Summary. The genus Sclerocactus Britt. \& Rose (Cactaceae) is a small group of globose to subcylindric cacti, mostly with hooked central spines, of the Colorado Plateau, Great Basin, and northern Mojave Desert of the western U.S. Thirteen species and five subspecies are recognized. A new name, Mojave Desert of the western U.S. Thirteen species and five subspecies are recognized. A new name,
S. cloveriae, is proposed for the combination of two forme: varieties of S. whipplei, var. heilii and
var. ree, esii. We also elevate S. pubispinis var. sileri and S. wetlandicus var. ilseae to specific status. var. rees esil. We also elevate Sibispin's var. Sileri and S. wetlandicus var. ilseae to specific status.
and describe one new subspecies (S. cloveriae subsp.brackii). Half of the recognized taxa of Sclerocactus are either protected as endangered or threatened species or (in the case of all of the newly described taxa) warrant protection, and we briefly discuss the conservation of this group.

Introduction

Britton and Rose (1922) were the first to recognize the genus Sclerocactus, characterizing by the nearly naked fruit and tuberculate seeds. They included only two species: S. whipplei (En gelm. \& Bigelow) Britt. \& Rose and S. polyan cistnus (Engelm. \& Bigelow) Britt. \& Rose. Al though new species of Sclerocactus were described in the intervening years (Evans, 1939; Clover and Jotter, 1941; Clover, 1942; Peebles, 1949), the first comprehensive study of Sclerocactus was that of Benson (1966a, 1966b). In his revision he discusses six species and three varieties (five new combinations and one new species) and pro vides descriptions, a taxonomic key, and distri bution chars. Further work (Woodrulf and Ben son, 1976; Benson, 1982) expanded the genus to include eight species and two varieties. No fewe than five species and three varieties have been described (Castetter et al., 1976; Heil. 1979 Welsh and Thom, 1988; Heil and Welsh, 1988 Hochstatter, 1989, 1993) that were either no evaluated by Benson or post-date his work. Although there has been (1982), Hochuate this genus since Benson (1982), Hochstatter (lg)) falls sho hor the ype collections reviewed

The ype collections reviewed
The circumscription of this genus as a whole is not without controversy. Gerald Arp (1972) ransfed some mers or (hen son or S pariflorus Clover $\&$ Jolur) into P diocactus based on the results of a phentic and ysis using an unspecified similarity measure. H concluded that his pheretic analysis provided evidence that boit Sclerocactus and Pediocactus were polyphyletic and should therefore be treat ed asingle genus. Unfortumaty. Apronfused overall similarity with synapomorphy (similarit due to the possession of shared derived features) as providing evidence of phylogenetic relation ships (Hennis 1966) Moreover he failed to in
clude other taxa which may be more closely related to Sclerocactus than to Pediocactus (e.g., Echinomastus). Without taxa to serve as outgroups, there is no way to demonstrate monophyly of his circumscription of Pediocactus or to root his tree, rendering his conclusions hollow. The different method of fruit dehiscence, dissimilarities in seed structure, anther ultra-structure and persistent versus nonpersistent perianths easily distinguish Sclerocactus from Pediocactus (Benson, 1974; Heil et al., 1981 ; Heil and Porter. unpubl.). In a more recent recircumscription of the genus, the International Organization of Succulent Plant Study (IOS) has taken a more conservative view, including Ancistrocactus. Echinomastus, Toumeya. Glandulicactus, and Homalocephala in Sclerocactus, based on similarities in seed morphology (Hunt and Taylor, 1986); Pediocactus, however, was not included in Sclerocactus.

We have taken a more traditional view of Sclerocactus by regarding Pediocactus, 1 Incistrocactus. Echinomastus. Toumeya, Glandulicactus and Homalocephala as distinct genera, even though there is evidence that some ofthesegroups (or members thereof) may be closely related to Sclerocactus. Furher research into the anatomy, morps will chary H . gr the meantime because these data are largely lakin it seems precture to include other rec lacking il seat hish
bel variation within and cien, a ve. reproductive priogy during life Juondary stems) have made Sclerocactis a notoriously difficult group for species-level identification. This variation may involve all parts of the plant body including floral, stem and spine features. A noteworthy example is the profound differences between juvenile and mature stems in Sclerocactus. The morhology of juvenile (prereproductive) plants is characterized by more
gl wose or elliptic stems bearing podaria (tubereics) that are not coalesced into ribs. These stems have areoles that either lack central spines or that have short central spines and few, short radial spines. In some species this morphology is maintained throughout the life of the plant (e.g., S. mesaeverdae and S. brevispimus), but generally all of these features change as the plant matures. Adult (reproductive) individuals have cylindroid stems in which the tubercles are coalesced into distinct ribs, while the areoles bear a greater number of longer central and radial spines. There appears to be a repeated pattern of morphological change in Sclerocactus. This involves the tendency in some populations (or species) for reproductive individuals to bear stem and spine features found in juveniles of other populations or species. Remarkably, these populations also possess convergent floral morphologies: flowers are short, broad and barrel-shaped, with ovoid i. yals, and somewhatresemble an open bud. This convergent floral morphology should not be surprising; any change in stem development will also affect the flowers, for part of the flower (i.e., the pericarpellary region) is derived from stem tissue. The change in timing of events during development (heterochrony) in which plants that appear juvenile vegetatively are able to flower and fruit, is termed paedomorphosis. It appears that paedomorphosis plays an important role in the evolution of Sclerocactus.
inis revision is the first comprehensive study of Sclerocactus since Benson (1966a, 1966b, 1982) and is an attempt to make some sense ol the patterns of morphological variation in light ofmore extensive population-level field-work (the senior author began his study of Sclerocactus more than twenty years ago). This field-work has provided a better understanding of the distribution of the species and the patterns of morphological variavion with respect o geography. We hope to pre. int a mopula paturns of morphological walion cohesive units that possess geographic and eco losical coninit This tratrides logical continuity. This treatment provides a lunched, cesting both the classification present ed here and the relationships berween prese and ed er acti. Altoush there has been inter est in this group owing largely to the rarity of some of is members, very licte biolosical dat exists in the literature. It is our hope that this tris.ment will stimulate further research of re productive biology genetic structure of popula pions, physiology, gene struclural are of populaSclerocactus. Sclerocactus.

Although about half the species of Sclerocactus are widespread and quite plentiful, six have reStates Fish and Wildlife Service (USF\& WVS) threatened or endangered: S. mesae-verdae. S.
glaucus, and S. wrightiae. In addition. two species, (S. brevispinus. and S. sileri) and one sub species (S. cloveriae subsp. brachii) are very lim ited in distribution and should be considered rare and potentially in need of federal protection. With current world attention focused more and more on conservation issues, it is ironic that it is nec essary to stress the need for restraint from field collection of these rare species. Illegal taking ol federally protected cacti has continued over the years, including the removal of plants from scientific study-plots designed to evaluate the demography and biology of these endangered plants. Because of concerns over protection, we have found it necessary to limit the citation of specimens, particularly for uncommon species, and to be vague at times in discussions relating to distribution. We would like to point out that the collection of federally listed species is a violation of federal law; the collection of any sclerocactus on tribal lands is a violation of Navajo Tribal law; and collection of this genus on Ute Mountain, Ute Indian lands, Southern Ute Indian lands, or Uintah and Ouray Indian lands, is a violation of tribal law.

Sclerocactus

Sclerocactus Britt. \& Rose, Cactaceat 3:212. 1922. Type species: Sclerocactus polyancisinus (Engelm. \& Bigelow) Britt. \& Rose (Benson [1966] designates S. whipplei as type; however, Britton and Rose [1922:212] clearly designate a type:

Echinocactus polyancistnes is the type"). Coloradou Boissevain in Boissevain \& Davidson, Colorado Cacti 54. 1940. Type species: C. mesae-verdae Boissevain ex Hill \& Salisbury. Ferocactus section Sclerocactus (Britt. \& Rose) N. P. Taylor, Cact. Succ. J. (Gr. Br.) $41: 90.1979$.

Perennial, stems succulent, plant deep-seated in winter but never llat-topped. Stems mostly solitary, occasionally clumped, pale green to dark green, or bluish green, occasionally glaucous, ovemispleric, c lindroidal dal 18-15 cm diam 10 cm . dal, $1.8-15 \mathrm{~cm}$ dam, -10 cm long, podaria usually coalescent (forming $10-17$ ribs). rarely long vertically $6-9 \mathrm{~mm}$ broad areoles elliptic. ong and yellow, staw, red yellow, siaw, red, reddish-brally, Brown, pink distinct sypes and usually one or ore the longer 0.7-9 cm $0.5-3 \mathrm{~mm}$ hick acic ular ar subulate or commi $0.5-$ radial spines 2-11(-18) white or gray or some. times straw brown pink or gray or some-
 opening 1-6 cm wide $1-5.7 \mathrm{~cm}$ lone. tloral (re ceptacular) lube funnelform; bracteoles sofi and scale-like, succulent, margins hyaline, entire or fimbriate axils naked or sparsely hairy outur repals with greenish-lavender, reddish-brown
yellowish-brown, or purple midstripes, the margins white, cream, gold, rose, pink, or purple, oblanceolate, $1-4.5 \mathrm{~cm}$ long, $3-10 \mathrm{~mm}$ wide; inner tepals white, yellow, or pink to reddish-purple, red violet, magenta or lavender, lanceolate to oblanceolate, $1.5-5 \mathrm{~cm}$ long, $4-12 \mathrm{~mm}$ wide; filaments white, cream, green, pale yellow, purple or magenta, the anthers yellow or rarely cream margin of dehisced thecae with long papillae style cream, light green, pink or purple, papillose throughout in all species except S. polyancistrus stigma green to yellowish-green, 7-12-lobed; pericarpel epidermis with large papillae and ap pearing granular, or with small papillae and appearing smooth; fruits from near stem-apex green, often turning red, thin-walled, becoming dry at maturity, naked or with a few broad, thin scales, $0.7-3 \mathrm{~cm}$ long, $0.5-2.1 \mathrm{~cm}$ diam, opening with 2-4 irregular, short, vertical slits above the base within a nearly regular, circular region around the base, or indehiscent; seeds brown or black, papillate-reticulate, rarely furrowed, 1.5 3 mm long (maximum length), $1.9-4 \mathrm{~mm}$ broad, $1-1.5 \mathrm{~mm}$ thick.
The thirteen species included in Sclerocactus are found in the southwestern United States in the Great Basin and Colorado Plateau provinces. In the Mojave, Great Basin, and Navajoan Deserts they are associated with blackbrush, saltbrush, sagebrush, and pinyon-juniper woodland communities. In the Death Valley region, S. polyancistrusgrows at an elevation as low as 2500^{\prime} $(758 \mathrm{~m})$, while in San Juan County, New Mexico, S. cloveriae has been found as high as nearly $8000^{\prime}(2420 \mathrm{~m})$. These species occur on many different soil-types, ranging from very gravelly, sandy soils to heavy, alkaline clays, or gypsiferous soils.

