COASTAL RESOURCES LIMITED

POST 150,000m³ DISPOSAL

CHARACTERISATION

OF

SEABED CHANGES

A Babbage Company Consulting Biologists – Established 1972 P.O. Box 2828, Auckland 1140. New Zealand www.bioresearches.co.nz **Coastal Resources Limited**

Post 150,000m³ Disposal

Characterisation

Of

Seabed Changes

November 2015

FOR : Coastal Resources Limited BY : Bioresearches Group Limited 23 March 2017

Coastal Resources Limited Post 150,000m³ Disposal, Characterisation of Seabed Changes

CONTENTS

Page No.

1	Intro	duction	1
2	Sedi	ment Characteristics	3
	2.1	Introduction	3
	2.2	Methods	3
	2.3	Results	4
	2.4	Discussion	
		2.4.1 Cores	
		2.4.2 Particle Size	
		2.4.3 Sediment Chemistry	9
3	Bent	hic Biota	19
	3.1	Methods	19
	3.2	Results	
	3.3	Discussion	24
4	Refe	rences	29
5	Арре	endices	31

1 INTRODUCTION

For many years Auckland regional stakeholders have relied upon use of the Auckland Explosives Dumping Ground, within a circle of four nautical miles radius centred on position 27 nautical miles east of Cuvier Island, for disposal of dredged marine sediments.

The Auckland Explosives Dumping Ground has presented significant difficulties for administration. It was originally established by the military after World War II as a safe deepwater site for disposal of ordnance and ammunition. Subsequently, due to the need for a disposal site for capital and maintenance dredged material in the Auckland region, the site was identified as a pragmatic solution given its historic use, the no-anchoring prohibition, the notion that covering explosives in sediments would be beneficial, and the assumption that the seafloor ecology was already likely to have been modified to some extent.

However, when New Zealand became party to the 1996 Protocol to the London Convention in 1998, new responsibilities including comprehensive marine disposal site assessments were imposed on the administration. These were enacted in New Zealand in 1999 through amendments to Part 21 of the Maritime Transport Act 1994, with more detailed regulations contained in Marine Protection Rule Part 180.

Unfortunately, since the Auckland Explosives Dumping Ground is in 500-1300m water depth, seafloor assessment and monitoring is both technically difficult and prohibitively expensive for individual stakeholders to undertake. Therefore a new location where monitoring would be more achievable was needed.

Coastal Resources Ltd has obtained approval for a new marine disposal site, the Outer Gulf Disposal Area (OGDA), in 135-140m water depth, 20km east of Great Barrier Island in the Exclusive Economic Zone. The permit states that; between 2 November 2012 and 2 November 2013 disposal of up to 15,000m³ was permitted, between 3 November 2013 and 2 November 2014 disposal of up to 7,800m³ was permitted, and between 3 November 2014 and 2 November 2015 disposal of up to 127,000m³ was permitted. From 3 November 2015 the disposal of up to 50,000m³ of dredged marine sediments at the site is permitted annually. On-going use of the site is dependent on monitoring that demonstrates to the Environmental Protection Authority (EPA) satisfaction that effects are within acceptable limits and contained within the defined site.

Clean marine sediment has been and is being disposed of by Coastal Resources Ltd under Maritime New Zealand (MNZ) Permit 568, now under EPA consent EEZ900012, at a site 20km east of Great Barrier Island. During the entire term of this Consent, the Consent Holder must undertake post-disposal monitoring of the Disposal Area and Monitoring Zone, in order to assess the extent of environmental impacts.

The post-disposal monitoring includes the following:

- 1. Accumulation of contaminants;
- 2. Sediment textural changes;
- 3. Bathymetric changes due to the accumulation and dispersal of dredge spoil; and
- 4. Changes in the biodiversity and quantity of benthic biota.

The MNZ Permit 568 prescribed that the monitoring be conducted following disposal volume triggers. The first trigger was when a cumulative total of 10,000m³ of dredge spoil had been disposed of or on the two year anniversary of the first disposal, and then when a cumulative total of 50,000m³ of dredge spoil has been disposed of or on the five year anniversary of the first disposal operation, and then after every 50,000m³ of dredge spoil has been disposed thereafter.

This report assesses and characterises the changes on the seabed in and around the Outer Gulf Disposal Area following the disposal of 150,000m³ of dredge spoil, under EPA consent EEZ900012. The monitoring includes assessment of the accumulation of contaminants, sediment textural changes and changes in the biodiversity and quantity of benthic biota. The sediment and benthic biota samples were collected on 23 November 2016.

2 SEDIMENT CHARACTERISTICS

2.1 Introduction

The sediment being disposed of at the OGDA has the potential to include contaminants. The levels of potential contaminants were determined before the sediment was dredged and taken to the disposal site. Disposal trials undertaken prior to MNZ Permit 568, undertook elutriation of the sediments from the disposal site after 4800m³ of sediment were deposited in the area. These results showed that the contaminants present in the dredge spoil were not mobilised once within the disposal site. Therefore, it was predicted that any dispersal and concentration of contaminants will be due to the physical movement of the sediment clasts to which they are bound. This is most likely to occur due to sediment transport preferentially sorting fine sediment into a surficial layer. Based on the available data, it was predicted that most transport is likely to occur as the near-bed density flow erodes and transports surficial sediment close to the impact point on the seabed. The limited data collected during the trials indicates that this process diluted the contaminants.

2.2 Methods

To determine if contaminants are accumulating on the seabed, the particle size and chemistry of surficial sediments were monitored.

The EPA consent EEZ900012 requires analysis of sediments on axes throughout the Disposal Area with a minimum of thirteen sampling sites and a Control site included. Monitoring should also be undertaken at four sites midway between the sites on the boundary (i.e. the sites beyond the boundary should be in a NE, SE, SW and NW direction from the site centre) at a distance of 250m beyond the Disposal Area boundary. Thus sixteen sample sites within and around the disposal area were sampled and an additional three Control site samples were collected from 2500m south of the disposal centre site, as shown in Figure 2.1.

At each sampling site two 70mm diameter clear barrel cores were taken using a gravity corer with sufficient mass to achieve at least 10-15cm penetration. In addition to those sites required under the consent, eight single core samples were collected at the 100m N, S, 250m N, E, W, S and 375m N, S. On retrieval of the core barrels the bottom was sealed and the cores photographed with a label and scale to show layers.

