## Description

## Features

- Up to 40 A stall current
- 30 A continuous contact rating at $85^{\circ} \mathrm{C}$
- Motor reversing arrangement
- High side and low side switching versions
- Plug-in connections
- Spring-clip or push-in


## Typical applications

- DC motor reversing module

Please contact Tyco Electronics for relay application support.


## Design

Dustproof;
for spring-clip mounting, push-in fastener or bracket mounting

## Weight

Approx. 2.5 oz. (70 g)
Nominal voltage
12 V ;
other nominal voltages available on request

## Terminals

Terminals A \& F are . 110 " ( 2.8 mm ) quick connect,
terminals B, C, D \& E are . 0187 "
$(4.8 \mathrm{~mm})$ quick connect

## Accessories

Connectors see page 193

## Conditions

All parametric, environmental and endurance tests are performed according to EIA Standard RS-407-A
at standard test conditions unless
otherwise noted:
$23^{\circ} \mathrm{C}$ ambient temperature,
$20-50 \%$ RH, $29.5 \pm 1.0^{\prime \prime} \mathrm{Hg}$
( $998.9 \pm 33.9 \mathrm{hPa}$ ).
Please also refer to the Application
Recommendations in this catalog
for general precautions.

## Disclaimer

All technical performance data apply to the relay as such, specific conditions of the individual application are not considered. Please always check the suitability of the relay for your intended purpose. We do not assume any responsibility or liability for not complying herewith. We recommend to complete our questionnaire and to request our technical service. Any responsibility for the application of the product remains with the customer only. All specifications are subject to change without notification. All rights of Tyco are reserved.

## Dimensional drawing

VBA-1016


Tyco2152-2

VBA-1001
Spring clip will accomodate panels from $0.020-0.093(0.51-2.36)$ thick.


VBA-1002
Plug-in fastener fits $\emptyset 0.256$ (6.5) in panels from 0.022 - 0.201 ( $0.56-5.1$ ) thick.


## Contact data

| Contact configuration | See schematic for motor reversing arrangement |
| :---: | :---: |
| Rated voltage | 12 V |
| Rated current at $85^{\circ} \mathrm{C}$ | 30 A at 14 V |
| Contact material | AgNi0.15 |
| Max. switching voltage/power | See load limit curve |
| Max. switching current ${ }^{1)}$ Intermittent | 40 A at $14 \mathrm{~V}, 0.5 \mathrm{mH}$ inductive load with NO contacts switching the load and NC contacts carrying the load duty cycle of 0.5 s on, 4 s off |
| Voltage drop (initial) at 20 A between any closed contacts | 500 mV max. |
| Mechanical endurance (without load) | $>10^{6}$ operations |
| Electrical endurance | $>65 \times 10^{3}$ operations per relay at rated inductive load; $>1 \times 10^{5}$ operations per relay at rated resistive load |
| Max. switching rate at nominal load | 6 operations per minute ( 0.1 Hz ) |

${ }^{1)}$ The values apply to a resistive or inductive load with suitable spark suppression and at maximum 13.5 V for 12 V or 27 V for 24 V load voltages.

Load limit curve


Typical application
Application high side switching


## Load condition

Off: Terminals A and F de-energized. The load is off since both terminals $B$ and $E$ are grounded through terminal $D$.
On: Terminal A energized and terminal $F$ de-energized. The load receives 12 V with terminal B positive and terminal E grounded.

## Reversed

On: Terminal A de-energized and terminal $F$ energized. The load is reversed with terminal B grounded and terminal E at positive 12 V.
Off: Terminals $A$ and $F$ energized (this is not recommended for normal operation). The load is off since both terminals B and E are at 12 V through terminal C .

Safe breaking, arc extinguished (normally open contact) for resistive loads.

## Application low side switching



## Load condition

Off: Terminals A and F de-energized. The load is off since both terminals $B$ and $E$ are grounded through terminal $C$.
On: Terminal A energized and terminal $F$ de-energized. The load receives 12 V with terminal B positive and terminal E grounded.