Key To The Species of Sclerocactus

1. Central spine 0-1; perianth cream or pink; clay soils; in southwestern Colorado and northwestern New Mexico. I. mesae-verdae. 1. Central spines $1-11$ (rarely 0 in Duchesne County,
Utah); perianth color various; on various soil types. Utah); perianth color various; on various soil types.
2. Filaments magenta, flowers pale pink to whitish, fruit usually lacking bracts; south-central Utah
3. Filaments areen to whitish bu ?. S. wrightiae tepals purple, not pale pink or whitish; fruit of ten bearing bracts.
4. Lower central spine either not hooked, ab sent, or, if slightly hooked, then less than I cm long; restricted to clay soils.
5. Lower central spine mostly straight (rare ly hooked); flowers mostly $4-5 \mathrm{~cm}$ diam
$3-4 \mathrm{~cm}$ long: extreme eastern Utah southwestern Colorado. . 3. S. glaucus. 4. Lower central spine absent or if presen hen slightly hooked and less than 1 cm ong; flowers mostly $1.75-3 \mathrm{~cm}$ diam, 2.5 3.5 cm long; Duchesne Co., Utah. 4. S. brevispinus
. Lower central spine hooked, over 1 cm long. on various soil types.

Fruit opening along 2-4 vertical slits central and lateral spines mostly 4; Greal
Basin Desert and Arizona Strip.
6 Basin Desert and Arizona Strip. bescent at the base of older stems; style pink to reddish-violet; Great Basin Desert.
7. Flowers bronze to yellow; lic wer central spine red to almosi black $1.5-3 \mathrm{~cm}$ long; upper central spines $.7-3.5 \mathrm{~cm}$ long, $0.7-1 \mathrm{~mm}$ wide.
$8 . S$ subispimus
Fowers pink, rose to violet; lowe central spine white, gray tan, or almost brown or reddish brown to black, $2-1.5 \mathrm{~cm}$ long; upper cen ral spines $2-6 \mathrm{~cm}$ long, $1-2.5 \mathrm{~mm}$ wide.
. Lower central spine tan to al most brown or reddish to al mostral spine $2-6 \mathrm{~cm}$ long 1.6 mm wide; southwestem Utah.9. S. spinosior
8. Lower central spine white, tan gray or black, $2.5-4.5 \mathrm{~cm}$ long upper central spine $3.5-5.5 \mathrm{~cm}$ long, $1-2.5 \mathrm{~mm}$ wide; lron County, Utah: Nye and Lir coln counties, Nevada.

Juvenile spines and areoles not white pubescent; style yellowish-green; Ar izona Strip. 11. S. sileri. 5. Fruit indehiscent or dehiscing along a basal suture; central spines 4-8; Mojave Deser and Colorado Plateau.
9. Hooked spines 1-3; flowers rose, pink, purple, yellow or white; Colorado Plaeau.
Fower $3-5.7 \mathrm{~cm}$ long, $2.5-5.5 \mathrm{~cm}$ wide, funnelform, pericarpel with upper central spine flat or angled 1. Flower 2.2-3.2 cm. parviflonis wide, turbinate, ong. $1.5-2 \mathrm{~cm}$ sentl papilae, pericarpel with central spine flat and ribbon-like
11. Tepals yellow; central spines 4; northeastern Arizona and San Juan County, Utah
. Tepals purple; central spine 6-9; southwestern Colorado and northwestern New Mex Hooked spines $4-8$; flowers rose pur ple to magenta; Mojave Desert. . 12.
12. Stems mostly $10-20 \mathrm{~cm}$ long central spines 9-11; flowers mostly 5 cm wide, $5-6 \mathrm{~cm}$ long: seeds finely papillate.

1) Stens mosily. S. polyancisin Stems mostly $5-10 \mathrm{~cm}$ long; ce
2.5 cm diam, $3-4 \mathrm{~cm}$ long; seeds irregularly furrowed. . 13. S. nyensis.
1. Sclerocactus mesae-verdae (Boissevain ex Hill \& Salisbury) L. Benson, Cact. Succ. J. (U.S.) 38:54. 1966.

Coloradoa mesae-verdae Boissevain ex Hill \& Salsbury, Index Kewensis Suppl. 10:57. 1947. (not Coloradoa mesae-verdae Boissevain ex Boissevain \& Davidson, Colorado Cacti 55. 1940), Echinocactus mesae-verdae (Boissevain ex Hill \& Salisbury) L. Benson, Lean. West. Bot. 6:163. Hill \& Salisbury) L. Benson, Cact. \& Succ. J. U.S.) 38:54. 1966. Pediocactus mesae-verdae Boissevain ex Hill \& Salisbury) Arp, Cact Succ. . (U.S.) 44:222. 1972.
Type. Boissevain s.n., Cortez, Colorado (the lype specimen was reportedly deposited at the Dudley Herbarium of Slanford University; however, it was not found by Benson in 1965. Benson 16155 southeret of Mesa Verde, south [Cortez, Colorado, April 111962 (POM 06837). Colorado, April 11, 1962 (POM

Mesa Verde Cactus (Fig. 7)

Taproot much branched; stems mostly pale green, depressed-globose to ovoid, mostly $3.2-$ 11 cm long, $3.8-8 \mathrm{~cm}$ diam; ribs $13-17$; tubercles inconspicuous; areoles woolly; central spine $0(-1)$, rarely hooked, $7-15 \mathrm{~mm}$ long; peripheral spines none; radial spines $7-13$, straw-colored spreading, $6-13 \mathrm{~mm}$ long; Jlower $1-3 \mathrm{~cm}$ wide, $1-3.5 \mathrm{~cm}$ long, diumal; outer tepals with purple midstripes and cream or gold margins, oblan ceolate, $1-2.5 \mathrm{~mm}$ long, $5-8 \mathrm{~mm}$ wide, inner 5 sm lon s , mm ide; flamenes pale $1.5-3 \mathrm{~cm}$ long, ca. 5 mm wide, Jlaments pale yellow or white; anthers yellow; style light green, densely papillare, stigma green, gre n, becoming tan at maturity, short cylin-25-3 mm . 1 mm wide. $2.5-3 \mathrm{~mm}$ long, $3-4 \mathrm{~mm}$ wide.
Distribution. Extreme southwestern Colora do and northwestern New Mexico
Representative Specimens. COLORADO Monution Co. Southwest side of southern at tenuation of Mesa Verde, near base of the prom(POM 306837). NEW, MEXICO. SAN Juin Co (POM 6 O683). NEW MEXICO. SAN JuAN Co Mexico, K. Heil. July 1979 (SJNM 2649).
-ico, K. Heil. July
Charles Boissevain in Corado and described Cnd published in 1940. It grows on the tops, and published in 1940. It grows on the tops, lez, Colorado and Sheep Sprines, New Mexico at an elevation range of $4900-5500^{\prime}(1480-1660$ m). Associated plants include Opuntia polyacan tha (prickly pear cactus), Alriplex corrugata (mat saltbush), diriplex confertifolia (shadscale) and

Table 1. Species and varieties of Sclerocactus

1. Sclerocactus mesae-verda
2. S. wrightiae
3. S. glaucus
4. S. brevispinus
A. subsp. parvijlones
B. subsp. intermeduus
C. subsp. terrae-canyonae
5. S. whipplei
6. S. cloveriae
A. subsp. cloveriae
7. S. pubispimu
8. S. pubispims
9. S. spinosior
O. S. blainei
10. S. sileri
11. S. polyancistrus
12. S. nyensis

Frankenia jamesii (frankenia). S. mesae-verde usually occurs in full sunlight but may grow under a desert shrub. During periods of winter dormancy, the Mesa Verde cactus retracts into the soil, though on mature plants at least some part of the stem is exposed. During early spring the plant emerges and begins blooming in late April or early May.

Sclerocactus mesae-verdae is one of the more distinctive and morphologically invariant species of this genus. Even so, there is some popu-lation-level variation; notably, populations at the southern extreme of the range tend to possess pink flowers, rather than the more typical yel-lowish-cream flowers. There is also a well documented, sporadic mutation with a single hooked central spine per areole.

The pollination biology of S. mesae-verdae has been examined by Tepedino (unpubl., pers. comm.) at the Bee Biology \& Systematics Laboratory, Utah State University. His research indicates that this species is predominately outcrossing, though self-compatible. Pollen from the same but pol for plant (geitonogamy) frequently results in seedset. Howlina sed produced 50% for ger mus polid (ienogams) pollinations This in outrossed (xenogamous) polinations. This infor successful seed pet in S mesae verdae. forsuce from mid S. msa veld ach Howers open from mid ming to early althoon and remain open for about seven or eight hours. during which ope swetish Wheng whe surst open pressed to the style and slowly draw away already having shed some pollen. Pollen release occurs over several days as the anthers sequentially dehisce from the outerstamen to the inner. Although 22 species of insect visitors (18 native)

The Unita Basin hookless cactus was discov－ 0 0 0 0 0 0 0 0 0 0

 any taxonomic level in the Utah Fora（Welsh et
I994），other students of Cactaceas feel that al．1994），other students of Cactaceac feel that
 cies．The authors have examined patterns of vari－ ation in quantiative morphology（Heil and Por－
ter，1987；Porier and Heill in prep．）of this and 0
0
0
0
3
0
0
0
0 slatistically signifcant differences between S ．
laucusu and S ．parviflorus in most of the mor－

宣

Sclerocactus glauctus is made up of a surpris－
ingly polymorphic group of populations．This含

等

郎

方

 or
0
0
0
0

品复亮
 litlle variation within populations but ofien great
 K
0
0
0
0
0
0
0
0花

to near Monirose．COLORADO：

像范

cient rainfall，the plant fully emerges and blooms in unusually fragrant howers．Associates include untriplex sp．，Eriogonum sp．，Phacelia demissa and，rarely，Pediocactus winkleri and Townsen－ Sia mesae－verdae are closely related and that Wright＇s fish－hook cactus is a connecting link
betwen S mesae－verdae and S ．parviflorus（Ben－ between S ．mesae－verdae and S ．parviflorus（Ben
son，1982）．S ．wrightiae is probably more closely son，1982）．S．wrightiae is probably more closely
related to S ．parviflorus than to S ．mesae－verdae，
and the similarity between S ．mesae－verdac and and the similarity between S ．mesae－verdae and S．wrightiae independent but similar changes in evolution．These paedomorphic events，or trun－
cations of ancestral developmental pathways，may

 to be locally restriced，independent paedo
morphic derivatives of more widespread taxa and

 and it has been suggested that it hybridizes with S．parviflorus（Neese，unpubl．；Welsh et al．， 198 ）．
Some populations，particularly those on heavy clay，have depressed－globose stems with short spines and short，somewhat barrel－shaped，pald
pink flowers．At the other extreme，on more sandy soils，individuals are more elliptical to cylindroi－

－ues गulp gered by the United States Fish and Wildlife Ser－
vice（ 44 FR 58868 ；October 11，1979）．

Sclerocactus glaucus（J．A．Purpus ex K．
Schum．）L．Benson，Cact．Succ．J．（U．S．） 44 ：
221.1972.
Echinocactus glaucus J．A．Purpus，Monatsschr．

