
Design Adaptability

Adaptable Software for

Supercomputers

Thomas Schwederski and Howard Jay Siegel
Purdue University

Software used to
control and program
reconfigurable
supersystems must
efficiently exploit the
hardware flexibility
available. If not, the
system does not fulfill
its potential.

S teady increases in computer hard-
ware performance show no sign of
slowing. Today's supercomputers

such as the Cray-, I Cyber 205,2 and
MPP (Massively Parallel Processor)3'4
are capable of a few million hundred-
floating-point operations per second.
However, even these computers do not
always satisfy the speed requirements of
the scientific and defense communities.
Consequently, researchers are now explor-
ing new supersystem architectures, such as
data flow computers and reconfigurable
computers that restructure the organiza-
tion of their hardware to adapt to com-
putational needs. If a supersystem can be
reconfigured, it can more likely efficiently
execute tasks that previously required a set
of dedicated systems. Reconfiguration is
especially important if the programs exe-
cuted by the supersystem have widely
differing computational requirements.
Computations needed to control some so-
phisticated weapon systems are of this
variety. 5
The utilization and performance of any

supersystem depends strongly on the soft-
ware available for it. Necessary software
includes system software, such as com-
pilers and operating systems, and applica-
tion software. Designing the system soft-
ware to make efficient use of complex
supercomputers is difficult. It is further
complicated ifthe supercomputer is recon-
fi'gurable. The application programs for
such systems are typically very large and
complex, such as those for mission-critical
military tasks. Thus, two problems facing
system designers are

(1) the development of system routines
to efficiently control system recon-
figuration, and

(2) the writing of complex application
programs.

Software used to control and program
reconfigurable supersystems must effi-
ciently exploit the hardware flexibility
available. If not, then the system does not
fulfill its potential. Frequently in the past,
customized application software packages
were developed for every new computer,
often resulting in programs that could be
executed on only one type of machine.
This machine dependence leads to dupli-
cation of effort since the same algorithms
have to be coded repeatedly, thus increas-
ing software cost. It is therefore important
to look for solutions to these two problems
in order to make the efficient use of recon-
figurable supersystems practical. We con-
sider possible solutions to these problems.

Adaptable software

Adaptable software offers such a solu-
tion. It encompasses all software that
manages reconfigurable computer systems
and all software itself adaptable to various
computers. As noted in the Guest Editors'
Introduction, compiler and operating sys-
tem software used to manage a reconfigu-
rable computer will be termed reconfigu-
ration software. Machine-independent
software is termed retargetable software.

Reconfiguration software is essential
for supersystems with reconfigurable ar-

0018-9162/86/0200-0040$o1.OO © 1986 IEEE40 COMPUTER

chitecture. The actual reconfiguration of
the hardware must be handled by the
operating system of a reconfigurable sys-
tem to shield the user from details of the
hardware implementation and to avoid er-
roneous hardware settings. The operating
system can be directed to perform recon-
figuration either explicitly by the user or
implicitly by software tools that analyze a
given problem automatically, determine
the optimum hardware configuration for
the problem, and supervise program exe-
cution. The explicit approach gives the
programmer flexibility in choosing the sys-
tem configuration needed for a particular
algorithm, while the implicit approach
reduces programming effort and speeds
up program development. Kartashev and
Kartashev describe a system that im-
plements the implicit approach for For-
tran programs. 6 However, currently no
automatic approach exists for all levels of
algorithm design and execution. In fact,
an exclusively automatic approach may
not be desirable for all computer architec-
tures and problems. In some cases explicit
reconfiguration enhances efficiency. For
example, many highly efficient algorithms
for specific computational tasks and
specific computer architectures have been
developed in the past. The efficiency and
speed of such hand-honed algorithms can-
not be rivaled by automatically generated
programs. For such cases, it is desirable
for an adaptable system to assume the ar-
chitecture for which such an algorithm
was designed. To do this, it must provide
the user with the tools to easily execute this
algorithm on the reconfigurable system.
The life cycle of software can be pro-

longed if it is made retargetable. Only pro-
grams that do not use machine-specific in-
structions will be retargetable, since any
machine-specific instruction needs to be
changed when the program is ported to a
different computer. Thus, only programs
written in high-level languages will be
retargetable.

Similar problems arise for the trans-
portation of programs that use explicit
operating system calls. If a program uses
explicit operating system calls (which are
inherently machine dependent), it is not
retargetable. Furthermore, if the operat-
ing system is changed or exchanged, the
program will have to be rewritten or at
least modified to still execute on the same
machine. Machine-independent software
can survive hardware or operating system

changes more easily. The elimination of
changes due to hardware or operating sys-
tem modifications automatically decreases
the overall cost of a software system. If a
program is portable, it can be used on a
wide variety of computers, which elimin-
ates duplicate programming efforts and
further reduces cost. Since a machine-
independent program is expected to re-
main useful longer, it is feasible to put
more development effort into a program.
This results in better, more efficient pro-
grams.
We have introduced two different types

of adaptable software: retargetable and
reconfiguration software. Most recon-
figuration software will not be retarget-
able since it has to be tailored towards
machine-specific capabilities. In some
cases, components of a reconfiguration
software system could be retargetable,
such as a reconfiguration control strategy
coded in a high level language. Thus,
reconfiguration and retargetable software
may overlap.

