Identification of Toxic Benthic Cyanobacteria in Three Northern California Rivers

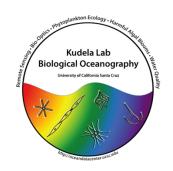
Rich Fadness
North Coast Regional Water Quality Control Board

Monitoring for the Protection of Public Health

(EXPANDED)

Identification of Toxic Benthic Cyanobacteria in Three

Northern California Rivers



Identification of Toxic Benthic Cyanobacteria in Three Northern California Rivers

- 2015 Discussion and 2016 Sample Design Development Rich Fadness
- 2016 Monitoring Results Meredith Howard
- Monoculturing Cyanobacteria Species
 Rosalina Stancheva
- Toxicity Testing of 2015 Monocultured Cyanobacteria
 Brian Anderson
- 2018 Design Changes, Thoughts, and Next Steps Rich Fadness
- Questions Discussion

Identification of Toxic Benthic Cyanobacteria in Three Northern California Rivers

An investigation into the presence of benthic cyanobacteria in Northern California was initiated in response to a citizen complaint related to multiple dog illnesses after swimming in the Russian River. Further examination of the dogs suggested that a cyanotoxic response was NOT responsible for their symptoms, however our field investigation had begun.

Initial Water Column and Integrated Algal Mat Toxin Testing (RESULTS)

		114RR3173	114RR3119	114RR2940	114RR2036	114RR1898	114RR1515	114RR1325	114RR0898	ОЕННА
			EAM to							2012 Criteria
				W	ater Columi	n Grab Samp	ole			(ug/L)
8/10/2015		-	-	-	-	-	<0.10	-	ND	
8/17/2015	Microcystin	-	-	-	-	-	-	-	-	Advisory - 0.8
8/24/2015	/ Nodularin	ND	ND	ND	ND	ND	-	ND	ND	Advisory - 0.8
8/31/2015		ND	ND	ND	ND	ND	-	ND	ND	
8/10/2015		-	-	-	-	-	-	-	-	
8/17/2015	Anatoxin	-	-	-	-	-	ND	-	ND	Advisory - 90
8/24/2015	Allatoxili	-	-	-	-	-	-	-	-	Advisory - 30
8/31/2015		-	-	-	-	-	-	-	-	
8/17/2015	Cylindrospermopsin	-	-	-	-	-	-	-	-	Advisory - 4
						114RR1898	114RR1515	114RR1325	114RR0898	
		UPSTR	EAM to	DOWNST	REAM					2012 Criteria
				Integrate	ed Streamba	ınk Algal Ma	t Sample			
8/10/2015		-	-	-	-	-	<0.10	-	0.47	
8/17/2015		-	-	1.1	<0.10	2.92	0.12	-	12.75	NONE
8/24/2015	/ Nodularin	0.13	4.726	0.369	0.101	0.103	-	<0.10	0.178	
8/31/2015		<0.10	0.11	ND	ND	0.1	-	<0.10	0.5	
8/10/2015		-	-	-	-	-		-	-	
8/17/2015	Anatoxin	-	-	-	-	-	0.62	-	ND	NONE
8/24/2015	Allacoalli	-	-	-	-	-)	-	-	I NOINE
8/31/2015		-	-	-	-	-	-	-	-	
8/17/2015	Cylindrospermopsin	-	-	ND	ND	ND	0.06	-	0.09	NONE

Initial Cyanobacteria Species Identification

Algal Species	Potential Toxicity	Possible Toxicants			
Aphanothece elabens	Yes	Microcystins			
Calothrix breviarticulata	Yes	Microcystins			
Cylindrospermum stagnale	Yes	Microcystins			
Geitlerinema amphibium	Yes	Microcystins			
Geitlerinema splendidum	Yes	Microcystins			
Nodularia spumigena	Yes	Nodularin, Microcystins			
Oscillatoria limosa	Yes	<u>Microcy</u> stins			
Oscillatoria tenuis	Yes	Microcystins Anatoxin Cylindrospermopsin			
Trichormus cf rotundosporus	Yes	Microcystins			
Calothrix fusca	Possible	Microcystins			
Gloeotrichia sp	Possible	Microcystins			
Nostoc paludosum	Possible	Microcystins			
Oscillatoria princeps	Possible	Microcystins			
Phormidium cf tergestinum	Possible	Anatoxin			
Phormidium subfuscum	Possible	Anatoxin			
Pseudanabaena mucicola	Possible	Microcystins			
Anabaena sp	Unknown	Microcystins. Cylindrospermopsin			
Anabaena sp 2	Unknown	Microcystins Anatoxin Cylindrospermopsin			
Aphanothece sp	Unknown	Microcystins, Cylindrospermopsin			
Cylindrospermum sp	Unknown	Microcystins, Anatoxin Cylindrospermopsin			
Dolichospermum sp 2	Unknown	Microcystins Anatoxin			
Geitlerinema sp	Unknown	Microcystins Anatoxin			

Dog dies on Russian River, tests positive for toxic algae

THE PRESS DEMOCRAT | September 3, 2015

...on Aug. 29, a golden retriever visiting the region with its owners died during a paddle down the Russian River, very shortly after getting in the water.

The dog suffered seizures more common to Anatoxin-a, the neurotoxin later determined to be the cause of the dog's death.

The incident occurred on the eve of the busy Labor Day holiday weekend, which brings thousands of people to the Russian River.

...the small amounts of Anatoxin-a detected in the river over the last weeks of summer never exceeded the first trigger level on the state guidance, requiring signs cautioning visitors to stay away from algae scums and keep their pets and livestock away...

