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On adaptive estimation in partial linear models

G. Golubev, W. Hardle*

Institute Information Transmission Problems
and
Université d’Aix-Marseille

Humboldt-Universitat zu Berlin

Abstract

We consider a problem of estimation of parametric component in a partial linear
model. Suppose that a finite set £ of linear estimators is given. Our goal is to mimic
the estimator in £ that has the smallest risk. Using a second order expansion of the
risk of linear estimators we propose a practically feasible adaptive procedure for
choice of smoothing parameters based on the principle of unbiased risk estimation.

1 Introduction

Partial linear models represent now a flexible and growing class of models for statistical
applications. In the present paper we will deal with the simplest partial linear model

where § € R? is a vector of unknown parameters, &; are i.i.d. random variables with zero
mean and the finite variance 0 = E£2. The regressors X; € [0, 1] are assumed to be i.i.d.
random variables with a strictly positive density ¢(z) on [0,1]. We will also assume that
they do not depend on &;. The nuisance function m(z), z € [0,1] is unknown but such
that the random variables m(X;) have zero mean.

*The authors were supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 373
”Quantifikation und Simulation Okonomischer Prozesse”, Humboldt-Universitit zu Berlin.
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It is well known that if m(z), = € [0, 1] is sufficiently smooth then € can be estimated
with the ordinary parametric rate Heckman (1986), Speckman (1988), Bhattacharia and
Zhao (1997), Mammen and Van de Geer (1997), Chen (1998). Further references and
applications of partially linear models can be found in the recent book by Hardle, Liang
and Gao (1999). Roughly speaking almost all first order effects in these models can be
explained at a heuristic level if one assumes that the nuisance function m(z) is known.
The next step in investigation of this problem was made in Golubev and Hérdle (2001),
where a second order term of quadratic risk of linear estimators was found (see Theorems
1, 2 below).

This paper continues Golubev, Hérdle (2001) concentrating on data driven choice
of smoothing parameters for penalized least-square estimators. Usually this problem is
considered as a problem of minor importance in the modern theory of semi-parametric
estimation. But from a practical point of view this problem plays the same role as a
data driven choice of the bandwidth in density estimation problem. There is a vast
mathematical literature on data driven choice of smoothing parameters (see Efroimovich
and Pinsker (1984), Lepski (1991), Lepski (1992), Golubev and Nussbaum (1992), Kneip
(1994), Lepski and Spokoiny (1997), Nemirovskii (1998), Tsybakov (1998), Barron, Birgé
and Massart (1999), among others). The problem of adaptive choice of smoothing pa-
rameters in the framework of the second order minimax theory for distribution function
estimation was considered in Golubev and Levit (1996).

To simplify some technical details we will assume that the nuisance function m(z)
belongs to the Sobolev ball

W3(L) = {m : /Ol[m(ﬂ) (2)]?dz < L, /01 q(z)m(z) dz = 0},

where the smoothness 3 is integer.

Our consideration is based on the so-called orthogonal series approach. The corner-
stone idea of this approach is to parameterize the functional class W%(L) We do this
by constructing an orthonormal system in the Hilbert space L7[0, 1] which is equipped
with the norm |[|-||, and with the inner product <-,->, defined by

If1l; = /0 q(z) f*(x) dz, <[f,g>4= /0 q(z)f(2)g(z) da.

Let ¢, K =0,...,8 — 1 be the fist orthonormal polynomials in Lg[(), 1]. The remainder
functions vy, k > 3 are defined as solutions of the following boundary value problem
5 0%
(_1) Wq/}s(x) = )‘SQ(‘/E)qﬁs(x)’ (2)
d* d*
st(x) = '(/JS(CC) :O, k :ﬂ,,Q/B—]_

=0 dxk z=1
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The eigen functions 1)s(z) are uniformly bounded in z. The asymptotic behavior of the
eigen values )\, plays a very important role in spline theory and it is well-known that

A = [1+0(1)](7s)?* [/01 ' (z) dx Qﬂ, 8 — 00. (3)

For details we refer to Utreras (1980), Speckman (1985), Duistermaat (1995). Thus any
function m € W%(L) can be represented as the Fourier series

m(t) = vahi(t), with Y 12A < L, (4)
k=1

k=1

where v, = <m, >,.