 Purpus）S．L．Welsh．Great Basin Nat．（ $4: 68$ ．
1984．Sclerocactus glaucus（J．A．Purpus）Back－

self-pollination (autogamy) does occur. Fowers open from mid-morning to early afternoon and remain open for about seven hours. Each flower opens daily, for three to five days, during which both the color of the tepals fades and the sweetish fragrance dissipates. When the flowers first open, the anthers are appressed to the style and slowly draw away and begin shedding pollen. Pollen release occurs over several days as the anthers sequentially dehisce from the outer stamen to the inner. Although 17 species of insect visitors were documented by Tepedino (pers. comm.), the most frequent visitors were small solitary bees, members of the Halictidae (Halictus and Dtalictus) and Anthophoridae (.Inthophora and Tetralonia). It should be noted that the exact ocation of the population under study was not revealed to us; however, it was identified as being south of Myton, Utah, suggesting that this data on reproductive biology may refer to a population of S. brevispinus.
S. glaucus is listed as threatened by the United States Fish and Wildlife Service (44 FR 58870; October 11, 1979).
4. Sclerocactus brevispinus K. D. Heil \& J. M. Porter, nom. et stat. nov.
S. wetlandicus Hochstätler var. ilseae Hochstätuer, Succulenta (2):2.: 1993
Type. F. Ilochstätler. Jh0700 (HBG)
Figs. 1, 10.
Stems mostly solitary, green, elongate and cyindrical, ovoid when young, 2.9-7.5(-8.5) cm ong (mean $=5.5 \mathrm{~cm} ; \mathrm{SD}=1.39$), 1.8-6.5(-7.0) cm in diam (mean $=5.2 \mathrm{~cm} ; \mathrm{SD}=0.96$); ribs usually 13 , more or less obscure to well-developed, the upper portion of the tubercles evident above the ribs, $5-14 \mathrm{~mm}$ long, $4.5-15 \mathrm{~mm}$ broad and protruding above the ribs $5-15 \mathrm{~mm}$; areoles $4.5-8.5 \mathrm{~mm}$ diam, typically $9-24 \mathrm{~mm}$ apart; central spines $4(-5)$, the hooked lower one often absent, but, if present, straw-colored to brown, highlighted purplish or reddish, terete or somewhat angled, hooked, porrect, 0.3-3.1 cm long. ca. 0.51.0 mm in diam, turned or curving somewhat downward, the lateral centrals similar to the lower but a bit shorter and not curved, angled to flat. somewhat inconspicuous, triangular in cross section, 1.5-3.5 cm long, $1.0-1.5 \mathrm{~mm}$ broad, erect; radial spines 6-7 ($5-8$), basally $0.9-1.5 \mathrm{~mm}$ broad, acicular, elliptic or rhombic in cross-secion: flower 2.3-3.5(-4) cm long (mean $=3.0$; SD $=0.37$), $1.6-3.0(-3.5) \mathrm{cm}$ in diam (mean $=2.5$ $\mathrm{cm} ; \mathrm{SD}=0.47$), exterior floral tube glabrous, not minutely granular-papillate; outer tepals greenish o purple with brownish midribs, pink, purple or whitish at the margins, the larger oblanceolate, $10-15 \mathrm{~mm}$ long, $3.5-7 \mathrm{~mm}$ broad. mucronate, marginally membranous and crisped or minutely oothed; tinner tepals purple, sometimes suffused with brown, the largest lanceolate, 15-22(-30)
mm long (mean $=19.0 ; \mathrm{SD}=0.20$), $4-6 \mathrm{~mm}$ at the broadest point (mean $=4.75 ; S D=0.09$), mucronate, somewhat irregularly toothed: filaments white, tinged with pink to pink-purple, 610 mm long, anthers yellow, $0.9-1.2 \mathrm{~mm}$ long, $0.3-0.5 \mathrm{~mm}$ wide; sty/e tinged with pink or purple, rarely green, $14.6-19.5 \mathrm{~mm}$ long, $1-1.5 \mathrm{~mm}$ in diameter, covered with minute but conspicuous papillae; stigma lobes $5-8, \mathrm{ca}$. $1.2-2.5 \mathrm{~mm}$ long, $0.5-1 \mathrm{~mm}$ broad; nectary chamber $1.5-$ (-3) mm deep; ovary $3-7 \mathrm{~mm}$ long at anthesis fruit green to tan, sometimes suffused with pink. dry, with a few membranous, scarious-margined, minutely toothed or fimbriate scales, $7-15 \mathrm{~mm}$ below the midd broad, irregularly opeline of dehiscence at the base of the ovary; seeds 1.2-2 mm long, $1.9-3 \mathrm{~mm}$ broad; hilum not deeply indented.
Distribution. A narrow endemic occurring in a series of small scattered populations in badlands near Myton, Utah.
Representative Specimens. UTAH: DUCHESNE Co. Clay badlands of the Duchesne River Shale, near Parriette Canyon, Duchesne Co., Utah $5140^{\prime}, K$. Heil \& J. M. Porter SJNM (6911).
It is unclear who first discovered this species however, two of the first botanists to documen populations of S. brevispinus were Larry England United States Fish and Wildlife Service Species Enhancement) and Stan Welsh (Brigham Young University) in the early 1980's. This cactus has ong been a curiosity to cactus horticulturists and collectors. It is extremely rare, growing at the base of Duchesne clay hills between 5000-6000 feet elevation. Originally described as a variant of S. wetlandicus (Hochstätter's designation of the Utah populations of S. glaucus at the specific level), this series of populations represents the only morphologically distinctive element associated with the previously circumscribed S. glantcus complex, in spite of apparent introgression. Morphological intergradation between this species and, presumably, S. glaucus has been the subject of several studies by U.S. Fish and Wildlife Service. USDI Bureau of Land Management, and the authors. The distribution of S. brevispinus forms a string of populations running east to west. Al the western extreme, populations are haracterized by plants with depressed-globose tems, short radial spines lacking a lower central hooked) spine and possessing very shor, barrelshaped, pale-pink-colored nowers. Populations located at about the middle of this string are characterized by plants with globose to more eliptical stems, somewhat longer radial spines, a very short (usually less than 5 mm) hooked lower entral spine and fowers that are slightly longer and pink to purple in color. At the eastern extent, ome populations appear to be highly introgressed forms and echnically should not be considered as S. brevispinus. These plants are char-

Fig. 1. An extremely rare caespitose form of Sclerocactus brevispinus. Duchesne Co., Utah.
acterized by elliptical stems and radial and central spines of the same length as in S. glaucus; however. the lower central is often hooked, and the flowers are of the same shape and color as in S glaucus. Other populations at the eastern limi of this species display little evidence of introgres sio.
3. brevispinus is currently under review by the United States Fish and Wildlife Service for list ing as a threatened or endangered species (L England, pers. comm.). There is no question tha his species is one of the most restricted taxa of sclerocactus. and there are numerous threats to its continued existence in the wild.
. Sclerocactus parviflorus Clover \& Jotter, Bull Torrey Bot. Club 68:419. 1941.

Echinocactus panvillorus (Clover \& Jourer) L. Ben son, Cacti of Arizona, ed. 2:102. 1950. Type. Clover \& Joller 2393. mouth of For bidding Canyon in Glen Canyon, above Lee Ferry, canyon ofthe Colorado. Abundant 20 m vals along the lower San Juan River (MICH holotype; US 2346042, isolype) $=$ subsp. par villorus.
S. havasupaiensis Clover, Amer. Journ. Bot. 29:172 1942. Echinocactus parviforus (Clover \& Jotter) L. Benson var. havasupaiensis (Clover) L Benson, Cactio of Arizona, ed. 2:104. 1950. Type. Clover 6406. ... on the top ol' Supai (MICH, holotype. Isotypes: MICH; US 2346047 2346049. POM 275262 311353) $=$ subsp. parviforus.
S. havasupaiensis Clover var. roseus Clover, Amer Journ. Bot. 29:172. 194?. Echinocactus parviתorus (Clover \& Joller) L. Benson var. roseus

Clover) L. Benson, Cactu of Arizona. ed. 2:102 1950. S. whipplei (Engelm. \& Bigelow) Britt. \& ose var. roseus (Clover) L. Benson. Cact. Suc . (U.S.) 38:104. 1966.
Type. Clover 6+03. . . . in Havasupai Canyon, Arizona (M1CH. holotype. Isotypes: US 234604t. 23

- parvioris. Type. K. Heil s.n., Canyonlands Nationa Park, Utah (UNM 64284, Isorype: SJNM). subsp. paniflones.

Sclerocactus parviforus Clover \& Jomer subsp. intermedius (Peebles) Heil \& Porter, comb nov.
S. pariflones Clover \& Jotter var. intermedius (Pee bles) D. Woodruif \& L. Benson, Cact. Succ. J (U.I.)
S. whipolei (Englem est. Bot. 5:191. 1949, var. intermedius (Peebles) L. Benson. Cact. Succ. J. (U.S.) 38:102. 1966.

Type. Pcebles \& Parker 14712.9 mi SW of Pipe Springs, Mohave Co.. Arizona, 5000 fi (CAS 351112. Isotype: ARIZ).
S. parijlonus Clover \& Jotter var. blessingae W. H
Earle, Saguaroland Bull. 34(3):39. Earle, Saguaroland Bull. 34(3):29. 1980 Type. Earle 103791. Cane Beds, Mojave
County, Arizona (ASU. Isotype: DES 18160). $=$ subsp.

Sclerocactus parviforus subsp. terrae-canyon ae (K. D. Heil) K. D. Heil \& J. M. Porter, comb. nov.
S. terrae-canyonae Heil, Cact. Succ. J. (U.S.) 51:26 1979.

Type. K. Meil s.n.. Trachyte Wash, ca. 10 mi
Sof Natural Bridges Nat'l Monument, San Juan

苫号

 Kane County，Utah，have the two upper lateral
spines hooked．

Sclerocactus parviforus subsp．terrae－can－
yonae（K．D．Heil）K．D．Heil \＆J．M．Poner． Canyonlands Eagle－claw Cactus（Fig．13） Lower central spine hooked，mostly white，light brown，reddish－brown，dark brown，or purplish－
pink， $2.9-8.2 \mathrm{~cm}$ long， $0.75-2 \mathrm{~mm}$ diam；upper pentral spine mostly white or rarely reddish－ brown，flat，rhombic or rounded， $2.6-6.2 \mathrm{~cm}$ long， mostly 1.5 mm wide；petaloid perianth segments
yellow．Mosily at higher elevations $6500-7500^{\prime}$ （ $1800-2300 \mathrm{~m}$ ）；upper pinyon－juniper woodland
and sagebrush communitiss．Arizona and ad－ Distruah．
jacent Utah．
Representa

Representative Specimens．ARIZONA：
 Co．Black Mesa near Moenkope Wash，J．Klo－
patek， 2 June 1982 （ASU 147488）．UTAH： patek， 2 June 1982 （ASU 147488）．UTAH：

 investigation and a study of more herbarium ma－
terial we feel that this taxon is best treated below this level．It is usually found at higher elevations

radiun！pur uokuid parancoss yin sapis

 Rio Puerco River，near the Colorado Chi－
quito，near Petrified Forest National Mon－

$+661$

Lower central spine hooked，white，dark brown，
 Distribution．Eastern Utah and adjacent Col－
 western New Mexico．
 ApACHE Co．（ASU 166501 ）．Coconivo Co．Jacobs
30,1986
Pool，below Paria Plateau，D．G．Davis．May 19， 1965 （POM 317494）．Mohave Co．Vicinity of
Cane Beds，R．K．Gierisch，April 23， 1988 （NY）． Iavoo Co．Monument Valley，R．Craig．Oc－ Dolores Co． 7 mi southeast of Dove Creek，G ．

 rock，Paradox Valley，W．Weber．G．Kunkel，C． NTS（L6969
 2－8089）．NEW MEXICO：SAN JuAN Co．Ship－ rock，New Mexico，K．Heil， 10 May 1979 （SJNM Wattis，S．L．Welsh． 4 June 1981 （BR Y 224695）． Duchesne Co．West side of Starvation Reservoir near Strawberry Creek．K．Heil． 18 May 1983
（SJNM 2207）．Emery Co．San Rafael Reef，side

