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Abstract

This paper gives a test of overidentifying restrictions that is robust to many instruments and

heteroskedasticity. It is based on a jackknife version of the Sargan test statistic, having a numerator

that is the objective function minimized by the JIVE2 estimator of Angrist, Imbens, and Krueger

(1999). Correct asymptotic critical values are derived for this test when the number of instruments

grows large, at a rate up to the sample size. It is also shown that the test is valid when the number

instruments is fixed and there is homoskedasticity. This test improves on recently proposed tests by

allowing for heteroskedasticity and by avoiding assumptions on the instrument projection matrix.

The asymptotics is based on the heteroskedasticity robust many instrument asymptotics of Chao

et. al. (2010).
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1 Introduction

The Sargan (1958) and Hansen (1982) tests of instrument validity are known to be quite sensitive

to the number of restrictions being tested. This paper proposes an alternative test that is robust

to many instruments and to heteroskedasticity. It is based on subtracting out the diagonal terms

in the numerator of the Sargan statistic and normalizing appropriately. This test has a jackknife

interpretation, being based on the objective function of the JIVE2 estimator of Angrist, Imbens,

and Krueger (1999). We show that the test is valid under homoskedasticity with fixed number of

instruments and with number of instruments going to infinity at any rate up to the sample size

itself.

Recently Anatolyev and Gospodinov (2009) and Lee and Okui (2010) have given tests that allow

for many instruments but impose homoskedasticity. Our test is valid under their conditions and

also with heteroskedasticity. Also, we do not impose side conditions on the instrument projection

matrix. The asymptotic theory is based on the results of Chao et. al. (2010) and Hausman et.

al. (2010), including a central limit theorem that imposes no side conditions on the instrumental

variable projection matrix.

In Section 2 we describe the model and test statistic. In Section 3 we give the asymptotic

theory.

2 The Model and Test Statistic

We adopt the same model and notation as in Hausman et. al. (2010) and Chao et. al. (2010). The

model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = Υ+ U,

where n is the number of observations, G is the number of right-hand side variables, Υ is the

reduced form matrix, and U is the disturbance matrix. For the asymptotic approximations, the

elements of Υ will be implicitly allowed to depend on n, although we suppress dependence of Υ on

n, for notational convenience. Estimation of δ0 will be based on an n×K matrix, Z, of instrumental

variable observations with rank(Z) = K. Here we will treat Z and Υ as nonrandom for simplicity
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though it is possible to do asymptotic theory conditional on these as in Chao et. al. (2010). We

will assume that E[ε] = 0 and E[U ] = 0.

This model allows for Υ to be a linear combination of Z (i.e. Υ = Zπ, for some K × G

matrix π). Furthermore, some columns of X may be exogenous, with the corresponding column

of U being zero. The model also allows for Z to approximate the reduced form. For example,

let X 0
i, Υ

0
i, and Z 0i denote the i

th row (observation) for X, Υ, and Z, respectively. We could let

Υi = f0(wi) be a vector of unknown functions of a vector wi of underlying instruments and let

Zi = (p1K(wi), ..., pKK(wi))
0, for approximating functions pkK(w), such as power series or splines.

In this case, linear combinations of Zi may approximate the unknown reduced form.

For estimation of δ we consider heteroskedasticity robust version of the Fuller (1977) estimator

of Hausman et. al. (2010), referred to as HFUL. Other heteroskedasticity and many instrument

robust estimators could also be used, such as jackknife instrumental variable (IV) estimators of

Angrist, Imbens, and Krueger (1999) or the continuously updated GMM estimator (CUE). We

focus on HFUL because of its high efficiency relative to jackknife IV, because it has moments, and

because it is computationally simple relative to CUE. To describe HFUL, let

P = Z(Z 0Z)−1Z 0,

Pij denote the ij
th element of P, and X̄ = [y,X]. Let

α̃ be the smallest eigenvalue of (X̄ 0X̄)−1(X̄ 0PX̄ −
nX
i=1

PiiX̄iX̄
0
i).

Although the matrix in this expression is not symmetric it has real eigenvalues because it is a

product of symmetric, positive semi-definite matrices. Let

α̂ = [α̃− (1− α̃)/T ]/[1− (1− α̃)/T ].

HFUL is given by

δ̂ =

Ã
X 0PX −

nX
i=1

PiiXiX
0
i − α̂X 0X

!−1Ã
X 0Py −

nX
i=1

PiiXiyi − α̂X 0y

!
.

