

Objective/Hypotheses

To determine the effects of temperature on *Nymphaea* . *thermarum* an African hot spring endemic species. We hypothesize that the highest temperature will . yield the most amount of growth in *Nymphaea* . *thermarum*.

Introduction

- Native to mud hot springs in southwestern Rwanda
- Critically endangered and extinct in the wild (Fischer, 2019).
- Plants have flowers a few centimeters in diameter and have bright green leaf rosettes.
- Requires shallow water and has a relatively short generation time of 5–6 months (Povilus, 2014).
- *N. thermarum* is a part of the Nymphaeales, one of the most ancient lineages of flowering plants (Povilus, 2014).

Acknowledgements

The Arnold Arboretum of Harvard University for supplying the seeds.

The effect of temperature on growth of *Nymphaea thermarum*

Department of Biology, Eastern Connecticut State University Amanda Blejewski and Dr. Bryan A. Connolly

Methods

- N. *thermarum* seeds were obtained from Harvard University of the Arnold Arboretum.
- Seeds were grown in the ECSU greenhouse.
- Cultivated in pots 10 cm in diameter and 8.75 cm tall.
- 1.00 g of 14:14:14 Osmocote Flower and Vegetable fertilizer was added to each of the 36 pots.
- Pots were submerged in different temperatures of water.
- Water temperature and three leaves per plant were measured weekly.

References

Povilus, R., et al. 2014. Floral biology and ovule and seed ontogeny of *Nymphaea thermarum*, a water lily at the brink of extinction with potential as a model system for basal angiosperms. *Annals of Botany*. 1-16.

Fischer, E., et al. 2019. Nymphaea thermarum. The IUCN Red List of Threatened Species 2019.

Results

A one-way

showed that all

three treatments

significantly

one another.

p-value of

6.2672e-13.

different from

ANOVA gave a

ANOVA

were

Conclusions/Future Directions

Nymphaea thermarum grew the most at the intermediate temperature of 29.6°C.

- Future studies will more closely regulate sunlight and moisture and use a larger number of individuals
- Cultivation studies such as this one, are critical to the survival of this species that is extinct in the wild.