2.3 Instructions and Sequencing #%

* |nstructions categories:

Data transfer: memory to/from processor
Input/output transfer: 1/0O to/from processor/memory
Arithmetic and logic operations
Program sequencing and control
ARM: 57 instructions (PM31-34)
Thumb: 36 instructions (TI5-2/3)

Vv V VYV V V VY

/0

: ECE 255 . .
Kin Fun LI, University of Victoria Introduction to Computer Architecture Instruction Set Architecture 33

ADC
ADD
AND
ASR

Bxx
BIC
BL
BX
CMN
CMP
EOR

(=13 [=]

ARM Thumb Instructions (TH3-4) £

Add with Carry

Add

AND

Arithmetic Shift Right
Unconditional branch
Conditional branch

Bit Clear

Branch and Link
Branch and Exchange
Compare Negative

Compare

EOR

Kin Fun LI, University of Victoria

LDMIA
LDR
LDRB
LDRH
LSL
LDSB

LDSH

LSR

MOV
MUL
MVN

Load multiple
Load word

Load byte

Load halfword
Logical Shift Left

Load sign-extended

byte

Load sign-extended
halfword

Logical Shift Right
Move register
Multiply

Move Negative register

ECE 255

Introduction to Computer Architecture

NEG
ORR
POP
PUSH
ROR
SBC
STMIA
STR
STRB
STRH
SWiI
SuUB
TST

E' -1 .

Negate

OR

Pop registers
Push registers
Rotate Right
Subtract with Carry
Store Multiple
Store word

Store byte

Store halfword
Software Interrupt
Subtract

Test bits

Instruction Set Architecture 34

2.3.4 Load/Store Architecture #%

* Two operations to access (read or write) memory

— Load : register € memory

— Store : memory < register
— Source: no change

— Destination: overwritten

* ALU < operands (only from registers; register size?)

A characteristic of the Reduced Instruction Set
Computer (RISC)

— Storing data operand in registers: advantages ?

ECE 255

. . Instruction Set Architecture 35
Introduction to Computer Architecture

Kin Fun LI, University of Victoria

Thumb Memory Access Instructions g%

multiple registers €< multiple data

ADC Add with C - ConeeRs: stack |l implementation:
wi arry LDMIA Load multiple Memory
ADD Add 4 bytes | €H-5% Leoad word ORR OR /I
AND AND POP Pop registers
2 bytes LDRB Load byte preg
ASR Arithmetic Shift Right || LDRH == halfword PUSH Push registers
B Unconditional branch | LSL Logical Shift Left ROR Rotate Right
Bxx Conditional branch LDSB Load sign-extended SBC Subtract with Carry
b
BIC Bit Clear yte STMIA Store Multiple
LDSH Load sign-extended
BL Branch and Link halfworg STR Store word
CMN Move register STRH Store halfword
CMP Multiply SWI Software Interrupt
EOR Py Move Negative register Subtract
Some arithmetic operations L Testbits

ECE 255
Introduction to Computer Architecture

: é ﬁlsmjmogge!} Arc?itelstljre 36

Kin Fun LI, University of Victoria

__Thumb

Arithmetic in Red

Data Processing Instructions 244z

Logic in Gree

H3-4)

Bit Operation in Blue

E.' -1 .

ADC Add with Carry LDMIA Load multiple NEG Negate
ADD Add LDR Load word ORR OR
IAND AND I LDRB Load byte POP Pop registers
[ASR Arithmetic Shift Right | | LDRH Load halfword PUSH Push registers
B Unconditional branch |LSL Logical Shift Left | |ROR Rotate Right |
Bxx Conditional branch LDSB Load sign-extended ISBC Subtract with CarryI
| BIC Bit Clear | oyte STMIA Store Mutiple
BL Branch and Link HDSH 'L]g;\?vs:gn-extended STR Store word
BX Branch and Exchange ILSR Logical Shift Right I STRB Store byte
Compare Negative MOV Move register STRH Store halfword
Compare IMUL Multiply I SWI Software Interrupt
'MVN Move Negative register | sus Subtract |
TST Test bits

