## COASTAL RESOURCES LIMITED

POST 150,000m ${ }^{3}$ DISPOSAL<br>CHARACTERISATION

## OF

## SEABED CHANGES

# Bioresearches 

A Babbage Company
Consulting Biologists - Established 1972
P.O. Box 2828, Auckland 1140. New Zealand
www.bioresearches.co.nz

## Coastal Resources Limited

# Post $150,000 \mathrm{~m}^{3}$ Disposal 

Characterisation

## Of

## Seabed Changes

November 2015

| FOR | $:$ | Coastal Resources Limited |
| :--- | :--- | :--- |
| BY | $:$ | Bioresearches Group Limited |
|  |  | 23 March 2017 |

Coastal Resources Limited
Post 150,000 m $^{3}$ Disposal, Characterisation of Seabed Changes
CONTENTS
Page No.
1 Introduction ..... 1
2 Sediment Characteristics ..... 3
2.1 Introduction ..... 3
2.2 Methods ..... 3
2.3 Results ..... 4
2.4 Discussion ..... 7
2.4.1 Cores ..... 7
2.4.2 Particle Size ..... 8
2.4.3 Sediment Chemistry ..... 9
3 Benthic Biota ..... 19
3.1 Methods ..... 19
3.2 Results ..... 21
3.3 Discussion ..... 24
4 References ..... 29
5 Appendices ..... 31

## 1 INTRODUCTION

For many years Auckland regional stakeholders have relied upon use of the Auckland Explosives Dumping Ground, within a circle of four nautical miles radius centred on position 27 nautical miles east of Cuvier Island, for disposal of dredged marine sediments.

The Auckland Explosives Dumping Ground has presented significant difficulties for administration. It was originally established by the military after World War II as a safe deepwater site for disposal of ordnance and ammunition. Subsequently, due to the need for a disposal site for capital and maintenance dredged material in the Auckland region, the site was identified as a pragmatic solution given its historic use, the no-anchoring prohibition, the notion that covering explosives in sediments would be beneficial, and the assumption that the seafloor ecology was already likely to have been modified to some extent.

However, when New Zealand became party to the 1996 Protocol to the London Convention in 1998, new responsibilities including comprehensive marine disposal site assessments were imposed on the administration. These were enacted in New Zealand in 1999 through amendments to Part 21 of the Maritime Transport Act 1994, with more detailed regulations contained in Marine Protection Rule Part 180.

Unfortunately, since the Auckland Explosives Dumping Ground is in 500-1300m water depth, seafloor assessment and monitoring is both technically difficult and prohibitively expensive for individual stakeholders to undertake. Therefore a new location where monitoring would be more achievable was needed.

Coastal Resources Ltd has obtained approval for a new marine disposal site, the Outer Gulf Disposal Area (OGDA), in $135-140 \mathrm{~m}$ water depth, 20km east of Great Barrier Island in the Exclusive Economic Zone. The permit states that; between 2 November 2012 and 2 November 2013 disposal of up to $15,000 \mathrm{~m}^{3}$ was permitted, between 3 November 2013 and 2 November 2014 disposal of up to $7,800 \mathrm{~m}^{3}$ was permitted, and between 3 November 2014 and 2 November 2015 disposal of up to $127,000 \mathrm{~m}^{3}$ was permitted. From 3 November 2015 the disposal of up to $50,000 \mathrm{~m}^{3}$ of dredged marine sediments at the site is permitted annually. On-going use of the site is dependent on monitoring that demonstrates to the Environmental Protection Authority (EPA) satisfaction that effects are within acceptable limits and contained within the defined site.

Clean marine sediment has been and is being disposed of by Coastal Resources Ltd under Maritime New Zealand (MNZ) Permit 568, now under EPA consent EEZ900012, at a site 20km east of Great Barrier Island. During the entire term of this Consent, the Consent Holder must undertake post-disposal monitoring of the Disposal Area and Monitoring Zone, in order to assess the extent of environmental impacts.

The post-disposal monitoring includes the following:

1. Accumulation of contaminants;
2. Sediment textural changes;
3. Bathymetric changes due to the accumulation and dispersal of dredge spoil; and
4. Changes in the biodiversity and quantity of benthic biota.

The MNZ Permit 568 prescribed that the monitoring be conducted following disposal volume triggers. The first trigger was when a cumulative total of $10,000 \mathrm{~m}^{3}$ of dredge spoil had been disposed of or on the two year anniversary of the first disposal, and then when a cumulative total of $50,000 \mathrm{~m}^{3}$ of dredge spoil has been disposed of or on the five year anniversary of the first disposal operation, and then after every $50,000 \mathrm{~m}^{3}$ of dredge spoil has been disposed thereafter.

This report assesses and characterises the changes on the seabed in and around the Outer Gulf Disposal Area following the disposal of $150,000 \mathrm{~m}^{3}$ of dredge spoil, under EPA consent EEZ900012. The monitoring includes assessment of the accumulation of contaminants, sediment textural changes and changes in the biodiversity and quantity of benthic biota. The sediment and benthic biota samples were collected on 23 November 2016.

### 2.1 Introduction

The sediment being disposed of at the OGDA has the potential to include contaminants. The levels of potential contaminants were determined before the sediment was dredged and taken to the disposal site. Disposal trials undertaken prior to MNZ Permit 568, undertook elutriation of the sediments from the disposal site after $4800 \mathrm{~m}^{3}$ of sediment were deposited in the area. These results showed that the contaminants present in the dredge spoil were not mobilised once within the disposal site. Therefore, it was predicted that any dispersal and concentration of contaminants will be due to the physical movement of the sediment clasts to which they are bound. This is most likely to occur due to sediment transport preferentially sorting fine sediment into a surficial layer. Based on the available data, it was predicted that most transport is likely to occur as the near-bed density flow erodes and transports surficial sediment close to the impact point on the seabed. The limited data collected during the trials indicates that this process diluted the contaminants.

### 2.2 Methods

To determine if contaminants are accumulating on the seabed, the particle size and chemistry of surficial sediments were monitored.

The EPA consent EEZ900012 requires analysis of sediments on axes throughout the Disposal Area with a minimum of thirteen sampling sites and a Control site included. Monitoring should also be undertaken at four sites midway between the sites on the boundary (i.e. the sites beyond the boundary should be in a NE, SE, SW and NW direction from the site centre) at a distance of 250 m beyond the Disposal Area boundary. Thus sixteen sample sites within and around the disposal area were sampled and an additional three Control site samples were collected from 2500 m south of the disposal centre site, as shown in Figure 2.1.

At each sampling site two 70 mm diameter clear barrel cores were taken using a gravity corer with sufficient mass to achieve at least $10-15 \mathrm{~cm}$ penetration. In addition to those sites required under the consent, eight single core samples were collected at the $100 \mathrm{~m} \mathrm{~N}, \mathrm{~S}$, $250 \mathrm{~m} \mathrm{~N}, \mathrm{E}, \mathrm{W}, \mathrm{S}$ and $375 \mathrm{~m} \mathrm{~N}, \mathrm{~S}$. On retrieval of the core barrels the bottom was sealed and the cores photographed with a label and scale to show layers.

From those sites required under the consent, the bottom cap was carefully removed and plunger inserted to push the sediment core up through the core barrel, removing the surface water and then carefully extruding the top 5 cm of the sediment core. The top 5 cm from both cores were combined, homogenised and 50 g sub-sampled for grain size and remainder used for sediment chemistry. All samples were double bagged in clean zip lock plastic bags, with a waterproof label between the two bags.

The sediment was analysed for particle size by the University of Waikato using a Malvern Laser Sizer particle size analysis. The sediment was analysed for total recoverable metals
(Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc) in the total sediment fraction, and for Total Petroleum Hydrocarbons (TPH) by Hill Laboratories.


Figure 2.1 Seabed Sediment Quality Sampling Sites

### 2.3 Results

Photographs of the core barrels at each site are presented in Appendix 1. The depths of layers in the sediment are summarised in Table 2.1.

Sediment particle size results as received from the University of Waikato are attached in Appendix 3, and summarised in Table 2.2.

Sediment chemistry results as received from Hills Laboratories are attached in Appendix 5. Raw sediment quality data from all sites are presented and compared with sediment quality guidelines in Table 2.3.

Table 2.1 Sediment Core Depths (mm), Post $\mathbf{1 5 0 , 0 0 0}{ }^{3}$ Disposal

| Site |  | Depth of Core |  |  | Depth of mixing |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | Average | A | B | Average |  |
| DC |  | 263 | 280 | 271.3 | 263 | 280 | 271.3 | No obvious mixed layer, sediment darker in colour, likely all disposal material, surface interface broken |
| 100m | N | 172 |  | 171.7 | 172 |  | 171.7 | No obvious mixed layer, sediment darker in colour, some clay present, likely all disposal material, surface interface broken |
|  | S | 296 |  | 296.3 | 296 |  | 296.3 | No obvious mixed layer, sediment darker in colour, likely all disposal material |
| 250m | N | 231 |  | 230.9 | 73 |  | 73.2 | surface layer slightly darker and coarser, surface layer similar to 500 m and beyond, unlikely disposal material |
|  | E | 224 |  | 223.7 | 195 |  | 194.9 | surface layer slightly darker, mottled and coarser, surface layer likely disposal material, surface broken |
|  | S | 213 |  | 213.2 | 81 |  | 80.9 | surface layer slightly darker and coarser, surface layer similar to 500 m and beyond, unlikely disposal material |
|  | W | 232 |  | 232.5 | 158 |  | 157.7 | surface layer slightly darker and mottled, surface layer may be disposal material |
| 375m | N | 210 |  | 210.0 | 83 |  | 82.5 | surface layer slightly darker and coarser, surface layer similar to 500 m and beyond, unlikely disposal material |
|  | S | 164 |  | 164.0 | 73 |  | 72.9 | surface layer slightly darker and coarser, surface layer similar to 500 m and beyond, unlikely disposal material |
| 500m | N | 179 | 175 | 177.0 | 70 | 75 | 72.7 | surface layer slightly darker and coarser, unlikely disposal material |
|  | E | 176 | 181 | 178.9 | 60 | 73 | 66.5 | surface layer slightly darker and coarser, unlikely disposal material |
|  | S | 173 | 199 | 186.1 | 62 | 69 | 65.8 | surface layer slightly darker and coarser, unlikely disposal material |
|  | W | 186 | 204 | 194.7 | 58 | 73 | 65.5 | surface layer slightly darker and coarser, unlikely disposal material |
| 1000m | N | 166 | 171 | 168.7 | 61 | 61 | 61.2 | surface layer slightly darker, mottled and coarser, unlikely disposal material |
|  | E | 169 | 174 | 171.8 | 68 | 56 | 62.4 | surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material |
|  | S | 192 | 198 | 194.9 | 75 | 83 | 78.8 | surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material |
|  | W | 204 | 184 | 193.9 | 89 | 84 | 86.8 | surface layer slightly darker and coarser, some open spaces, unlikely disposal material |
| 1500m | N | 178 | 155 | 166.4 | 76 | 66 | 70.7 | surface layer slightly darker and coarser, unlikely disposal material |
|  | E | 171 | 173 | 172.1 | 70 | 73 | 71.7 | surface layer slightly darker, mottled and coarser, unlikely disposal material |
|  | S | 208 | 208 | 208.3 | 80 | 73 | 76.4 | surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material |
|  | W | 208 | 163 | 185.6 | 108 | 63 | 85.6 | surface layer slightly darker, mottled and coarser, unlikely disposal material |
| 1750m | NE | 165 | 176 | 170.4 | 52 | 71 | 61.7 | surface layer slightly darker, and coarser, unlikely disposal material |
|  | SE | 211 | 176 | 193.5 | 74 | 70 | 72.2 | surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material |
|  | SW | 216 | 162 | 189.2 | 68 | 74 | 71.2 | surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material |
|  | NW | 158 | 208 | 183.1 | 64 | 68 | 66.1 | surface layer mottled, some open spaces, unlikely disposal material |
| Control | A | 178 | 194 | 186.2 | 78 | 75 | 76.6 | surface layer slightly darker, mottled and coarser, no disposal material |
|  | B | 197 | 182 | 189.4 | 74 | 74 | 73.7 | surface layer slightly darker, mottled and coarser, some open spaces, no disposal material |
|  | C | 190 | 197 | 193.7 | 66 | 65 | 65.5 | surface layer slightly darker and coarser, no disposal material |
| Summary |  | Aver | rage | CL | Ave | rage | CL |  |
| DC |  | 27 | 71 | 111.2 |  | 71 | 111.2 |  |
| 100m |  | 23 | 34 | 791.7 |  | 34 | 791.7 |  |
| 250m |  | 22 | 25 | 13.9 |  | 27 | 94.5 |  |
| 375m |  | 18 | 87 | 292.4 |  | 78 | 61.2 |  |
| 500m |  |  | 84 | 9.5 |  | 68 | 5.3 |  |
| 1000m |  | 18 | 82 | 11.9 |  | 72 | 10.3 |  |
| 1500 m |  | 18 | 83 | 18.2 |  | 76 | 11.6 |  |
| 1750m |  |  | 84 | 20.1 |  | 68 | 5.9 |  |
| Control |  | 19 | 90 | 8.5 |  | 72 | 5.6 |  |

Table 2.2 Surficial Sediment Particle Size, Post $150,000 \mathrm{~m}^{3}$ Disposal

| Grain size |  | Percentage of total sample |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DC | 500m |  |  |  | 1000m |  |  |  | 1500m |  |  |  | 1750m |  |  |  | Control |  |  |
| (mm) | Class |  | N | E | S | W | N | E | S | W | N | E | S | W | NE | SE | SW | NW | A | B | C |
| > 3.35 | Gravel | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3.35-2.00 | Granules | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.00-1.18 | Very Coarse Sand | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.18-0.600 | Coarse Sand | 0.0 | 0.0 | 0.0 | 0.6 | 0.3 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
| 0.600-0.300 | Medium Sand | 1.1 | 4.0 | 2.4 | 6.4 | 6.0 | 5.5 | 5.7 | 4.2 | 4.4 | 5.0 | 6.2 | 5.3 | 3.5 | 4.8 | 4.8 | 3.9 | 4.0 | 5.4 | 0.7 | 5.6 |
| 0.300-0.150 | Fine Sand | 5.3 | 13.9 | 15.6 | 14.8 | 15.3 | 14.8 | 14.6 | 12.7 | 12.5 | 13.9 | 15.4 | 13.4 | 12.3 | 13.9 | 16.1 | 13.6 | 12.4 | 13.0 | 17.4 | 14.6 |
| 0.150-0.063 | Very Fine Sand | 11.3 | 18.4 | 18.8 | 19.5 | 18.5 | 18.1 | 17.0 | 16.9 | 17.1 | 17.8 | 18.7 | 15.6 | 16.6 | 18.3 | 17.2 | 16.9 | 16.8 | 14.5 | 22.1 | 14.8 |
| 0.063-0.0313 | Coarse Silt | 12.2 | 12.0 | 11.8 | 11.8 | 11.4 | 11.9 | 11.5 | 12.1 | 12.3 | 12.5 | 11.8 | 11.6 | 12.1 | 12.2 | 11.2 | 12.0 | 12.8 | 12.1 | 12.1 | 11.8 |
| 0.0313-0.0156 | Medium Silt | 13.1 | 12.3 | 12.5 | 11.0 | 11.1 | 11.8 | 12.0 | 12.5 | 12.4 | 11.7 | 11.5 | 12.7 | 12.6 | 12.0 | 11.9 | 12.7 | 12.8 | 13.2 | 11.8 | 12.8 |
| 0.0156-0.0078 | Fine Silt | 15.3 | 13.7 | 14.2 | 12.3 | 12.3 | 13.2 | 13.6 | 14.2 | 13.9 | 13.1 | 12.9 | 14.2 | 14.1 | 13.5 | 13.5 | 14.2 | 14.2 | 14.8 | 13.1 | 14.3 |
| 0.0078-0.0039 | Very Fine Silt | 15.6 | 12.1 | 12.3 | 11.1 | 11.3 | 11.7 | 12.0 | 12.8 | 12.7 | 12.0 | 11.2 | 12.6 | 13.0 | 12.0 | 11.9 | 12.5 | 12.4 | 12.9 | 11.1 | 12.4 |
| < 0.0039 | Clay | 26.3 | 13.6 | 12.4 | 12.6 | 13.8 | 13.1 | 13.5 | 14.7 | 14.8 | 14.0 | 12.5 | 14.4 | 15.8 | 13.4 | 13.5 | 14.2 | 14.7 | 14.0 | 11.7 | 13.7 |
| < 0.063 | Silt and Clay | 82.4 | 63.8 | 63.2 | 58.8 | 59.9 | 61.6 | 62.6 | 66.2 | 66.0 | 63.3 | 59.8 | 65.6 | 67.6 | 63.1 | 62.0 | 65.6 | 66.8 | 66.9 | 59.8 | 64.9 |
| Mean Size |  | 0.012 | 0.027 | 0.028 | 0.033 | 0.031 | 0.030 | 0.029 | 0.025 | 0.025 | 0.028 | 0.032 | 0.026 | 0.024 | 0.028 | 0.029 | 0.026 | 0.025 | 0.026 | 0.031 | 0.028 |
| Grain size description |  | sZ |

Table 2.3 Surficial Sediment Quality, Post $150,000 \mathrm{~m}^{3}$ Disposal (Dry Weight)

| Tests | units | Site |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | AC |  |  | ANZECCISQG |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DC | 500m |  |  |  | 1000m |  |  |  | 1500m |  |  |  | 1750m |  |  |  | Control |  |  | Green | Amber | Red |  |  |
|  |  |  | N | E | S | W | N | E | S | W | N | E | S | W | NE | SE | SW | NW | A | B | C |  |  |  | Low High |  |
| Dry Matter | $\mathrm{g} / 100 \mathrm{~g}$ | 34 | 48 | 49 | 50 | 60 | 50 | 49 | 49 | 52 | 48 | 51 | 49 | 52 | 48 | 50 | 48 | 48 | 49 | 49 | 50 |  |  |  |  |  |
| Total Sediment, Total Recoverable Metals |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arsenic |  | 9.5 | 4.0 | 3.6 | 3.9 | 4.0 | 5.0 | 5.0 | 4.1 | 3.6 | 4.0 | 4.0 | 5.0 | 3.0 | 4.0 | 5.0 | 4.0 | 3.0 | 5.0 | 5.0 | 5.1 |  |  |  | 20 | 70 |
| Cadmium |  | 0.081 | 0.170 | 0.160 | 0.120 | 0.100 | 0.110 | 0.130 | 0.130 | 0.094 | 0.121 | 0.090 | 0.110 | 0.122 | 0.130 | 0.115 | 0.116 | 0.102 | 0.100 | < 0.100 | 0.120 | 0.7 | 0.7-1.2 | 1.2 | 1.5 | 10 |
| Chromium |  | 22 | 22 | 21 | 21 | 22 | 20 | 23 | 23 | 20 | 20 | 20 | 23 | 20 | 22 | 23 | 22 | 17 | 22 | 24 | 25 | 52 | 52-80 | 80 | 80 | 370 |
| Copper |  | 29.0 | 5.5 | 5.1 | 5.0 | 5.0 | 8.4 | 4.9 | 5.0 | 5.2 | 4.7 | 4.2 | 4.7 | 5.6 | 4.7 | 4.6 | 4.9 | 4.4 | 5.0 | 4.8 | 5.1 | 19 | 19-34 | 34 | 65 | 270 |
| Lead |  | 26.0 | 4.4 | 4.2 | 4.1 | 4.2 | 4.2 | 4.4 | 4.4 | 4.0 | 3.9 | 3.8 | 4.1 | 5.2 | 4.1 | 4.2 | 4.2 | 3.6 | 4.4 | 4.5 | 4.8 | 30 | 30-50 | 50 | 50 | 220 |
| Mercury |  | 0.123 | 0.048 | 0.046 | 0.037 | 0.038 | 0.038 | 0.052 | 0.043 | 0.045 | 0.046 | 0.040 | 0.037 | 0.045 | 0.042 | 0.067 | 0.050 | 0.053 | 0.047 | 0.050 | 0.046 |  |  |  | 0.15 | 1 |
| Nickel |  | 10.0 | 16.3 | 15.1 | 14.4 | 16.1 | 14.8 | 15.8 | 16.2 | 14.4 | 15.0 | 14.3 | 15.8 | 16.0 | 15.7 | 15.4 | 15.6 | 13.9 | 17.1 | 16.3 | 17.2 |  |  |  | 21 | 52 |
| Zinc |  | 95 | 30 | 29 | 28 | 29 | 30 | 31 | 30 | 28 | 27 | 26 | 30 | 29 | 28 | 30 | 30 | 25 | 29 | 31 | 32 | 124 | 124-150 | 150 | 200 | 410 |
| Total Sediment, Total Petroleum Hydrocarbons (TPH) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C7-C9 | $\begin{aligned} & \frac{\pi}{0} \\ & 0 \\ & \frac{\pi}{3} \\ & \vdots \\ & \vdots \end{aligned}$ | < 19 | < 14 | < 30 | < 30 | <11 | < 14 | < 13 | < 14 | < 13 | < 14 | < 13 | < 14 | < 13 | < 14 | < 13 | < 14 | < 14 | < 14 | < 13 | < 13 |  |  |  |  |  |
| C10-C14 |  | < 40 | < 30 | < 60 | < 60 | $<30$ | < 30 | < 30 | < 30 | $<30$ | < 30 | < 30 | < 30 | $<30$ | < 30 | $<30$ | < 30 | < 30 | < 30 | < 30 | < 30 |  |  |  |  |  |
| C15-C36 |  | < 80 | < 60 | < 110 | < 110 | < 50 | < 60 | < 60 | < 60 | < 50 | < 60 | < 60 | < 60 | < 50 | < 60 | <60 | < 60 | < 60 | < 60 | < 60 | <60 |  |  |  |  |  |
| Total TPH |  | < 140 | < 100 | < 190 | < 190 | $<80$ | < 100 | $<90$ | < 100 | <90 | < 100 | < 90 | < 100 | $<90$ | < 100 | <90 | < 100 | < 100 | < 100 | < 90 | < 100 |  |  |  | 280 ${ }^{\text {¹ }}$ | $550^{*}$ |

Key: AC = Auckland Council, ANZECC ISQG = Australian and New Zealand Environment and Conservation Council Interim Sediment Quality Guideline, \# from Simpson, et al. 2013.

### 2.4 Discussion

### 2.4.1 Cores

The disposed sediment is visually obvious in the cores from the disposal centre site and at 100 m and the E and W 250 m cores. The sediment is softer and darker allowing for greater penetration of the corer than at the more distant sites. The lack of a base layer at the disposal centre site and 100 m sites prevents the determination of the thickness of disposed sediment layer on top of the original sea bed sediment. Additional single core samples were collect at the 250 m compass points. These show that the layer of darker material, presumably disposal sediments, is present at the W and E cores ranging between 158 mm and 195 mm depth, with an average depth of 77 mm at cores from N and S . The differences in core penetration depth and thickness and colour of mixing layer are graphically compared in Figure 2.2.

While there is what appears to be a mottled bioturbated surface layer in the cores from 500 m and beyond in the disposal area, this is also present at the Control sites, indicating it is natural and not disposal related.


Figure 2.2 Changes in Depth of Cores and Thickness of Mixing Layers with Distance from Disposal Centre Site. ( $\quad=$ dark layer of sediment, indicates bioturbated sediment layer)

There is no evidence indicating that disposed sediment, once on the seabed is spreading far from its point of disposal. Sediments in the disposal area at and beyond 500 m from the disposal centre site, and at the Control sites are of similar density as shown by the similar depths of core penetration. The zone of surface mixing is similar throughout the study sites with the exception of the disposal centre site, 100 m and at W and E 250 m . The east west elongation of the disposal mound is likely to be the result of the direction of barge approach
and minor variations in the timing and location of discharge, rather than a spread of the material once it has reach the seabed.

There are statistically significant differences in depths of cores and thickness of the surface layer between the DC, $100 \mathrm{~m}, 250 \mathrm{~m}, 375 \mathrm{~m}, 500 \mathrm{~m}, 1000 \mathrm{~m}, 1750 \mathrm{~m}$ and the Control sites (Appendix 2). The depth of the core at the disposal centre site (DC), 100m and 250 m cores were statistically significantly different from the other sites. The non parametric KruskalWallis one way analysis of variance on ranks was conducted on the surface layer data as both the assumptions of equal variance and normality was not met. Statistical analysis of the median values of the thickness of the surface layer at each distance indicated a statistical difference; however none of the pairwise comparisons showed statistically significant differences.

### 2.4.2 Particle Size

Particle size at the disposal centre site was statistically finer (Figure 2.3, Appendix 4) than the other disposal area and the Control sites, as a result of the disposal of fine sediments. The disposal centre site had approximately $20 \%$ less sand ( $)$, approximately $6 \%$ more silt $(\bullet)$ and $13 \%$ more clay $(\bullet)$ than the surrounding sites.


Figure 2.3 Particle Size Class Comparison With Distance From Disposal Centre Site (DC), After $150,000 \mathrm{~m}^{3}$ Sediment Disposal. ( Gravel, Sand, © Silt, - Clay, N, E, S, W = individual sites) $\left( \pm 95 \% \mathrm{Cl}\right.$ I and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$

Sediments at all sites were classified as sZ, slightly sandy Silt. All sites had sediments which were poorly sorted and strongly fine skewed, with the exception of the disposal centre site which was poorly sorted and strongly coarse skewed.

The lack of statistically significant differences between the Control site and $500 \mathrm{~m}, 1000 \mathrm{~m}$, 1500 m , and 1750 m radius sample sites, indicates that sediment disposed of has not spread far from where it was deposited. Based on particle size data there was no evidence to
suggest that disposal material has spread from the disposal centre site to the 500 m sites or beyond.

The honest significant interval (HSI) error bar is a graphical representation of statistical difference (Andrews et al, 1980), if the error bars overlap there is no statistically significant difference, and if they do not overlap then there is a statistically significant difference between the two means.

### 2.4.3 Sediment Chemistry

### 2.4.3.1 Sediment Quality Criteria

The sediment data have been compared with the Australian and New Zealand Environment and Conservation Council (ANZECC) Interim Sediment Quality Guideline (ISQG) Low and ISQG-High values which have been derived from the effects range low (ERL) and median (ERM) described in US National Oceanic and Atmospheric Administration, NOAA (Long and Morgan, 1991) and updated in 1995 (Long et al, 1995). The above references present data to assess the potential for adverse biological effects occurring due to exposure of biota to toxicants in sediment. Two values are determined from the data for each chemical or chemical group. The ERL is the concentration at the low end ( $10^{\text {th }}$ percentile) of the range in which effects had been observed and the ERM is the concentration approximately midway ( $50^{\text {th }}$ percentile) in the range of reported values associated with biological effects. These values defined three ranges in chemical concentrations that were anticipated to be: (1) rarely (less than ERL), (2) occasionally (between ERL and ERM), or (3) frequently (greater than ERM) associated with biological effects.

There are few reliable data on sediment toxicity for either Australia or New Zealand samples from which independent sediment quality guidelines might be derived and without a financial impetus there is little likelihood that further data will be forthcoming in the immediate future. Because of this, and as has been done in many other countries, the sediment quality guidelines are based on the best available overseas data and have been refined on the basis of current knowledge of existing baseline concentrations as well as by using local effects data as they become available. Therefore, the values provided by ANZECC (2000) are presented as interim sediment quality guidelines.

The Auckland Council (AC) has adopted a number of amendments to the ANZECC ISQGLow guidelines, when the values provided were considered inappropriate to the Auckland region. This is consistent with the ANZECC (2000) philosophy of developing trigger values appropriate to local conditions.

The ANZECC (2000) ISQG-Low values for copper and zinc are the same as the Hong Kong interim sediment quality values for dredge spoil disposal "ISQV" (Chapman et al. 1999). The Hong Kong data are based on local unpublished studies, which did not find toxic effects below these concentrations. The text accompanying the ANZECC (2000) guidelines asserts a high level of confidence in ER-L (Long et al. 1995) values for copper and zinc and the guidelines have used ER-L for other toxicants. There seems to be no justification for the substitution of ER-L values with ISQV values in the ANZECC (2000) guidelines, so ARC has adopted the ER-L values for copper and zinc.

A revision of the ANZECC sediment quality guidelines was published in 2013 (Simpson, et al. 2013). This largely confirmed the ANZECC ISQG values for metals but recommended changes for organic compounds, and proposed ISQG values for total petroleum hydrocarbons; these are included in Table 2.3.

The values provided by ANZECC (2000) and Auckland Regional Council are not standards but are presented as guidelines in evaluating sediment contaminant data for their potential effects on biota. These guideline values are presented in Table 2.3; the data have been colour coded for comparison and are discussed below.

### 2.4.3.2 Dry Matter

The percentage of dry matter in the sediments sampled from the sites, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, shows that the disposal centre site had statistically significantly low percentage dry matter compared to the outer sample sites and the Control (Figure 2.4, Appendix 6).


Figure 2.4 Comparison of Percent Dry Matter with Distance from Disposal Centre Site (DC), after $150,000 \mathrm{~m}^{3}$ Sediment Disposal (N, E, S, W = individual sites) $\left( \pm 95 \% \mathrm{Cl}\right.$ I and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( $10 \mathrm{k}, ~ \bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}$, $\pm \mathrm{HSI}_{0.05} \mathrm{I}$ ).

### 2.4.3.3 Metals

## Arsenic

Concentrations of arsenic, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, were all below the ANZECC ISQG low value of $20 \mathrm{mg} / \mathrm{kg}$ dry weight as shown in Table 2.3. The concentration of arsenic from the disposal centre site, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, was higher but not statistically significantly than the concentrations recorded at the other sites. The average concentration of arsenic was slightly higher at the Control site than the disposal area sites excluding the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of arsenic varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of arsenic have varied statistically significantly at the disposal centre site over time (Figure 2.5, Appendix 6). These changes are reflective of the variability in the quality characteristics of the source sediment disposed.

The average concentration of arsenic has decreased over time between the $10,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples from the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}, 1750 \mathrm{~m}$ and the Control sites. The decreases were statistically significant at the $500 \mathrm{~m}, 1500 \mathrm{~m}$ and 1750 m sites but not the 1000 m or the Control sites. While statistically significant the decreases over time at the distant sites do not indicate the spread of disposal material as this would have resulted in increases over time. The decreases in concentration of arsenic from the 500 m to Control sites, based on the evidence to date, are considered to be the result of natural variations in the concentrations arsenic.


Figure 2.5 Comparison of Total Recoverable Arsenic with Distance from Disposal Centre Site (DC), after $\mathbf{1 5 0 , 0 0 0}{ }^{3}$ Sediment Disposal
( $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=$ individual sites) $\left( \pm 95 \% \mathrm{Cl}\right.$ I and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( $10 \mathrm{k}, \bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ).

## Cadmium

Concentrations of cadmium, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, were all well below the lowest guideline value, the AC Green trigger value of $0.7 \mathrm{mg} / \mathrm{kg}$ dry weight. The concentration recorded at the disposal centre site was approximately half the concentration recorded in the other sites in and around the disposal area; the differences were statistically significant (Figure 2.6, Appendix 6).

The statistical tests (Appendix 6) indicate that the concentration of chromium varies statistically significantly over time and between sites. Concentrations of cadmium have not varied statistically significantly at the disposal centre site over time (Appendix 6), nor have the other disposal area and Control site average concentrations. Figure 2.6 shows similar slight decreases in the concentration of cadmium over time at the $1000 \mathrm{~m}, 1500 \mathrm{~m}, 1750 \mathrm{~m}$ and the Control sites. At the 500 m sites the decreases in the concentration of cadmium followed a similar trend until the $150,000 \mathrm{~m}^{3}$ sample which showed a slight increase. The variability of the results as shown by the $95 \%$ CL error bars on Figure 2.6 indicate that the changes are most likely natural. The increased $150,000 \mathrm{~m}^{3} 500 \mathrm{~m}$ average cadmium concentration was the result of higher concentrations of cadmium at the N and E sites, however these are higher than recorded in the disposal material so the spread of disposal material is unlikely to be the cause of the increased concentrations.

The very small changes concentrations of cadmium recorded are all within the likely natural background variation in the concentration of cadmium. The decreased concentration of cadmium at the disposal centre site is the result of reduced cadmium in the source material.


Figure 2.6 Comparison of Total Recoverable Cadmium with Distance from Disposal Centre Site (DC), after $\mathbf{1 5 0 , 0 0 0}{ }^{3}$ Sediment Disposal
( $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=$ individual sites) $\left( \pm 95 \% \mathrm{CI} \mathrm{I}\right.$ and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( 10k, • 50k, ${ }^{\circ} 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ).

## Chromium

Concentrations of chromium, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, were all well below the lowest guideline value, the AC Green trigger value of $52 \mathrm{mg} / \mathrm{kg}$ dry weight as shown in Figure 2.7. The concentration of chromium recorded at all sites following the $150,000 \mathrm{~m}^{3}$ of spoil disposal was similar, with the Control site recording the highest concentration. There were no statistically significant differences recorded between sites.

The statistical tests (Appendix 6) indicate that the concentration of chromium varies statistically significantly over time and between sites, but the changes over time are different at different sites. Concentrations of chromium have varied statistically significantly at the disposal centre site over time (Figure 2.7, Appendix 6). These changes are reflective of the changes in the quality of the sediment being disposed.

The average concentration of chromium has fluctuated and ultimately decreased similarly over time between the $10,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples at the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}$, 1750 m and the Control sites. The decreases at the 1500 m and 1750 m sites were statistically significant, although the very small changes concentrations of chromium recorded are all within the likely natural background variation in the concentration of chromium.


Figure 2.7 Comparison of Total Recoverable Chromium with Distance from Disposal Centre Site (DC), after $150,000 \mathrm{~m}^{3}$ Sediment Disposal $\left(\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=\right.$ individual sites) $\left( \pm 95 \% \mathrm{Cl}\right.$ I and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( $\left.-10 \mathrm{k}, \bullet 50 \mathrm{k}, \bullet 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}\right) .(---\mathrm{AC}$ green guideline 52 $\mathrm{mg} / \mathrm{kg}$ dry weight)

## Copper

The concentrations of copper, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, were below the lowest guideline value, the AC green trigger of $19 \mathrm{mg} / \mathrm{kg}$ dry weight at all site except the disposal centre site, as shown in Figure 2.8. The concentration of copper at the disposal centre site was statistically significantly higher than at the other sites within and around the disposal
area (Appendix 6). With the exception of the disposal centre site the concentration of copper at sites within and around the disposal area, were not statistically significantly different from the concentration of copper at the Control sites.

The statistical tests (Appendix 6) indicate that the concentration of copper varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of copper have varied statistically significantly at the disposal centre site over time (Figure 2.8, Appendix 6). These changes are reflective of the changes in the quality characteristics of the source sediment being disposed.

During each monitoring event the concentration of copper has generally decreased with distance from the disposal centre site. The differences between the average concentrations at each sampling distance within each volume sampling event are very small and not statistically significant. There is no consistent trend for increasing or decreasing concentration of copper over time at across all sites. Beyond the disposal centre site the differences in the concentration of copper between sample events and sample sites are very small and most likely within the natural background variation in the concentration of copper from the area. Hence the concentration of copper does not provide significant evidence of the spread of disposal material from the disposal centre site.


Figure 2.8 Comparison of Total Recoverable Copper with Distance from Disposal Centre Site (DC), after $\mathbf{1 5 0 , 0 0 0} \mathrm{m}^{\mathbf{3}}$ Sediment Disposal
(N, E, S, W = individual sites) ( $\pm 95 \% \mathrm{Cl}$ I and $\pm \mathrm{HSI}_{0.05} \mathrm{I}$ ) and Over Time ( 10k, $\bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ). ( - - AC green guideline 19 $\mathrm{mg} / \mathrm{kg}$ dry weight, - - - AC red guideline $34 \mathrm{mg} / \mathrm{kg}$ dry weight)

## Lead

Concentrations of lead, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, at all sites were below the lowest guideline value, the AC Green trigger value of $30 \mathrm{mg} / \mathrm{kg}$ dry weight. The concentration of lead at the disposal centre site was statistically significantly higher than the average concentrations at the other sites within and around the disposal area.

The statistical tests (Appendix 6) indicate that the concentration of lead varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of lead have varied statistically significantly at the disposal centre site over time (Figure 2.9, Appendix 6). These changes are reflective of the changes in the quality and characteristics of the source sediment being disposed.

The average concentration of lead has decreased over time between the $10,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples from the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}, 1750 \mathrm{~m}$ and Control sites. The decreases were only statistically significant at the 1750 m sites. The decreases over time at the distant sites do not indicate the spread of disposal material as this would have resulted in increases over time. Therefore the changes recorded are considered to be natural variation.

There is no indication of lead rich sediment spreading from the disposal centre site.


Figure 2.9 Comparison of Total Recoverable Lead with Distance from Disposal Centre Site (DC), after $150,000 \mathrm{~m}^{3}$ Sediment Disposal
(N, E, S, W = individual sites) ( $\pm 95 \% \mathrm{Cl}$ I and $\pm \mathrm{HSI}_{0.05} \mathrm{I}$ ) and Over Time ( 10k, • 50k, •100k, • 150k, $\pm \mathrm{HSI}_{0.05}$ I). (- - - AC green guideline 30 $\mathrm{mg} / \mathrm{kg}$ dry weight)

## Mercury

The concentrations of mercury within the disposal area following $150,000 \mathrm{~m}^{3}$ of spoil disposal were all below the lowest guideline value, the ANZECC ISQG-Low guideline of $0.15 \mathrm{mg} / \mathrm{kg}$ dry weight, as shown in Figure 2.10. The concentration of mercury from the disposal centre site was statistically significantly higher than the other sites within and around the disposal area. With the exception of the disposal centre site the other sites within and around the disposal area were not statistically significantly different from the Control sites. There is no indication of mercury rich sediment spreading from the disposal centre site following the disposal of $150,000 \mathrm{~m}^{3}$ of spoil.

The statistical tests (Appendix 6) indicate that the concentration of mercury varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of mercury have varied statistically significantly at the disposal centre site over time (Figure 2.10, Appendix 6). These changes are reflective of the changes in quality and sources of the sediment being disposed. The average concentration of mercury has generally remained similar with minor fluctuations between the $10,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples at the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}, 1750 \mathrm{~m}$ sites. A statistically significant fluctuation in the concentration of mercury was record at the Control site during the $100,000 \mathrm{~m}^{3}$ survey, but there has not been any statistically significant change over time (Figure 2.10, Appendix 6).

The fluctuations in the concentration of mercury from in and around the disposal area were very small and likely within the natural variation in concentration from the area as indicated by the changes in the Control site. There is no indication of mercury rich sediment spreading from the disposal centre site.


Figure 2.10 Comparison of Total Recoverable Mercury with Distance from Disposal Centre Site (DC), after $150,000 \mathrm{~m}^{3}$ Sediment Disposal
( $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=$ individual sites) $\left( \pm 95 \% \mathrm{CI} \mathrm{I}\right.$ and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( 10k, $\bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ). (- - - ISQG-Low guideline 0.15 $\mathrm{mg} / \mathrm{kg}$ dry weight)

## Nickel

The concentrations of nickel, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, at all sites were below the lowest guideline value, the ANZECC ISQG-Low guideline of $21 \mathrm{mg} / \mathrm{kg}$ dry weight as shown in Figure 2.11. The concentration of nickel from the disposal centre site was statistically significantly lower than the other sites within and around the disposal area. With the exception of the disposal centre site the average concentrations of nickel at other sites within and around the disposal area were not statistically significantly different from the concentrations of nickel at the Control sites. There is no indication of nickel rich sediment spreading from the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of mercury varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of nickel have varied statistically significantly at the disposal centre site with an overall decrease over time (Figure 2.11, Appendix 6). These changes are reflective of the changes in quality and sources of the sediment being disposed.

The average concentration of nickel has fluctuated and ultimately increased similarly over time between the $10,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples at the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}, 1750 \mathrm{~m}$ and the Control sites. The increases at the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}$ and the Control sites were statistically significant, although the very small changes in concentrations of nickel recorded are all within the likely natural background variation in the concentration of nickel as indicated by the changes at the Control site.

With the disposal centre site nickel concentrations, decreasing to bellow the Control site concentration, there is little likelihood that the increases, if real, in the nickel concentration from the disposal area sites are the result of the spread of disposal material.