## Reversed

On: Terminal A de-energized and terminal $F$ energized. The load is reversed with terminal B grounded and terminal E at positive 12 V.

Off: Terminals $A$ and $F$ energized (this is not recommended for normal operation). The load is off since both terminals B and E are at 12 V through terminal D .

## Coil data

| Available for nominal voltages | 12 V (other coils on request) |
| :--- | :---: |
| Nominal power consumption of the unsuppressed coil at nominal voltage | Typ. 1.8 W |
| Test voltage winding/contact | 500 VACrms |
| Maximum ambient temperature range ${ }^{1)}$ | -40 to $+85^{\circ} \mathrm{C}$ |
| Max. switching rate without contact loading | 20 Hz |
| Operate time at nominal voltage ${ }^{2)}$ | Typ. 6 ms |
| Release time at nominal voltage ${ }^{3)}$ | Typ. 10 ms |

${ }^{1)}$ See also operating voltage diagram
2) Measured at nominal voltage without coil suppression unit
${ }^{3)}$ Measured with zero Volt applied (after having been energized at nominal coil voltage and with no external coil suppression).
N.B.

A low resistive suppression device in parallel to the relay coil increases the release time and reduces
the lifetime caused by increased erosion and/or higher risk of contact tack welding.

| Mechanical data |  |
| :--- | :--- |
| Cover retention | $150 \mathrm{~N}(33.7 \mathrm{lbs})$ |
| $\quad$ Axial force | $200 \mathrm{~N}(45 \mathrm{lbs})$ |
| Pull force | $200 \mathrm{~N}(45 \mathrm{lbs})$ |
| Push force |  |
| Terminals | $100 \mathrm{~N}(22.5 \mathrm{lbs})$ |
| Pull force | $100 \mathrm{~N}(22.5 \mathrm{lbs})$ |
| Push force |  |
| Enclosures | Protects relay from dust. For use in passenger compartment or enclosures |
| Dust cover |  |

## Operating conditions

| Temperature range, storage | $-40{ }^{\circ} \mathrm{C}$ to $155{ }^{\circ} \mathrm{C}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Test | Relevant standard | Testing as per | Dimension | Comments |
| Vibration resistance | 1.27 mm double amplitude 5 g contant 0.5 mm double amplitude 10 g constant |  | $\begin{gathered} 10-40 \mathrm{~Hz} \\ 40-70 \mathrm{~Hz} \\ 70-100 \mathrm{~Hz} \\ 100-500 \mathrm{~Hz} \end{gathered}$ | For NC contacts, NO contacts are significantly higher. |
| Shock resistance | half sine wave pulse |  | $\begin{gathered} 11 \mathrm{~ms} \\ 20 \mathrm{~g} \\ \hline \end{gathered}$ | No change in the switching state > 1 ms |
| Jump start | 24 V for 5 minutes, conducting nominal contact current at $23^{\circ} \mathrm{C}$ |  |  |  |
| Drop test | Capable of meeting specifications after 1.0 m (3.28 foot) drop onto concrete |  |  |  |
| Flammability | UL94-HB or better (meets FMVSS 302) |  |  |  |

Ordering information

| Part numbers |  | Type | Mounting feature | Rated coil voltage (V) | Equivalent coil resistance +/-10\% <br> $(\Omega)$ | Must operate voltage (V) | Must release voltage (V) | Allowable overdrive ${ }^{1)}$ voltage (V) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relay part number | Tyco order number |  |  |  |  |  |  |  |  |
| VBA-1001 | 1393318-1 | High side switching | Spring-clip | 12 | 79.5 | 7.5 | 1.2 | 19.6 | 14.3 |
| VBA-1002 | 1393318-2 | High side switching | Push-in fasteners |  |  |  |  |  |  |
| VBA-1016 | 1393318-3 | High side switching | None |  |  |  |  |  |  |
| VBA-1031 | Not established | Low side switching | Secify when ordering |  |  |  |  |  |  |

1) Allowable overdrive is stated with no load applied and minimum coil resistance.

Standard delivery pack (orders in multiples of delivery pack)
VBA: $\quad 100$ pieces