From those sites required under the consent, the bottom cap was carefully removed and plunger inserted to push the sediment core up through the core barrel, removing the surface water and then carefully extruding the top 5cm of the sediment core. The top 5cm from both cores were combined, homogenised and 50g sub-sampled for grain size and remainder used for sediment chemistry. All samples were double bagged in clean zip lock plastic bags, with a waterproof label between the two bags.

The sediment was analysed for particle size by the University of Waikato using a Malvern Laser Sizer particle size analysis. The sediment was analysed for total recoverable metals

(Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc) in the total sediment fraction, and for Total Petroleum Hydrocarbons (TPH) by Hill Laboratories.

Figure 2.1 Seabed Sediment Quality Sampling Sites

2.3 <u>Results</u>

Photographs of the core barrels at each site are presented in Appendix 1. The depths of layers in the sediment are summarised in Table 2.1.

Sediment particle size results as received from the University of Waikato are attached in Appendix 3, and summarised in Table 2.2.

Sediment chemistry results as received from Hills Laboratories are attached in Appendix 5. Raw sediment quality data from all sites are presented and compared with sediment quality guidelines in Table 2.3.

		Do	nth	of Core	Dor	th o	fmixing	
Site		A	B	Average			Average	Comments
								No obvious mixed layer, sediment darker in colour, likely all disposal
DC		263	280	271.3	263	280	271.3	material, surface interface broken
100m	Ν	172		171.7	172		171.7	No obvious mixed layer, sediment darker in colour, some clay present, likely all disposal material, surface interface broken
100111	s	296		296.3	296		296.3	No obvious mixed layer, sediment darker in colour, likely all disposal
								material surface layer slightly darker and coarser, surface layer similar to
	Ν	231		230.9	73		73.2	500m and beyond, unlikely disposal material surface layer slimitar to surface layer slightly darker, mottled and coarser, surface layer likely
0.50	Е	224		223.7	195		194.9	disposal material, surface broken
250m	S	213		213.2	81		80.9	surface layer slightly darker and coarser, surface layer similar to 500m and beyond, unlikely disposal material
	w	232		232.5	158		157.7	surface layer slightly darker and mottled, surface layer may be disposal material
		040		040.0	00		00.5	surface layer slightly darker and coarser, surface layer similar to
375m	Ν	210		210.0	83		82.5	500m and beyond, unlikely disposal material
0/011	S	164		164.0	73		72.9	surface layer slightly darker and coarser, surface layer similar to 500m and beyond, unlikely disposal material
	Ν	179	175	177.0	70	75	72.7	surface layer slightly darker and coarser, unlikely disposal material
500m	Ε		181	178.9	60	73	66.5	surface layer slightly darker and coarser, unlikely disposal material
500111	S		199	186.1	62	69	65.8	surface layer slightly darker and coarser, unlikely disposal material
	W	186	204	194.7	58	73	65.5	surface layer slightly darker and coarser, unlikely disposal material
	Ν	166	171	168.7	61	61	61.2	surface layer slightly darker, mottled and coarser, unlikely disposal material
1000m	Е	169	174	171.8	68	56	62.4	surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material
1000111	S	192	198	194.9	75	83	78.8	surface layer slightly darker, mottled and coarser, some open spaces, unlikely disposal material
	w	204	184	193.9	89	84	86.8	surface layer slightly darker and coarser, some open spaces, unlikely disposal material
	Ν	178	155	166.4	76	66	70.7	surface layer slightly darker and coarser, unlikely disposal material
	Е	171	173	172.1	70	73	71.7	surface layer slightly darker, mottled and coarser, unlikely disposal
1500m								material surface layer slightly darker, mottled and coarser, some open spaces,
	S	208	208	208.3	80	73	76.4	unlikely disposal material
	w	208	163	185.6	108	63	85.6	surface layer slightly darker, mottled and coarser, unlikely disposal material
	NE	165	176	170.4	52	71	61.7	surface layer slightly darker, and coarser, unlikely disposal material
	SE	211	176	193.5	74	70	72.2	surface layer slightly darker, mottled and coarser, some open spaces,
1750m		-						unlikely disposal material surface layer signification spaces, some open spaces,
		216			68	74	71.2	unlikely disposal material
	NW	158	208	183.1	64	68	66.1	surface layer mottled, some open spaces, unlikely disposal material
	Α	178	194	186.2	78	75	76.6	surface layer slightly darker, mottled and coarser, no disposal material
Control	D		182	189.4	74	74	73.7	surface layer slightly darker, mottled and coarser, some open spaces, no disposal material
	С	190		193.7	66	65	65.5	surface layer slightly darker and coarser, no disposal material
Summa	ary	Ave			Ave			
DC		27		111.2	27		111.2	
100n		23		791.7	23		791.7	
250n		22		13.9	12		94.5	
375n 500n			37 34	292.4 9.5	7 6		61.2 5.3	
1000			32	9.5	- 0 7		10.3	
1500			33	18.2	7		11.6	
1750				20.1	6		5.9	
Contr			90	8.5	7		5.6	
-		-						