 Co． 4 mi south of Pelican Lake near the Du－
chesne River，E ．Nesse， 18 May 1979 （BRY
 Basin Road south of Hanksvile， 1976 （BRY 165690）（Fig．12）．

 ences（Woodruff and Benson，1976）．Subspecies vajoan Desert and pinyon－juniper woodland communities above 4500° elevation．It frequent－ ly hybridizes with subspecies intermedius and

Fig． 11 ．
Lower central spine hooked，mostly white or
traw， $2-6.3 \mathrm{~cm}$ long， $0.6-1 \mathrm{~mm}$ diam；upper entral spine mostly white or straw，rarely pink， mostly angled，rarely fide；petaloid perianth－seg－ ments rose or purple．Mostly at lower elevations，
$3500-5000^{\prime}(1050-1500 \mathrm{~m})$ along major river drainages in the lower Navajoan Desert． Distribution．Southeastern Utah，adjacent along major rivers，i．e．，the Colorado，Green，and ：\forall NOZIdV suru！⿰习习
 100747）．Mohave Co．Cedar Ridge，R．K．Gier－ isch，April 23， 1988 （UW 538466）．Navajo Co． White Dog Canyon，Skeleton Mesa，M．A．Weth－
errill \＆W．B．McDougall．May 9， 1959 （ASC）．
 Monument， 3 mi west of Fruita，W．Weber，May

 （IBRY 2l0963）．Warne CO．Millard Canyon，
L．Welsh \＆J．Holland．May 10， 1983 （BRY 250570）．

 is distinguished by its very hne spines．S．par－

 spines that are thicker than in subsp．parviflortus．
Where these two subspecies meet，intermediate forms are found，presumably the result of inter－

 punoj uวyo s！siLol／iuvd dsqns shuol／iniod on sandstone benches and hilisides growing in and in pockets of sand in slickrock communities．

＇6Lでも
Tap－root solitary branching several times

ithin $2.5-5 \mathrm{~cm}$ of the base of the stem；stems | 0 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| E | cylindroid to elongate－cylindroidal， $5-27 \mathrm{~cm}$ long，

$4.5-13 \mathrm{~cm}$ diam；ribs $(10-) 13(-16)$ ；rubercles $1.5-$ 2 cm apart；spines dense，obscuring the stem， central spines $4(-6)$ ，the lower central spine
hooked，white，straw，light to dark brown，red－ dish－brown，or pink to purplish－pink or black， 100 Kן
 －uoys＇ıEJ＇＇umosq－पs！ppas ． 10 ＇yuid＇mens＂Kers $0.75-1.5(-3)$ mm wide；radial spines $3-17$ ，most－ ly white，but may be brown or purplish－pink，

 pericarpel granular－papillose；olter tepals with
吂

 $5-10$ ；fruit green turning reddish－pink，with a few
membranous－fringed scales， $1-2.5 \mathrm{~cm}$ long，

 1Eวr8 әyl＇Kןqeunsa1d uoupey！ssep oi sayseondde
 local inbreeding．The treatment here provides a

 species．

 2．Upper central spine mostly i mm wide；lower
Navajoan Desert．．．．．．．．．subsp．parvi／lorus．
 s！pəuaan！dsqns ．．．．．．．．．．．．．．．．．puc｜ دวทํ

Fig. 2. A close-up of the flat ribbon-like upper central spines and yellow flowers of S. whipplei.
S. whipplei (Engel. \& Bigelow) Britt. \& Rose var pygmaeus Peebles, Leafl. West. Bot. S:192. 1949 Type. Peebles \& Smith SFIO5t. 15 mi N of Ganado, Apache Co., Arizona, 6200' (CAS 351111).

Figs. 2, 3.
Tup-root solitary branching several times within $2.5-5 \mathrm{~cm}$ of the base of the stem; stems mostly solitary, depressed-globose, or globose to elon-gate-cylindroidal, 3-7(-14) cm long, 4-7(-11) cm in diam.; ribs formed by conlluent tubercles, 1315; spines densely covering the stem; central spines 4, the lower one purplish pink or reddish-brown, somewhat angled, hooked, $1.6-4.5 \mathrm{~cm}$ long, 0.5-
mm in diam, the tivo lateral spines purplishpink to white, $1.4-4.5 \mathrm{~cm}$ long, mostly 1 mm in diam, the upper one white, mostly hat, daggershaped, $1.7-6.5 \mathrm{~cm}$ long, mostly $1.5-2(-2.5) \mathrm{mm}$ wide; radial spines 5-12, white except for the two lower, which are mostly purplish-pink, 0.6-2.4 m long: Jlower buds with blunt tips, shorter than hick, opening in full sunlight; flower 2.2-3.2 cm ong, 1.5-2 cm in diam; outer tepals with greenish midribs and yellow margins, oblanceolate, ca. 20 mm long, 5 mm broad; inner tepals yellow, obanceolate, ca. 25 mm long, 6 mm broad; filaments cllow, anthers yellow, style green or green tinged with yellow, papillose, stigma lobes light green,

Fig. 3. S. whipplei growing in gravelly soils of the Shinarump Formation, Navajo Co., Arizona.

5-6: /init green or tan, usually reddish at maturity dry, with a few scarious-margined minutely oothed, membranous-fringed scales, $0.6-1.5 \mathrm{~mm}$ in diam, 0.8-2.5 cm long, dehiscing along a.2 ir regular cleft, ovoid; seeds 2 mm long, 2 mm broad 1.5 mm wide, pyriform, shiny black.

Distribution. Northwestern Arizona and southeastern Utah.
zepresentative Specimens. ARIZONA Apache Co. 2 miles south of Lukachuki on gravely hills, K. Heil, 12 May 1986 (SJNM 6938) Coconino Co. 15 mi northeast of Tuba City, \& J. Davidson \& .M. Cazier. 28 June 1967 (AS ll0953) Navno Co. Ca 2 mi nerihwest of Hol brook, M. Gan=, D. Pinkava, E. Lehto. 7 Jun 1967 (ASU 12391) Agalatha Peak, K. Heil, 13 Hay 1983 (SJNM 2204), UTAH. SAN JuAN CO Ca. 0.5 mi north of Blulfon gravely hills, K. Hell. 12 August 1993 (SJNM 8087).
This species was among the lirst sclerocacti to be discovered and described. It grows on gravely and sandy hills, canyon rims and mesas at 5000 $6000^{\prime}(1500-1800 \mathrm{~m}$) in desert and pinyon-ju niper communities. It is often difficult to find because plants may grow in grama grass clumps. and the spines resemble the dried leaves of th grass.
Apparently S. whipplei does not hybridize in he wild with any other species. Near Agalath Peak, Arizona, this taxon grows in close prox it ity to S. paniflorus; however, intermediate ypes have not been observed
This species has been the object of consider the taxonomic confusion. Described in 1857 a Echinocactes whipplei, from near what is now Petrified Forest National Park, it was published simultaneously with E. polyancistrus. This was ollowed in 1863 by the description of E. pubispiaus and \mathcal{E}. whipplei var. spinosior, both from western Utah. In 1922, when Britton and Rose rected the genus Sclerocactus, they apparently m i interpreted the morphological features of the ype of S. whipplei, confusing it with S. spinosior S. pubispinus, S. glaucus and the then-unnamed S. parifloris (note that these authors incorrectly escribed the fowers as purple). As specimen dentifiable as Sclerocactus were accumulated and in some cases deposited in herbaria) from northern Arizona, southern and eastern Utah western Colorado and northwestern New Mex co, the natural tendency was to assign them to axa previously described by Britton and Rose c... Clover, 1938; Clover and Jotter, 1941) Much of the material was assigned to E. whipplei. As closer investigation revealed patterns of vari ation inconsistent with the material at the type locality and the type description of E. whipplei, new taxa were described. There has, however been a tendency to align these taxa with S. whipplei. In 1966 Benson reduced many of the named uxa (i.e., S. parviflorus. S. havasupaiensis and varieties, and S. intermedius) to varietal status
under S, whipplei Casteucr Pierce and Schwerin (1976) continued with this practice by relegating the newly discovered taxa in New Mexico to S. whiplei as varieties heilii and reevesii. In his 1982 treatment of the cacti of the United States and Canada, Benson removed these taxa from er the S whipplei umbrella, although some authors (Welsh. 1984; Welsh et al. 1994) have antinued to maintain a very broad interpretation of S. whipplei to the extent that species such as S. glaucus are treated at the varietal level or plei. Unfortua broad interpretation to the realization that (with the exceplion of S. polyancistrus and S. mesae-verdae) the entire geS. whipplei. This may not be a problem if one has no concem for the evolutionary process (descent with modification) localized morphological differentiation, regionalization and restriction of gene-How, and historical perspectives (phylogeny) within Sclerocactus. If ease of pi-geon-holing is the primary goal, then a broad species-concept (and the broader the better) is desired. We feel that a taxonomy should be based on an understanding of the evolutionary process and that taxonomies arbitrarily imposed on groups can only lead to confusion and misunderstanding of the taxa concerned and the process that produced their diversity. As a result we have followed the lead of Benson (1982) and Woodrulf\& Benson (1976) in restricting our concept of S. whipplei to the small, depressed-globose stemmed plants of the Little Colorado River drainage of Arizona, with flower buds that are broader than long, yellow tepals that expand in the afternoon (under bright light conditions) and flowers that are cylindric to narrowly funnelfonn in shape with the perianth bracts not spreading widely.
7. Sclerocactus cloveriae K. D. Heil \& J. M. Porter, nom. et stat. nov.
S. whipplei (Engelm. \& Bigelow) Britt. \& Rose var heilii Castetter, Pierce \& Schwerin, Cact. Succ heilli Castetter, Pierce
J. (U.S.) 48:79. 1976.
yan Je. Heil 3903.4 \& B (syntypes), northern isotype, SJNM). iphei Engelm. \& Bigelow) Britt. \& Rose va reevesii Castetter, Pierce \& Schwerin, Cact. Succ (U.S.) 48:80. 1976).