Reconfiguration
software

The reconfigurability of a supercom-
puter can take many different forms. Such
a computer could consist of a number of
processors with a certain numeric preci-
sion. It might be possible to combine
several processors to achieve higher preci-
sion, such as the reconfigurable vari-
structure array processor, 7 DCA, 8'9 and
TRAC. 10 A supersystem could be switched
between the single instruction stream-
multiple data stream, or SIMD, and mul-
tiple instruction stream-multiple data
stream, or MIMD, modes of operation. I I

It could also be partitionable and able to
form subgroups of processors. The sub-
groups could operate in SIMD or MIMD
mode, such as PASM. 12 A supercom-
puter might have even more states, such as
array processor, pipeline computer, and
multiprocessor, such as DCA 13 and Red-
di's and Feustel's machine. 14 The recon-
figuration capability might be static, so
that the system has to be stopped in order
to perform reconfiguration. Alternatively,
it could be dynamic, so that architectural
states could be switched during program
execution. Clearly, static reconfiguration
has limited use in mission-critical super-

systems since these must perform their
tasks at high speed and without interrup-
tions.

The processors of a supersystem must
communicate with each other to share
data and results. This communication can
be handled through shared memory or
through processor-to-processor intercon-
nection hardware. 15 In shared-memory
systems the processors may be connected
to the shared memories through an inter-
connection network. Examples include
C.mmp (which used a crossbar network), 16
CHoPP (which proposed a hypercube
structure), 17 and the NYU Ultracomputer
(which will use a multistage network). 18
For processor-processor communication a
variety of types of networks may also be
employed. Hardware interconnections
can be fixed as the non-edge connections
in the MPP, 3,4 where processors commu-
nicate only with their four nearest neigh-
bors. If a processor needs to talk to a pro-
cessor not its nearest neighbor, multiple
data transfers are necessary. Reconfigura-
ble processor-to-processor interconnection
networks can allow communication among
a large subset or all of the processors, as in
PASM, 12 where processors use a mul-
tistage cube network. Software running
these systems must make efficient use of
the interconnection capabilities.

Thus, to take optimal advantage of the
system, reconfiguration software needs to
know about the hardware's capabilities. It
must therefore be tailored towards the
hardware on which it will run. Ifthe recon-
figuration software is retargetable, the
machine-specific hardware description
would have to be entered at compile or run
time, since it could not be part of the
retargetable software.

Reconfiguration of a supersystem can be
handled by the programmer through ex-
plicit use of reconfiguring instructions, or
implicitly by system software which auto-
matically generates reconfiguring instruc-
tions without the need of programmer in-
tervention. Hybrids of these methods are
also possible.

Explicit reconfiguration. If instructions
for reconfiguring the system are available
to the user, the programmer can take ex-
plicit advantage of various architectural
states. With careful program analysis and
good coding, this results in programs gain-
ing the most advantage from the recon-
figuration capability. Programs for each

February 1986 41

Figure 1. Flowchart for a parallel program using Fork and Join statements.

architectural state like array, multi-
processor, pipeline, etc., must be written
in a language suited for this state, and the
language must include constructs for re-
configuration. High level languages for
MIMD and SIMD machines give good ex-
amples of the specific requirements. Con-
sider an MIMD computer. If the number
of processors for the given task is fixed, a
standard assembly or high level language
such as Pascal, C, or Fortran can be used
to program the task. The programmer has
to decide which processor handles what
particular task, and write the appropriate
programs. The programs are loaded into
the processors needed for the task. The
operating system of the machine starts the
task and coordinates activities. Many ap-
plications, especially in image processing,
require a set of processors that all execute
the same program. An example is an image
processing algorithm in which each pro-
cessor finds features in a part ofthe image.
In this case, each processor has its own set
of data, but all processors execute the
same program. Only one program has to
be coded, independent of the number of
processors. Depending on the task, this

may involve just MIMD operations, just
SIMD operations, or both. 19

If the number of processors varies dur-
ing task execution, the programming lan-
guage has to be expanded and must in-
clude special statements to allocate and
deallocate processors. Conway20 pro-
poses the use of Fork and Join instruc-
tions. Whenever a Fork is encountered, a
new process is created that proceeds in-
dependently from the original process.
The new process can run on another pro-
cessor. If no processor is available, the
new process can be queued until a pro-
cessor becomes available. If multipro-
gramming capability is available, such as
CHoPP, 17 two or more processes can run
on the same processor in a timesliced
fashion. Conway proposes three kinds of
Fork: Fork A, J, N; Fork A, J; and Fork
A. In this implementation, a counter keeps
track of the number of concurrent pro-
cesses. Fork A generates a new process;
the old process continues to execute the in-
struction following the Fork, the new pro-
cess starts at instruction A. The Fork A, J,
N instruction sets a counter in memory
location J to the value N, then executes

Fork A. The programmer must match the
number of Forks in his program with the
count specified in the Fork A, J, N, since
the Fork A alone does not affect the
counter. Fork A, J increments counter J
by one and then executes a Fork A. This
instruction is needed if the decision to fork
is made at run time. The Join statement
merges concurrent instruction streams.
When a Join J is encountered, the counter
at location J is decremented. The proces-
sor that decrements the counter to zero
executes the statements following the
Join. All other processors are released and
become available for other computations.