Thus, HFUL can be computed by finding the smallest eigenvalue of a matrix and then using this

explicit formulae. Motivation for HFUL is further discussed in Hausman et. al. (2010).

To describe the overidentification statistic, let ε̂i = yi−X 0
i δ̂, ε̂ = (ε̂1, ..., ε̂n)

0 , ε̂(2) = (ε̂21, ..., ε̂
2
n)
0,

and P (2) be the n-dimensional square matrix with ijth component equal to P 2ij . Also, let
P

i6=j

3



denote the double sum over all i not equal to j. The test statistic is

T̂ =
ε̂0P ε̂−Pn

i=1 Piiε̂
2
ip

V̂
+K, V̂ =

ε̂(2)0P (2)ε̂(2)−Pi P
2
iiε̂
4
i

K
=

P
i6=j ε̂

2
iP

2
ij ε̂

2
j

K

Treating T̂ as if it is chi-squared with K − G degrees of freedom will be asymptotically correct

if K −→ ∞ no faster than n and when K is fixed and εi is homoskedastic. Let qr(τ) be the τ
th

quantile of the chi-squared distribution with r degrees of freedom. A test with asymptotic rejection

frequency α is to reject the null hypothesis if

T̂ ≥ qK−G(1− α).

We will show that the test with this critical region has a probability of rejection that converges to

α.

To explain the form of this test statistic, note that the numerator is

ε̂0P ε̂−
nX
i=1

Piiε̂
2
i =

X
i6=j

ε̂iPij ε̂j .

This object is the numerator of the Sargan (1958) statistic with the own observation terms sub-

tracted out. It has a jackknife form, in the sense that it is the sum of sums where the own

observations have been deleted. If δ̂ were chosen to minimize this expression, it would be the

JIVE2 estimator of Angrist, Imbens, and Krueger (1999).

One effect of removing the own observations is that
P

i6=j ε̂iPij ε̂j would be mean zero if ε̂i were

replaced by εi In fact,
P

i6=j εiPijεj has a martingale difference structure that leads to it being

asymptotically normal as K −→∞, e.g. as in Lemma A2 of Chao et. al. (2010). The denominator

incorporates a heteroskedasticity consistent estimator of the variance of
P

i6=j εiPijεj . By dropping

terms that have zero expectation, similarly to Chao et. al. (2010), it follows that for σ2i = E[ε2i ],

E[(
X
i6=j

εiPijεj)
2] = E[

X
i,j

X
k/∈{i,j}

PikPjkεiε
0
jε
2
k +

X
i6=j

P 2ijε
2
i ε
2
j ]

= E[2
X
i6=j

P 2ijε
2
i ε
2
j ] = 2

X
i6=j

P 2ijσ
2
i σ
2
j

Similarly to White (1980) the variances are replaced by squared residuals to obtain V̂ . Also, 2

is replaced by 1/K and K is added to normalize the statistic to be chi-squared with K fixed

and εi homoskedastic. Unfortunately, it does not appear possible to normalize the statistic to be

chi-squared if there is heteroskedasticity when K is fixed.
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3 Many Instrument Asymptotics

The asymptotic theory we give combines the many instrument asymptotics of Kunitomo (1980),

Morimune (1983), and Bekker (1994) with the many weak instrument asymptotics of Chao and

Swanson (2005). Some regularity conditions are important for this theory. Let Z 0i, εi, U
0
i , and Υ

0
i

denote the ith row of Z, ε, U, and Υ respectively.

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and there is a

constant C such that Pii ≤ C < 1, (i = 1, ..., n), K −→∞.

The restriction that rank(Z) = K is a normalization that requires excluding redundant columns

from Z. It can be verified in particular cases. For instance, when wi is a continuously distributed

scalar, Zi = pK(wi), and pkK(w) = wk−1, it can be shown that Z 0Z is nonsingular with probability

one forK < n.1 The condition Pii ≤ C < 1 implies thatK/n ≤ C, becauseK/n =
Pn

i=1 Pii/n ≤ C.

The next condition specifies that the reduced form Υi is a linear combination of a set of variables

zi having certain properties.

