid, PRO = Protocetraric acid, PSO = Psoromic acid, RAN = 

Rangiformic acid, ROC = Roccellic acid, STI = Stictic acid, UF1 = Unknown fatty acid 1, UF2 = Unknown fatty acid 2, 

US = Usnic acid, UN1 = Unknown substance 1, UN2 = Unknown substance 2. The scale bar indicates the number of 

substitutions per site. The two accessions of the fertile morphotype of C. cuprea are marked with red stars. 

 

My phylogenetic analyses of the concatenated data showed four independent lineages in the subgenus 

Calvitimela (Fig. 10). Firstly, a new highly supported clade C. melaleuca III (BS = 100, PP = 1), was 

recovered as sister to C. melaleuca I (BS = 100, PP = 1) with marginal to moderate support (BS = 55, PP = 

0.85). Secondly, the partly supported clade C. armeniaca (BS = 61, PP = 0.96) was indicated as sister to the 

C. melaleuca II clade (BS = 100, PP = 1) with high support (BS = 99, PP = 1). Within C. armeniaca six fully 

supported (BS = 100, PP = 1), relatively short to intermediate length branches were recovered. There was a 

topological discordance between the gene trees and the tree based on the concatenated data in the subgenus 

Calvitimela. However, only one relationship was supported (see above: 3.3.1). Another highly supported 

lineage (C. sp; BS = 100, PP = 1) was recovered as a sister taxon to C. aglaea (BS = 100, PP = 1) with high 

support (BS = 97, PP = 1). Within C. aglaea, three groupings were recovered with high support (BS = 100, PP 

= 1; Fig. 10 node “a”, “b” and “c”). A single accession of C. septentrionalis grouped as a moderately to highly 

supported sister (BS = 84, PP = 1) to C. cuprea. With collapsed topological edges of the ML tree, based on the 

concatenated data (setting a cutoff at bootstrap values < 75), the backbone of the lineages Calvitimela, 

Calomela, Tephromela, Severidea, Paramela and Violella were reduced to a polytomy.   

3.4 Populations of C. melaleuca 
 
The Bayesian MC3 runs for the population (ITS) analysis converged at approximately 500 000 generations, 

with ESS values above 200 for all parameters. The two main lineages of C. melaleuca (mel I and mel II; 

(corresponding to the clades C. melaleuca I and II in Fig. 10)) were recovered with robust support by both 

Bayesian and ML phylogenetic analyses (Fig. 11). The lineage representing C. armeniaca was recovered as 

the sister taxon to C. melaleuca II (mel II). However, the monophyly of C. armeniaca + C. melaleuca II was 

only partially robust (P P= 0.97, BS = 71), as also indicated in the concatenated topology (Fig. 10). Sixteen 

different haplotypes of ITS were recovered in the populations with the two most abundant (II and VII) were 
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exclusive to mel I. Relatively high estimates of dXY and FST (Table 5) were seen between population 1 and the 

rest of the populations. From the estimated nucleotide diversity (π), there was low within population diversity 

in all the sampled populations (>= 0.004). A total of five samples from population 1 and 3 (1_3, 1_14, 1_20, 

3_7, 3_10; See Table S2; Fig. 11) showed unexpected phylogenetic placements. The three individuals from 

population 1 represented a divergent sister clade to the lineage mel I (Fig. 11: I**) and not mel II as the rest of 

the samples from the same locality. The ITS sequences of these three individuals showed 37 shared characters 

(nucleotides out of 556 – 6.7% difference) that differed from the three individuals compromising C. melaleuca 

III (in Fig. 10). In population 2, there were two individuals recovered as outlier lineages in mel I and mel II 

respectively (Fig. 11: I* and II*). 

 
Table 5. Population genetic metrics of the ITS alignment based on populations of C. melaleuca. The population identity 

(1–4) is indicated with the number of individuals per population and the number of haplotypes recovered. Population 1 

from Snøhetta (Innlandet), population 2 from Kopparen (Trøndelag), population 3 from Storengdalen (Nordland), and 

population 4 from Dárjohčohkka (Finnmark). The total number of sites in the alignment, the total number of segregating 

sites per population and between all populations are shown. Nucleotide diversity (π) is shown for each population. The 

FST and dXY estimates between all pairs of populations (PopX, PopY) are shown at the bottom.  
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Figure 11. (A) A Bayesian majority rule consensus phylogram of the ITS from four different populations of C. 
melaleuca across Norway (see figure legend). Branch support values are shown above branches in the order of posterior 
probabilities (PP)/Bootstrap support (BS; manually mapped onto the Bayesian topology) with the scale bar indicating 
number of substitutions per site. Branches are colored with respect to population identity (see figure legend), and the two 
clades of C. melaleuca (mel I and II) are indicated (B) Haplotype network of the C. melaleuca populations based on the 
ITS. There were 16 haplotypes recovered in the analysis, each circle representing a unique haplotype with corresponding 
roman numerals, and size indicating haplotype frequency. Distances between nodes indicate the number of mutations. 
Circles are colored by population (see figure legend). (C) Map showing the sampling localities for the different 
populations of C. melaleuca. Pie charts indicating the phylogenetic identity of the samples within each population 
corresponding to mel I and mel II. In population 1, three individuals represent a sub clade within mel I, namely I**. In 
population 3, two individuals represent outliers in mel I (= I*) and mel II (= II*) respectively. The chemistry of 
individual population samples is mapped onto the phylogeny. Abbreviations for the different lichen substances: ALE = 
Alectorialic acid, ATR = Atranorin, NOR = Norstictic acid, NRA = Norrangiformic acid, PSO = Psoromic acid, RAN = 
Rangiformic acid, ROC = Roccellic acid, UF1 = Unknown fatty acid 1, UF2 = Unknown fatty acid 2.  

3.5 Molecular dating 
 

The two MCMC runs from one strict and one relaxed molecular clock analysis, converged with ESS values 

above 200 for all parameters. The two different dating analyses showed incongruent backbone topologies with 

differences in supported branches (Table 6). Negative branch lengths were observed at the short branches 

leading up to Calomela, Paramela and Violella in the resulting tree from the strict molecular clock analysis. 