Figure 2.11 Comparison of Total Recoverable Nickel with Distance from Disposal Centre Site (DC), after $\mathbf{1 5 0 , 0 0 0} \mathbf{m}^{\mathbf{3}}$ Sediment Disposal
$\left(\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=\right.$ individual sites) $\left( \pm 95 \% \mathrm{Cl}\right.$ I and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( 10k, • 50k, •100k, • 150k, $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$. ( - - - ISQG-Low guideline 21 $\mathrm{mg} / \mathrm{kg}$ dry weight)

## Zinc

Concentrations of zinc, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, at all sites were below the lowest guideline value, the AC Green trigger value of $124 \mathrm{mg} / \mathrm{kg}$ dry weight. The concentration of zinc at the disposal centre site was statistically significantly higher than the average concentrations recorded in the more distant samples including the Control sites (Figure 2.12, Appendix 6). There was no indication of zinc rich sediment spreading from the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of zinc varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of zinc have varied statistically significantly at the disposal centre site over time (Figure 2.12, Appendix 6). These changes are reflective of the changes in the quality of the source sediment being disposed. The average concentration of zinc showed very small, but in some cases statistically significant fluctuations in concentration between the $10,000 \mathrm{~m}^{3}, 50,000 \mathrm{~m}^{3}, 100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples at the $500 \mathrm{~m}, 1000 \mathrm{~m}, 1500 \mathrm{~m}$, 1750 m and Control sites (Figure 2.12, Appendix 6). However the overall changes over time have not been statistically significant.

The very small changes are likely within the natural variation in concentration of zinc from the area and do not show any indication of spread of disposal material from the disposal centre site.


Figure 2.12 Comparison of Total Recoverable Zinc with Distance from Disposal Centre Site (DC), after $150,000 \mathrm{~m}^{3}$ Sediment Disposal.
$(\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}=$ individual sites $)\left( \pm 95 \% \mathrm{CI} \mathrm{I}\right.$ and $\left.\pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$ and Over Time ( $10 \mathrm{k}, \bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ).

### 2.4.3.4 Total Petroleum Hydrocarbons

Proposed ISQG values for total petroleum hydrocarbons were presented in Simpson, et al. (2013).

All results were less than the detection limits, i.e. no Total Petroleum Hydrocarbons were detected in any of the samples. Therefore all concentrations of TPH, following $150,000 \mathrm{~m}^{3}$ of spoil disposal, at all sites were below the proposed ISQG low trigger value of $280 \mathrm{mg} / \mathrm{kg}$ dry weight. Nor is there any evidence of TPH rich sediment being deposited or spreading from the disposal centre site.

## 3 BENTHIC BIOTA

### 3.1 Methods

The MNZ Permit 568 and EPA consent EEZ900012 require monitoring of benthic biota at the Control site, the disposal centre site, and a minimum of four sampling sites equally spaced on the boundary of the Disposal Area.

Additional sample sites may be required if contaminants analysed in the sediments at the other sites are;
i. above ANZECC ISQG-Low levels or
ii. shown to be moving from the site, (i.e. if the difference in sediment chemistry between any one sampling site and the Control site is more than $50 \%$ of the difference between the Control and disposal area centre samples).

None of the additional sites (500N, 500E, 500S, 500W, 1000N, 1000E, 1000S, 1000W, 1750NE, 1750SE, 1750SW and 1750NW) sampled for sediment chemistry (Figure 2.1) showed significant contamination above the ANZECC ISQG-Low guidelines for the metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc) or TPH (Table 2.3).

The average concentration at the Control sites and the concentration at the disposal centre site are present in the Table 3.1 together with the $50 \%$ change trigger value and the differences in concentration between the test sites and the Control site.

The percentage dry matter and concentrations of cadmium, chromium and nickel were lower at the disposal centre site than the average concentration at the Control sites, thus higher concentrations of these parameters at the disposal area sites than the Control site are not the result of material moving from the disposal centre site, these are highlight in Table 3.1 as .

If the metal concentration of the disposal area site is less than at the Control site (a negative change) the change is not expected to result in adverse effects, these are highlighted in Table 3.1 as . While some of these negative changes may exceed the $50 \%$ change trigger they will not result in adverse effects to the biota as sediment quality is improved, i.e. lower in contaminants and below the guideline values.

Negative changes in the percentage dry matter indicate the sediment is less dense than at the Control site, none of the disposal area sites exceeded the $50 \%$ trigger levels. None of the disposal area sites with concentrations of copper, lead, mercury, nickel or zinc greater than at the Control sites, had concentrations that exceeded the 50\% trigger levels.

Concentrations of percentage dry matter, cadmium, chromium exceeded the $50 \%$ change trigger values at some of the disposal area sites as indicated in Table 3.1 by red text. However these changes are either not related to disposal material and or beneficial to the environment, thus additional benthic biota sampling was not assessed as necessary.

All the results of the total petroleum hydrocarbons were less than detection, so no comparison could be made to define if the concentrations at the additional sites exceeded the average concentrations recorded at the Control sites by more than $50 \%$ of the difference between the disposal centre site and the average at the Control sites.

Table 3.1 Differences in Surficial Sediment Quality between the Control site and disposal area sites, Post 150,000m ${ }^{\mathbf{3}}$ Disposal (Dry Weight)

| Tests | Sites |  | 50\% change trigger | Sites |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Control Average | DC |  | 500m |  |  |  | 1000m |  |  |  | 1500m |  |  |  | 1750m |  |  |  |
|  |  |  |  | N | E | S | W | N | E | S | W | N | E | S | W | NE | SE | SW | NW |
| Dry Matter | 49.3 | 34.0 | -7.7 | -1.33 | -0.33 | 0.67 | 10.67 | 0.67 | -0.33 | -0.33 | 2.67 | -1.33 | 1.67 | -0.33 | 2.67 | -1.33 | 0.67 | -1.33 | -1.33 |
| Total Sediment, Total Recoverable Metals |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arsenic | 5.0 | 9.5 | 2.2 | -1.0 | -1.43 | -1.13 | -1.03 | -0.03 | -0.03 | -0.93 | -1.43 | -1.03 | -1.03 | -0.03 | -2.03 | -1.03 | -0.03 | -1.03 | -2.03 |
| Cadmium | 0.107 | 0.081 | -0.013 | 0.06 | 0.05 | 0.01 | -0.01 | 0.00 | 0.02 | 0.02 | -0.01 | 0.01 | -0.02 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 |
| Chromium | 23.7 | 22.0 | -0.8 | -1.67 | -2.67 | -2.67 | -1.67 | -3.67 | -0.67 | -0.67 | -3.67 | -3.67 | -3.67 | -0.67 | -3.67 | -1.67 | -0.67 | -1.67 | -6.27 |
| Copper | 5.0 | 29.0 | 12.0 | 0.53 | 0.13 | 0.03 | 0.03 | 3.43 | -0.07 | 0.03 | 0.23 | -0.27 | -0.77 | -0.27 | 0.63 | -0.27 | -0.37 | -0.07 | -0.57 |
| Lead | 4.6 | 26.0 | 10.7 | -0.17 | -0.37 | -0.47 | -0.37 | -0.37 | -0.17 | -0.17 | -0.57 | -0.67 | -0.77 | -0.47 | 0.63 | -0.47 | -0.37 | -0.37 | -0.97 |
| Mercury | 0.048 | 0.123 | 0.038 | 0.000 | -0.002 | -0.011 | -0.010 | -0.010 | 0.004 | -0.005 | -0.003 | -0.002 | -0.008 | -0.011 | -0.003 | -0.006 | 0.019 | 0.002 | 0.005 |
| Nickel | 16.9 | 10.0 | -3.4 | -0.57 | -1.77 | -2.47 | -0.77 | -2.07 | -1.07 | -0.67 | -2.47 | -1.87 | -2.57 | -1.07 | -0.87 | -1.17 | -1.47 | -1.27 | -2.97 |
| Zinc | 30.7 | 95.0 | 32.2 | -0.67 | -1.67 | -2.67 | -1.67 | -0.67 | 0.33 | -0.67 | -2.67 | -3.67 | -4.67 | -0.67 | -1.67 | -2.67 | -0.67 | -0.67 | -5.67 |

As per the consent only the five sample sites (DC, 1500N, 1500E, 1500S, 1500W) within and around the disposal area, and the Control site, as shown in Figure 3.1, were required to be sampled, but additional samples were collected the $500 \mathrm{~N}, 500 \mathrm{E}, 500 \mathrm{~S}$ and 500 W sites.


Figure 3.1 Seabed Benthic Biota Sampling Sites
Three replicate samples of two, 100 mm diameter gravity core samples were collected from each site. The two cores were combined, labelled and then sieved as soon as practicable by washing each whole sample through 0.5 mm mesh sieves with seawater. All samples were sieved within six hours of collection. The material retained on the sieves was transferred to a polyethylene 'zip lock'-type bag, and preserved with a $10 \%$ glyoxal, $70 \%$ ethanol sea water solution, sealed, placed in a second polyethylene 'zip lock'-type bag and packed into a labelled plastic container, for transportation to the laboratory.

Prior to sorting, the samples were rinsed with freshwater and placed in a white sorting tray. All organisms were picked out of the samples and placed in a labelled vial of $70 \%$ isopropyl alcohol solution prior to taxonomic identification and counting.

### 3.2 Results

Benthic biota results are summarised by calculation of numbers of taxa, numbers of individual organisms, and Shannon-Wiener diversity index for each replicate at each sampling station. The full results of the benthic biota sampling are presented in Appendix 7 and summarised in Table 3.2 along with previous results. It was not possible to distinguish between living and recently dead Foraminifera despite the use of Rose Bengal stain. Therefore only intact and uneroded animals were counted.

The summary statistics are compared graphically over time within sites and between sites following disposal of $150,000 \mathrm{~m}^{3}$ of spoil, in Figure 3.2, Figure 3.3 and Figure 3.4.

Shannon-Wiener Diversity Index measures the rarity and commonness of species in a community and is calculated using the following formula.

$$
H=-\Sigma\left(p_{i} \ln p_{i}\right)
$$

Here $p_{i}$ is the proportion of total number of species made up of the $f^{\text {th }}$ species.

Table 3.2 Total Numbers of Species and Animals - Summary Data

| Station | Total Number of Species |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average per sample |  |  |  |  | Per site |  |  |  |  |
|  | Pre | 10k | 50k | 100k | 150k | Pre | 10k | 50k | 100k | 150k |
|  | Jun 10 | Aug 13 | Apr 15 | Aug 15 | Nov 16 | Jun 10 | Aug 13 | Apr 15 | Aug 15 | Nov 16 |
| DC | 9.00 | 7.33 | 3.67 | 19.00 | 0.67 | 12 | 17 | 11 | 36 | 2 |
| 500 N |  |  |  |  | 19.00 |  |  |  |  | 37 |
| 500 E |  |  |  |  | 14.00 |  |  |  |  | 27 |
| 500 S |  |  |  |  | 16.33 |  |  |  |  | 31 |
| 500 W |  |  |  |  | 10.33 |  |  |  |  | 18 |
| Average |  |  |  |  | 14.92 |  |  |  |  | 28.3 |
| 95\% CL |  |  |  |  | 5.85 |  |  |  |  | 12.7 |
| 1500 N | 8.50 | 27.00 | 23.33 | 21.00 | 18.00 | 11 | 42 | 41 | 37 | 37 |
| 1500 E | 9.50 | 15.67 | 21.00 | 15.67 | 19.00 | 15 | 34 | 40 | 28 | 37 |
| 1500 S | 7.50 | 18.00 | 24.00 | 13.67 | 18.33 | 12 | 37 | 42 | 25 | 31 |
| 1500 W | 11.00 | 13.33 | 18.00 | 16.70 | 15.33 | 16 | 27 | 34 | 29 | 27 |
| Average | 9.13 | 18.50 | 21.58 | 16.76 | 17.67 | 13.5 | 35.0 | 39.3 | 29.8 | 33.0 |
| 95\% CL | 2.38 | 9.51 | 4.32 | 4.93 | 2.56 | 3.8 | 10.0 | 5.7 | 8.2 | 7.8 |
| Control | 6.56 | 18.33 | 22.67 | 19.67 | 19.33 | 22 | 35 | 37 | 38 | 35 |


| Station | Total Number of Animals |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average per sample |  |  |  |  | Per square metre |  |  |  |  |
|  | Pre | 10k | 50k | 100k | 150k | Pre | 10k | 50k | 100k | 150k |
|  | Jun 10 | Aug 13 | Apr 15 | Aug 15 | Nov 16 | Jun 10 | Aug 13 | Apr 15 | Aug 15 | Nov 16 |
| DC | 58.5 | 14.7 | 70.3 | 297.0 | 0.7 | 15201 | 953 | 4478 | 18908 | 42 |
| 500 N |  |  |  |  | 120.0 |  |  |  |  | 7639 |
| 500 E |  |  |  |  | 150.7 |  |  |  |  | 9592 |
| 500 S |  |  |  |  | 161.7 |  |  |  |  | 10292 |
| 500 W |  |  |  |  | 106.3 |  |  |  |  | 6769 |
| Average |  |  |  |  | 134.7 |  |  |  |  | 8573.1 |
| 95\% CL |  |  |  |  | 41.1 |  |  |  |  | 2617.5 |
| 1500 N | 65.5 | 101.3 | 876.0 | 450.3 | 106.7 | 17020 | 6583 | 55768 | 28669 | 6791 |
| 1500 E | 62.5 | 35.0 | 610.0 | 586.3 | 195.7 | 16240 | 2274 | 38834 | 37327 | 12457 |
| 1500 S | 25.5 | 40.3 | 365.0 | 246.0 | 187.3 | 6626 | 2620 | 23237 | 15661 | 11926 |
| 1500 W | 55.5 | 30.7 | 332.7 | 302.0 | 131.7 | 14421 | 1992 | 21178 | 19226 | 8382 |
| Average | 52.3 | 51.8 | 545.9 | 396.2 | 155.3 | 13576.9 | 3367.2 | 34754.1 | 25220.8 | 9888.8 |
| 95\% CL | 29.1 | 52.9 | 401.8 | 244.0 | 68.6 | 7574.3 | 3435.5 | 25578.3 | 15530.7 | 4368.6 |
| Control | 12.7 | 40.7 | 347.3 | 353.0 | 159.0 | 3291 | 2642 | 22112 | 22473 | 10122 |


| Station | Shannon Wiener Diversity Index |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pre | 10k | 50k | 100k | 150k |
|  | Jun 10 | Aug 13 | Apr 15 | Aug 15 | Nov 16 |
| DC | $\mathbf{1 . 4 4 7}$ | $\mathbf{1 . 6 2 7}$ | $\mathbf{1 . 0 0 2}$ | $\mathbf{1 . 4 5 8}$ | $\mathbf{0 . 6 9 3}$ |
| 500 N |  |  |  |  | 1.501 |
| 500 E |  |  |  |  | 1.066 |
| 500 S |  |  |  |  | 1.208 |
| 500 W |  |  |  |  | 1.375 |
| Average |  |  |  |  | $\mathbf{1 . 2 8 8}$ |
| $95 \% \mathrm{CL}$ |  |  |  |  | 0.303 |
| 1500 N | 1.324 | 2.457 | 1.496 | 1.592 | 1.722 |
| 1500 E | 1.252 | 2.293 | 1.105 | 1.203 | 1.594 |
| 1500 S | 1.663 | 2.534 | 1.413 | 1.162 | 1.361 |
| 1500 W | 1.650 | 2.074 | 1.308 | 1.461 | 1.383 |
| Average | $\mathbf{1 . 4 7 2}$ | $\mathbf{2 . 3 3 9}$ | $\mathbf{1 . 3 3 0}$ | $\mathbf{1 . 3 5 4}$ | $\mathbf{1 . 5 1 5}$ |
| $95 \% \mathrm{CL}$ | 0.341 | 0.324 | 0.269 | 0.328 | 0.276 |
| Control | $\mathbf{1 . 6 4 4}$ | $\mathbf{2 . 4 3 2}$ | $\mathbf{1 . 4 0 1}$ | $\mathbf{1 . 3 5 7}$ | $\mathbf{1 . 7 9 1}$ |



Figure 3.2 Comparison of average Number of Species per sample after $150,000 \mathrm{~m}^{\mathbf{3}}$ Sediment Disposal ( $\pm 95 \% \mathrm{Cl} \mathrm{I}$ and $\pm \mathrm{HSI}_{0.05} \mathrm{I}$ ) and Over Time ( $\bullet$ pre, - $\left.10 \mathrm{k}, \bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}\right)$, total species per site $(\star)$.


Figure 3.3 Comparison of average Number of Individuals per $\mathbf{m}^{2}$ after $150,000 \mathrm{~m}^{\mathbf{3}}$ Sediment Disposal ( $\pm 95 \% \mathrm{Cl} \mathrm{I}$ and $\pm \mathrm{HSI}_{0.05} \mathrm{I}$ ) and Over Time ( $\bullet$ pre, - 10k, • 50k, •100k, • 150k, $\pm \mathrm{HSI}_{0.05}$ I).


Figure 3.4 Comparison of average Shannon Weiner Diversity Index per sample after $\mathbf{1 5 0 , 0 0 0} \mathbf{m}^{3}$ Sediment Disposal ( $\pm 95 \% \mathrm{Cl} \mathrm{I}$ and $\pm \mathrm{HSI}_{0.05}$ I) and Over Time (• pre, •10k, $\bullet 50 \mathrm{k}, ~ 100 \mathrm{k}, \bullet 150 \mathrm{k}, \pm \mathrm{HSI}_{0.05} \mathrm{I}$ ).

### 3.3 Discussion

Site DC, had a very low diversity ( 0.7 species per replicate, 2 species in total) and a very low abundance ( 42 per $\mathrm{m}^{2}$ ). This is lower than previously recorded from the disposal centre site however not unexpected as a result of the disposal of dredge spoil at the site. Only two individuals were found a mysid shrimp ( 21 per $\mathrm{m}^{2}$ ) and a foraminifera Pyrgo sp. ( 21 per $\mathrm{m}^{2}$ ).

Site 500 N , had a moderate to high diversity ( 19.0 species per replicate, 37 species in total) and a moderate to high abundance ( 7,639 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( 5,029 per $\mathrm{m}^{2}$ ). Of the other species present in much lower numbers the foraminifera, Alabamina sp. ( 531 per m${ }^{2}$ ), Cibicidoides sp . ( 488 per m${ }^{2}$ ), Pyrgo sp . (318 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis (149 per $\mathrm{m}^{2}$ ) had significant contributions. Species from other taxonomic groups such as polychaete worms, nemerteans, molluscs, amphipods, isopods cumaceans, ostracods, tanaids and ophiuroid starfish were present but at very low numbers.

Site 500 E , had a moderate to high diversity ( 14.0 species per replicate, 27 species in total) and a moderate to high abundance ( 9,592 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( 7,279 per $\mathrm{m}^{2}$ ). Of the other species present in much lower numbers the foraminifera, Alabamina sp. ( 467 per $\mathrm{m}^{2}$ ), Cibicidoides sp . ( 233 per $\mathrm{m}^{2}$ ), Pyrgo sp . (552 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis ( 255 per $\mathrm{m}^{2}$ ) had significant contributions. Species from other taxonomic groups such as polychaete worms, molluscs, amphipods, isopods and tanaids were present but at very low numbers.

Site 500 S , had a moderate to high diversity ( 16.3 species per replicate, 31 species in total) and a high abundance ( 10,292 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( $7,257 \mathrm{per} \mathrm{m}^{2}$ ). Of the other species present in much lower numbers the foraminifera, Alabamina sp . ( 1,082 per $\mathrm{m}^{2}$ ), Cibicidoides sp . ( 594 per $\mathrm{m}^{2}$ ), Pyrgo
sp. (318 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis ( 127 per $\mathrm{m}^{2}$ ) had significant contributions. Species from other taxonomic groups such as polychaete worms, sipunculid worms, amphipods, isopods, cumaceans, tanaids and ophiuroid starfish were present but at very low numbers.

Site 500 W , had a moderate diversity ( 10.3 species per replicate, 18 species in total) and a moderate abundance ( 6,769 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( 4,032 per $\mathrm{m}^{2}$ ). Of the other species present in much lower numbers the foraminifera, Alabamina sp. (891 per m${ }^{2}$ ), Cibicidoides sp . ( $785 \mathrm{per} \mathrm{m}^{2}$ ), Pyrgo sp . ( 446 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis ( $127 \mathrm{per} \mathrm{m}^{2}$ ) and the polychaete worm, Lumbrinereis sp . ( $127 \mathrm{per} \mathrm{m}^{2}$ ) had significant contributions. Species from other taxonomic groups such as polychaete worms, isopods, cumaceans, mysids, ostracods and ophiuroid starfish were present but at very low numbers.

Site 1500 N , had a moderate to high diversity ( 18.0 species per replicate, 37 species in total) and a moderate abundance ( 6,791 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( 3,629 per $\mathrm{m}^{2}$ ), with significant contributions from Cibicidoides sp. ( 743 per $\mathrm{m}^{2}$ ), Alabamina sp . ( 806 per $\mathrm{m}^{2}$ ), Pyrgo sp . ( 361 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis ( 106 per $\mathrm{m}^{2}$ ). Species from other taxonomic groups such as polychaete worms, sipunculid worms, amphipods, isopods, cumaceans, mysids, ostracods, ophiuroid starfish and a sponge were present but at very low numbers.

Site 1500 E , had a moderate to high diversity ( 19.0 species per replicate, 37 species in total) and a high abundance ( 12,457 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp. ( 6,133 per $\mathrm{m}^{2}$ ), with significant contributions from Cibicidoides sp. ( 2,525 per $\mathrm{m}^{2}$ ), Alabamina sp . ( 1,804 per $\mathrm{m}^{2}$ ), Pyrgo sp . ( 615 per $\mathrm{m}^{2}$ ) and Quinqueloculina suborbicularis ( 255 per $\mathrm{m}^{2}$ ). Species from other taxonomic groups such as polychaete worms, amphipods, isopods, cumaceans, ophiuroid starfish and a sponge were present but at very low numbers.

Site 1500 S, had a moderate to high diversity ( 18.3 species per replicate, 31 species in total) and a high abundance ( 11,926 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp. ( 7,979 per $\mathrm{m}^{2}$ ), with significant contributions from Cibicidoides sp. (997 per m${ }^{2}$ ), Alabamina sp. ( 700 per $\mathrm{m}^{2}$ ), Pyrgo sp. ( 700 per $\mathrm{m}^{2}$ ), Quinqueloculina suborbicularis ( 255 per $\mathrm{m}^{2}$ ) and Nummoloculina contraria (191 per $\mathrm{m}^{2}$ ). Species from other taxonomic groups such as polychaete worms, amphipods, ostracods and ophiuroid starfish were present but at very low numbers.

Site 1500 W , had a moderate diversity ( 15.3 species per replicate, 27 species in total) and a moderate abundance ( 8,382 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . ( 5,411 per $\mathrm{m}^{2}$ ), with significant contributions from Cibicidoides sp . (912 per $\mathrm{m}^{2}$ ), Alabamina sp. ( 488 per $\mathrm{m}^{2}$ ), Pyrgo sp. ( 531 per $\mathrm{m}^{2}$ ), Quinqueloculina suborbicularis ( 233 per $\mathrm{m}^{2}$ ), Nummoloculina contraria ( $127 \mathrm{per} \mathrm{m}^{2}$ ) and Triloculina insignis ( 106 per $\mathrm{m}^{2}$ ). Species from other taxonomic groups such as polychaete worms, amphipods, isopods, mysids, ostracods and a sponge were present but at very low numbers.

The Control site had a moderate diversity ( 19.3 species per replicate, 35 species in total) and a high abundance ( 10,122 per $\mathrm{m}^{2}$ ). The biota was numerically dominated by the foraminifera, Lenticulina sp . (4,944 per $\mathrm{m}^{2}$ ), with significant contributions from Alabamina sp .
(1,146 per m${ }^{2}$ ), Pyrgo sp. (1,316 per m${ }^{2}$ ), Cibicidoides sp. (594 per m${ }^{2}$ ), Quinqueloculina suborbicularis ( 615 per $\mathrm{m}^{2}$ ), Nummoloculina contraria ( $127 \mathrm{per} \mathrm{m}^{2}$ ) and Triloculina insignis ( 255 per $\mathrm{m}^{2}$ ). Species from other taxonomic groups such as polychaete worms, sipunculid worms, molluscs, amphipods, isopods, cumaceans, mysids, ostracods, anemones, ophiuroid starfish and a sponge were present but at very low numbers.

Following the disposal of $50,000 \mathrm{~m}^{3}$ of sediment at the disposal centre site, the diversity and density of biota were predictably and statistically significantly depressed at the disposal centre site (DC) when compared to the disposal area boundary sites and the Control sites. However after the disposal of $100,000 \mathrm{~m}^{3}$ of sediment at the disposal centre site and with the relocation of the disposal centre site out to 150 m east to obtain a sample, a similar pattern was not evident. Following disposal of $150,000 \mathrm{~m}^{3}$ of sediment at the disposal centre site, the diversity and density of biota at the disposal centre site were again predictably and statistically significantly depressed (Appendix 8 ). The $100,000 \mathrm{~m}^{3}$ sample indicates the depression of numbers of individuals and species was confined to a relatively small area.

The numbers of species and individuals increases with distance from the disposal centre site. The average numbers of species and individuals at the 500 m and 1500 m sites were not statistically significantly different from the Control Site, indicating little if any effect, beyond the immediate disposal centre site, as seen in the sediment chemistry data. The average diversity index increases with distance from the disposal centre site, with the disposal centre site statistically significantly lower compared with all the other sites and the average for the 500 m sites statistically significantly lower than the Control site. The average diversity index for the 1500 m sites was not statistically significantly different from the Control site.

There is no indication the disposal of sediment at the centre of the disposal area has adversely affected benthic biota beyond the disposal area boundary.

No exotic pest species were recorded in the post $150,000 \mathrm{~m}^{3}$ survey.
The majority of species are present at very low numbers which limits the statistical analysis, with the exception of foraminifera. When the average numbers of individuals of foraminifera are compared the numbers increase with distance from the disposal centre site. The average numbers of foraminifera are very similar between the 1500 m sites and the Control site. However the most abundant species of foraminifera (Lenticulina sp.) is absent from the disposal centre site but decreases in abundance, by $16 \%$, from the 500 m sites to the Control site. Other than the absence of species from the disposal centre site the disposal sediment is not considered to have had an impact on any individual species recorded.

## Differences Over Time

Due to differences in the methodologies and site locations the trial benthic biota data (University of Waikato, 2011) and the post-permitting benthic biota data are not directly comparable. The pre-disposal data have been adjusted to allow inclusion in the data set but any conclusions should be interpreted with some caution.

At the disposal centre site numbers of species, individuals and diversity index have declined statistically significantly following disposal as expected (Figure 3.2, Figure 3.3, Figure 3.4, Appendix 8).

At the Control site the numbers of species increased statistically significantly between the pre-disposal and $10,000 \mathrm{~m}^{3}$ post-disposal surveys. But the number of species post-disposal has not varied statistically significantly between consecutive surveys. This is likely the result of the different survey methods and locations between pre and post disposal. The number of individuals increased statistically significantly between the $10,000 \mathrm{~m}^{3}$ and $50,000 \mathrm{~m}^{3}$ post disposal surveys and is likely the result of the way in which the foraminifera were enumerated. The numbers between the $50,000 \mathrm{~m}^{3}$ and $100,000 \mathrm{~m}^{3}$ post disposal surveys did not change statistically significantly, however the numbers halved between the $100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ post disposal surveys. The large increase in abundance between the $10,000 \mathrm{~m}^{3}$ and $50,000 \mathrm{~m}^{3}$ post disposal surveys resulted in a statistically significant decrease in the diversity index. There were no statistically significant differences between the $50,000 \mathrm{~m}^{3}, 100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ surveys.

At the 1500 m sites the numbers of species increased between the pre and $10,000 \mathrm{~m}^{3}$ post surveys, again likely the result of the different survey methods and locations between pre and post disposal. The four post disposal surveys have shown little statistically significant variation within sites, at 1500 N the numbers of species were statistically significantly lower in the $150,000 \mathrm{~m}^{3}$ survey compared to the $10,000 \mathrm{~m}^{3}$ survey. At 1500 S the numbers of species were statistically significantly higher during the $50,000 \mathrm{~m}^{3}$ survey than the $100,000 \mathrm{~m}^{3}$ surveys, and in general followed the pattern of changes at the Control site.

At all the 1500 m sites the numbers of individuals increased between the $10,000 \mathrm{~m}^{3}$ and $50,000 \mathrm{~m}^{3}$ surveys and like the Control site this is likely due to the way in which the foraminifera were enumerated. The numbers of individuals decreased statistically significantly between the $50,000 \mathrm{~m}^{3}$ and $100,000 \mathrm{~m}^{3}$ surveys at the 1500 N site. This was the result of a $50 \%$ reduction in the numbers of the six most abundant foraminifera species (Lenticulina sp., Elphidium sp., Cibicidoides sp., Alabamina sp., Pyrgo sp. and Quinqueloculina suborbicularis). The cause of the reduction is unknown but there is no evidence it is related to sediment quality effects of disposed sediments. The numbers of individuals decreased at all 1500 m sites between the $100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ surveys as did the numbers at the Control site. Diversity index values vary at the 1500 m sites varied in a similar way to the Control site indicating that any statistically significant differences are natural or related to minor variations in the sampling methods.

On comparison the two most recent sets of data ( $100,000 \mathrm{~m}^{3}$ Aug 2015 and $150,000 \mathrm{~m}^{3}$ Nov 2016) showed significantly less of all species in the $150,000 \mathrm{~m}^{3}$ samples at the disposal centre site, more polychaete worms, amphipods, ophiuroid starfish, but fewer molluscs, isopods and foraminifera, at the 1500 m sites and more polychaete and sipunculid worms, mysid shrimps and sponges but fewer molluscs, amphipods, cumaceans, ostracods and foraminifera in the Control samples.

Species composition varies between the $100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ samples with both numerically dominated by foraminifera; however a total of 35 taxa present in the $100,000 \mathrm{~m}^{3}$ samples were not found in the $150,000 \mathrm{~m}^{3}$ samples. These included 10 polychaete worm species (Aglaophamus macroura, Ancistrosyllis sp., Armandia maculata, Boccardia sp.,

Glycinde trifida, Paraonidae B, Polynoidae, Scalibregmatidae, Serpulidae and Trichobranchidae), Platyhelminthes, 6 species of gastropod (Amalda novaezelandiae, Austrofusus glans, Microvoluta marginata, Solariella tryphenensis, Zeatrophon ambiguus, undentified), a scaphopod, 4 amphipods (Atylidae, Corophium sp., Eusiridae and Phoxocephalidae E), the isopod (Neastacilla fusiformis), the crab (Lyreidus tridentatus), Cumacean B, Ostracod B, the anthozoa (Sphenotrochus ralphae), the echinoid (Peronella hinemoae), the ascidian (Botryllus schlosseri), a Salp and 4 species of foraminifera (unidentified Miliodida, Astacolus sp., Nodosaria vertebralis, Planularia sp. and unidentified flat sim otolith).

In addition 26 taxa were not recorded in the $100,000 \mathrm{~m}^{3}$ survey but were found in the $150,000 \mathrm{~m}^{3}$ survey, these included 15 species of polychaete worms (Ampharetidae, Aonides sp., Dorvilleidae, Flabelligeridae sp. A, Hesionidae, Hyalinoecia sp., Laonice sp., Naineris sp., Phyllodocidae, Phylo sp., Sabellidae, Sigalionidae, Spionidae, Spionidae sp B, Terebellidae), a sipunculid worm, 2 molluscs (Uberella barrierensis, Cuspidaria willetti), the amphipod (Haustoriidae), Mysid shrimps, the anthozoa (Edwardsia sp.), the holothurian (Trochodota sp.), and 4 species of foraminifera (Ammodiscus B, Cribrostomoides / Haplophragmoides, Elphidium sp B, Planularia sp.). Of these 26 taxa, 16 were recorded in the previous monitoring studies (Pre, 10,000m ${ }^{3}, 50,000 \mathrm{~m}^{3}$ ).

A total of 133 taxa groups have now been recorded, however the large majority of these species are present at very low numbers with none or only 1 or 2 individuals recorded per survey. This has resulted in apparent significant changes in species composition between surveys. There is no evidence to suggest the overall species composition changes between surveys are the result of any changes associated with the dredge spoil disposal.

Of the more abundant taxa present in both the $100,000 \mathrm{~m}^{3}$ and $150,000 \mathrm{~m}^{3}$ surveys the foraminifera at the disposal centre site showed decreased abundance as a result of the disposal of sediment. At the 1500 m sites the 6 most abundant species of foraminifera showed an average $60 \%$ reduction in abundance, however a similar $49 \%$ reduction was observed at the Control site. Several less abundant species (Nummoloculina contraria, Triloculina insignis) showed increased abundance at the Control site but either were reduced at the 1500 m sites or showed variable changes around the 1500 m perimeter. However the reliability of these less abundant species is poor as they are based on changes of 3 or less individuals between surveys. No other individual taxa were present at sufficient density to show similar trends. However combined taxa groupings showed similar trends between the 1500 m sites and the Control site.

Thus it is concluded that no effect as a result of the disposal activity has occurred at or beyond the 1500 m disposal boundary following the disposal of $150,000 \mathrm{~m}^{3}$ of sediment.

## 4 <br> REFERENCES

Andrews, H.P; Snee, R.D; Sarner, M.H. (1980).
Graphical display of means. The American Statistician, 34(4), 195-199.

## ANZECC (2000)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, The Guidelines (Chapters 1-7). Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). Paper No. 4 Volume 1 (Chapters 1-7) October 2000.

## Auckland Regional Council (2002)

Blueprint for monitoring urban receiving environments. Auckland Regional Council Technical Publication, TP168, pp 68

## Bioresearches (2013)

Post $10,000 \mathrm{~m}^{3}$ Disposal Characterisation Of Seabed Changes, August 2013. Report prepared for Coastal Resources Limited. 57 pp.

## Bioresearches (2015)

Post $50,000 \mathrm{~m}^{3}$ Disposal Characterisation Of Seabed Changes, April 2015. Report prepared for Coastal Resources Limited. 60 pp.

## Bioresearches (2016)

Post $100,000 \mathrm{~m}^{3}$ Disposal Characterisation Of Seabed Changes, August 2015. Report prepared for Coastal Resources Limited. 96 pp.

## Chapman, P.M; Allard, P.J; Vigers, G.A. (1999)

Development of Sediment Quality Values for Hong Kong Special Administrative Region: A Possible Model for Other Jurisdictions. Marine Pollution Bulletin 38(3): 161-169.

## Maritime Safety Authority of New Zealand (1999)

New Zealand Guidelines for Sea Disposal of Waste. Advisory Circular Part 180: Dumping of Waste or Other Matter, Issue No. 180-1 pp86.

## Long, E.R; MacDonald, D.D; Smith, S.L; Calder, F.D. (1995) <br> Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management 19:81-97.

Long, E.R; Morgan, L.G. (1991)
The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration. NOAA Technical Memorandum NOS OMA 52, 175 pp. + appendices.

Simpson, S.L., Batley, G.E. and Chariton, A.A., (2013)
Revision of the ANZECC/ARMCANZ sediment quality guidelines. CSIRO Land and Water Report, 8(07), p. 128.

University of Waikato (2011)
Report 5-Auckland Marine Disposal Ground Monitoring Series, February 2011 Biological Assessment. 14 pp .

## 5 APPENDICES

Appendix 1 Sediment Gravity Core Photographs.


Figure 5.1 Sediment Gravity Cores - Disposal Centre Site, 23 November 2016


Figure 5.2 Sediment Gravity Cores - N 100, 23 November 2016


Figure 5.3 Sediment Gravity Cores - S 100, 23 November 2016


Figure 5.4 Sediment Gravity Cores - N 250, 23 November 2016


Figure 5.5 Sediment Gravity Cores - E 250, 23 November 2016


Figure 5.6 Sediment Gravity Cores - S 250, 23 November 2016


Figure 5.7 Sediment Gravity Cores - W 250, 23 November 2016


Figure 5.8


Figure 5.9 Sediment Gravity Cores - S 375, 23 November 2016


Figure 5.10 Sediment Gravity Cores - N 500, 23 November 2016


Figure 5.11 Sediment Gravity Cores - E 500, 23 November 2016


Figure 5.12 Sediment Gravity Cores - S 500, 23 November 2016


Figure 5.13 Sediment Gravity Cores - W 500, 23 November 2016


Figure 5.14 Sediment Gravity Cores - N 1000, 23 November 2016


Figure 5.15 Sediment Gravity Cores - E 1000, 23 November 2016


Figure 5.16 Sediment Gravity Cores - S 1000, 23 November 2016


Figure 5.17 Sediment Gravity Cores - W 1000, 23 November 2016


Figure 5.18 Sediment Gravity Cores - N 1500, 23 November 2016


Figure 5.19 Sediment Gravity Cores - E 1500, 23 November 2016


Figure 5.20 Sediment Gravity Cores - S 1500, 23 November 2016


Figure 5.21 Sediment Gravity Cores - W 1500, 23 November 2016


Figure 5.22 Sediment Gravity Cores - NE 1750, 23 November 2016


Figure 5.23 Sediment Gravity Cores - SE 1750, 23 November 2016


Figure 5.24 Sediment Gravity Cores - SW 1750,
23 November 2016


Figure 5.25 Sediment Gravity Cores - NW 1750, 23 November 2016


Figure 5.26 Sediment Gravity Cores - Control A, 23 November 2016


Figure 5.27 Sediment Gravity Cores - Control B, 23 November 2016


Figure 5.28 Sediment Gravity Cores - Control C, 23 November 2016

Appendix 2 Core Statistical Tests

One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.
Dependent Variable: Core
$\begin{array}{lll}\text { Normality Test (Shapiro-Wilk) } & \text { Passed } & (P=0.053) \\ \text { Equal Variance Test: } & \text { Failed } & (P<0.050)\end{array}$

## Group Name

| Group Name | $\mathbf{N}$ | Missing | Mean | Std Dev | SEM |
| :--- | :---: | :---: | :---: | :---: | :---: |
| DC | 2 | 0 | 271.250 | 12.374 | 8.750 |
| 100 | 2 | 0 | 233.989 | 88.116 | 62.307 |
| 250 | 4 | 0 | 225.078 | 8.761 | 4.381 |
| 375 | 2 | 0 | 186.984 | 32.550 | 23.016 |
| 500 | 8 | 0 | 184.184 | 11.345 | 4.011 |
| 1000 | 8 | 0 | 182.328 | 14.192 | 5.018 |
| 1500 | 8 | 0 | 183.089 | 21.743 | 7.687 |
| 1750 | 8 | 0 | 184.048 | 24.000 | 8.485 |
| Control | 6 | 0 | 189.785 | 8.134 | 3.321 |


|  |  |  |  |  | MS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Source of Variation DF | SS | F | P |  |  |
| Between Groups | 8 | 22799.223 | 2849.903 | 5.792 | $<0.001$ |
| Residual | 39 | 19190.280 | 492.058 |  |  |
| Total | 47 | 41989.503 |  |  |  |

Total 4741989.5034
The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.050: 0.994$

## All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: Distance |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{P}$ | P<0.050 |  |
| DC vs. 1000 | 88.922 | 9 | 7.171 | $<0.001$ | Yes |
| DC vs. 1500 | 88.161 | 9 | 7.110 | $<0.001$ | Yes |
| DC vs. 1750 | 87.202 | 9 | 7.032 | $<0.001$ | Yes |
| DC vs. 500 | 87.066 | 9 | 7.021 | $<0.001$ | Yes |
| DC vs. 375 | 84.266 | 9 | 5.372 | 0.013 | Yes |
| DC vs. Control | 81.465 | 9 | 6.361 | 0.002 | Yes |
| DC vs. 250 | 46.172 | 9 | 3.399 | 0.311 | No |
| DC vs. 100 | 37.261 | 9 | 2.376 | 0.755 | Do Not Test |
| 100 vs. 1000 | 51.661 | 9 | 4.166 | 0.109 | No |
| 100 vs. 1500 | 50.900 | 9 | 4.105 | 0.119 | Do Not Test |
| 100 vs. 1750 | 49.941 | 9 | 4.027 | 0.134 | Do Not Test |
| 100 vs. 500 | 49.805 | 9 | 4.016 | 0.136 | Do Not Test |
| 100 vs. 375 | 47.005 | 9 | 2.997 | 0.476 | Do Not Test |
| 100 vs. Control | 44.204 | 9 | 3.452 | 0.292 | Do Not Test |
| 100 vs. 250 | 8.911 | 9 | 0.656 | 1.000 | Do Not Test |
| 250 vs. 1000 | 42.750 | 9 | 4.451 | 0.069 | Do Not Test |
| 250 vs. 1500 | 41.989 | 9 | 4.371 | 0.079 | Do Not Test |
| 250 vs. 1750 | 41.029 | 9 | 4.272 | 0.092 | Do Not Test |
| 250 vs. 500 | 40.894 | 9 | 4.257 | 0.094 | Do Not Test |
| 250 vs. 375 | 38.094 | 9 | 2.804 | 0.564 | Do Not Test |

250 vs. Control $\quad 35.293 \quad 9 \quad 3.486 \quad 0.280$ Do Not Test Control vs. $1000 \quad 7.457-90.880 \quad 0.999$ Do Not Tes Control vs. $1500 \quad 6.696-90.790$ 1.000 Do Not Tes Control vs. $1750 \quad 5.737-90.677$ 1.000 Do Not Tes Control vs. $500 \quad 5.601 \quad 90.661 \quad 1.000$ Do Not Tes Control vs. $375 \quad 2.801-90.219 \quad 1.000$ Do Not Test 90.3751 .000 Do Not Tes $\begin{array}{lll}9 & 0.375 & 1.000 \\ 9 & 0.314 & 1.000 \\ \text { Do Not Tes }\end{array}$ 90.3141 .000 Do Not Tes 375 vs $500 \quad 2.935 \quad 90.237-1.000$ Do Not Test 300 v. $1000 \quad 1.856 \quad 90.226$ 1.000 Do Not Tes 500 vs. 1500 1.856 - 0.231 1.000 Do Not Tes 500 vs. $1500 \quad 1.095$ - 90.1401 .000 Do Not Tes 500 vs. $1750 \quad 0.136-90.01731 .000$ Do Not Tes 1750 vs. $1000 \quad 1.720 \quad 90.219$ 1.000 Do Not Tes 1750 vs. $1500 \quad 0.959 \quad 9 \quad 0.122$ 1.000 Do Not Test 1500 vs. $1000 \quad 0.761-90.09701 .000$ Do Not Test

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs . 2 , then you would not test 4 vs .3 and 3 vs . 2, but still test 4 vs. 1 and 3 vs. 1 ( 4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4321 ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal

Dependent Variable: Layer
Normality Test (Shapiro-Wilk) Failed $\quad(P<0.050)$

## Kruskal-Wallis One Way Analysis of Variance on Ranks

Group N Missing Median 25\% 75\%
DC $2 \quad 0 \quad 271.250262 .500280 .000$
$100 \quad 2 \quad 0 \quad 233.989171 .681296 .296$
$\begin{array}{llllll}250 & 4 & 0 & 119.309 & 75.099 & 185.620\end{array}$
$\begin{array}{lllllll}375 & 2 & 0 & 77.687 & 72.874 & 82.500\end{array}$
$\begin{array}{lllllll}500 & 8 & 0 & 69.684 & 60.955 & 72.586\end{array}$
$\begin{array}{lllllll}1000 & 8 & 0 & 71.476 & 61.202 & 83.921\end{array}$
$\begin{array}{llllll}1500 & 8 & 0 & 73.145 & 66.614 & 78.842\end{array}$
$\begin{array}{lllllll}1750 & 8 & 0 & 69.419 & 65.254 & 73.231\end{array}$
$\begin{array}{llllll}\text { Control } 6 & 0 & 73.714 & 65.947 & 75.743\end{array}$
$H=19.293$ with 8 degrees of freedom. $(P=0.013)$
The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $P=0.013$ )

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Multiple Comparisons versus Control Group (Dunn's Method) :
Comparison
DC vs Control
100 vs Control 250 vs Control 500 vs Control 1750 vs Contro
375 vs Control
1000 vs Control
1500 vs Contro

| Diff of Ranks | $\mathbf{Q}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: |
| 22.500 | 1.968 | No |
| 22.000 | 1.925 | Do Not Test |
| 13.500 | 1.494 | Do Not Test |
| 8.500 | 1.124 | Do Not Test |
| 7.000 | 0.926 | Do Not Test |
| 6.500 | 0.569 | Do Not Test |
| 1.750 | 0.231 | Do Not Test |
| 0.750 | 0.0992 Do Not Test |  |

Note: The multiple comparisons on ranks do not include an adjustment for ties.