Assumption 2: Υi = Snzi/
√
n where Sn = S̃ diag (μ1n, ..., μGn) and S̃ is nonsingular. Also,

for each j either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤G
μjn −→ ∞, and

√
K/μ2n −→ 0. Also,

there is C > 0 such that kPn
i=1 ziz

0
i/nk ≤ C and λmin (

Pn
i=1 ziz

0
i/n) ≥ 1/C, for n sufficiently large.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey (2008). It ac-

commodates linear models where included instruments (e.g. a constant) have fixed reduced form

coefficients and excluded instruments have coefficients that can shrink as the sample size grows,

as further discussed in Hausman et. al. (2010). The μ2n can be thought of as a version of the

concentration parameter, determining the convergence rate of estimators of δ0G, just as the con-

centration parameter does in other settings. For μ2n = n, the convergence rate will be
√
n, where

Assumptions 1 and 2 permit K to grow as fast as the sample size, corresponding to a many instru-

ment asymptotic approximation like Kunitomo (1980), Morimune (1983), and Bekker (1994). For

μ2n growing slower than n the convergence rate will be slower that 1/
√
n, leading to an asymptotic

approximation like that of Chao and Swanson (2005).

1The observations w1, ..., wn are distinct with probability one and therefore, by K < n, cannot all be roots of a

Kth degree polynomial. It follows that for any nonzero a there must be some i with a0Zi = a0pK(wi) 6= 0, implying

that a0Z0Za > 0.
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Assumption 3: There is a constant C > 0 such that (ε1, U1), ..., (εn, Un) are indepen-

dent, with E[εi] = 0, E[Ui] = 0, E[ε2i ] < C, E[kUik2] ≤ C, V ar((εi, U
0
i)
0) = diag(Ω∗i , 0), and

λmin(
Pn

i=1Ω
∗
i /n) ≥ 1/C.

This assumption requires second conditional moments of disturbances to be bounded. It also

imposes uniform nonsingularity of the variance of the reduced form disturbances, that is useful in

the consistency proof, to help the denominator of the objective function stay away from zero.

Assumption 4: There is a πKn such that
Pn

i=1 kzi − πKnZik2 /n −→ 0.

This condition and Pii ≤ C < 1 will imply that for a large enough sample

X
i6=j

PijΥiΥ
0
j/n = Υ0PΥ/n−

nX
i=1

PiiΥiΥ
0
i/n =

nX
i=1

(1− Pii)ΥiΥ
0
i/n−Υ0(I − P )Υ/n

=
nX
i=1

(1− Pii)ΥiΥ
0
i/n+ o(1) ≥ (1− C)

nX
i=1

ΥiΥ
0
i/n,

so that the structurally parameters are identified asymptotically. Also, Assumption 4 is not very

restrictive because flexibility is allowed in the specification of Υi. If we simply make Υi the expec-

tation of Xi given the instrumental variables then Assumption 4 holds automatically.

Assumption 5: There is a constant, C > 0, such that with probability one,
Pn

i=1 kzik4 /n2 −→

0, E[ε4i ] ≤ C and E[kUik4] ≤ C.

It simplifies the asymptotic theory to assume that certain objects converge and to allow for

two cases of growth rates of K relative to μ2n. These conditions could be relaxed at the expense

of further notation and detail, as in Chao et. al.. Let σ2i = E[ε2i ], γn =
Pn

i=1E[Uiεi]/
Pn

i=1 σ
2
i ,

Ũ = U − εγ0n, having i
th row Ũ 0i ; and let Ω̃i = E[ŨiŨ

0
i ].

Assumption 6: μnS
−1
n −→ S0 and either I) K/μ2n −→ α for finite α or; II) K/μ2n −→ ∞.

Also, each of the following exist:

HP = lim
n−→∞

nX
i=1

(1− Pii)ziz
0
i/n,ΣP = lim

n−→∞

nX
i=1

(1− Pii)
2ziz

0
iσ
2
i /n,

Ψ = lim
n−→∞

X
i6=j

P 2ij

³
σ2iE[ŨjŨ

0
j ] +E[Ũiεi]E[εjŨ

0
j ]
´
/K.
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The first result shows that the chi-square approximation is asymptotically correct whenK grows

with n.

Theorem 1: If Assumptions 1-6 are satisfied then Pr(T̂ ≥ qK−G(1− α)) −→ α.

The next result shows asymptotic validity of the chi-squared approximation when K is fixed.

Theorem 2: If E[ε2i ] = σ2, K is fixed, Z 0Z/n −→ Q nonsingular, Z 0Υ/n −→ D with

rank(D) = G, E[ε4i ] ≤ C, kΥik ≤ C, and Assumption 3 is satisfied, then Pr(T̂ ≥ qK−G(1−α)) −→

α.