These were mitigated with CA height summarization. The median age estimates differed between the strict 

and relaxed molecular clock analysis, but 95% HPD intervals were overlapping (Table 6). From the relaxed 

molecular clock analysis, the estimated median age for the split leading up to Calvitimela s. lat and Violella 

was 34.85 Ma (26.14–58.70 Ma 95% HPD). While the divergence between Severidea and the lineages 

Calomela, Paramela and Violella was 32.79 Ma (24.40–54.30 Ma 95% HPD).   
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Figure 12. Time calibrated phylogeny of the Tephromelataceae. A Bayesian common ancestor chronogram from the log normal relaxed 
FORFN�PROHFXODU�GDWLQJ�DQDO\VHV�RI�WKUHH�QXFOHDU�ORFL�,76��0&0��DQG�7()��Į��&ODGH�FRORULQJ�UHSUHVHQWV�WKH�GLIIHUHQW�JHQHUD�DQG�VXEJH-
nera in the Tephromelataceae. The different clades of Calvitimela are indicated with arrows, and the three groupings in C. aglaea are re-
presented with ”a”, ”b” and ”c”. The scale axis at the bottom represents age in millions of years (Ma). Node bars indicate the 95% highest 
density posterior interval (95% HPD) for estimated node ages (Ma). 
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Within Severidea, C. livida was estimated to have diverged from the rest of the taxa in this subgenus 10.83 

Ma (7.35–18.33 Ma 95% HPD). The subsequent split between C. cuprea and C. aglaea + C. sp. was estimated 

at 8.68 Ma (5.81–14.76 Ma 95% HPD). Furthermore, the split between C. aglaea + C. sp. was estimated at 

5.89 Ma (3.47–10.29 Ma 95% HPD), and the estimated time between C. cuprea and C. septentrionalis 5.65 

Ma (2.14–10.21 Ma 95% HPD). Between the two groupings “a” and “b” within C. aglaea the estimated node 

age was 3.08 Ma (1.91–5.38 Ma 95% HPD). 

 The estimated node age for the ancestral node to the lineages within the subgenus Calvitimela was 

5.61 Ma (3.58–9.50 Ma 95% HPD). Whereas the split between C. armeniaca and C. melaleuca II was 

estimated to 3.28 Ma (1.97–5.59 Ma 95% HPD). The split between C. melaleuca I and III was estimated to 

4.44 Ma (2.70–7.68 Ma 95% HPD). The two different molecular dating analyses showed high support for the 

monophyly of Calvitimela s. lat + Violella. All major lineages corresponding to genera and subgenera were 

recovered as in previous analyses (see Table 6). 

 
Table 6. The different clades of interest in the Tephromelataceae are shown with median node ages and 95% HPD 
intervals from one strict and one relaxed molecular clock analysis. Branch support is given for the branches leading up to 
the different clades. The three clades indicated in bold are only marginally to moderately supported in both analyses, 
where the two first are effectively non-existing in the strict analysis (indicated with ~ 0).  
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4 Discussion 
 

With this study, I have gained a better understanding of the phylogeny and natural taxon limits in the genus 

Calvitimela through an integrative taxonomic approach. My investigations cover various taxonomic levels and 

geographic scales, from genus through species levels on a global scale, to populations of C. melaleuca s. lat. 

in Norway. Together with in-depth studies of morphological and chemical characters, I have uncovered 

characters that appear to be phylogenetically informative for species previously considered cryptic. Finally, I 

have explored the potential sources of non-phylogenetic signals in the molecular data. 

4.1 Generic circumscription 
 

The difficulty of circumscribing genera in the Tephromelataceae is evident, from Hertel & Rambold (1985) 

through Bendiksby et al. (2015). My phylogenetic analyses of the three nuclear loci (ITS, MCM7, TEF1-α) 

reveal deeply divergent clades with unclear relationships to each other in the family Tephromelataceae (Figs. 

10 and 12), echoing the findings by Spribille et al. (2011a) and Bendiksby et al. (2015). The clades correspond 

to the subgenera Calvitimela, Calomela, Severidea, and Paramela, and the genera Mycoblastus, Tephromela, 

and Violella, respectively. Although with low bootstrap support, the genus Mycoblastus is recovered as the 

phylogenetic sister to the rest of the abovementioned taxa (Fig. 10), as previously shown by Spribille et al. 

(2011a) and Bendiksby et al. (2015). My results show a non-concordance between the molecular phylogeny 

and morphological characters and provide evidence for the insufficiency of chemical characters as diagnostic 

tools in Calvitimela (Figs. 5–7 and 10).  

 The strongly supported and long-branched subgenera within Calvitimela s. lat. and the genus Violella 

are inferred to have diverged between 26 and 58 Ma (Fig. 12; Table 6), suggesting that they represent 

relatively old evolutionary lineages. Moreover, the secondary chemistry appears largely homoplastic at 

species level in the molecular phylogeny (Fig. 10). At the level of subgenera, however, the chemistry seems to 

be phylogenetically informative, corresponding with the strongly supported and long-branched clades in the 

molecular phylogenetic hypothesis. In the subgenera Severidea and Paramela, the combination of atranorin 

and usnic acid is common, where stictic acid seems to be restricted to Severidea (Fig. 10; Table 3). The 

substances alectorialic acid, norstictic acid, psoromic acid and roccellic acid appear to be good indicators of 

the subgenus Calvitimela (Fig. 10; Table 3); atranorin may also occur (Fig. 11). Moreover, norrangiformic- 

and rangiformic acid are common in Calomela and Paramela but can also occur in parts of the subgenus 

Calvitimela (Figs. 10-11). The black, shiny and lecideine apothecia, and the blue-green color of the 

epithecium in the members of Calvitimela s. lat. (e.g., Haugan & Timdal 1994) makes them distinct from 

members of Mycoblastus, Violella and Tephromela. Although, species of the genera Mycoblastus and Violella 

also have lecideine apothecia, they are epiphytic and have several anatomical traits that distinguish them from 