Appendix 3 Sediment Particle Size Results.

## Control A

Appendix No. 1 - Particle size Report-1685884-Page 1 of 20
Analysis - Under


Control B
Appendix No. 1 - Particle size Report - 1685884 - Page 2 of 20
Analysis - Under




## Malvern <br> Malvern Instruments Ltd. <br> www.maver.com

## Control C

Appendix No. 1 - Particle size Report-1685884-Page 3 of 20
Analysis - Under
DC
Appendix No. 1 - Particle size Report - 1685884 - Page 4 of 20
Analysis - Under


| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (1m) | \% Volume Under | Size (am) | \% Volume Under | Size (am) | \% Volume Under | Sire ( (m) | \% Volume Under | Size ( $\mathrm{\mu m}$ ) | \% Volume |
| 0.0500 | 0.00 | 7.80 | 41.88 | 88.0 | 87.38 | 350 | 99.51 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 57.13 | 105 | 89.70 | 420 | 99.90 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 70.21 | 125 | 91.78 | 500 | 100.00 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 73.36 | 149 | 93.62 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.10 | 44.0 | 76.37 | 177 | 95.21 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 6.57 | 53.0 | 79.53 | 210 | 96.61 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 14.20 | 63.0 | ${ }^{82} 36$ | 250 | 97.83 | 1000 | 100.00 |  |  |
| 3.90 | 26.28 | 74.0 | 84.86 | 300 | 98.87 | 1190 | 100.00 |  |  |

nalysis Date Time 2/12/2016 9:04344 AM ment Date Time $2 / 12 / 2 / 20169: 0434$
Result Source Measurement Lop File Name Marine Sedimentmso Particle Name Marine Sediment
Particle Refractive Index 1.500
Particle Absorption Index 0.200
Dispersant Name Wate
Dispersant Refractive Index 1.33
Scattering Model Mie
Analysis Model General Purpose
Weighted Residual $0.61 \%$



| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size ( (1m) | \% Volume Under | Size (um) | \% Volume Under | Size ( (m) | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 26.08 | 88.0 | ${ }^{70.31}$ | 350 | 96.85 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 40.34 | 105 | 73.27 | 420 | 98.80 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 53.09 | 125 | 76.36 | 500 | 99.80 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 56.12 | 149 | 79.74 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.03 | 44.0 | 59.03 | 177 | 83.32 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 2.84 | 53.0 | 62.10 | 210 | 87.03 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.29 | 63.0 | 64.91 | 250 | 90.79 | 1000 | 100.00 |  |  |
| 3.90 | 13.66 | 74.0 | 67.51 | 300 | 94.36 | 1190 | 100.00 |  |  |

Mastersizer - v3.5
Page 1 of 1
Hill Laboratories
Created. 23/88/2016 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM
Concentration $0.0146 \%$ Span 9.133
Uniformity 2654
Specific Surface Area $814.6 \mathrm{~m}^{2} \mathrm{~kg}$
D $[3,217.37$ um
D $[4,3] 78.2$ m
Dv (10) 2.26 m Dv (50) 26.0 um Dv (90) 241 m

## Malvern <br> Malvern Instuments Ltd

wwwe.maver.n.com

Appendix No. 1 - Particle size Report-1685884- Page 5 of 20
Analysis - Under

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under | Size (um) | \% Volume Under | Size (Im) | \% Volume Under | Size (am) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 25.72 | 88.0 | 70.24 | 350 | 97.90 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 39.45 | 105 | 74.07 | 420 | 99.26 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 51.74 | 125 | 78.04 | 500 | 99.91 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 54.69 | 149 | 82.14 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.03 | 44.0 | 57.56 | 177 | 86.10 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 2.90 | 53.0 | 60.69 | 210 | 89.81 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.34 | 63.0 | 63.75 | 250 | 93.13 | 1000 | 100.00 |  |  |
| 3.90 | 13.62 | 74.0 | 66.76 | 300 | 96.03 | 1190 | 100.00 |  |  |

Mastersizer - v3.50
Page 1 of 1

Hill Laboratories
Created. 23/08/2016 Created. $23 / 08 / 2016$
rinted. $2 / 12 / 2016$ 2:16 PM

| Measurement Details | Measurement Details |
| :---: | :---: |
| Operator Name rodgers <br> Sample Name 1685884.6 <br> SOP File Name Marine Sediment.msop <br> Lab Number 2016226/6 | Analysis Date Time $2 / 12 / 20169: 58: 59 \mathrm{AM}$ Measurement Date Time $2 / 12 / 20169: 58: 59 \mathrm{AM}$ Result Source Measurement |
| Anaysis |  |
| Particle Name Marine Sediment | Concentration 0.0103\% |
| Particle Refractive Index 1.500 | Span 7.017 |
| Particle Absorption Index 0.200 | Uniformity 2.134 |
| Dispersant Name Water | Specific Surface Area $741.3 \mathrm{~m}^{2} / \mathrm{kg}$ |
| Dispersant Refractive Index 1.330 | D $[3.2] 8.09 \mathrm{um}$ |
| Scattering Model Mie | D $[4,3] 70.8$ um |
| Analysis Model General Purpose | Dv (10) 3.25 um |
| Weighted Residual $0.68 \%$ | Dv (50) 28.6 um |
| Laser Obscuration $9.08 \%$ | Dv (90) 204 um |




## Malvern <br> Malvern Instruments Ltd. <br> www.maver.com

Analysis - Under

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under | Size (um) | \% Volume Under | Size (Im) | \% Volume Under | Size (am) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 23.68 | 88.0 | 65.64 | 350 | 95.32 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 35.97 | 105 | 69.71 | 420 | 97.30 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 46.93 | 125 | 73.92 | 500 | 98.64 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 49.68 | 149 | 78.23 | 590 | 99.43 | 2380 | 100.00 |
| 0.490 | 0.03 | 44.0 | 52.45 | 177 | 82.38 | 710 | 99.85 | 2830 | 100.00 |
| 0.980 | 2.73 | 53.0 | 55.59 | 210 | 86.27 | 840 | 99.99 | 3360 | 100.00 |
| 2.00 | 5.87 | 63.0 | 58.75 | 250 | 89.84 | 1000 | 100.00 |  |  |
| 3.90 | 12.59 | 74.0 | 61.93 | 300 | 93.06 | 1190 | 100.00 |  |  |

Malvern
Malvern Instruments Ltd.
www.maver.com

Mastersizer - v. 3.5
Page 1 of 1

Hill Laboratories
Created: 23/08/2016 Created. $23 / 08 / 2016$
rinted. $2 / 12 / 2016$ 2:16 PM


| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under | Size (am) | \% Volume Under | Size (am) | \% Volume U | Size (um) | \% Volume |
| 0.0500 | 0.00 | 7.80 | 25.09 | 88.0 | 66.24 | 350 | 95.9 | 10 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 37.41 | 105 | 70.07 | 420 | 97.83 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 48.46 | 125 | 74.13 | 500 | 99.04 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 51.20 | 149 | 78.41 | 590 | 99.69 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 53.92 | 177 | 82.63 | 710 | 99.96 | 2830 | 100.00 |
| 0.980 | 3.00 | 53.0 | 56.93 | 210 | 86.66 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.59 | 63.0 | 59.88 | 250 | 90.36 | 1000 | 100.00 |  |  |
| 3.90 | 13.78 | 74.0 | 62.81 | 300 | 93.67 | 1190 | 100.00 |  |  |


Malvern
Malvern Instruments Ltd.
www.mavern.com

Mastersizer - v3.50
Page 1 of 1

Hill Laboratories
Created: 23/08/2016 Created. $23 / 08 / 2016$
inted 2 212/2016 $2: 16$ PM


| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 25.54 | 88.0 | ${ }^{68.57}$ | 350 | 96.50 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 39.10 | 105 | 72.04 | 420 | 98.35 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 51.12 | 125 | 75.70 | 500 | 99.42 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 53.99 | 149 | 79.60 | 590 | 99.89 | 2380 | 100.00 |
| 0.490 | 0.03 | 44.0 | 56.77 | 177 | 83.51 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 2.87 | 53.0 | 59.78 | 210 | 87.34 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.26 | 63.0 | 62.64 | 250 | 90.95 | 1000 | 100.00 |  |  |
| 3.90 | 13.50 | 74.0 | 65.41 | 300 | 94.24 | 1190 | 100.00 |  |  |

Appendix No. 1 - Particle size Report - 1685884 - Page 11 of 20
Analysis - Under

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size ( (m) | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under | Size (am) | \% Volume Under | Size ( ${ }^{\text {mm) }}$ | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 27.42 | 88.0 | ${ }^{72.37}$ | 350 | 97.62 | 1410 | 100.0 |
| 0.0600 | 0.00 | 15.6 | 41.59 | 105 | 75.85 | 420 | 99.01 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 54.11 | 125 | 79.42 | 500 | 99.74 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 57.12 | 149 | 83.08 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 60.05 | 177 | 86.64 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.19 | 53.0 | 63.21 | 210 | 90.01 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.89 | 63.0 | 66.22 | 250 | 93.08 | 1000 | 100.00 |  |  |
| 3.90 | 14.66 | 74.0 | 69.12 | 300 | 95.81 | 1190 | 100.00 |  |  |



| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 27.42 | 88.0 | ${ }^{72.33}$ | 350 | 44 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 41.36 | 105 | 75.88 | 420 | 98.92 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 53.72 | 125 | 79.47 | 500 | 99.71 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 56.73 | 149 | 83.09 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 59.67 | 177 | 86.55 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.20 | 53.0 | 62.89 | 210 | 89.82 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.92 | 63.0 | 65.99 | 250 | 92.84 | 1000 | 100.00 |  |  |
| 3.90 | 14.75 | 74.0 | 68.97 | 300 | 95.58 | 1190 | 100.00 |  |  |

Malvern
Malvern Instruments Ltd.
www.mavern.com

Appendix No. 1 - Particle size Report-1685884-Page 14 of 20
Analysis - Under
Analysis - Under




Hill Laboratories
Created: 23/08/2016 Created: 23/08/2016
Printed 2 212/2016:16 PM

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size ( 1 m) | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under | Size (am) | \% Volume Under | Size ( ${ }^{\text {mm) }}$ | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 27.04 | 88.0 | 71.13 | 350 | 96.67 | 1410 | 100.0 |
| 0.0600 | 0.00 | 15.6 | 41.28 | 105 | 74.30 | 420 | 98.40 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 53.94 | 125 | 77.62 | 500 | 99.41 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 56.93 | 149 | 81.17 | 590 | 99.88 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 59.78 | 177 | 84.73 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.13 | 53.0 | 62.79 | 210 | 88.23 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.76 | 63.0 | ${ }^{65.57}$ | 250 | 91.54 | 1000 | 100.00 |  |  |
| 3.90 | 14.42 | 74.0 | 68.20 | 300 | 94.58 | 1190 | 100.00 |  |  |


| Malvern |  | Hill Laboratories |
| :---: | :---: | :---: |
| Malvern Instruments Ltd. | Mastersizer - v3.50 | Created. 23/08/2016 |
| www.mavern.com | Page 1 of 1 | Printed: 2/12/2016 2:16 PM |



| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (um) | \% Volume Under | Size (um) | \% Volume Under | Size (um) | \% Volume Under | Size (mm) | \% Volume Under | Size (am) | \% Volume |
| 0.0500 | 0.0 | 7.80 | 28.82 | 88.0 | 73.71 | 350 | 98.17 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 42.95 | 105 | 77.14 | 420 | 99.33 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 55.51 | 125 | 80.65 | 500 | 99.86 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 58.55 | 149 | 84.25 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.05 | 44.0 | 61.49 | 177 | 87.73 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.53 | 53.0 | 64.65 | 210 | 91.01 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 7.54 | 63.0 | 67.64 | 250 | 93.97 | 1000 | 100.00 |  |  |
| 3.90 | 15.81 | 74.0 | 70.51 | 300 | 96.53 | 1190 | 100.00 |  |  |

## Malvern <br> Malvern Instruments Ltd. <br> www.mavern.com

## 1750NE

Appendix No. 1 - Particle size Report - 1685884 - Page 17 of 20
Analysis - Under

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (1m) | \% Volume Under | Size ( mm ) | \% Volume Under | Size (1m) | \% Volume Under | Size ( (m) | \% Volume Under | Size (am) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 25.37 | 88.0 | ${ }^{69.66}$ | 350 | 97.23 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 38.89 | 105 | 73.46 | 420 | 98.80 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 50.89 | 125 | 77.36 | 500 | 99.66 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 53.83 | 149 | 81.38 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 56.73 | 177 | 85.25 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 2.93 | 53.0 | 59.95 | 210 | 88.92 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.28 | 63.0 | 63.08 | 250 | 92.26 | 1000 | 100.00 |  |  |
| 3.90 | 13.42 | 74.0 | ${ }^{66.16}$ | 300 | 95.24 | 1190 | 100.00 |  |  |

Masterizer - v3.50
Page 1 of 1

Hill Laboratories
Created: 23/08/2016 Created 23/88/2016

Appendix No. 1 - Particle size Report - 1685884 - Page 18 of 20
Analysis - Under



## Malvern <br> Malvern Instruments Ltd. <br> www.maver.com

## 1750SW

Appendix No. 1 - Particle size Report - 1685884 - Page 19 of 20
Analysis - Under

| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size ( (m) | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under | Size (am) | \% Volume Under | Size ( ${ }^{\text {mm) }}$ | \% Volume Under | Size ( $\mu \mathrm{m}$ ) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 26.68 | 88.0 | 71.53 | 350 | 97.92 | 1410 | 100.0 |
| 0.0600 | 0.00 | 15.6 | 40.90 | 105 | 74.99 | 420 | 99.27 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 53.60 | 125 | 78.63 | 500 | 99.91 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 56.62 | 149 | 82.47 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.04 | 44.0 | 59.53 | 177 | 86.25 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.10 | 53.0 | 62.63 | 210 | 89.88 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 6.65 | 63.0 | 65.56 | 250 | 93.19 | 1000 | 100.00 |  |  |
| 3.90 | 14.16 | 74.0 | 68.36 | 300 | 96.07 | 1190 | 100.00 |  |  |

## Mâlvern <br> Malvern Instruments Ltd. www.maver.com

Mastersizer- v3.50
Page 1 of 1

Hill Laboratories
Created: 23/08/2016 Created. $23 / 08 / 2016$
rinted. $2 / 12 / 2016$ 2:16 PM

1750NW
Appendix No. 1 - Particle size Report - 1685884 - Page 20 of 20
Analysis - Under


| Result |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size (am) | \% Volume Under | Size (um) | \% Volume Under |
| 0.0500 | 0.00 | 7.80 | 27.11 | 88.0 | 73.22 | 350 | 83 | 1410 | 100.00 |
| 0.0600 | 0.00 | 15.6 | 41.28 | 105 | 76.67 | 420 | 99.24 | 1680 | 100.00 |
| 0.120 | 0.00 | 31.0 | 54.04 | 125 | 80.11 | 500 | 99.91 | 2000 | 100.00 |
| 0.240 | 0.00 | 37.0 | 57.16 | 149 | 83.57 | 590 | 100.00 | 2380 | 100.00 |
| 0.490 | 0.05 | 44.0 | 60.25 | 177 | 86.92 | 710 | 100.00 | 2830 | 100.00 |
| 0.980 | 3.35 | 53.0 | 63.62 | 210 | 90.15 | 840 | 100.00 | 3360 | 100.00 |
| 2.00 | 7.05 | 63.0 | 66.82 | 250 | 93.19 | 1000 | 100.00 |  |  |
| 3.90 | 14.67 | 74.0 | 69.87 | 300 | 95.96 | 1190 | 100.00 |  |  |

## Malvern <br> Malvern Instruments Ltd. <br> Mww.mavern.com

Appendix 4 Particle Size Statistical Tests

## One Way Analysis of Variance

Dependent Variable: Gravel
Normality Test (Shapiro-Wilk)
Equal Variance Test:

$$
\begin{array}{ll}
\text { Failed } & (P<0.050)
\end{array}
$$

Group Name N Missing Mean Std Dev SEM

| DC | 1 | 0 | 0.000 | 0.000 | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 500 | 4 | 0 | 0.000 | 0.000 | 0.000 |
| 1000 | 4 | 0 | 0.000 | 0.000 | 0.000 |
| 1500 | 4 | 0 | 0.000 | 0.000 | 0.000 |
| 1750 | 4 | 0 | 0.000 | 0.000 | 0.000 |
| Control | 3 | 0 | 0.000 | 0.000 | 0.000 |

$\begin{array}{lccccc}\text { Source of Variation DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Between Groups } & 4 & 0.000 & 0.000 & 1.000 & 1.000 \\ \text { Residual } & 14 & 0.000 & 0.000 & & \\ \text { Total } & 18 & 0.000 & & & \end{array}$
The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference ( $\mathrm{P}=1.000$ ).

Power of performed test with alpha $=0.050: 1.000$

## One Way Analysis of Variance

| Dependent Variable: Sand |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.214)$ |
| Equal Variance Test: | Passed | $(P=0.465)$ |


| Group Name | N M | Missing | Mean | Std Dev | SEM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 17.640 | 0.000 | 0.000 |  |  |
| 500 | 4 | 0 | 38.615 | 2.446 | 1.223 |  |  |
| 1000 | 4 | 0 | 35.898 | 2.356 | 1.178 |  |  |
| 1500 | 4 | 0 | 35.925 | 3.365 | 1.683 |  |  |
| 1750 | 4 | 0 | 35.648 | 2.231 | 1.116 |  |  |
| Control | 3 | 0 | 36.130 | 3.701 | 2.137 |  |  |
| Source of Va | ariat | ation | DF S | SS | MS | F | P |
| Between Gro | oups |  | 436 | 360.418 | 90.104 | 11.373 | <0.001 |
| Residual |  |  | 1411 | 110.915 | 7.922 |  |  |
| Total |  |  | 18 471 | 471.333 |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $P=<0.001$ ).

Power of performed test with alpha $=0.050: 0.997$

## All Pairwise Multiple Comparison Procedures (Tukey Test)

| Comparisons for factor: Sand <br> Comparison | Diff of Means p | $\mathbf{q}$ | P | P<0.050 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 500 vs. DC | 20.975 | 6 | 9.426 | $<0.001$ | Yes |
| 500 vs. 1750 | 2.968 | 6 | 2.109 | 0.675 | No |
| 500 vs. 1000 | 2.718 | 6 | 1.931 | 0.746 | Do Not Test |
| 500 vs. 1500 | 2.690 | 6 | 1.911 | 0.753 | Do Not Test |
| 500 vs. Control | 2.485 | 6 | 1.635 | 0.850 | Do Not Test |
| Control vs. DC | 18.490 | 6 | 8.045 | $<0.001$ | Yes |
| Control vs. 1750 | 0.483 | 6 | 0.317 | 1.000 | Do Not Test |
| Control vs. 1000 | 0.233 | 6 | 0.153 | 1.000 | Do Not Test |
| Control vs. 1500 | 0.205 | 6 | 0.135 | 1.000 | Do Not Test |
| 1500 vs. DC | 18.285 | 6 | 8.217 | $<0.001$ | Yes |
| 1500 vs. 1750 | 0.278 | 6 | 0.197 | 1.000 | Do Not Test |
| 1500 vs. 1000 | 0.0275 | 6 | 0.0195 | 1.000 | Do Not Test |
| 1000 vs. DC | 18.257 | 6 | 8.205 | $<0.001$ | Yes |
| 1000 vs. 1750 | 0.250 | 6 | 0.178 | 1.000 | Do Not Test |
| 1750 vs. DC | 18.007 | 6 | 8.093 | $<0.001$ | Yes |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 ( 4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4321 ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

## One Way Analysis of Variance

Dependent Variable: Silt
Normality Test (Shapiro-Wilk)
Equal Variance Test:

$$
\begin{array}{ll}
\text { Passed } & (P=0.074) \\
\text { Passed } & (P=0.161)
\end{array}
$$

| Group Name | N | Missing | Mean | Std Dev | SEM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 56.080 | 0.000 | 0.000 |  |
| 500 | 4 | 0 | 48.278 | 2.492 | 1.246 |  |
| 1000 | 4 | 0 | 50.103 | 1.529 | 0.764 |  |
| 1500 | 4 | 0 | 49.900 | 2.022 | 1.011 |  |
| 1750 | 4 | 0 | 50.423 | 1.663 | 0.831 |  |
| Control | 3 | 0 | 50.763 | 2.496 | 1.441 |  |
|  |  |  |  |  |  |  |
| Source of Variation | DF | SS | MS | F | P |  |
| Between Groups | 4 | 50.873 | 12.718 | 3.036 | 0.054 |  |
| Residual | 14 | 58.650 | 4.189 |  |  |  |
| Total | 18 | 109.523 |  |  |  |  |

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference ( $\mathrm{P}=0.054$ ).

Power of performed test with alpha $=0.050: 0.458$
The power of the performed test $(0.458)$ is below the desired power of 0.800
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

## One Way Analysis of Variance

| Dependent Variable: Clay |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.683)$ |
| Equal Variance Test: | Passed | $(P=0.619)$ |


| Group Name | N | Missing | Mean | Std Dev | SEM |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DC | 1 | 0 | 26.280 | 0.000 | 0.000 |  |
| 500 | 4 | 0 | 13.108 | 0.690 | 0.345 |  |
| 1000 | 4 | 0 | 14.000 | 0.832 | 0.416 |  |
| 1500 | 4 | 0 | 14.175 | 1.382 | 0.691 |  |
| 1750 | 4 | 0 | 13.930 | 0.598 | 0.299 |  |
| Control | 3 | 0 | 13.107 | 1.227 | 0.709 |  |
|  |  |  |  |  |  |  |
| Source of Variation | DF | SS | MS | F | P |  |
| Between Groups | 4 | 154.441 | 38.610 | 40.573 | $<0.001$ |  |
| Residual | 14 | 13.323 | 0.952 |  |  |  |
| Total | 18 | 167.763 |  |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $P=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$

## All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: Clay <br> Comparison <br> Diff of Means | $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{P}$ | P<0.050 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DC vs. Control | 13.173 | 6 | 16.539 | $<0.001$ | Yes |
| DC vs. 500 | 13.173 | 6 | 17.080 | $<0.001$ | Yes |
| DC vs. 1750 | 12.350 | 6 | 16.014 | $<0.001$ | Yes |
| DC vs. 1000 | 12.280 | 6 | 15.923 | $<0.001$ | Yes |
| DC vs. 1500 | 12.105 | 6 | 15.696 | $<0.001$ | Yes |
| 1500 vs. Control | 1.068 | 6 | 2.028 | 0.708 | No |
| 1500 vs. 500 | 1.068 | 6 | 2.189 | 0.642 | Do Not Test |
| 1500 vs. 1750 | 0.245 | 6 | 0.502 | 0.999 | Do Not Test |
| 1500 vs. 1000 | 0.175 | 6 | 0.359 | 1.000 | Do Not Test |
| 1000 vs. Control | 0.893 | 6 | 1.696 | 0.830 | Do Not Test |
| 1000 vs. 500 | 0.893 | 6 | 1.830 | 0.784 | Do Not Test |
| 1000 vs. 1750 | 0.0700 | 6 | 0.144 | 1.000 | Do Not Test |
| 1750 vs. Control | 0.823 | 6 | 1.563 | 0.871 | Do Not Test |
| 1750 vs. 500 | 0.822 | 6 | 1.686 | 0.833 | Do Not Test |
| 500 vs. Control | 0.000833 | 6 | 0.00158 | 1.000 | Do Not Test |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 ( 4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4321 ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Appendix 5 Sediment Chemistry Results.


Hill Laboratories
TRIED, TESTED AND TRUSTED

R J Hill Laboratories Limited 1 Clyde Street Hamilton 3216 Private Bag 3205
Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22)
T +6478582000
E mail@hill-labs.co.nz
W www.hill-laboratories.com

## ANALYSIS REPORT

| Client: Contact: | Bioresearche <br> S West <br> C/- Bioresea <br> PO Box 2828 <br> Auckland 11 | es <br> arches <br> 8 <br> 40 |  | Lab No: <br> Date Received: <br> Date Reported: <br> Quote No: <br> Order No: <br> Client Reference: <br> Submitted By: |  | $\begin{aligned} & \text { 16858844 } \\ & \text { 24-Nov-2016 } \\ & \text { 22-Dec-2016 } \\ & \text { 16138 } \\ & \begin{array}{c} \text { Acastal Resources Limi } \\ \text { Area Sediments } \end{array} \\ & \text { S West } \end{aligned}$ | SPv2 <br> (Amended) <br> ited - 150 K Disposal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample Type: Sediment |  |  |  |  |  |  |  |
|  |  | Sample Name: | $\begin{array}{\|c\|} \hline \text { Control A } \\ \text { 23-Nov-2016 2:15 } \\ \text { pm } \end{array}$ | $\begin{gathered} \text { Control B } \\ \text { 23-Nov-2016 2:00 } \\ \text { pm } \end{gathered}$ | $\begin{gathered} \text { Control C } \\ \text { 23-Nov-2016 1:45 } \\ \text { pm } \end{gathered}$ | $\begin{gathered} \text { DC 23-Nov-2016 } \\ \text { 8:45 am } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { N500 } \\ \text { 23-Nov-2016 9:30 } \\ \text { am } \end{array}$ |
|  |  | Lab Number: | 1685884.1 | 1685884.2 | 1685884.3 | 1685884.4 | 1685884.5 |
| Individual Tests |  |  |  |  |  |  |  |
| Dry Matter |  | $\mathrm{g} / 100 \mathrm{~g}$ as revd | 49 | 49 | 50 | 34 | 48 |
| Particle size analysis* |  |  | See attached report |
| Heavy metals, trace $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Hg}$ |  |  |  |  |  |  |  |
| Total Recoverable Arsenic |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5 | 5 | 5.1 | 9.5 | 4 |
| Total Recoverable Cadmium |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.10 | < 0.10 | 0.12 | 0.081 | 0.17 |
| Total Recoverable Chromium |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 22 | 24 | 25 | 22 | 22 |
| Total Recoverable Copper |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5.0 | 4.8 | 5.1 | 29 | 5.5 |
| Total Recoverable Lead |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 4.4 | 4.5 | 4.8 | 26 | 4.4 |
| Total Recoverable Mercury |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.047 | 0.050 | 0.046 | 0.123 | 0.048 |
| Total Recoverable Nickel |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 17.1 | 16.3 | 17.2 | 10.0 | 16.3 |
| Total Recoverable Zinc |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 29 | 31 | 32 | 95 | 30 |
| Total Petroleum Hydrocarbons in Soil |  |  |  |  |  |  |  |
| C7-C9 |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 14 | <13 | < 13 | < 19 | < 14 |
| C10-C14 |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 30 | < 30 | $<30$ | $<40$ | < 30 |
| C15-C36 |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 60 | < 60 | $<60$ | < 80 | < 60 |
| Total hydrocarbons (C7-C36) |  | ) $\mathrm{mg} / \mathrm{kg}$ dry wt | < 100 | $<90$ | < 100 | < 140 | < 100 |
| Sample Name: |  |  | $\begin{gathered} \text { E500 } \\ \text { 23-Nov-2016 } \\ \text { 12:00 pm } \end{gathered}$ | S500 23-Nov-2016 12:15 pm | $\begin{gathered} \text { W500 } \\ \text { 23-Nov-2016 8:30 } \\ \text { am } \end{gathered}$ | $\begin{gathered} \mathrm{N} 1000 \\ \text { 23-Nov-2016 9:45 } \\ \text { am } \end{gathered}$ | E1000 23-Nov-2016 11:45 am |
| Lab Number: |  |  | 1685884.6 | 1685884.7 | 1685884.8 | 1685884.9 | 1685884.10 |
| Individual Tests |  |  |  |  |  |  |  |
| Dry Matter |  | $\mathrm{g} / 100 \mathrm{~g}$ as revd | 49 | 50 | 60 | 50 | 49 |
| Particle size analysis* |  |  | See attached report |
| Heavy metals, trace $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Hg}$ |  |  |  |  |  |  |  |
| Total Recoverable Arsenic |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 3.6 | 3.9 | 4.0 | 5 | 5 |
| Total Recoverable Cadmium |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.16 | 0.12 | 0.10 | 0.11 | 0.13 |
| Total Recoverable Chromium |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 21 | 21 | 22 | 20 | 23 |
| Total Recoverable Copper |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5.1 | 5.0 | 5.0 | 8.4 | 4.9 |
| Total Recoverable Lead |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 4.2 | 4.1 | 4.2 | 4.2 | 4.4 |
| Total Recoverable Mercury |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.046 | 0.037 | 0.038 | 0.038 | 0.052 |
| Total Recoverable Nickel |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 15.1 | 14.4 | 16.1 | 14.8 | 15.8 |
| Total Recoverable Zinc |  | $\mathrm{mg} / \mathrm{kg}$ dry wt | 29 | 28 | 29 | 30 | 31 |

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.
The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked ${ }^{\star}$, which are not accredited.

| Sample Type: Sediment |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sample Name: | $\begin{gathered} \text { E500 } \\ \text { 23-Nov-2016 } \\ \text { 12:00 pm } \end{gathered}$ | $\begin{gathered} \text { S500 } \\ \text { 23-Nov-2016 } \\ \text { 12:15 pm } \end{gathered}$ | $\begin{gathered} \text { W500 } \\ \text { 23-Nov-2016 8:30 } \\ \text { am } \end{gathered}$ | $\begin{gathered} \mathrm{N} 1000 \\ \text { 23-Nov-2016 9:45 } \\ \text { am } \end{gathered}$ | $\begin{gathered} \text { E1000 } \\ \text { 23-Nov-2016 } \\ 11: 45 \mathrm{am} \end{gathered}$ |
|  | Lab Number: | 1685884.6 | 1685884.7 | 1685884.8 | 1685884.9 | 1685884.10 |
| Total Petroleum Hydrocarbons in Soil |  |  |  |  |  |  |
| C7-C9 | mg/kg dry wt | < 30 | < 30 | <11 | < 14 | < 13 |
| C10-C14 | $\mathrm{mg} / \mathrm{kg}$ dry wt | $<60$ | $<60$ | < 30 | < 30 | < 30 |
| C15-C36 | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 110 | < 110 | $<50$ | < 60 | < 60 |
| Total hydrocarbons (C7-C36) | ) $\mathrm{mg} / \mathrm{kg}$ dry wt | < 190 | < 190 | $<80$ | < 100 | $<90$ |
|  | Sample Name: | S1000 23-Nov-2016 12:30 pm | $\begin{gathered} \text { W1000 } \\ \text { 23-Nov-2016 8:15 } \\ \text { am } \end{gathered}$ | N1500 23-Nov-2016 10:00 am | $\begin{gathered} \text { E1500 } \\ \text { 23-Nov-2016 } \\ \text { 11:00 am } \end{gathered}$ | S1500 23-Nov-2016 12:45 pm |
|  | Lab Number: | 1685884.11 | 1685884.12 | 1685884.13 | 1685884.14 | 1685884.15 |
| Individual Tests |  |  |  |  |  |  |
| Dry Matter | $\mathrm{g} / 100 \mathrm{~g}$ as revd | 49 | 52 | 48 | 51 | 49 |
| Particle size analysis* |  | See attached report |
| Heavy metals, trace $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Hg}$ |  |  |  |  |  |  |
| Total Recoverable Arsenic | $\mathrm{mg} / \mathrm{kg}$ dry wt | 4.1 | 3.6 | 4 | 4 | 5 |
| Total Recoverable Cadmium | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.13 | 0.094 | 0.121 | 0.090 | 0.11 |
| Total Recoverable Chromium | $\mathrm{mg} / \mathrm{kg}$ dry wt | 23 | 20 | 20 | 20 | 23 |
| Total Recoverable Copper | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5.0 | 5.2 | 4.7 | 4.2 | 4.7 |
| Total Recoverable Lead | $\mathrm{mg} / \mathrm{kg}$ dry wt | 4.4 | 4.0 | 3.9 | 3.8 | 4.1 |
| Total Recoverable Mercury | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.043 | 0.045 | 0.046 | 0.040 | 0.037 |
| Total Recoverable Nickel | $\mathrm{mg} / \mathrm{kg}$ dry wt | 16.2 | 14.4 | 15.0 | 14.3 | 15.8 |
| Total Recoverable Zinc | $\mathrm{mg} / \mathrm{kg}$ dry wt | 30 | 28 | 27 | 26 | 30 |
| Total Petroleum Hydrocarbons in Soil |  |  |  |  |  |  |
| C7-C9 | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 14 | < 13 | < 14 | < 13 | < 14 |
| C10-C14 | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 30 | $<30$ | < 30 | $<30$ | < 30 |
| C15-C36 | $\mathrm{mg} / \mathrm{kg}$ dry wt | $<60$ | $<50$ | $<60$ | $<60$ | < 60 |
| Total hydrocarbons (C7-C36) | ) $\mathrm{mg} / \mathrm{kg}$ dry wt | < 100 | <90 | < 100 | < 90 | < 100 |
|  | Sample Name: | $\begin{gathered} \text { W1500 } \\ \text { 23-Nov-2016 7:30 } \\ \text { am } \end{gathered}$ | NE1750 23-Nov-2016 10:45 am | $\begin{gathered} \text { SE1750 } \\ \text { 23-Nov-2016 1:30 } \\ \text { pm } \end{gathered}$ | $\begin{gathered} \hline \text { SW1750 } \\ \text { 23-Nov-2016 2:30 } \\ \text { pm } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { NW1750 } \\ \text { 23-Nov-2016 2:45 } \\ \text { pm } \end{array}$ |
|  | Lab Number: | 1685884.16 | 1685884.17 | 1685884.18 | 1685884.19 | 1685884.20 |
| Individual Tests |  |  |  |  |  |  |
| Dry Matter | $\mathrm{g} / 100 \mathrm{~g}$ as revd | 52 | 48 | 50 | 48 | 48 |
| Particle size analysis* |  | See attached report |
| Heavy metals, trace $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Hg}$ |  |  |  |  |  |  |
| Total Recoverable Arsenic | $\mathrm{mg} / \mathrm{kg}$ dry wt | 3 | 4 | 5 | 4 | 3 |
| Total Recoverable Cadmium | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.122 | 0.130 | 0.115 | 0.116 | 0.102 |
| Total Recoverable Chromium | $\mathrm{mg} / \mathrm{kg}$ dry wt | 20 | 22 | 23 | 22 | 17.4 |
| Total Recoverable Copper | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5.6 | 4.7 | 4.6 | 4.9 | 4.4 |
| Total Recoverable Lead | $\mathrm{mg} / \mathrm{kg}$ dry wt | 5.2 | 4.1 | 4.2 | 4.2 | 3.6 |
| Total Recoverable Mercury | $\mathrm{mg} / \mathrm{kg}$ dry wt | 0.045 | 0.042 | 0.067 | 0.050 | 0.053 |
| Total Recoverable Nickel | $\mathrm{mg} / \mathrm{kg}$ dry wt | 16.0 | 15.7 | 15.4 | 15.6 | 13.9 |
| Total Recoverable Zinc | $\mathrm{mg} / \mathrm{kg}$ dry wt | 29 | 28 | 30 | 30 | 25 |
| Total Petroleum Hydrocarbons in Soil |  |  |  |  |  |  |
| C7-C9 | $\mathrm{mg} / \mathrm{kg}$ dry wt | $<13$ | < 14 | $<13$ | < 14 | < 14 |
| C10-C14 | $\mathrm{mg} / \mathrm{kg}$ dry wt | < 30 | $<30$ | $<30$ | $<30$ | $<30$ |
| C15-C36 | $\mathrm{mg} / \mathrm{kg}$ dry wt | $<50$ | < 60 | $<60$ | $<60$ | $<60$ |
| Total hydrocarbons (C7-C36) | ) $\mathrm{mg} / \mathrm{kg}$ dry wt | $<90$ | < 100 | < 90 | < 100 | < 100 |
| Analyst's Comments |  |  |  |  |  |  |
| Amended Report: This report replaces an earlier report issued on 05 Dec 2016 at 12:17 pm Reason for amendment: Following a client query [QOWQ 64060], the mercury analysis was repeated on sample 1685884.20. It was found that spot contamination had elevated the initial result and the repeated result is now reported. <br> Appendix No. 1 - Particle size Report -1685884 |  |  |  |  |  |  |

## SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

| Sample Type: Sediment |  |  |  |
| :---: | :---: | :---: | :---: |
| Test | Method Description | Default Detection Limit | Sample No |
| Environmental Solids Sample Preparation | Air dried at $35^{\circ} \mathrm{C}$ and sieved, $<2 \mathrm{~mm}$ fraction. Used for sample preparation. <br> May contain a residual moisture content of 2-5\%. | - | 1-20 |
| Heavy metals, trace $\mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Hg}$ | Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level. | $0.010-0.4 \mathrm{mg} / \mathrm{kg}$ dry wt | 1-20 |
| Total Petroleum Hydrocarbons in Soil | Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734] | $8-60 \mathrm{mg} / \mathrm{kg}$ dry wt | 1-20 |
| Dry Matter (Env) | Dried at $103^{\circ} \mathrm{C}$ for $4-22 \mathrm{hr}$ (removes $3-5 \%$ more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis). | $0.10 \mathrm{~g} / 100 \mathrm{~g}$ as rcvd | 1-20 |
| Total Recoverable digestion | Nitric / hydrochloric acid digestion. US EPA 200.2. | - | 1-20 |
| Particle size analysis* | Malvern Laser Sizer particle size analysis. Subcontracted to Earth Sciences Department, Waikato University, Hamilton. | - | 1-20 |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.
Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.