Kin Fun LI, University of Victoria

ECE 255

Introduction to Computer Architecture

Instruction Set Architecture 37

Thumb Branch/Control Instructions ofdn
(TH3-4) L

ADC Add with Carry LDMIA Load multiple NEG Negate
ADD Add LDR Load word ORR OR
AND AND LDRB Load byte POP Pop registers
ASR Arithmetic Shift Right | LDRH Load halfword PUSH Push registers
B Unconditional branch | | LSL Logical Shift Left ROR Rotate Right
Bxx Conditional branch LDSB Load sign-extended SBC Subtract with Carry
BIC Bit Clear oyte STMIA Store Multiple
BL Branch and Link HDSH 'L]gff\svg:gn-extended STR Store word
BX Branch and Exchan LSR Logical Shift Right STRB Store byte
CMN Compare Negative MOV Move register STRH Store halfword
CMP Compare MUL Multiply II SWiI Software Interrupt
EOR EOR MVN Move Negative register SUB Subtract
I TST Test bits ‘
Kin Fun LI, University of Victoria HCE 250 Instruction Set Architecture 38

Introduction to Computer Architecture

LD

2.3.5 Instruction Execution i

» Instruction cycle:

> Fetch (decode) and Execute

» Straight-line sequencing:

» Instructions executed in sequential order
» PCincremented by 2/4/8 bytes

» or 16/32/64-bit word

: ECE 255 : .
Kin Fun LI, University of Victoria Introduction to Computer Architecture Instruction Set Architecture 39

[=]5%: (=]

2.3.5 Instruction Sequencing i

» Change of control flow:

» Change Program Counter

» Two Types:

» Branch or Interrupt

b Internal and Expected
Branch
Execute
¥
Branch .
C Execute External and Unpredictable
' ¥ Return
Kin Fun LI, University of Victoria FCE 255 Instruction Set Architecture 40

Introduction to Computer Architecture

2.3.6 Branching oy

» Conditional branch:

» Initialize R2 as a counter; e.g., DO 50 times

> LOOP: Instruction 1
Instruction 2

Subtract R2, R2, #1 ; change status
Branch > 0 LOOP : check status

» Branch target: LOOPif R2>0
» Condition code in a status register (NZCV in APSR)

» previous operation results for subsequent conditional use

: ECE 255 : .
Kin Fun LI, University of Victoria Introduction to Computer Architecture Instruction Set Architecture 41

ARM Conditional Execution 4
(PM39) o

» The processor carries out the branch based on
the condition code (CC) set by another

1 1 . Figure 3. APSR, IPSR and EPSR bit assignments
Instruction: e
313029 28 252423 6 5 0
N:negative ‘ APSR [N|z|c|v) Reserved
Z=Ze ro x@._/ Reserved Exception number
C=carry
EPSR Reserved T Reserved
V=overflow

» Branch CC placement:

» Immediately after the instruction that set the
condition code, OR

» After any number of in-between instructions
that must not update the condition code

: ECE 255 : .
Kin Fun LI, University of Victoria Introduction to Computer Architecture Instruction Set Architecture 42

Branch Placement

b |
. —"

E.' -1

> |nitialize R2 as a counter

> LOOP1: Instruction 1
Instruction 2

Subtract R2, R2, #1 ; may change status
Branch > 0 LOOP : check status

> LOOP2: Instruction 1

Subtract R2, R2, #1 ; may change status
: don’t touch Z bit
Instruction x : don’t touch Z bit

Branch > 0 LOOP : check status

: ECE 255 : .
Kin Fun LI, University of Victoria Introduction to Computer Architecture Instruction Set Architecture 43

THUMB assembler

ARM equivalent

Action

BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or
same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear
(unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set
(unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N
clear and V clear (greater or
equal)

1011 BLT label BLT label Branch if N set and V clear, or N
clear and V set (less than)

1100 BGT label BGT label Branch if Z clear, and either N set
and V set or N clear and V clear
(greater than)

1101 BLE label BLE label Branch if Z set, or N set and V
clear, or N clear and V set (less
than or equal)

Kin Fun LI, University of Victoria

LuCL o9

Introduction to Computer Architecture

N=negative
Z=zero
C=carry
V=overflow

Code = 1110 => undefined

Code =1111 => SWI

Instruction Set Architecture 44

Figure 2.6 3

Initialize R2 as a counter Load R2, N
LOOP: Instruction 1 Clear R3
Instruction 2 g
LOOP Determine address of
L~ "Next" number, load the
Subtract R2, R2, #1 ~ "Next" number into RS,
] Program) and add it to R3
; may change status | Toop—
Branch>0 LOOP — \» Subtract R2, R2, #l
\
; check status *Branch_if_[RZ]>0 LOOP
— Store R3, SUM
1. R3 has result of additions
2. Store in memory location SUM X
Kin Fun LI, University of Victoria FCE 255 Instruction Set Architecture 45

Introduction to Computer Architecture