Now we are ready to construct a penalized least-square estimator. Let X be an
arbitrary diagonal matrix with the entries Xy, = o > 0 and matrix ¥ be defined as
Ui = ¥r(X;). We estimate parameter 6 by

~

O—arg;relgsmuln{HY ZTQ—\I!TV||2+ HE—IUHQ}_ (5)

Our further considerations will be essentially based on the second order theory of semi-
parametric estimation. The next two theorems describe the performance of 8 up to the
second order terms (see for more details Golubev and Hérdle (2001)). Let

H=nY"2(nX 2+ E)™", (6)
where E is identity matrix and
0.2
IMSE[H,v] = ||(E — H)v|* + —tr H?
n

be the integrated mean-square error of recovering function m(x) in the model (1) provided
that 6 is known. In other words

IMSE[H,v] = [1+01)]> (v — Huts)’,
k=0

where
n

), = %Z(Yi — 07 Z) b (X5).

=1
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Theorem 1 Suppose that E|&|** < oo for some § > 0 and

. 1/2 2 2 _ T\ -1 2
nll_)Iglolog / nn}’%kai/ Z-E,l Z,; =0, max |(zz")7 max igl Zy; < 00, (7)
lim tr?H log/?n/n = 0.
n—oo

Then as n — oo uniformly in m € W(L)
E@—0)0—0)" =(ZZ") {o? +[1 + o(1)|IMSE[H, v]}.

This theorem demonstrates how the risk of § depends on the nuisance function m(-)
and the penalization matrix ¥ !. We see the first order term of the risk does not depend
on the nonparametric nuisance function. Note the second order term in the risk expansion
coincides with the integrated mean square error of recovering m(z) in the model (5)
provided 6 is known. This is why we are interested in the analysis of the second order
theory. One can maximize the second order term over all nuisance functions from W3 (L)
and than minimize it over all penalizations X or equivalently over all H. Thus one obtains
the following result about the minimax penalization.

Theorem 2 Let 8 be the estimator defined by (5) with © = HY>(E — H)™'20/\/n,
where H 1s the diagonal matrix

H,, = [1 — w\/)\s}
where [z]; = max(z,0), and w be a root of the equation

%ixs L%/A_s_l] -1 )

s=1 +

(8)

bl
_|_

Under the conditions of Theorem 1 as n — o0

sup E@—0)6—0)" = (22" 0*{1+[L+o(1)|n ‘trH}.

meW3(L)
If & are Gaussian then for any B > 0
inf sup sup E@—0)(6—0)T = (Z227)" {1+ 1+ o(1)]n"'tr H},

0 meWg(L)[16ll<B
where inf 1s taken over all estimators of the parameter 6.

Thus we see that the optimal regularization matrix 3 strongly depends on the param-
eter L, which defines the functional class W%(L) In practice this parameter is hardly
known. Therefore our next step is to construct a practically feasible data-driven method
for adaptive penalization.
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2 An adaptive estimator

The goal of adaptation is to chose the regularization matrix ¥ in (5) based on the
observations in order to minimize the covariance matrix E(f — 0)(8 — #)T. Theorem 1

plays an essential role in a such choice since it says that the second order risk of 6 is
controlled by IMSE[H,v|. Thus we see that in order to minimize the second order risk
we have to minimize IMSE[H,v] with respect to H. This functional depends on the
nuisance parameters v, which are of course not known. The ordinary way to perform
minimization in this situation is based on the principle of unbiased risk estimation. The
main idea is well known and commonly used in nonparametric estimation (see e.g. Akaike
(1973), Mallows (1973)). Heuristic arguments for adaptive choice of H are the following.
Let = (0y,...04,v1,...)T. Define an estimator of this vector by

) = argmin{ |V = Q7] 4 |5 E -y} @= (5 ). o
Simple algebra reveals that 7i( H) can be computed as
A(H) = [QQ +nH ™ (E - H)|"'QY. (11)
With U(H) = QT[QQ" + nH(E — H)]"'Q we easily see that
E|lY - Qa(H)|” = B||QT[(H) — u|” — 20*tx U(H). (12)

Noticing that by the law of large numbers

777 0
QQT“( 0 nE)

we arrive at

QQ" +ntr B =m0~ ()

and
UH)~Z"(2Z")'Z +Y"HY /n.