This test should have power against some forms of misspecification. Under misspecification V̂

will still be bounded and bounded away from zero. Also, for ε̄i = E[yi−X 0
iplim(δ̂)], the normalized

numerator
P

i6=j Pij ε̂iε̂j/
√
K will be centered atÃ

ε̄0P ε̄−
X
i

Piiε̄
2
i

!
/
√
K.

Assuming a linear combination of Z approximates ε̄ this is close

X
i

ε̄2i (1− Pii)/
√
K

This will increase at rate n/
√
K by Pii bounded away from one.

T̂ provides specification check for many instrument estimator δ̂. Note however that it may not

be optimal as a test of the null hypothesis that E[ε̄i] = 0. The magnitude of the test statistic under

the alternative grows faster when K grows slower. Thus, for higher power it would be better to

use fewer instruments.
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4 Appendix A - Proofs of Theorems

We will define a number of notation and abbreviations. C denotes a generic positive constant

that may be different in different uses and let M, CS, and T denote the Markov inequality, the

Cauchy-Schwartz inequality, and the Triangle inequality respectively. Also, for random variables

Wi, Yi, and ηi, let w̄i = E[Wi], W̃i = Wi − w̄i, ȳi = E[Yi], Ỹi = Yi − ȳi, η̄i = E[ηi], η̃i = ηi − η̄i,

ȳ = (ȳ1, ...., ȳn)
0 , w̄ = (w̄1, ..., w̄n)

0 ,

μ̄W = max
1≤i≤n

|w̄i| , μ̄Y = max
1≤i≤n

|ȳi| , μ̄η = max
1≤i≤n

|η̄i| ,

σ̄2W = max
i ≤ n

V ar [Wi] , σ̄
2
Y = max

i ≤ n
V ar [Yi] , σ̄

2
η = max

i ≤ n
V ar [ηi] ;

The following Lemmas are special cases of results in Chao et. al. (2010) but are given here for

exposition:

Lemma A1: Suppose that the following conditions hold: i) P is a symmetric, idempotent

matrix with rank(P ) = K, Pii ≤ C < 1; ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are independent and

Dn =
Pn

i=1E [WinW
0
in] satisfies kDnk ≤ C; iii) E [W 0

in] = 0, E[Ui] = 0, E[εi] = 0 and there exists

a constant C such that E[kUik4] ≤ C, E[ε4i ] ≤ C; iv)
Pn

i=1E
h
kWink4

i
−→ 0; v) K −→ ∞ as

n→∞. Then for

Σ̄n
def
=

X
i 6=j

P 2ij

³
E[UiU

0
i ]E[ε

2
j ] +E[Uiεi]E[εjU

0
j ]
´
/K

and any sequences c1n and c2n depending on Z conformable vectors with kc1nk ≤ C, kc2nk ≤ C,

Ξn = c01nDnc1n + c02nΣ̄nc2n > 1/C, it follows that

Yn = Ξ
−1/2
n (c01n

nX
i=1

Win + c02n
X
i6=j

UiPijεj/
√
K)

d−→ N (0, 1) .

Proof: This is Lemma A2 of Chao et. al. (2010) when Z and Υ are not random. Q.E.D.

Lemma A2: If Assumptions 1-3 are satisfied then

S−1n
X
i6=j

XiPijX
0
jS
−10
n = Op(1), S

−1
n

X
i6=j

XiPijεj = Op(1 +
q
K/rn).

Proof: The second conclusion holds by Lemma A5 of Chao et al. (2010), and by that same

result,

S−1n
X
i6=j

XiPijX
0
jS
−10
n =

X
i6=j

ziPijz
0
j/n+ op(1).
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We also have X
i6=j

ziPijz
0
j/n = z0Pz/n−

X
i

Piizizi/n

and both z0Pz/n ≤ z0z/n and
P

i Piiziz
0
i/n ≤ z0z/n are bounded, giving the first conclusion. Q.E.D.

Lemma A3: If δ̂ −→ δ, E[kXik2] ≤ C, E[ε4i ] ≤ C, ε1, ..., εn are mutually independent, and

either K −→∞ or maxi≤n Pii −→ 0 thenX
i6=j P

2
ij ε̂

2
i ε̂
2
j

K
−

X
i6=j P

2
ijσ

2
i σ
2
j

K

p−→ 0.