Calvitimela s. lat (see Spribille et al. 2011a, 2011b). Moreover, monophyly of the genus Calvitimela is not 
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supported by the molecular phylogeny, nor is there any strong evidence for the contrary. As such, whether 

these characters could represent synapomorphies for the genus or not remains an open question, as the 

phylogenetic interrelationships between Calvitimela s. lat. and the genera Tephromela and Violella remain 

unresolved. The process of independent evolution of a phenotype in different lineages (by i.e., convergence; 

Swift et al. 2016), might produce character state discordances with DNA-based phylogenies. Recently it has 

even been suggested that an inherent mismatch between the lichen phenotype and its corresponding fungal 

molecular phylogeny exists, as discussed by Spribille et al. (2018). This stems from the realization that lichens 

achieve their phenotype through the symbiotic state (see Spribille et al. 2018 and references therein). The 

evolution of one symbiont (the fungal component) seems to not always explain the observable phenotypic 

outcome of a lichen.   

 From my results, it seems that capturing deep phylogenetic relationships of the Tephromelataceae, 

using three nuclear loci and a dichotomous tree-like model of evolution, is not possible. This can relate to a 

substantial amount of change during the evolutionary history of the Tephromelataceae, through for instance, a 

rapid diversification event. Another possibility is that actual genetic distances at deeper phylogenetic levels 

are underestimated and effectively erased by substitutional saturation (Philippe et al. 2011; Widhelm et al. 

2019; see methods and troubleshooting below). However, in general, weak phylogenetic signals are not 

uncommon for ancient divergences (Delsuc et al. 2005).  

 Since Calvitimela cannot be shown monophyletic with the current data, any taxonomic decision at the 

generic level includes either accepting a seemingly paraphyletic genus or reaccepting a Tephromela sensu 

Hertel & Rambold (1985). This implies circumscribing all species in Calvitimela, Tephromela and Violella 

into one large genus (see Spribille et al. 2011a). A third solution would be to recognize all the strongly 

supported clades as separate genera and thereby raise the taxonomic rank of the current Calvitimela 

subgenera. None of the alternative solutions seem persuasive in that they all imply a degree of arbitrary 

reassignment of ranks. The strongest argument against any of these alternatives is of practical nature. The 

genus circumscription of Calvitimela was originally based on details of anatomical characters (e.g., ascus, 

paraphyses and excipulum; Hertel & Rambold 1985). This is practical as it is possible to morphologically, and 

to some degree chemically, distinguish the Calvitimela species from species in Mycoblastus, Tephromela and 

Violella. Furthermore, acknowledging a circumscription of Calvitimela sensu Hafellner & Türk (2001), 

essentially including all species with lecideine apothecia (not considering Mycoblastus and Violella), will 

reduce confusion compared to introducing several new genera only discernible from molecular phylogenies. 

On the other hand, Divakar et al. (2017) argue for a temporal band around 30 Ma as an objective time frame 

for generic circumscription in the Parmeliaceae. Applying the same logic in the Tephromelataceae, this would, 

with my molecular dating results, call for elevating the Calvitimela subgenera to generic rank.  

 Calvitimela uniseptata, and potentially also C. austrochilensis, appear to be extraneous in the 

Tephromelataceae. The mtSSU from the single accession of C. uniseptata did group (with high support) in the 

genus Lecania (Fig. S3), more specifically close to a clade of Lecania gerlachei (Vain.) Darb. and L. 

brialmontii (Vain.) Zahlbr. These two species, together with L. racovitzae (Vain.) Darb., comprise a nested 



         
 

37 

Antarctic clade within Lecania A. Massal., previously referred to as Thamnolecania (Vain.) Gyeln. (see 

Næsborg et al. 2007 and references therein). From its description in Lumbsch et al. (2011), C. uniseptata has a 

squamulose thallus and a single septum in its ascospores. These morphological features fall within the concept 

of Lecania s. lat. Taken together, I suggest that either a combination into Lecania or alternatively 

synonymizing it with L. brialmontii, is suitable for C. uniseptata. The inability to amplify the markers TEF1-α 

and MCM7 from C. austochilensis using Tephromelataceae specific primers supports this taxon not being 

closely affiliated with the Tephromelataceae. In general, amplification was difficult with most primers for 

specimens of old age. I therefore suspect the amplification difficulties could be caused by old age (C. 

austochilensis: 1969) and poor quality of the material. Hence, no conclusions can be drawn based on 

amplification failure alone.  

4.2 Species delimitations in the subgenus Calvitimela 
 

The name C. melaleuca currently refers to three distinct evolutionary lineages; C. melaleuca I, C. melaleuca II 

(Bendiksby et al. 2015) and C. melaleuca III (recognized here; Fig. 10), making it a paraphyletic species with 

respect to C. armeniaca. My phylogenetic analyses confirm four independent clades in the subgenus 

Calvitimela (Fig. 10). The clades have to some extent overlapping chemistries and morphologies (Figs. 5–6; 

Table 3). However, they correlate with thallus morphology and to some degree with spore size (Figs. 5–6). 

The spore measurements for the lectotype of C. melaleuca are overlapping with those of C. armeniaca and C. 

melaleuca II (Fig. 5). This suggests that the name C. melaleuca is not applicable to the C. melaleuca I clade 

previously thought to represent the “true C. melaleuca” by Bendiksby et al. (2015). The thallus color of the 

clade C. melaleuca I is white, C. melaleuca II is yellow, and the new clade C. melaleuca III reported herein, is 

beige with a slightly different thallus morphology (Figs. 6C–F). This indicates that thallus color represents a 

possible diagnostic character for these clades. The major patterns of chemistry in the subgenus Calvitimela 