So with this in mind we obtain omitting the terms of the order O(1)
N 2 2
E|Q"[u(H) - 4||” ~ E||¥"(E - H)v|" + ¢*Etr U*(H) (13)
R nZ(l — Hp) i +o*tr H? + o*te Z5(Z227) 1 Z(1 + 2trH /n)
k=1

~ IMSE(H)n.
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Thus to minimize the risk of the estimator one could choose (cf. (12))
A = argmin {[|v = Q"(H)||" + 20w U(H) } (14)
€

where H is a set in 15(0, 00), which must not be very rich. For instance we will assume
that H is a finite set. We discuss the required properties 4 in more detail in the sequel.
Examples of commonly used classes H are projection smoothers with Hy, = 1{k < w},
for integer parameter w € [1,n], the Pinsker (1980) or minimax filters (see Theorem 2)

Hy = [1 = (k/w)’]+, w € [1,7] (15)
and smoothing spline Wahba (1990)
Hkk = (1 + M/\lc)ila n > 07 (16)

where \; are the eigen values of the boundary value problem (2). We would like to
remind that in the last case the estimator has the form

A

6= argmlnmln{Z[Y 0" Z; — m(X +,u/[m5) ]de}

and there exist very fast computational algorithms for finding 0 (see for more details
Green and Silverman (1994) and Schimek (2000)).
Unfortunately in partial linear models the empirical risk n(f — 6)(# — 6)T is non-

degenerate. This leads to some difficulties in evaluation of the performance of 0 with
H from (14). To overcome these difficulties we use the idea of splitting by Nemirovskii
(1998). Only a part of the whole sample say Yi,..., Yy, where N < n will be used
to construct the matrix H. Once H is chosen the whole sample Yi,...,Y,, is used to
compute the estimator. Thus our main idea is to estimate the right-hand side in (14)
based the data Yi,...,Yy. We do this in the following way. Let

fin (H) = arg min {1V = @5y + N (|28 — 1) 2]}

be the estimator of the parameter u based on the data Y3,...,Yy. With (12) and (13)
we obtain

E|Y - QUa(H)|’ +20*60 UH) = n'Y (1 — Hu)?vE + 0*tr U*(H)
k=1

N (1 — Hw)vi + o*tr Uy (H)

+ (1 . %) o2tr UZ (H)

Q

2z =23

[E Vv — QLiin (H)|, + 202t UN(H)] + (1 - %) o*tr U2 (H).
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Thus we can replace (14) by
H* = arg min {HY QLN (H)|% + 202t Uy (H) — o”tr U2 (H) (1 — N/n)} (17)
and the adaptive estimator of f is defined now by
0" = argmainmyin { HY - 770 — \IITI/H2 +n H(H*)’1/2(E - H*)1/21/H2} : (18)

Our further analysis is essentially based on some properties of the smoothing matrixes
H. We will assume the set # is finite, its cardinality is less then O(n) and uniformly in
HecH:

0< Hy, <1,

Hy =1, fork=0,...,0-1,

tr H < Cytr H?,

tr’H < Cyn/logn, (19)

> HR K < Cyn,

k>n

where Cy is some constant.
In order to simplify some technical details we assume also that the regressors are such
that for some sufficiently large constant C; the following conditions are hold

max 72 < Zz,i <%z ZZ;, (22| Y 22 <Cr (20)

1€[1,N] fim1
The following theorem is the main result of the paper.

Theorem 3 Let & be Gaussian and N = n/log"™*n, k > 0. Then under conditions
(19-20) uniformly in m € W3(L) and such that ||m|l, < M < 0o asn — oo

E0*-0)(0"—0)" = (ZZ") H{o? +[1 + o(1)] jnf IMSE[H,v]}.

This theorem could be interpreted as an oracle inequality (see Nemirovski (1998))
in the following way. Suppose we are allowed to make use of only the estimators 9
defined by (5), (6) with H € H. Let us assume that there is an oracle which says the
nuisance function m(-). If we know this function or equivalently v then according to
Theorem 1 we can minimize the risk of 6 up to a second order term choosing H* =
argmingey IMSE[H,v]. It is clear with this family of estimators we cannot do better.
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On the other hand Theorem 3 says that we can achieve almost the same performance
without oracles.