Figure I illustrates the use of the three
different Fork and the Join statements.
Process I executes a Fork A, 100, 3, which
sets the counter in memory location 100 to
3 and starts a concurrent process (Process
2). Then Process I executes a Fork B, 100,
which increments the counter at location
100 by one and starts another process,
Process 3. Meanwhile, Process 2 executes
a Fork C, generating a fourth process,
Process 4. Thus, four concurrent pro-
cesses are now active. When a process en-
counters a Join 100, it decrements the
counter. The process continues if the
counter reaches zero; otherwise, it ceases.
Fork and Join are examples oftwo explicit
reconfiguration commands.

Dijkstra21 proposed a more structured
way to express reconfiguration for mul-
tiprocessor programs: parbegin Sl;S2;

Sn; defines SI through Sn as statements
which can be executed in parallel. The par-
allel execution ends when a parend is
found. Only after all processors executing
the parallel statements have found their
parend are statements following the
parend executed. A program that needs to
run two processes in parallel might have
the following structure:

parbegin
processl : begin

statements for process I
end

process2: begin
statements for process 2
end

parend

Both parbegin-parend and Fork-Join
blocks could be conditional. In other
words, whether or not the block would be
entered could depend on the result of an if

COMPUTER42

statement. This results in a dynamic recon-
figuration capability.

Parallelism of an SIMD computer can-
not be expressed explicitly in any conven-
tional programming language. One type
of SIMD computer consists of an array of
processor/memorJ, pairs called processing
elements, or PEs, which do the actual
computations, and a control unit. The
control unit executes all program flow in-
structions and broadcasts data processing
instructions to the PEs. All PEs execute
the same instruction at the same time, but
on different data, e.g., on different sec-
tions of an image. The control unit also
determines which of the PEs execute the
instruction and thereby varies the extent of
parallelism of the computer. An intercon-
nection network provides communication
between the PEs. The network can be
fixed as in theMPP or the Illiac IV, 22 or it
can be reconfigurable as in PASM. 12 If
the network is reconfigurable, instructions
that reconfigure the network in the desired
fashion must be provided in the program-
ming language. Constructs to enable and
disable PEs need to be available as well.
Extensions of existing high level languages
have been proposed. 23-30 Such extensions
can be machine dependent or machine in-
dependent.
An example of a machine-dependent

language is Glypnir,24 specifically devel-
oped for the Illiac IV computer and based
on Algol 60. Illiac IV was an SIMD
machine with 64 PEs, designed in the
1960's. Its fixed interconnection network
connects PE i to PEs i + 1, i - 1, i + 8, i - 8,
all modulo 64, providing a mesh-type inter-
connection. The system cannot be parti-
tioned into smaller machines; the only re-
configuration capability involves enabling
and disabling PEs. In Glypnir, variables
for PEs and for the control unit can be
defined. A PE variable has an element in
every PE and is called a super word, or
sword. Therefore, a sword always has 64
elements. For example, the statement

PE REAL A,B

declares the variables A and B to be
swords.

PE REAL C(20)

declares C to be an array of 20 elements in
each of the PEs. By using Boolean expres-
sions, PEs can be selectively enabled or dis-

abled. Consider, for example, the state-
ment

if < Boolean expression> then
< statement >

else
< statement2>

The Boolean expression will be evaluated
in all processors. The processors finding a
true value execute statement 1. The others
do not participate in the instruction stream
broadcast for statement 1, but execute only
statement2.

Glypnir's architectural dependence on
the Iliac IV severely limits its use. An at-
tempt for machine independence was
made by the developers of Actus, 26 a lan-
guage based on Pascal. Actus was designed
for SIMD machines of arbitrary size. A
variable can be declared parallel. The ex-
tent of parallelism must be specified for
each parallel variable. In the range specifi-
cation of a parallel variable declaration, a
colon denotes that a dimension is to be ac-
cessed in parallel. For example,

vararrayl: aray [l:m,l..n] of integer

declares an array of m by n elements; m
elements can be accessed at a time. The
underlying operating system takes care of
reconfiguring the computer into a machine
that can handle the specified parallel
variable. if, case, while, and for state-
ments are expanded for use with parallel
variables. Alignment operators are also
provided. For example, a shift operator
moves data within the declared range of
parallelism, a rotate shifts data circularly
with respect to the extent of parallelism.
shift and rotate will be implemented by
using the processor interconnection net-
work.

Parallel-C is a proposed programming
language based on C that handles both the
MIMD and SIMD modes of operation. 30
The SIMD features include declarations of
parallel variables and functions; an index-
ing scheme to access and manipulate par-
allel variables; expressions involving par-
allel variables; extended control structures
using parallel variables as control vari-
ables; and functions for PE allocation,
data alignment, and I/O. The language
supports simple parallel data types like
scalars and arrays as well as structured
data. For example,

parallel [NJ int a;
parallel [N] char line[MAXLINE];
struct node (

char *word; struct node *next;
) parallel [N] nodespace[100], *head;

declares an integer "a," an array ofMAX-
LINE characters, an array of 100 nodes,
and a node pointer for each of the N pro-
cessors. Indexing along the parallel dimen-
sion can be done by using selectors; they
enable or disable subsets of the N pro-
cessors. Functions to send data between
processors are provided. They are not part
of the language, but library routines, thus
avoiding machine dependence. If the com-
piler is retargeted, these communication
routines must be adapted. No change of
the compiler itself is required. To facilitate
MIMD mode, a few new features and key-
words are added. A preprocessor recog-
nizes these constructs and translates the
parallel algorithm into a standard serial C
program, which can then be compiled by a
standard C compiler and loaded into the
program memories of the processors of
the MIMD machine.