(Figs. 10–11; Table 3), is the regular to irregular presence of norstictic acid, rangiformic acid and 

norrangiformic acid in C. melaleuca II and an absence of these substances in C. melaleuca I. Alectorialic acid 

is rare in C. melaleuca I, whereas it is more common in C. melaleuca II. Roccelic acid and psoromic acid are 

common in both clades, and roccellic acid is the only detected substance from C. melaleuca III. This unclear 

association between chemistry and genotypes in C. melaleuca s. lat. indicates that secondary metabolite 

production does not follow any clade specific pattern for these groups. In C. armeniaca, detectable lichen 

substances are more homogenous (i.e., alectorialic acid, roccellic acid and rarely protocetraric acid). In 

addition, the thallus of C. armeniaca is recognizably more matte than in C. melaleuca s. lat. (Fig. 6A–B).
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 In the subgenus Calvitimela, the clade C. melaleuca III was already collected by McCune et al. (2020) 

as C. armeniaca (McCune 36825). The authors did mention unusual chemical spot tests for this specimen, 

which indicated a presence of norstictic acid (medulla K+ orange). From the two specimens seen (O-L-

228122 and QFA-0635917) only roccellic acid was confirmed by TLC (Fig. 10, Table 3). With the complex 

chemistry reported herein, and as previously shown (i.e., Bendiksby et al. 2015) for C. melaleuca s. lat., I do 

not assume this clade to have diagnostic chemistry.  

 Morphological and chemical characters can be rather obscure in the subgenus Calvitimela (Fig. 6; 

Table 3). The problem of differentiating between C. armeniaca and C. melaleuca based on morphology or 

chemistry is indeed evident from all the mislabeled sequences in GenBank and inconsistent use of the two 

names, as already mentioned by Bendiksby et al. (2015). The concept of C. armeniaca is a well-established 

one going back to the third edition of the classic work Flore française (Lamarck & De Candolle 1805) with 

the description as Rhizocarpon armeniacum. Still, different morphotypes exist, which can resemble 

morphotypes in the sister lineage C. melaleuca II. The discovery of a third clade C. melaleuca III further 

complicates this (Fig. 6E).  

 The divergence time estimates of the subgenus Calvitimela suggest that the common ancestor of the 

four groupings (C. armeniaca and C. melaleuca I, II, and III) diverged between 3.6–9.5 Ma (Fig. 12; Table 6). 

Moreover, the clades C. armeniaca and C. melaleuca II are indicated to have split between 2–5.6 Ma, and C. 

melaleuca I and II between 2.7–7.7 Ma. The distinction between the four genetic lineages in this subgenus as 

separate species, however, is less straightforward considering the short length of the branch leading to C. 

armeniaca, overlapping morphologies, and diffuse chemical patterns. Furthermore, the moderately supported 

sister relationships between C. melaleuca I and III and the poor bootstrap support for the C. armeniaca clade, 

introduce uncertainties regarding the phylogenetic relationships between these clades. In addition, the six 

highly supported clades within C. armeniaca, point to this being a more genetically variable species compared 

to the results by Bendiksby et al. (2015). In the case of a recent divergence, the unclear phylogenetic signals, 

as observed in my gene trees, would be expected (Philippe et al. 2011). The different gene trees (Fig. S2) 

showed slight incongruences with the phylogenetic hypothesis based on the concatenated data (Fig. 10). More 

specifically, this was only observed for the different genetic lineages in the subgenus Calvitimela. Taken 

together, this may suggest an incompatible evolution between genes and species (Maddison 1997).   

 From my population level analysis, the four populations fall within two divergent evolutionary 

lineages, namely C. melaleuca I and C. melaleuca II (mel I and mel II; Fig. 11). C. melaleuca I seems to be 

the most widely distributed genotype in Norway (Fig. 11). Haplotypes are largely shared across the 

geographically spread-out populations of C. melaleuca I (Fig. 11A), indicating that they may be connected 

through gene flow. Calvitimela melaleuca II, represented by a single population (population 1), is recovered 

as sister to C. armeniaca in the phylogenetic analysis of ITS. Out of the four populations, population 1 is the 

only one collected at high altitudes (Snøhetta; Table S2). My results might imply that this is a clade connected 

to greater elevations, but with a sample size of one for this population the discussion on distribution patterns 

for C. melaleuca s. lat is not possible at this point. Furthermore, the relatively high estimates of divergence 
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(dXY and FST) between the populations (i.e., population 1 compared to the rest) further point to C. melaleuca I 

and II being separate evolutionary lineages. A less extreme value of dXY likely reflects that the individual 

populations are genetically homogeneous (Table 5). Values of FST can be high when within population 

variance is low, but due to dXY being standardized across length it is not affected by the properties of relative 

measure (Sætre & Ravinet 2019, p. 159). Only a few polymorphisms are present in the ITS region within each 

population (Table 5), as also shown by the low nucleotide diversity (π). This further corroborates that the 

populations are genetically homogenous.  

 Three individuals from population 1 (I**; Fig. 11) were supported as either sister to C. melaleuca I or 

as belonging within C. melaleuca I. The distance (~7%; see section 3.4.1) between the sequences from I** 

and sequences of C. melaleuca III indicates that they might not belong in C. melaleuca III, but rather C. 

melaleuca I. Moreover, if the lineages of C. melaleuca s. lat. have undergone recent speciation events, the odd 

placement of both I** and II*, could equally well be explained by incomplete lineage sorting (i.e., the 

retention of ancestral polymorphism; see Garrido-Benavent et al. 2021 and references therein). Taken together 

with the subtle morphological disparity between the different clades in the subgenus Calvitimela, this might 

point to the beginning of local adaptation after a recent divergence.    

 On a last note, the presence of diagnostic phenotypic characters that are possible to observe in old 

type specimens has been hard to pinpoint for C. melaleuca s. lat. and pose a serious problem for connecting 

the types to the species hypotheses. Thallus color and spore size do, however, show promise as diagnostic 

characters. We propose that the lineages (I and III) in C. melaleuca should be given names subsequent to type 

studies of the currently regarded synonyms of C. melaleuca; Lecidea arctogena (Th. Fr.) H. Olivier, L. 

leucomelaena (Vain.) Vain., C. testaceoatra (Vain.) Hafellner.  