Remark 1. There is no other way to compute H* from (17) except the complete
search. Thus from a computational point of view it is better to have cardinality of H as
small as possible. But if H is not sufficiently rich the risk of the adaptive estimator #* may
increase substantially. So there is a compromise between computational and statistical
efficiency. The simplest way to resolve this problem is to use so-called exponential grids.
As an example consider the family of minimax smoothers defined by (15). Let us chose
sufficiently small number ¢, say € = 0.1 and consider the grid of bandwidths

ws=(14+¢)°, s=0,...,logn/e.
Let H® be a corresponding class of smoothers having the elements
Hy, = [1 = (k/w;)"]y, s=0,...,logn/e.

Cardinality of ¢ is log n/e. It is much smaller smaller then cardinality 7. On the other
hand for any H € ‘H we can find H® € H¢ such that uniformly in v € 15(0, 00)

IMSE[H®,v] < (14 ¢)IMSE[H, v].

Indeed let Hyy, = [1 — (k/w)?], for some w € [1,n]. Take Hyy, = [1 — (k/w®)’];, where
w® = min{w; : wy > w}. Since Hf, > Hyy, we evidently have ||(1— H®)v|* < ||(1— H)v||?
and it is easy to see that ||H¢||? < (1 + ¢)||H¢||*. Thus using H° instead of H we may
have only a little increment of the risk but we improve significantly the computational
efficiency. The same remark concerns of course the spline estimator.

Remark 2. In order to consruct 8* we divided the sample in to two parts. From a
practical point of view this idea is of course not very attractive. As a rule we use the
estimator

f= argminmin{ ||y — 276 — ¥7v|]* + o?n||H2(E — H)'/?v|?}

with H from (14). So it would be very interesting to find out whether this estimator is
adaptive in the sense of Theorem 3. Unfortunately, our arguments applied in the proof
of this theorem cannot be used to answer this question because of a strong dependence
between the estimators of parametric and nonparametric parts in the partial linear model.

3 Proof of Theorem 3

We start the proof of Theorem 3 with some auxiliary results. First using the Taylor
formula we will find an asymptotic expansion for the risk of the estimator # defined by
(5). Rewrite (11) as

AH) - p = nS™ H™ (B — H) + 57 Q¢ (21)
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where S = A + B, with

7277 0 0 VAR
A‘( 0 nE+022—2>’ B_(\IIZT \II\I!T—nE>' (22)

In order to compute
S—l — A—l/Z(E + A_1/2BA_1/2)_1A_1/2. (23)

we use the Taylor expansion with respect to A='/2BA~1/2 in the right-hand side of the
above equation. Denote for brevity H = (E + 0?72 /n)~!. Thus we have to check that
the operator norm of the matrix

TN=1/2 7y T 17 1/2

HY?2W7T(2Z2) Y2 )\/n  HY*(WUT /n — E)H'/?
. . . . N
is sufficiently small. Denote also by #H cardinality of H and || Z,|% = S, Z2.

Lemma 1 For anyzxz <n
P{||A*1/2BA*1/2||2 >C(1+ x)tr2H/n} < #H exp(—22/C),
where C' s a sufficiently large constant.

Proof is similar to Lemma 2 in Golubev, Hérdle (2001) and omitted.

The next lemma gives an asymptotic expansion for the risk of 8 defined by (5) with
the penalization ¥ = H'/2(E — H)~/?/,/n depending on the data (Y;, X;).

Lemma 2 Uniformly in |m|, < M < oo as n — oo we have

~

E@#-0)0-0)" =EAzAL +07Y(227)7Y T 0(B), (25)
where
Ag = (ZZ")'ZE+ [E+o(E)(Z2Z7) ' Z9T(E — H)v (26)
+n ' E+o(E)(Z2Z") ' ZY"HYZ (Z2Z") ' Z¢
—nE+o(B)(Z2Z7) 1 Z2UT HU¢
+ 07 E +o(E)(Z227) 2T H(WYT /n — E)HVE,