Implicit reconfiguration. On a super-
computer with a fixed architecture, it is
desirable to have the ability to automati-
cally analyze a serial program and restruc-
ture it so that it can be executed efficiently.
As reconfigurable supercomputers become
more and more complex, having users use
explicit reconfiguration commands to con-
struct efficient algorithms for the system
may no longer be feasible. On a machine
with reconfigurable architecture, it is de-
sirable to automate the process of finding
an optimal architectural state and then
structuring the task for the architecture.
This may involve more than one architec-

A task may be most
efficiently performed
using different
architectural states
for different subtasks.

February 1986 43

Figure 2 Simplified block diagram of PASM.

tural state, because a task may be most ef-
ficiently performed using different archi-
tectural states for different subtasks.

Much effort has gone into developing
algorithms capable of detecting paral-
lelism in serial programs. 31,32 Consider a
program to add to vectors A and B:

FOR i = I TO N DO C[i]:= A[i] +
B[i];

Obviously, the addition statements do not
depend on each other; therefore, all addi-
tions can be executed in parallel on N
processors. This example typifies the
operations performed by a parallelizing
compiler. The compiler analyzes the pro-
gram and schedules statements that do not
depend on each other to exeecute in paral-
lel. It must also determine the number of
processors needed to execute the program
and have the operating system allocate
them. Since the order in which two state-
ments, I and J, execute in a sequential pro-
gram is not preserved if they are executed
in parallel, three conditions must be met if
I and J are to be parallelized. Statement I
must not write to locations that statement
J reads; statement J must not write to loca-
tions that statement I reads; and statement
I must not write to the same location as
statement J if that location is used by a
later statement.
One approach to handle a system with

reconfigurable architecture, developed by
Kartashev, 6 is called the reconfiguration

flowchart. The algorithm assumes a
dynamic architecture that can partition its
processors into groups of computers of
different sizes and can combine processors
to form higher-precision computers. It
analyzes a Fortran program and its pro-
gram flow structure and constructs a pro-
gram graph. Each node in the graph in-
cludes one or more program statements.
The arrows between nodes represent the
program flow. For each node, the
necessary computational precision is
determined and by that the minimum
number of processors required for the
computation of the node is found. Since a
minimum number of processors is found
for each node, a maximum number of
nodes can be processed simultaneously.

Several programs can be run concur-
rently on the system. Whenever a program
finishes, a new program should be started,
necessitating a switch to a new architec-
tural state. If the task causing the switch
runs for a longer time than other tasks, the
processors executing the short tasks will
wait for the long task to finish. Therefore,
the execution time for each node is deter-
mined to minimize processor idle time.
Then a resource diagram is constructed,
where nodes are assigned specific pro-
cessors, and execution can begin.

Ongoing research at Purdue involves
the design of expert-system-based in-
telligent operating systems for controlling
reconfigurable supersystems.33 To op-
timize system performance, the intelligent

operating system uses information about
which subtasks need to be executed to per-
form an overall task, the performance/
system-requirement characteristics of the
algorithms for the subtasks, and the cur-
rent state of the system.

Reconfiguration methodology. An im-
portant consideration in reconfigurable
systems is the reconfiguration methodolo-
gy. The switch from one architectural state
to another takes time. To maximize per-
formance, the sum of execution time and
reconfiguration time must be minimized.
Clearly, a very short reconfiguration time
is desirable, since otherwise advantages
gained by the reconfiguration are lost due
to the reconfiguration overhead. Of
course, the time to reconfigure has to be
less than (hopefully, much less than) the
reduction in execution time gained
through the reconfiguration.
As an example of a reconfiguration

methodology, consider the PASM system.
PASM is a partitionable SIMD/MIMD
system. A prototype with 16 Motorola
MC68000-based PEs in the computational
engine and four control units is being con-
structed at Purdue University. 34 Figure 2
shows a simplified block diagram of the
system. In SIMD mode, the PEs receive
their instructions from a control unit and
process data from their private memory.
In MIMD mode, the PEs have data and
program in their private memory. One
type of reconfiguration is the switching
from SIMD to MIMD mode and vice ver-
sa. Whenever a PE addresses a certain ad-
dress range, AR, thisPE is in SIMD mode.
As soon as an access to AR is detected, an
instruction request is issued to the control
unit, which then broadcasts an instruction
to the requesting processors. The control
unit accomplishes a switch from SIMD to
MIMD mode by broadcasting an uncondi-
tional jump to the beginning ofthe MIMD
program to the PEs, where the address of
this MIMD program is outside the range
AR. The PEs can return to SIMD mode by
jumping into the address space AR. The
reconfiguration overhead for PASM is
therefore just one instruction. For all
practical applications, this overhead is
negligible and program sections can be
executed in SIMD or MIMD mode,
whichever is best suited.