New Mexico (UNM 51072. is Figs. 4, 21
Stems solitary, 2-3, green, elongate-cylindri cal, ovoid when young, $3.9-25(-30) \mathrm{cm}$ long (mean $=11.4 \mathrm{~cm} ; S D=4.3$), $4.8-12.5(-15) \mathrm{cm}$ in diam (mean $=8.4 \mathrm{~cm} ; \mathrm{SD}=2.2$); ribs usually 13, well-developed, the upper portion of the $t u$ bercles evident above the ribs, $5-14 \mathrm{~mm}$ long

Fig. 4. S. cloveriae, Largo Canyon, San Juan, Co., New Mexico.
4.5-15 mm broad, protruding above the ribs 515 mm ; areoles $4.5-8.5 \mathrm{~mm}$ diam, typically 9 24 mm apart; central spines 8 (6-9), the lower one straw-colored to brown, high-lighted with purple or red, terete or somewhat angled, hooked, purple or red, terete or somewhat angled, hooked,
porrect, ($1.5-) 3-4.6 \mathrm{~cm}$ long, ca. 1.5 mm wide, porrect, (1.5-) $3-4.6 \mathrm{~cm}$ long, ca. 1.5 mm wide, turned or curving somewhat downward, the lat-
eral centrals $5-8$, similar to the lower but a bit eral centrals $5-8$, similar to the lower but a bit
shorter and usually not hooked, the upper central shorter and usually not hooked, the upper central
white or straw-colored, straight or curved, angled white or straw-colored, straight or curved, angled
to flat, somewhat inconspicuous, triangular in cross section, $2.5-5.5 \mathrm{~cm}$ long, $1-2 \mathrm{~mm}$ wide, cross section, $2.5-5.5 \mathrm{~cm}$ long, 1-2 mm wide,
erect; radial spines $4(2-6)$, basally $1.3-2 \mathrm{~mm}$ erect; radial spines $4(2-6)$, basally $1.3-2 \mathrm{~mm}$
wide, acicular, elliptic or rhombic in cross-secwide, acicular, elliptic or rhombic in cross-sec-
tion; flower 2.5-3.5(-4) cm long (mean $=3$; SD tion; flower 2.5-3.5(-4) cm long (mean $=3$; SD
$=0.26), 1.6-3.1(-3.6) \mathrm{cm}$ in diam (mean $=2.3$ cm ; $\mathrm{SD}=0.47$), exterior 月loral tube glabrous, minutely papillate; outer tepals greenish to purple with brownish midribs, margins pink, purple or whitish, the larger oblanceolate, $10-18 \mathrm{~mm}$ long, 4-7.5 mm broad, mucronate, marginally membranous and crisped or minutely toothed; inner tepals purple, sometimes suflused with brown, the largest lanceolate, $15-22(-30) \mathrm{mm}$ long (mean $=18.6 ; S D=2.37$), $4-6 \mathrm{~mm}$ wide at the broadest point (mean $=5.15 ; S D=0.81$), mucronate, somewhat irregularly toothed; filaments white, tinged with pink to pink-purple, 610 mm long, anthers yellow, $0.9-1.2 \mathrm{~mm}$ long, $0.3-0.5 \mathrm{~mm}$ wide; style tinged with pink or purple, rarely green, $14.6-19.5 \mathrm{~mm}$ long, $1-1.5 \mathrm{~mm}$ in diam, covered with minute but conspicuous papillae; stigma lobes $5-8$, ca. $1.2-2.5 \mathrm{~mm}$ long, $0.5-1 \mathrm{~mm}$ broad; nectary chamber $1.5-2(-3) \mathrm{mm}$ deep; ovary $3-7 \mathrm{~mm}$ long at anthesis; Jruit green to tan, sometimes suffused with pink, dry, with a few membranous, scarious-margined, minutely toothed or fimbriate scales, $7-15 \mathrm{~mm}$ long, 5-12
mm broad, irregularly opening just below the middle or along a regular line of dehiscence at the base of the ovary; seeds brown or black, 1.9ly indented.
Distribution. Northwestern New Mexico north to southwestern Colorado. Scattered from south of Albuquerque, New Mexico, northward along the San Pedro and Rio Puerco River Valleys to near Waterflow and northward into southwestern Colorado along the Los Pinos, La Plata, and Animas rivers.
Holotype. The holotype is designated as K. Heil 3903A. northern San Juan County, New Mexico (UNM 49874).
Representative Specimens. COLORADO: LA Plata Co. Valley of the La Plata, T. S. Brandegee, 1875 (GH). NEW MEXICO: SAN JUAN Co. Blanco Mesa near Largo Canyon, K. Heil. 28 October 1978 (SJNM 2664). Rio Arriba Co. 1 mile northwest of Lybrook, L. Benson. 12 June 1965 (POM 317499). Sandoval Co. 2 mi south of San Ysidro, Ken Heil, 3 May 1986 (SJNM 6913). Valencia Co. 2 mi east of Laguna Pueblo on low hills, Gil Wiens, March 1970 (UNM 45296).

Recognition of S. cloveriae at the specific level is based in part on the lack of definitive characters to align it with other species of Sclerocaclus with which it has been associated in the past. Originally designated as two weakly separable varieties of S. whipplei (Castetter, Pierce and Schwerin, 1976), the relationship of S. cloveriae to this species is far from unambiguous. Although S. cloveriae shares several features, i.e., flattened upper central spine, small flowers with, perianth bracts that do not spread widely and flowers that lack granular papillae, these char-
acters are not uniquely derived (unambiguously apomorphic) in S. whipplei and are therefore not evidence of relationship. Indeed, the floral ontogeny of S. cloveriae is not the same pattern as described in S. whipplei (Woodrufi and Benson, 1976). The developmental patterns of the flowers are very similar to those found in S. parviflorus. It is not surprising that Benson, in his treatment
i Sclerocactus (Benson, 1982) included S. cloiriae under S. parviflorus var. intermedius. A relationship between S. cloveriae and S. parviJlorus might be further supported by the overall size of the plants. In general, both species are large-stemmed. Again it is not clear that stemsize represents unambiguous evidence of relationship, considering that large stems are also shared by S. polyancistrus. And though S. clo-
veriae and S. parviflorus appear to possess similar floral ontogenies, the distribution of that feature roughout Sclerocactus has not been docuinented. Moreover, S. cloveriae lacks large, granular papillae on the pericarpel (as found in S. parviflorus) and its flowers are significantly smaller than those of S. parviflorus. As a result of these conflicting morphologies, the phylogenetic affinities of S. cloveriae remain nebulous. The specific epithet honors Elzada Clover, who conducted field studies of Sclerocactus on the southern Colorado Plateau in the late 1930's. We have chosen a novel epithet rather than selecting any existing varietal epithets in order sized varieties, S. whiplei var. reevesii, have no consistent morphological differences and should be considered one taxon. Also, because the circumscription is different than that implied by either of the type descriptions, we thought it appropriate, and within our right under the Code, to designate a new epithe'.
74. Sclerocactus cloveriae subsp. brackii K. D. Heil \& J. M. Porter, subsp. nov.
Similis Sclerocactuscloveriae Heil \& Porter in flores sed in caulis brevioribus et spinis centralibus brevioribus differ.
Figs. S, 14.
Stems $1(-2-3)$, green, elongate-cylindrical,
ovoid when ovoid when young, 2.9-7.5(-8.5) cm long (mean $=5.5 \mathrm{~cm} ; \mathrm{SD}=1.39), 1.8-6.5(-7) \mathrm{cm}$ in diam (mean $=5.2 \mathrm{~cm} ; \mathrm{SD}=0.96$); ribs usually 13 , more or less obscure to well-developed, the uppi portion of the tubercles evident above the rils, $5-14 \mathrm{~mm}$ long, $4.5-15 \mathrm{~mm}$ broad and protruding above the ribs $5-15 \mathrm{~mm}$; areoles 4.5-8.5 mm diam; central spines $4(-5)$, mostly four, the lower one often absent, but if present, strawcolored to brown, highlighted with purple or red, 3.1 cm long, ca. 1 mm in diam, turned or curving 3.1 cm long, ca. 1 mm in diam, turned or curving
somewhat downward, the lateral centrals similar to the lower but a bit shorter and not hooked, 3
or 4 , the upper central white or straw-colored straight or curved, angled to llat, somewhat inconspicuous, triangular in cross section, 1.5-3.5 cm long, $1-1.5 \mathrm{~mm}$ broad, erect; radial spines 6-7 (5-8), basally $0.9-1.5 \mathrm{~mm}$ broad, acicular elliptic or rhombic in cross-section; flower 2.3-$3.5(-4) \mathrm{cm}$ long (mean $=3 \mathrm{~cm} ; \mathrm{SD}=0.37$), 1.6 3 cm in diameter (mean $=2.5 \mathrm{~cm}$; SD $=0.47$) exterior floral tube glabrous, not minutely gran-ular-papillate; outer tepals greenish to purple with ish, the larger oblanceolate, $10-15 \mathrm{~mm}$ long, $3.5-$ 7 mm broad, mucronate, marginally membra7 mm broad, mucronate, marginally membra-
nous and crisped or minutely toothed; inner tepals purple, sometimes suflused with brown, the laryest lanceolate, $15-22(-30) \mathrm{mm}$ long (mean $=19$; $S D=0.20), 4-6 \mathrm{~mm}$ wide at the broadest point (mean $=4.75 ; S D=0.09$), mucronate, somewhat irregularly toothed; filaments white, tinged with pink to pink-purple, $6-10 \mathrm{~mm}$ long, anthers yellow, $0.9-1.2 \mathrm{~mm}$ long, $0.3-0.5 \mathrm{~mm}$ wide; st $y /{ }^{2}$ tinged with pink or purple, rarely green, 14.619.5 mm long, $1-1.5 \mathrm{~mm}$ in diam, covered with minute but conspicuous hairs; stigma-lobes 5-8, ca. $1.2-2.5 \mathrm{~mm}$ long, $0.5-1 \mathrm{~mm}$ broad; nectary chamber $1.5-2(-3) \mathrm{mm}$ deep; ovary $3-7 \mathrm{~mm}$ long at anthesis; fnuit green to tan, sometimes suffused with pink, dry, with a few membranous, scari-ous-margined, minutely toothed or fimbriate scales, $7-15 \mathrm{~mm}$ long, $5-12 \mathrm{~mm}$ broad, irregularly opening just below the middle or along a regular line of dehiscence at the base of the ovary; seeds $1.9-3 \mathrm{~mm}$ long, $1.2-2 \mathrm{~mm}$ broad, hilum not deeply indented.
Holotype. K. Heil \#8149; sandy clay hills on the Nacimiento Formation, Kutz Canyon, San Juan County, New Mexico (SJNM 2695).
Habitat. Sandy clay soils of the Nacimiento Formation, associated with Eriogonum shockleyi, Gilia Jormosa, and Swertia utahensis at 5000-6000' (1500-1800 m).
Distribution. Endemic to San Juan County, New Mexico, occurring in scattered populations along a small portion of the San Juan River Valley near Bloomfield. The subspecies extends north to near Aztec and south to near Dzith-Na-ODithle.

This subspecies was first discovered in the mid 1960's by Bob Reeves. These populations represent an interesting but common pattern of morphological divergence in Sclerocactus. As has been documented in many animals (e.g., Alberch and Alberch, 1981) and occasionally in plants (Guerrant, 1982; Lord and Hill, 1987), shifts in developmental rates with respect to the onset of sexual maturation has been a recurring theme in the evolution of morphological novelty. Such shifts in rates of development or heterochrony (Gould, 1977; Alberch et al., 1979) of organisms may come about in several ways. The rate itself may change. If the rate increases, the mature morphology is reached more quickly relative to

Fig. 5. S. cloveriae subsp. brackli in bloom, San Juan Co., New Mexico.
the ancestral developmental pattern. If the rate decreases relative to the ancestral ontogeny, then it takes a greater amount of time to attain the mature morphology. Alternatively, the rate of development of the organism may stay the same but the timing of the appearance of some feature of interest (e.g., sexual reproduction) may change. The timing may be delayed or moved forward. In the case of S. cloveriae subsp. brackii, the timing of flowering has been moved forward so that an immature stem (by comparison to S. cloveriae subsp. cloveriae) is sexually mature. Such a hypothesis assumes that the ancestral development pattern is like that of subsp. cloveriae. There is some support for this assumption, based on a preliminary cladistic analysis of Sclerocactus (Porter and Heil, unpubl.).