O(E) is a d X d-matriz with the bounded operator norm and o(E) is a d X d-matriz with
the operator norm tending to 0 as n — oo.
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Proof. Notice that in view of (5) ||ZT(§— 0)|| < ||€ +¥Tv||. Therefore for any § > 0 we
have
E[§ - 6]*"* < C(@)n' )| (227)7 /)71

and we get by the Hélder inequality and Lemma 1 with 2 = (2C log(n#H))'/?
E@-60)6—-0T"=E@O-60)0—-0)T1{]|A2BA?| <&} (27)
+E@B-6)0-0)T1{|A2BAT?|| > ¢}
< E@-6)@-0"1{|A/*BA?|| <¢}
+ n||(ZZT)71/2||72P6/(1+6) {||A71/2BA71/2|| > E}O(E
< E@-0)(0-0)"1{|[A7/BAT| <} +n7[(227) 7T O(E),

Next one obtains by (23), (24) and by the Taylor formula when ||A~"/?BA~'2|| < ¢

-1 zZz"=1 0 1 0 77T\ 74T g
o= ( ( 0) n~'H ) n ( HUZT(ZZ7)! j(q(\pqu/n_ E) ) (28)
vz (zZ")" (997 /n— E) >

* *

+ (E+eOE)n (22" ' ZV"H (

where * denotes a matrix that is not needed in further calculations. Thus once again
using Lemma 1, which says that P {|| A 1/2BA"1/2|| > £} is exponentially small, we arrive
from (21) and (26-28) at the assertion of the lemma. [J

In the sequel we will use the following very simple auxiliary fact. Let V' be a finite
set in 15(0, 0o) with cardinality #V and let 7, be zero mean random variables, such that
for any given v € V

o 2 o
= E(Z Ukﬁ/c) = Z v Emem < oo.
k=0

k,1=0

Suppose now that v € V' are random variables depending on 7, £ =0,... and we want
2

to evaluate from above E(ZZ’;O vknk> . The next lemma provides a solution of this

problem.

Lemma 3 Assume that for A = \/log(S#V)/2 (S > 1) and for any given v € V

E exp[ Z vknk] < exp(2A?). (29)

T >

Then
E (Z vknk) * < 8log(SEV)ED () + 2 max D(v)/S. (30)
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Proof. By the Chebyshev inequality for any Q > 0 we have
o 2 1 o 2 1 i 2
E [} v =ED@)|——=3 vun| <ED@)max| ox|
; KTk (v) D) Z KTk ( )vev Do) kTlk

< @ED() + mas D) Y P {‘ﬁivkm\ > Q]

< Q’E D(v) + 2#V exp(—AQ + 2)?) max D(v).

Finally choosing @ = 24/21og(S#V) we arrive at (30). O

Lemma 4 Let 1y = Zf\il Zshk(X;). Then uniformly in v € W%(L) and in H e H

o0

> L
E[ 1—Hkk>umsk] < Clogm#M)|Z I} [E D (1 - Hw)i+ =] (31)
1 k=1

Proof. Since |1 — Hyy| < 1 one obtains by the Cauchy-Schwartz inequality that for any
M>1

o] 2 M
E [Z 1 — Hyy ansk} <2E [Z 1 - Hkk)”knsk} +20M~ 2ﬁHL”Z ||N (32)
k=1 k=1

Next we apply Lemma 3 to the first term in right-hand side of (32). So we put

N M
ve= (1= Hu)vk, =Y Zats(Xs), D) =Z% D> (1 — Hu) v;.
i1 k=0

Check now (29). With A = y/log(n#H)/2 and M = N/[Czlog(n#H)] we get by the
Cauchy-Schwartz inequality and (20)

Amax; |Zs| Zkle(l — Hy)lve|  Amax; | Zy;| M2
Y 12l
| Zs || v (D252 (1 — Hir)?vg

With this in mind since X; are independent we have by the Taylor formula

< ACYPMVPNY? <

5.

Eexp[

)\ [e9) N
Ve | = ex — Hyp ) vy
*(v); 77] H p{ *Z Ur(X )}
< (1+ver?/2) Sexp(AQ)-

Hence using (32) and Lemma 3 we finish the proof. [J
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Lemma 5 Let & be i.i.d. N'(0,0%). Then

12

00 N
E{>" Hu| (3 Zs,«/;,c()(i))2 12,13 }2 < Clog(n#H)|| Z,|[4 Etr H, (33)
k=1 =1

{
{
{

B {0 HE Y WEX) - 1) < Clog(utH)NB 1 B
{3 a3 (X)X} < Clogn#H)NE w2,
{

B> B Y e (X00(X,) — 812520 Z80) " 20}

<

=1
< Clog(n#H)Etr H?.