Ara Heron BSc (Tech)
Client Services Manager - Environmental

Appendix 6 Sediment Chemistry Statistical Tests

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

Dependent Variable: Dry
Normality Test (Shapiro-Wilk) Failed $\quad(P<0.050)$

## Kruskal-Wallis One Way Analysis of Variance on Ranks

| Group | $\mathbf{N}$ | Missing | Median | $\mathbf{2 5 \%}$ | $\mathbf{7 5 \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 34.000 | 34.000 | 34.000 |
| 500 | 4 | 0 | 49.500 | 48.250 | 57.500 |
| 1000 | 4 | 0 | 49.500 | 49.000 | 51.500 |
| 1500 | 4 | 0 | 50 | 48.250 | 51.750 |
| 1750 | 4 | 0 | 48.000 | 48.000 | 49.500 |
| Control | 3 | 0 | 49.000 | 49.000 | 50 |

$H=5.949$ with 5 degrees of freedom. $(P=0.311)$
The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference $\quad(P=0.311)$

Two Way Analysis of Variance between Sites and Disposal Volumes

| Dependent Variable: Dry |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Failed | $(P<0.050)$ |
| Equal Variance Test: | Passed | $(P=0.817)$ |


| Source of Variation | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Volume | 3 | 548.336 | 182.779 | 37.142 | $<0.001$ |
| Site | 5 | 54.033 | 10.807 | 2.196 | 0.067 |
| Volume x Site | 15 | 619.233 | 41.282 | 8.389 | $<0.001$ |
| Residual | 56 | 275.583 | 4.921 |  |  |
| Total | 79 | 1137.888 | 14.404 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. $(P=<0.001)$

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site : 0.386
Power of performed test with alpha $=0.0500$ : for Volume $x$ Site : 1.000
Least square means for Volume :
Group Mean
$10 \quad 50.667$
$50 \quad 55.056$
10053.583

Std Err of LS Mean $=0.565$

| Least square means for Site |  |  |
| :--- | :--- | :--- |
| Group | Mean | SEM |
| DC | 53.000 | 1.109 |
| 500 | 52.625 | 0.555 |
| 1000 | 51.500 | 0.555 |
| 1500 | 51.250 | 0.555 |
| 1750 | 50.312 | 0.555 |
| Control | 51.167 | 0.640 |


| Least square |  |  |
| :--- | :--- | :--- |
| Group | means for | Volume $\times$ Site : |
| $10 \times$ DC | SEM |  |
| $10 \times 500$ | 47.000 | 2.218 |
| $10 \times 1000$ | 53.000 | 1.109 |
| $10 \times 1500$ | 51.000 | 1.109 |
| $10 \times 1750$ | 50.750 | 1.1 .109 |
| $10 \times$ Control | 51.000 | 1.281 |
| $50 \times$ DC | 67.000 | 2.218 |
| $50 \times 500$ | 52.250 | 1.109 |
| $50 \times 1000$ | 53.000 | 1.109 |
| $50 \times 1500$ | 52.500 | 1.109 |
| $50 \times 1750$ | 52.250 | 1.109 |
| $50 \times$ Control | 53.333 | 1.281 |
| $100 \times$ DC | 64.000 | 2.218 |
| $100 \times 500$ | 53.500 | 1.109 |
| $100 \times 1000$ | 52.000 | 1.109 |
| $100 \times 1500$ | 51.250 | 1.109 |
| $100 \times 1750$ | 49.750 | 1.109 |
| $100 \times$ Control | 51.000 | 1.281 |
| $150 \times$ DC | 34.000 | 2.218 |
| $150 \times 500$ | 51.750 | 1.109 |
| $150 \times 1000$ | 50 | 1.109 |
| $150 \times 1500$ | 50 | 1.109 |
| $150 \times 1750$ | 48.500 | 1.109 |
| $150 \times$ Control | 49.333 | 1.281 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison <br> Diff of Means <br> 500 vs. DC |  |  |  |  |  |  | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1500 vs. DC | 6.000 | 2.419 | 0.248 | No |  |  |  |  |  |
| 1000 vs. DC | 4.250 | 1.714 | 0.742 | No |  |  |  |  |  |
| Control vs. DC | 4.000 | 1.613 | 0.788 | No |  |  |  |  |  |
| 1750 vs. DC | 3.750 | 1.562 | 0.796 | No |  |  |  |  |  |
| 500 vs. 1750 | 2.250 | 1.512 | 0.800 | No |  |  |  |  |  |
| 500 vs. 1000 | 2.000 | 1.275 | 0.819 | No |  |  |  |  |  |
| 50.877 | No |  |  |  |  |  |  |  |  |
| 500 vs. Control 1500 | 2.000 | 1.180 | 0.892 | No |  |  |  |  |  |
| 1500 vs. 1750 | 1.750 | 1.116 | 0.889 | No |  |  |  |  |  |
| 1500 vs. 1000 | 0.500 | 0.319 | 1.000 | No |  |  |  |  |  |
| 1000 vs. 1750 | 0.250 | 0.159 | 1.000 | No |  |  |  |  |  |
| 1500 vs. Control | 0.250 | 0.159 | 1.000 | No |  |  |  |  |  |
| Control vs. 1750 | 0.250 | 0.148 | 0.998 | No |  |  |  |  |  |
| 1000 vs. Control | 0.250 | 0.148 | 0.986 | No |  |  |  |  |  |
|  | 0.000 | 0.000 | 1.000 | No |  |  |  |  |  |


| Comparisons for factor: Site within <br> Comparison <br> Diff of Means | $\mathbf{t}$ <br> DC vs. 1750 | 14.750 | 5.947 | $\mathbf{P}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 500 | 14.750 | 5.947 | $<0.001$ | $\mathbf{P < 0 . 0 5}$ |
| DC vs. 1500 | 14.500 | 5.846 | $<0.001$ | Yes |
| DC vs. 1000 | 14.000 | 5.645 | $<0.001$ | Yes |
| DC vs. Control | 13.667 | 5.335 | $<0.001$ | Yes |
| Control vs. 1750 | 1.083 | 0.639 | 0.999 | No |
| Control vs. 500 | 1.083 | 0.639 | 0.999 | No |
| Control vs. 1500 | 0.833 | 0.492 | 1.000 | No |
| 1000 vs. 1750 | 0.750 | 0.478 | 0.999 | No |
| 1000 vs. 500 | 0.750 | 0.478 | 0.998 | No |
| 1000 vs. 1500 | 0.500 | 0.319 | 0.999 | No |
| Control vs. 1000 | 0.333 | 0.197 | 0.999 | No |
| 1500 vs. 1750 | 0.250 | 0.159 | 0.998 | No |
| 1500 vs. 500 | 0.250 | 0.159 | 0.984 | No |
| 500 vs. 1750 | 0.000 | 0.000 | 1.000 | No |

Comparisons for factor: Site within 100

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1750 | 14.250 | 5.745 | $<0.001$ | Yes |
| DC vs. 1500 | 12.750 | 5.141 | $<0.001$ | Yes |
| DC vs. Control | 13.000 | 5.075 | $<0.001$ | Yes |
| DC vs. 1000 | 12.000 | 4.838 | $<0.001$ | Yes |
| DC vs. 500 | 10.500 | 4.234 | $<0.001$ | Yes |
| 500 vs. 1750 | 3.750 | 2.391 | 0.185 | No |
| 500 vs. Control | 2.500 | 1.476 | 0.758 | No |
| 1000 vs. 1750 | 2.250 | 1.434 | 0.745 | No |
| 500 vs. 1500 | 2.250 | 1.434 | 0.698 | No |
| 1500 vs. 1750 | 1.500 | 0.956 | 0.920 | No |
| 500 vs. 1000 | 1.500 | 0.956 | 0.878 | No |
| Control vs. 1750 | 1.250 | 0.738 | 0.917 | No |
| 1000 vs. Control | 1.000 | 0.590 | 0.913 | No |
| 1000 vs. 1500 | 0.750 | 0.478 | 0.866 | No |
| 1500 vs. Control | 0.250 | 0.148 | 0.883 | No |

Comparisons for factor: Site within 150

| Comparison <br> Comp | Diff of Means <br> $\mathbf{5 0 0}$ vs. DC | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1500 vs. DC | 17.750 | 7.157 | $<0.001$ | Yes |
| 1000 vs. DC | 16.000 | 6.451 | $<0.001$ | Yes |
| Control vs. DC | 15.333 | 6.451 | $<0.001$ | Yes |
| 1750 vs. DC | 14.500 | 5.986 | $<0.001$ | Yes |
| 500 vs. 1750 | 3.250 | 2.072 | $<0.001$ | Yes |
| 500 vs. Control | 2.417 | 1.426 | 0.355 | No |
| 500 vs. 1000 | 1.750 | 1.116 | 0.919 | No |
| 500 vs. 1500 | 1.750 | 1.116 | 0.889 | No |
| 1500 vs. 1750 | 1.500 | 0.956 | 0.920 | No |
| 1000 vs. 1750 | 1.500 | 0.956 | 0.878 | No |
| Control vs. 1750 | 0.833 | 0.492 | 0.980 | No |
| 1500 vs. Control | 0.667 | 0.393 | 0.972 | No |
| 1000 vs. Control | 0.667 | 0.393 | 0.907 | No |
| 1500 vs. 1000 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |  |  |  |
| 50 vs. 150 | 33.000 | 10.519 | $<0.001$ | Yes |  |  |  |  |  |
| 100 vs. 150 | 30.000 | 9.563 | $<0.001$ | Yes |  |  |  |  |  |
| 50 vs. 10 | 20.000 | 6.375 | $<0.001$ | Yes |  |  |  |  |  |
| $\mathbf{1 0 0}$ vs. 10 | 17.000 | 5.419 | $<0.001$ | Yes |  |  |  |  |  |
| $\mathbf{1 0}$ vs. 150 | 13.000 | 4.144 | $<0.001$ | Yes |  |  |  |  |  |
| 50 vs. 100 | 3.000 | 0.956 | 0.343 | No |  |  |  |  |  |

Comparisons for factor: Volume within 500

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 150 | 1.750 | 1.116 | 0.848 | No |
| 100 vs. 50 | 1.250 | 0.797 | 0.939 | No |
| 10 vs. 150 | 1.250 | 0.797 | 0.894 | No |
| 10 vs. 50 | 0.750 | 0.478 | 0.951 | No |
| 100 vs. 10 | 0.500 | 0.319 | 0.938 | No |
| 50 vs. 150 | 0.500 | 0.319 | 0.751 | No |


| Comparisons for factor: Volume within $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| 50 vs. 150 | 3.000 | 1.913 | 0.314 | No |  |  |
| 50 vs. 10 | 2.000 | 1.275 | 0.688 | No |  |  |
| 100 vs. 150 | 2.000 | 1.275 | 0.606 | No |  |  |
| 50 vs. 100 | 1.000 | 0.638 | 0.894 | No |  |  |
| 100 vs. 10 | 1.000 | 0.638 | 0.776 | No |  |  |
| 10 vs. 150 | 1.000 | 0.638 | 0.526 | No |  |  |


| Comparisons for factor: Volume within $\mathbf{1 5 0 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| 50 vs. 150 | 2.500 | 1.594 | 0.525 | No |  |  |
| 50 vs. 100 | 1.250 | 0.797 | 0.939 | No |  |  |
| 50 vs. 10 | 1.250 | 0.797 | 0.894 | No |  |  |
| 10 vs. 150 | 1.250 | 0.797 | 0.814 | No |  |  |
| 100 vs. 150 | 1.250 | 0.797 | 0.674 | No |  |  |
| 10 vs. 100 | 0.000 | 0.000 | 1.000 | No |  |  |

Comparisons for factor: Volume within 1750

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 vs. 150 | 3.750 | 2.391 | 0.115 | No |
| 50 vs. 100 | 2.500 | 1.594 | 0.462 | No |
| 10 vs. 150 | 2.250 | 1.434 | 0.495 | No |
| 50 vs. 10 | 1.500 | 0.956 | 0.716 | No |
| 100 vs. 150 | 1.250 | 0.797 | 0.674 | No |
| 10 vs. 100 | 1.000 | 0.638 | 0.526 | No |

Comparisons for factor: Volume within Control

| 50 vs. 150 | 4.000 | 2.208 | 0.174 | No |
| :---: | :--- | :--- | :--- | :--- |
| 50 vs. 100 | 2.333 | 1.288 | 0.678 | No |
| 50 vs. 10 | 2.333 | 1.288 | 0.596 | No |
| 10 vs. 150 | 1.667 | 0.920 | 0.740 | No |
| 100 vs. 150 | 1.667 | 0.920 | 0.592 | No |
| 10 vs. 100 | 0.000 | 0.000 | 1.000 | No |

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

Dependent Variable. Arsenic
Failed $\quad(P<0.050)$

## Kruskal-Wallis One Way Analysis of Variance on Ranks

| Group | $\mathbf{N}$ | Missing | Median | $\mathbf{2 5 \%}$ | $\mathbf{7 5 \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 9.500 | 9.500 | 9.500 |
| 500 | 4 | 0 | 3.950 | 3.675 | 4.000 |
| 1000 | 4 | 0 | 4.550 | 3.725 | 5.000 |
| 1500 | 4 | 0 | 4.000 | 3.250 | 4.750 |
| 1750 | 4 | 0 | 4.000 | 3.250 | 4.750 |
| Control | 3 | 0 | 5.000 | 5.000 | 5.100 |

$H=9.348$ with 5 degrees of freedom. $(P=0.096)$
The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference $\quad(P=0.096)$

## Two Way Analysis of Variance between Sites and Disposal Volumes.

| Dependent Variable: Arsenic |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Normality Test (Shapiro-Wilk) |  |  | Passed | ( $\mathrm{P}=0.194$ ) |  |
| Equal Variance Test |  |  | Failed | ( $\mathrm{P}<0$ |  |
| Source of Variation | DF | SS | MS | F | P |
| Volume | 3 | 17.645 | 5.882 | 15.133 | <0.001 |
| Site | 5 | 16.952 | 3.390 | 8.723 | <0.001 |
| Volume x Site | 15 | 27.112 | 1.807 | 4.650 | <0.001 |
| Residual | 56 | 21.766 | 0.389 |  |  |
| Total | 79 | 81.360 | 1.030 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $P=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site $: 0.999$
Power of performed test with alpha $=0.0500$ : for Volume $\times$ Site : 0.998
Least square means for Volume :
Group Mean
$10 \quad 5.774$
1004.704
$150 \quad 5.139$
Std Err of LS Mean $=0.159$

| Least square means for Site : |  |  |
| :---: | :---: | :---: |
| Group | Mean | SEM |
| DC | 6.150 | 0.312 |
| 500 | 4.431 | 0.156 |
| 1000 | 4.606 | 0.156 |
| 1500 | 4.619 | 0.156 |
| 1750 | 4.625 | 0.156 |
| Control | 5.500 | 0.180 |


| Least square <br> Group |  |  |
| :---: | :---: | :---: |
| means for | Melume | SEM |
| $10 \times$ Site $:$ |  |  |
| $10 \times 500$ | 7.500 | 0.623 |
| $10 \times 1000$ | 5.100 | 0.312 |
| $10 \times 1500$ | 5.525 | 0.312 |
| $10 \times 1750$ | 5.425 | 0.312 |
| $10 \times$ Control | 5.767 | 0.360 |
| $50 \times$ DC | 3.600 | 0.623 |
| $50 \times 500$ | 4.500 | 0.312 |
| $50 \times 1000$ | 4.000 | 0.312 |
| $50 \times 1500$ | 4.250 | 0.312 |
| $50 \times 1750$ | 4.175 | 0.312 |
| $50 \times$ Control | 5.500 | 0.360 |
| $100 \times$ DC | 4.000 | 0.623 |
| $100 \times 500$ | 4.250 | 0.312 |
| $100 \times 1000$ | 4.675 | 0.312 |
| $100 \times 1500$ | 4.700 | 0.312 |
| $100 \times 1750$ | 4.900 | 0.312 |
| $100 \times$ Control | 5.700 | 0.360 |
| $150 \times$ DC | 9.500 | 0.623 |
| $150 \times 500$ | 3.875 | 0.312 |
| $150 \times 1000$ | 4.425 | 0.312 |
| $150 \times 1500$ | 4.000 | 0.312 |
| $150 \times 1750$ | 4.000 | 0.312 |
| $150 \times$ Control | 5.033 | 0.360 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):
Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means <br> CO vs. 500 | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1000 | 2.400 | 3.443 | 0.016 | Yes |
| DC vs. 1750 | 2.175 | 3.120 | 0.039 | Yes |
| DC vs. 1500 | 2.075 | 2.977 | 0.054 | No |
| DC vs. Control | 1.975 | 2.833 | 0.074 | No |
| Control vs. 500 | 1.733 | 2.408 | 0.194 | No |
| 1500 vs. 500 | 0.667 | 1.400 | 0.839 | No |
| Control vs. 1000 | 0.425 | 0.964 | 0.976 | No |
| 1750 vs. 500 | 0.442 | 0.928 | 0.971 | No |
| Control vs. 1750 | 0.325 | 0.737 | 0.987 | No |
| 1000 vs. 500 | 0.342 | 0.718 | 0.979 | No |
| Control vs. 1500 | 0.225 | 0.510 | 0.991 | No |
| 1500 vs. 1000 | 0.200 | 0.508 | 0.978 | No |
| 1500 vs. 1750 | 0.1000 | 0.454 | 0.958 | No |
| 1750 vs. 1000 | 0.100 | 0.227 | 0.968 | No |
|  |  |  |  | 0.821 |


| Comparisons for factor: Site within $\mathbf{5 0}$ <br> Comparison <br> Comtrol vs. 1000 | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cons. | 1.500 | 3.150 | 0.039 | Yes |
| Control vs. 1750 | 1.325 | 2.783 | 0.098 | No |
| Control vs. DC | 1.900 | 2.639 | 0.131 | No |
| Control vs. 1500 | 1.250 | 2.625 | 0.126 | No |
| Control vs. 500 | 1.000 | 2.100 | 0.363 | No |
| 500 vs. DC | 0.900 | 1.291 | 0.895 | No |
| 500 vs. 1000 | 0.500 | 1.134 | 0.935 | No |
| 1500 vs. DC | 0.650 | 0.933 | 0.970 | No |
| 1750 vs. DC | 0.575 | 0.825 | 0.976 | No |
| 500 vs. 1750 | 0.325 | 0.737 | 0.976 | No |
| 1000 vs. DC | 0.400 | 0.574 | 0.985 | No |
| 1500 vs. 1000 | 0.250 | 0.567 | 0.967 | No |
| 500 vs. 1500 | 0.250 | 0.567 | 0.922 | No |
| 1750 vs. 1000 | 0.175 | 0.397 | 0.906 | No |
| 1500 vs. 1750 | 0.0750 | 0.170 | 0.866 | No |


| Comparisons for factor: Site within $\mathbf{1 0 0}$ <br> Comparison |  |  |  |  |  | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Control vs. 500 | 1.450 | 3.045 | 0.052 | No |  |  |  |  |  |
| Control vs. DC | 1.700 | 2.361 | 0.265 | No |  |  |  |  |  |
| Control vs. 1000 | 1.025 | 2.153 | 0.376 | No |  |  |  |  |  |
| Control vs. 1500 | 1.000 | 2.100 | 0.389 | No |  |  |  |  |  |
| Control vs. 1750 | 0.800 | 1.680 | 0.680 | No |  |  |  |  |  |
| 1750 vs. 500 | 0.650 | 1.474 | 0.794 | No |  |  |  |  |  |
| 1750 vs. DC | 0.900 | 1.291 | 0.869 | No |  |  |  |  |  |
| 1500 vs. 500 | 0.450 | 1.021 | 0.950 | No |  |  |  |  |  |
| 1500 vs. DC | 0.700 | 1.004 | 0.932 | No |  |  |  |  |  |
| 1000 vs. DC | 0.675 | 0.968 | 0.915 | No |  |  |  |  |  |
| 1000 vs. 500 | 0.425 | 0.964 | 0.874 | No |  |  |  |  |  |
| 1750 vs. 1000 | 0.225 | 0.510 | 0.977 | No |  |  |  |  |  |
| 1750 vs. 1500 | 0.200 | 0.454 | 0.958 | No |  |  |  |  |  |
| 500 vs. DC | 0.250 | 0.359 | 0.922 | No |  |  |  |  |  |
| 1500 vs. 1000 | 0.0250 | 0.0567 | 0.955 | No |  |  |  |  |  |


| Comparisons for factor: Site within 150 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| DC vs. 500 | 5.625 | 8.070 | <0.001 | Yes |
| DC vs. 1500 | 5.500 | 7.891 | <0.001 | Yes |
| DC vs. 1750 | 5.500 | 7.891 | <0.001 | Yes |
| DC vs. 1000 | 5.075 | 7.281 | <0.001 | Yes |
| DC vs. Control | 4.467 | 6.205 | <0.001 | Yes |
| Control vs. 500 | 1.158 | 2.433 | 0.168 | No |
| Control vs. 1500 | 1.033 | 2.170 | 0.269 | No |
| Control vs. 1750 | 1.033 | 2.170 | 0.243 | No |
| Control vs. 1000 | 0.608 | 1.278 | 0.802 | No |
| 1000 vs. 500 | 0.550 | 1.248 | 0.770 | No |
| 1000 vs. 1500 | 0.425 | 0.964 | 0.874 | No |
| 1000 vs. 1750 | 0.425 | 0.964 | 0.809 | No |
| 1750 vs. 500 | 0.125 | 0.284 | 0.989 | No |
| 1500 vs. 500 | 0.125 | 0.284 | 0.951 | No |
| 1750 vs. 1500 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 150 vs. 50 | 5.900 | 6.692 | <0.001 | Yes |
| 150 vs. 100 | 5.500 | 6.238 | <0.001 | Yes |
| 10 vs. 50 | 3.900 | 4.423 | <0.001 | Yes |
| 10 vs. 100 | 3.500 | 3.970 | <0.001 | Yes |
| 150 vs. 10 | 2.000 | 2.268 | 0.054 | No |
| 100 vs. 50 | 0.400 | 0.454 | 0.652 | No |

Comparisons for factor: Volume within 500

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 1.225 | 2.779 | 0.044 | Yes |
| 10 vs. 100 | 0.850 | 1.928 | 0.262 | No |
| 50 vs. 150 | 0.625 | 1.418 | 0.506 | No |
| 10 vs. 50 | 0.600 | 1.361 | 0.447 | No |
| 100 vs. 150 | 0.375 | 0.851 | 0.638 | No |
| 50 vs. 100 | 0.250 | 0.567 | 0.573 | No |


| Comparisons for factor: Volume within $\mathbf{1 0 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 10 vs. 50 | 1.325 | 3.006 | 0.024 | Yes |
| $\mathbf{1 0}$ vs. 150 | 0.900 | 2.042 | 0.209 | No |
| $\mathbf{1 0 0}$ vs. 50 | 0.675 | 1.531 | 0.431 | No |
| $\mathbf{1 0}$ vs. 100 | 0.650 | 1.474 | 0.377 | No |
| $\mathbf{1 5 0}$ vs. 50 | 0.425 | 0.964 | 0.563 | No |
| 100 vs. 150 | 0.250 | 0.567 | 0.573 | No |


| Comparisons for factor: Volume within |  |  |  | $\mathbf{1 5 0 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| $\mathbf{1 0}$ vs. 150 | 1.525 | 3.459 | 0.006 | Yes |
| $\mathbf{1 0}$ vs. 50 | 1.275 | 2.892 | 0.027 | Yes |
| $\mathbf{1 0}$ vs. 100 | 0.825 | 1.871 | 0.241 | No |
| $\mathbf{1 0 0}$ vs. 150 | 0.700 | 1.588 | 0.314 | No |
| $\mathbf{1 0 0}$ vs. 50 | 0.450 | 1.021 | 0.526 | No |
| 50 vs. 150 | 0.250 | 0.567 | 0.573 | No |

Comparisons for factor: Volume within 1750

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 1.425 | 3.232 | 0.012 | Yes |
| 10 vs. 50 | 1.250 | 2.836 | 0.031 | Yes |
| 100 vs. 150 | 0.900 | 2.042 | 0.171 | No |
| 100 vs. 50 | 0.725 | 1.645 | 0.285 | No |
| 10 vs. 100 | 0.525 | 1.191 | 0.420 | No |
| 50 vs. 150 | 0.175 | 0.397 | 0.693 | No |

Comparisons for factor: Volume within Contro Comparison Diff of Means t P P<0.05

| 10 vs. 150 | 0.733 | 1.441 | 0.637 | No |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 150 | 0.667 | 1.310 | 0.663 | No |
| 50 vs. 150 | 0.467 | 0.917 | 0.836 | No |
| 10 vs. 50 | 0.267 | 0.524 | 0.937 | No |
| 100 vs. 50 | 0.200 | 0.393 | 0.908 | No |
| 10 vs. 100 | 0.0667 | 0.131 | 0.896 | No |

One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

| Dependent Variable: Cadmium |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.880)$ |
| Equal Variance Test: | Failed | $(P<0.050)$ |

## Kruskal-Wallis One Way Analysis of Variance on Ranks

| Group | $\mathbf{N}$ | Missing | Median | $\mathbf{2 5 \%}$ | $\mathbf{7 5 \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 0.0810 | 0.0810 | 0.0810 |
| 500 | 4 | 0 | 0.140 | 0.105 | 0.168 |
| 1000 | 4 | 0 | 0.120 | 0.0980 | 0.130 |
| 1500 | 4 | 0 | 0.115 | 0.0950 | 0.122 |
| 1750 | 4 | 0 | 0.116 | 0.105 | 0.127 |
| Control | 3 | 0 | 0.1000 | 0.1000 | 0.120 |

$H=5.086$ with 5 degrees of freedom. $(P=0.405)$
The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference $\quad(P=0.405)$

## Two Way Analysis of Variance between Sites and Disposal Volumes

| Dependent Variable: Cadmium |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.588)$ |
| Equal Variance Test: | Failed | $(P<0.050)$ |


|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Source of Variation | DF | SS | MS | F | P |
| Volume | 3 | 0.00221 | 0.000736 | 3.062 | 0.035 |
| Site | 5 | 0.0176 | 0.00351 | 14.612 | $<0.001$ |
| Volume x Site | 15 | 0.00566 | 0.000377 | 1.570 | 0.113 |
| Residual | 56 | 0.0135 | 0.000240 |  |  |
| Total | 79 | 0.0404 | 0.000511 |  |  |

The difference in the mean values among the different levels of Volume is greater than would be expected by chance after allowing for effects of differences in Site. There is a statistically significant difference ( $P=0.035$ ). To isolate which group(s) differ from the others use a multiple comparison procedure

The difference in the mean values among the different levels of Site is greater than would be expected by chance after allowing for effects of differences in Volume. There is a statistically significant difference ( $\mathrm{P}=<0.001$ ). To isolate which group(s) differ from the others use a multiple comparison procedure

The effect of different levels of Volume does not depend on what level of Site is present. There is not a statistically significant interaction between Volume and Site. ( $\mathrm{P}=0.113$ )

[^0]Least square means for Volume :
Group Mean
100.120
$\begin{array}{ll}50 & 0.114 \\ 100 & 0.103\end{array}$
$150-111$
Std Err of LS Mean $=0.00395$

| Least square means for Site <br> Group |  |  |
| :---: | :---: | :---: |
| Mean | SEM |  |
| DC | 0.0565 | 0.00775 |
| 500 | 0.125 | 0.00388 |
| 1000 | 0.125 | 0.00388 |
| 1500 | 0.122 | 0.00388 |
| 1750 | 0.126 | 0.00388 |
| Control | 0.119 | 0.00448 |

Least square means for Volume x Site :
$50 \times 1750 \quad 0.134-0.00775$
$0.116-0.00775$

## All Pairwise Multiple Comparison Procedures (Holm-Sidak method):

Overall significance level $=0.05$

| Comparisons for factor: Volume <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 100 | 0.0167 | 2.993 | 0.024 | Yes |
| 50 vs. 100 | 0.0103 | 1.846 | 0.305 | No |
| 10 vs. 150 | 0.00885 | 1.585 | 0.396 | No |
| 150 vs. 100 | 0.00786 | 1.408 | 0.417 | No |
| 10 vs. 50 | 0.00640 | 1.147 | 0.447 | No |
| 50 vs. 150 | 0.00244 | 0.438 | 0.663 | No |

Comparisons for factor: Site

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1750 vs. DC | 0.0696 | 8.027 | $<0.001$ | Yes |
| 1000 vs. DC | 0.0688 | 7.933 | $<0.001$ | Yes |
| 500 vs. DC | 0.0681 | 7.861 | $<0.001$ | Yes |
| 1500 vs. DC | 0.0651 | 7.515 | $<0.001$ | Yes |
| Control vs. DC | 0.0623 | 6.955 | $<0.001$ | Yes |
| 1750 vs. Control | 0.00731 | 1.235 | 0.919 | No |
| 1000 vs. Control | 0.00650 | 1.098 | 0.946 | No |
| 500 vs. Control | 0.00587 | 0.992 | 0.957 | No |
| 1750 vs. 1500 | 0.00444 | 0.810 | 0.978 | No |
| 1000 vs. 1500 | 0.00362 | 0.661 | 0.986 | No |
| 500 vs. 1500 | 0.00300 | 0.547 | 0.988 | No |
| 1500 vs. Control | 0.00288 | 0.486 | 0.981 | No |
| 1750 vs. 500 | 0.00144 | 0.262 | 0.991 | No |
| 1750 vs. 1000 | 0.000812 | 0.148 | 0.986 | No |
| 1000 vs. 500 | 0.000625 | 0.114 | 0.910 | No |

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

| Dependent Variable: Chromium |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normality Test (Shapiro-Wilk) Equal Variance Test: |  |  |  | Passed |  | ( $\mathrm{P}=0.488$ ) |
|  |  |  |  | .744) |
| Group Name | N | Missing | Mean |  |  | Std De |  | EM |
| DC | 1 | 0 | 22.000 | 0.000 |  | . 00 |
| 500 | 4 | 0 | 21.500 | 0.577 |  | 289 |
| 1000 | 4 | 0 | 21.500 | 1.732 |  | 866 |
| 1500 | 4 | 0 | 20.750 | 1.500 |  | . 750 |
| 1750 | 4 | 0 | 21.100 | 2.511 |  | 256 |
| Control | 3 | 0 | 23.667 | 1.528 |  | 882 |
| Source of Vari | ation | DF | SS | MS | F | P |
| Between Group |  | 4 | 16.935 | 4.234 | 1.469 | 0.264 |
| Residual |  | 14 | 40.337 | 2.881 |  |  |
| Total |  | 18 | 57.272 |  |  |  |

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference ( $\mathrm{P}=0.264$ )

Power of performed test with alpha $=0.050$ : 0.128
The power of the performed test $(0.128)$ is below the desired power of 0.800 .
Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously

Two Way Analysis of Variance between Sites and Disposal Volumes.
Dependent Variable: Chromium

| Normality Test (Shapiro-Wilk) | Passed | $(P=0.153)$ |
| :--- | :--- | :--- |
| Equal Variance Test: | Passed | $(P=0.438)$ |


| Source of Variation | DF | SS | MS | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Volume | 3 | 193.327 | 64.442 | 35.670 | $<0.001$ |
| Site | 5 | 29.823 | 5.965 | 3.302 | 0.011 |
| Volume x Site | 15 | 128.466 | 8.564 | 4.741 | $<0.001$ |
| Residual | 56 | 101.170 | 1.807 |  |  |
| Total | 79 | 402.590 | 5.096 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site : 0.699
Power of performed test with alpha $=0.0500$ : for Volume $\times$ Site $: 0.999$

| Least square means for Volume |  |  |  |
| :--- | :--- | :--- | :---: |
| Group | Mean |  |  |
| 10 | 24.472 |  |  |
| 50 | 22.167 |  |  |
| 100 | 26.111 |  |  |
| 150 | 21.753 |  |  |
| Std Err of LS Mean $=0.342$ |  |  |  |
| Least square means for Site : |  |  |  |
| Group | Mean | SEM |  |
| DC | 24.375 | 0.672 |  |
| 500 | 22.750 | 0.336 |  |
| 1000 | 23.312 | 0.336 |  |
| 1500 | 23.312 | 0.336 |  |
| 1750 | 23.337 | 0.336 |  |
| Control | 24.667 | 0.388 |  |

Least square means for Volume x Site :
Group Mean SEM

| Group | Mean | SEM |
| :---: | :---: | :---: |
| $10 \times$ DC | 24.000 | 1.344 |
| $10 \times 500$ | 24.000 | 0.672 |
| $10 \times 1000$ | 23.750 | 0.672 |
| $10 \times 1500$ | 25.000 | 0.672 |
| $10 \times 1750$ | 24.750 | 0.672 |
| $10 \times$ Control | 25.333 | 0.776 |
| $50 \times$ DC | 17.500 | 1.344 |
| $50 \times 500$ | 22.500 | 0.672 |
| $50 \times 1000$ | 23.000 | 0.672 |
| $50 \times 1500$ | 23.250 | 0.672 |
| $50 \times 1750$ | 22.750 | 0.672 |
| $50 \times$ Control | 24.000 | 0.776 |
| $100 \times$ DC | 34.000 | 1.344 |
| $100 \times 500$ | 23.000 | 0.672 |
| $100 \times 1000$ | 25.000 | 0.672 |
| $100 \times 1500$ | 24.250 | 0.672 |
| $100 \times 1750$ | 24.750 | 0.672 |
| $100 \times$ Control | 25.667 | 0.776 |
| $150 \times$ DC | 22.000 | 1.344 |
| $150 \times 500$ | 21.500 | 0.672 |
| $150 \times 1000$ | 21.500 | 0.672 |
| $150 \times 1500$ | 2.750 | 0.672 |
| $150 \times 1750$ | 21.100 | 0.672 |
| $150 \times$ Control | 23.667 | 0.776 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):
Overall significance level $=0.05$

| Comparisons for factor: Volume <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 150 | 4.358 | 9.006 | $<0.001$ | Yes |
| $\mathbf{1 0 0}$ vs. 50 | 3.944 | 8.151 | $<0.001$ | Yes |
| $\mathbf{1 0}$ vs. 150 | 2.719 | 5.619 | $<0.001$ | Yes |
| 10 vs. 50 | 2.306 | 4.764 | $<0.001$ | Yes |
| 100 vs. 10 | 1.639 | 3.387 | 0.003 | Yes |
| 50 vs. 150 | 0.414 | 0.855 | 0.396 | No |

Comparisons for factor: Site

| Comparison <br> Control vs. 500 | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| Control vs. 1500 | 1.917 | 3.734 | 0.007 | Yes |
| Control vs. 1000 | 1.354 | 2.638 | 0.141 | No |
| Control vs. 1750 | 1.329 | 2.638 | 0.131 | No |
| DC vs. 500 | 1.625 | 2.163 | 0.137 | No |
| DC vs. 1500 | 1.063 | 1.414 | 0.833 | No |
| DC vs. 1000 | 1.063 | 1.414 | 0.798 | No |
| DC vs. 1750 | 1.038 | 1.381 | 0.781 | No |
| 1750 vs. 500 | 0.588 | 1.236 | 0.827 | No |
| 1000 vs. 500 | 0.563 | 1.184 | 0.810 | No |
| 1500 vs. 500 | 0.563 | 1.184 | 0.749 | No |
| Control vs. DC | 0.292 | 0.376 | 0.993 | No |
| 1750 vs. 1000 | 0.0250 | 0.0526 | 1.000 | No |
| 1750 vs. 1500 | 0.0250 | 0.0526 | 0.998 | No |
| 1000 vs. 1500 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| Control vs. 1000 | 1.583 | 1.542 | 0.873 | No |
| 1500 vs. 1000 | 1.250 | 1.315 | 0.951 | No |
| Control vs. 500 | 1.333 | 1.299 | 0.944 | No |
| 1750 vs. 1000 | 1.000 | 1.052 | 0.985 | No |
| 1500 vs. 500 | 1.000 | 1.052 | 0.979 | No |
| Control vs. DC | 1.333 | 0.859 | 0.993 | No |
| 1750 vs. 500 | 0.750 | 0.789 | 0.994 | No |
| 1500 vs. DC | 1.000 | 0.665 | 0.997 | No |
| Control vs. 1750 | 0.583 | 0.568 | 0.997 | No |
| 1750 vs. DC | 0.750 | 0.499 | 0.997 | No |
| Control vs. 1500 | 0.333 | 0.325 | 0.999 | No |
| 1500 vs. 1750 | 0.250 | 0.263 | 0.998 | No |
| 500 vs. 1000 | 0.250 | 0.263 | 0.991 | No |
| DC vs. 1000 | 0.250 | 0.166 | 0.983 | No |
| DC vs. 500 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within 50 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| Control vs. DC | 6.500 | 4.188 | 0.002 | Yes |
| 1500 vs. DC | 5.750 | 3.826 | 0.005 | Yes |
| 1000 vs. DC | 5.500 | 3.660 | 0.007 | Yes |
| 1750 vs. DC | 5.250 | 3.494 | 0.011 | Yes |
| 500 vs. DC | 5.000 | 3.327 | 0.017 | Yes |
| Control vs. 500 | 1.500 | 1.461 | 0.802 | No |
| Control vs. 1750 | 1.250 | 1.218 | 0.903 | No |
| Control vs. 1000 | 1.000 | 0.974 | 0.961 | No |
| 1500 vs. 500 | 0.750 | 0.789 | 0.981 | No |
| Control vs. 1500 | 0.750 | 0.731 | 0.977 | No |
| 1000 vs. 500 | 0.500 | 0.526 | 0.990 | No |
| 1500 vs. 1750 | 0.500 | 0.526 | 0.975 | No |
| 1000 vs. 1750 | 0.250 | 0.263 | 0.991 | No |
| 1750 vs. 500 | 0.250 | 0.263 | 0.957 | No |
| 1500 vs. 1000 | 0.250 | 0.263 | 0.793 | No |


| Comparisons for factor: Site within <br> Comparison <br> Com <br> DC vs. 500 | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | P<0.05 |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 11.000 | 7.320 | $<0.001$ | Yes |
| DC vs. 1750 | 9.750 | 6.488 | $<0.001$ | Yes |
| DC vs. 1000 | 9.250 | 6.155 | $<0.001$ | Yes |
| DC vs. Control | 9.000 | 5.989 | $<0.001$ | Yes |
| Control vs. 500 | 2.633 | 5.369 | $<0.001$ | Yes |
| 1000 vs. 500 | 2.000 | 2.598 | 0.113 | No |
| 1750 vs. 500 | 1.750 | 1.104 | 0.307 | No |
| Control vs. 1500 | 1.417 | 1.381 | 0.445 | No |
| 1500 vs. 500 | 1.250 | 1.315 | 0.736 | No |
| Control vs. 1750 | 0.917 | 0.893 | 0.905 | No |
| 1000 vs. 1500 | 0.750 | 0.789 | 0.897 | No |
| Control vs. 1000 | 0.667 | 0.649 | 0.889 | No |
| 1750 vs. 1500 | 0.500 | 0.526 | 0.841 | No |
| 1000 vs. 1750 | 0.250 | 0.263 | 0.793 | No |


| Comparisons for factor: Site within <br> Comparison <br> Control vs. 1500 | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| Con | 2.917 | 2.841 | 0.090 | No |
| Control vs. 1750 | 2.567 | 2.500 | 0.195 | No |
| Control vs. 1000 | 2.167 | 2.111 | 0.406 | No |
| Control vs. 500 | 2.167 | 2.111 | 0.382 | No |
| Control vs. DC | 1.667 | 1.074 | 0.976 | No |
| DC vs. 1500 | 1.250 | 0.832 | 0.995 | No |
| 1000 vs. 1500 | 0.750 | 0.789 | 0.994 | No |
| 500 vs. 1500 | 0.750 | 0.789 | 0.989 | No |
| DC vs. 1750 | 0.900 | 0.599 | 0.996 | No |
| 1000 vs. 1750 | 0.400 | 0.421 | 0.999 | No |
| 500 vs. 1750 | 0.400 | 0.421 | 0.996 | No |
| 1750 vs. 1500 | 0.350 | 0.368 | 0.993 | No |
| DC vs. 500 | 0.500 | 0.333 | 0.983 | No |
| DC vs. 1000 | 0.500 | 0.333 | 0.933 | No |
| 500 vs. 1000 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| 100 vs. 50 | 16.500 | 8.680 | $<0.001$ | Yes |
| 100 vs. 150 | 12.000 | 6.313 | $<0.001$ | Yes |
| 100 vs. 10 | 10 | 5.261 | $<0.001$ | Yes |
| 10 vs. 50 | 6.500 | 3.420 | 0.004 | Yes |
| 150 vs. 50 | 4.500 | 2.367 | 0.042 | Yes |
| 10 vs. 150 | 2.000 | 1.052 | 0.297 | No |


| Comparisons for factor: Volume within $\mathbf{5 0 0}$ <br> Comparison |  |  |  |  |  | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ vs. 150 | 2.500 | 2.630 | 0.064 | No |  |  |  |  |  |
| $\mathbf{1 0 0}$ vs. 150 | 1.500 | 1.578 | 0.473 | No |  |  |  |  |  |
| $\mathbf{1 0}$ vs. 50 | 1.500 | 1.578 | 0.401 | No |  |  |  |  |  |
| $\mathbf{5 0}$ vs. 150 | 1.000 | 1.052 | 0.653 | No |  |  |  |  |  |
| $\mathbf{1 0}$ vs. 100 | 1.000 | 1.052 | 0.506 | No |  |  |  |  |  |
| $\mathbf{1 0 0}$ vs. 50 | 0.500 | 0.526 | 0.601 | No |  |  |  |  |  |