Post-Dog Death Anatoxin Concentrations

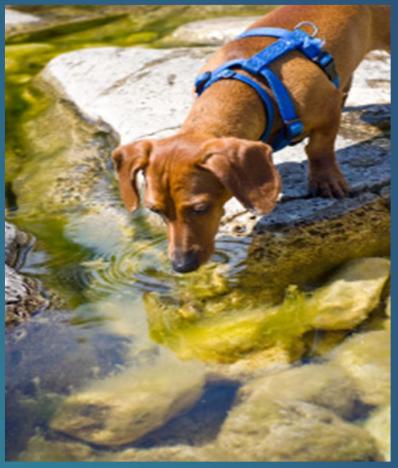
(surface water ELISA analysis ug/L)

	9/3/2015	9/7/2015	9/14/2015	9/21/2015	9/28/2015	10/5/2015
Cloverdale River Park		ND	ND	ND	ND	ND
Del Rio Woods		14.4	ND	41.6	ND	ND
Camp Rose		ND	ND	19.2	ND	ND
Healdsburg Memorial Beach		ND	ND	ND	ND	ND
200' downstream of put-in	16.6					
Middle Corona	17.9					
50' downstream of rope swing	12.7					
150' downstream of rope swing	ND					
Mid-Martinelli	18.5					
Steelhead Beach		ND	ND	48.9	ND	ND
ForestvilleAccess Beach		ND	ND	ND	ND	ND
Sunset Beach		ND	ND	ND	ND	ND
Johnson's Beach		ND	ND	25.9	ND	ND
Monte Rio Beach		ND	ND	ND	ND	ND
Patterson Point		ND	ND	ND	ND	ND

2012 Action Criteria:

Advisory – 90 ug/L

2016 Action Criteria:


Caution - Detect

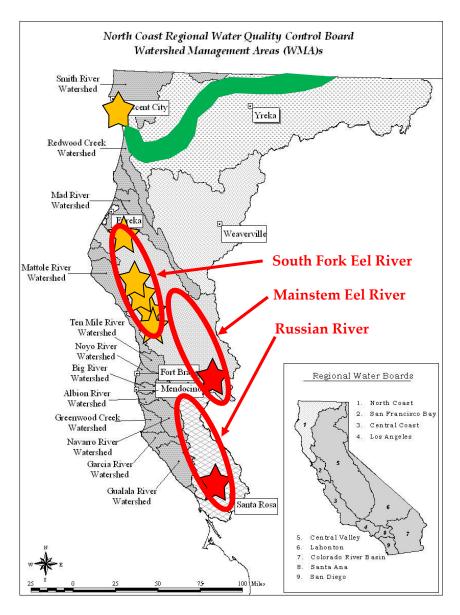
Warning - 20 ug/L

Danger - 90 ug/L

Mendocino County issues algae alert for Eel River after dog's death

THE PRESS DEMOCRAT | September 25, 2015

...It was the second confirmed canine fatality in two months linked to toxic algae and swimming in a North Coast stream. The first case involved a dog that died during an outing on the Russian River.


In the latest case, the stricken dog had been swimming in the Eel River at a Potter Valley-area campground before becoming ill...

...Mendocino County officials ... are advising people to avoid any water body in which they can see the telltale signs of algae growth, including algal scum and mats that can be seen floating in the water or collecting along the shore...

2015 Public Health Monitoring in Review

- Heavy economic toll leads to review, research and coordination between multiple agencies.
- Ad-hoc effort from 2015 left us with unanswered questions:
 - What does benthic cyanobacteria look like?
 - What are the various genus and species present?
 - Where is it?
 - What toxins does it produce?
 - How toxic is it?
 - When is it toxic?
 - How do we monitor for it?

North Coast Regional Water Quality Control Board

Water Facts

Approximately 20,000 square miles in size (larger than 9 other states)

340 miles of coastline

27,000 acres of lakes

Approximately 28,000 stream miles (~45,000 km)

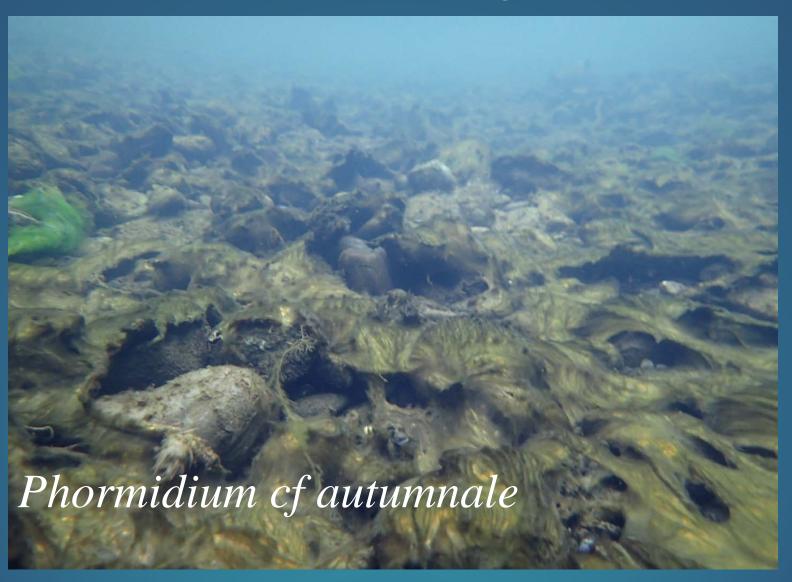
Receives more than 35% of state's total annual rainfall

Average annual rainfall varies from 20" to more than 120"

Solid Phase Adsorption Toxin Tracking (SPATT) Deployments

Water Column and Reach Integrated Algal Mat Collection

(Toxin Testing)




Reach Integrated Algal Mat Collection

(Toxin Testing)

Reach Integrated Algal Mat (ELISA testing in ug/L)						
Station Code	Date	ATX	CYL	MCY	SXT	
114RR2655	8/15/2016	2204		0.1		
114RR2655	8/30/2016	2054		0.1	ND	
113GAR042	8/16/2016	1446	0.1	0.4	0.3	
114RR5407	8/15/2016	1002		0.6		
114RR5407	8/30/2016	619		0.1	ND	
114RR4234	8/30/2016	391		0.1	ND	
114RR4234	8/2/2016	365	ND	ND	ND	
114RR4234	8/15/2016	246		0.6		
111ER6381	7/12/2016	224		ND		
111SF2423	8/1/2016	90.9	ND	ND	ND	
113GAR030	8/17/2016	66.7	0.1	50.5	0.0	
114RR5407	8/2/2016	53.3	ND	0.6	ND	
111ER6381	9/1/2016	35.8		0.2	ND	
111SF2423	8/17/2016	31.5		0.8		
111ER8102	8/15/2016	18.5		0.5		
111ER8102	9/6/2016	13.6		ND	ND	
111SF2423	9/1/2016	11.9		0.1	ND	
114RR4234	7/13/2016	7.1		ND		
111SF6856	8/1/2016	6.7	ND	ND	ND	