Table 2.1Sediment Core Depths (mm), Post 150,000m³ Disposal

Creation	in eize									Percen	itage o	f total	sample	1							
Gra	in size	DC		50	Dm		1000m			1500m				1750m				(Contro	I	
(mm)	Class	DC	Ν	E	S	W	Ν	E	S	W	Ν	E	S	W	NE	SE	SW	NW	Α	В	С
> 3.35	Gravel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.35 - 2.00	Granules	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00 - 1.18	Very Coarse Sand	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.18 - 0.600	Coarse Sand	0.0	0.0	0.0	0.6	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
0.600 - 0.300	Medium Sand	1.1	4.0	2.4	6.4	6.0	5.5	5.7	4.2	4.4	5.0	6.2	5.3	3.5	4.8	4.8	3.9	4.0	5.4	0.7	5.6
0.300 - 0.150	Fine Sand	5.3	13.9	15.6	14.8	15.3	14.8	14.6	12.7	12.5	13.9	15.4	13.4	12.3	13.9	16.1	13.6	12.4	13.0	17.4	14.6
0.150 - 0.063	Very Fine Sand	11.3	18.4	18.8	19.5	18.5	18.1	17.0	16.9	17.1	17.8	18.7	15.6	16.6	18.3	17.2	16.9	16.8	14.5	22.1	14.8
0.063 - 0.0313	Coarse Silt	12.2	12.0	11.8	11.8	11.4	11.9	11.5	12.1	12.3	12.5	11.8	11.6	12.1	12.2	11.2	12.0	12.8	12.1	12.1	11.8
0.0313 - 0.0156	Medium Silt	13.1	12.3	12.5	11.0	11.1	11.8	12.0	12.5	12.4	11.7	11.5	12.7	12.6	12.0	11.9	12.7	12.8	13.2	11.8	12.8
0.0156 - 0.0078	Fine Silt	15.3	13.7	14.2	12.3	12.3	13.2	13.6	14.2	13.9	13.1	12.9	14.2	14.1	13.5	13.5	14.2	14.2	14.8	13.1	14.3
0.0078 - 0.0039	Very Fine Silt	15.6	12.1	12.3	11.1	11.3	11.7	12.0	12.8	12.7	12.0	11.2	12.6	13.0	12.0	11.9	12.5	12.4	12.9	11.1	12.4
< 0.0039	Clay	26.3	13.6	12.4	12.6	13.8	13.1	13.5	14.7	14.8	14.0	12.5	14.4	15.8	13.4	13.5	14.2	14.7	14.0	11.7	13.7
< 0.063	Silt and Clay	82.4	63.8	63.2	58.8	59.9	61.6	62.6	66.2	66.0	63.3	59.8	65.6	67.6	63.1	62.0	65.6	66.8	66.9	59.8	64.9
Mea	in Size	0.012	0.027	0.028	0.033	0.031	0.030	0.029	0.025	0.025	0.028	0.032	0.026	0.024	0.028	0.029	0.026	0.025	0.026	0.031	0.028
Grain size desc	ription	sZ	sZ	sZ	sZ	sZ	sZ	sZ	sZ	sZ	sZ	sZ	sZ								

Table 2.2Surficial Sediment Particle Size, Post 150,000m³ Disposal

 Table 2.3
 Surficial Sediment Quality, Post 150,000m³ Disposal (Dry Weight)

	Site											AC	;		ANZ	ECC											
Tests	units	DC		50	0m			100	0m			150	0m			175	60m			Control	l	Groop	Am	hor	Red	ISC	QG
		DC	N	Ε	S	W	Ν	Ε	s	W	Ν	E	s	W	NE	SE	SW	NW	Α	В	С	Green	Aml	bei	Reu	Low	High
Dry Matter	g/100g	34	48	49	50	60	50	49	49	52	48	51	49	52	48	50	48	48	49	49	50		-		-		
Total Sediment, Total Recoverable Metals																											
Arsenic		9.5	4.0	3.6	3.9	4.0	5.0	5.0	4.1	3.6	4.0	4.0	5.0	3.0	4.0	5.0	4.0	3.0	5.0	5.0	5.1				-	20	70
Cadmium	٨ţ	0.081	0.170	0.160	0.120	0.100	0.110	0.130	0.130	0.094	0.121	0.090	0.110	0.122	0.130	0.115	0.116	0.102	0.100	< 0.100	0.120	0.7	0.7 -	1.2	1.2	1.5	10
Chromium		22	22	21	21	22	20	23	23	20	20	20	23	20	22	23	22	17	22	24	25	52	52 -	80	80	80	370
Copper	dry	29.0	5.5	5.1	5.0	5.0	8.4	4.9	5.0	5.2	4.7	4.2	4.7	5.6	4.7	4.6	4.9	4.4	5.0	4.8	5.1	19	19 -	34	34	65	270
Lead	/kg	26.0	4.4	4.2	4.1	4.2	4.2	4.4	4.4	4.0	3.9	3.8	4.1	5.2	4.1	4.2	4.2	3.6	4.4	4.5	4.8	30	- 30	50	50	50	220
Mercury	mg/	0.123	0.048	0.046	0.037	0.038	0.038	0.052	0.043	0.045	0.046	0.040	0.037	0.045	0.042	0.067	0.050	0.053	0.047	0.050	0.046					0.15	1
Nickel	2	10.0	16.3	15.1	14.4	16.1	14.8	15.8	16.2	14.4	15.0	14.3	15.8	16.0	15.7	15.4	15.6	13.9	17.1	16.3	17.2					21	52
Zinc		95	30	29	28	29	30	31	30	28	27	26	30	29	28	30	30	25	29	31	32	124	124 -	150	150	200	410
Total Sedi	ment, T	otal P	etrole	um Hy	/droca	rbons	(TPH)																				
C7 - C9	dry	< 19	< 14	< 30	< 30	< 11	< 14	< 13	< 14	< 13	< 14	< 13	< 14	< 13	< 14	< 13	< 14	< 14	< 14	< 13	< 13		-		-		
C10 - C14		< 40	< 30	< 60	< 60	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30						
C15 - C36	g/kg wt	< 80	< 60	< 110	< 110	< 50	< 60	< 60	< 60	< 50	< 60	< 60	< 60	< 50	< 60	< 60	< 60	< 60	< 60	< 60	< 60						
Total TPH	â	< 140	< 100	< 190	< 190	< 80	< 100	< 90	< 100	< 90	< 100	< 90	< 100	< 90	< 100	< 90	< 100	< 100	< 100	< 90	< 100					280[#]	550 [#]

Key: AC = Auckland Council, ANZECC ISQG = Australian and New Zealand Environment and Conservation Council Interim Sediment Quality Guideline, # from Simpson, *et al.* 2013.

2.4 Discussion

2.4.1 Cores

The disposed sediment is visually obvious in the cores from the disposal centre site and at 100m and the E and W 250m cores. The sediment is softer and darker allowing for greater penetration of the corer than at the more distant sites. The lack of a base layer at the disposal centre site and 100m sites prevents the determination of the thickness of disposed sediment layer on top of the original sea bed sediment. Additional single core samples were collect at the 250m compass points. These show that the layer of darker material, presumably disposal sediments, is present at the W and E cores ranging between 158mm and 195mm depth, with an average depth of 77mm at cores from N and S. The differences in core penetration depth and thickness and colour of mixing layer are graphically compared in Figure 2.2.

While there is what appears to be a mottled bioturbated surface layer in the cores from 500m and beyond in the disposal area, this is also present at the Control sites, indicating it is natural and not disposal related.

There is no evidence indicating that disposed sediment, once on the seabed is spreading far from its point of disposal. Sediments in the disposal area at and beyond 500m from the disposal centre site, and at the Control sites are of similar density as shown by the similar depths of core penetration. The zone of surface mixing is similar throughout the study sites with the exception of the disposal centre site, 100m and at W and E 250m. The east west elongation of the disposal mound is likely to be the result of the direction of barge approach

and minor variations in the timing and location of discharge, rather than a spread of the material once it has reach the seabed.

