
2.3 Instructions and Sequencing

• Instructions categories:
Ø Data transfer: memory to/from processor

Ø Input/output transfer: I/O to/from processor/memory

Ø Arithmetic and logic operations

Ø Program sequencing and control

Ø ARM: 57 instructions (PM31-34)

Ø Thumb: 36 instructions (TI5-2/3)

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 33

ARM Thumb Instructions (TH3-4)

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 34

2.3.4 Load/Store Architecture

• Two operations to access (read or write) memory
– Load : register ß memory
– Store : memory ß register
– Source: no change
– Destination: overwritten

• ALU ß operands (only from registers; register size?)
• A characteristic of the Reduced Instruction Set

Computer (RISC)
– Storing data operand in registers: advantages ?

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 35

Thumb Memory Access Instructions

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 36

multiple registers ß multiple data

4 bytes

2 bytes

Some arithmetic operations

Concept: Stack Implementation:
Memory

Ri ß #imm or Ri ß Rj

Thumb Data Processing Instructions
(TH3-4)

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 37

Arithmetic in Red
Logic in Green Bit Operation in Blue

Thumb Branch/Control Instructions
(TH3-4)

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 38

2.3.5 Instruction Execution

Ø Instruction cycle:

Ø Fetch (decode) and Execute

Ø Straight-line sequencing:

Ø Instructions executed in sequential order

Ø PC incremented by 2/4/8 bytes

Ø or 16/32/64-bit word

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 39

2.3.5 Instruction Sequencing

Ø Change of control flow:
Ø Change Program Counter

Ø Two Types:
Ø Branch or Interrupt

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 40

Internal and Expected

External and Unpredictable

Branch
Execute

Branch
Execute
Return

2.3.6 Branching

Ø Conditional branch:
Ø Initialize R2 as a counter; e.g., DO 50 times

Ø LOOP: Instruction 1
 Instruction 2
…

 Subtract R2, R2, #1 ; change status
 Branch > 0 LOOP ; check status

Ø Branch target: LOOP if R2 > 0
Ø Condition code in a status register (NZCV in APSR)

Ø previous operation results for subsequent conditional use

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 41

ARM Conditional Execution
(PM39)

Ø The processor carries out the branch based on
the condition code (CC) set by another
instruction:

Ø Branch CC placement:
Ø Immediately after the instruction that set the

condition code, OR
Ø After any number of in-between instructions

that must not update the condition code

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 42

PM0215 The STM32 Cortex-M0 processor

Doc ID 022979 Rev 1 13/91

Stack pointer (SP) register R13

In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to use:
! 0: Main Stack Pointer (MSP)(reset value). On reset, the processor loads the MSP with

the value from address 0x00000000.
! 1: Process Stack Pointer (PSP).

Link register (LR) register R14

Stores return information for subroutines, function calls, and exceptions. On reset, the
processor loads the LR value 0xFFFFFFFF.

Program counter (PC) register R15

Contains the current program address. On reset, the processor loads the PC with the value
of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

Program status register

The Program Status Register (PSR) combines:
! Application program status register (APSR)
! Interrupt program status register (IPSR)
! Execution program status register (EPSR)

These registers are mutually exclusive bitfields in the 32-bit PSR. They can be accessed
individually or as a combination of any two or all three registers, using the register name as
an argument to the MSR or MRS instructions. For example:
! Read all of the registers using PSR with the MRS instruction
! Write to the APSR using APSR with the MSR instruction.

Figure 3. APSR, IPSR and EPSR bit assignments

Table 4. PSR register combinations and attributes

Register Type Combination

PSR read-write(1), (2)

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits

APSR, EPSR, and IPSR

IEPSR read-only EPSR and IPSR

IAPSR read-write(1) APSR and IPSR

EAPSR read-write(2) APSR and EPSR

!" !# !$

%&'&()&* +,-&./01232456&(

$7 $8 !9 !: !;

< = > ?

8

%&'&()&*@AB%

CAB%

+AB% %&'&()&* %&'&()&*D

"E

N=negative
Z=zero
C=carry
V=overflow

Branch Placement

Ø Initialize R2 as a counter
Ø LOOP1: Instruction 1

 Instruction 2
…

 Subtract R2, R2, #1 ; may change status
 Branch > 0 LOOP ; check status

Ø LOOP2: Instruction 1
 Subtract R2, R2, #1 ; may change status
… ; don’t touch Z bit

 Instruction x ; don’t touch Z bit
 Branch > 0 LOOP ; check status

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 43

Thumb Conditional Branch

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 44

Code = 1110 => undefined

Code = 1111 => SWI

N=negative
Z=zero
C=carry
V=overflow

Figure 2.6

Kin Fun LI, University of Victoria ECE 255
Introduction to Computer Architecture Instruction Set Architecture 45

Initialize R2 as a counter
LOOP: Instruction 1
 Instruction 2
 …

Subtract R2, R2, #1
 ; may change status
 Branch > 0 LOOP
 ; check status

Exit LOOP:
1. R3 has result of additions
2. Store in memory location SUM