Dominant (Single-Species) Mat Toxin Testing (AFDM Normalization)

Reach Integrated Algal Mat (ELISA testing in ug/L)						Dominant	(Single	e-Species) N	∕lat (ELIS	A testin	g in ug/	L)
Station Code	Date	ATX	CYL	MCY	SXT	Station Code	Mat #	Date	ATX	CYL	MCY	SXT
114RR2655	8/15/2016	2204		0.1		114RR2655	2	9/12/16	>15750	ND	0.45	0.05
114RR2655	8/30/2016	2054		0.1	ND	114RR2655	4	9/29/2016	8143		0.7	
113GAR042	8/16/2016	1446	0.1	0.4	0.3	114RR2655	1	9/12/2016	8115	ND	0.2	ND
114RR5407	8/15/2016	1002		0.6		114RR5407	1	9/12/2016	3396	ND	0.4	ND
114RR5407	8/30/2016	619		0.1	ND	114RR5407	2	9/12/2016	2631	ND	0.3	0.0
114RR4234	8/30/2016	391		0.1	ND	114RR5407	1	10/3/2016	1217		0.4	
114RR4234	8/2/2016	365	ND	ND	ND	114RR2655	2	9/29/2016	787		0.3	
114RR4234	8/15/2016	246		0.6		114RR2655	1	9/29/2016	126		ND	
111ER6381	7/12/2016	224		ND		114RR7396	3	9/30/2016	110		2.3	
111SF2423	8/1/2016	90.9	ND	ND	ND	114RR5407	2	10/3/2016	94.5		0.9	
113GAR030	8/17/2016	66.7	0.1	50.5	0.0	114RR2655	3	9/29/2016	48.2		0.2	
114RR5407	8/2/2016	53.3	ND	0.6	ND	111ER8102	5	9/15/2016	45.3	ND	0.5	0.1
111ER6381	9/1/2016	35.8		0.2	ND	111ER6381	1	9/14/2016	38.0	ND	0.9	ND
111SF2423	8/17/2016	31.5		0.8		114RR4234	1	9/30/2016	26.4		4.7	
111ER8102	8/15/2016	18.5		0.5		114RR7396	1	9/30/2016	21.0		0.3	
111ER8102	9/6/2016	13.6		ND	ND	111ER8102	3	9/15/2016	15.6	ND	0.3	0.1
111SF2423	9/1/2016	11.9		0.1	ND	111SF2423	2	10/1/2016	14.3		2.2	ND
114RR4234	7/13/2016	7.1		ND		111ER8102	1	9/15/2016	12.5	ND	0.9	0.1
111SF6856	8/1/2016	6.7	ND	ND	ND	111ER8102	6	9/15/2016	11.5	ND	0.2	0.1

Dominant (Single-Species) Mat Toxin Testing (AFDM Normalization)

Waterbody	Date Collected	Dominant Species						Anatoxin, Total (ug/L)		AFDM (mg/L)	Anatoxin (mg/kg dry wt)		
Russian River	9/12/2016	Phormidium		>15750		9030		>1744					
Russian River	9/12/2016	Phormidium		2631		1940		1356.0					
Russian River	9/12/2016	Phormidium		8115		6670		1217.0					
Russian River	9/12/2016	Phormidium		3396		7290		466.0					
Eel River	9/15/2016	Not Identified		45.3		800		57.0					
Eel River	9/15/2016	Cylindrospermum		15.6		1850		8.4					
Eel River	9/14/2016	Oscillatoria		38.0		4950		7.7					
Eel River	9/15/2016	Geitlerinema	11.5		2370	4.8							
Russian River	9/12/2016	Nostoc (?)		4.84		2140		2.3					
Eel River	9/15/2016	Geitlerinema		0.68		600		1.1					
Eel River	9/15/2016	Phormidium		12.5		12400		1.0					
Eel River	9/15/2016	Cylindrospermum		7.20		8690		0.8					
South Fork Eel River	9/14/2016	Not Identified		2.87		4120		0.7					
Russian River	9/12/2016	Anabaena	1.70		3980		0.4						
South Fork Eel River	9/14/2016	Phormidium	2.80		10200		0.3						
South Fork Eel River	9/14/2016	Not Identified	0.36		1410		0.3						
South Fork Eel River	9/14/2016	Scytonema		2.48		10300	0.2						
Eel River	9/14/2016	Not Identified	0.67			8350		0.1					
Russian River	9/12/2016	Phormidium		0.49		9930		0.1					

Summary of the 2016 Field Survey in the Russian and Eel Rivers Conducted by the North Coast Regional Water Quality Control Board

Meredith Howard

SCCWRP Southern California Coastal Water Research Project

Russian and Eel Rivers Cyanotoxin Field Study

Monitoring Sites:

• July – Oct 2016, sampling 2X per month

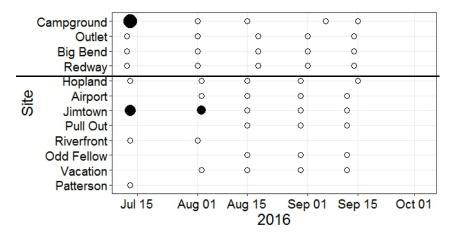
Cyanotoxins measured from 3 sample types:

- Whole water (particulate and dissolved)
- SPATT passive samplers (dissolved)
- Cyanobacterial mats (particulate)