4.3 Novelties in Severidea 
 

The subgenus Severidea consists of the species C. aglaea, C. cuprea, C. livida, C. septentrionalis, and one 

new clade, C. sp., reported herein (Fig. 10). From my phylogenetic analysis, the new clade is recovered as a 

highly supported sister to C. aglaea but resembles C. perlata morphologically. Chemical analyses also show 

that C. sp. contain stictic acid and atranorin, which judging from phylogenetic relationships is the 

plesiomorphic chemotype in Severidea. Moreover, the clade is indicated to have diverged from C. aglaea 

between 3.5 and 10.3 Ma (Fig. 12; Table 6), strengthening the conception of this as a distinct evolutionary 

lineage. Even though the phenotypic similarity with C. perlata is evident, the spore size is overlapping with 

that of C. aglaea (Fig. 5).   

 Three highly supported clades (“a”, “b” and “c”) are reported within C. aglaea from my phylogenetic 

analysis (Fig. 10), in line with Bendiksby et al. (2015). The divergence time estimate between the two 

groupings “a” and “b” in C. aglaea is between 1.91–5.38 Ma (Table 6), suggesting that these two clades might 

be distinct species. However, a thorough morphological investigation of these genetic lineages is needed to 
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elucidate potential differences between them, but such investigation was out of scope for the current study. 

 A newly discovered fertile morphotype is found to be nested within the species C. cuprea (Figs. 10 

and 7C). This implies an extension of the previously known morphological range of this species (see 

Bendiksby et al. 2015). Different morphotypes with respect to reproductive characters are not uncommon for 

lichen species (see Lumbsch & Leavitt et al. 2011 and references therein), and dispersion by vegetative 

propagules, such as soredia, is thought to represent selective advantages in stable environments and during 

population establishment (Singh et al. 2015). In the C. cuprea case, the acquisition of reproductive characters 

can be related to ecological adaptation, considering that some individuals can have both soredia and apothecia, 

and some only one of the above. The concept of species pairs (see Poelt 1970; Mattson & Lumbsch 1989) 

might be relevant for these two morphotypes. Although, with a continuum like presence of reproductive 

characters and the fact that they are highly nested phylogenetically (i.e., not strictly monophyletic) this is not 

believed to be the case.    

 My molecular dating analyses suggest that the two species C. cuprea and C. livida shared a common 

ancestor between 7.4 and 18.3 Ma ago (Fig. 12; Table 6). As also shown by Bendiksby et al. (2015) they have 

near indistinguishable morphologies and are not monophyletic with respect to each other. However, they 

differ slightly in chemistry with C. cuprea having a trace of norstictic acid (Bendiksby et al., 2015). 

Surprisingly, herein, one specimen of C. cuprea (O-L-228124) was found to lack norstictic acid, and one 

specimen of C. livida (O-L-228138) to contain norstictic acid (Fig. 10; Table S1). This questions the chemical 

distinction previously held between C. cuprea and C. livida by Bendiksby et al. (2015). Their ecologies are 

also different, with C. cuprea being associated with heavy metal rocks in old copper or nickel mines, and C. 

livida having a wider habitat range. Although this ecological distinction may be important, it is not fully 

diagnostic, as one record from North America (see Lendemer & Harris 2016), and both the newly discovered 

fertile morphotype of C. cuprea and two specimens (O-L-228124 and O-L-228168) from this study were 

collected outside of mining habitats. With that said, C. cuprea seems to have a greater affinity towards 

growing on rocks rich in heavy metals.    

 The placement of Calomela, Paramela and Violella are indicated to be closer to Severidea than other 

lineages in the Tephromelataceae, but their phylogenetic interrelationships are still unresolved (Fig. 10). The 

species belonging to Severidea was treated by Haugan and Timdal (1994), and subsequently Andreev (2004), 

both predicting the species C. perlata and C. talayana to be related to C. aglaea. Haugan & Timdal (1994) 

also reported longer spores for C. perlata compared to C. aglaea, whereas generally larger spores (length and 

width) compared to Calvitimela s. lat. is reported herein (Fig. 5). Furthermore, Spribille et al. (2011a) 

expected members of Severidea to be placed in its own genus. Seeing that Severidea is clearly distinct both 

phylogenetically and chemically from the other subgenera of Calvitimela, one might argue for raising 

Severidea from subgenus to genus. Essentially, three solutions exist: keep the current taxonomy of Bendiksby 

et al. (2015), raise all subgenera to genera, or alternatively include Calomela, Paramela, Severidea and 

Violella into one large genus. The same argument (see above) about practicality applies just as much in 

Severidea. Until phylogenetic relationships can be fully resolved, I recommend the retention of practical 



         
 

41 

circumscriptions at generic and subgeneric levels.  

 The taxon C. septentrionalis group as sister to C. cuprea. The species C. septentrionalis has been 

mysterious since its description from Greenland by Hertel & Rambold (1985) and is only known from the 

type-material. In this study, C. septentrionalis was represented by a single specimen (with one accession of 

ITS: McCune 36285) from North America, and the application of the name here follows McCune (2017). 

Without having seen the type, I cannot be certain about the identity of this specimen, however. Due to the lack 

of data for this taxon, I must leave further discussions to later taxonomic treatments.  

 The species C. talayana is herein reported as new to Canada with one record from Quebec (QFA-

0635921). Calvitimela talayana is a rarely collected sorediate species making up the subgenus Paramela (see 

Fjelde et al. 2020). The new record provides evidence for the North American and Russian populations of C. 

talayana being conspecific. 