The distinction between subspecies brackii and cloveriae is striking when subsp. brackii begins sexual reproduction. Its stem is generally 3 cm orless in first produced this ers are first produced. This contrasts with the 11.4 cm . l.4 cmage in stem development adult-phase ar eoles have not formed and juvenile spine areoles have not formed and juvenile spine arrangements are marked by five to seven shor white radial spines (generally only four are found in subsp cloveriae) and mostly four shre found in subsp. cloveriae) and mostly four short central spines, one or none of them hooked (subsp. clowhich is hooked). However as subsp, brackii matures, the morphologies of the two varieties tend to be more convergent, both in stem and spine features.
This subspecies is named in honor of Steven Brack, who has conducted numerous field studies of Sclerocactus; he is owner of Mesa Gardens in Belen, New Mexico.
8. Sclerocactus pubispinus (Engelm.) L. Benson

Echinocactus pubispınus Engelm., Trans. Acad. Sci. St. Louis 2:199. 1863. S. pubispinur (Engelm.) L. Benson, Cact. \& Succ. J. (U.S.) 38:103. 1966. Pediocactus pubispinus Arp, Cact. Succ. J. (U.S.) 44:222. 1972.
Type. Engelmann s.n.. Pleasant Valley, near Salt Lake Desert, according to Benson, $198 ?$.
$=$ Goshute Range, White Pine County, Nevada (MO) Figs. 6, 15.
Stems solitary (-2-3), green, depressed-hemispheric to ovoid, or cylindric, 2-15 cm diam, 115 cm long, ribs usually 13 , the upper portion of
the tubercles prominent above the ribs, $6-17 \mathrm{~mm}$ mos 517 mm broad a 3 mm long, $5-17 \mathrm{~mm}$ broad; areoles $3-6 \mathrm{~mm}$ broad; spines dense but not obscuring the stem, those or juvenile plants, and sometimes others, densely or sparingly white-pubescent, later glabrous; cenral spines reddish , ine single lower central an cm long lateral spines 2-4 (0-6), white ion red or reddish-brown, sometimes hooked, mostly 1or reddish-brown, sometimes hooked, mostly 1-
2 cm long, the upper one white or dark-tipped, flattened, $0.5-6 \mathrm{~cm}$ long, $0.7-2.2 \mathrm{~cm}$ wide; radial spines white or with dark tips, 8-11 (6-16), spreading, mostly $5-35 \mathrm{~mm}$ long, $0.3-1 \mathrm{~mm}$ diam; Лower 2 4 cm long and in diam; outer tepals with pink to yellowish-brown, greenisibrown, or reddish-brown midribs and cream to yellow or pink to reddish-purple margins, mostly oblanceolate, $1-2 \mathrm{~cm}$ long, 4-8 mm broad; inner lepals cream with yellow to greenish or with red-dish-purple to red violet or lavender or brownish centers and lighter margins, mostly oblanceolate, $1.5-2.5 \mathrm{~cm}$ long, $4-7.5 \mathrm{~mm}$ broad; flaments cream to yellow, green, or red-violet to pink, 6 12 mm long, anthers yellow, $1-1.5 \mathrm{~mm}$ long; style mostly pink to reddish-violet; stigma lobes 5-$9(-10)$, ca $1.5-2 \mathrm{~mm}$ long, green to yellow; fruit

Fig. 6. Stems of S. pubispinus (left) and S. blainet.
green to pink dry barrel-shaped, with a few membranous slightly-scarious-margined, scales, (9-) $10(-12) \mathrm{mm}$ long and thick, splitting along 9-) verical slits seeds black $2-25 \mathrm{~mm}$ long 1 mm broad, $1-2 \mathrm{~mm}$ thick.
Distribution. Western Utah and the northstern edge of Nevada.
Representative Specimens. NEVADA: Elko Co. 6.5 mi S of Pilot Peaks, R. Foster, is May 1979 (BRY 199701). White Pine Co. Pleasant Valley, ca. $1 / \mathrm{m}$ mi W of the Utah-Nevada State line, B. F. Harrison \& K. H. Thorne, 13 June 1979 (BR Y 202061). UTAH: Beaver Co. Hamlin Valley, ca. $1.25 \mathrm{mi} S$ of Millard Co. line, S. L. Welsh, and M. Chatterley 2 June 1980 (BRY L. Welsh, and M. Chatterley, 2 June 1980 (BRY $211220)$. Box Elder Co. Mountains, E. F. Wien ryl Deser, C. Lambert, 9 July 1939 (BRY
j04).Juab Co. Deep Creek Mountains, ca. 0.5 mi E of Nubold Ranch, S. Welsh, R. Foster, and J. Henriod, 6 June 1978 (BRY 184086). MiLLard Co. West side of the Wah Wah Mountains, K. Heil, is May 1983 (SJNM 2202). Tooele Co. Silver Island Mountain Range northeast of Wendover, L. H. Bowker, 1969 (POM 317897).
Sclerocactus pubispinus grows on light-colored soils of limestone or dolostone origin and is very difficult to locate in the field. It is mostly at 60006:'10' (1800-2000 m) growing with sagebrush, s.... Iscale, pinyon, and juniper. Benson (192) species level while S. Welsh et al. (1987) treats them as two varieties of S. pubispinus. There seems little question that these two species, along with S. blainei and probably S. sileri, form an alliance of related taxa. The Wah Wah Mountains and Confusion Range appear to act as barriers to genetic exchange between these two taxa; however, in the few locations where the two taxa
meet there seems to be hybridization. We trea these taxa at the specific level largely to maintain a consistant treatment across the genus.
9. Sclerocactus spinosior (Engelm.) Woodruff \& Benson, Cact. Succ. J. (U.S.) $48: 133.1976$

Echinocactus whipplei Engelm. \& Bigelow var. spi nosior Engelm., Trans Acad. Sci. St. Louis 2:199 1863. E. spinosior Hirscht, Monatsschr. Kakteenk. 11:89. 1901. E. spinosior Brandegee ex Britt. \& Rose, Caclaceae 3:213. 1922 (Benson, 1982, notes that the citation in B.\&R., "Hirsch ex Purpus, Monatsschr. Kakteenk. 10:119
1900 ", is incorrect). E. whipplei Englem. \& Big elow f. spinosiorSchelle, Handb. Kakteenkultur 158. 1907. Sclerocactus whipplei (Engelm. \& Bigelow) Britt. \& Rose var. spinosior Engelm ex Boissevain \& Davidson, Colorado Cacti, 51 52. 1940. S. spinosior (Engelm.) D. Woodrufl \& L. Benson, Cact. Succ. J. (U.S.) 48:1 31.1976.
S. pubispinus (Engelm.) L. Benson var. spinosior (Engelm.) S. L. Welsh, Great Basin Naturalist 44:52-69. 1984.
Type. Engelmann s.n.. 29 July 1859, Deser Valley, west of Camp Floyd, Utah (MO, lec totype, consisting of howers and seeds).
Fig. 16, cover.
Stem depressed globose to ovoid, mostly solitary, 4-15 cm long, 4.5-10 cm diam; ribs $13-$ 14, tuberculate; tubercles one-fourth to one-half as high as rib beneath, 6-17 mm long, 6-15 mm broad; areolescircular to elliptic, $3-6 \mathrm{~mm}$ broad, 6-12 mm apart; spines rather dense, those of juvenile plants densely white-pubescent; central spines white on juvenile stems and therefore on older (lower) parts of mature stems, the lower cenirals of upperareoles 3 , tan to brown, reddish cipal lower spines $1-2$, mostly hooked, 2-3 cm

7

9

11

8

Fig. 7. S. mesae-verdae with pink flowers. South of Shiprock, San Juan Co., New Mexico.
Fig. 8. S. wrightiae with cream flowers. Cathedral Valley, Capitol Reef National Park, Utah
Fig. 9. S. glaucus north of Debeque, Garfield, Co., Colorado.
Fig. 10. S. brevispinus in bloom. Note the lack of-or extremely small-central spines. Duchesne Co., Utah. Fig. 11. S. parviflorus subsp. parvifores. Canyonlands National Park, San Juan Co., Utah.
Co., Utah.
long, basally $1-1.2 \mathrm{~mm}$ broad, lateral centrals 2 , the upper central white, flat, $2-6 \mathrm{~cm}$ long, up to 1.5 mm broad; radial spines white, $6-10$, spreading, the longer mostly $1-3.5 \mathrm{~cm}$ long, flower 24 cm diam and long; outer tepals with greenishbrown or reddish-brown midribs and pinkish margins, oblanceolate, mostly $1-2 \mathrm{~cm}$ long, $4.5-$ 7 mm broad, nearly entire; inner tepals reddish-- urple to violet or lavender, narrowly oblanceotte, mostly 2.5 cm long, $6-8 \mathrm{~mm}$ broad, nearly enire, flamentrew, low; anthers yellow, $1-1.5 \mathrm{~mm}$ long; style mostly pink to reddish-violet, $1.5-2 \mathrm{~cm}$ long, stigmas 5-10, Jruit green and turning eddish at maturity, wind in 2 siales, $9-12$ mm long and in diam, opening along $2-12$ vercal slits; seeds $2-2.5 \mathrm{~mm}$ long, $3-4 \mathrm{~mm}$ broad, $1.5-2 \mathrm{~mm}$ thick (Benson, 1982)
Distribution. Southwestern Utah.
Representative Specimens. UTAH: Beaver Eo. Pine Valley, south of Sewing Machine Pass, S. L. Welsh \& M. Chatterley, 29 June 1980 (BRY 212559). Iron Co. Antelope Ranch near mile marker 33 on State 56, K. Heil, 17 May 1983 (SJNM 2198). Emery Co. 0.8 mi due east of Sevier Co. Line, 2 mi south of I-70, E. Neese, S. Mus, S. Wo, Milum Co. Adjacent 10 Lawson Cove. Wah Was0 (BRY 212470) E B BRY 20 April 963 (POM 306828) L . vier Co. Joseph City, K. Heil. May 1980 (SJNM VIER Co.
2630).
This species has a long history of confusion The type specimen is of such poor quality that. were it not for knowledge of the collection locality, it could belong to nearly any sclerocactus. Moreover, there has been a long-standing confusion between S. spinosior and S. parviflorus. This confusion dates back at least to Coulter's treatment of Echinocactus (1896:368): "As far is known, E. whipplei is confined to the region lits original discovery (valley of the Little Colorado, northern Arizona), and spinosior to the deserts of southern Utah and southwestern Colorado, a considerable distance to the north." This usage persisted in the literature (see Boissevain and Davidson, 1940) until Benson's treatment (1966a, b). Current interpretation is based on modern collections from the vicinity of the type because, as mentioned above, the holotype consists only of flowers and seeds.