Cyanotoxins measured using LC-MS or ELISA: (microcystins, anatoxin, nodularin, saxitoxin, cylindrospermopsin)

Solid Phase Adsorption Toxin Tracking

- Passive Sampler that is time-integrative
- Continuous toxin detection to capture ephemeral events
- Applicable in all waterbody types and for many different toxins
- Low cost, simple and easy to deploy/recover
- Not applicable to health advisory thresholds (ng/g)
- Only measures dissolved toxins not total toxins

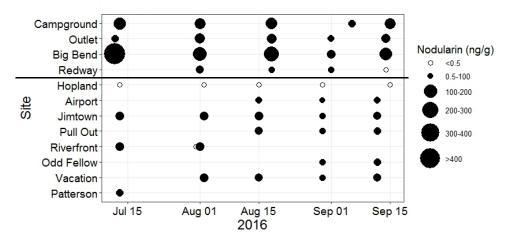


Each Sample Type Contributes a Different Piece of the Toxin Story

Nodularin

Whole Water LC-MS

Nodularin (ug/L)


O <0.01

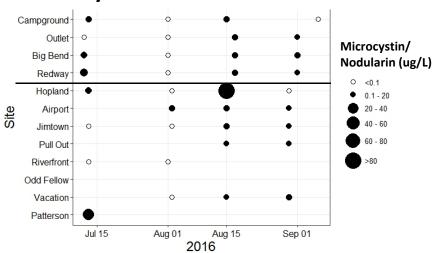
0.01 - 0.04

0.04 - 0.06

>0.06

SPATT LC-MS

Sample Types (LC-MS)	Nodularin
SPATT (ng g ⁻¹)	bd - 450
Water (μg L ⁻¹)	bd - 0.06
Cyanobacterial Mats (µg L-1)	Not Tested


bd – Below Detection Limit

Microcystins

Cyanobacteria Mats - ELISA

Whole Water LC-MS

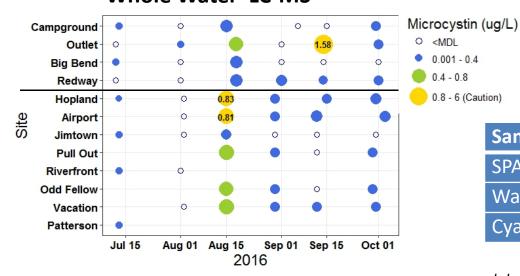
Aug 01

Aug 15

2016

Sep 01

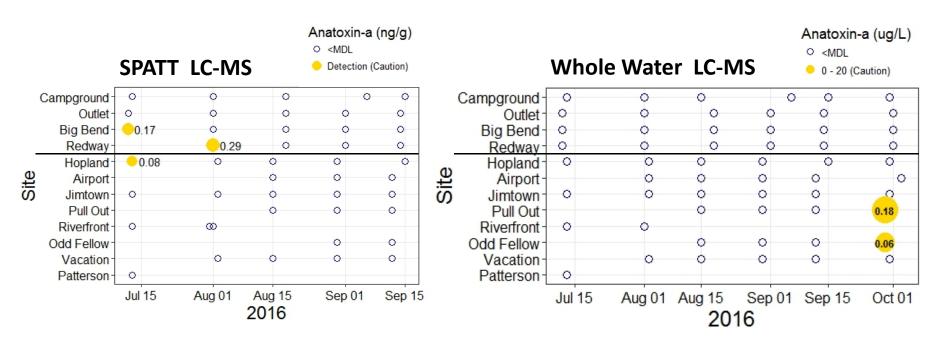
Sep 15

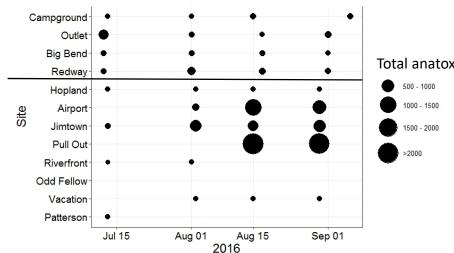

<MDL

0.001 - 0.4

0.8 - 6 (Caution)

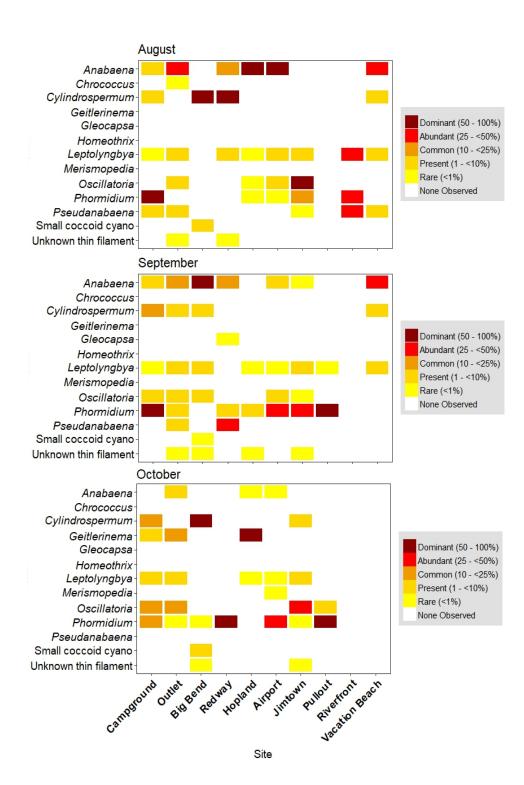
0.4 - 0.8


Jul 15


Sample Types	
SPATT (ng g ⁻¹)	bd - 197
Water (μg L ⁻¹)	bd – 1.5
Cyanobacterial Mats (µg L ⁻¹)	bd - 86