Apart from reconfiguration for op-
timum performance, reconfiguration due
to faults or other undesired conditions

COMPUTER44

such as unbalanced load must be con-
sidered in a supersystem. If a single pro-
cessing element of a supersystem fails, the
system as a whole should continue to func-
tion, eventually with decreased perfor-
mance. The necessary reconfiguration has
to be automatic and must be handled by
the operating system, since a programmer
cannot predict a fault. Ma35 proposes
reconfiguration control algorithms for
reconfigurable computers with and with-
out centralized control. As an example for
the methodology, consider the straightfor-
ward reconfiguration procedure with cen-
tralized control. The control unit monitors
the state of the processing nodes and
detects undesirable conditions. It then
broadcasts reconfiguration commands to
the appropriate nodes, which perform the
necessary reconfiguration and signal com-
pletion to the control unit. After all nodes
have completed their respective recon-
figuration tasks, the control unit signals
the nodes and computation can resume.

An additional consideration for recon-
figuration software is the ability to con-
centrate computing power. 33 For ex-
ample, assume that numerous subtasks of
some overall task are being executed con-
currently. If, as a result ofsome derived in-
termediate result, one subtask becomes
more time-critical than the others, the sys-
tem should dynamically reconfigure to
provide additional resources to the sub-
task. Reconfiguration software capable of
such operation would have to have some
form of intelligence and knowledge of a
system model. This is an area for future
research.

Retargetable software

As mentioned previously, software that
can be used on a wide variety ofcomputers
is very desirable. An early attempt towards
that goal is the standardization of the pro-
gramming language Fortran by ANSI.
Nevertheless, many Fortran dialects exist,
and compilers are not verified. Therefore,
it cannot be guaranteed that the same pro-
gram will exhibit identical performance on
different machines. A standard Fortran
program using only standard I/O routines
like read and write might very well be por-
table. As soon as explicit operating system
calls such as seek for a disk are included,
however, the program is restricted to ma-

chines with compatible operating system
calls.

Other important tasks that depend on
the operating system are task creation and
interprocess communication. They are
necessary for expressing concurrent oper-
ations. Concurrent operations are often
used in real-time systems and are essential
for parallel processing. Low-level opera-
tions like interrupt control are not possible
in Fortran. All this seriously limits the
portability of Fortran programs. The
same problems arise with other languages,
such as Pascal and Algol. Current efforts
on the design of Ada36'37 are attempting
to circumvent these problems.

There are basically three ways to make a
program portable. 38

Transportable language approach. This
approach, designed for serial computers,
is based on widely used languages like For-
tran and Pascal. The dialects of such a lan-
guage are analyzed and a hypothetical
parent language with a grammar common
to all dialects is defined. The syntax and
semantics of the parent language are
rigorously specified. For each computer
which is to run portable code, parameters
which completely specify the computer ar-
chitecture are determined. These parame-
ters are byte size, word size, byte or word
orientation of the CPU, main memory
size, and maximum program module size.
Then a compiler with two modes of opera-
tion is constructed: the transportability
testing mode and the compilation mode.
In the transportability testing mode, a pro-
gram coded in a dialect of the language is
converted to the hypothetical parent lan-
guage, using the architectural parameters.
In the compilation mode, hypothetical
parent-language code is translated into a
dialect ofthe language. Thus, existing pro-
grams can be converted to the parent lan-
guage, making them portable. Also, pro-
grams can be written directly in the parent
language and thus be guaranteed easily
portable.

Certain instructions must be modified
for the parent language. For example, all
variable declarations need to include a
precision declaration so that the parent
language compiler can determine the ap-
propriate data type in the language dialect.
Desirable language features not available
in a given dialect (such as data structures
or while loops) can be made available in
the parent language, thus making pro-

February 1986

A major advantage
of the transportable
language approach is
that existing
programs are not
rendered obsolete.

gramming in the parent language more
flexible.
A major advantage of the transportable

language approach is that existing pro-
grams are not rendered obsolete but can be
converted and made portable. The neces-
sity to write bifunctional compilers for
every machine, and the continued ex-
istence of multiple dialects for the lan-
guage are disadvantages.

Emulation approach. Another ap-
proach to transportable software is to
transform the machine rather than the
program. Making machines capable of
emulating some class of computers allows
those machines to execute code written for
any of the computers in that class.39,40
Programs can be coded in any high-level
or assembly language supported by the
computers in that class. The programs are
compiled and the resulting machine code is
transferred to one of the emulation
machines. This machine emulates the com-
puter for which the code was written and
thus is capable of executing the machine
code. One problem with the approach is
decreased performance. Another is that all
machines, of a set of machines among
which code is to be transportable, have to
be capable of emulating all the others.