There are statistically significant differences in depths of cores and thickness of the surface layer between the DC, 100m, 250m, 375m, 500m, 1000m, 1750m and the Control sites (Appendix 2). The depth of the core at the disposal centre site (DC), 100m and 250m cores were statistically significantly different from the other sites. The non parametric Kruskal-Wallis one way analysis of variance on ranks was conducted on the surface layer data as both the assumptions of equal variance and normality was not met. Statistical analysis of the median values of the thickness of the surface layer at each distance indicated a statistical difference; however none of the pairwise comparisons showed statistically significant differences.

2.4.2 Particle Size

Particle size at the disposal centre site was statistically finer (Figure 2.3, Appendix 4) than the other disposal area and the Control sites, as a result of the disposal of fine sediments. The disposal centre site had approximately 20% less sand (•), approximately 6% more silt (•) and 13% more clay (•) than the surrounding sites.

Figure 2.3 Particle Size Class Comparison With Distance From Disposal Centre Site (DC), After 150,000m³ Sediment Disposal. (○ Gravel, ● Sand, ● Silt, ● Clay, N, E, S, W = individual sites) (± 95% Cl I and ± HSl_{0.05} I)

Sediments at all sites were classified as sZ, slightly sandy Silt. All sites had sediments which were poorly sorted and strongly fine skewed, with the exception of the disposal centre site which was poorly sorted and strongly coarse skewed.

The lack of statistically significant differences between the Control site and 500m, 1000m, 1500m, and 1750m radius sample sites, indicates that sediment disposed of has not spread far from where it was deposited. Based on particle size data there was no evidence to

suggest that disposal material has spread from the disposal centre site to the 500m sites or beyond.

The honest significant interval (HSI) error bar is a graphical representation of statistical difference (Andrews *et al*, 1980), if the error bars overlap there is no statistically significant difference, and if they do not overlap then there is a statistically significant difference between the two means.

2.4.3 Sediment Chemistry

2.4.3.1 Sediment Quality Criteria

The sediment data have been compared with the Australian and New Zealand Environment and Conservation Council (ANZECC) Interim Sediment Quality Guideline (ISQG) Low and ISQG-High values which have been derived from the effects range low (ERL) and median (ERM) described in US National Oceanic and Atmospheric Administration, NOAA (Long and Morgan, 1991) and updated in 1995 (Long *et al*, 1995). The above references present data to assess the potential for adverse biological effects occurring due to exposure of biota to toxicants in sediment. Two values are determined from the data for each chemical or chemical group. The ERL is the concentration at the low end (10th percentile) of the range in which effects had been observed and the ERM is the concentration approximately midway (50th percentile) in the range of reported values associated with biological effects. These values defined three ranges in chemical concentrations that were anticipated to be: (1) rarely (less than ERL), (2) occasionally (between ERL and ERM), or (3) frequently (greater than ERM) associated with biological effects.

There are few reliable data on sediment toxicity for either Australia or New Zealand samples from which independent sediment quality guidelines might be derived and without a financial impetus there is little likelihood that further data will be forthcoming in the immediate future. Because of this, and as has been done in many other countries, the sediment quality guidelines are based on the best available overseas data and have been refined on the basis of current knowledge of existing baseline concentrations as well as by using local effects data as they become available. Therefore, the values provided by ANZECC (2000) are presented as interim sediment quality guidelines.

The Auckland Council (AC) has adopted a number of amendments to the ANZECC ISQG-Low guidelines, when the values provided were considered inappropriate to the Auckland region. This is consistent with the ANZECC (2000) philosophy of developing trigger values appropriate to local conditions.

The ANZECC (2000) ISQG-Low values for copper and zinc are the same as the Hong Kong interim sediment quality values for dredge spoil disposal "ISQV" (Chapman *et al.* 1999). The Hong Kong data are based on local unpublished studies, which did not find toxic effects below these concentrations. The text accompanying the ANZECC (2000) guidelines asserts a high level of confidence in ER-L (Long *et al.* 1995) values for copper and zinc and the guidelines have used ER-L for other toxicants. There seems to be no justification for the substitution of ER-L values with ISQV values in the ANZECC (2000) guidelines, so ARC has adopted the ER-L values for copper and zinc.

A revision of the ANZECC sediment quality guidelines was published in 2013 (Simpson, *et al.* 2013). This largely confirmed the ANZECC ISQG values for metals but recommended changes for organic compounds, and proposed ISQG values for total petroleum hydrocarbons; these are included in Table 2.3.

The values provided by ANZECC (2000) and Auckland Regional Council are not standards but are presented as guidelines in evaluating sediment contaminant data for their potential effects on biota. These guideline values are presented in Table 2.3; the data have been colour coded for comparison and are discussed below.

2.4.3.2 Dry Matter

The percentage of dry matter in the sediments sampled from the sites, following 150,000m³ of spoil disposal, shows that the disposal centre site had statistically significantly low percentage dry matter compared to the outer sample sites and the Control (Figure 2.4, Appendix 6).

Figure 2.4 Comparison of Percent Dry Matter with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) $(\pm 95\% \text{ Cl } \text{I} \text{ and } \pm \text{HSI}_{0.05} \text{ I})$ and Over Time (\bullet 10k, \bullet 50k, \bullet 100k, \bullet 150k, $\pm \text{HSI}_{0.05} \text{ I}$).

2.4.3.3 Metals

<u>Arsenic</u>

Concentrations of arsenic, following 150,000m³ of spoil disposal, were all below the ANZECC ISQG low value of 20 mg/kg dry weight as shown in Table 2.3. The concentration of arsenic from the disposal centre site, following 150,000m³ of spoil disposal, was higher but not statistically significantly than the concentrations recorded at the other sites. The average concentration of arsenic was slightly higher at the Control site than the disposal area sites excluding the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of arsenic varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of arsenic have varied statistically significantly at the disposal centre site over time (Figure 2.5, Appendix 6). These changes are reflective of the variability in the quality characteristics of the source sediment disposed.

The average concentration of arsenic has decreased over time between the 10,000m³ and 150,000m³ samples from the 500m, 1000m, 1500m, 1750m and the Control sites. The decreases were statistically significant at the 500m, 1500m and 1750m sites but not the 1000m or the Control sites. While statistically significant the decreases over time at the distant sites do not indicate the spread of disposal material as this would have resulted in increases over time. The decreases in concentration of arsenic from the 500m to Control sites, based on the evidence to date, are considered to be the result of natural variations in the concentrations arsenic.