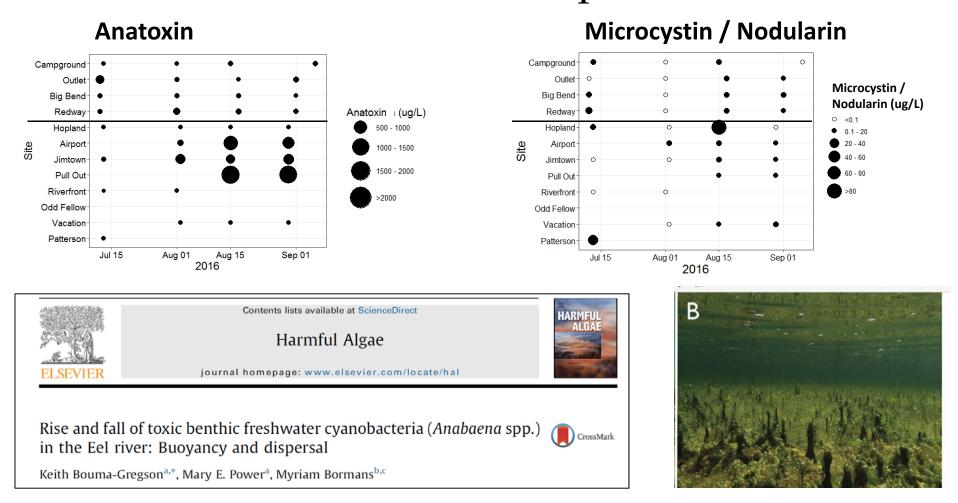
bd – Below Detection Limit

Analysis Method Contributes to the Toxin Story

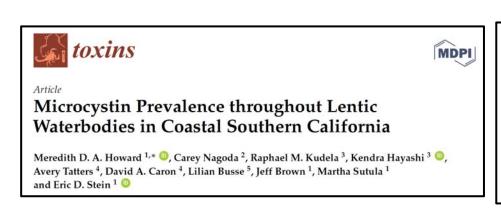

Cyanobacteria Mats - ELISA

Total	anatoxir	ı (ug/L)

Sample Types	
SPATT (ng g ⁻¹)	bd – 0.17
Water (μg L ⁻¹)	bd
Cyanobacterial Mats (μg L ⁻¹)	0.4 - >15,750


bd – Below Detection Limit

Benthic Cyanobacteria Mat Samples Indicated Cyanobacterial Dominance of Potential Toxin-Producing Cyanobacteria


Relative Abundance (semi-quantitative) Reach-integrated sample collection

Buoyancy of Cyanobacterial Mats Increases Downstream Dispersal

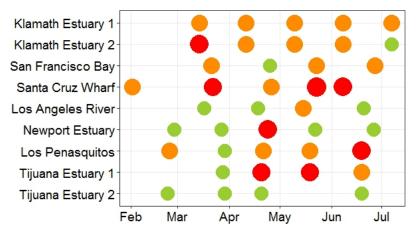
- Release of floating clumps from mats that are able to maintain buoyancy
- Buoyancy mechanism increases downstream dispersal distances

Benthic River Blooms Can Have Impacts Downstream

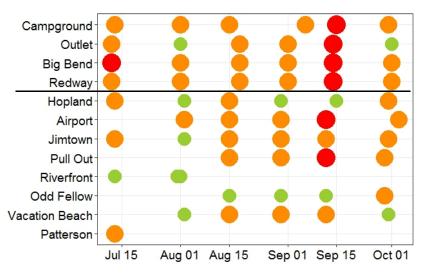
Article

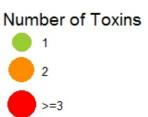
Multiple Stressors at the Land-Sea Interface: Cyanotoxins at the Land-Sea Interface in the Southern California Bight

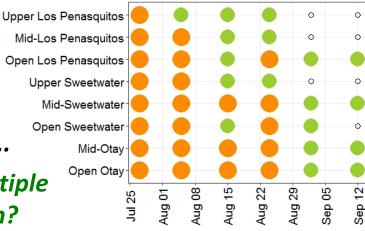
Avery O. Tatters ^{1,*}, Meredith D.A. Howard ², Carey Nagoda ³, Lilian Busse ⁴, Alyssa G. Gellene ¹ and David A. Caron ¹



Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters


Melissa A. Miller^{1,2}, Raphael M. Kudela², Abdu Mekebri³, Dave Crane³, Stori C. Oates¹, M. Timothy Tinker⁴, Michelle Staedler⁵, Woutrina A. Miller⁶, Sharon Toy-Choutka¹, Clare Dominik⁷, Dane Hardin⁷, Gregg Langlois⁸, Michael Murray⁵, Kim Ward⁹, David A. Jessup¹


Synergistic Stressors: Simultaneous Detection of Multiple Toxins



Russian and Eel Rivers - 2016

San Diego Sites 2016

Recreational and drinking water health thresholds are based on single toxin exposure....

What are the consequences of exposure to multiple toxins for human, wildlife and ecological health?

Isolation and culturing of toxigenic cyanobacteria from Russian River, Garcia River and Eel River: 2015 and 2017

Rosalina Stancheva
<u>E-mail: rhristov@csusm.edu</u>

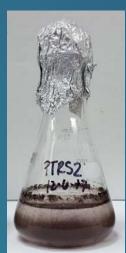
California Primary Algae Lab for SWAMP California State University San Marcos

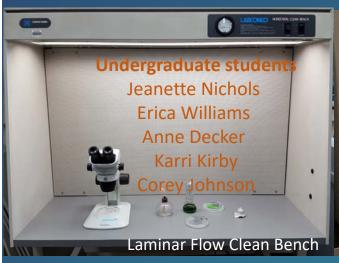
Culturing Methods

Russian River to be closely monitored this summer to guard against harmful algae blooms


(2 of 7) Rich Fadness, the coordinator of the Surface Water Ambient Monitoring Program (SWAMP) with the North Coast Regional Water Quality Board, takes a sample of algae to see if it contains any blue green algae, at Monte Rio Beach in Newton Dio on Thomphy, use 2, 2016; ISSAN COARD (The Dear Composit).

Single-species cyanobacterial mat does not exist!