N
E{S Hy (Z gﬂpk(xi))Q _ N02] }2 < Clog(n#H)N?E tr H?,
T =1

N
S HL[(en(x) - Not]} < Clogn#r) KB 1 2
T =1

(34)

(35)

(36)

(37)

(38)

(39)

Proof. We prove only the first inequality since the others can be checked in the similar

way. Once again use Lemma 3. Putting
N 2
Vg = Hyp, e = (Z Zsiwk(Xi)) —1Zll%
i=1
we have by (19 - 20) that for any given v

D(v) =E (Z vknk)2 = 91 + o(1)] tr H?|| Z,||%.

Since tr H?2 < n we choose S = n?. Thus to complete the proof of the lemma it remains

to check (29). Using the Cauchy-Schwartz inequality one obtains

E exp { \/1% ;vkm}

(40)
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< EY? exp{

Z ZsiZs; kalﬁk )}

]<z

xEl/QeXp{\/iZ ka[d)k -—1]}.

Notice that in view of (19-20) one obtains for A = /log(n?#H)

/\|ZszZsa|
\/D

Therefore we can use the Taylor formula to compute the right-hand side of (40). Hence
acting in this way we arrive at

Zv Vi (Xa) Y (X )‘ ) /\Z2 ‘Z vr[1R(X ‘— o(1).

>

E exp{ ivlmk} < exp(2)?).
k=0

g
=

Now (30) implies the inequality (33). O

Lemma 6 Let 1y, = N~/? Zf\;l[wk(Xi)wl(Xi) — Opt]- For any M > 1 uniformly in
ve WH(L)

E ‘ > " vi(l = Hig) (1 — Hu) s
k=0

< OMlog"2(M) [E 31— H)?vp + LM% | (41)

and

E ) HuH,;, < Clog(n)Etr’H. (42)
k,s=0

Let (s = ZQ;ZI Uk (X)) 0s(X) 25 (ZnZ%) 1 ZN]i;. Then uniformly in v € Wﬂ(L)

e 2 e 2
E (Z |VS|H,C,C¢,€5) < C’logn(z |y3|) E tr2H + CLn %+, (43)
s=0

k,s=0

Proof. Note that ¥y (X;)¢(X;) — 0k are i.i.d. bounded random variables having zero
mean. Therefore

P{jns| > o} < exp(~Ca?). (44)
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On the other hand one obtains by the Cauchy-Schwartz inequality

E ‘ > v (1 = Hyg) (1 - Hll)nkl‘

k=0
M 1/2
< (Z|l/k”1—Hkk|> max |kt | +L( Z k=21 By} l)
k=0 kJI>M
M
< MQE Zu,f (1— Hy)?+CL Y P{|n,d\ > Q}+CLM 2641

k<M

Putting @ = /C"log(M), where C’ is a sufficiently large constant, we arrive with (44)
at (41).

The second inequality (42) can be proved in the similar way. Using the Cauchy-
Schwartz inequality, (19) and (44) we have

o0 n o0
E ) HuHuni, <Emaxng, > HuHe +B ) HuHo,

k,s=0 - k,s=0 k,s>N

< Q*Etr’H + n’P {max Imks| > QY+ E (Z Hlfka) ( Z k™~ 2872771%5) v

k>n k,s>n

< Q*Etr’H + n*exp(—CQ?) + C.

We complete the proof of the lemma choosing @ = 24/logn/C. The proof of (43) is
similar and we omit it. O
Now we are ready to evaluate the performance of the estimator 6*.