New language approach. In this ap-
proach, all programs to be ported are writ-
ten in a standard new language known by
all machines, thus making programs por-
table. The definition of this new language
incorporates all desired features and the
compilers for this language are rigorously
verified to ensure portability. The Depart-
ment of Defense chose this method when

45

Figure 3. (a) User's view of task communication in Ada. (b) User's view of task communication in a standard program-
ming language.

developing the programming ianguage
Ada. 37,41,42
Ada is a structured programming lan-

guage. In addition to being designed for
portability, it supports many features
necessary for executing tasks on recon-
figurable systems. Functions necessary for
process creation, deletion, and inter-
process communication are part of the
language. The compiler actually generates
operating system calls from those func-
tions, but this is hidden from the user. If
the program is transferred to a different
machine and recompiled, the appropriate
new operating system calls are generated.

Depending on the machine architecture,
concurrent processes could either be run in
a time-sliced mode, or they could be
allocated on different processors. The
compiler for a particular machine, in
cooperation with the operating system,
has to handle the allocation procedure.

Concurrent processes are called tasks in
Ada. A task is declared by defining a task
header and a task body. If one or more
tasks are declared inside a procedure, they
execute concurrently with the procedure.
The task header specifies the task name
and entries that handle interprocess com-
munication. The task body contains all
statements executed in the task. To send a
message to task T, other tasks call an entry
ofT like a procedure. The destination task
T can accept the message.
As an example, consider a process that

accepts single-character messages from
other tasks. The header has the form

task ACCEPT-CHAR is
entry MESSAGE (C: in
CHARACTER)

end;

The task name is defined as AC-
CEPT_CHAR. Other processes can send

messages to ACCEPT-CHAR calling the
entry:

MESSAGE (CHAR);

The task ACCEPT-CHAR reads the mes-
sage when it encounters an accept state-
ment, which must be part ofthe task body:

accept MESSAGE (C: in
CHARACTER) do
MESS:= C
end;

This statement accepts an incoming
message and assigns its value to the
variable MESS. Only between the do-end
part ofthe accept is the passed message ac-
cessible. Data is actually exchanged only
when the sending task calls an entry and
the receiving task executes an accept on the
same entry. If a process encounters an ac-
cept without another process executing the
appropriate entry call, the process will
wait until an entry call is executed. An en-
try call also waits for the appropriate ac-
cept. Thus, sending and accepting of
messages is synchronized between tasks.
The execution of an entry call and its

associated accept statement is called task
rendezvous. The task rendezvous facili-
tates interprocess communication by the
ability to exchange data. It facilitates pro-
cess synchronization by executing the task
only if both the sending and receiving
tasks have reached their respective rendez-
vous statements. It facilitates mutual ex-
clusion since only one of all tasks request-
ing communication with another process
will be served at any given time. The dif-
ference between an Ada task rendezvous
and task communication in other pro-
gramming languages is illustrated in
Figure 3. Since no explicit operating sys-

tem calls are needed, the task handling is
not machine specific and can easily be
ported.
Another important portability problem

with programming languages arises from
machine-dependent data types. A Cray-l
supercomputer,2 for example, has an in-
teger precision of 24 bits, whereas the Fu-
jitsu VP-20043 uses 32-bit integers. Pro-
grams utilizing 32-bit integer precision
could not run on a machine of 16-bit in-
teger precision. In Ada, a programmer has
access to such machine-dependent data-
type attributes as

INTEGER-SIZE

Using such attributes, a program can
check at runtime whether a specific
machine will be able to execute a program
as desired.
The task concept of Ada can be used to

explicitly handle parallel processing in
MIMD multiprocessors. This is insuffi-
cient to express parallelism of an SIMD
machine. Extensions to Ada facilitating
SIMD programming have been pro-
posed29; these extensions provide func-
tions similar to those for SIMD program-
ming as described above. Due to the rigid
Ada policy allowing no subsets or
supersets of the language in a verified
compiler, this approach may not be widely
used. To code SIMD programs explicitly
nevertheless, subprograms coded in a lan-
guage suitable for SIMD programming,
such as Actus or extended Ada, could
replace a standard Ada subprogram if the
program is executed on an SIMD machine.
This procedure is analogous to replacing a
high-level language subroutine by a faster
executing assembly program. The main
body of the program would then still be
portable. Only the special subroutine has to
be changed when the program is retargeted.

46 COMPUTER

A s more and more adaptable su-
persystems are designed and
built, the need for adaptable soft-

ware to run these systems efficiently will
continue to grow. The adaptable software
required includes retargetable software,
which makes application programs trans-
portable, and reconfiguration software,
which controls the system organization.
Thus, adaptable software is an essential
element in the development of super-
systems or mission-critical objectives. C]

Acknowledgments
The authors would like to thank Steven

and Svetlana Kartashev and Andre van
Tilborg for their careful reading of the
manuscript and many helpful suggestions.

This work was supported by the Rome
Air Development Center under contract
number F30602-83-K-01 19.

References
1. R. M. Russell, "The Cray-i Com-

puter System," Comm. ACM, Jan.
1978, pp. 63-72.

2. E. W. Kozdrowicki and D. J. Theis,
"Second Generation of Vector Su-
percomputers," Computer, Nov.
1980, pp. 71-83.

3. K. E. Batcher, "Design of a Mas-
sively Parallel Processor," IEEE
Trans. Computers, Vol. C-29, Sept.
1980, pp. 836-844.