- Blue Green 11 Medium (BG11), liquid and solid 1% or 1.5% agar
- Glassware, limited use of disposable plastic containers
- 20°C, 12h:12h light/dark cycle, 40 μmol photons m-2 s-1
- Initial cyanobacteria isolation on solid medium: 3-6 transfers every 10 days
- Monoculture transfer to a liquid medium
- Continuing growth with regular transfer in new medium every 2 months
- Regular microscope check for culture purity and documentation (Olympus BX41 microscope with Olympus SC30 digital camera)
- Monocultures are NOT axenic
- Cyanobacteria continuously produce toxins in culture



Support from Professors Betsy Read and Robert Sheath and taxonomists Cricket Fuller and Kim Conklin!

Toxin Measurement Methods

ELISA:

Anatoxin (ATX), Cylindrospermopsin (CYL), Microcystin/Nodularin (MCY/NOD), Saxitoxin (STX)

- Dan Orr
- Tim Otten

LC-MS/MS:

Anatoxin-a, Homoanatoxin-a, Dihydroanatoxin-a, Dihydrohomoanatoxin-a, Cylindrospermopsin

Susie Wood

Molecular Methods

Complete genome sequencing of anatoxin-producing strains

- Tim Otten
- Betsy Read
- Keith Bouma-Gregson

RESULTS:

12 ATX-producing cyanobacteria strains established

ATX-a (μg/L)	dhATX (μg/L)	Method	Date	Strain	Genus	Sample site	River	Sample date
maybe	maybe	LC-MS/MS	3/15/17	AOJN1**	Anabaena oscillarioides	114RR3119	Russian	10/1/15
0.66	331	LC-MS/MS	3/15/17	PTRS1**	Phormidium	114RR3119	Russian	10/1/15
0.38	363	LC-MS/MS	3/15/17	PTRS2**	Phormidium	114RR3119	Russian	10/1/15
0.47	483	LC-MS/MS	3/15/17	PSRS3H**	Phormidium	114RR5652	Russian	10/1/15
Total Anatoxin (μg/L)		Method	Date	Strain	Genus	Sample site	River	Sample date
0.1	4	ELISA	11/13/17	RRAPS	Phormidium	114RR5407	Russian	8/3/17
0.10		ELISA	11/13/17	RRAAF	Anabaena+Geitlerinema	114RR5407	Russian	8/3/17
>12	.5	ELISA	11/13/17	GAR112PS*	Phormidium	113GAR112	Garcia	5/31/17
3.36		ELISA	11/13/17	GAR046PS	Phormidium	113GAR046	Garcia	8/1/17
2.86		ELISA	11/13/17	GAR105PS*	Phormidium	113GAR105	Garcia	5/30/17
0.10		ELISA	11/13/17	GAR112AA	Anabaena+Amoeba	113GAR112	Garcia	5/31/17
0.65		ELISA	11/13/17	RR2PA	Phormidium	111ER8102	Eel	8/17/17
2.60		ELISA	11/13/17	RR3PS*	Phormidium	111ER8102	Eel	8/17/17

All strains ELISA tested negative for microcystin/nodularin and cylindrospermopsin (Orr, Otten)

**Complete genome sequencing data (*Tim Otten*)

ONLY Anatoxin pathways found in three Phormidium strains

* Complete genome sequencing data (Keith Bouma-Gregson)

Phormidium strains from Russian River (2015 and 2017)