Sclerocactus spinosior is found east of the Wah ah Mountains and Confusion Range and extends east to the Colorado Plateau. It grows on igneous or calcareous gravels and is usualiy as-
sociated with pinyon-juniper woodland, shadscale, or sagebrush communities at $5000-6600^{\circ}$ (1525-2000 m).
10. Sclerocactus blainei Welsh \& Thorne, Great Basin Naturalist, 45:553-555. 1985.
S. blainei S. L. Welsh \& K. Thome, Great Basin Nat. 45:5S3. 1985. Type. S. L. Welsh. 1.6 mi northeast of CurseriK Heil \& S W
S. schlesseri K. Heil \& S. L. Welsh, Great Basin Nat. 46:677. 1986
Type. K. Heils.n., Lincoln County, Nevada,
Tertiary lacustrine deposits, ca. 1464 m (BRY Isotype, NY).
Figs. 6, 17.
Stems dark green, solitary or colonial, ellipsoid, obovoid, ovoid to cylindric, $3-15 \mathrm{~cm}$ tall, $4-6(-8) \mathrm{cm}$ wide; ribs 6-13; tubercles 12-18 mm wide, $8-10 \mathrm{~mm}$ long; areoles woolly, finally glabrate; spines flexible, densely pubescent when young; upper central spine 1, ascending, flat to trigonous, ribbonlike, curved, cartilaginous to bony, pubescent to glabrous, $3-5.5 \mathrm{~cm}$ long, I2.5 mm wide, reddish brown to white; peripheral central spines 2, ascending, flat, ribbonlike, sometimes hooked, pubescent, $2-3 \mathrm{~cm}$ long, $0.5-$ 1 mm wide, black to white; lower central spine 1, ascending, flexible, irregularly hooked, pubescent, $2.5-4.5 \mathrm{~cm}$ long, to 1 mm wide, black, gray, tan, or white; radial spines 6-9 (-12), flattened, flexible, pubescent, $3-14 \mathrm{~mm}$ long, white; flowers apical on upper end of the tubercles near the top of the areoles and above the spines, funnelform, $3-4 \mathrm{~cm}$ long, 2-3 cm wide, violet pink; outer tepals oblanceolate, finely irregularly toothed apically, mucronate, violet pink with brownish midstripes, $1.5-2 \mathrm{~cm}$ long, $6-10 \mathrm{~mm}$ wide; inner tepals oblanceolate, entire or slightly undulate, minutely toothed apically, violet pink, $1.5-2 \mathrm{~cm}$ long, 4-5 mm wide, filaments red, anthers yellow; stigma lobes 7-9, light green; fruil dry, bar-rel-shaped, naked or with one or two scales, I1.5 cm long, $9-13 \mathrm{~mm}$ wide, red to greenish red, dehiscing by a transverse break in the ovary wall, the perianth persistent; seeds 2 mm long, 3 mm wide, ca. 1 mm thick, pyriform with slightly flattened apex, shiny black, papillate, becoming less so near the hilum; hilum elliptic, 1 mm wide (Heil and Welsh, 1986; Welsh and Thome, 1985). Distribution. Iron County, Utah, and Nye and Lincoln counties, Nevada.

Representative Specimens. NEVADA: Lincoln Co. Cathedral Gorge State Park near Panoca, K. Heil \& D. Schleser. 16 May 1983 (SJNM 2205). Nre Co. 1 mi northeast of Currant, S. L. Welsh. 23 May 1981 (BRY 224612). UTAH: Iron Co. Lund, J. Busek, April 1980 (SJNM 2632).

This is a peculiar series of populations related to Sclerocactus spinosior and S. pubispinus. The flower size is larger and the upper central spine is longer than in either pubispinus or spinosior. The central spine number varies, and the number of hooked spines may number six, which is characteristic of S. polyancistrus. However, we feel this taxon shares more characteristics with S. spinosior than wis S. polyacist The dis-

argely in stem shape. S. schlesseri has a much narrower stem, but this seems scarcely enough dilference to warrant taxonomic status. S. blainei is found in greasewood, galleta grass, shadscale, and sagebrush communities at 4900-5400' ($1464-1830 \mathrm{~m}$) on limestone and igneous gravel substrates.
1.. Sclerocactus sileri (L. Benson) K. D. Heil \& J. M. Porter, nom. et stat. nov.
S. pubispinus (Engelm.) D. Woodruff \& L. Benson var. sileri L. Benson, Cacti of Arizona, ed. 3. Type. P. H. Siler s.n. (F). 1888. Southem Utah; Isotype (US)
Fig. 18.
Stems i (-2), green, depressed globose, up to 55 cm long, $3.5-5.5 \mathrm{~cm}$ in diam; ribs usually 13 , $\mathrm{n} \pi$ well-developed, $t u b e r c l e s ~ 7-12 \mathrm{~mm}$ long, 6 15 mm broad and protruding above the ribs; areoles $3-4 \mathrm{~mm}$ diam, typically $12-15 \mathrm{~mm}$ apart; central spines 4 , the lower white, gray or purplish tinged, angled, strongly hooked, slightly contorted, $1.2-3 \mathrm{~cm}$ long, $0.5-1 \mathrm{~mm}$ wide, turned or curving somewhat downward, the lateral centrals 2 , similar to the lower but a bit shorter, and usually not hooked, the upper central white to tan, recurved, strongly flattened, conspicuous, $13-3 \mathrm{~cm}$ long, $0.75-2 \mathrm{~mm}$ wide, erect; radial s.ines 6-8, basally $0.5-0.75 \mathrm{~mm}$ wide, acicular, elliptic in cross-section; flower $2.5-3 \mathrm{~cm}$ long, 23 cm in diam, exterior floral tube glabrous; outer tepals with brownish and yellowish margins, the larger oblanceolate, $10-15 \mathrm{~mm}$ long, $5-8 \mathrm{~mm}$ broad, mucronate, marginally membranous and crisped or minutely toothed; inner tepals yellow, sometimes suffused with brown, the largest lanceolate, $15-25 \mathrm{~mm}$ long, $5-7 \mathrm{~mm}$ at the broadest point, mucronate; filaments white, $7-10 \mathrm{~mm}$ long, anthers yellow, ca. 1 mm long, $0.3-0.5 \mathrm{~mm}$ wide; si le yellowish-green, $14-20 \mathrm{~mm}$ long, $1-1.5 \mathrm{~mm}$ in diam; stigma lobes $5-8 \mathrm{ca}$. 1.2-2.5 mm long, $0.5-1 \mathrm{~mm}$ broad, nectary chamber $1.5-3 \mathrm{~mm}$ deep; ovary $3-7 \mathrm{~mm}$ long at anthesis; fruit green, turning red, ovoid, dry, with a few membranous scarious-margined, minutely toothed or fimbriate scales, $0.8-2.2 \mathrm{~cm}$ long, $0.8-1.4 \mathrm{~cm}$ broad, opening along two to four vertical slits; seeds black, 2.75-3 mm diam, $2.25-2.5 \mathrm{~mm}$ long.
Distribution. Coconino County, Arizona, and Clark County, Nevada.
lepresentative Specimens. ARIZONA: Coconino Co. Ca. 4.3 mi north of Alt. 89, up House Rock Valley, K. Hell, 13 May 1986 (SJNM 6946). Paria Plateau, T40N, R4E, S20, R. Gierisch, 25 June 1987 (ASC).
This is an unusual little cactus with characteristics similar to both Sclerocactus whippleiand
S. spinosior. The spination and fower color is S. spinosior. The spination and flower color is
reminiscent of S, reminiscent of S. whipplei; however, the fruit de-
hisces
isces (by $2-4$ longitudinal slits) as in S. spino sior.
J. Busek (1983) applies the name S. pubispinus var. sileri to those cacti in southwestern Utah and Nevada; however, S. pubispinus. S. spinosior, and S. blainei of the Great Basin are not the same species as S. sileri, which is found on the Arizona strip.
This cactus is very difficult to locate in the field, which is probably for the best, as it appears to be quite rare and potentially in need of protection. It often occurs in grama grass, associated with drop seed, yucca, hedgehog cactus, sagebrush, snakeweed, pinyon, and juniper.
12. Sclerocactus polyancistrus (Engelm. \& Big elow) Britt. \& Rose, Cactaceac 3:213. 1922
Echinocactus polyancistrus Englem. \& Bigelow, Proc Amer. Acad. 3:272. 1857. Pediocactus polyancistrus (Engelm. \& Bigelow) Arp, Cact. Succ. (U.S.) 44:222. 1972.

Type. Bigelow s.n.. head of the Mojave, IS March 1854 (MO).

Hermit Cactus (Fig. 20)

Stems solitary or in clusters, cylindroidal or elongate-cylindroidal, $10-40 \mathrm{~cm}$ long, $5-9 \mathrm{~cm}$ in diam; ribs well-developed, 13-17; tubercles ca. 12 mm long, 10 mm broad; areoles elliptic, most 9 mm apart; spines dense and obscuring the stem; central spines 9-11, the 6-8 lower and lateral central spines red or reddish-brown, rarely yellow, $3-4.6 \mathrm{~cm}$ long, 1 mm wide, mostly hooked, upper central spines mostly 3 , white, hat, mostly $3.7-8.6 \mathrm{~cm}$ long, $1.5-3 \mathrm{~mm}$ wide mostly hooked; radial spines white, 10-18, 5-6 cm long, flat, straight; flower ca. 5 cm diam, 5 cm long, with a spicy, pungent odor; outer epals with greenish-purple midribs and rose purple or magenta margins, cuneate-spathulate, mostly 25 mm long, $6-9 \mathrm{~mm}$ broad; inner lepals ose purple to magenta, the largest ovate-lanceolate, $24-40 \mathrm{~mm}$ long, $9-12 \mathrm{~mm}$ broad; filaments reenish-yellow, 6-12 mm long; anthers creamcolored, nearly 2 mm long, 1 mm broad; style green to cream, mostly 2.5 cm long, 1.5 mm diam, smooth, with 8-10 grooves; stigmas pink mostly 10; ovary at maturity with a few white scales; fruit green to tan, dry at maturity, barrelshaped, $2.2-3 \mathrm{~cm}$ long, $1.2-2.1 \mathrm{~cm}$ diam; seeds shiny black, 3 mm diam, 2 mm long, 1 mm thick, finely papillate.
Distribution. Mojave Desert of Califomia; Esmeralda and Nye Counties in Nevada.
Representative Specimens. CALIFORNIA: Inyo Co. Red Rock Canyon, H. Rush, 15 May 1948 (POM 432261). Kern Co. Redrock Canyon, L. Benson, 24 April 1932 (POM 273961). San Bernardino Co. One mile south of Oro Grande, L. Benson. 11 May 1968 (POM 317492). White Mount

Fig. 19 (upper left). S. wrightiae with pink flowers. Cathedral Valley, Capitol Reef National Park, Utab. Fig. 20 (upper right). S. polyancistrus with gamet-colored flowers, near Goldield, Nevada.
Fig. 21 (lower left). S. cloveriae, Farmington, San Juan Co., New Mexico.
Fig. 22 (lower right). S. nyensis growing in volcanic tuff near Tonopah, Nevada. Photos: Figs. 5 and 18 by Dave Schleser; all others by Ken Heil.

Fig. 23. Distribution of six species of Sclerocactus in Arizona, Colorado, New Mexico and Utah based on herbarium collections.
219826). Nye Co. Ca. 12 mi east of Tonopah, Toiyabe National Forest, K. Heil, 16 May 1986 (SJNM 6935).

Sclerocact us polyancisirus grows on rocky soils in the Mojave Desert at 2500-7000' (750-2100 m). This species, the type of the genus, is a parti :ularly unusual member of Sclerocactus. It is the only member of the genus that lacks papillae on the style, and its style possesses grooves, somewhat reminiscent of those in Ferocactus. S. polyancistrus is also the largest species, grows the furthest west, produces the largest flowers and longest spines, and is found at the lowest elevation. S. polyancistrus and S. nyensis are the only representatives of sclerocacti found in the Mojave Deser.