4.4 Taxonomic implications and cryptic species 
 

The concept of cryptic species has been under much recent debate (e.g., Struck et al. 2018a, 2018b; Heethoff 

2018). The debate is due to the important distinction between the cryptic species as a taxonomic artifact and 

the true cryptic diversity occurring in nature. Even if two species, seemingly identical in morphology, are 

found as distinct genetic lineages, it does not necessarily imply that they are cryptic. As proposed by Struck et 

al. (2018a), a quantitative assessment of phenotypic similarity should be applied in an evolutionary context. In 

crustose lichens, such assessments of phenotypic similarities are often difficult to obtain. Morphological traits 

are frequently delicate, and even if differences can be observed, words to explain them often fall short. As 

shown herein, however, after the establishment of sound phylogenetic hypotheses, and the following close 

inspection of morphological and chemical characters, diagnostic tools might be uncovered. 
 The term sibling species may be relevant for clades that are closely related, monophyletic, but 

genetically distinct and seemingly not phenotypically different (e.g., clade “a” and “b” in C. aglaea). The 

phenotypic similarity between sibling species is thought to arise through morphological stasis (Lumbsch & 

Leavitt et al. 2011). As described by Struck et al. (2018a), the lack of morphological diversification can be 

due to low standing genetic variation and/or developmental constraints. The authors also point out that the 

ecology of taxa showing stasis can have remained constant through time, thereby causing stabilizing selection 

to retain a common morphology.  
 The observed phenotypic similarity between non-monophyletic and more distantly related clades (i.e., 

C. cuprea vs. C. livida, C. sp. vs. C. perlata, C. sp. vs. the fertile morphotype of C. cuprea, C. melaleuca I vs. 

II; Fig. 5–7, 10) can represent adaptations to similar environments (Lumbsch & Leavitt et al. 2011). An 

interesting observation for the abovementioned clades is that even if they are similar in morphology, they 

seem to differ at some level between pairs. Take for example the larger spore size between C. perlata and the 

other taxa in Calvitimela s. lat. This suggest that C. perlata is not a cryptic species compared to 
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morphologically similar clades (e.g., C. sp.). Moreover, subtle differences in chemistry, such as those between 

C. cuprea and C. livida, or in thallus morphology like the ones between C. melaleuca I and II, seemingly 

argues against the presence of cryptic diversity in Calvitimela. However, the degree of obscurity and overlap 

in chemistry and morphology at species level in general, increase the chances of misidentifications, especially 

in the field. Therefore, terms like semi- or pseudocryptic might be suitable. In a practical setting, without the 

necessary tools to distinguish between similar species in Calvitimela, they remain cryptic. 
 This study has corroborated an unresolved Calvitimela with a substantial increase in molecular data 

compared to Bendiksby et al. (2015). In a broad sense, a few but recognizable morphological traits connect 

the subgenera of Calvitimela together. Chemically, species belonging to Calvitimela are distinguishable from 

the other genera in the Tephromelataceae, but not always within the subgenera. To reach any satisfying 

circumscription of genera in the Tephromelataceae, my results strongly suggest that additional molecular data 

is needed. However, a step towards a more natural classification of Calvitimela comes through the discovery 

that C. uniseptata belongs in Lecania. 

 In essence, the three genetically divergent clades of C. melaleuca s. lat. coexist and share similar 

ecological niches. They have overlapping chemistries and to some extent morphologies, however spore size 

and thallus color seem to be diagnostic characters. I suggest that the four genetic lineages in the subgenus 

Calvitimela should be treated as separate taxa. In Severidea both morphological and chemical characters are 

overlapping, but phylogenetic evidence suggest that the clearly divergent clade C. sp. also should be 

recognized as an independent taxon. In line with Bendiksby et al. (2015) I leave the taxonomic treatment of 

the three groupings “a”, ”b” and “c” within C. aglaea to further in-depth morphological studies has been 

undertaken. The fertile morphotype of C. cuprea is conspecific with the sorediate morphotype. Lastly, the 

taxonomic novelties discovered in this study require names, and a proper nomenclatural treatment. 

4.5 Methods and troubleshooting 

4.5.1 Morphology and chemistry 
 
Some specimens of C. melaleuca s. lat were wrongly determined (i.e., C. melaleuca I as C. melaleuca II but 

not vice versa), and I suspect this to be explained by the change in color of fungarium specimens over time 

(from white to orange and brown) for one specimen (QFA-0623869), and a lack of pigmentation for the other 

(O-L-225834). The known C. cuprea is sorediate and rarely fertile (Bendiksby et al. 2015) and the newly 

discovered variety of C. cuprea is exclusively fertile. Even if sequence cross-contamination cannot be 

excluded, the two different morphotypes possibly represent unique responses to different ecologies. Sequence 

cross-contamination could also explain the chemistry seen for the two specimens of C. cuprea (O-L-228124) 

and C. livida (O-L-228138). Even though TLC runs were replicated multiple times and gave the same results, 

more examples are needed to fully confirm this pattern. During this study, a lot of effort was put into a broad 
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sampling of C. melaleuca s. lat. From this sampling, it was evident that the different clades of C. melaleuca s. 

lat. often grew side by side, occupying similar niches (e.g., Fig. 6E–F). Throughout the population sampling, 

fragments were carefully taken from only one individual thallus at the time, with sterilization of the knife 

between samples. However, the unintended sampling of a mistaken clade could have occurred. This could 

have led to contamination and subsequently wrong chemistries inferred during TLC.  

4.5.2 Molecular data and phylogenetic inference 
 
The genetic markers used in this study showed variability in their resolution ability at different taxonomic 

levels. The ITS provided by far the highest resolution at species level and below. Interspecific variation in 

regions such as the ITS can be maintained because of a non-selective constraint on non-coding regions 

(Ganley & Kobayashi 2007). This is perhaps the most important reason for the elevated level of variability in 

ITS, compared to the two other nuclear markers (MCM7, TEF1-α), which I imagine can be subjected to 

purifying selection at their first and second codon positions to maintain protein function. If intragenomic 

variability in the ribosomal DNA (e.g., in ITS and LSU) is present, due to multiple different copies, it can lead 

to comparison of non-homologous characters in the sequence alignment process (Maddison 1997; Stadler et. 

al 2020). I did not experience any significant problems when aligning sequences of ITS and believe that the 

probability of comparing non-homologous characters was low.   

 The higher terminal resolution of ITS corresponded to the high occurrence of substitutions at 

relatively short F84 distances (Figs. 9 and S1). The idea of including ITS when constructing saturation plots 

(Fig. 9) was to assess at which level of distance substitutions occurred across the different markers. The 

distribution of substitutions over F84 distances for the three nuclear loci reflected their level of variability. 