Comparisons for factor: Volume within 1000

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 0}$ vs. 150 | 3.500 | 3.683 | 0.003 | Yes |
| $\mathbf{1 0}$ vs. 150 | 2.250 | 2.367 | 0.102 | No |
| 100 vs. 50 | 2.000 | 2.104 | 0.150 | No |
| 50 vs. 150 | 1.500 | 1.578 | 0.319 | No |
| 100 vs. 10 | 1.250 | 1.315 | 0.350 | No |
| 10 vs. 50 | 0.750 | 0.789 | 0.433 | No |


| Comparisons for factor: Volume within <br> Comparison <br> Com |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| $\mathbf{1 0}$ vs. 150 | 4.250 | 4.472 | $<0.001$ | Yes |
| $\mathbf{1 0 0}$ vs. 150 | 3.500 | 3.683 | 0.003 | Yes |
| 50 vs. 150 | 2.500 | 2.630 | 0.043 | Yes |
| 10 vs. 50 | 1.750 | 1.841 | 0.198 | No |
| 100 vs. 50 | 1.000 | 1.052 | 0.506 | No |
| 10 vs. 100 | 0.750 | 0.789 | 0.433 | No |


| Comparisons for factor: Volume within $\mathbf{1 7 5 0}$   <br> Comparison Diff of Means $\mathbf{t}$ $\mathbf{P}$ |  |  |  |  |  | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 3.650 | 3.840 | 0.002 | Yes |  |  |
| 100 vs. 150 | 3.650 | 3.840 | 0.002 | Yes |  |  |
| 10 vs. 50 | 2.000 | 2.104 | 0.150 | No |  |  |
| 100 vs. 50 | 2.000 | 2.104 | 0.115 | No |  |  |
| 50 vs. 150 | 1.650 | 1.736 | 0.168 | No |  |  |
| 10 vs. 100 | 0.000 | 0.000 | 1.000 | No |  |  |

Comparisons for factor: Volume within Control

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 150 | 2.000 | 1.822 | 0.368 | No |
| 100 vs. 50 | 1.667 | 1.519 | 0.514 | No |
| 10 vs. 150 | 1.667 | 1.519 | 0.439 | No |
| 10 vs. 50 | 1.333 | 1.215 | 0.543 | No |
| 100 vs. 10 | 0.333 | 0.304 | 0.944 | No |
| 50 vs. 150 | 0.333 | 0.304 | 0.762 | No |

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

Dependent Variable: Copper
Normality Test (Shapiro-Wilk) Failed $\quad(P<0.050)$

## Kruskal-Wallis One Way Analysis of Variance on Ranks

| Group | N | Missing | Median | $25 \%$ | $75 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 29.000 | 29.000 | 29.000 |
| 500 | 4 | 0 | 5.050 | 5.000 | 5.400 |
| 1000 | 4 | 0 | 5.100 | 4.925 | 7.600 |
| 1500 | 4 | 0 | 4.700 | 4.325 | 5.375 |
| 1750 | 4 | 0 | 4.650 | 4.450 | 4.850 |
| Control | 3 | 0 | 5.000 | 4.800 | 5.100 |

$H=10.198$ with 5 degrees of freedom. $(P=0.070)$
The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference $\quad(P=0.070)$

## Two Way Analysis of Variance between Sites and Disposal Volumes

| Dependent Variable: Copper |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Failed | $(P<0.050)$ |
| Equal Variance Test: | Passed | $(P=0.870)$ |


| Source of Variation | DF | SS | MS | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Volume | 3 | 140.316 | 46.772 | 116.406 | $<0.001$ |
| Site | 5 | 1300.267 | 260.053 | 647.220 | $<0.001$ |
| Volume $x$ Site | 15 | 337.788 | 22.519 | 56.046 | $<0.001$ |
| Residual | 56 | 22.501 | 0.402 |  |  |
| Total | 79 | 1675.322 | 21.207 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $P=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site : 1.000
Power of performed test with alpha $=0.0500$ : for Volume $x$ Site : 1.000

## east square means for Volume .

Group Mean
$10 \quad 10.094$
506.462
$150 \quad 9.074$
Std Err of LS Mean $=0.161$

| Least square means for Site |  |  |
| :---: | :---: | :---: |
| Group | Mean | SEM |
| DC | 23.525 | 0.317 |
| 500 | 5.419 | 0.158 |
| 1000 | 5.231 | 0.158 |
| 1500 | 4.925 | 0.158 |
| 1750 | 4.806 | 0.158 |
| Control | 4.858 | 0.183 |


| Least square |  |  |
| :---: | :---: | :---: |
| Group | means for | Molume |
| Mean | SEM |  |
| $10 \times$ SC | 36.000 | 0.634 |
| $10 \times 500$ | 5.125 | 0.317 |
| $10 \times 1000$ | 4.850 | 0.317 |
| $10 \times 1500$ | 4.850 | 0.317 |
| $10 \times 1750$ | 4.875 | 0.317 |
| $10 \times$ Control | 4.867 | 0.366 |
| $50 \times$ DC | 14.300 | 0.634 |
| $50 \times 500$ | 5.525 | 0.317 |
| $50 \times 1000$ | 4.825 | 0.317 |
| $50 \times 1500$ | 4.825 | 0.317 |
| $50 \times 1750$ | 4.600 | 0.317 |
| $50 \times$ Control | 4.700 | 0.366 |
| $100 \times$ DC | 14.800 | 0.634 |
| $100 \times 500$ | 5.875 | 0.317 |
| $100 \times 1000$ | 5.375 | 0.317 |
| $100 \times 1500$ | 5.225 | 0.317 |
| $100 \times 1750$ | 5.100 | 0.317 |
| $100 \times$ Control | 4.900 | 0.366 |
| $150 \times$ DC | 29.000 | 0.634 |
| $150 \times 500$ | 5.150 | 0.317 |
| $150 \times 1000$ | 5.875 | 0.317 |
| $150 \times 1500$ | 4.800 | 0.317 |
| $150 \times 1750$ | 4.650 | 0.317 |
| $150 \times$ Control | 4.967 | 0.366 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | P<0.05 |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1000 | 31.150 | 43.954 | $<0.001$ | Yes |
| DC vs. 1500 | 31.150 | 43.954 | $<0.001$ | Yes |
| DC vs. 1750 | 31.125 | 43.919 | $<0.001$ | Yes |
| DC vs. 500 | 30.875 | 43.566 | $<0.001$ | Yes |
| DC vs. Control | 31.133 | 42.535 | $<0.001$ | Yes |
| 500 vs. 1500 | 0.275 | 0.614 | 1.000 | No |
| 500 vs. 1000 | 0.275 | 0.614 | 0.999 | No |
| 500 vs. 1750 | 0.250 | 0.558 | 0.999 | No |
| 500 vs. Control | 0.258 | 0.534 | 0.998 | No |
| 1750 vs. 1500 | 0.0250 | 0.0558 | 1.000 | No |
| 1750 vs. 1000 | 0.0250 | 0.0558 | 1.000 | No |
| Control vs. 1500 | 0.0167 | 0.0344 | 1.000 | No |
| Control vs. 1000 | 0.0167 | 0.0344 | 1.000 | No |
| 1750 vs. Control | 0.00833 | 0.0172 | 1.000 | No |
| 1000 vs. 1500 | 0.000 | 0.000 | 1.000 | No |
|  |  |  |  |  |
| Comparisons for factor: Site within 50 |  | $\mathbf{P}$ | P<0.05 |  |
| Comparison | Diff of Means | $\mathbf{t}$ |  |  |
| DC vs. 1750 | 9.700 | 13.687 | $<0.001$ | Yes |
| DC vs. 1500 | 9.475 | 13.370 | $<0.001$ | Yes |
| DC vs. 1000 | 9.475 | 13.370 | $<0.001$ | Yes |
| DC vs. Control | 9.600 | 13.116 | $<0.001$ | Yes |
| DC vs. 500 | 8.775 | 12.382 | $<0.001$ | Yes |
| 500 vs. 1750 | 0.925 | 2.064 | 0.360 | No |
| 500 vs. Control | 0.825 | 1.704 | 0.588 | No |
| 500 vs. 1500 | 0.700 | 1.562 | 0.653 | No |
| 500 vs. 1000 | 0.700 | 1.562 | 0.604 | No |
| 1000 vs. 1750 | 0.225 | 0.502 | 0.997 | No |
| 1500 vs. 1750 | 0.225 | 0.502 | 0.992 | No |
| 1000 vs. Control | 0.125 | 0.258 | 0.998 | No |
| 1500 vs. Control | 0.125 | 0.258 | 0.992 | No |
| Control vs. 1750 | 0.100 | 0.207 | 0.973 | No |
| 1000 vs. 1500 | 0.000 | 0.000 | 1.000 | No |
| 100 |  |  |  |  |


| Comparisons for factor: Site within $\mathbf{1 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison <br> DC vs. 1750 | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| DC vs. Control | 9.700 | 13.687 | $<0.001$ | Yes |
| DC vs. 1500 | 9.900 | 13.526 | $<0.001$ | Yes |
| DC vs. 1000 | 9.575 | 13.511 | $<0.001$ | Yes |
| DC vs. 500 | 9.425 | 13.299 | $<0.001$ | Yes |
| 500 vs. Control | 0.925 | 12.594 | $<0.001$ | Yes |
| 500 vs. 1750 | 0.975 | 2.014 | 0.394 | No |
| 500 vs. 1500 | 0.775 | 1.729 | 0.569 | No |
| 500 vs. 1000 | 0.550 | 1.450 | 0.734 | No |
| 1000 vs. Control | 0.475 | 1.116 | 0.889 | No |
| 1500 vs. Control | 0.325 | 0.981 | 0.910 | No |
| 1000 vs. 1750 | 0.275 | 0.671 | 0.970 | No |
| 1750 vs. Control | 0.200 | 0.413 | 0.956 | No |
| 1000 vs. 1500 | 0.150 | 0.335 | 0.932 | No |
| 1500 vs. 1750 | 0.125 | 0.279 | 0.781 | No |
|  |  |  |  | No |


| Comparisons for factor: Site within $\mathbf{1 5 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison <br> DC vs. 1750 | 24.350 | 34.359 | $\mathbf{c}$ (iff of Means | $\mathbf{t}$ |
| DC vs. 1500 | 24.200 | 34.147 | $<0.001$ | P<0.05 |
| DC vs. 500 | 23.850 | 33.653 | $<0.001$ | Yes |
| DC vs. Control | 24.033 | 32.835 | $<0.001$ | Yes |
| DC vs. 1000 | 23.125 | 32.630 | $<0.001$ | Yes |
| 1000 vs. 1750 | 1.225 | 2.733 | 0.081 | No |
| 1000 vs. 1500 | 1.075 | 2.398 | 0.165 | No |
| 1000 vs. Control | 0.908 | 1.876 | 0.420 | No |
| 1000 vs. 500 | 0.725 | 1.618 | 0.562 | No |
| 500 vs. 1750 | 0.500 | 1.116 | 0.848 | No |
| 500 vs. 1500 | 0.350 | 0.781 | 0.944 | No |
| Control vs. 1750 | 0.317 | 0.654 | 0.945 | No |
| 500 vs. Control | 0.183 | 0.379 | 0.975 | No |
| Control vs. 1500 | 0.167 | 0.344 | 0.928 | No |
| 1500 vs. 1750 | 0.150 | 0.335 | 0.739 | No |

Comparisons for factor: Volume within DC

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 50 | 21.700 | 24.207 | $<0.001$ | Yes |
| $\mathbf{1 0}$ vs. 100 | 21.200 | 23.649 | $<0.001$ | Yes |
| $\mathbf{1 5 0}$ vs. 50 | 14.700 | 16.398 | $<0.001$ | Yes |
| $\mathbf{1 5 0}$ vs. 100 | 14.200 | 15.840 | $<0.001$ | Yes |
| 10 vs. 150 | 7.000 | 7.809 | $<0.001$ | Yes |
| 100 vs. 50 | 0.500 | 0.558 | 0.579 | No |

Comparisons for factor: Volume within 500

| Comparisons for factor: Volume within $\mathbf{5 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 100 vs. 10 | 0.750 | 1.673 | 0.468 | No |
| $\mathbf{1 0 0}$ vs. 150 | 0.725 | 1.618 | 0.446 | No |
| 50 vs. 10 | 0.400 | 0.892 | 0.848 | No |
| 50 vs. 150 | 0.375 | 0.837 | 0.791 | No |
| 100 vs. 50 | 0.350 | 0.781 | 0.684 | No |
| 150 vs. 10 | 0.0250 | 0.0558 | 0.956 | No |


| Comparisons for factor: Volume within $\mathbf{1 0 0 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| $\mathbf{1 5 0}$ vs. 50 | 1.050 | 2.343 | 0.129 | No |  |  |
| 150 vs. 10 | 1.025 | 2.287 | 0.123 | No |  |  |
| 100 vs. 50 | 0.550 | 1.227 | 0.639 | No |  |  |
| 100 vs. 10 | 0.525 | 1.171 | 0.572 | No |  |  |
| 150 vs. 100 | 0.500 | 1.116 | 0.466 | No |  |  |
| 10 vs. 50 | 0.0250 | 0.0558 | 0.956 | No |  |  |


| Comparisons for factor: Volume within $\mathbf{1 5 0 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| 100 vs. 150 | 0.425 | 0.948 | 0.923 | No |  |  |
| 100 vs. 50 | 0.400 | 0.892 | 0.905 | No |  |  |
| $\mathbf{1 0 0}$ vs. 10 | 0.375 | 0.837 | 0.876 | No |  |  |
| 10 vs. 150 | 0.0500 | 0.112 | 0.999 | No |  |  |
| 10 vs. 50 | 0.0250 | 0.0558 | 0.998 | No |  |  |
| 50 vs. 150 | 0.0250 | 0.0558 | 0.956 | No |  |  |


| Comparisons for factor: Volume within $\mathbf{1 7 5 0}$   <br> Comparison Diff of Means $\mathbf{t}$ $\mathbf{P}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |  |  |
| 100 vs. 50 | 0.500 | 1.116 | 0.848 | No |
| 100 vs. 150 | 0.450 | 1.004 | 0.854 | No |
| 10 vs. 50 | 0.275 | 0.614 | 0.956 | No |
| 10 vs. 150 | 0.225 | 0.502 | 0.944 | No |
| 100 vs. 10 | 0.225 | 0.502 | 0.854 | No |
| 150 vs. 50 | 0.0500 | 0.112 | 0.912 | No |


| Comparisons for factor: Volume within Control <br> Comparison |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| 150 vs. 50 | 0.267 | 0.515 | 0.996 | No |
| 100 vs. 50 | 0.200 | 0.386 | 0.998 | No |
| $\mathbf{1 0}$ vs. 50 | 0.167 | 0.322 | 0.996 | No |
| 150 vs. 10 | 0.1000 | 0.193 | 0.996 | No |
| 150 vs. 100 | 0.0667 | 0.129 | 0.990 | No |
| 100 vs. 10 | 0.0333 | 0.0644 | 0.949 | No |

## One Way Analysis of Variance between Sites after 150,000m ${ }^{3}$ Disposal.

Dependent Variable: Lead
Normality Test (Shapiro-Wilk) Failed ( $P$ < 0.050)
Kruskal-Wallis One Way Analysis of Variance on Ranks

| Group | $\mathbf{N}$ | Missing | Median | $\mathbf{2 5 \%}$ | $\mathbf{7 5 \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 1 | 0 | 26.000 | 26.000 | 26.000 |
| 500 | 4 | 0 | 4.200 | 4.125 | 4.350 |
| 1000 | 4 | 0 | 4.300 | 4.050 | 4.400 |
| 1500 | 4 | 0 | 4.000 | 3.825 | 4.925 |
| 1750 | 4 | 0 | 4.150 | 3.725 | 4.200 |
| Control | 3 | 0 | 4.500 | 4.400 | 4.800 |

$H=8.542$ with 5 degrees of freedom. $(P=0.129)$
The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference $\quad(P=0.129)$

## Two Way Analysis of Variance between Sites and Disposal Volumes.

| Dependent Variable: Lead |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Failed | $(P<0.050)$ |
| Equal Variance Test: | Passed | $(P=0.671)$ |


|  |  |  |  |  | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Source of Variation | DF | SS | MS | F | P |
| Volume | 3 | 133.745 | 44.582 | 893.497 | $<0.001$ |
| Site | 5 | 494.142 | 98.828 | 1980.695 | $<0.001$ |
| Volume x Site | 15 | 299.923 | 19.995 | 400.732 | $<0.001$ |
| Residual | 56 | 2.794 | 0.0499 |  |  |
| Total | 79 | 812.860 | 10.289 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site : 1.000
Power of performed test with alpha $=0.0500$ : for Volume $\times$ Site $: 1.000$
Least square means for Volume :
Group Mean
$10 \quad 7.624$
$100 \quad 5.022$
$150 \quad 7.886$
Std Err of LS Mean $=0.0569$

| Least square means for Site : |  |  |  |
| :---: | :---: | :---: | :---: |
| Group | Mean | SEM |  |
| DC | 15.775 | 0.112 |  |
| 500 | 4.325 | 0.0558 |  |
| 1000 | 4.369 | 0.0558 |  |
| 1500 | 4.369 | 0.0558 |  |
| 1750 | 4.281 | 0.0558 |  |
| Control | 4.633 | 0.0645 |  |


| Least square |  | means for |
| :---: | :---: | :---: |
| Group | Mean | SEM |
| $10 \times$ Site $:$ |  |  |
| $10 \times 500$ | 23.000 | 0.223 |
| $10 \times 1000$ | 4.425 | 0.112 |
| $10 \times 1500$ | 4.550 | 0.112 |
| $10 \times 1750$ | 4.600 | 0.112 |
| $10 \times$ Control | 4.767 | 0.112 |
| $50 \times$ DC | 5.400 | 0.223 |
| $50 \times 500$ | 4.425 | 0.112 |
| $50 \times 1000$ | 4.450 | 0.112 |
| $50 \times 1500$ | 4.500 | 0.112 |
| $50 \times 1750$ | 4.275 | 0.112 |
| $50 \times$ Control | 4.767 | 0.129 |
| $100 \times$ DC | 8.700 | 0.223 |
| $100 \times 500$ | 4.225 | 0.112 |
| $100 \times 1000$ | 4.325 | 0.112 |
| $100 \times 1500$ | 4.225 | 0.112 |
| $100 \times 1750$ | 4.225 | 0.112 |
| $100 \times$ Control | 4.433 | 0.129 |
| $150 \times$ DC | 26.000 | 0.223 |
| $150 \times 500$ | 4.225 | 0.112 |
| $150 \times 1000$ | 4.250 | 0.112 |
| $150 \times 1500$ | 4.250 | 0.112 |
| $150 \times 1750$ | 4.025 | 0.112 |
| $150 \times$ Control | 4.567 | 0.129 |

## All Pairwise Multiple Comparison Procedures (Holm-Sidak method)

Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison <br> DC vs. 500 | Diff Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1000 | 18.575 | 74.378 | $<0.001$ | Yes |
| DC vs. 1500 | 18.550 | 74.277 | $<0.001$ | Yes |
| DC vs. 1750 | 18.400 | 74.077 | $<0.001$ | Yes |
| DC vs. 1750 | 73.677 | $<0.001$ | Yes |  |
| DC vs. Control | 18.233 | 70.691 | $<0.001$ | Yes |
| Control vs. 500 | 0.342 | 2.003 | 0.402 | No |
| Control vs. 1000 | 0.317 | 1.856 | 0.473 | No |
| Control vs. 1500 | 0.267 | 1.563 | 0.652 | No |
| 1750 vs. 500 | 0.175 | 1.108 | 0.892 | No |
| Control vs. 1750 | 0.167 | 0.977 | 0.912 | No |
| 1750 vs. 1000 | 0.150 | 0.950 | 0.881 | No |
| 1750 vs. 1500 | 0.1000 | 0.633 | 0.951 | No |
| 1500 vs. 500 | 0.0750 | 0.475 | 0.952 | No |
| 1500 vs. 1000 | 0.0500 | 0.317 | 0.939 | No |
| 1000 vs. 500 | 0.0250 | 0.158 | 0.875 | No |
|  |  |  |  |  |


| Comparisons for factor: Site within $\mathbf{5 0}$ <br> Comparison <br> Com of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1750 | 1.125 | 4.505 | $<0.001$ | Yes |
| DC vs. 500 | 0.975 | 3.904 | 0.004 | Yes |
| DC vs. 1000 | 0.950 | 3.804 | 0.005 | Yes |
| DC vs. 1500 | 0.900 | 3.604 | 0.008 | Yes |
| Control vs. 1750 | 0.492 | 2.882 | 0.060 | No |
| DC vs. Control | 0.633 | 2.455 | 0.159 | No |
| Control vs. 500 | 0.342 | 2.003 | 0.370 | No |
| Control vs. 1000 | 0.317 | 1.856 | 0.434 | No |
| Control vs. 1500 | 0.267 | 1.563 | 0.603 | No |
| 1500 vs. 1750 | 0.225 | 1.425 | 0.648 | No |
| 1000 vs. 1750 | 0.175 | 1.108 | 0.796 | No |
| 500 vs. 1750 | 0.150 | 0.950 | 0.817 | No |
| 1500 vs. 500 | 0.0750 | 0.475 | 0.952 | No |
| 1500 vs. 1000 | 0.0500 | 0.317 | 0.939 | No |
| 1000 vs. 500 | 0.0250 | 0.158 | 0.875 | No |

Comparisons for factor: Site within 100

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1750 | 4.475 | 17.919 | $<0.001$ | Yes |
| DC vs. 500 | 4.475 | 17.919 | $<0.001$ | Yes |
| DC vs. 1500 | 4.475 | 17.919 | $<0.001$ | Yes |
| DC vs. 1000 | 4.375 | 17.518 | $<0.001$ | Yes |
| DC vs. Control | 4.267 | 16.542 | $<0.001$ | Yes |
| Control vs. 1750 | 0.208 | 1.221 | 0.924 | No |
| Control vs. 500 | 0.208 | 1.221 | 0.902 | No |
| Control vs. 1500 | 0.208 | 1.221 | 0.873 | No |
| Control vs. 1000 | 0.108 | 0.635 | 0.995 | No |
| 1000 vs. 1750 | 0.100 | 0.633 | 0.989 | No |
| 1000 vs. 500 | 0.100 | 0.633 | 0.977 | No |
| 1000 vs. 1500 | 0.1000 | 0.633 | 0.951 | No |
| 1500 vs. 1750 | 0.000 | 0.000 | 1.000 | No |
| 1500 vs. 500 | 0.000 | 0.000 | 1.000 | No |
| 500 vs. 1750 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within 150 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| DC vs. 1750 | 21.975 | 87.992 | <0.001 | Yes |
| DC vs. 500 | 21.775 | 87.191 | <0.001 | Yes |
| DC vs. 1000 | 21.750 | 87.091 | <0.001 | Yes |
| DC vs. 1500 | 21.750 | 87.091 | <0.001 | Yes |
| DC vs. Control | 21.433 | 83.098 | <0.001 | Yes |
| Control vs. 1750 | 0.542 | 3.175 | 0.024 | Yes |
| Control vs. 500 | 0.342 | 2.003 | 0.370 | No |
| Control vs. 1000 | 0.317 | 1.856 | 0.434 | No |
| Control vs. 1500 | 0.317 | 1.856 | 0.392 | No |
| 1500 vs. 1750 | 0.225 | 1.425 | 0.648 | No |
| 1000 vs. 1750 | 0.225 | 1.425 | 0.581 | No |
| 500 vs. 1750 | 0.200 | 1.266 | 0.612 | No |
| 1500 vs. 500 | 0.0250 | 0.158 | 0.998 | No |
| 1000 vs. 500 | 0.0250 | 0.158 | 0.984 | No |
| 1500 vs. 1000 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 150 vs. 50 | 20.600 | 65.211 | <0.001 | Yes |
| 10 vs. 50 | 17.600 | 55.714 | <0.001 | Yes |
| 150 vs. 100 | 17.300 | 54.764 | <0.001 | Yes |
| 10 vs. 100 | 14.300 | 45.268 | <0.001 | Yes |
| 100 vs. 50 | 3.300 | 10.446 | <0.001 | Yes |
| 150 vs. 10 | 3.000 | 9.497 | <0.001 | Yes |

Comparisons for factor: Volume within 500

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 0.200 | 1.266 | 0.758 | No |
| 10 vs. 100 | 0.200 | 1.266 | 0.694 | No |
| 50 vs. 150 | 0.200 | 1.266 | 0.612 | No |
| 50 vs. 100 | 0.200 | 1.266 | 0.508 | No |
| 10 vs. 50 | 0.000 | 0.000 | 1.000 | No |
| 100 vs. 150 | 0.000 | 0.000 | 1.000 | No |

Comparisons for factor: Volume within 1000

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 vs. 150 | 0.200 | 1.266 | 0.758 | No |
| 10 vs. 150 | 0.200 | 1.266 | 0.694 | No |
| 50 vs. 100 | 0.125 | 0.791 | 0.896 | No |
| 10 vs. 100 | 0.125 | 0.791 | 0.817 | No |
| 100 vs. 150 | 0.0750 | 0.475 | 0.868 | No |
| 50 vs. 10 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within $\mathbf{1 5 0 0}$   <br> Comparison Diff of Means $\mathbf{t}$ $\mathbf{P}$ |  |  |  |  |  | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 vs. 100 | 0.275 | 1.741 | 0.421 | No |  |  |
| $\mathbf{1 0}$ vs. 100 | 0.275 | 1.741 | 0.366 | No |  |  |
| 50 vs. 150 | 0.250 | 1.583 | 0.398 | No |  |  |
| $\mathbf{1 0}$ vs. 150 | 0.250 | 1.583 | 0.316 | No |  |  |
| 150 vs. 100 | 0.0250 | 0.158 | 0.984 | No |  |  |
| 50 vs. 10 | 0.000 | 0.000 | 1.000 | No |  |  |

Comparisons for factor: Volume within 1750

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 0.575 | 3.640 | 0.004 | Yes |
| $\mathbf{1 0}$ vs. 100 | 0.375 | 2.374 | 0.101 | No |
| $\mathbf{1 0}$ vs. 50 | 0.325 | 2.058 | 0.166 | No |
| 50 vs. 150 | 0.250 | 1.583 | 0.316 | No |
| 100 vs. 150 | 0.200 | 1.266 | 0.377 | No |
| 50 vs. 100 | 0.0500 | 0.317 | 0.753 | No |

Comparisons for factor: Volume within Control
Comparison Diff of Means t P P<0.05

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 100 | 0.333 | 1.828 | 0.365 | No |
| 50 vs. 100 | 0.333 | 1.828 | 0.315 | No |
| 10 vs. 150 | 0.200 | 1.097 | 0.728 | No |
| 50 vs. 150 | 0.200 | 1.097 | 0.623 | No |
| 150 vs. 100 | 0.133 | 0.731 | 0.717 | No |
| 10 vs. 50 | 0.000 | 0.000 | 1.000 | No |

One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

| Dependent Variable: Mercury |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.875)$ |
| Equal Variance Test: | Passed | $(P=0.581)$ |

## Equal Variance Test:

$$
\begin{array}{ll}
\text { Passed } & (P=0.875 \\
\text { Passed } & (P=0.581
\end{array}
$$

| Group Name | N | Missing | Mean | Std Dev | SEM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\quad$ DC | 1 | 0 | 0.123 | 0.000 | 0.000 |  |
| 500 | 4 | 0 | 0.0422 | 0.00556 | 0.00278 |  |
| 1000 | 4 | 0 | 0.0445 | 0.00580 | 0.00290 |  |
| 1500 | 4 | 0 | 0.0420 | 0.00424 | 0.00212 |  |
| 1750 | 4 | 0 | 0.0530 | 0.0104 | 0.00521 |  |
| Control | 3 | 0 | 0.0477 | 0.00208 | 0.00120 |  |
|  |  |  |  |  |  |  |
| Source of Variation | DF | SS | MS | F | P |  |
| Between Groups | 4 | 0.00600 | 0.00150 | 36.033 | $<0.001$ |  |
| Residual | 14 | 0.000582 | 0.0000416 |  |  |  |
| Total | 18 | 0.00658 |  |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$

## All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: Distance <br> Comparison <br> Diff of Means | $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 0.0810 | 6 | 15.885 | $<0.001$ | Yes |
| DC vs. 500 | 0.0808 | 6 | 15.836 | $<0.001$ | Yes |
| DC vs. 1000 | 0.0785 | 6 | 15.395 | $<0.001$ | Yes |
| DC vs. Control | 0.0753 | 6 | 14.305 | $<0.001$ | Yes |
| DC vs. 1750 | 0.0700 | 6 | 13.728 | $<0.001$ | Yes |
| 1750 vs. 1500 | 0.0110 | 6 | 3.411 | 0.217 | No |
| $\mathbf{1 7 5 0}$ vs. 500 | 0.0108 | 6 | 3.333 | 0.236 | Do Not Test |
| 1750 vs. 1000 | 0.00850 | 6 | 2.636 | 0.461 | Do Not Test |
| $\mathbf{1 7 5 0}$ vs. Control | 0.00533 | 6 | 1.531 | 0.880 | Do Not Test |
| Control vs. 1500 | 0.00567 | 6 | 1.627 | 0.852 | Do Not Test |
| Control vs. 500 | 0.00542 | 6 | 1.555 | 0.874 | Do Not Test |
| Control vs. 1000 | 0.00317 | 6 | 0.909 | 0.985 | Do Not Test |
| 1000 vs. 1500 | 0.00250 | 6 | 0.775 | 0.993 | Do Not Test |
| 1000 vs. 500 | 0.00225 | 6 | 0.698 | 0.996 | Do Not Test |
| 500 vs. 1500 | 0.000250 | 6 | 0.0775 | 1.000 | Do Not Test |
|  |  |  |  |  |  |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs . 2, then you would not test 4 vs . 3 and 3 vs . 2, bu still test 4 vs. 1 and 3 vs. 1 ( 4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4321 ). Note that no testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

## Two Way Analysis of Variance between Sites and Disposal Volumes.

| Dependent Variable: Mercury <br> Normality Test (Shapiro-Wilk) | Failed | $(\mathrm{P}<0.050)$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Equal Variance Test: |  |  | Failed | $(\mathrm{P}<0.050)$ |  |
|  |  |  |  |  |  |
| Source of Variation | DF | SS | MS | F | P |
| Volume | 3 | 0.00138 | 0.000461 | 3.103 | 0.034 |
| Site | 5 | 0.00950 | 0.00190 | 12.787 | $<0.001$ |
| Volume x Site | 15 | 0.0175 | 0.00116 | 7.833 | $<0.001$ |
| Residual | 56 | 0.00832 | 0.000149 |  |  |
| Total | 79 | 0.0395 | 0.000501 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 0.502
Power of performed test with alpha $=0.0500$ : for Site $: 1.000$
Power of performed test with alpha $=0.0500$ : for Volume $\times$ Site $: 1.000$
Least square means for Volume

| Group | Mean |
| :---: | :---: |
| 10 | 0.055 |
| 50 | 0.056 |
| 100 | 0.067 |
| 150 | 0.058 |

Std Err of LS Mean $=0.00310$

| Least square means for Site : |  |  |  |
| :---: | :---: | :---: | :---: |
| Group | Mean | SEM |  |
| DC | 0.0882 | 0.00609 |  |
| 500 | 0.0501 | 0.00305 |  |
| 1000 | 0.0492 | 0.00305 |  |
| 1500 | 0.0506 | 0.00305 |  |
| 1750 | 0.0485 | 0.00305 |  |
| Control | 0.0712 | 0.00352 |  |


| Least square |  |  |
| :---: | :---: | :---: |
| Group | Means for | Volume $\times$ Site : |
| $10 \times$ SEM | 0.120 | 0.0122 |
| $10 \times 500$ | 0.0427 | 0.00609 |
| $10 \times 1000$ | 0.0387 | 0.00609 |
| $10 \times 1500$ | 0.0462 | 0.00609 |
| $10 \times 1750$ | 0.0412 | 0.00609 |
| $10 \times$ Control | 0.0433 | 0.00704 |
| $50 \times$ DC | 0.0450 | 0.0122 |
| $50 \times 500$ | 0.0605 | 0.00609 |
| $50 \times 1000$ | 0.0605 | 0.00609 |
| $50 \times 1500$ | 0.0620 | 0.00609 |
| $50 \times 1750$ | 0.0472 | 0.00609 |
| $50 \times$ Control | 0.0660 | 0.00704 |
| $100 \times$ DC | 0.0650 | 0.0122 |
| $100 \times 500$ | 0.0550 | 0.00609 |
| $100 \times 1000$ | 0.0530 | 0.00609 |
| $100 \times 1500$ | 0.0520 | 0.00609 |
| $100 \times 1750$ | 0.0525 | 0.00609 |
| $100 \times$ Control | 0.128 | 0.00704 |
| $150 \times$ DC | 0.123 | 0.0122 |
| $150 \times 500$ | 0.0422 | 0.00609 |
| $150 \times 1000$ | 0.0445 | 0.00609 |
| $150 \times 1500$ | 0.0420 | 0.00609 |
| $150 \times 1750$ | 0.0530 | 0.00609 |
| $150 \times$ Control | 0.0477 | 0.00704 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1000 | 0.0812 | 5.962 | $<0.001$ | Yes |
| DC vs. 1750 | 0.0787 | 5.779 | $<0.001$ | Yes |
| DC vs. 500 | 0.0772 | 5.669 | $<0.001$ | Yes |
| DC vs. Control | 0.0767 | 5.447 | $<0.001$ | Yes |
| DC vs. 1500 | 0.0737 | 5.412 | $<0.001$ | Yes |
| 1500 vs. 1000 | 0.00750 | 0.870 | 0.993 | No |
| 1500 vs. 1750 | 0.00500 | 0.580 | 0.999 | No |
| Control vs. 1000 | 0.00458 | 0.492 | 1.000 | No |
| 500 vs. 1000 | 0.00400 | 0.464 | 0.999 | No |
| 1500 vs. 500 | 0.00350 | 0.406 | 0.999 | No |
| 1500 vs. Control | 0.00292 | 0.313 | 0.999 | No |
| 1750 vs. 1000 | 0.00250 | 0.290 | 0.997 | No |
| Control vs. 1750 | 0.00208 | 0.224 | 0.995 | No |
| 500 vs. 1750 | 0.00150 | 0.174 | 0.981 | No |
| Control vs. 500 | 0.000583 | 0.0627 | 0.950 | No |


| Comparisons for factor: Site within $\mathbf{5 0}$ <br> Comparison <br> Control vs. 1750 | Diff of Means <br> Col | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1500 vs. 1750 | 0.0188 | 2.014 | 0.528 | No |
| 1000 vs. 1750 | 0.0132 | 1.711 | 0.743 | No |
| 500 vs. 1750 | 0.0132 | 1.537 | 0.836 | No |
| Control vs. DC | 0.0210 | 1.537 | 0.812 | No |
| 1500 vs. DC | 0.0170 | 1.247 | 0.813 | No |
| 1000 vs. DC | 0.0155 | 1.137 | 0.934 | No |
| 500 vs. DC | 0.0155 | 1.137 | 0.910 | No |
| Control vs. 500 | 0.00550 | 0.591 | 0.997 | No |
| Control vs. 1000 | 0.00550 | 0.591 | 0.992 | No |
| Control vs. 1500 | 0.00400 | 0.430 | 0.996 | No |
| 1500 vs. 1000 | 0.00150 | 0.174 | 1.000 | No |
| 1500 vs. 500 | 0.00150 | 0.174 | 0.997 | No |
| 1750 vs. DC | 0.00225 | 0.165 | 0.983 | No |
| 500 vs. 1000 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within <br> Comparison <br> Com <br> Control vs. 1500 <br> Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Control vs. 1750 | 0.0760 | 8.164 | $<0.001$ | Yes |
| Control vs. 1000 | 0.0755 | 8.110 | $<0.001$ | Yes |
| Control vs. 500 | 0.0750 | 8.056 | $<0.001$ | Yes |
| Control vs. DC | 0.0630 | 7.842 | $<0.001$ | Yes |
| DC vs. 1500 | 0.0130 | 4.476 | $<0.001$ | Yes |
| DC vs. 1750 | 0.0125 | 0.954 | 0.985 | No |
| DC vs. 1000 | 0.0120 | 0.881 | 0.983 | No |
| DC vs. 500 | 0.01000 | 0.734 | 0.979 | No |
| 500 vs. 1500 | 0.00300 | 0.348 | 1.000 | No |
| 500 vs. 1750 | 0.00250 | 0.290 | 0.999 | No |
| 500 vs. 1000 | 0.00200 | 0.232 | 0.999 | No |
| 1000 vs. 1500 | 0.001000 | 0.116 | 0.999 | No |
| 1000 vs. 1750 | 0.000500 | 0.0580 | 0.998 | No |
| 1750 vs. 1500 | 0.000500 | 0.0580 | 0.954 | No |


| Comparisons for factor: Site within <br> Comparison <br> Com |  |  |  |  |  |  | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 0.0810 | 5.944 | $<0.001$ | Yes |  |  |  |  |  |  |
| DC vs. 500 | 0.0807 | 5.925 | $<0.001$ | Yes |  |  |  |  |  |  |
| DC vs. 1000 | 0.0785 | 5.760 | $<0.001$ | Yes |  |  |  |  |  |  |
| DC vs. Control | 0.0753 | 5.352 | $<0.001$ | Yes |  |  |  |  |  |  |
| DC vs. 1750 | 0.0700 | 5.137 | $<0.001$ | Yes |  |  |  |  |  |  |
| 1750 vs. 1500 | 0.0110 | 1.276 | 0.902 | No |  |  |  |  |  |  |
| 1750 vs. 500 | 0.0108 | 1.247 | 0.890 | No |  |  |  |  |  |  |
| 1750 vs. 1000 | 0.00850 | 0.986 | 0.959 | No |  |  |  |  |  |  |
| Control vs. 1500 | 0.00567 | 0.609 | 0.996 | No |  |  |  |  |  |  |
| Control vs. 500 | 0.00542 | 0.582 | 0.993 | No |  |  |  |  |  |  |
| 1750 vs. Control | 0.00533 | 0.573 | 0.985 | No |  |  |  |  |  |  |
| Control vs. 1000 | 0.00317 | 0.340 | 0.995 | No |  |  |  |  |  |  |
| 1000 vs. 1500 | 0.00250 | 0.290 | 0.988 | No |  |  |  |  |  |  |
| 1000 vs. 500 | 0.00225 | 0.261 | 0.958 | No |  |  |  |  |  |  |
| 500 vs. 1500 | 0.000250 | 0.0290 | 0.977 | No |  |  |  |  |  |  |


| Comparisons for factor: Volume within DC <br> Comparison |  |  |  |  |  | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 vs. 50 | 0.0780 | 4.525 | $<0.001$ | Yes |  |  |  |  |  |
| 10 vs. 50 | 0.0750 | 4.351 | $<0.001$ | Yes |  |  |  |  |  |
| 150 vs. 100 | 0.0580 | 3.365 | 0.006 | Yes |  |  |  |  |  |
| 10 vs. 100 | 0.0550 | 3.191 | 0.007 | Yes |  |  |  |  |  |
| 100 vs. 50 | 0.0200 | 1.160 | 0.439 | No |  |  |  |  |  |
| 150 vs. 10 | 0.00300 | 0.174 | 0.862 | No |  |  |  |  |  |


| Comparisons for factor: Volume within $\mathbf{5 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 50 vs. 150 | 0.0182 | 2.117 | 0.211 | No |
| 50 vs. 10 | 0.0177 | 2.059 | 0.202 | No |
| 100 vs. 150 | 0.0128 | 1.479 | 0.465 | No |
| 100 vs. 10 | 0.0123 | 1.421 | 0.409 | No |
| 50 vs. 100 | 0.00550 | 0.638 | 0.775 | No |
| 10 vs. 150 | 0.000500 | 0.0580 | 0.954 | No |


| Comparisons for factor: Volume within $\mathbf{1 0 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 50 vs. 10 | 0.0217 | 2.524 | 0.084 | No |
| 50 vs. 150 | 0.0160 | 1.856 | 0.299 | No |
| 100 vs. 10 | 0.0142 | 1.653 | 0.355 | No |
| 100 vs. 150 | 0.00850 | 0.986 | 0.697 | No |
| 50 vs. 100 | 0.00750 | 0.870 | 0.625 | No |
| 150 vs. 10 | 0.00575 | 0.667 | 0.507 | No |


| Comparisons for factor: Volume within $\mathbf{1 5 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 50 vs. 150 | 0.0200 | 2.321 | 0.136 | No |
| 50 vs. 10 | 0.0158 | 1.827 | 0.315 | No |
| 50 vs. 100 | 0.01000 | 1.160 | 0.685 | No |
| 100 vs. 150 | 0.01000 | 1.160 | 0.580 | No |
| 100 vs. 10 | 0.00575 | 0.667 | 0.757 | No |
| 10 vs. 150 | 0.00425 | 0.493 | 0.624 | No |


| Comparisons for factor: Volume within $\mathbf{1 7 5 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| $\mathbf{1 5 0}$ vs. 10 | 0.0118 | 1.363 | 0.692 | No |  |  |
| $\mathbf{1 0 0}$ vs. 10 | 0.0113 | 1.305 | 0.666 | No |  |  |
| 50 vs. 10 | 0.00600 | 0.696 | 0.932 | No |  |  |
| $\mathbf{1 5 0}$ vs. 50 | 0.00575 | 0.667 | 0.880 | No |  |  |
| $\mathbf{1 0 0}$ vs. 50 | 0.00525 | 0.609 | 0.793 | No |  |  |
| 150 vs. 100 | 0.000500 | 0.0580 | 0.954 | No |  |  |