Figure 2.5 Comparison of Total Recoverable Arsenic with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (\pm 95% Cl I and \pm HSI_{0.05} I) and Over Time (\bullet 10k, \bullet 50k, \bullet 100k, \bullet 150k, \pm HSI_{0.05} I).

<u>Cadmium</u>

Concentrations of cadmium, following 150,000m³ of spoil disposal, were all well below the lowest guideline value, the AC Green trigger value of 0.7 mg/kg dry weight. The concentration recorded at the disposal centre site was approximately half the concentration recorded in the other sites in and around the disposal area; the differences were statistically significant (Figure 2.6, Appendix 6).

The statistical tests (Appendix 6) indicate that the concentration of chromium varies statistically significantly over time and between sites. Concentrations of cadmium have not varied statistically significantly at the disposal centre site over time (Appendix 6), nor have the other disposal area and Control site average concentrations. Figure 2.6 shows similar slight decreases in the concentration of cadmium over time at the 1000m, 1500m, 1750m and the Control sites. At the 500m sites the decreases in the concentration of cadmium followed a similar trend until the 150,000m³ sample which showed a slight increase. The variability of the results as shown by the 95% CL error bars on Figure 2.6 indicate that the changes are most likely natural. The increased 150,000m³ 500m average cadmium concentration was the result of higher concentrations of cadmium at the N and E sites, however these are higher than recorded in the disposal material so the spread of disposal material is unlikely to be the cause of the increased concentrations.

The very small changes concentrations of cadmium recorded are all within the likely natural background variation in the concentration of cadmium. The decreased concentration of cadmium at the disposal centre site is the result of reduced cadmium in the source material.

Figure 2.6 Comparison of Total Recoverable Cadmium with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (± 95% Cl I and ± HSI_{0.05} I) and Over Time (● 10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I).

<u>Chromium</u>

Concentrations of chromium, following 150,000m³ of spoil disposal, were all well below the lowest guideline value, the AC Green trigger value of 52 mg/kg dry weight as shown in Figure 2.7. The concentration of chromium recorded at all sites following the 150,000m³ of spoil disposal was similar, with the Control site recording the highest concentration. There were no statistically significant differences recorded between sites.

The statistical tests (Appendix 6) indicate that the concentration of chromium varies statistically significantly over time and between sites, but the changes over time are different at different sites. Concentrations of chromium have varied statistically significantly at the disposal centre site over time (Figure 2.7, Appendix 6). These changes are reflective of the changes in the quality of the sediment being disposed.

The average concentration of chromium has fluctuated and ultimately decreased similarly over time between the 10,000m³ and 150,000m³ samples at the 500m, 1000m, 1500m, 1750m and the Control sites. The decreases at the 1500m and 1750m sites were statistically significant, although the very small changes concentrations of chromium recorded are all within the likely natural background variation in the concentration of chromium.

Figure 2.7 Comparison of Total Recoverable Chromium with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (± 95% Cl I and ± HSI_{0.05} I) and Over Time (● 10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I). (- - - AC green guideline 52 mg/kg dry weight)

<u>Copper</u>

The concentrations of copper, following 150,000m³ of spoil disposal, were below the lowest guideline value, the AC green trigger of 19 mg/kg dry weight at all site except the disposal centre site, as shown in Figure 2.8. The concentration of copper at the disposal centre site was statistically significantly higher than at the other sites within and around the disposal

area (Appendix 6). With the exception of the disposal centre site the concentration of copper at sites within and around the disposal area, were not statistically significantly different from the concentration of copper at the Control sites.

The statistical tests (Appendix 6) indicate that the concentration of copper varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of copper have varied statistically significantly at the disposal centre site over time (Figure 2.8, Appendix 6). These changes are reflective of the changes in the quality characteristics of the source sediment being disposed.

During each monitoring event the concentration of copper has generally decreased with distance from the disposal centre site. The differences between the average concentrations at each sampling distance within each volume sampling event are very small and not statistically significant. There is no consistent trend for increasing or decreasing concentration of copper over time at across all sites. Beyond the disposal centre site the differences in the concentration of copper between sample events and sample sites are very small and most likely within the natural background variation in the concentration of copper from the area. Hence the concentration of copper does not provide significant evidence of the spread of disposal material from the disposal centre site.

Figure 2.8 Comparison of Total Recoverable Copper with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (± 95% Cl I and ± HSI_{0.05} I) and Over Time (● 10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I). (- - AC green guideline 19 mg/kg dry weight, - - - AC red guideline 34 mg/kg dry weight)

Lead

Concentrations of lead, following 150,000m³ of spoil disposal, at all sites were below the lowest guideline value, the AC Green trigger value of 30 mg/kg dry weight. The concentration of lead at the disposal centre site was statistically significantly higher than the average concentrations at the other sites within and around the disposal area.

The statistical tests (Appendix 6) indicate that the concentration of lead varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of lead have varied statistically significantly at the disposal centre site over time (Figure 2.9, Appendix 6). These changes are reflective of the changes in the quality and characteristics of the source sediment being disposed.

The average concentration of lead has decreased over time between the 10,000m³ and 150,000m³ samples from the 500m, 1000m, 1500m, 1750m and Control sites. The decreases were only statistically significant at the 1750m sites. The decreases over time at the distant sites do not indicate the spread of disposal material as this would have resulted in increases over time. Therefore the changes recorded are considered to be natural variation.

30 Lead 25 Lead (mg/kg dry weight) 20 15 10 5 0 DC 500 1000 1500 1750 Control Distance from Disposal Site (m)

There is no indication of lead rich sediment spreading from the disposal centre site.

Figure 2.9 Comparison of Total Recoverable Lead with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (± 95% Cl I and ± HSI_{0.05} I) and Over Time (● 10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I). (- - - AC green guideline 30 mg/kg dry weight)

Mercury

The concentrations of mercury within the disposal area following 150,000m³ of spoil disposal were all below the lowest guideline value, the ANZECC ISQG-Low guideline of 0.15 mg/kg dry weight, as shown in Figure 2.10. The concentration of mercury from the disposal centre site was statistically significantly higher than the other sites within and around the disposal area. With the exception of the disposal centre site the other sites within and around the disposal area were not statistically significantly different from the Control sites. There is no indication of mercury rich sediment spreading from the disposal centre site following the disposal of 150,000m³ of spoil.