Proof: Hence by δ̂
p−→ δ we have

°°°δ̂ − δ
°°°2 ≤ °°°δ̂ − δ

°°° with probability approaching one (w.p.a.1).
Hence w.p.a.1, for di = 3(1 + kXik2),¯̄̄

ε̂2i − ε2i

¯̄̄
≤ 2 kXik

°°°δ̂ − δ
°°°+ kXik2

°°°δ̂ − δ
°°°2 ≤ di

°°°δ̂ − δ
°°° .

Also by
P

i,j P
2
ij =

P
i Pii = K,

E[
X
i6=j

P 2ijdidj ]/K ≤ C
X
i6=j

P 2ij/K ≤ C,E[
X
i6=j

P 2ijε
2
i dj ]/K ≤ C.

Then by M, X
i6=j

P 2ijdidj/K = Op(1),
X
i 6=j

P 2ijε
2
i dj/K = Op(1).

Therefore, for V̂n =
P

i6=j P
2
ij ε̂

2
i ε̂
2
j/K, Ṽn =

P
i6=j P

2
ijε

2
i ε
2
j/K we have¯̄̄

V̂n − Ṽn
¯̄̄
≤

X
i6=j

P 2ij

¯̄̄
ε̂2i ε̂

2
j − ε2i ε

2
j

¯̄̄
/K

≤
°°°δ̂ − δ

°°°2X
i6=j

P 2ijdidj/K + 2
°°°δ̂ − δ

°°°X
i6=j

P 2ijε
2
i dj/K

p−→ 0.

Let Vn =
P

i 6=j P
2
ijσ

2
i σ
2
j/K and vi = ε2i − σ2i Note that by Pij = Pji,X
i6=j

P 2ijε
2
i ε
2
j −

X
i6=j

P 2ijσ
2
i σ
2
j = 2

X
i6=j

P 2ijviσ
2
j +

X
i6=j

P 2ijvivj .

Note that E[v2i ] ≤ E[ε4i ] ≤ C, so we have have

E[(
X
i6=j

P 2ijviσ
2
j /K)

2] = K−2X
i

X
j 6=i

X
k 6=i

P 2ijP
2
ikE[v

2
i ]σ

2
jσ
2
k

≤ CK−2X
i

X
j

P 2ij
X
k

P 2ik = CK−2X
i

P 2ii

≤ CK−1max
i≤n

Pii
X
i

Pii/K ≤ CK−1max
i≤n

Pii −→ 0.
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Also, by CS, maxi,j≤n P 2ij ≤ maxi≤n P 2ii, so that

E[(
X
i 6=j

P 2ijvivj/K)
2] = 2K−2X

i6=j
P 4ijE[v

2
i ]E[v

2
j ] ≤ CK−2X

i,j

P 4ij

≤ CK−1max
i≤n

P 2ii
X
i,j

P 2ij/K = CK−1max
i≤n

P 2ii −→ 0.

Then by T and M we have Ṽn − Vn
p−→ 0. The conclusion then follows by T. Q.E.D.

Proof of Theorem 1: Note thatPn
i6=j ε̂iPij ε̂j√

K
=

X
i6=j

h
εi −X 0

i(δ̂ − δ)
i
Pij

h
εj −X 0

j(δ̂ − δ)
i
/
√
K

=

P
i6=j εiPijεj√

K
+ (δ̂ − δ)0Sn

⎡⎣S−1n X
i6=j

XiPijX
0
jS
−10
n

⎤⎦S0n(δ̂ − δ)/
√
K

+2(δ̂ − δ)0Sn

⎡⎣S−1n X
i6=j

XiPijεj

⎤⎦ /√K.

If K/μ2n −→ α < ∞ (case I of Assumption 6) then by Theorem 2 of Hausman et. al. (2010) we

have S0n(δ̂ − δ) = Op(1). Then by Lemma A2 we havePn
i6=j ε̂iPij ε̂j√

K
=

P
i6=j εiPijεj√

K
+ op(1). (1)

If K/μ2n −→ ∞ (case II of Assumption 6) then by Theorem 2 of Hausman et. al. (2010),

(μn/
√
K)S0n(δ̂ − δ0) = Op(1), so that by

√
K/μ2n −→ 0,

(δ̂ − δ)0Sn

⎡⎣S−1n X
i6=j

XiPijX
0
jS
−10
n

⎤⎦S0n(δ̂ − δ)/
√
K = Op(1)

³
K/μ2n

´
/
√
K = op(1),

(δ̂ − δ)0Sn

⎡⎣S−1n X
i6=j

XiPijεj

⎤⎦ /√K = Op(1)(
√
K/μn)Op(1 +

√
K/μn)/

√
K

= Op(1/μn +
√
K/μ2n) = op(1).