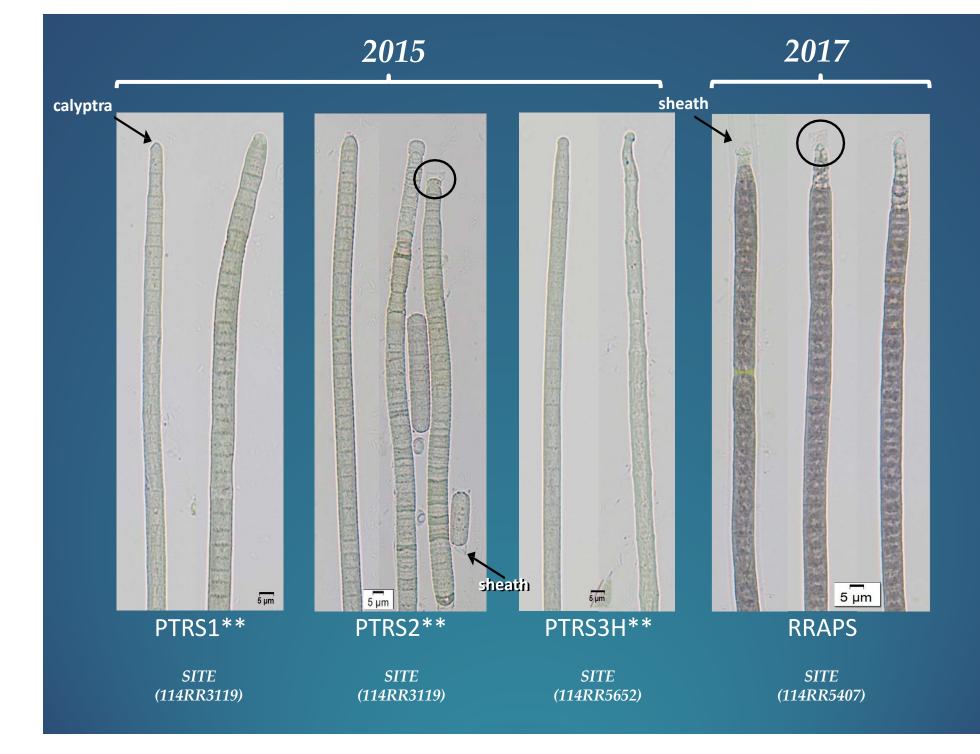
2015

PTRS1

PTRS2

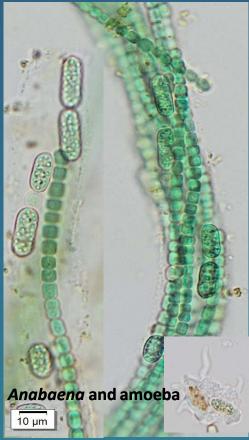
PTRS3H

PTRS1


PTRS2

PTRS3H RRAPS

2017

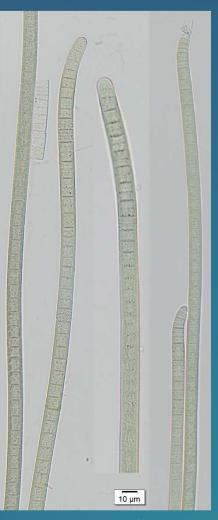

RRAPS

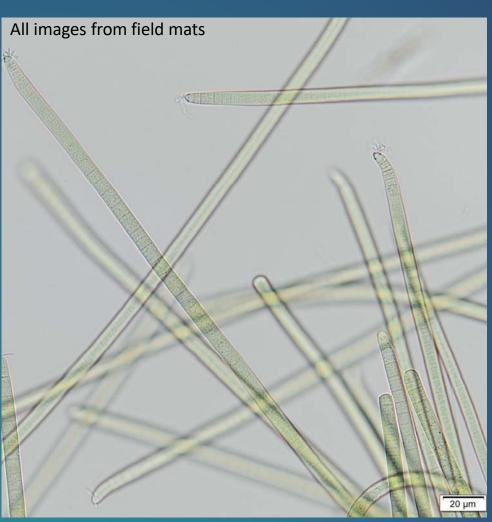
Anabaena and Phormidium strains Garcia River (2017)

GAR112AA

SITE (113GAR112)

GAR112PS*


SITE (113GAR112)


SITE (113GAR046)

SITE (113GAR105)

Phormidium strains from Eel River (2017)

RR3PS*

RR2PA

RESULTS:

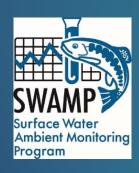
7 non-toxigenic (?) cyanobacteria strains established

Strain	Genus	Sample site	River	Sample date
GAR105PR*	Phormidium	113GAR105	Garcia	5/30/17
GAR061CM	Cylindrospermum	113GAR061	Garcia	8/2/17
GAR112PP	Pseudanabaena	113GAR112	Garcia	5/31/17
Eel07Phor*	Phormidium	Fox Creek	Eel	7/19/17
Eel06Phor*	Phormidium	Mud Creek	Eel	7/20/17
RR5PA	Phormidium	111ER8102	Eel	8/17/17
GAJN1**	Geitlerinema	114RR3119	Russian	10/1/15

ELISA testing:

Negative for ATX, MCY and STX (CYL detected in GAJN1 only)

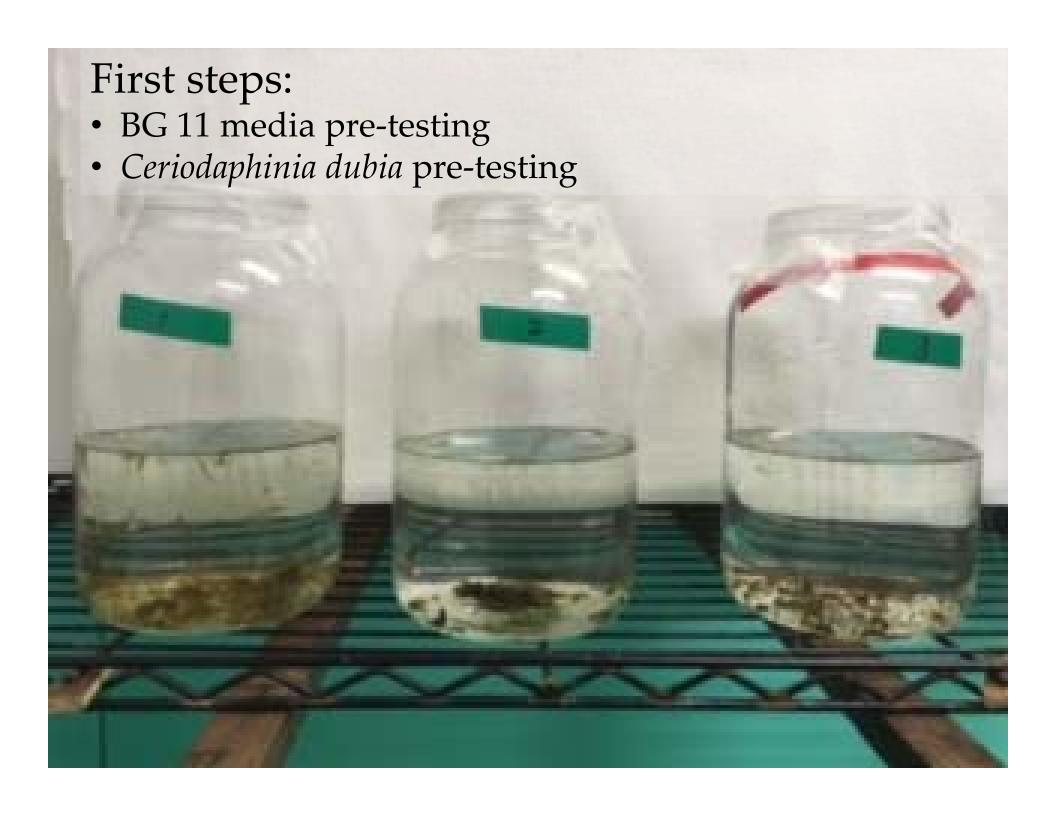
Non-toxigenic cyanobacteria strains morphology


2015 2017

Extracts from benthic anatoxinproducing *Phormidium* are toxic to three macroinvertebrate taxa at environmentally relevant concentrations