4. K. E. Batcher, "Bit Serial Parallel
Processing Systems," IEEE Trans.
Computers, Vol. C-31, May 1982,
pp. 377-384.

5. E. W. Martin, "Strategy for a DoD
Software Initiative," Computer,
Vol. 16, Mar. 1983, pp. 52-59.

6. S. P. Kartashev and S.I. Kartashev,
"Distribution of Programs for a Sys-
tem with Dynamic Architecture,"
IEEE Trans. Computers, Vol. C-31,
June 1982, pp. 488-514.

7. G. J. Lipovski and A. R. Tripathi,
"A Reconfigurable Varistructure
Array Processor," 1977 Intl. Conf.
Parallel Processing, Aug. 1977, pp.
165-174.

8. S. I. Kartashev and S. P. Kartashev,
"Dynamic Architectures: Problems
and Solutions," Computer, July
1978, pp. 26-42.

9. S. I. Kartashev and S. P. Kartashev,
"A Multicomputer System with Dy-
namic Architecture," IEEE Trans.
Computers, Vol. C-28, Oct. 1979,
pp. 704-720.

10. G. J. Lipovski, "The Banyan Switch
in TRAC the Texas Reconfigurable
Array Computer," Distributed
Processing Technical Committee
Newsletter (IEEE Computer Soci-
ety), Jan. 1984, pp. 13- 26.

11. J. Keng and K-S. Fu, "A Special
Computer Architecture for Image
Processing," 1978 IEEE Computer
Society Conf. Pattern Recognition
and Image Processing, June 1978,
pp. 287-290.

12. H. J. Siegel, L. J. Siegel, F. C.
Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., and S. D. Smith,
"PASM: A Partitionable SIMD/
MIMD System for Image Processing
and Pattern Recognition," IEEE
Trans. Computers, Vol. C-30, Dec.
1981, pp. 934-947.

13. S. I. Kartashev and S. P. Kartashev,
"Problems of Designing Supersys-
tems with Dynamic Architecture,"
IEEE Trans. Computers, Vol. C-29,
Dec. 1980, pp. 11 14-1132.

14. S. S. Reddi and E. A. Feustel, "A
Restructurable Computer System,"
IEEE Trans. Computers, Jan. 1978,
pp. 1-20.

15. H. J. Siegel, Interconnection Net-
works for Large-Scale Parallel Pro-
cessing: Theory and Case Studies,
Lexington Books, D. C. Heath and
Co., Lexington, MA, 1985.

16. W. Wulf and C. Bell, "C.mmp-A
Multi-Miniprocessor," AFIPS 1972
Fall Joint Computer Conf., Dec.
1972, pp. 765-777.

17. H. Sullivan, T. R. Bashkow, and K.
Klappholz, "A Large-Scale Homo-
geneous, Fully Distributed Parallel
Machine," Fourth Ann. Symp.
Computer Architecture, Mar. 1977,
pp. 105-124.

18. A. Gottlieb, R. Grishman, C. P.
Kruskal, K. P. McAuliffe, L.
Rudolph, and M. Snir, "The NYU
Ultracomputer-Designing an
MIMD Shared-Memory Parallel
Computer," IEEE Trans. Comput-
ers, Vol. C-32, Feb. 1983, pp.
175-189.

19. D. L. Tuomenoksa, G. B. Adams III,
H. J. Siegel, and 0. R. Mitchell, "A

Parallel Algorithm for Contour
Extraction: Advantages and Archi-
tectural Implications," 1983 IEEE
Computer Society Symp. Computer
Vision and Pattern Recognition,
June 1983, pp. 336-344.

20. M. E. Conway, "A Multiprocessor
System Design," AFIPS 1963 Fall
Joint Computer Conf., 1963, pp.
139-146.

21. E. W. Dijkstra, "Cooperating
Sequential Processes," Program-
ming Languages, ed. F. Genuys,
Academic Press, New York, NY,
1968, pp. 43-112.

22. W. J. Bouknight, S. A. Denenberg,
D. E. Mclntryre, J. M. Randall,
A. H. Sameh, and D. L. Slotnick,
"The Illiac IV System," Proc. IEEE,
Vol. 60, Apr. 1972, pp. 369-388.

23. K. G. Stevens, "CFD-A Fortran-
like languagefor the Illiac IV,"ACM
Conf. Programming Languages and
Compilers for Parallel and Vector
Machines, Mar. 1975, pp. 72-76.

24. D. H. Lawrie, T. Layman, D. Baer,
and J. M. Randall, "Glypnir-A
Programming Language for Illiac
IV," Comm. ACM, Vol. 18, Mar.
1975, pp. 157-164.

25. S. F. Reddaway, "DAP-A Dis-
tributed Array Processor," 1st Ann.
Symp. Computer Architecture, Dec.
1973, pp. 61-65.

26. R. H. Perrott, "A Language for
Array and Vector Processors,"ACM
Trans. Programming Languages and
Systems, Vol. 1, Oct. 1979, pp.
177-195.

27. L. Uhr, "A Language for Parallel
Processing of Arrays, Embedded in
Pascal," Languages and Architec-
turesfor Image Processing, eds. M.
J. B. Duff and S. Levialdi, Academic
Press, London, England, 1981, pp.
53-88.

28. A. P. Reeves and J. D. Bruner, "The
Programming Language Parallel
Pascal," 1980 Int'l Conf. Parallel
Processing, Aug. 1980, pp. 5-7.