The contrasting red and white spines, and large fowers make this one of the most attractive of he Sclerocactus species.
13. Sclerocactus nyensis Hochstätter, Succulenta 71(6):247-262. 1992.
Type. F. Hochstätter, 105; West Nye County, Nevada (HBG).

Fig. 22.

Stems solitary, or 2-3, globose, cylindroidal or elongate-cylindroidal, $5-12 \mathrm{~cm}$ long, $4-5 \mathrm{~cm}$ in diam; ribs well-developed, 12-15; cubercles 1012 mm long, 10 mm broad; areoles elliptic, mosty 13 mm apart; spines dense and obscuring the stem; central spines 4-7, the 3-5 lower and lateral

Fig. 24. Distribution of three subspecies of S. parviflorus in Arizona, Colorado, New Mexico and Utah based on herbarium collections.
central spines red or reddish-brown, 2-3.6 cm ong, 0.75 mm wide, mostly hooked, upper cen ral spines mostly $1-2$, white, flat, mostly 2.5 4.5 cm long, $1.5-2 \mathrm{~mm}$ wide, rarely hooked; radial spines white, 12-17,8-12 mm lone, traight fower ca. $2-2.5 \mathrm{~cm}$ diam, 3-4 cm, outer tepals with greenish-purple midribs and rose-purple or magenta margins, cuneate-spath ulate, mostly $10-17 \mathrm{~mm}$ long, $5-8 \mathrm{~mm}$ broad; inner tepals rose purple to magenta, the largest ovate-lanceolate, $18-22 \mathrm{~mm}$ long, $6-8 \mathrm{~mm}$ broad; filaments green, 6-12 mm long, anthers cream o yellow, nearly 1 mm long, 0.5 mm broad; style green, mostly 2 cm long, 1 mm diam; stigma green, mostly 10 ; ovary at maturity with a few
white scales; fruit green to tan, dry at maturity, barrel-shaped, $1.5-2 \mathrm{~cm}$ long, $0.75-1.5 \mathrm{~cm}$ diam; seeds shiny black, 3 mm lons, 2 mm wide, 1 mm hick, irregularly furrowed. Distribution. Esmeralda and Nye counties, Nevada.
Representative Specimens. esmernida Co. Ca. 3 mi south of Tonopah, 1.3 mi south of old highway entrance on both sides of U.S. 95, Heil \& Porter, 15 May 1986 (SJNM 6958). Nye Co. 10 mi south of Warm Springs, K. Heil, 16 May 1983 (SJNM 2773).

Sclerocactus nyensis has the appearance of a slightly. polyancistrus; however, the seeds difier

Fig. 25. Distribution of five species of Sclerocactus in Arizona, Nevada and Utah based on herbarium collections.
s.sses seeds that are furrowed or grooved, much as in a prune. This species is very likely another paedomorphic derivative. It has many of the characteristics shared by other presumed paedomorphs: globose stems, increased frequency of short, more or less barrel-shaped flowers.
S. nyensis was first discovered by Richard May in the early 1980's, growing on volcanic tuff and
other volcanic deposits near Warm Springs and south of Tonopah at an elevation of approximately $5250-5700^{\prime}$. This cactus is usually found in full sunlight, but a few were found growing under desert shrubs. It blooms in mid-May. There has been a considerable amount of conusion with the nomenclature of S. blainei, S. schlesseri, and S. nyensis. S. schlesseri was originally described in 1986 by Heil and Welsh, with

Fig. 26. Distribution of S. polyancistrus in Califomia and Nevada based on herbarium collections. Maps by J. Mark Porier.
the type specimen coming from Cathedral Gorge
State Park near Panoca, Nevada. S. blainei was described in 1985 by Welsh and Thome, with the type specimen from near Currant, Nye Couny, Nevada. There are not enough differences be ween S. schlesseri and S. blainei to warrant taxonomic status for S. schlesseri, therefore it is reduced to synonymy.
Hochsthtter (1993c) implies that S. nyensis was originally described by Welsh and Thorne in 1985 as S. blainei, which Hochstätter considers a hy-
brid between S. polyancistrus and S. schlesseri. The S. nyensis that Hochstatter describes is no the same material as that found at Currant (S. blainet). Therefore, S. nyensis represents a species different from S. blainei.

Acknowledgments

A special thanks for field assistance goes to John ; Anderson, Bureau of Land Management, Phoenix, Ar-: it icb; Josef Busek, Wolfratshausen, Germany, Lary

England, United States Fish and Wildife Service, Salt Lake City, Utah; Dave Ferguson, Belen, New Mexico: Rich Fleming, Dolores, Colorado: Dr. Don Hyder, Farmington, New Mexico; Bob Mlelton. Farmington. New Mexico; Dr. Larry Mitich, University of Califormia, Davis, California; Dr. Dave Schleser, City of Dallas. Grady Williams, Farmington, New Mexico.
For informative discussion, thanks go to Dr. E. F. Anderson, Deser Botanical Garden. Phoenix, Arizona; the late Dr. Lyman Benson, Pomona College. Califoma: Steven Brack, Mesa Gardens, Belen, New Mlexico; the late Dr. Edward Castetter, University of New Mexico; Dave Ferguson, Belen. New Mexico; Lucy Jordan. United States Fish and Wildlife Service, Salt Lake City, Utah; Dr. Elizabeth Neese, University of CaliColorado; Prince Pierce, Albuquerque New Mexico: Dr. Stan Welsh. Brigham Young University, Provo, Utah; and Dr. Alan Zimmerman, Tucson, Arizona.

References

Alberch, P., and J. Alberch. 1981. Heterochronic mechanisms of morphological diversification and Bolitoglossa occidentalis (Amphibia: Plethodontidae). J. Morphol. 167:249-264.
——. S. Gould, G. Oster, and D. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296-315.
Arp. G. 1972. A revision of Pediocactus. Cact. Succ. J. (U.S.) 41:218-222.

Benson, L. 1950. The cacti of Arizona, 2nd ed. Uni versity of Arizona Press, Tucson, Arizona. - 1951. The Mesa Verde cactus. Leaf. West Bot. 6:163. Succ. J. (U.S.) $38: 50-57$. Succ. J. (U.S) 38 revision of
Suc. 1974. New (1000-106. in the Cactaceac. Cact. Succ. J (U. S.) $46 \cdot 79-81$ - 1982. The cacti of the United States and Canada. Stanford Univ. Press, Stanford, California. 1044 pp.
Berger, A. 1929. Kakteen. Eugen Ulmer, Stutigar. 346 pp .
Boissevain, C. H., and C. Davidson. 1940. Colorado Cacti. Abbey Garden Press, Pasadena, California. Britton, N. L., and J. N. Rose. 1922. Sclerocactus. in The Cactaceac,
Busek, J. 1979. Die
Rusek, J. Mase. Kakl Die Gattung Sclerocactus Britt. Rose. 1983. Sclerock. 30:112-115. cactus spinosior. Kakt. and. Sukk. 34(2):34-38. Castetter, E. F., P. Pierce, and K. H. Schwerin. 1976 A new cactus species and two new varieties from New Mexico. Cact. Succ. J. (U.S.) 48:138-139. Clover, E. 1938. The Cactaceae of southem Utah
Bull. Torrey Bot. Club $65: 397-412$ Bull. Torrey Bot. Club 65:397-412. cactus from Arizona. Amer. J. Bot. 29:172-174. , and L. Jotter. 1941. Cacti of the canyon of the Colorado River and tributaries. Bull. Torrey Bot. Club 68:409-4 19 .

Coulter, J. M. 1896. Preliminary revision of the North American species of Echinocactus. Cereus, and Opuntia. Contr. U.S. Nat. Herb. 3:355-162. Ble, W. K. 1980. Cacti of the Southwest. Deser Botanical Garden, Phoenix, Arizona.
Engelmann, G. 1856 (1857, but preprint issued in 1856). Synopsis of the Cactaceae of the territory of the United Sales and adjacent regions. Proc - 1863 Additions to territory of the United States. Trans. Acad. Sci. St. Louis 2:197-204.
Evans, J. Whitman. 1939. A new species. Cact. Succ. J. (U.S.) 11:74-76.
Gould. S. J. 1977. Ontogeny University Press Cogeny and phylogeny. Harvard University Press, Cambridge, Massachusetts. phinum nudicaule (Ranunculaceae): a humming. phinum nudicaule (Ranunculaceae): a humming-
bird-pollinated larkspur. Evolution 36:699-712.
Heil. K. D. 1979. Three new species of Cactaceae from southeastem Utah. Cact. Succ. J. (U.S.) 51 : 25-30.
--, B. Armstrong, and D. Schleser. 1981. A review of the genus Pediocactus. Cact. Succ. J. (U.S.) 53:17-39.
, and J. M. Porter. 1987. A taxonomic evaluation of Sclerocactus glaucus and its relationship to with the U.S. Fish and Wildlife Service, Salt Lake City. Utah. 32 pp. 198 . New Sclerocactus (Cactaceae) from Nevada. Great Basin Naturalist 46:677-678.
Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.
Hochstätter, F. 1989. Nieubeschrijving Sclerocactus wellandicus species nova- Een nieuwe Sclerocactus 123-126. -. 1992. 247-262. 72: $19-34$.
72. 1993b. Revision Sclerocacius III Succulenta 72:82-92. 72:137-140. Revision Sclerocactus IV. Succulenta -. 1993d. Revision Sclerocactus IV. Succulenta 72:187-191.
n. 1993e. The genus Sclerocactus revised (magnificent, fascinating natural wonder). Mannheim, Germany.
Hunt, D., and N. Taylor. 1986. The genera of the Cactaceae: towards a new consensus. Bradleya 4:65-78.
Lord, E. M., and J. P. Hill. 1987. Evidence for heterochrony in the evolution of plant form. In R. lutionary process, eds., Development as an evoMarshall, W. T., and T. M. Bock. 1941. Cactaceae tbbey Garden Press, Pasadena, California. 227 pp.
Mason, H. L. 1946a. The edaphic factor in narrow endemism. I. The nature of environmental influences. Madroño 8:209-240.
m. 11 The the edaphic factor in narrow endembighly restricted pattems ofdistribution. Madroño highly restric
8:241-257.

Peebles, R. H. 1949. Studies in Arizona Cactaceae. Leaf. West. Bot. 5:191-192.
Pinkava, D., L. McGill, T. Reeves, and M. McLeod 1977. Chromosome numbers in some cacti of western North America. II. Bull. Torrey Bot. Club
Purpus, J. A. 1895.
natsschr. Kakteenk. $5: 106$.
natsschr. Kakteenk. 5:106. _. 1925. Echinocereus whipplei Engelm. \& Bigelow var. glaucur. Mitt. Deutsch. Dendr. Gesellsch.
Schelle, E. 1907. Handbuch der Kakteenkultur. Stuttgan.

Ush flora: Cactaceae. Grear Basin Nat. 44:52-69.

Welsh, S. L., N. D. Atwood, L. C. Higgins, and S. Goodrich. 1987. A Utah hora. Great Basin Nat - Bi. Bra 1994 Unersily. fiora Great Basin Naturalist. Brigham Young University.
-, and K. Thome. 1985. A new Sclerocactus from Nevada. Great Basin Naturalist, 45:553-555. oodruff, D., and L. Benson. 1976. Changes of status in Sclerocactus. Cact. Succ. J. (U.S.) 48:131-134 Woodson, D. 1974. 2 Sclerocactus species in the west Evol Biol. I. Boulder, Colorado. 228 pp.

