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Announcements

Midterm Exam Wed 2/26

Project  Milestone  1
• Report: due Sun 3/8

• Meeting: Mon 3/9

PA2
• Waypoint Report: due Mon 3/16

• Final Submission: due Mon 3/30



1. Cache Coherence

2. PA 2 Overview

3. Murphi ( Tutorial )
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Cache Coherence

• Why?
• In the presence of caches, orchestrate access to shared 

memory in a multi-core system

• What?
• A load returns the most recent value written

• For a single memory location only

• How?
• Well, many many flavors!



Cache Coherence – How?

• Interconnection network
• Bus: Snoop-based protocols
• Point-to-point: Directory-based protocols

• Stable states?
• VI, MSI, MESI, MOSI, MOESI

• Optimizations employed – countless papers!!
• 3-hop vs 4-hop
• Self-downgrade (M->S)
• Cruise missile invalidations, etc.



Basic Directory Operation: Read

Load A (miss)
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A: Shared, #1
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Basic Directory Operation: Write
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Load A (hit)

..oops

Store A (hit)



Basic Directory Operation: Write

Load A (miss)
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A: Shared, #1

A: Mod., #2
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Deadlock!

• Protocol deadlock
• Wait for a message that is never sent

• Solution: Design your state machine correctly

• Network deadlock
• Coherence messages hold resources in circular manner

• Solution: Dedicated virtual networks for different messages



Virtual Networks
• Solve network-dependent deadlocks

• Have separate VN for every message class



Assignment 2 [link]

• Design a CC protocol   → state transition diagram

• Learn a formal verification language

• Specify your CC protocol formally and verify it

Requirements
• Verify with at least 3 processors, 1 memory location

• Connected via an arbitrary interconnect

• Network can reorder messages

• Infinite buffers

• Multiple virtual channels as many as you need

but h/w cost, so minimize

• Directory-based memory unit     (directory co-located w/ memory)

Read !!

https://www.eecs.umich.edu/courses/eecs570/pa/2/assignment.html


Designing a CC Protocol

• MSI Base Protocol

• Figure out different message types needed

• Nack-free  → more difficult

• Allow silent drop of clean data or maintain precise 
sharing?   What are the implications?

• How many protocol lanes needed?

• Figure out all the transient states required for 
processors and directory

• At least one optimization over your base protocol



Murphi
"Protocol Verification as a Hardware Design Aid," David L. 
Dill, Andreas J. Drexler, Alan J. Hu and C. Han Yang, 1992 

• Formal verification of finite state machines

State space exploration 

• explicit enumeration- explores all reachable states

• tracks queue of “to-be-explored” states

• keeps giant table of all previously visited states

• canonical representations & hashing for efficiency

• exploits symmetry to canonicalize redundant states



State Space Exploration

• States
• stable and transient

• Actions
• Prerequisite for an 

action to happen?

• What is the outcome?

• Invariants
• To ensure correctness

• Example?



3-Hop MSI Protocol

How you think it should look like



3-Hop MSI Protocol
How it really looks like



MESI w/ Self Downgrade on 4 Procs
What you end up implementing



Solutions

3-hop MSI (NACK-free), 3 procs
47744 states, 207008 rules fired in 4.42s.

+ Self-Downgrade + Cruise Missile Invalidation, 4 procs
4690993 states, 27254378 rules fired in 1594.70s.

Numbers will be different for your implementations



Murphi Model Checker

( Tutorial )

https://www.eecs.umich.edu/courses/eecs570/discussions/w20/murphi.html


Tips!
Sorin et al - A Primer on Memory Consistency and Cache 
Coherence, Ch. 8

Start early

• One change at a time
• Start simple, add incrementally
• Compile at each step
• Use version control

• Murphi Options: $./twostate -h

• Memory
• You will soon run out of default memory allocated
• Use: -m<n>, n megabytes   while running executable

• Debugging  tips in Murphi Manual