The statistical tests (Appendix 6) indicate that the concentration of mercury varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of mercury have varied statistically significantly at the disposal centre site over time (Figure 2.10, Appendix 6). These changes are reflective of the changes in quality and sources of the sediment being disposed. The average concentration of mercury has generally remained similar with minor fluctuations between the 10,000m³ and 150,000m³ samples at the 500m, 1000m, 1500m, 1750m sites. A statistically significant fluctuation in the concentration of mercury was record at the Control site during the 100,000m³ survey, but there has not been any statistically significant change over time (Figure 2.10, Appendix 6).

The fluctuations in the concentration of mercury from in and around the disposal area were very small and likely within the natural variation in concentration from the area as indicated by the changes in the Control site. There is no indication of mercury rich sediment spreading from the disposal centre site.

Figure 2.10 Comparison of Total Recoverable Mercury with Distance from Disposal Centre Site (DC), after 150,000m³ Sediment Disposal (N, E, S, W = individual sites) (± 95% Cl I and ± HSI_{0.05} I) and Over Time (● 10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I). (---ISQG-Low guideline 0.15 mg/kg dry weight)

<u>Nickel</u>

The concentrations of nickel, following 150,000m³ of spoil disposal, at all sites were below the lowest guideline value, the ANZECC ISQG-Low guideline of 21 mg/kg dry weight as shown in Figure 2.11. The concentration of nickel from the disposal centre site was statistically significantly lower than the other sites within and around the disposal area. With the exception of the disposal centre site the average concentrations of nickel at other sites within and around the disposal area were not statistically significantly different from the concentrations of nickel at the Control sites. There is no indication of nickel rich sediment spreading from the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of mercury varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of nickel have varied statistically significantly at the disposal centre site with an overall decrease over time (Figure 2.11, Appendix 6). These changes are reflective of the changes in quality and sources of the sediment being disposed.

The average concentration of nickel has fluctuated and ultimately increased similarly over time between the 10,000m³ and 150,000m³ samples at the 500m, 1000m, 1500m, 1500m and the Control sites. The increases at the 500m, 1000m, 1500m and the Control sites were statistically significant, although the very small changes in concentrations of nickel recorded are all within the likely natural background variation in the concentration of nickel as indicated by the changes at the Control site.

With the disposal centre site nickel concentrations, decreasing to bellow the Control site concentration, there is little likelihood that the increases, if real, in the nickel concentration from the disposal area sites are the result of the spread of disposal material.

<u>Zinc</u>

Concentrations of zinc, following 150,000m³ of spoil disposal, at all sites were below the lowest guideline value, the AC Green trigger value of 124 mg/kg dry weight. The concentration of zinc at the disposal centre site was statistically significantly higher than the average concentrations recorded in the more distant samples including the Control sites (Figure 2.12, Appendix 6). There was no indication of zinc rich sediment spreading from the disposal centre site.

The statistical tests (Appendix 6) indicate that the concentration of zinc varies statistically significantly over time and between sites but the changes over time are different at different sites. Concentrations of zinc have varied statistically significantly at the disposal centre site over time (Figure 2.12, Appendix 6). These changes are reflective of the changes in the quality of the source sediment being disposed. The average concentration of zinc showed very small, but in some cases statistically significant fluctuations in concentration between the 10,000m³, 50,000m³, 100,000m³ and 150,000m³ samples at the 500m, 1000m, 1500m, 1750m and Control sites (Figure 2.12, Appendix 6). However the overall changes over time have not been statistically significant.

The very small changes are likely within the natural variation in concentration of zinc from the area and do not show any indication of spread of disposal material from the disposal centre site.

Figure 2.12Comparison of Total Recoverable Zinc with Distance from Disposal
Centre Site (DC), after 150,000m³ Sediment Disposal.
 $(N, E, S, W = individual sites) (\pm 95\% Cl I and \pm HSI_{0.05} I)$ and Over Time
 $(\bullet 10k, \bullet 50k, \bullet 100k, \bullet 150k, \pm HSI_{0.05} I)$.

2.4.3.4 Total Petroleum Hydrocarbons

Proposed ISQG values for total petroleum hydrocarbons were presented in Simpson, *et al.* (2013).

All results were less than the detection limits, i.e. no Total Petroleum Hydrocarbons were detected in any of the samples. Therefore all concentrations of TPH, following 150,000m³ of spoil disposal, at all sites were below the proposed ISQG low trigger value of 280 mg/kg dry weight. Nor is there any evidence of TPH rich sediment being deposited or spreading from the disposal centre site.

3 BENTHIC BIOTA

3.1 <u>Methods</u>

The MNZ Permit 568 and EPA consent EEZ900012 require monitoring of benthic biota at the Control site, the disposal centre site, and a minimum of four sampling sites equally spaced on the boundary of the Disposal Area.

Additional sample sites may be required if contaminants analysed in the sediments at the other sites are;

- i. above ANZECC ISQG-Low levels or
- ii. shown to be moving from the site, (i.e. if the difference in sediment chemistry between any one sampling site and the Control site is more than 50% of the difference between the Control and disposal area centre samples).

None of the additional sites (500N, 500E, 500S, 500W, 1000N, 1000E, 1000S, 1000W, 1750NE, 1750SE, 1750SW and 1750NW) sampled for sediment chemistry (Figure 2.1) showed significant contamination above the ANZECC ISQG-Low guidelines for the metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc) or TPH (Table 2.3).

The average concentration at the Control sites and the concentration at the disposal centre site are present in the Table 3.1 together with the 50% change trigger value and the differences in concentration between the test sites and the Control site.

The percentage dry matter and concentrations of cadmium, chromium and nickel were lower at the disposal centre site than the average concentration at the Control sites, thus higher concentrations of these parameters at the disposal area sites than the Control site are not the result of material moving from the disposal centre site, these are highlight in Table 3.1 as

If the metal concentration of the disposal area site is less than at the Control site (a negative change) the change is not expected to result in adverse effects, these are highlighted in Table 3.1 as . While some of these negative changes may exceed the 50% change trigger they will not result in adverse effects to the biota as sediment quality is improved, i.e. lower in contaminants and below the guideline values.