The two other markers (MCM7 and TEF1-α) had substitutions distributed over a larger interval of distances 

and had slightly more resolved backbones, but lower terminal resolution (Fig. 9; Fig. S1). In addition, the 

absence of substitutions observed for TEF1-α (see section 3.2.2) seem to be connected to the short and poorly 

supported branches leading up to the subgenus Calvitimela, Severidea and Tephromela (Fig. S1E-F). The 

differences in saturation plots when excluding the outgroup taxa was almost none. This suggests that the main 

lineages in the Tephromelataceae are quite divergent, also compared to the outgroup, and that the selected 

outgroup taxa could be reconsidered in future work.  
 The protein coding gene MCM7 was found to have lower resolution at terminal levels compared to 

ITS (Fig. S1). Schoch et al. (2012) reported high resolving power at species level across the fungal kingdom 

for this gene. The comparatively low percentage of segregating sites across MCM7 likely contributes to the 

slightly reduced terminal resolution. My results also show saturation of substitution for MCM7 (Fig. 9), 

suggesting that this is a less favorable gene for phylogenetic inference in the Tephromelataceae. Substitutional 

saturation is a source of non-phylogenetic signal and can cause phylogenetic results to be unreliable (Philippe 

et al. 2011). Therefore, in parallel with the findings of Spribille et al. (2011b) in Mycoblastus, I recommend 
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that careful measures should be taken when using this gene in the Tephromelataceae in future studies.           

 TEF1-α showed a moderate resolution power at all topological levels but not exceeding ITS (Fig. S1). 

Single-copy protein coding genes are valuable markers for inferring phylogenetic relationships (see Pizarro et 

al. 2018 and references therein). One advantage includes bypassing the issue of potential non-homologous 

comparison that can occur when comparing multi-copy regions like the ITS (Stadler et. al 2020). Nonetheless, 

as shown herein, substitutional saturation can occur at third codon positions of some protein coding genes, and 

the detection of such processes should be incorporated into pre-analysis and data exploration steps when 

performing phylogenetic analysis.  

 The mtSSU marker is expected to be a conserved region, and therefore, the amplification and 

subsequent phylogenetic issues (Fig. S2A) experienced with this marker might suggest primer mismatch, or 

the amplification of a non-desired fungal contaminant or symbiont. Uniparental inheritance of mitochondria 

might also have caused incongruence with the nuclear phylogenies (Anderson & Kohn 2007). The small 

number of accessions for the nuclear LSU marker and the resulting ML topology (Fig. S2B) showed similar 

phylogenetic relationships as the gene trees of the three other nuclear markers (ITS, MCM7, TEF1-α; Fig. S1). 

 The use of a few and informative genetic markers is common practice in molecular systematics. 

However, it is not unusual with backbone resolution problems, and difficulties in resolving deeper taxon 

boundaries. It has been shown that very large data sets are needed to render fully supported backbone 

topologies (e.g., Pizzaro et al. 2018), but this is not always the case (Widhelm et al. 2019), seeing that just 

adding more data to solve your problem is not necessarily the best systematic solution (Philippe et al. 2011; 

Lemmon & Lemmon 2013). Phylogenomic approaches should be considered when dealing with troubled 

backbone support, since including a larger amount of the genome might improve the phylogenetic signal. 

Nevertheless, a careful selection of suitable genetic markers and phylogenetic tools are at least as important in 

systematic research. In addition, assessing the quality of molecular data is essential to avoid non-phylogenetic 

signals disrupting phylogenetic outcome (Delsuc et al. 2005).     

 I experienced a discrepancy between obtained bootstrap support values and bayesian posterior 

probabilities for all separate gene trees, most notably in ITS and TEF1-α (Figure S1). This highlights a known 

issue with Bayesian posterior probabilities, that is, sensitivity to signal in the data, and ability to attach high 

support to branches with small amounts of character change (Alfaro et al. 2003). The recurring low bootstrap 

values in deeper and intermediate branches can point to internal conflicting signals within the separate 

alignments (i.e., multiple equally probable topological alternatives in the resampled bootstrap trees; Fig. S1). 

Which in turn can be a result of a complex evolutionary history in the Tephromelataceae not possible to 

capture using a dichotomous tree-like model of evolution. Strictly speaking, no supported incongruencies 

between the gene trees was observed judging from the ML analyses (Fig. S1A, C and E), except a minor case 

involving one sequence (see section 3.3.1). However, if the relatively highly supported short branches from 

the bayesian gene trees were interpreted as measures of reliable support and not as a methodological artifact, 

these would imply incongruent gene trees (Fig. S1B, D and F). In that case, concatenation would not have 

been justifiable. Thus, analyzing the partitions independently in a multispecies coalescent framework should 
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be considered in future work. A potential pitfall with concatenation is that the phylogenetic signal from one 

marker can be overrepresented in the resulting topology. For example, the strong terminal signals in ITS could 

convey intraspecific as opposed to interspecific variation. Which in turn would imply a resulting delimitation 

of populations and not species. Furthermore, the true species tree may not always be reflected by single gene 

trees and including such genes in a concatenated super matrix may cause non-phylogenetic signals to distort 

the genuine phylogenetic signal (Phillipe et al. 2011).   

 Different information criteria can sometimes select different models and might be sensitive to 

overfitting like AICc (Dziak et al. 2020). This could explain the complexity of the substitution models in this 

study (Table 4). Another issue concerns the number of parameters in the evolutionary model; the more 

parameters, the easier it is to violate some of the underlying assumptions of the model. The non-phylogenetic 

signal inferred from probabilistic methods mainly stems from the molecular data violating the model 

assumptions (Delsuc et al. 2005; Philippe et al. 2011). Therefore, explicitly assessing if and how the data 

violates assumptions is essential for avoiding wrong inferences of phylogenetic relationships. 

4.5.3 Molecular dating  
 

The major clades in the Tephromelataceae (i.e., genera and subgenera) were topologically congruent and 95% 

HPD age estimate intervals were overlapping between the strict and relaxed analyses (Table 6). However, the 

strict clock always had consistently older median estimates compared to the relaxed clock (Table 6). 