29. C. Cline and H. J. Siegel, "Augment-
ing Ada for SIMD Parallel Process-
ing," IEEE Trans. Software Engi-
neering, Vol. SE-li, No. 9, Sept.
1985, pp. 970-977.

30. J. T. Kuehn and H. J. Siegel,
"Extensions to the C Programming
Language for SIMD/MIMD Paral-
lelism," 1985 Int'l Conf. Parallel
Processing, Aug. 1985, pp. 232-235.

February 1986 47

31. D. J. Kuck and D. A. Padua, "High-
Speed Multiprocessors and Their
Compilers," 1979 Int'l Conf.
Parallel Processing, Aug. 1979, pp.
5-16.

32. Arvind, "Decomposing a Program
for Multiple Processor Systems,"
1979 Int'l Conf. Parallel Processing,
Aug. 1979, pp. 7-14.

33. E. J. Delp, H. J. Siegel,
A. Whinston, and L. H. Jamieson,
"An Intelligent Operating System for
Executing Image Understanding
Tasks on a Reconfigurable Parallel
Architecture," IEEE Computer
Society Workshop on Computer
Architecture for Pattern Analysis
and Image Database Mangement,
Nov. 1985, pp. 217-224.

34. H. J. Siegel, T. Schwederski, N. J.
Davis IV, and J. T. Kuehn, "PASM:
A Reconfigurable Parallel System for
Image Processing," Workshop on
Algorithm-guided Parallel Architec-
turesfor Automatic Target Recogni-
tion, July 1984, pp. 263-291. (Also
appears in theACM SIGARCH news-
letter, Computer'Architecture News,
Vol. 12, No. 4, Sept. 1984, pp. 7-19.)

35. Y. W. Ma, "Reconfiguration
Control Algorithms for Reconfig-
urable Computer Systems," Int'l
Computer Software and Applica-
tions Conf., Nov. 1982, pp. 70-77.

36. J. G. P. Barnes, Programming in
Ada, Addison-Wesley, London,
England, 1982.

37. U.S. Department of Defense,
Reference Manual for the Ada
Programming Language, Washing-
ton, D.C., 1982.

38. P. A. D. de Maine and S. Leong,
"Transportation of Programs," 15th
Southeast Symp. System Theory,
Mar. 1983, pp. 158-164.

39. T. A. Marsland and J. C. Demco, "A
Case Study ofComputer Emulation,"
Canadian J. Operational Research
and Information Processing, Vol. 16,
June 1978, pp. 112-131.

40. J. Hayes, Computer Architecture
and Organization, McGraw-Hill,
New York, NY, 1978.

41. H. Ledgard, Ada, An Introduction,
Springer-Verlag, New York, NY,
1983.

42. R. J. A. Buhr, System Design with
Ada, Prentice Hall, Englewood City,
NJ, 1984.

43. K. Hwang and F. A. Briggs, Comput-
er Architecture and Parallel Process-
ing, McGraw-Hill, New York, NY,
1984.

Thomas Schwederski is currently working
toward a PhD degree at Purdue Univer-
sity. He received the Diplom-Ingenieur
degree in electrical engineering from
Ruhr-Universitaet Bochum in 1983, and
the MS degree in electrical engineering
from Purdue University in 1985. His re-
search interests include computer architec-
ture, parallel processing, multimicropro-
cessing systems, and VLSI design.

Howard Jay Siegel is a professor of elec-
trical engineering and Director of the
PASM Parallel Processing Laboratory at
Purdue University, where he has been in-
volved in research and teaching since 1976.
His research interests include parallel/
distributed processing, computer architec-
ture, and image and speech understanding.

Siegel received BS degrees in electrical
engineering and management from the
Massachusetts Institute of Technology in
1972. He received the MA and MSE de-
grees in 1974, and the PhD degree in 1977,
all three in electrical engineering and com-
puter science, from Princeton University.

Siegel has served as an IEEE Computer
Society distinguished visitor and is cur-
rently an associate editor of the Journal of
Parallel and Distributed Computing.

Questions regarding this article can be
directed to either author at the PASM
Parallel Processing Laboratory, School of
Electrical Engineering, Purdue Univer-
sity, West Lafayette, IN 47907.

COMPUTER

SENIOR APPLICATION
ENGINEERS

At Cray Research, the secret to our success is to hire the most talented
people and provide them with the funding to develop the world's most
advanced supercomputers and related products.
Right now, we are looking for exceptionally talented and motivated
individuals who are interested in the design and development of major
algorithms and codes for high speed parallel processors involving any of the
following fields:
Computational plasma physics
Computational fluid dynamics
High speed graphics
You need a strong numerical background with emphasis in parallel
processing, You also need an advanced degree or 3 years' related
experience. High speed computer architecture experience preferred.

On Sabbatical?
Some positions are available on a temporary basis for college faculty
members on sabbatical.
If you enjoy working in a research-oriented setting with a small team of
talented innovators, send your resume today to:

T. Jetfery Crosby
CRAY RESEARCH, INC.
Dept. R-081
1050 Lowater Road
Chippewa Falls, WI 54729
An Equal Opportunity Employer M/F/H/V

o =1 W-IMMMM21116-111111111M12111111