Negative changes in the percentage dry matter indicate the sediment is less dense than at the Control site, none of the disposal area sites exceeded the 50% trigger levels. None of the disposal area sites with concentrations of copper, lead, mercury, nickel or zinc greater than at the Control sites, had concentrations that exceeded the 50% trigger levels.

Concentrations of percentage dry matter, cadmium, chromium exceeded the 50% change trigger values at some of the disposal area sites as indicated in Table 3.1 by red text. However these changes are either not related to disposal material and or beneficial to the environment, thus additional benthic biota sampling was not assessed as necessary.

All the results of the total petroleum hydrocarbons were less than detection, so no comparison could be made to define if the concentrations at the additional sites exceeded the average concentrations recorded at the Control sites by more than 50% of the difference between the disposal centre site and the average at the Control sites.

	Sites		50%		Sites														
Tests	Control	DC	change		50	0m			1000m				150	0m		1750m			
	Average	DC	trigger	Ν	Е	S	W	Ν	E	s	W	N	E	S	W	NE	SE	SW	NW
Dry Matter	49.3	34.0	-7.7	-1.33	-0.33	0.67	10.67	0.67	-0.33	-0.33	2.67	-1.33	1.67	-0.33	2.67	-1.33	0.67	-1.33	-1.33
Total Sedim	ient, Total	Recov	verable M	etals															
Arsenic	5.0	9.5	2.2	-1.0	-1.43	-1.13	-1.03	-0.03	-0.03	-0.93	-1.43	-1.03	-1.03	-0.03	-2.03	-1.03	-0.03	-1.03	-2.03
Cadmium	0.107	0.081	-0.013	0.06	0.05	0.01	-0.01	0.00	0.02	0.02	-0.01	0.01	-0.02	0.00	0.02	0.02	0.01	0.01	0.00
Chromium	23.7	22.0	-0.8	-1.67	-2.67	-2.67	-1.67	-3.67	-0.67	-0.67	-3.67	-3.67	-3.67	-0.67	-3.67	-1.67	-0.67	-1.67	-6.27
Copper	5.0	29.0	12.0	0.53	0.13	0.03	0.03	3.43	-0.07	0.03	0.23	-0.27	-0.77	-0.27	0.63	-0.27	-0.37	-0.07	-0.57
Lead	4.6	26.0	10.7	-0.17	-0.37	-0.47	-0.37	-0.37	-0.17	-0.17	-0.57	-0.67	-0.77	-0.47	0.63	-0.47	-0.37	-0.37	-0.97
Mercury	0.048	0.123	0.038	0.000	-0.002	-0.011	-0.010	-0.010	0.004	-0.005	-0.003	-0.002	-0.008	-0.011	-0.003	-0.006	0.019	0.002	0.005
Nickel	16.9	10.0	-3.4	-0.57	-1.77	-2.47	-0.77	-2.07	-1.07	-0.67	-2.47	-1.87	-2.57	-1.07	-0.87	-1.17	-1.47	-1.27	-2.97
Zinc	30.7	95.0	32.2	-0.67	-1.67	-2.67	-1.67	-0.67	0.33	-0.67	-2.67	-3.67	-4.67	-0.67	-1.67	-2.67	-0.67	-0.67	-5.67

Table 3.1 Differences in Surficial Sediment Quality between the Control site and disposal area sites, Post 150,000m³ Disposal (Dry Weight)

As per the consent only the five sample sites (DC, 1500N, 1500E, 1500S, 1500W) within and around the disposal area, and the Control site, as shown in Figure 3.1, were required to be sampled, but additional samples were collected the 500N, 500E, 500S and 500W sites.

Figure 3.1 Seabed Benthic Biota Sampling Sites

Three replicate samples of two, 100mm diameter gravity core samples were collected from each site. The two cores were combined, labelled and then sieved as soon as practicable by washing each whole sample through 0.5mm mesh sieves with seawater. All samples were sieved within six hours of collection. The material retained on the sieves was transferred to a polyethylene 'zip lock'-type bag, and preserved with a 10% glyoxal, 70% ethanol sea water solution, sealed, placed in a second polyethylene 'zip lock'-type bag and packed into a labelled plastic container, for transportation to the laboratory.

Prior to sorting, the samples were rinsed with freshwater and placed in a white sorting tray. All organisms were picked out of the samples and placed in a labelled vial of 70% isopropyl alcohol solution prior to taxonomic identification and counting.

3.2 <u>Results</u>

Benthic biota results are summarised by calculation of numbers of taxa, numbers of individual organisms, and Shannon-Wiener diversity index for each replicate at each sampling station. The full results of the benthic biota sampling are presented in Appendix 7 and summarised in Table 3.2 along with previous results. It was not possible to distinguish between living and recently dead Foraminifera despite the use of Rose Bengal stain. Therefore only intact and uneroded animals were counted.

The summary statistics are compared graphically over time within sites and between sites following disposal of 150,000m³ of spoil, in Figure 3.2, Figure 3.3 and Figure 3.4.

Shannon-Wiener Diversity Index measures the rarity and commonness of species in a community and is calculated using the following formula.

 $H = -\Sigma (p_i \ln p_i)$

Here p_i is the proportion of total number of species made up of the *i*th species.

				Т	otal Num	ber of Sp	ecies			
Station		Avera	ge per s	ample		•		Per site		
Station	Pre	10k	50k	100k	150k	Pre	10k	50k	100k	150k
	Jun 10	Aug 13	Apr 15	Aug 15	Nov 16	Jun 10	Aug 13	Apr 15	Aug 15	Nov 16
DC	9.00	7.33	3.67	19.00	0.67	12	17	11	36	2
500 N					19.00					37
500 E					14.00					27
500 S					16.33					31
500 W					10.33					18
Average					14.92					28.3
95% CL					5.85					12.7
1500 N	8.50	27.00	23.33	21.00	18.00	11	42	41	37	37
1500 E	9.50	15.67	21.00	15.67	19.00	15	34	40	28	37
1500 S	7.50	18.00	24.00	13.67	18.33	12	37	42	25	31
1500 W	11.00	13.33	18.00	16.70	15.33	16	27	34	29	27
Average	9.13	18.50	21.58	16.76	17.67	13.5	35.0	39.3	29.8	33.0
95% CL	2.38	9.51	4.32	4.93	2.56	3.8	10.0	5.7	8.2	7.8
Control	6.56	18.33	22.67	19.67	19.33	22	35	37	38	35