Comparisons for factor: Volume within Control

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 10 | 0.0847 | 8.507 | $<0.001$ | Yes |
| 100 vs. 150 | 0.0803 | 8.072 | $<0.001$ | Yes |
| 100 vs. 50 | 0.0620 | 6.230 | $<0.001$ | Yes |
| 50 vs. 10 | 0.0227 | 2.278 | 0.078 | No |
| 50 vs. 150 | 0.0183 | 1.842 | 0.136 | No |
| 150 vs. 10 | 0.00433 | 0.435 | 0.665 | No |

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

| Dependent Variable: Nickel |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.086)$ |
| Equal Variance Test: | Passed | $(P=0.920)$ |


| Group Name | $\mathbf{N}$ | Missing | Mean | Std Dev | SEM |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\quad$ DC | 1 | 0 | 10 | 0.000 | 0.000 |
| 500 | 4 | 0 | 15.475 | 0.888 | 0.444 |
| 1000 | 4 | 0 | 15.300 | 0.841 | 0.420 |
| 1500 | 4 | 0 | 15.275 | 0.780 | 0.390 |
| 1750 | 4 | 0 | 15.150 | 0.843 | 0.421 |
| Control | 3 | 0 | 16.867 | 0.493 | 0.285 |
|  |  |  |  | MS | F |
| Source of Variation | DF | SS | P |  |  |
| Between Groups | 4 | 35.650 | 8.913 | 13.970 | $<0.001$ |
| Residual | 14 | 8.932 | 0.638 |  |  |
| Total | 18 | 44.582 |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.050$ : 1.000
All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: Distance <br> Comparison | Diff of Means | $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Control vs. DC | 6.867 | 6 | 10.529 | $<0.001$ | Yes |
| Control vs. 1750 | 1.717 | 6 | 3.980 | 0.113 | No |
| Control vs. 1500 | 1.592 | 6 | 3.690 | 0.159 | Do Not Test |
| Control vs. 1000 | 1.567 | 6 | 3.632 | 0.170 | Do Not Test |
| Control vs. 500 | 1.392 | 6 | 3.226 | 0.264 | Do Not Test |
| 500 vs. DC | 5.475 | 6 | 8.670 | $<0.001$ | Yes |
| 500 vs. 1750 | 0.325 | 6 | 0.814 | 0.991 | Do Not Test |
| 500 vs. 1500 | 0.200 | 6 | 0.501 | 0.999 | Do Not Test |
| 500 vs. 1000 | 0.175 | 6 | 0.438 | 1.000 | Do Not Test |
| 1000 vs. DC | 5.300 | 6 | 8.393 | $<0.001$ | Yes |
| 1000 vs. 1750 | 0.150 | 6 | 0.376 | 1.000 | Do Not Test |
| 1000 vs. 1500 | 0.0250 | 6 | 0.0626 | 1.000 | Do Not Test |
| 1500 vs. DC | 5.275 | 6 | 8.354 | $<0.001$ | Yes |
| 1500 vs. 1750 | 0.125 | 6 | 0.313 | 1.000 | Do Not Test |
| 1750 vs. DC | 5.150 | 6 | 8.156 | $<0.001$ | Yes |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs . 2 , then you would not test $4 \mathrm{vs}, 3$ and 3 vs . 2 , but still test $4 \mathrm{vs}, 1$ and $3 \mathrm{vs} .1(4 \mathrm{vs} .3$ and 3 vs , 2 are enclosed by $4 \mathrm{vs}, 2.4321)$ Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

## Two Way Analysis of Variance between Sites and Disposal Volumes.

$\left.\begin{array}{lccccc}\begin{array}{l}\text { Dependent Variable: Nickel } \\ \text { Normality Test (Shapiro-Wilk) }\end{array} & & \begin{array}{l}\text { Failed } \\ \text { Passed }\end{array} & (P<0.050) & (P=0.271)\end{array}\right)$

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. $(\mathrm{P}=<0.001)$

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site : 0.925
Power of performed test with alpha $=0.0500$ : for Volume x Site : 1.000

| Least square means for Volume : |  |  |
| :--- | :--- | :---: |
| Group | Mean |  |
| 10 | 16.076 |  |
| 50 | 14.897 |  |
| 100 | 14.010 |  |
| 150 | 14.678 |  |

Std Err of LS Mean $=0.146$

| Least square means for Site : |  |  |  |
| :---: | :---: | :---: | :---: |
| Group | Mean | SEM |  |
| DC | 14.200 | 0.286 |  |
| 500 | 14.712 | 0.143 |  |
| 1000 | 14.956 | 0.143 |  |
| 1500 | 14.956 | 0.143 |  |
| 1750 | 15.100 | 0.143 |  |
| Control | 15.567 | 0.165 |  |


| Least square |  |  |
| :---: | :---: | :---: |
| Group | means for | Molume |
| $10 \times$ Site $:$ |  |  |
| $10 \times 500$ | 24.000 | 0.573 |
| $10 \times 1000$ | 14.375 | 0.286 |
| $10 \times 1500$ | 14.250 | 0.286 |
| $10 \times 1750$ | 14.700 | 0.286 |
| $10 \times$ Control | 14.933 | 0.331 |
| $50 \times$ DC | 8.900 | 0.573 |
| $50 \times 500$ | 15.875 | 0.286 |
| $50 \times 1000$ | 16.175 | 0.286 |
| $50 \times 1500$ | 16.075 | 0.286 |
| $50 \times 1750$ | 16.125 | 0.286 |
| $50 \times$ Control | 16.233 | 0.331 |
| $100 \times$ DC | 13.900 | 0.573 |
| $100 \times 500$ | 13.125 | 0.286 |
| $100 \times 1000$ | 14.100 | 0.286 |
| $100 \times 1500$ | 14.275 | 0.286 |
| $100 \times 1750$ | 14.425 | 0.286 |
| $100 \times$ Control | 14.233 | 0.331 |
| $150 \times$ DC | 10.000 | 0.573 |
| $150 \times 500$ | 15.475 | 0.286 |
| $150 \times 1000$ | 15.300 | 0.286 |
| $150 \times 1500$ | 15.275 | 0.286 |
| $150 \times 1750$ | 15.150 | 0.286 |
| $150 \times$ Control | 16.867 | 0.331 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):
Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 9.800 | 15.299 | $<0.001$ | Yes |
| DC vs. 1000 | 9.750 | 15.221 | $<0.001$ | Yes |
| DC vs. 500 | 9.625 | 15.026 | $<0.001$ | Yes |
| DC vs. 1750 | 9.300 | 14.519 | $<0.001$ | Yes |
| DC vs. Control | 9.067 | 13.705 | $<0.001$ | Yes |
| Control vs. 1500 | 0.733 | 1.676 | 0.649 | No |
| Control vs. 1000 | 0.683 | 1.562 | 0.696 | No |
| Control vs. 500 | 0.558 | 1.276 | 0.844 | No |
| 1750 vs. 1500 | 0.500 | 1.234 | 0.828 | No |
| 1750 vs. 1000 | 0.450 | 1.111 | 0.850 | No |
| 1750 vs. 500 | 0.325 | 0.802 | 0.938 | No |
| Control vs. 1750 | 0.233 | 0.533 | 0.973 | No |
| 500 vs. 1500 | 0.175 | 0.432 | 0.963 | No |
| 500 vs. 1000 | 0.125 | 0.309 | 0.942 | No |
| 1000 vs. 1500 | 0.0500 | 0.123 | 0.902 | No |


| Comparisons for factor: Site within $\mathbf{5 0}$ <br> Comparison <br> Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1000 vs. DC | 7.275 | 11.357 | $<0.001$ | Yes |
| 1750 vs. DC | 7.225 | 11.279 | $<0.001$ | Yes |
| 1500 vs. DC | 7.175 | 11.201 | $<0.001$ | Yes |
| Control vs. DC | 7.333 | 11.085 | $<0.001$ | Yes |
| 500 vs. DC | 6.975 | 10.889 | $<0.001$ | Yes |
| Control vs. 500 | 0.358 | 0.819 | 0.995 | No |
| 1000 vs. 500 | 0.300 | 0.741 | 0.996 | No |
| 1750 vs. 500 | 0.250 | 0.617 | 0.998 | No |
| 1500 vs. 500 | 0.200 | 0.494 | 0.999 | No |
| Control vs. 1500 | 0.158 | 0.362 | 1.000 | No |
| Control vs. 1750 | 0.108 | 0.248 | 1.000 | No |
| 1000 vs. 1500 | 0.100 | 0.247 | 0.999 | No |
| Control vs. 1000 | 0.0583 | 0.133 | 0.999 | No |
| 1750 vs. 1500 | 0.0500 | 0.123 | 0.990 | No |
| 1000 vs. 1750 | 0.0500 | 0.123 | 0.902 | No |


| Comparisons for factor: Site within $\mathbf{1 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison <br> Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| 1750 vs. 500 | 1.300 | 3.209 | 0.033 | Yes |
| 1500 vs. 500 | 1.150 | 2.839 | 0.085 | No |
| Control vs. 500 | 1.108 | 2.533 | 0.169 | No |
| 1000 vs. 500 | 0.975 | 2.407 | 0.210 | No |
| DC vs. 500 | 0.775 | 1.210 | 0.945 | No |
| 1750 vs. DC | 0.525 | 0.820 | 0.995 | No |
| 1750 vs. 1000 | 0.325 | 0.802 | 0.993 | No |
| 1500 vs. DC | 0.375 | 0.585 | 0.999 | No |
| Control vs. DC | 0.333 | 0.504 | 0.999 | No |
| 1750 vs. Control | 0.192 | 0.438 | 0.999 | No |
| 1500 vs. 1000 | 0.175 | 0.432 | 0.996 | No |
| 1750 vs. 1500 | 0.150 | 0.370 | 0.993 | No |
| 1000 vs. DC | 0.200 | 0.312 | 0.985 | No |
| Control vs. 1000 | 0.133 | 0.305 | 0.943 | No |
| 1500 vs. Control | 0.0417 | 0.0952 | 0.924 | No |


| Comparisons for factor: Site within $\mathbf{1 5 0}$ <br> Comparison <br> Diff of Means <br> $\mathbf{t}$ |  | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Control vs. DC | 6.867 | 10.380 | $<0.001$ | Yes |
| 500 vs. DC | 5.475 | 8.547 | $<0.001$ | Yes |
| 1000 vs. DC | 5.300 | 8.274 | $<0.001$ | Yes |
| 1500 vs. DC | 5.275 | 8.235 | $<0.001$ | Yes |
| 1750 vs. DC | 5.150 | 8.040 | $<0.001$ | Yes |
| Control vs. 1750 | 1.717 | 3.923 | 0.002 | Yes |
| Control vs. 1500 | 1.592 | 3.637 | 0.005 | Yes |
| Control vs. 1000 | 1.567 | 3.580 | 0.006 | Yes |
| Control vs. 500 | 1.392 | 3.180 | 0.017 | Yes |
| 500 vs. 1750 | 0.325 | 0.802 | 0.964 | No |
| 500 vs. 1500 | 0.200 | 0.494 | 0.992 | No |
| 500 vs. 1000 | 0.175 | 0.432 | 0.988 | No |
| 1000 vs. 1750 | 0.150 | 0.370 | 0.976 | No |
| 1500 vs. 1750 | 0.125 | 0.309 | 0.942 | No |
| 1000 vs. 1500 | 0.0250 | 0.0617 | 0.951 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |  |
| $\mathbf{1 0}$ vs. 50 | 15.100 | 18.636 | $<0.001$ | Yes |  |  |  |
| $\mathbf{1 0}$ vs. 150 | 14.000 | 17.279 | $<0.001$ | Yes |  |  |  |
| $\mathbf{1 0}$ vs. 100 | 10.100 | 12.465 | $<0.001$ | Yes |  |  |  |
| $\mathbf{1 0 0}$ vs. 50 | 5.000 | 6.171 | $<0.001$ | Yes |  |  |  |
| 100 vs. 150 | 3.900 | 4.813 | $<0.001$ | Yes |  |  |  |
| 150 vs. 50 | 1.100 | 1.358 | 0.180 | No |  |  |  |


| Comparisons for factor: Volume within $\mathbf{5 0 0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| 50 vs. 100 | 2.750 | 6.788 | $<0.001$ | Yes |
| $\mathbf{1 5 0}$ vs. 100 | 2.350 | 5.801 | $<0.001$ | Yes |
| 50 vs. 10 | 1.500 | 3.703 | 0.002 | Yes |
| 10 vs. 100 | 1.250 | 3.086 | 0.009 | Yes |
| 150 vs. 10 | 1.100 | 2.715 | 0.018 | Yes |
| 50 vs. 150 | 0.400 | 0.987 | 0.328 | No |

Comparisons for factor: Volume within 1000

| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 vs. 100 | 2.075 | 5.122 | $<0.001$ | Yes |
| 50 vs. 10 | 1.925 | 4.752 | $<0.001$ | Yes |
| 150 vs. 100 | 1.200 | 2.962 | 0.018 | Yes |
| 150 vs. 10 | 1.050 | 2.592 | 0.036 | Yes |
| 50 vs. 150 | 0.875 | 2.160 | 0.069 | No |
| 10 vs. 100 | 0.150 | 0.370 | 0.713 | No |


| Comparisons for factor: Volume within $\mathbf{1 5 0 0}$ <br> Comparison |  |  |  | Diff of Means |
| :---: | :---: | :---: | :---: | :---: |
| Com | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| 50 vs. 10 | 1.875 | 4.628 | $<0.001$ | Yes |
| 50 vs. 100 | 1.800 | 4.443 | $<0.001$ | Yes |
| 150 vs. 10 | 1.075 | 2.654 | 0.041 | Yes |
| 150 vs. 100 | 1.000 | 2.468 | 0.049 | Yes |
| 50 vs. 150 | 0.800 | 1.975 | 0.104 | No |
| 100 vs. 10 | 0.0750 | 0.185 | 0.854 | No |


| Comparisons for factor: Volume within $\mathbf{1 7 5 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| 50 vs. 100 | 1.700 | 4.196 | $<0.001$ | Yes |  |  |
| 50 vs. 10 | 1.425 | 3.517 | 0.004 | Yes |  |  |
| 50 vs. 150 | 0.975 | 2.407 | 0.075 | No |  |  |
| 150 vs. 100 | 0.725 | 1.790 | 0.219 | No |  |  |
| 150 vs. 10 | 0.450 | 1.111 | 0.469 | No |  |  |
| 10 vs. 100 | 0.275 | 0.679 | 0.500 | No |  |  |


| Comparisons for factor: Volume within Control |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 150 vs. 100 | 2.633 | 5.629 | <0.001 | Yes |
| 50 vs. 100 | 2.000 | 4.275 | <0.001 | Yes |
| 150 vs. 10 | 1.933 | 4.133 | <0.001 | Yes |
| 50 vs. 10 | 1.300 | 2.779 | 0.022 | Yes |
| 10 vs. 100 | 0.700 | 1.496 | 0.261 | No |
| 150 vs. 50 | 0.633 | 1.354 | 0.181 | No |

One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

| Dependent Variable: Zinc |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.373)$ |
| Equal Variance Test: | Passed | $(P=0.350)$ |

## Equal Variance Test:

$$
\begin{array}{ll}
\text { Passed } & (P=0.373) \\
\text { Passed } & (P=0.350)
\end{array}
$$

| Group Name | $\mathbf{N}$ | Missing | Mean | Std Dev | SEM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\quad$ DC | 1 | 0 | 95.000 | 0.000 | 0.000 |  |
| 500 | 4 | 0 | 29.000 | 0.816 | 0.408 |  |
| 1000 | 4 | 0 | 29.750 | 1.258 | 0.629 |  |
| 1500 | 4 | 0 | 28.000 | 1.826 | 0.913 |  |
| 1750 | 4 | 0 | 28.250 | 2.363 | 1.181 |  |
| Control | 3 | 0 | 30.667 | 1.528 | 0.882 |  |
|  |  |  |  |  |  |  |
| Source of Variation | DF | SS | MS | F | P |  |
| Between Groups | 4 | 4148.383 | 1037.096 | 380.419 | $<0.001$ |  |
| Residual | 14 | 38.167 | 2.726 |  |  |  |
| Total | 18 | 4186.550 |  |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $P=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$

## All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: Distance <br> Comparison <br> Diff of Means | $\mathbf{p}$ | $\mathbf{q}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 67.000 | 6 | 51.328 | $<0.001$ | Yes |
| DC vs. 1750 | 66.750 | 6 | 51.137 | $<0.001$ | Yes |
| DC vs. 500 | 66.000 | 6 | 50.562 | $<0.001$ | Yes |
| DC vs. 1000 | 65.250 | 6 | 49.988 | $<0.001$ | Yes |
| DC vs. Control | 64.333 | 6 | 47.720 | $<0.001$ | Yes |
| Control vs. 1500 | 2.667 | 6 | 2.991 | 0.334 | No |
| Control vs. 1750 | 2.417 | 6 | 2.710 | 0.432 | Do Not Test |
| Control vs. 500 | 1.667 | 6 | 1.869 | 0.769 | Do Not Test |
| Control vs. 1000 | 0.917 | 6 | 1.028 | 0.975 | Do Not Test |
| 1000 vs. 1500 | 1.750 | 6 | 2.120 | 0.671 | Do Not Test |
| 1000 vs. 1750 | 1.500 | 6 | 1.817 | 0.788 | Do Not Test |
| 1000 vs. 500 | 0.750 | 6 | 0.908 | 0.986 | Do Not Test |
| 500 vs. 1500 | 1.000 | 6 | 1.211 | 0.951 | Do Not Test |
| 500 vs. 1750 | 0.750 | 6 | 0.908 | 0.986 | Do Not Test |
| $\mathbf{1 7 5 0}$ vs. 1500 | 0.250 | 6 | 0.303 | 1.000 | Do Not Test |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs , 2 , then you would not test 4 vs 3 and 3 vs 2 but still test 4 vs, 1 and 3 vs, 1 ( 4 vs, 3 and 3 vs. 2 are enclosed by 4 vs, 2.4321). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

## Two Way Analysis of Variance between Sites and Disposal Volumes.

| Dependent Variable: Zinc |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Normality Test (Shapiro-Wilk) Equal Variance Test: |  |  | Passed | ( $\mathrm{P}=0.155$ ) |  |
|  |  |  | Passed | ( $\mathrm{P}=0.335$ ) |  |
| Source of Variation | DF | SS | MS | F | P |
| Volume | 3 | 939.669 | 313.223 | 219.943 | <0.001 |
| Site | 5 | 3812.571 | 762.514 | 535.433 | <0.001 |
| Volume x Site | 15 | 2801.579 | 186.772 | 131.150 | <0.001 |
| Residual | 56 | 79.750 | 1.424 |  |  |
| Total | 79 | 6817.800 | 86.301 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for Site $: 1.000$
Power of performed test with alpha $=0.0500$ : for Volume $\times$ Site $: 1.000$
Least square means for Volume :

| Group | Mean |
| :---: | :---: |
| 10 | 38.333 |
| 50 | 30.014 |
| 100 | 34.222 |
| 150 | 40.111 |

Std Err of LS Mean = 0.304
Least square means for Site :
Group Mean SEM
$\begin{array}{lll}\text { DC } & 62.000 & 0.597\end{array}$
D00-32.000-0.597
$1000-30.563 \quad 0.298$
$1500-30.063-0.298$
$1750-30.003-0.298$
$\begin{array}{lll}1750 & 30.000 & 0.298 \\ \text { Control } & 31.083 & 0.344\end{array}$

| Least square |  | means for Volume $\times$ Site : |
| :---: | :---: | :---: |
| Group | Mean | SEM |
| $10 \times$ DC | 80.000 | 1.193 |
| $10 \times 500$ | 30.000 | 0.597 |
| $10 \times 1000$ | 29.750 | 0.597 |
| $10 \times 1500$ | 30.000 | 0.597 |
| $10 \times 1750$ | 30.250 | 0.597 |
| $10 \times$ Control | 30.000 | 0.689 |
| $50 \times$ DC | 31.000 | 1.193 |
| $50 \times 500$ | 30.000 | 0.597 |
| $50 \times 1000$ | 29.750 | 0.597 |
| $50 \times 1500$ | 29.750 | 0.597 |
| $50 \times 1750$ | 29.250 | 0.597 |
| $50 \times$ Control | 30.333 | 0.689 |
| $100 \times$ DC | 42.000 | 1.193 |
| $100 \times 500$ | 32.250 | 0.597 |
| $100 \times 1000$ | 33.000 | 0.597 |
| $100 \times 1500$ | 32.500 | 0.597 |
| $100 \times 1750$ | 32.250 | 0.597 |
| $100 \times$ Control | 33.333 | 0.689 |
| $150 \times$ DC | 95.000 | 1.193 |
| $150 \times 500$ | 29.000 | 0.597 |
| $150 \times 1000$ | 29.750 | 0.597 |
| $150 \times 1500$ | 28.000 | 0.597 |
| $150 \times 1750$ | 28.250 | 0.597 |
| $150 \times$ Control | 30.667 | 0.689 |

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

| Comparisons for factor: Site within $\mathbf{1 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1000 | 50.250 | 37.663 | $<0.001$ | Yes |
| DC vs. 1500 | 50.000 | 37.475 | $<0.001$ | Yes |
| DC vs. 500 | 50.00 | 3.475 | $<0.001$ | Yes |
| DC vs. 1750 | 49.750 | 3.478 | $<0.001$ | Yes |
| DC vs. Control | 50.000 | 36.285 | $<0.001$ | Yes |
| 1750 vs. 1000 | 0.500 | 0.593 | 1.000 | No |
| 500 vs. 1000 | 0.250 | 0.296 | 1.000 | No |
| 1500 vs. 1000 | 0.250 | 0.296 | 1.000 | No |
| 1750 vs. 1500 | 0.250 | 0.296 | 1.000 | No |
| $\mathbf{1 7 5 0}$ vs. 500 | 0.250 | 0.296 | 1.000 | No |
| Control vs. 1000 | 0.250 | 0.274 | 1.000 | No |
| 1750 vs. Control | 0.250 | 0.274 | 0.998 | No |
| 500 vs. 1500 | 0.000 | 0.000 | 1.000 | No |
| 500 vs. Control | 0.000 | 0.000 | 1.000 | No |
| Control vs. 1500 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within $\mathbf{5 0}$ <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1750 | 1.750 | 1.312 | 0.961 | No |
| Control vs. 1750 | 1.083 | 1.189 | 0.978 | No |
| DC vs. 1500 | 1.250 | 0.937 | 0.997 | No |
| DC vs. 1000 | 1.250 | 0.937 | 0.995 | No |
| 500 vs. 1750 | 0.750 | 0.889 | 0.995 | No |
| DC vs. 500 | 1.000 | 0.750 | 0.998 | No |
| Control vs. 1000 | 0.583 | 0.640 | 0.999 | No |
| Control vs. 1500 | 0.583 | 0.640 | 0.997 | No |
| 1000 vs. 1750 | 0.500 | 0.593 | 0.997 | No |
| 1500 vs. 1750 | 0.500 | 0.593 | 0.992 | No |
| DC vs. Control | 0.667 | 0.484 | 0.993 | No |
| Control vs. 500 | 0.333 | 0.366 | 0.993 | No |
| 500 vs. 1000 | 0.250 | 0.296 | 0.988 | No |
| 500 vs. 1500 | 0.250 | 0.296 | 0.946 | No |
| 1000 vs. 1500 | 0.000 | 0.000 | 1.000 | No |

Comparisons for factor: Site within 100

| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1750 | 9.750 | 7.308 | <0.001 | Yes |
| DC vs. 500 | 9.750 | 7.308 | <0.001 | Yes |
| DC vs. 1500 | 9.500 | 7.120 | <0.001 | Yes |
| DC vs. 1000 | 9.000 | 6.746 | <0.001 | Yes |
| DC vs. Control | 8.667 | 6.289 | <0.001 | Yes |
| Control vs. 1750 | 1.083 | 1.189 | 0.935 | No |
| Control vs. 500 | 1.083 | 1.189 | 0.915 | No |
| Control vs. 1500 | 0.833 | 0.914 | 0.973 | No |
| 1000 vs. 1750 | 0.750 | 0.889 | 0.964 | No |
| 1000 vs. 500 | 0.750 | 0.889 | 0.942 | No |
| 1000 vs. 1500 | 0.500 | 0.593 | 0.983 | No |
| Control vs. 1000 | 0.333 | 0.366 | 0.993 | No |
| 1500 vs. 1750 | 0.250 | 0.296 | 0.988 | No |
| 1500 vs. 500 | 0.250 | 0.296 | 0.946 | No |
| 500 vs. 1750 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Site within <br> Comparison <br> Com <br> Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P < 0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| DC vs. 1500 | 67.000 | 50.217 | $<0.001$ | Yes |
| DC vs. 1750 | 66.750 | 50.029 | $<0.001$ | Yes |
| DC vs. 500 | 66.000 | 49.467 | $<0.001$ | Yes |
| DC vs. 1000 | 65.250 | 48.905 | $<0.001$ | Yes |
| DC vs. Control | 64.333 | 46.687 | $<0.001$ | Yes |
| Control vs. 1500 | 2.667 | 2.926 | 0.048 | Yes |
| Control vs. 1750 | 2.417 | 2.651 | 0.090 | No |
| 1000 vs. 1500 | 1.750 | 2.074 | 0.295 | No |
| Control vs. 500 | 1.667 | 1.829 | 0.411 | No |
| 1000 vs. 1750 | 1.500 | 1.778 | 0.397 | No |
| 500 vs. 1500 | 1.000 | 1.185 | 0.748 | No |
| Control vs. 1000 | 0.917 | 1.006 | 0.785 | No |
| 500 vs. 1750 | 0.750 | 0.889 | 0.759 | No |
| 1000 vs. 500 | 0.750 | 0.889 | 0.613 | No |
| 1750 vs. 1500 | 0.250 | 0.296 | 0.768 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 150 vs. 50 | 64.000 | 37.922 | <0.001 | Yes |
| 150 vs. 100 | 53.000 | 31.404 | <0.001 | Yes |
| 10 vs. 50 | 49.000 | 29.034 | <0.001 | Yes |
| 10 vs. 100 | 38.000 | 22.516 | <0.001 | Yes |
| 150 vs. 10 | 15.000 | 8.888 | <0.001 | Yes |
| 100 vs. 50 | 11.000 | 6.518 | <0.001 | Yes |
| Comparisons for factor: Volume within 500 |  |  |  |  |
| Comparison | Diff of Means | t | P | P<0.05 |
| 100 vs. 150 | 3.250 | 3.851 | 0.002 | Yes |
| 100 vs. 50 | 2.250 | 2.666 | 0.049 | Yes |
| 100 vs. 10 | 2.250 | 2.666 | 0.039 | Yes |
| 10 vs. 150 | 1.000 | 1.185 | 0.563 | No |
| 50 vs. 150 | 1.000 | 1.185 | 0.424 | No |
| 10 vs. 50 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within 1000 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | P<0.05 |
| 100 vs. 150 | 3.250 | 3.851 | 0.002 | Yes |
| 100 vs. 10 | 3.250 | 3.851 | 0.002 | Yes |
| 100 vs. 50 | 3.250 | 3.851 | 0.001 | Yes |
| 50 vs. 150 | 0.000 | 0.000 | 1.000 | No |
| 50 vs. 10 | 0.000 | 0.000 | 1.000 | No |
| 10 vs. 150 | 0.000 | 0.000 | 1.000 | No |


| Comparisons for factor: Volume within 1500 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 100 vs. 150 | 4.500 | 5.333 | <0.001 | Yes |
| 100 vs. 50 | 2.750 | 3.259 | 0.009 | Yes |
| 100 vs. 10 | 2.500 | 2.963 | 0.018 | Yes |
| 10 vs. 150 | 2.000 | 2.370 | 0.062 | No |
| 50 vs. 150 | 1.750 | 2.074 | 0.084 | No |
| 10 vs. 50 | 0.250 | 0.296 | 0.768 | No |


| Comparisons for factor: Volume within $\mathbf{1 7 5 0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |  |
| $\mathbf{1 0 0}$ vs. 150 | 4.000 | 4.740 | $<0.001$ | Yes |  |  |
| 100 vs. 50 | 3.000 | 3.555 | 0.004 | Yes |  |  |
| 100 vs. 10 | 2.000 | 2.370 | 0.082 | No |  |  |
| 10 vs. 150 | 2.000 | 2.370 | 0.062 | No |  |  |
| 50 vs. 150 | 1.000 | 1.185 | 0.424 | No |  |  |
| 10 vs. 50 | 1.000 | 1.185 | 0.241 | No |  |  |

Comparisons for factor: Volume within Control Comparison Diff of Means t P P<0.05 100 vs. $10 \quad 3.333 \quad 3.421 \quad 0.007 \quad$ Yes $\begin{array}{llll}100 \text { vs. } 50 & 3.000 & 3.079 & 0.016\end{array}$

| 100 vs. 150 | 2.667 | 2.737 | 0.033 | Yes |
| :--- | :--- | :--- | :--- | :--- |


| 150 vs. 10 | 0.667 | 0.684 | 0.872 | No |
| :--- | :--- | :--- | :--- | :--- |


| 150 vs. 50 | 0.333 | 0.342 | 0.929 | No |
| :--- | :--- | :--- | :--- | :--- |
| 50 vs. 10 | 0.333 | 0.342 | 0.734 | No |


| 50 vs. 10 | 0.333 | 0.342 | 0.734 |
| :--- | :--- | :--- | :--- |

## Appendix 7 Raw Benthic Biota Data.

Table 5.1 Benthic Biota Monitoring Data 23 November 2016 following $150,000 \mathbf{m}^{3}$ Spoil Disposal (numbers per two 100 mm diameter cores, numbers per square metre)

| Taxa | DC |  |  |  | 500m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | N |  |  |  | E |  |  |  | S |  |  |  | W |  |  |  |
|  | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ |
| PHYLUM ANNELIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS POLYCHAETA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ampharetidae |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Aonides sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aricidea sp. |  |  |  |  |  |  | 1 | 21 | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| Capitellidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cirratulidae |  |  |  |  | 1 |  |  | 21 |  | 2 |  | 42 |  | 2 |  | 42 |  |  |  |  |
| Dorvilleidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Flabelligeridae A |  |  |  |  |  | 1 |  | 21 |  | 1 |  | 21 |  |  | 1 | 21 | 1 |  |  | 21 |
| Hesionidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 | 85 |  |  |  |  |
| Heteromastus filiformis |  |  |  |  |  | 1 | 1 | 42 |  |  |  |  |  |  |  |  |  |  |  |  |
| Hyalinoecia sp. |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  | 1 | 21 |  | 1 |  | 21 |
| Laonice sp. |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Lumbrinereis sp. |  |  |  |  | 1 |  | 1 | 42 |  |  |  |  |  | 1 | 1 | 42 | 1 | 4 | 1 | 127 |
| Marphysa sp. |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Maldanidae |  |  |  |  | 1 |  |  | 21 | 1 | 1 |  | 42 | 2 | 2 |  | 85 |  |  |  |  |
| Naineris sp. |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Orbinia sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Paraonidae |  |  |  |  | 1 |  |  | 21 |  | 1 |  | 21 |  |  |  |  |  |  |  |  |
| Phyllodocidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Phylo sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Prionospio sp. |  |  |  |  | 1 | 2 |  | 64 |  |  |  |  |  | 1 |  | 21 |  |  |  |  |
| Rhamphobrachium sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sabellidae |  |  |  |  |  |  |  |  |  | 2 |  | 42 |  |  |  |  |  |  |  |  |
| Sigalionidae |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Spionidae |  |  |  |  |  | 1 | 1 | 42 |  |  |  |  |  |  |  |  |  |  |  |  |
| Spionidae B |  |  |  |  |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |
| Syllidae |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  | 1 |  | 21 |  |  |  |  |
| Sphaerosyllis sp. |  |  |  |  | 1 |  | 1 | 42 |  | 3 |  | 64 |  | 1 | 1 | 42 | 1 | 1 | 1 | 64 |
| Terebellidae |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Unident. - damaged pieces |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM NEMERTEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nemertian |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM SIPUNCULA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS SIPUNCULIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sipunculid worm A |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 21 |  |  |  |  |
| Sipunculid worm B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM MOLLUSCA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS GASTROPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Uberella barrierensis |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS BIVALVIA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cuspidaria willetti |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nucula hartvigiana |  |  |  |  |  | 1 |  | 21 |  | 2 |  | 42 |  |  |  |  |  |  |  |  |
| Nucula nitidula |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |
| Unident. mussel spat |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |
| PHYLUM ARTHROPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS CRUSTACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER AMPHIPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ampeliscidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amphilochidae |  |  |  |  | 1 |  |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Caprella sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 42 |  |  |  |  |
| Haustoriidae |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Liljeborgia sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lysianassidae |  |  |  |  |  | 1 |  | 21 | 1 |  |  | 21 |  |  | 1 | 21 |  |  |  |  |
| Phoxocephalidae A |  |  |  |  | 3 |  |  | 64 |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Phoxocephalidae D |  |  |  |  | 2 |  | 1 | 64 | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| Urothoidae |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| Unident. Amphipod species |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Asellota |  |  |  |  |  |  |  |  | 2 |  |  | 42 |  | 1 | 1 | 42 |  |  |  |  |
| Munna sp. |  |  |  |  | 1 |  | 1 | 42 |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Paranthura flagellata |  |  |  |  |  | 1 |  | 21 |  | 1 |  | 21 |  | 1 |  | 21 |  | 2 |  | 42 |
| ORDER CUMACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cumacean A |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  | 1 |  | 21 |  | 1 |  | 21 |
| ORDER MYSIDACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mysid |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 21 |
| ORDER OSTRACODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ostracod A |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  | 1 |  | 21 |
| Ostracod C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ostracod E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tanaidacea spp |  |  |  |  |  | 1 |  | 21 | 1 |  |  | 21 |  |  | 1 | 21 |  |  |  |  |
| PHYLUM COELENTERATA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS ANTHOZOA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Edwardsia sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM ECHINODERMATA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS OPHIUROIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amphiura sp. |  |  |  |  |  |  | 1 | 21 |  |  |  |  | 1 | 1 |  | 42 |  |  | 2 | 42 |
| CLASS HOLOTHUROOIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Trochodota sp. |  |  |  |  | 1 | 1 |  | 42 |  | 1 |  | 21 |  |  |  |  |  | 1 |  | 21 |


| Taxa | DC |  |  |  | 500m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | N |  |  |  | E |  |  |  | S |  |  |  | W |  |  |  |
|  | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave $/ \mathrm{m}^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B |  | Ave/m ${ }^{2}$ |
| PHYLUM PORIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS DEMOSPONGIAE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. sponge - sandy, flask-shaped |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM FORAMINIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS FORAMINIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER LITUOLIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ammodiscus sp. A |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  | 1 | 21 |  |  |  |  |
| Ammodiscus sp. B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cribrostomoides / Haplophragmoides |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER MILIODIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nummoloculina contraria |  |  |  |  | 4 | 1 |  | 106 | 2 | 1 | 1 | 85 |  | 1 | 3 | 85 |  |  | 2 | 42 |
| Pyrgo spp |  |  | 1 | 21 | 6 | 5 | 4 | 318 | 18 | 3 | 5 | 552 | 4 | 6 | 5 | 318 | 5 | 7 | 9 | 446 |
| Quinqueloculina suborbicularis |  |  |  |  | 5 | 2 |  | 149 | 4 | 5 | 3 | 255 | 1 | 3 | 2 | 127 |  | 4 | 2 | 127 |
| Triloculina insignis |  |  |  |  |  | 3 |  | 64 | 4 | 1 | 2 | 149 | 1 | 1 | 1 | 64 |  |  | 1 | 21 |
| ORDER LAGENIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lenticulina spp |  |  |  |  | 80 | 102 | 55 | 5029 | 144 | 89 | 110 | 7279 | 120 | 114 | 108 | 7257 | 52 | 94 | 44 | 4032 |
| ORDER ROTALIIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Calcarina sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cibicidoides sp. 1 |  |  |  |  | 8 | 4 | 11 | 488 | 6 | 3 | 2 | 233 | 17 | 3 | 8 | 594 | 11 | 16 | 10 | 785 |
| Alabamina |  |  |  |  | 8 | 9 | 8 | 531 | 13 | 5 | 4 | 467 | 27 | 7 | 17 | 1082 | 10 | 17 | 15 | 891 |
| Elphidium sp. A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Elphidium sp. B |  |  |  |  |  |  |  |  |  |  | 1 | 21 |  | 1 |  | 21 |  |  | 1 | 21 |
| Planularia sp. |  |  |  |  | 2 | 1 | 1 | 85 |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - dome shaped |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - spine like |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - flat sim otolith |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Number Of Species/Taxa | 0 | 0 | 2 | 2 | 18 | 21 | 18 | 37 | 14 | 19 | 9 | 27 | 13 | 18 | 18 | 31 | 7 | 12 | 12 | 18 |
| Total Number Of Individuals | 0 | 0 | 2 | 42 | 127 | 141 | 92 | 7639 | 199 | 124 | 129 | 9592 | 178 | 148 | 159 | 10292 | 81 | 149 | 89 | 6769 |
| Shannon- Wiener | 0.00 | 0.00 | 0.69 | 0.69 | 1.58 | 1.32 | 1.60 | 1.61 | 1.14 | 1.36 | 0.70 | 1.16 | 1.14 | 1.12 | 1.36 | 1.30 | 1.15 | 1.34 | 1.63 | 1.44 |