Therefore, eq. (1) is also satisfied when K/μ2n −→∞.

Next, note that σ2i ≥ C by Assumption 3 and Pii ≤ C < 1 by Assumption 1, so that

Vn =

P
i6=j σ

2
i P

2
ijσ

2
j

K
> C

ÃP
i,j P

2
ij

K
−
P

i P
2
ii

K

!
= C

P
i Pii(1− Pii)

K
> C > 0.
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Also, E[ε4i ] ≤ C and as shown above, E[
P

i6=j(εiPijεj)
2] = 2KVn. Now apply Lemma A1 with

Win = 0, c1n = 0, and c2n = 1. It follows by the conclusion of Lemma A1 thatP
i 6=j εiPijεj√
2KVn

d−→ N(0, 1).

Next, by Theorem 1 of Hausman et. al. (2010) we have δ̂
p−→ δ, so that by Lemma A3,

V̂n − Vn
p−→ 0. Then by Vn bounded and bounded away from zero,

q
Vn/V̂n

p−→ 1. Therefore by

the Slutzky theorem,Pn
i6=j ε̂iPij ε̂jq
2KV̂n

=

Pn
i6=j εiPijεjq
2KV̂n

+
op(1)q
2V̂n

=

s
Vn

V̂n

Pn
i6=j εiPijεj√
2KVn

+ op(1)
d−→ N(0, 1).

Next, note that T̂ ≥ qK−G(1− α) if and only ifPn
i6=j ε̂iPij ε̂jq
2KV̂n

≥ qK−G(1− α)−K√
2K

.

It is know that as K −→ ∞, [qK−G(1− α)− (K −G)] /
p
2(K −G) −→ q(1− α), where q(1− α)

is the 1− α quantile of the standard normal distribution. Also, we have

=

s
K −G

K

Ã
qK−G(1− α)− (K −G)p

2(K −G)

!
− G√

2K
−→ q(1− α).

The conclusion now follows. Q.E.D.

Proof of Theorem 2: It follows in the usual way from the conditions that

√
n
³
δ̂ − δ0

´
d−→ N(0, σ2(D0Q−1D)−1).

In addition, it is straitforward to show that Z 0Z/n −→ Q nonsingular implies that maxi≤n Pii −→ 0;

e.g. see McFadden (1982). Furthermore, note for di = 3(1 + kXik2) from the proof of Lemma A3

that

E[
X
i

Piidi] ≤
X
i

PiiE[di] ≤ C,

so
P

i Piidi = Op(1). Then similarly to the proof of Lemma A3, by Pii ≥ 0,¯̄̄̄
¯X
i

Pii(ε̂
2
i − ε2i )

¯̄̄̄
¯ ≤X

i

Pii
¯̄̄
ε̂2i − ε2i

¯̄̄
≤
X
i

Piidi
°°°δ̂ − δ

°°° = Op(1)op(1)
p−→ 0.

11



Also, we have

E[(
X
i

Piiε
2
i −Kσ2)2] = E[(

X
i

Pii{ε2i − σ2})2] =
X
i

P 2iiV ar(ε
4
i )

≤ Cmax
i≤n

Pii
X
i

Pii −→ 0.

Then by the Markov and Triangle inequalities,

X
i

Piiε̂
2
i

p−→ Kσ2.

Also, since (as just shown)
P

i P
2
ii −→ 0 it follows by Lemma A3 and σ2i = σ2 that

V̂n − σ4 =

X
i6=j P

2
ij ε̂

2
i ε̂
2
j

K
− σ4

X
i6=j P

2
ij

K
− σ4

X
i
P 2ii

K
= op(1) + o(1)

p−→ 0.

Therefore,

T̂ =
σ2p
V̂

ε̂0P ε̂

σ2
+K −

Pn
i=1 Piiε̂

2
ip

V̂
= [1 + op(1)]

ε̂0P ε̂

σ2
+ op(1).

It follows by standard arguments that ε̂0P ε̂/σ2
d−→ χ2(K − G), so the conclusion follows by the

Slutzky Lemma. Q.E.D.
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