Lemma 7 Let
. Nlogn
lim

n—oo n

=0. (45)
Then uniformly in m € W3(L) as n — oo
E(0" — 0)(6* — 0)T = (227)" [0—2 +(1+0(1)E (||(E HY|” + trH*z)] (46)

Proof. In order to compute the right-hand side of (25) we represent WZ7, W¢, Z¢ in
the following form

Z¢k Zsz+ Z ¢k sz - ‘IIZT+\IIZ’iT7

1=N+1
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N n
Ve = D h(X)&+ D er(Xi)& = T + TEy,
=1

i=N+1
N n

7€ = > Znbi+ Y Zwbi=Z& + Z&1.
=1 i=N-+1

and note that H* does not depend on WZ7, W& and Z¢&,. The dependence between
H* and WZ], V&, Z&, can be evaluated by Lemmas 4 — 6. So we have for example by
Lemma 4 and (45), (20)

E[ZV"(E — H)|[ZV" (E — H*)v])"
= E[(2YT + 291\ (E — B )|[(Z29T + 29T (E — H*)v|"
= E[ZV{(E - HW]|[ZV] (E - H*)V]T +E[ZYT(E - H*W]|[ZYT(E — H V)"

00 d
< [Z ZiZsi + O(E mgnzz }EZ(1—H:k>2vz+Clzg”ansn?v
— s=1

i=N+1 s=1 1=1

V] %0 Clogn o
< 270 M 5 S e S - g+ O
k=0 s=1

s=1 =1

v

< ZZ'[E + o(E)] [E ia — H;)M? + (_}

Similar arguments can be used in order to compute the remainder terms in the right-hand
side of (25). O
Proof of Theorem 3. Denote

Ly[H] =Y - QmN(H)HfV +20%*tr Uy (H) — (1 — N/n) o*tr U2 (H).
In view of Lemma 7 it suffices to show that uniformly in H € H
ELy[H] =[1+0(1)]NE [||(E —Hy|’ + a%er/n} +R, (47)

where R is a constant which does not depend on H. Let Sy = QvQY + NH Y(E—H) =
AN + BN; with

Ao — [ ZvZk 0 B 0 ZnU%
N 0 NH') 7N UyZE UNUT - NE )

Then by Lemma 1 (see also (28)) we have

5o = ((ZN%JTV)* N—OlH) (48)
» 0 (ZNyZT) 1 ZyOT H
— [E+o(E)N ( HUNZ5(ZyZ%) " H(UyVL/N — E)H )
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Therefore
_ E 0
SNlQNQJJ\} = ( O H ) (49)
B (ZZTY 1 ZVTHUNZT /N —(Z22T) 1 29T (E — H)
[E +o(E)) ( 0 HUyZT(227)" 1295 /N
and
QnNSN' QN =Un(H) = Z3(ZnZ3%) " Zny + N UNHTY, (50)

+ N YE+o(E)[Z5(Zx25) 1 ZyUnHYT + O HU 20 (20 25) 1 2y
+ UL H(Y U /N — EYHU 5.

First we estimate the traces of Uy(H) and U%(H). By a simple algebra we obtain

N-'E tr UL HUy = {trH o Z ZHkk[wk 1]}, (51)
i=1 k=0
N 2Etr UL HU UL HUy (52)
= N7'E tr UL H?Uy + N- 1E tr \P%H(\IJN\II /N — E)HUy

— (1+N HEtr H? +ENZZH§;¢[¢§(X¢) —1]

i=1 k=0
2

+ < Z HkkHss[\/—Zfﬁk (Xi) — Oks

ksO

and
N 'Etr ZT(ZNZT)*lzN\IIT HUy =N 't Z{(ZnZ%) ' ZyEtr H  (53)
+ ZHkk Z X)n(X5) = 6] 25 (Zn Zx) ™ Znlij-
7,i=1
Since tr ZL(ZyZ%) 1 Zy < C we obtain by (36), (39) , (42) and (50-53)
EtrUy(H)=[1+o(1)|EtrH + tr Zx(ZnZ5) 2, (54)
EtrUs(H)=[1+o)|Etr H* +tr Z8(ZnZ%) " Zx.
Next notice
1Y — Qyin(H)|[y = I(E - QySy'@n)én + (E — QySy' Qn)Qyully  (55)
= [[(E - QySy' Qn)énlly + QN (E = Sy'Qn @) ull%
+ 264 (E — Qn Sy QN)QN(E — Sy'QnQY ) -
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The first term in the right-hand side of (55) is evaluated with (48) as