Summarizing trees from the posterior of the strict and relaxed analysis yielded different backbone topologies, 

which may have affected node age estimations because of topological uncertainties (Table 6). The lack of 

fossil records for lichens (Honegger et al. 2013) is a major obstacle for obtaining accurate estimates of 

divergence times. The fossil calibration scheme used by Nelsen et al. (2019) is one of the most extensive to 

date, with thorough justification of the different calibrations used and a broad sampling across the fungal 

kingdom. Still, there can be severe effects in the estimated node ages from which type of calibrations (e.g., 

fossils or prior distributions) are used, and how they are set (e.g., fixed ages, or constrained ages; Sauquet 

2013). The taxon sampling can also affect the outcome by for example introducing larger intervals of node 

age estimates with smaller sample sizes (Soares & Schrago 2012).   

 In general, there are many uncertainties when performing molecular dating analyses, particularly 

when applying secondary calibrations (see Sauquet 2013 and reference therein) and the results should be 

interpreted with caution. One could argue that my calibration priors could have been set with log normal 

distributions, when considering that estimates of divergence time follow a log normal distribution (Morrison 

2008). Also, the analysis may have been run by explicitly sampling from the prior, to assess the prior setting 

effect on the output. With a relatively short time frame and only aiming to provide an initial framework for 

discussing evolutionary histories in Calvitimela, these options were left out, but should be considered in future 

studies. The study by Divakar et al. (2017) is one of the few studies including sequences of Mycoblastus and 

Tephromela in a molecular dating framework. I did not set out to discuss the divergence time of these two 
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genera and seeing that the sampling schemes between this study and Divakar et al (2017) are very different, it 

is not meaningful to discuss potential discrepancies between age estimates.  

4.6 Future perspectives 
 
Technological advancements evolve and our tools for understanding biological diversity are continuously 

operating at finer scales of precision. This is an invaluable asset for systematists as we are increasingly able to 

represent more realistic hypotheses of nature through our classification systems. Dealing with difficult 

phylogenetic problems, like the one in Calvitimela, requires time and rigorous inspection. If questions about 

deep phylogenetic relationships in the Tephromelataceae are to be understood, more and new, preferably 

highly conserved markers, are needed. Potentially, whole genome data could reveal interesting results about 

the ancient evolutionary history of the genus and the family.  

 The problem of cryptic species is evident in taxonomy and in many ways reflects the current scientific 

transitions. We are now able to probe more aspects of biology than ever before with for example modern 

sequencing, advanced microscopy, and powerful analytical tools. Moving from morphological species 

concepts to complex integrative taxonomic concepts it is no surprise that we find more characters, and thus 

can describe more species. In Calvitimela, the distinction between cryptic and non-cryptic diversity is not 

consistently clear-cut, with the varying degrees of character obscurity and mismatch to the DNA based 

phylogeny. To further elucidate species in the subgenus Calvitimela a more extensive population sampling 

would be beneficial. For instance, a broad sampling (including vouchers) of all four clades in the subgenus 

Calvitimela, from a wider geographic range could be used to quantitatively assess chemical, genetic, and 

phenotypic variation. In general, increased sampling together with studies of ecological factors and 

geographical distribution patterns is recommended to reach a better understanding of the species in 

Calvitimela s. lat. 

 Moving forward, a molecular investigation of photobionts or other symbionts could uncover unknown 

patterns between observable traits (morphological and chemical) and genetic lineages. Signs of incongruence 

between the different gene trees and the concatenated tree were observed in the subgenus Calvitimela. 

Therefore, an independent analysis of different genetic markers in a multispecies coalescent framework is 

encouraged to account for incompatible evolution between genes and species. To further explore the potential 

of more complex evolutionary histories, a phylogenetic network approach could be useful to account for 

processes such as reticulation, hybridization, horizontal gene transfer and gene duplication.  

 On one hand the taxonomy and nomenclature of organisms should reflect hypothesis of evolution, but 

on the other hand be accessible and practical for users such as conservationists, hobbyist, and biologists in 

general. Inviting the idea that practical taxonomic circumscriptions and true representations of evolutionary 

histories do not always go hand in hand is essential for a continuation of sound classification and meaningful 

communication of biodiversity. 
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Supplementary information 
 
Table S1. All taxa with fungarium and voucher numbers for the specimens used in this study. The table show sequence 
ID, country of origin and major lichen substances (if determined). Vouchers for which spores are measured are indicated 
with a black dot. Newly generated sequences are indicated with an asterix, and GenBank accession numbers for vouchers 
with already existing sequences. Sequences of ITS included in the phylogenetic analysis of the C. melaleuca populations 
are shown with a circle around the asterix. Two unpublished sequences from the DNA database at O were included and 
are indicated with PCR number and lane (51_19 and 293_11). The sequences included in the molecular dating analyses 
of the Tephromelataceae are highlighted in green.   
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Figure S2. Unrooted Maximum likelihood (ML) topologies from 1000 bootstrap replicates of (A) mtSSU and (B) LSU. The LSU alignment 
consisted of 20 accessions and 762 characters, and the mtSSU consisted of 29 accessions and 757 characters. The alignments were partitio-
QHG�DFFRUGLQJ�WR�WKH�HQWLUH�IUDJPHQW�OHQJWKV�DQG�WKH�EHVW�¿WWLQJ�VXEVWLWXWLRQ�PRGHO�VHOHFWHG�XVLQJ�3DUWLWLRQ)LQGHU���/DQIHDU�HW�DO��������DQG�
the corrected Akaike Information Criterion (AICc) was GTR+I+G for LSU, and GTR+G for mtSSU.
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Figure S3. Maximum likelihood topology (ML) from 1000 bootstrap replicates of mtSSU sequences from the genus Lecania and Calvitimela uniseptata (UPS-L-
838893). Sequences were mined from GenBank (All sequences included are labeled with GB accession numbers) and aligned using Muscle (Edgar 2004) in 
Aliview (Larson 2014), and further trimmed using Gblocks (Castresana, 2000; Talavera & Castresana, 2007). The alignment was partitioned according to the 
entire fragment length and the best fitting substitution model selected using PartitionFinder2 (Lanfear et al. 2016) and the corrected Akaike Information Criterion 
(AICc) was TVM+I+G. 
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