| Taxa | 1500m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Control |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N |  |  |  | E |  |  |  | S |  |  |  | W |  |  |  |  |  |  |  |
|  | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ |
| PHYLUM ANNELIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS POLYCHAETA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ampharetidae | 1 |  |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aonides sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |
| Aricidea sp. |  | 1 |  | 21 |  |  |  |  |  | 1 |  | 21 | 1 |  |  | 21 |  |  |  |  |
| Capitellidae |  |  | 1 | 21 |  |  |  |  |  | 1 |  | 21 |  |  |  |  | 1 |  |  | 21 |
| Cirratulidae | 1 |  |  | 21 | 1 |  |  | 21 |  | 1 |  | 21 |  |  | 1 | 21 |  |  |  |  |
| Dorvilleidae |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Flabelligeridae A | 1 |  |  | 21 |  | 1 | 1 | 42 |  | 1 |  | 21 |  |  |  |  |  |  |  |  |
| Hesionidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |
| Heteromastus filiformis |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hyalinoecia sp. | 1 | 2 |  | 64 | 1 |  |  | 21 |  |  | 1 | 21 |  |  |  |  | 1 | 2 | 3 | 127 |
| Laonice sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lumbrinereis sp. | 2 |  |  | 42 | 1 | 2 | 2 | 106 |  | 5 | 1 | 127 |  |  |  |  |  |  | 3 | 64 |
| Marphysa sp. | 3 |  |  | 64 |  |  |  |  | 1 | 1 |  | 42 | 1 |  | 1 | 42 |  | 1 |  | 21 |
| Maldanidae |  |  | 1 | 21 |  |  |  |  | 3 |  |  | 64 | 1 |  | 1 | 42 | 4 | 3 |  | 149 |
| Naineris sp. |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Orbinia sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 42 |
| Paraonidae |  | 1 |  | 21 |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Phyllodocidae |  |  |  |  | 1 |  |  | 21 | 1 | 1 |  | 42 |  |  |  |  |  |  |  |  |
| Phylo sp. |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  |  |  |
| Prionospio sp. |  | 2 |  | 42 |  |  |  |  | 1 |  |  | 21 | 2 |  |  | 42 |  |  |  |  |
| Rhamphobrachium sp. |  |  |  |  |  |  |  |  |  | 3 |  | 64 |  |  |  |  |  |  |  |  |
| Sabellidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sigalionidae |  | 1 |  | 21 | 1 |  |  | 21 |  |  |  |  |  |  |  |  | 1 |  |  | 21 |
| Spionidae | 1 | 1 |  | 42 |  | 1 | 1 | 42 | 3 | 1 | 1 | 106 |  | 1 | 1 | 42 | 2 | 1 |  | 64 |
| Spionidae B | 1 |  |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Syllidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |
| Sphaerosyllis sp. |  | 2 |  | 42 | 3 |  |  | 64 |  |  |  |  | 1 | 1 |  | 42 |  |  |  |  |
| Terebellidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. - damaged pieces |  |  |  |  | 1 |  |  | 21 |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| PHYLUM NEMERTEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nemertian |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| PHYLUM SIPUNCULA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS SIPUNCULIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sipunculid worm A | 2 |  |  | 42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sipunculid worm B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |
| PHYLUM MOLLUSCA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS GASTROPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Uberella barrierensis |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  |  |  |
| CLASS BIVALVIA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cuspidaria willetti |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Nucula hartvigiana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 21 |
| Nucula nitidula |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. mussel spat |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Taxa | 1500m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Control |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N |  |  |  | E |  |  |  | S |  |  |  | W |  |  |  |  |  |  |  |
|  | A | B |  | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ | A | B | C | Ave/m ${ }^{2}$ |
| PHYLUM ARTHROPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS CRUSTACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER AMPHIPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ampeliscidae | 1 |  |  | 21 |  | 1 |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| Amphilochidae |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  |
| Caprella sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Haustoriidae |  | 1 |  | 21 |  |  |  |  | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| Liljeborgia sp. |  |  |  |  |  | 1 |  | 21 | 1 |  | 1 | 42 |  |  |  |  |  |  |  |  |
| Lysianassidae |  |  |  |  |  |  | 2 | 42 |  |  |  |  |  |  |  |  |  |  |  |  |
| Phoxocephalidae A |  | 1 |  | 21 |  |  | 1 | 21 | 1 |  |  | 21 |  |  |  |  |  |  |  |  |
| Phoxocephalidae D |  |  |  |  |  | 2 | 1 | 64 | 1 |  |  | 21 | 1 |  |  | 21 | 2 | 1 |  | 64 |
| Urothoidae |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Amphipod species |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  | 1 |  | 21 | 2 |  | 1 | 64 |
| ORDER ISOPODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Asellota |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  | 1 |  |  | 21 |
| Munna sp. |  |  |  |  | 1 |  |  | 21 |  |  |  |  |  |  | 1 | 21 |  |  | 1 | 21 |
| Paranthura flagellata | 2 |  | 1 | 64 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 21 |
| ORDER CUMACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cumacean A | 1 | 1 |  | 42 |  |  | 1 | 21 |  |  |  |  |  |  |  |  | 1 |  |  | 21 |
| ORDER MYSIDACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mysid |  |  | 1 | 21 |  |  |  |  |  |  |  |  |  | 1 |  | 21 |  |  | 1 | 21 |
| ORDER OSTRACODA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ostracod A |  |  | 1 | 21 |  |  |  |  | 1 |  | 1 | 42 | 1 | 1 |  | 42 |  |  |  |  |
| Ostracod C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |
| Ostracod E |  |  |  |  |  | 1 |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER TANAIDACEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tanaidacea spp |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PHYLUM COELENTERATA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS ANTHOZOA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Edwardsia sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 21 |
| PHYLUM ECHINODERMATA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS OPHIUROIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amphiura sp. | 1 |  |  | 21 |  | 2 |  | 42 |  | 1 | 1 | 42 |  |  |  |  | 1 |  | 1 | 42 |
| CLASS HOLOTHUROOIDEA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Trochodota sp. |  |  | 2 | 42 |  | 1 |  | 21 | 2 | 2 | 1 | 106 |  |  |  |  |  |  |  |  |
| PHYLUM PORIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS DEMOSPONGIAE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. sponge - sandy, flask-shaped | 1 |  |  | 21 |  |  | 1 | 21 |  |  |  |  |  | 1 |  | 21 | 2 |  | 1 | 64 |
| PHYLUM FORAMINIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CLASS FORAMINIFERA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ORDER LITUOLIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ammodiscus A |  | 1 |  | 21 |  |  | 1 | 21 |  |  | 1 | 21 | 1 |  |  | 21 | 1 |  | 1 | 42 |
| Ammodiscus B | 1 |  |  | 21 |  |  |  |  |  |  | 1 | 21 |  |  |  |  |  |  |  |  |
| Cribrostomoides / Haplophragmoides |  |  |  |  |  |  |  |  | 1 |  |  | 21 |  |  |  |  | 1 |  | 1 | 42 |
| ORDER MILIODIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nummoloculina contraria |  | 3 |  | 64 |  | 2 | 1 | 64 | 3 | 4 | 2 | 191 | 1 | 3 | 2 | 127 | 2 | 4 |  | 127 |
| Pyrgo spp | 7 | 5 | 5 | 361 | 6 | 13 | 10 | 615 | 11 | 18 | 4 | 700 | 9 | 9 | 7 | 531 | 37 | 20 | 5 | 1316 |
| Quinqueloculina suborbicularis | 3 | 2 |  | 106 | 8 | 2 | 2 | 255 | 4 | 7 | 1 | 255 | 6 | 1 | 4 | 233 | 16 | 8 | 5 | 615 |
| Triloculina insignis | 1 | 1 |  | 42 | 1 |  |  | 21 | 2 | 2 | 1 | 106 | 1 | 3 | 1 | 106 | 6 |  | 6 | 255 |
| ORDER LAGENIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lenticulina spp | 65 | 67 | 39 | 3629 | 87 | 81 | 121 | 6133 | 149 | 137 | 90 | 7979 | 74 | 91 | 90 | 5411 | 75 | 92 | 66 | 4944 |
| ORDER ROTALIIDA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Calcarina sp. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cibicidoides sp. 1 | 7 | 21 | 7 | 743 | 74 | 23 | 22 | 2525 | 27 | 7 | 13 | 997 | 14 | 5 | 24 | 912 | 15 | 11 | 2 | 594 |
| Alabamina | 15 | 6 | 17 | 806 | 36 | 26 | 23 | 1804 | 14 | 13 | 6 | 700 | 10 | 7 | 6 | 488 | 21 | 15 | 18 | 1146 |
| Elphidium sp. A | 1 | 1 | 2 | 85 | 1 | 1 | 1 | 64 |  |  |  |  |  |  | 2 | 42 |  |  | 1 | 21 |
| Elphidium sp. B |  |  |  |  | 2 | 1 |  | 64 |  | 2 |  | 42 | 1 |  |  | 21 |  | 1 |  | 21 |
| Planularia sp. | 3 | 1 |  | 85 |  | 2 | 2 | 85 |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - dome shaped |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - spine like |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unident. Foram - flat sim otolith |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Number Of Species/Taxa | 23 | 20 | 11 | 37 | 16 | 19 | 22 | 37 | 20 | 19 | 16 | 31 | 18 | 15 | 13 | 27 | 22 | 17 | 19 | 35 |
| Total Number Of Individuals | 122 | 121 | 77 | 6791 | 225 | 164 | 198 | 12457 | 228 | 208 | 126 | 11926 | 127 | 127 | 141 | 8382 | 194 | 164 | 119 | 10122 |
| Shannon- Wiener | 1.91 | 1.71 | 1.55 | 1.91 | 1.56 | 1.72 | 1.51 | 1.70 | 1.41 | 1.45 | 1.22 | 1.45 | 1.61 | 1.23 | 1.30 | 1.47 | 2.02 | 1.63 | 1.73 | 1.93 |

Appendix 8 Benthic Biota Statistical Tests Data.

One Way Analysis of Variance between Sites after 150,000m³ Disposal.
Dependent Variable: Species

| Normality Test (Shapiro-Wilk) | Passed | $(P=0.520)$ |
| :--- | :--- | :--- |
| Equal Variance Test: | Passed | $(P=0.232)$ |


| Group Name | N |  | Missing | Mean |  |
| :---: | :---: | :---: | ---: | ---: | ---: |
| DC | 3 | 0 | 0.667 | 1.155 | SEM |
| 50.667 |  |  |  |  |  |
| 500 N | 3 | 0 | 19.000 | 1.732 | 1.000 |
| 500 E | 3 | 0 | 14.000 | 5.000 | 2.887 |
| 500 S | 3 | 0 | 16.333 | 2.887 | 1.667 |
| 500 W | 3 | 0 | 10.333 | 2.887 | 1.667 |
| 1500 N | 3 | 0 | 18.000 | 6.245 | 3.606 |
| 1500 E | 3 | 0 | 19.000 | 3.000 | 1.732 |
| 1500 S | 3 | 0 | 18.333 | 2.082 | 1.202 |
| 1500 W | 3 | 0 | 15.333 | 2.517 | 1.453 |
| Control | 3 | 0 | 19.333 | 2.517 | 1.453 |


| Source of Variation | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Between Groups | 9 | 902.967 | 100.330 | $9.039<0.001$ |  |
| Residual | 20 | 222.000 | 11.100 |  |  |
| Total | 29 | 1124.967 |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$

All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: site |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | p | q | P | $\mathrm{P}<0.050$ |
| Control vs. DC | 18.667 | 10 | 9.704 | <0.001 | Yes |
| Control vs. 500 W | 9.000 | 10 | 4.679 | 0.080 | No |
| Control vs. 500 E | 5.333 | 10 | 2.773 | 0.633 | Do Not Test |
| Control vs. 1500 W | 4.000 | 10 | 2.080 | 0.889 | Do Not Test |
| Control vs. 500 S | 3.000 | 10 | 1.560 | 0.979 | Do Not Test |
| Control vs. 1500 N | 1.333 | 10 | 0.693 | 1.000 | Do Not Test |
| Control vs. 1500 S | 1.000 | 10 | 0.520 | 1.000 | Do Not Test |
| Control vs. 500 N | 0.333 | 10 | 0.173 | 1.000 | Do Not Test |
| Control vs. 1500 E | 0.333 | 10 | 0.173 | 1.000 | Do Not Test |
| 1500 E vs. DC | 18.333 | 10 | 9.531 | <0.001 | Yes |
| 1500 E vs. 500 W | 8.667 | 10 | 4.506 | 0.101 | Do Not Test |
| 1500 E vs. 500 E | 5.000 | 10 | 2.599 | 0.706 | Do Not Test |
| 1500 E vs. 1500 W | 3.667 | 10 | 1.906 | 0.929 | Do Not Test |
| 1500 E vs. 500 S | 2.667 | 10 | 1.386 | 0.990 | Do Not Test |
| 1500 E vs. 1500 N | 1.000 | 10 | 0.520 | 1.000 | Do Not Test |
| 1500 E vs. 1500 S | 0.667 | 10 | 0.347 | 1.000 | Do Not Test |
| 1500 E vs. 500 N | 0.000 | 10 | 0.000 | 1.000 | Do Not Test |
| 500 N vs. DC | 18.333 | 10 | 9.531 | <0.001 | Yes |
| 500 N vs. 500 W | 8.667 | 10 | 4.506 | 0.101 | Do Not Test |
| 500 N vs. 500 E | 5.000 | 10 | 2.599 | 0.706 | Do Not Test |
| 500 N vs. 1500 W | 3.667 | 10 | 1.906 | 0.929 | Do Not Test |
| 500 N vs. 500 S | 2.667 | 10 | 1.386 | 0.990 | Do Not Test |
| 500 N vs. 1500 N | 1.000 | 10 | 0.520 | 1.000 | Do Not Test |
| 500 N vs. 1500 S | 0.667 | 10 | 0.347 | 1.000 | Do Not Test |
| 1500 S vs. DC | 17.667 | 10 | 9.184 | <0.001 | Yes |
| 1500 S vs. 500 W | 8.000 | 10 | 4.159 | 0.158 | Do Not Test |
| 1500 S vs. 500 E | 4.333 | 10 | 2.253 | 0.837 | Do Not Test |
| 1500 S vs. 1500 W | 3.000 | 10 | 1.560 | 0.979 | Do Not Test |
| 1500 S vs. 500 S | 2.000 | 10 | 1.040 | 0.999 | Do Not Test |
| 1500 S vs. 1500 N | 0.333 | 10 | 0.173 | 1.000 | Do Not Test |
| 1500 N vs. DC | 17.333 | 10 | 9.011 | <0.001 | Yes |
| 1500 N vs. 500 W | 7.667 | 10 | 3.986 | 0.195 | Do Not Test |
| 1500 N vs. 500 E | 4.000 | 10 | 2.080 | 0.889 | Do Not Test |
| 1500 N vs. 1500 W | 2.667 | 10 | 1.386 | 0.990 | Do Not Test |
| 1500 N vs. 500 S | 1.667 | 10 | 0.866 | 1.000 | Do Not Test |
| 500 S vs. DC | 15.667 | 10 | 8.145 | <0.001 | Yes |
| 500 S vs. 500 W | 6.000 | 10 | 3.119 | 0.484 | Do Not Test |
| 500 S vs. 500 E | 2.333 | 10 | 1.213 | 0.996 | Do Not Test |
| 500 S vs. 1500 W | 1.000 | 10 | 0.520 | 1.000 | Do Not Test |
| 1500 W vs. DC | 14.667 | 10 | 7.625 | 0.001 | Yes |
| 1500 W vs. 500 W | 5.000 | 10 | 2.599 | 0.706 | Do Not Test |
| 1500 W vs. 500 E | 1.333 | 10 | 0.693 | 1.000 | Do Not Test |
| 500 E vs. DC | 13.333 | 10 | 6.932 | 0.003 | Yes |
| 500 E vs. 500 W | 3.667 | 10 | 1.906 |  | Do Not Test |
| 500 W vs. DC |  |  | 5.025 |  | Yes |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between A result of "Do Not Test" occurs for a comparison when no significant difference is found between
two means that enclose that comparison. For example, if you had four means sorted in order, and two means that enclose that comparison. For example, if you had four means sorted in order,
found no difference between means 4 vs .2 , then you would not test 4 vs .3 and 3 vs . 2, but still found no difference between means 4 vs . 2, then you would not test 4 vs . 3 and 3 vs . 2, but still
test 4 vs .1 and 3 vs .1 ( 4 vs .3 and 3 vs .2 are enclosed by $4 \mathrm{vs} .2: 4321$ ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist

## Two Way Analysis of Variance between Sites and Disposal Volumes

## Variable: Species

| Normality Test (Shapiro-Wilk) | Passed | $(P=0.484)$ |
| :--- | :--- | :--- |
| Equal Variance Test: | Passed | $(P=0.876)$ |


| Source of Variation | DF | SS | MS | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Volume | 4 | 941.542 | 235.385 | 25.411 | $<0.001$ |
| site | 5 | 1081.998 | 216.400 | 23.361 | $<0.001$ |
| Volume x site | 20 | 1227.223 | 61.361 | 6.624 | $<0.001$ |
| Residual | 61 | 565.056 | 9.263 |  |  |
| Total | 90 | 4414.418 | 49.049 |  |  |

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. ( $\mathrm{P}=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for site : 1.000
Power of performed test with alpha $=0.0500$ : for Volume $\times$ site : 1.000
Least square means for Volume :

## Group Mean SEM

Pre 8.6760 .820
$10 \quad 16.6110 .717$
$50 \quad 18.778 \quad 0.717$
$100 \quad 17.6670 .717$
$150 \quad 15.1110 .717$

Least square means for Site
Group Mean SEM
DC 7.9330 .824
1500 N 19.5670 .824
500 E 16.1670 .824
1500 S 16.3000 .824
1500 W 14.9330 .824
Control 17.3110 .732

Least square means for Volume x Site

$$
150 \times 1500 \mathrm{~W} 15.3331 .757
$$

$$
150 \times \text { Control } 19.3331 .757
$$

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

Comparisons for factor: Volume

| Comparis | of Mea | t | P | $\mathrm{P}<0$. |
| :---: | :---: | :---: | :---: | :---: |
| 50 vs. Pre | 10.102 | 9.274 | <0.001 | Yes |
| 100 vs. Pre | 8.991 | 8.254 | <0.001 | Yes |
| 10 vs. Pre | 7.935 | 7.285 | <0.001 | Yes |
| 150 vs. Pre | 6.435 | 5.908 | <0.001 | Yes |
| 50 vs. 150 | 3.667 | 3.614 | 0.004 | Yes |
| 100 vs. 150 | 2.556 | 2.519 | 0.070 | No |
| 50 vs. 10 | 2.167 | 2.136 | 0.139 | No |
| 10 vs. 150 | 1.500 | 1.479 | 0.374 | No |
| 50 vs. 100 | 1.111 | 1.095 | 0.478 | No |
| 100 vs. 10 | 1.056 | 1.040 | 0.302 | No |


| Comparisons for factor: site <br> Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1500 N vs. DC | 11.633 | 9.981 | $<0.001$ | Yes |
| Control vs. DC | 9.378 | 8.509 | $<0.001$ | Yes |
| 1500 S vs. DC | 8.367 | 7.178 | $<0.001$ | Yes |
| 1500 E vs. DC | 8.233 | 7.064 | $<0.001$ | Yes |
| 1500 W vs. DC | 7.000 | 6.006 | $<0.001$ | Yes |
| 1500 N vs. 1500 W | 4.633 | 3.975 | 0.002 | Yes |
| 1500 N vs. 1500 E | 3.400 | 2.917 | 0.044 | Yes |
| 1500 N vs. 1500 S | 3.267 | 2.803 | 0.053 | No |
| Control vs. 1500 W | 2.378 | 2.158 | 0.220 | No |
| 1500 N vs. Control | 2.256 | 2.047 | 0.241 | No |
| 1500 S vs. 1500 W | 1.367 | 1.173 | 0.756 | No |
| 1500 E vs. 1500 W | 1.233 | 1.058 | 0.752 | No |
| Control vs. 1500 E | 1.144 | 1.038 | 0.662 | No |
| Control vs. 1500 S | 1.011 | 0.917 | 0.594 | No |
| 1500 S vs. 1500 E | 0.133 | 0.114 | 0.909 | No |


| Comparisons for factor: site within 0 |  |  |  |
| :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t P | $\mathrm{P}<0.05$ |
| 1500 W vs. Control | 4.444 | 1.8680 .644 | No |
| 1500 E vs. Control | 2.944 | 1.2380 .969 | No |
| 1500 W vs. 1500 S | 3.500 | 1.1500 .978 | No |
| DC vs. Control | 2.444 | 1.0270 .988 | No |
| 1500 W vs. 1500 N | 2.500 | 0.8210 .997 | No |
| 1500 N vs. Control | 1.944 | 0.8170 .995 | No |
| 1500 E vs. 1500 S | 2.000 | 0.6570 .998 | No |
| 1500 W vs. DC | 2.000 | 0.6570 .997 | No |
| DC vs. 1500 S | 1.500 | 0.4930 .999 | No |
| 1500 W vs. 1500 E | 1.500 | 0.4930 .997 | No |
| 1500 S vs. Control | 0.944 | 0.3970 .997 | No |
| 1500 N vs. 1500 S | 1.000 | 0.3290 .996 | No |
| 1500 E vs. 1500 N | 1.000 | 0.3290 .983 | No |
| DC vs. 1500 N | 0.500 | 0.1640 .983 | No |
| 1500 E vs. DC | 0.500 | 0.1640 .870 | No |


| Comparisons for factor: site within 10 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 1500 N vs. DC | 19.667 | 7.914 | <0.001 | Yes |
| 1500 N vs. 1500 W | 13.667 | 5.500 | <0.001 | Yes |
| 1500 N vs. 1500 E | 11.333 | 4.561 | <0.001 | Yes |
| Control vs. DC | 11.000 | 4.426 | <0.001 | Yes |
| 1500 S vs. DC | 10.667 | 4.292 | <0.001 | Yes |
| 1500 N vs. 1500 S | 9.000 | 3.622 | 0.006 | Yes |
| 1500 N vs. Control | 8.667 | 3.488 | 0.008 | Yes |
| 1500 E vs. DC | 8.333 | 3.353 | 0.011 | Yes |
| 1500 W vs. DC | 6.000 | 2.414 | 0.124 | No |
| Control vs. 1500 W | 5.000 | 2.012 | 0.259 | No |
| 1500 S vs. 1500 W | 4.667 | 1.878 | 0.286 | No |
| Control vs. 1500 E | 2.667 | 1.073 | 0.742 | No |
| 1500 S vs. 1500 E | 2.333 | 0.939 | 0.727 | No |
| 1500 E vs. 1500 W | 2.333 | 0.939 | 0.579 | No |
| Control vs. 1500 S | 0.333 | 0.134 | 0.894 | No |


| Comparisons for factor: site within 50 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| 1500 S vs. DC | 20.333 | 8.182 | <0.001 | Yes |
| 1500 N vs. DC | 19.667 | 7.914 | <0.001 | Yes |
| Control vs. DC | 19.000 | 7.646 | <0.001 | Yes |
| 1500 E vs. DC | 17.333 | 6.975 | <0.001 | Yes |
| 1500 W vs. DC | 14.333 | 5.768 | <0.001 | Yes |
| 1500 S vs. 1500 W | 6.000 | 2.414 | 0.173 | No |
| 1500 N vs. 1500 W | 5.333 | 2.146 | 0.280 | No |
| Control vs. 1500 W | 4.667 | 1.878 | 0.417 | No |
| 1500 E vs. 1500 W | 3.000 | 1.207 | 0.842 | No |
| 1500 S vs. 1500 E | 3.000 | 1.207 | 0.795 | No |
| 1500 N vs. 1500 E | 2.333 | 0.939 | 0.885 | No |
| Control vs. 1500 E | 1.667 | 0.671 | 0.940 | No |
| 1500 S vs. Control | 1.333 | 0.537 | 0.933 | No |
| 1500 S vs. 1500 N | 0.667 | 0.268 | 0.956 | No |
| 1500 N vs. Control | 0.667 | 0.268 | 0.789 | No |

Comparisons for factor: site within 100
Comparison Diff of Means t P P<0.05

| Comparis |  |  |  |
| :---: | :---: | :---: | :---: |
| 1500 N vs. 1500 S | 7.333 | 2.9510 .065 | No |
| Control vs. 1500 S | 6.000 | 2.4140 .233 | No |
| DC vs. 1500 S | 5.333 | 2.1460 .378 | No |
| 1500 N vs. 1500 E | 5.333 | 2.1460 .355 | No |
| Control vs. 1500 E | 4.000 | 1.6100 .731 | No |
| 1500 N vs. 1500 W | 4.000 | 1.6100 .697 | No |
| 1500 W vs. 1500 S | 3.333 | 1.3410 .841 | No |
| DC vs. 1500 E | 3.333 | 1.3410 .805 | No |
| Control vs. 1500 W | 2.667 | 1.0730 .907 | No |
| DC vs. 1500 W | 2.000 | 0.8050 .963 | No |
| 1500 E vs. 1500 S | 2.000 | 0.8050 .937 | No |
| 1500 N vs. DC | 2.000 | 0.8050 .890 | No |
| 1500 W vs. 1500 E | 1.333 | 0.5370 .933 | No |
| 1500 N vs. Control | 1.333 | 0.5370 .835 | No |
| Control vs. DC | 0.667 | 0.2680 .789 | No |

Comparisons for factor: site within 150

| Comparisons for factor: site within 150 |  |  |  |
| :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | P | $\mathrm{P}<0.05$ |
| Control vs. DC | 18.667 | $7.512<0.001$ | Yes |
| 1500 E vs. DC | 18.333 | $7.377<0.001$ | Yes |
| 1500 S vs. DC | 17.667 | $7.109<0.001$ | Yes |
| 1500 N vs. DC | 17.333 | $6.975<0.001$ | Yes |
| 1500 W vs. DC | 14.667 | $5.902<0.001$ | Yes |
| Control vs. 1500 W | 4.000 | 1.6100 .697 | No |
| 1500 E vs. 1500 W | 3.667 | 1.4750 .756 | No |
| 1500 S vs. 1500 W | 3.000 | 1.2070 .879 | No |
| 1500 N vs. 1500 W | 2.667 | 1.0730 .907 | No |
| Control vs. 1500 N | 1.333 | 0.5370 .995 | No |
| Control vs. 1500 S | 1.000 | 0.4020 .997 | No |
| 1500 E vs. 1500 N | 1.000 | 0.4020 .991 | No |
| 1500 E vs. 1500 S | 0.667 | 0.2680 .991 | No |
| Control vs. 1500 E | 0.333 | 0.1340 .989 | No |
| 1500 S vs. 1500 N | 0.333 | 0.1340 .894 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Compariso | f of M | t | P | P<0.0 |
| 100 vs. 150 | 18.333 | 7.377 | <0.001 | Yes |
| 100 vs. 50 | 15.333 | 6.170 | <0.001 | Yes |
| 100 vs. 10 | 11.667 | 4.695 | <0.001 | Yes |
| 100 vs. Pre | 10.000 | 3.599 | 0.004 | Yes |
| Pre vs. 150 | 8.333 | 2.999 | 0.023 | Yes |
| 10 vs. 150 | 6.667 | 2.683 | 0.046 | Yes |
| Pre vs. 50 | 5.333 | 1.920 | 0.218 | No |
| 10 vs. 50 | 3.667 | 1.475 | 0.375 | No |
| 50 vs. 150 | 3.000 | 1.207 | 0.410 | No |
| Pre vs. 10 | 1.667 | 0.600 | 0.551 | No |

Comparisons for factor: Volume within 1500 N Comparison Diff of Means t P P<0.05 10 vs. Pre $\quad 18.500 \quad 6.659<0.001$ Yes 50 vs. Pre $\quad 14.833 \quad 5.339<0.001$ Yes 100 vs. Pre $\quad 12.500 \quad 4.499<0.001$ Yes 10 vs. $150 \quad 9.000 \quad 3.6220 .004$ Yes 150 vs. Pre $\quad 9.500 \quad 3.4190 .007$ Yes 10 vs. $100 \quad 6.000 \quad 2.4140 .090$
50 vs $150 \quad 5.333 \quad 2.1460 .090$ No

| 50 vs. 150 | 5.333 | 2.146 | 0.136 |
| :--- | :--- | :--- | :--- |
| 10 vs. 50 | 3.667 | 1.475 | 0.375 |


| 100 vs. 150 | 3.667 | 1.475 | 0.375 No |
| :--- | :--- | :--- | :--- |

50 vs. $100 \quad 2.333 \quad 0.939 \quad 0.351$ No

Comparisons for factor: Volume within 1500 E

| Comparison Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 50 vs. Pre | 11.500 | 4.139 | 0.001 | Yes |
| 150 vs. Pre | 9.500 | 3.419 | 0.010 | Yes |
| 10 vs. Pre | 6.167 | 2.220 | 0.217 | No |
| 100 vs. Pre | 6.167 | 2.220 | 0.193 | No |
| 50 vs. 100 | 5.333 | 2.146 | 0.197 | No |
| 50 vs. 10 | 5.333 | 2.146 | 0.167 | No |
| 150 vs. 100 | 3.333 | 1.341 | 0.558 | No |
| $\mathbf{1 5 0}$ vs. 10 | 3.333 | 1.341 | 0.458 | No |
| 50 vs. 150 | 2.000 | 0.805 | 0.668 | No |
| 10 vs. 100 | $7.105 \mathrm{E}-015$ | $2.859 \mathrm{E}-015$ | 1.000 | No |

Comparisons for factor: Volume within 1500 S Comparison Diff of Means $\quad \mathbf{P} \quad \mathrm{P}<0.05$ 50 vs. Pre $\quad 16.500 \quad 5.939<0.001$ Yes 50 vs. $100 \quad 10.333 \quad 4.158<0.001$ Yes 150 vs. Pre $\quad 10.833 \quad 3.8990 .002$ Yes
10 vs. Pre $\quad 10.500 \quad 3.779 \quad 0.003$ Yes
50 vs. $10 \quad 6.000 \quad 2.4140 .107 \quad \mathrm{No}$
50 vs. $150 \quad 5.667$ 2.280 0.124 No
100 vs. Pre $\quad 6.167 \quad 2.220 \quad 0.115 \quad$ No
150 vs. $100 \quad 4.667 \quad 1.878 \quad 0.183$ No
$\begin{array}{lllll}10 \text { vs. } 100 & 4.333 & 1.744 & 0.165 & \text { No }\end{array}$
$\begin{array}{lllll}150 \text { vs. } 10 & 0.333 & 0.134 & 0.894 & \text { No }\end{array}$

Comparisons for factor: Volume within 1500 W Comparison Diff of Means t P P<0.05 | 50 | vs. Pre | 7.000 | 2.519 | 0.135 |
| :--- | :--- | :--- | :--- | :--- | 100 v. Pre $6.000 \quad 2.1600 .273 \mathrm{No}$ 50 vs. 10 N 4.667 1.1878 0.2717 No 50 vs. $\quad 4.667-1.8780 .417$ No 150 vs. Pre 4.333 No 100 vs. $10 \quad 3.667 \quad 1.4750 .610$ No 50 vs. $150 \quad 2.667 \quad 1.0730 .816$ No 10 vs. Pre $\quad 2.333 \quad 0.8400 .874 \quad$ No 150 vs. $10 \quad 2.000 \quad 0.8050 .809$ No 100 vs. $150 \quad 1.667 \quad 0.6710 .755$ No

50 vs. $100 \quad 1.000 \quad 0.4020 .689$ No

Comparisons for factor: Volume within Control Comparison Diff of Means t P P<0.05 50 vs. Pre $\quad 16.111 \quad 7.940<0.001$ Yes 100 vs. Pre $\quad 13.111-6.462<0.001$ Yes $6.462<0.001$ Yes $\begin{array}{llll}150 \text { vs. Pre } & 12.778 & 6.297<0.001 & \text { Yes } \\ 10 \text { vs. Pre } & 11.778 & 5.805<0.001 & \text { Yes }\end{array}$ 10 vs. Pre $11.778-5.805<0.001$ Yes 50 vs. $10 \quad 4.333-1.7440 .418$ No 50 vs. 150 3.333 1.341 0.640 No

|  | 100 vs. 10 | 1.333 | 0.537 | 0.933 |
| :--- | :--- | :--- | :--- | :--- |

150 vs. $10 \quad 1.000 \quad 0.402 \quad 0.903$ No
100 vs. $150 \quad 0.333 \quad 0.134 \quad 0.894$ No

## One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.

| Dependent Variable: Individual per $\mathbf{m}^{\mathbf{2}}$ |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Passed | $(P=0.917)$ |
| Equal Variance Test: | Passed | $(P=0.829)$ |


| Group Name N Missing |  |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 3 | 0 | 42.441 | 73.511 | 42.441 |
| 500 N | 3 | 0 | 7639.437 | 1606.756 | 927.661 |
| 500 E | 3 | 0 | 9591.738 | 2669.505 | 1541.239 |
| 500 S | 3 | 0 | 10292.020 | 966.181 | 557.825 |
| 500 W | 3 | 0 | 6769.390 | 2366.080 | 1366.057 |
| 1500 N | 3 | 0 | 6790.611 | 1635.919 | 944.498 |
| 1500 E | 3 | 0 | 12456.527 | 1945.947 | 1123.493 |
| 1500 S | 3 | 0 | 11926.010 | 3440.889 | 1986.598 |
| 1500 W | 3 | 0 | 8382.160 | 514.574 | 297.089 |
| Control | 3 | 0 | 10122.254 | 2403.187 | 1387.481 |


| Source of Variation | DF | SS | MS | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Between Groups | 9 | 337592592.158 | 37510288.018 | $9.242<0.001$ |  |
| Residual | 20 | 81175830.436 | 4058791.522 |  |  |
| Total | 29 | 418768422.594 |  |  |  |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$
All Pairwise Multiple Comparison Procedures (Tukey Test):

## Comparisons for factor: site

Comparison Diff of Means p q P P<0.050 1500 E vs. DC 1500 E vs 500 W 1500 E vs. 500 W 500 E vs. 1500 N 1500 E vs. 500 N 500 E vs. 1500 W 1500 E vs. 500 E 500 E vs. Control 1500 E vs. 500 S 1500 E vs. 1500 S
1500 S vs. DC
1500 S vs. 500 W 1500 S vs. 1500 N 1500 S vs. 500 N 1500 S vs. 1500 W 1500 S vs. 500 E 1500 S vs. 500 E 1500 S vs. Control 500 S vs. 500 S 500 S vs. DC 500 S vs. 500 W 500 S vs. 1500 N 500 S vs. 500 N 500 S vs. 1500 W 500 S vs. 500 E 500 S vs. Control Control vs. DC Control vs. 500 W Control vs. 1500 N Control vs. 500 N Control vs. 1500 W Control vs. 500 E 500 E vs. DC 500 E vs. 500 W 500 E vs. 1500 N 500 E vs. 500 N 500 E vs. 1500 W 1500 W vs. DC 1500 W vs. 500 W 1500 W vs. 1500 N 1500 W vs. 500 N 500 N vs. DC
500 N vs. 500 W
500 N vs. 1500 N 1500 N vs. DC 1500 N vs. 500 W 500 W vs. DC

A result of "Do Not Test" occurs for a comparison when no significant difference is found between A result of "Do Not Test" occurs for a comparison when no significant difference is found between
two means that enclose that comparison. For example, if you had four means sorted in order, and two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs . 2 , then you would not test 4 vs . 3 and 3 vs . 2, but still
test 4 vs. 1 and 3 vs .1 ( 4 vs .3 and 3 vs .2 are enclosed by 4 vs 2: 4321 ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist

## Two Way Analysis of Variance between Sites and Disposal Volumes.

| Dependent Variable: Individual per $\mathbf{m}^{2}$ |  |  |
| :--- | :--- | :--- |
| Normality Test (Shapiro-Wilk) | Failed | $(P<0.050)$ |
| Equal Variance Test: | Failed | $(P<0.050)$ |


| Source of Variation | DF | SS | MS | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Volume | 4 | 7809169102.451 | 1952292275.613 | 41.839 | $<0.001$ |
| site | 5 | 2425696358.103 | 485139271.621 | 10.397 | $<0.001$ |
| Volume $x$ site | 20 | 3770875105.434 | 188543755.272 | 4.041 | $<0.001$ |
| Residual | 61 | 2846412247.877 | 46662495.867 |  |  |
| Total | 90 | 17831787360.217 | 198130970.669 |  |  |

Main effects cannot be properly interpreted if significant interaction is

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. ( $P=<0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for site : 1.000
Power of performed test with alpha $=0.0500$ : for Volume x site : 0.998

| Least square means for Volume : |  |  |  |
| :---: | :---: | :---: | :---: |
| Group | Mean | SEM |  |
| Pre | 12133.309 | 1839.693 |  |
| 10 | 2843.857 | 1610.081 |  |
| 50 | 27601.004 | 1610.081 |  |
| 100 | 23714.087 | 1610.081 |  |
| 150 | 8286.667 | 1610.081 |  |

Least square means for site :
Group Mean SEM
DC 7916.2591849 .842
1500 N 22966.0371849 .842
1500 E 21426.2831849 .842
1500 S 12013.9251849 .842
500 W 13044.2091849 .842 Control 12127.9961641 .967

## Least square means for Volume $\mathbf{x}$ site

Group
Mean SEM
Pre x DC 15200.9214830 .243 Pre $x 1500$ N 17019.8354830 .243 Prex 1500 E 16240.3004830 .243 Prex 1500 S 6626.0434830 .243 Pre x 1500 W 14421.3874830 .243 Pre x Control 3291.3682276 .998 $10 \times$ DC $\quad 952.764 \quad 3943.877$ $10 \times 1500 \mathrm{~N} \quad 6582.7353943 .877$ $10 \times 1500$ E 2273.6423943 .877 $10 \times 1500$ S 2620.1023943 .877 $10 \times 1500$ W 1992.1443943 .877 $10 \times$ Control 2641.7563943 .877 $50 \times$ DC 4477.5593943 .877 $50 \times 1500 \mathrm{~N} 55767.8923943 .877$ $50 \times 1500$ E 38833.8063943 .877 $50 \times 1500$ S 23236.6223943877 $50 \times 1500 \mathrm{~W} 211782183943877$ $50 \times$ Control 22111.0273943 .877 $100 \times$ DC 18907.6073943 .877 $100 \times 1500$ N 28669.1103943 .877 $100 \times 1500$ E 37327.1393943 .877 $100 \times 1500$ S 15660.8463943 .877 $100 \times 1500$ W 19247.1383943 .877 $100 \times$ Control 22472.6783943 .877 $150 \times$ DC $42.441 \quad 3943.877$ $150 \times 1500$ N 6790.6113943 .877 $150 \times 1500$ E 12456.5273943 .877 $150 \times 1500$ S 11926.0103943 .877 $50 \times 1500 \mathrm{~W} 83821603943.877$ $150 \times$ Control 10122.2543943 .877