Brian Anderson

University of California, Davis Granite Canyon Marine Pollution Studies Lab

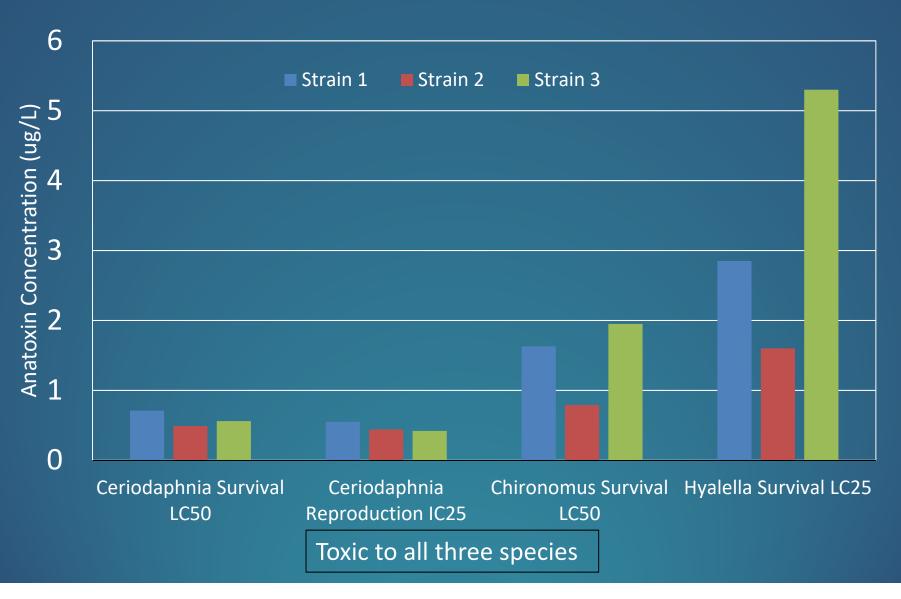

Algal toxins and environmental monitoring

- Impacts to water supply, wild and domestic animals, recreational use, and human health
- Increasing impacts expected, linked to climate change (Roelke et al. 2012)
- Freshwater cyanotoxins:
 - Microcystin (hepatotoxin) SPoT monitors sediments
 - Trend monitoring
 - Bioaccumulation in invertebrates trophic transfer
 - Anatoxin (neurotoxin) water
 - Dog deaths
 - Invertebrate impacts

Anatoxin from Russian River algae: Invertebrate Toxicity

- Samples from benthic cyanobacterial mats collected at two sites on Russian River: (October 2015)
- California State University, San Marcos Species identification and culturing: (Rosalina Stancheva)
- Strain isolation and culture using BG11 medium
- Three *Phormidium* strains isolated for this study

Anatoxin Toxicity Tests (water)


- Water samples from *Phormidium* cultures analyzed for anatoxin by ELISA and anatoxin-a by LCMSMS
- *Ceriodaphnia dubia*: 7-day chronic (survival and reproduction)
- Chironomus dilutus: 4-day acute
- Hyalella azteca: 4-day acute
- Dilution series based on BG11 tolerance and sensitivity to anatoxin (C. dubia).

Anatoxin Toxicity Threshold Levels (ELISA)

Anatoxin Variant Analysis by LC/MS

Concentrations of anatoxin variants and cylindropersmopsin measured by liquid chromatography-mass spectrometry in cell material extracted from the three *Phormidium* strains used for toxicity tests.

Phormidium strain	Anatoxin-a	Homoanatoxin-a	Dihydro- anatoxin-a	Dihydro- homoanatoxin-a	Cylindrospermopsin	
	μg/g of dry culture					
Strain 1	0.66	ND	331.2	ND	ND	
Strain 2	0.38	ND	363.4	ND	ND	
Strain 3	0.47	ND	483.3	ND	ND	

ND = not detected.

Anatoxin Toxicity Results

- Water from 3 cultures highly toxic to three invertebrate species commonly used in surface water monitoring
- Toxicity to Hyalella and Chironomus underestimated using 4d exposures
- LC-MS/MS analysis showed anatoxin variant is dihydroanatoxin-a

Potential for Impacts on Stream Macroinvertebrates

- Relationship to instream concentrations?
 - Fetscher et al. (2015) reported that one third of the streams from a large dataset in California contained one or more cyanotoxins with benthic origin
 - Previously reported SMC results showed unexplained
 C. dubia mortality at headwater and reference sites
 - Russian River anatoxin concentrations:
 - SPATT samplers and water column samples showed nondetects for anatoxin-a (LCMS analysis)

Russian River Mat Extracts

Concentrations of anatoxin measured in cyanobacterial mat samples collected at two stations on the Russian River in September, 2016. Toxin analyses were conducted with ELISA.

Russian River Site	Dominant species	Anatoxin (μg/L)	Ash Free Dry Mass (mg/L)	Anatoxin (μg/g dry wt.)
114RR2655	Phormidium A	8,115	6,670	1216
114RR2655	Phormidium B	>15,750	9,030	>1,744
114RR5407	Phormidium B	3,396	72,90	466
114RR5407	Phormidium C	2,631	1,940	1,356

Implications for Surface Water Monitoring

- 1) Presence of cyanotoxins could account for toxicity to invertebrates not attributed to traditional suite of chemical analytes
- 2) This may affect interpretation of surface water toxicity and bioassessment monitoring
- 3) ELISA provides good screening data for cyanotoxins, but LCMSMS provides quantification of specific variants or homologues
- 4) Next Steps?

Publication in review

In-stream concentrations of algal toxins: Is there a potential for impacts

Relative sensitivity of other native invertebrates

Rich Fadness

• North Coast Regional Water Quality Control Board

Rosalina Stancheva, Jeanette Nichols, Betsy Read

• California State University, San Marcos

Brian Anderson, Jennifer Vorhees, Bryn Phillips

• University of California, Davis

Meredith Howard

• Southern California Coastal Water Research Project

Susanna Wood, Jonathan Puddick

Cawthron Institute

Tim Otten

Bend Genetics

Raphe Kudela

• University of California, Santa Cruz

Keith Bouma-Gregson

• University of California, Berkeley

Dave Caron, Avery Tatters

• University of Southern California (USC)

Daniel Orr

• California Department of Fish and Wildlife

2015-2017

Benthic Cyanobacteria

Project Collaborators