E[|(E — QSN Qn)énlx — No* = —2E£4,Q3 Sy Qnén (56)
+ E&QNSy' QyQN Sy Qnén
= QB ZN(ZNZE) ZnEn — 21+ 0(1)|NT'EELTL HU N Ey
+ ELZE(ZnZE) 1 Zy + [1 + o(1)]N UL HT %y

Using (35) we get

NTE&URH Y Ey = Ezﬂkk— Z Ve (X5) k(X0 &E, (57)
,j=1
= O-QEZHkk'i_EZHkkI:( Zwk ) —0]:[1+0(1)]02E2Hkk.
k=1 k=0 k=0
Next with (35), (42) we obtain
N
NEEL(UNHUy) 6y = B tr H? + EZHkk (== ! Zwk(Xi)fiY—oQ} (58)
k=0 vﬁvi:l
1 & 1 & 1 &
J5E S; HuHio > xoe) (5 > Us(X0)E)
N
(7 D IV = 6u) = (1-+o(1)B w1
O(1) [ 2
TE[S;OHM(\/— Zi/ﬂk ) ]
OT Z HkkHss(\/— Z[Tﬁk (Xi) — 5ks]>2 = (140(1))E tr H*.
s,k=0
Therefore noticing that tr Z%(ZyZ%5) 1 Zy < C we arrive with (56)—(58) at
E[|(E - QySy'@n)énly = No®+(1+0(1))E (tr H® — 2trH) (59)
—tr ZN(ZNZ3) " Zy. (60)

Our next step is to estimate E ||Q% (E — Sy'QnQ%)u||3 in (55). Starting with the
first order term (see (49)) we have by (41) with M = N/ 10g1/2+5(n)

R 2

E||97(E — H)v|} =EY[>(1 — Huvit(X) (61)

=1 k=1
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[e 9] (e} N
= NE) (1-Hw)i+ B> (1 — Hu)vsi(1 — Hu) Y _[n(Xi)1h(X;) — 6u]
k=0 ki=f i—1

= [1+ 0(1)]NEZ(1 — Hy)?vi + log*™(n)/N.

k=1

The remainder terms in E ||Q% (E — Sy'QnQ% ) 1]|% associated with the second order
terms in (49) are evaluated by the similar arguments. We have by (33) (replacing there
Zyi by [Z§5(ZnZ3) 7 Zn]si and by [Zn0];)

N~’E |z} (ZNZT)‘lZN\IINH\IlT Z50|1%

= QEZ{ZHkk(Zwk MNZN(ZNZY) " Zn]s )(
AN~ QEZ{ZHM<Z¢1: V24 (ZnZY) " Zys )2}

w(X)(200),) }

u‘Mz

N

<
+4N—2EZ{§:Hk (Zzpk )1 Zn0);) }2

N
< ON7 10g(n#7—[){||ZN0||2 +3 [Z?V‘(ZNZZTV)*ZN];}E tr2H = o(1)E trH,

i,5=1

E||Z3 ZNZT 1 ZNUN(E - H)v||A
N

- B3{5 0 (S () 2l

N o]

< log(n#H) Y [Z5(ZnZ8) "2y (B Y (1 — Hu)™vE + 2]

i,j=1 k=1
C
= [EZ 1 - Hkk Vk g:|
and by (43)
NE || VEHY N ZL (ZnZ28) 2T
N

= N QEZ{ZZHkkwk Vs Z[ZT (ZNZY) " ZN)im ¥k (X)) (X )}2

i=1 k=0 s=0 I,m=1
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Huala] 3 1252028 2t (X, (X))

0 Ily,m=1

[M]8

< CN‘lE{i

k=0

@
Il

2
|1/S|> E tr’H+Cn 'N~!' = o(1)Etr H.

M2

< CN7! logn(

Il
)

Thus using the above inequalities and (61) we arrive at
BIQY(E — Sy Qu@bly = [1 +o(DINES (1 — Hu? +o()BS HZ. (62)
k=0 k=0
The interference term in (55) is evaluated by the similar way. So one gets
B[€5( - QuSy' Q)Q%(E — S5 Q@] < o()E [N 3001 — Hyui + 30 HE)
k=0 k=0

The proof of (47) follows now from the above equation (55) and (54), (62). O
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