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

Comparisons for factor: Volume

| Comparisons for factor: Volume <br> Comparison Diff of Means <br> $\mathbf{t}$ <br> 50 | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 100 vs. 10 | 24757.147 | 10.873 | $<0.001$ | Yes |
| 50 | 20870.229 | 9.166 | $<0.001$ | Yes |
| 100 vs. 150 | 19314.337 | 8.482 | $<0.001$ | Yes |
| 50 vs. Pre | 15427.419 | 6.775 | $<0.001$ | Yes |
| 100 vs. Pre | 15467.695 | 6.327 | $<0.001$ | Yes |
| Pre vs. 10 | 9289.778 | 4.737 | $<0.001$ | Yes |
| 150 vs. 10 | 5442.810 | 3.800 | 0.001 | Yes |
| 50 vs. 100 | 3886.917 | 1.390 | 0.059 | No |
| Pre vs. 150 | 3846.641 | 1.573 | 0.177 | No |
| 150.121 | No |  |  |  |


| Comparisons for factor: site |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.050$ |
| 1500 N vs. DC | 15049.778 | 5.753 | <0.001 | 1 Yes |
| 1500 E vs. DC | 13510.024 | 5.164 | <0.001 | 1 Yes |
| 1500 N vs. Control | 10838.040 | 4.382 | <0.001 | 1 Yes |
| 1500 N vs. 1500 S | 10952.112 | 4.186 | 0.001 | 1 Yes |
| 1500 N vs. 1500 W | 9921.827 | 3.793 | 0.004 | 4 Yes |
| 1500 E vs. Control | 9298.286 | 3.759 | 0.004 | 4 Yes |
| 1500 E vs. 1500 S | 9412.358 | 3.598 | 0.006 | Y Yes |
| 1500 E vs. 1500 W | 8382.074 | 3.204 | 0.017 | Yes |
| 1500 W vs. DC | 5127.951 | 1.960 | 0.325 | No |
| Control vs. DC | 4211.738 | 1.703 | 0.446 | - No |
| 1500 S vs. DC | 4097.666 | 1.566 | 0.480 | No |
| 1500 N vs. 1500 E | 1539.754 | 0.589 | 0.962 | No |
| 1500 W vs. 1500 S | 1030.285 | 0.394 | 0.972 | No |
| 1500 W vs. Control | 916.213 | 0.370 | 0.917 | No |
| Control vs. 1500 S | 114.072 | 0.0461 | 0.963 | No |
| Comparisons for factor: site within 0 |  |  |  |  |
| Comparison | Diff of Means | t | P | <0.05 |
| 1500 N vs. Control | 13728.467 | 2.5710 | 0.173 | No |
| 1500 E vs. Control | 12948.933 | 2.4250 | 0.228 | No |
| DC vs. Control | 11909.554 | 2.2300 | 0.322 | No |
| 1500 W vs. Control | 11130.019 | 2.0840 | 0.397 | No |
| 1500 N vs. 1500 S | 10393.792 | 1.5220 | 0.793 | No |
| 1500 E vs. 1500 S | 9614.258 | 1.4070 | 0.834 | No |
| DC vs. 1500 S | 8574.879 | 1.2550 | 0.886 | No |
| 1500 W vs. 1500 S | 7795.344 | 1.1410 | 0.908 | No |
| 1500 S vs. Control | 3334.675 | 0.6240 | 0.995 | No |
| 1500 N vs. 1500 W | 2598.448 | 0.3800 | 0.999 | No |
| 1500 E vs. 1500 W | 1818.914 | 0.2661 | 1.000 | No |
| 1500 N vs. DC | 1818.914 | 0.2660 | 0.998 | No |
| 1500 E vs. DC | 1039.379 | 0.1520 | 0.998 | No |
| DC vs. 1500 W | 779.534 | 0.1140 | 0.992 | No |
| 1500 N vs. 1500 E | 779.534 | 0.1140 | 0.910 | No |
| Comparisons for factor: site within 10 |  |  |  |  |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.0$ |
| 1500 N vs. DC | 5629.971 | 1.009 | 0.997 | 7 No |
| 1500 N vs. 1500 W | 4590.592 | 0.823 | 0.999 | 9 No |
| 1500 N vs. 1500 E | 4309.093 | 0.773 | 1.000 | No |
| 1500 N vs. 1500 S | 3962.633 | 0.710 | 1.000 | No |
| 1500 N vs. Control | 3940.980 | 0.707 | 0.999 | 9 No |
| Control vs. DC | 1688.991 | 0.303 | 1.000 | No |
| 1500 S vs. DC | 1667.338 | 0.299 | 1.000 | No |
| 1500 E vs. DC | 1320.878 | 0.237 | 1.000 | No |
| 1500 W vs. DC | 1039.379 | 0.186 | 1.000 | No |
| Control vs. 1500 W | 649.612 | 0.116 | 1.000 | No |
| 1500 S vs. 1500 W | 627.958 | 0.113 | 1.000 | No |
| Control vs. 1500 E | 368.113 | 0.0660 | 1.000 | No |
| 1500 S vs. 1500 E | 346.460 | 0.0621 | 11.000 | No |
| 1500 E vs. 1500 W | 281.499 | 0.0505 | 0.998 | 8 No |
| Control vs. 1500 S | 21.654 | 0.00388 | 80.997 | 7 No |


| Comparisons for factor: site within $\mathbf{5 0}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| 1500 N vs. DC | 51290.333 | 9.196 | $<0.001$ | Yes |  |
| 1500 N vs. 1500 W | 34589.674 | $6.202<0.001$ | Yes |  |  |
| 1500 E vs. DC | 34356.247 | 6.160 | $<0.001$ | Yes |  |
| 1500 N vs. Control | 33655.965 | 6.034 | $<0.001$ | Yes |  |
| 1500 N vs. 1500 S | 32531.270 | 5.833 | $<0.001$ | Yes |  |
| 1500 S vs. DC | 18759.063 | 3.363 | 0.013 | Yes |  |
| 1500 E vs. 1500 W | 17655.588 | 3.166 | 0.022 | Yes |  |
| Control vs. DC | 17634.368 | 3.162 | 0.019 | Yes |  |
| 1500 N vs. 1500 E | 16934.086 | 3.036 | 0.024 | Yes |  |
| 1500 E vs. Control | 16721.879 | 2.998 | 0.023 | Yes |  |
| 1500 W vs. DC | 16700.659 | 2.994 | 0.020 | Yes |  |
| 1500 E vs. 1500 S | 15597.184 | 2.796 | 0.027 | Yes |  |
| 1500 S vs. 1500 W | 2058.404 | 0.369 | 0.976 | No |  |
| 1500 S vs. Control | 1124.695 | 0.202 | 0.975 | No |  |
| Control vs. 1500 W | 933.709 | 0.167 | 0.868 | No |  |

## Comparisons for factor: site within 100

## Comparison Diff of Means

$P$$P<0.05$ 1500 E vs. 1500 S $\begin{array}{lllll} & 21666.293 & 3.885 & 0.004 & \text { Yes }\end{array}$ 1500 E vs. DC $\quad 18419.532 \quad 3.302 \quad 0.022$ Yes 500 E vs. 1500 W $\quad 18080.002 \quad 3.242 \quad 0.025$ Yes 1500 E vs. Control $14854.461 \quad 2.6630 .112$ No 1500 N vs. $1500 \mathrm{~S} 13008.264 \quad 2.3320 .226$ No 1500 N vs. DC $\quad 9761.503 \quad 1.750 \quad 0.589$ No 500 N vs. 1500 W $9421.973 \quad 1.6890 .598$ No 1500 E vs. 1500 N $8658.029 \quad 1.5520 .659$ No Control vs. 1500 S $\quad 6811.832-1.2210 .835$ No 1500 N vs. Control $\quad 6196.432 \quad 1.111 \quad 0.850$ No 1500 W vs 1500 S $3586.291-0.643 \quad 0.975$ No $\begin{array}{lllll}\text { Control vs. DC } & 3565.071 & 0.639 & 0.949 & \text { No }\end{array}$ Control vs. DC $\quad 3565.071-0.6390 .949 \quad \mathrm{~N}$ $\begin{array}{lllll}\text { Control vs. } 1500 \mathrm{~W} & 3225.540 & 0.578 & 0.811 & \mathrm{~N}\end{array}$ 1500 W vs. DC $330.531-0.5780 .811$

Comparisons for factor: site within 150

| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| :---: | :---: | :---: | :---: | :---: |
| 1500 E vs. DC | 12414.086 | 2.226 | 0.364 | No |
| 1500 S vs. DC | 11883.569 | 2.131 | 0.411 | No |
| Control vs. DC | 10079.813 | 1.807 | 0.640 | No |
| 1500 W vs. DC | 8339.719 | 1.495 | 0.836 | No |
| 1500 N vs. DC | 6748.170 | 1.210 | 0.944 | No |
| 1500 E vs. 1500 N | 5665.916 | 1.016 | 0.977 | No |
| 1500 S vs. 1500 N | 5135.400 | 0.921 | 0.982 | No |
| 1500 E vs. 1500 W | 4074.367 | 0.731 | 0.994 | No |
| 1500 S vs. 1500 W | 3543.850 | 0.635 | 0.995 | No |
| Control vs. 1500 N | 3331.644 | 0.597 | 0.992 | No |
| 1500 E vs. Control | 2334.273 | 0.419 | 0.996 | No |
| 1500 S vs. Control | 1803.756 | 0.323 | 0.996 | No |
| Control vs. 1500 W | 1740.094 | 0.312 | 0.985 | No |
| 1500 W vs. 1500 N | 1591.549 | 0.285 | 0.950 | No |
| 1500 E vs. 1500 S | 530.516 | 0.0951 | 0.925 | No |


| Comparisons for factor: Volume within DC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |
| 100 vs. 150 | 18865.166 | 3.382 | 0.013 | Yes |
| 100 vs. 10 | 17954.843 | 3.219 | 0.018 | Yes |
| 100 vs. 50 | 14430.048 | 2.587 | 0.093 | No |
| Pre vs. 150 | 15158.480 | 2.431 | 0.120 | No |
| Pre vs. 10 | 14248.157 | 2.285 | 0.145 | No |
| Pre vs. 50 | 10723.362 | 1.720 | 0.378 | No |
| 50 vs. 150 | 4435.118 | 0.795 | 0.894 | No |
| 50 vs. 10 | 3524.795 | 0.632 | 0.896 | No |
| 100 vs. Pre | 3706.686 | 0.594 | 0.801 | No |
| 10 vs. 150 | 910.323 | 0.163 | 0.871 | No |

Comparisons for factor: Volume within 1500 N
50 vs. $15049185.157 \quad 8.819<0.001$ Yes
50 vs. $150 \quad 48977.281 \quad 8.781<0.001$ Yes
50 vs. Pre $38748.057 \quad 6.214<0.001$ Yes
50 vs. $100 \quad 27098.782 \quad 4.859<0.001$ Yes
100 vs. $10 \quad 22086.375 \quad 3.960 \quad 0.001$ Yes
$\begin{array}{lllll}100 \text { vs. } 150 & 21878.500 & 3.923 & 0.001 & \text { Yes } \\ 100 \text { vs. Pre } & 11649.276 & 1.868 & 0.241 & \text { No }\end{array}$
$\begin{array}{lllll}100 & \text { vs. Pre } & 11649.276 & 1.868 & 0.241 \\ \text { Pre vo }\end{array}$
$\begin{array}{ccccc}\text { Pre vs. } 10 & 10437.100 & 1.674 & 0.269 & \text { No } \\ \text { Pre vs. } 150 & 10229.224 & 1.640 & 0.201 & \text { No }\end{array}$
150 vs. $10 \quad 207.876 \quad 0.0373 \quad 0.970$ No
Comparisons for factor: Volume within 1500 E Comparison Diff of Means t P P<0.05
50 vs. $10 \quad 36560.164 \quad 6.555<0.001$ Yes
100 vs. $10 \quad 35053.497 \quad 6.285<0.001$ Yes
50 vs. $150 \quad 26377.279 \quad 4.729<0.001$ Yes
100 vs. $150 \quad 24870.612 \quad 4.459<0.001$ Yes
50 vs. Pre $22593.506 \quad 3.6230 .004$ Yes
100 vs. Pre $21086.839 \quad 3.3820 .006$ Yes
Prevs $10 \quad 13966.658 \quad 2240 \quad 0.110$ Yo
150 vs. $10 \quad 10182.885 \quad 1.826 \quad 0.203$ No
$\begin{array}{lllll}\text { Pre vs. } 150 & 3783.773 & 0.607 & 0.794 & \text { No } \\ 50 \text { vs. } 100 & 1506.667 & 0.270 & 0.788 & \text { No }\end{array}$
vs. 100 1506.667 0.270 No
Comparisons for factor: Volume within 1500 S Comparison Diff of Means t P P<0.05 50 vs. $10 \quad 20616.520 \quad 3.6960 .005$ Yes 50 vs. Pre $16610.579 \quad 2.6640 .085$ No
100 vs. $10 \quad 13040.745 \quad 2.3380 .168$ No
50 vs. $150 \quad 11310.611 \quad 2.0280 .286$ No
150 vs. $10 \quad 9305.909 \quad 1.668 \quad 0.470$ No
100 vs. Pre $9034.804 \quad 1.4490 .563$ No
50 vs. $100 \quad 7575.775 \quad 1.3580 .547$ No
150 vs. Pre $5299.968 \quad 0.8500 .783$ No
100 vs. $150 \quad 3734.836 \quad 0.6700 .756$ No
$\begin{array}{llll}\text { Pre vs. } 10 & 4005.941 & 0.6420 .523 & \text { No }\end{array}$

Comparisons for factor: Volume within 1500 W Comparison Diff of Means t P P<0.05
50 vs. $10 \quad 19186.074 \quad 3.440 \quad 0.011$ Y 100 vs $10 \quad 17254.994 \quad 3.0940 .027$ Yes 100 vs. $10017254.994 \quad 3.0940 .027$ Ye Prevs. 10 vo 12429.2431 .2940 .185 No Pre vs. 10 12429.243 1.993 0.305 No $\begin{array}{llll}100 \text { vs. } 150 & 10864.977 & 1.948 & 0.292\end{array}$ $\begin{array}{llll}150 \text { vs. } 10 & 6390.017 & 1.146 & 0.773\end{array}$ 50 vs. Pre $\quad 6756.831 \quad 1.0840 .735$ No $\begin{array}{llll}\text { Pre vs. } 150 & 6039.226 & 0.9680 .708 & \text { No }\end{array}$ 100 vs. Pre $4825.751 \quad 0.7740 .689$ No 50 vs. $100 \quad 1931.080 \quad 0.3460 .730$ No

Comparisons for factor: Volume within Control Comparison Diff of Means t P P<0.05 100 vs. Pre $19181.310 \quad 4.212<0.001$ Yes 50 vs. Pre $18820.559-4.133<0.001$ Yes 100 vs 10 19830.922 $3.556<0.001$ Ye 100 vs. $10 \quad 19830.922 \quad 3.556 \quad 0.006$ Yes $\begin{array}{lllll} & 19870.171 & 3.491 & 0.006 & \text { ves. } 10 \\ 12350.424 & 2.214 & 0.170 & \text { No }\end{array}$ $\begin{array}{lllll} & 50 \text { vs. } 150 & 11989.672 & 2.150 & 0.170\end{array}$ 150 vs. Pre $\quad 6830.887 \quad 1.500 \quad 0.450 \quad$ No $\begin{array}{llll}150 & \text { vs. } 10 & 7480.499 & 1.341 \\ \text { Pre vs. } 10 & 649.612 & 0.143 & 0.987\end{array}$ $\begin{array}{lllll}\text { Pre vs. } 10 & 649.612 & 0.143 & 0.987 & \text { No }\end{array}$ 100 vs. $50 \quad 360.751 \quad 0.0647 \quad 0.949$ No

One Way Analysis of Variance between Sites after $150,000 \mathrm{~m}^{3}$ Disposal.
Dependent Variable: Shannon Wiener Diversity Index
Normality Test (Shapiro-Wilk) $\quad$ Passed $\quad(P=0.758)$

Equal Variance Test:
$\begin{array}{ll}\text { Passed } & (P=0.758) \\ \text { Passed } & (P=0.092)\end{array}$

| Group Name | N Missing Mean | Std Dev | SEM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC | 3 | 0 | 0.231 | 0.400 | 0.231 |
| 500 N | 3 | 0 | 1.501 | 0.154 | 0.0891 |
| 500 E | 3 | 0 | 1.066 | 0.335 | 0.193 |
| 500 S | 3 | 0 | 1.208 | 0.130 | 0.0751 |
| 500 W | 3 | 0 | 1.375 | 0.244 | 0.141 |
| 1500 N | 3 | 0 | 1.722 | 0.182 | 0.105 |
| 1500 E | 3 | 0 | 1.594 | 0.111 | 0.0643 |
| 1500 S | 3 | 0 | 1.361 | 0.126 | 0.0730 |
| 1500 W | 3 | 0 | 1.383 | 0.202 | 0.116 |
| Control | 3 | 0 | 1.791 | 0.207 | 0.119 |

## Source of Variation DF SS MS F P <br> $\begin{array}{llllll}\text { Between Groups } & 9 & 5.288 & 0.588 & 11.352<0.001\end{array}$ <br> Residual $\quad 20 \quad 1.0350 .0518$ <br> Total <br> 296.323

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference ( $\mathrm{P}=<0.001$ ).

Power of performed test with alpha $=0.050: 1.000$
All Pairwise Multiple Comparison Procedures (Tukey Test):

| Comparisons for factor: site |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means |  | q | P | P<0.050 |
| Control vs. DC | 1.560 | 10 | 11.8 | 001 | Yes |
| Control vs. 500 E | 0.725 | 10 | 5.519 | 0.024 | Yes |
| Control vs. 500 S | 0.584 | 10 | ) 4.443 | 0.109 | No |
| Control vs. 1500 S | 0.430 | 10 | 3.276 | 0.420 | Do Not Tes |
| Control vs. 500 W | 0.417 | 10 | 3.172 | 0.462 | Do Not Tes |
| Control vs. 1500 W | 0.408 | 10 | 3.105 | 0.490 | Do Not |
| Control vs. 500 N | 0.290 | 10 | 2.207 | 0.851 | Do Not |
| Control vs. 1500 E | 0.197 | 10 | 1.501 | 0.983 | Do No |
| Control vs. 1500 N | 0.0698 | 10 | 0.531 | 1.000 | Do Not T |
| 1500 N vs. DC | 1.490 | 10 | 11.347 | <0.001 | Yes |
| 1500 N vs. 500 E | 0.655 | 10 | O 4.988 | 0.052 | No |
| 1500 N vs. 500 S | 0.514 | 10 | 3.911 | 0.214 | Do Not Tes |
| 1500 N vs. 1500 S | 0.361 | 10 | 02.745 | 0.644 | Do Not Tes |
| 1500 N vs. 500 W | 0.347 | 10 | 2.641 | 0.689 | Do Not |
| 1500 N vs. 1500 W | 0.338 | 10 | 2.574 | 0.717 | Do Not |
| 1500 N vs. 500 N | 0.220 | 10 | 1.676 | 0.967 | Do Not Te |
| 1500 N vs. 1500 E | 0.127 | 10 | 0.970 | 0.999 | Do Not Tes |
| 1500 E vs. DC | 1.363 |  | 10.378 | <0.001 | Yes |
| 1500 E vs. 500 E | 0.528 | 10 | 0.018 | 0.188 | Do Not Tes |
| 1500 E vs. 500 S | 0.386 | 10 | 02.942 | 0.559 | Do Not |
| 1500 E vs. 1500 S | 0.233 | 10 | 1.775 | 0.953 | Do Not Tes |
| 1500 E vs. 500 W | 0.220 | 10 | 1.671 | 0.967 | Do Not Tes |
| 1500 E vs. 1500 W | 0.211 | 10 | 1.604 | 0.975 | Do Not Tes |
| 1500 E vs. 500 N | 0.0928 | 10 | 0.707 | 1.000 | o Not T |
| 500 N vs. DC | 1.270 | 10 | 9.671 | <0.001 | Yes |
| 500 N vs. 500 E | 0.435 | 10 | 3.312 | 0.406 | Do Not Tes |
| 500 N vs. 500 S | 0.294 | 10 | 2.235 | 0.843 | Do Not Tes |
| 500 N vs. 1500 S | 0.140 | 10 | 1.069 | 0.999 | Do Not Tes |
| 500 N vs. 500 W | 0.127 | 10 | 0.965 | 0.999 | Do Not Te |
| 500 N vs. 1500 W | 0.118 | 10 | 0.898 | 1.000 | Do Not Tes |
| 1500 W vs. DC | 1.152 | 10 | 8.773 | <0.001 | Yes |
| 1500 W vs. 500 E | 0.317 | 10 | 2.414 | 0.780 | Do Not Tes |
| 1500 W vs. 500 S | 0.176 | 10 | 1.337 | 0.992 | Do Not Tes |
| 1500 W vs. 1500 S | 0.0225 | 10 | 0.171 | 1.000 | Do Not Tes |
| 1500 W vs. 500 W | 0.00880 |  | 0.0670 | 1.000 | Do Not Tes |
| 500 W vs. DC | 1.144 | 10 | 8.706 | <0.001 | Yes |
| 500 W vs. 500 E | 0.308 | 10 | 2.347 | 0.804 | Do Not Test |
| 500 W vs. 500 S | 0.167 | 10 | 1.270 | 0.995 | Do Not Tes |
| 500 W vs. 1500 S | 0.0137 | 10 | 0.104 | 1.000 | Do Not Tes |
| 1500 S vs. DC | 1.130 | 10 | 8.602 | <0.001 | Yes |
| 1500 S vs. 500 E | 0.295 | 10 | 2.243 | 0.840 | Do Not Tes |
| 1500 S vs. 500 S | 0.153 | 10 | 1.166 | 0.997 | Do Not Tes |
| 500 S vs. DC | 0.977 | 10 | 7.436 | 0.001 | Yes |
| 500 S vs. 500 E | 0.141 | 10 | 1.076 | 0.998 | Do Not Te |
| 500 E vs. DC | 0.835 | 10 | 6.359 | 0.007 | Yes |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between A result of "Do not leans that enclose that comparison. For example, if you had four means sorted in order, and wo means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2 , then you would not test 4 vs. 3 and 3 vs. 2, but still
test 4 vs. 1 and 3 vs .1 ( 4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4321 ). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist

## Two Way Analysis of Variance between Sites and Disposal Volumes.

## Dependent Variable. Shannon Wiener Diversity Index <br> Normality Test (Shapiro-Wilk) <br> Failed $\quad(\mathrm{P}<0.050)$ <br> Equal Variance Test:

DF SS MS
Source
MS $\quad \mathbf{P}$
Volume
$53.988 \quad 0.798 \quad 9.888<0.00$
Volume x site
Residual
$\begin{array}{llllll}20 & 4.374 & 0.219 & 2.711 & 0.001\end{array}$
$\begin{array}{lll}61 & 4.920 & 0.0807\end{array}$
$\begin{array}{llll}90 & 25.437 & 0.283\end{array}$
Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. ( $P=0.001$ )

Power of performed test with alpha $=0.0500$ : for Volume : 1.000
Power of performed test with alpha $=0.0500$ : for site : 1.000
Power of performed test with alpha $=0.0500$ : for Volume $\times$ site : 0.915
Least square means for Volume :

## Group Mean SEM

Pre 1.4970 .0765
$10 \quad 2.2360 .0669$
$50 \quad 1.2320 .0669$
$100 \quad 1.3730 .0669$
1501.3470 .0669

Least square means for site :
Group Mean SEM
DC 1.0860 .0769
1500 N 1.7180 .0769
1500 N 1.7180 .0769
1500 E 1.4890 .076
1500 W 1.6260 .076
500 W 1.5760 .076
Control 1.7250 .0683

## Least square means for Volume x site

Group Mean SEM PrexDC 1.4470 .201
Pre x 1500 N 1.3240 .201 Pre x 1500 N 1.3240 .201 Prex 1500 E 1.2520 .201 Prex 1500 S 1.6630 .201 Pre x 1500 W 1.6500 .201 Pre x Control 1.6440 .0947
$10 \times$ DC $\quad 1.6270 .164$ $10 \times 1500 \mathrm{~N} 2.4570 .164$ $10 \times 1500$ E 2.2930 .164 $10 \times 1500$ S 2.5340 .164 $10 \times 1500$ W 2.0740 .164 $10 \times$ Control 2.4320 .164 $50 \times$ DC 0.6680 .164 $50 \times 1500$ N 1.4960 .164 $50 \times 1500$ E 1.1050 .164 $50 \times 1500$ S 1.4130 .164 $50 \times 1500 \mathrm{~W} 1.3080 .164$ $50 \times$ Control 1.4010 .164 $100 \times$ DC $\quad 1.4580 .164$ $100 \times 1500$ N 1.5920 .164 $100 \times 1500$ E 1.2030 .164 $100 \times 1500$ S 1.1620 .164 $100 \times 1500 \mathrm{~W} 1.4660 .164$ $100 \times$ Control 1.3570 .164 $150 \times$ DC 0.2310 .164 $150 \times 1500$ N 1.7220 .164 $150 \times 1500$ E 1.5940 .164 $150 \times 1500$ S 1.3610 .164 $150 \times 1500$ W 1.3830 .164 $150 \times$ Control 1.7910 .164

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level $=0.05$

Comparisons for factor: Volume

| Comparison Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5 0}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0}$ vs. 50 | 1.004 | 10.608 | $<0.001$ | Yes |
| 10 vs. 150 | 0.889 | 9.390 | $<0.001$ | Yes |
| 10 vs. 100 | 0.863 | 9.116 | $<0.001$ | Yes |
| 10 vs. Pre | 0.739 | 7.274 | $<0.001$ | Yes |
| Pre vs. 50 | 0.265 | 2.606 | 0.067 | No |
| 100 vs. 50 | 0.141 | 1.492 | 0.532 | No |
| Pre vs. 150 | 0.150 | 1.471 | 0.469 | No |
| 150 vs. 50 | 0.115 | 1.218 | 0.540 | No |
| Pre vs. 100 | 0.124 | 1.216 | 0.405 | No |
| 100 vs. 150 | 0.0259 | 0.274 | 0.785 | No |


| Comparisons for factor: site |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.050$ |
| Control vs. DC | 0.639 | 6.214 | <0.001 | Yes |
| 1500 N vs. DC | 0.632 | 5.811 | <0.001 | Yes |
| 1500 S vs. DC | 0.540 | 4.968 | <0.001 | Yes |
| 1500 W vs. DC | 0.490 | 4.506 | <0.001 | Yes |
| 1500 E vs. DC | 0.403 | 3.708 | 0.005 | Yes |
| Control vs. 1500 E | 0.236 | 2.292 | 0.226 | No |
| 1500 N vs. 1500 E | 0.229 | 2.103 | 0.305 | No |
| Control vs. 1500 W | 0.149 | 1.448 | 0.734 | No |
| 1500 N vs. 1500 W | 0.142 | 1.305 | 0.784 | No |
| 1500 S vs. 1500 E | 0.137 | 1.260 | 0.761 | No |
| Control vs. 1500 S | 0.0987 | 0.960 | 0.876 | No |
| 1500 N vs. 1500 S | 0.0916 | 0.843 | 0.873 | No |
| 1500 W vs. 1500 E | 0.0868 | 0.798 | 0.813 | No |
| 1500 S vs. 1500 W | 0.0503 | 0.462 | 0.874 | No |
| Control vs. 1500 N | 0.00704 | 0.0684 | 0.946 | No |

Comparisons for factor: site within 0

| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| :---: | :---: | :---: | :---: | :---: |
| Control vs. 1500 E | 0.392 | 1.767 | 0.724 | No |
| 1500 S vs. 1500 E | 0.411 | 1.446 | 0.903 | No |
| Control vs. 1500 N | 0.320 | 1.441 | 0.887 | No |
| 1500 W vs. 1500 E | 0.398 | 1.400 | 0.888 | No |
| 1500 S vs. 1500 N | 0.338 | 1.191 | 0.950 | No |
| 1500 W vs. 1500 N | 0.325 | 1.146 | 0.948 | No |
| Control vs. DC | 0.198 | 0.891 | 0.986 | No |
| 1500 S vs. DC | 0.216 | 0.761 | 0.992 | No |
| 1500 W vs. DC | 0.203 | 0.715 | 0.989 | No |
| DC vs. 1500 E | 0.195 | 0.685 | 0.984 | No |
| DC vs. 1500 N | 0.122 | 0.431 | 0.996 | No |
| 1500 N vs. 1500 E | 0.0722 | 0.254 | 0.998 | No |
| 1500 S vs. Control | 0.0183 | 0.0825 | 1.000 | No |
| 1500 S vs. 1500 W | 0.0129 | 0.0454 | 0.999 | No |
| 1500 W vs. Control |  |  |  |  |


| Comparisons for factor: site within 10 |  |  |  |
| :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | P | $\mathrm{P}<0.05$ |
| 1500 S vs. DC | 0.907 | 3.9110 .003 | Yes |
| 1500 N vs. DC | 0.830 | 3.5800 .010 | Yes |
| Control vs. DC | 0.806 | 3.4740 .012 | Yes |
| 1500 E vs. DC | 0.666 | 2.8740 .065 | No |
| 1500 S vs. 1500 W | 0.460 | 1.9820 .444 | No |
| 1500 W vs. DC | 0.447 | 1.9290 .452 | No |
| 1500 N vs. 1500 W | 0.383 | 1.6500 .628 | No |
| Control vs. 1500 W | 0.358 | 1.5450 .664 | No |
| 1500 S vs. 1500 E | 0.240 | 1.0370 .921 | No |
| 1500 E vs. 1500 W | 0.219 | 0.9450 .924 | No |
| 1500 N vs. 1500 E | 0.164 | 0.7050 .963 | No |
| Control vs. 1500 E | 0.139 | 0.6000 .959 | No |
| 1500 S vs. Control | 0.101 | 0.4370 .962 | No |
| 1500 S vs. 1500 N | 0.0769 | 0.3310 .933 | No |
| 1500 N vs. Control | 0.0245 | 0.1060 .916 | No |

Comparisons for factor: site within 50

| Comparison | Diff of Means | t | P | <0.05 |
| :---: | :---: | :---: | :---: | :---: |
| 1500 N vs. DC | 0.828 | 3.570 | 0.010 | Yes |
| 1500 S vs. DC | 0.745 | 3.212 | 0.029 | Yes |
| Control vs. DC | 0.733 | 3.159 | 0.032 | Yes |
| 1500 W vs. DC | 0.640 | 2.759 | 0.088 | No |
| 1500 E vs. DC | 0.437 | 1.883 | 0.520 | No |
| 1500 N vs. 1500 E | 0.391 | 1.687 | 0.638 | No |
| 1500 S vs. 1500 E | 0.308 | 1.329 | 0.848 | No |
| Control vs. 1500 E | 0.296 | 1.276 | 0.843 | No |
| 1500 W vs. 1500 E | 0.203 | 0.876 | 0.967 | No |
| 1500 N vs. 1500 W | 0.188 | 0.811 | 0.962 | No |
| 1500 S vs. 1500 W | 0.105 | 0.453 | 0.995 | No |
| 1500 N vs. Control | 0.0953 | 0.411 | 0.990 | No |
| Control vs. 1500 W | 0.0927 | 0.400 | 0.970 | No |
| 1500 N vs. 1500 S | 0.0829 | 0.358 | 0.923 | No |
| 1500 S vs, Control | 0.0124 |  |  |  |

Comparisons for factor: site within 100

| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| :---: | :---: | :---: | :---: | :---: |
| 1500 N vs. 1500 S | 0.430 | 1.854 | 0.655 | No |
| 1500 N vs. 1500 E | 0.389 | 1.677 | 0.766 | No |
| 1500 W vs. 1500 S | 0.304 | 1.310 | 0.941 | No |
| DC vs. 1500 S | 0.296 | 1.277 | 0.938 | No |
| 1500 W vs. 1500 E | 0.263 | 1.133 | 0.964 | No |
| DC vs. 1500 E | 0.255 | 1.100 | 0.960 | No |
| 1500 N vs. Control | 0.235 | 1.012 | 0.967 | No |
| Control vs. 1500 S | 0.195 | 0.842 | 0.984 | No |
| Control vs. 1500 E | 0.154 | 0.665 | 0.993 | No |
| 1500 N vs. DC | 0.134 | 0.577 | 0.993 | No |
| 1500 N vs. 1500 W | 0.126 | 0.544 | 0.988 | No |
| 1500 W vs. Control | 0.109 | 0.468 | 0.983 | No |
| DC vs. Control | 0.101 | 0.435 | 0.962 | No |
| 1500 E vs. 1500 S | 0.0409 | 0.177 | 0.981 | No |
| 1500 W vs. DC | 0.00767 | 0.0331 | 0.974 | No |


| Comparisons for factor: site within 150 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison | Diff of Means | t | P | $\mathrm{P}<0.05$ |
| Control vs. DC | 1.560 | 6.728 | <0.001 | Yes |
| 1500 N vs. DC | 1.491 | 6.428 | <0.001 | Yes |
| 1500 E vs. DC | 1.363 | 5.878 | <0.001 | Yes |
| 1500 W vs. DC | 1.152 | 4.970 | <0.001 | Yes |
| 1500 S vs. DC | 1.130 | 4.873 | <0.001 | Yes |
| Control vs. 1500 S | 0.430 | 1.856 | 0.507 | No |
| Control vs. 1500 W | 0.408 | 1.759 | 0.544 | No |
| 1500 N vs. 1500 S | 0.361 | 1.555 | 0.657 | No |
| 1500 N vs. 1500 W | 0.338 | 1.458 | 0.679 | No |
| 1500 E vs. 1500 S | 0.233 | 1.005 | 0.900 | No |
| 1500 E vs. 1500 W | 0.211 | 0.908 | 0.899 | No |
| Control vs. 1500 E | 0.197 | 0.850 | 0.869 | No |
| 1500 N vs. 1500 E | 0.127 | 0.550 | 0.928 | No |
| Control vs. 1500 N | 0.0697 | 0.301 | 0.945 | No |
| 1500 W vs. 1500 S | 0.0225 | 0.0970 | 0.923 | No |

Comparisons for factor: Volume within DC

| Comparison Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 150 | 1.396 | 6.018 | $<0.001$ | Yes |
| 100 vs. 150 | 1.227 | 5.291 | $<0.001$ | Yes |
| Pre vs. 150 | 1.216 | 4.689 | $<0.001$ | Yes |
| 10 vs. 50 | 0.958 | 4.133 | $<0.001$ | Yes |
| 100 vs. 50 | 0.790 | 3.406 | 0.007 | Yes |
| Pre vs. 50 | 0.778 | 3.003 | 0.019 | Yes |
| 50 vs. 150 | 0.437 | 1.885 | 0.233 | No |
| 10 vs. 100 | 0.169 | 0.727 | 0.851 | No |
| 10 vs. Pre | 0.180 | 0.694 | 0.740 | No |
| 100 vs. Pre | 0.0115 | 0.0442 | 0.965 | No |

Comparisons for factor: Volume within 1500 N Comparison Diff of Means t P P<0.05

| 10 vs. Pre | 1.132 | $4.368<0.001$ | Yes |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 50 | 0.961 | $4.143<0.001$ | Yes |  |
| 10 vs. 100 | 0.865 | 3.729 | 0.003 | Yes |
| 10 vs. 150 | 0.735 | 3.170 | 0.017 | Yes |
| 150 vs. Pre | 0.397 | 1.532 | 0.568 | No |
| 100 vs. Pre | 0.268 | 1.032 | 0.839 | No |
| 150 vs. 50 | 0.226 | 0.973 | 0.804 | No |
| 50 vs. Pre | 0.172 | 0.662 | 0.883 | No |
| 150 vs. 100 | 0.130 | 0.559 | 0.822 | No |
| 100 vs. 50 | 0.0959 | 0.414 | 0.681 | No |

Comparisons for factor: Volume within 1500 E Comparison Diff of Means t P P<0.05

| 10 vs. 50 | 1.188 | $5.124<0.001$ | Yes |  |
| :--- | :---: | :--- | :--- | :--- |
| 10 vs. 100 | 1.090 | 4.701 | $<0.001$ | Yes |
| 10 vs. Pre | 1.041 | 4.015 | 0.001 | Yes |
| 10 vs. 150 | 0.699 | 3.014 | 0.026 | Yes |
| 150 vs. 50 | 0.489 | 2.110 | 0.212 | No |
| 150 vs. 100 | 0.391 | 1.687 | 0.399 | No |
| 150 vs. Pre | 0.342 | 1.319 | 0.574 | No |
| Pre vs. 50 | 0.147 | 0.568 | 0.922 | No |
| 100 vs. 50 | 0.0981 | 0.423 | 0.893 | No |
| Pre vs. 100 | 0.0491 | 0.189 | 0.850 | No |

Comparisons for factor: Volume within 1500 S Comparison Diff of Means t P P<0.05 10 vs. $100 \quad 1.372 \quad 5.915<0.001$ Yes 10 vs. $150 \quad 1.173 \quad 5.057<0.001$ Yes 10 vs. $50 \quad 1.120 \quad 4.832<0.001$ Yes 10 vs. Pre $\quad 0.871 \quad 3.3590 .009$ Yes $\begin{array}{lllll}\text { Pre vs. } 100 & 0.501 & 1.931 & 0.302 & \mathrm{No}\end{array}$ Prevs $150 \quad 0.302 \quad 11640.761$ No $\begin{array}{llll}\text { Prevs. } 100 \text { - } 0.3021 .164 & 0.761 \text { No }\end{array}$ Prevs. 50 0.251 0.0830 .736 No $\begin{array}{lllll}\text { Pre vs. } 50 & 0.250 & 0.963 & 0.712 & \text { No } \\ 150 \text { vs. } 100 & 0.199 & 0.858 & 0.633 & \text { No }\end{array}$ 50 vs. $150 \quad 0.199 \quad 0.858 \quad 0.633$ No 50 vs. $150 \quad 0.0521 \quad 0.225 \quad 0.823$ N

Comparisons for factor: Volume within 1500 W

| Comparison Diff of Means | $\mathbf{t}$ | $\mathbf{P}$ | $\mathbf{P}<\mathbf{0 . 0 5}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 vs. 50 | 0.766 | 3.304 | 0.016 | Yes |
| 10 vs. 150 | 0.691 | 2.978 | 0.037 | Yes |
| 10 vs. 100 | 0.608 | 2.623 | 0.085 | No |
| 10 vs. Pre | 0.424 | 1.636 | 0.547 | No |
| Pre vs. 50 | 0.342 | 1.318 | 0.722 | No |
| Pre vs. 150 | 0.266 | 1.027 | 0.842 | No |
| Pre vs. 100 | 0.184 | 0.710 | 0.927 | No |
| 100 vs. 50 | 0.158 | 0.680 | 0.874 | No |
| 100 vs. 150 | 0.0823 | 0.355 | 0.924 | No |
| 150 vs. 50 | 0.0755 | 0.326 | 0.746 | No |

Comparisons for factor: Volume within Control Comparison Diff of Means t P P<0.05 10 vs. $100 \quad 1.075 \quad 4.636<0.001$ Yes 10 vs $50-1.032-4.448<0.001$ Yes 10 vs. $50-1.032 \quad 4.448<0.001$ Yes 10 vs. Pre $0.788-4.161<0.001$ Yes 10vs. 100 0.641-2.764 0.052 No 150 vs 50 . 0.334 No 150 vs. $50 \quad 0.391 \quad 1.6850 .400 \quad$ No $\begin{array}{llll}\text { Pre vs. } 100 & 0.287 & 1.517 & 0.439 \\ & 0.287 & 1.287 & 0.494\end{array}$ $\begin{array}{lllll} & 0.287 & 1.517 & 0.439 & \text { No } \\ 150 \text { vs. Pre } & 0.147 & 0.776 & 0.494 & \text { No }\end{array}$ $\begin{array}{lllll}150 \text { vs. Pre } & 0.147 & 0.776 & 0.687 & \text { No } \\ 50 & \text { vs. } 100 & 0.0435 & 0.188 & 0.852\end{array}$


[^0]:    Power of performed test with alpha $=0.0500$ : for Volume : 0.493
    Power of performed test with alpha $=0.0500$ : for Site : 1.000
    Power of performed test with alpha $=0.0500$. for Volume $\times$ Site $\cdot 0.311$