Table 3.2	Total Numbers of Species and Animals - Summary Data
-----------	---

		-	-	Тс	otal Num	ber of An	imals	-	-	
Station		Avera	ge per s	ample			Per	square m	etre	
Station	Pre	10k	50k	100k	150k	Pre	10k	50k	100k	150k
	Jun 10	Aug 13	Apr 15	Aug 15	Nov 16	Jun 10	Aug 13	Apr 15	Aug 15	Nov 16
DC	58.5	14.7	70.3	297.0	0.7	15201	953	4478	18908	42
500 N					120.0					7639
500 E					150.7					9592
500 S					161.7					10292
500 W					106.3					6769
Average					134.7					8573.1
95% CL					41.1					2617.5
1500 N	65.5	101.3	876.0	450.3	106.7	17020	6583	55768	28669	6791
1500 E	62.5	35.0	610.0	586.3	195.7	16240	2274	38834	37327	12457
1500 S	25.5	40.3	365.0	246.0	187.3	6626	2620	23237	15661	11926
1500 W	55.5	30.7	332.7	302.0	131.7	14421	1992	21178	19226	8382
Average	52.3	51.8	545.9	396.2	155.3	13576.9	3367.2	34754.1	25220.8	9888.8
95% CL	29.1	52.9	401.8	244.0	68.6	7574.3	3435.5	25578.3	15530.7	4368.6
Control	12.7	40.7	347.3	353.0	159.0	3291	2642	22112	22473	10122

	Sha	nnon Wi	iener Div	versity Ir	ndex
Station	Pre	10k	50k	100k	150k
	Jun 10	Aug 13	Apr 15	Aug 15	Nov 16
DC	1.447	1.627	1.002	1.458	0.693
500 N					1.501
500 E					1.066
500 S					1.208
500 W					1.375
Average					1.288
95% CL					0.303
1500 N	1.324	2.457	1.496	1.592	1.722
1500 E	1.252	2.293	1.105	1.203	1.594
1500 S	1.663	2.534	1.413	1.162	1.361
1500 W	1.650	2.074	1.308	1.461	1.383
Average	1.472	2.339	1.330	1.354	1.515
95% CL	0.341	0.324	0.269	0.328	0.276
Control	1.644	2.432	1.401	1.357	1.791

Figure 3.2 Comparison of average Number of Species per sample after 150,000m³ Sediment Disposal (±95% Cl I and ± HSI_{0.05} I) and Over Time (● pre,
10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I), total species per site (★).

Figure 3.3 Comparison of average Number of Individuals per m² after 150,000m³
Sediment Disposal (±95% Cl I and ± HSI_{0.05} I) and Over Time (● pre,
10k, ● 50k, ● 100k, ● 150k, ± HSI_{0.05} I).

Figure 3.4 Comparison of average Shannon Weiner Diversity Index per sample after 150,000m³ Sediment Disposal ($\pm 95\%$ Cl I and $\pm HSI_{0.05}$ I) and Over Time (\bullet pre, \bullet 10k, \bullet 50k, \bullet 100k, \bullet 150k, $\pm HSI_{0.05}$ I).

3.3 Discussion

Site DC, had a very low diversity (0.7 species per replicate, 2 species in total) and a very low abundance (42 per m²). This is lower than previously recorded from the disposal centre site however not unexpected as a result of the disposal of dredge spoil at the site. Only two individuals were found a mysid shrimp (21 per m²) and a foraminifera *Pyrgo* sp. (21 per m²).

Site 500 N, had a moderate to high diversity (19.0 species per replicate, 37 species in total) and a moderate to high abundance (7,639 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (5,029 per m²). Of the other species present in much lower numbers the foraminifera, *Alabamina* sp. (531 per m²), *Cibicidoides* sp. (488 per m²), *Pyrgo* sp. (318 per m²) and *Quinqueloculina suborbicularis* (149 per m²) had significant contributions. Species from other taxonomic groups such as polychaete worms, nemerteans, molluscs, amphipods, isopods cumaceans, ostracods, tanaids and ophiuroid starfish were present but at very low numbers.

Site 500 E, had a moderate to high diversity (14.0 species per replicate, 27 species in total) and a moderate to high abundance (9,592 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (7,279 per m²). Of the other species present in much lower numbers the foraminifera, *Alabamina* sp. (467 per m²), *Cibicidoides* sp. (233 per m²), *Pyrgo* sp. (552 per m²) and *Quinqueloculina suborbicularis* (255 per m²) had significant contributions. Species from other taxonomic groups such as polychaete worms, molluscs, amphipods, isopods and tanaids were present but at very low numbers.

Site 500 S, had a moderate to high diversity (16.3 species per replicate, 31 species in total) and a high abundance (10,292 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (7,257 per m²). Of the other species present in much lower numbers the foraminifera, *Alabamina* sp. (1,082 per m²), *Cibicidoides* sp. (594 per m²), *Pyrgo*

sp. (318 per m²) and *Quinqueloculina suborbicularis* (127 per m²) had significant contributions. Species from other taxonomic groups such as polychaete worms, sipunculid worms, amphipods, isopods, cumaceans, tanaids and ophiuroid starfish were present but at very low numbers.

Site 500 W, had a moderate diversity (10.3 species per replicate, 18 species in total) and a moderate abundance (6,769 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (4,032 per m²). Of the other species present in much lower numbers the foraminifera, *Alabamina* sp. (891 per m²), *Cibicidoides* sp. (785 per m²), *Pyrgo* sp. (446 per m²) and *Quinqueloculina suborbicularis* (127 per m²) and the polychaete worm, *Lumbrinereis* sp. (127 per m²) had significant contributions. Species from other taxonomic groups such as polychaete worms, isopods, cumaceans, mysids, ostracods and ophiuroid starfish were present but at very low numbers.

Site 1500 N, had a moderate to high diversity (18.0 species per replicate, 37 species in total) and a moderate abundance (6,791 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (3,629 per m²), with significant contributions from *Cibicidoides* sp. (743 per m²), *Alabamina* sp. (806 per m²), *Pyrgo* sp. (361 per m²) and *Quinqueloculina suborbicularis* (106 per m²). Species from other taxonomic groups such as polychaete worms, sipunculid worms, amphipods, isopods, cumaceans, mysids, ostracods, ophiuroid starfish and a sponge were present but at very low numbers.

Site 1500 E, had a moderate to high diversity (19.0 species per replicate, 37 species in total) and a high abundance (12,457 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (6,133 per m²), with significant contributions from *Cibicidoides* sp. (2,525 per m²), *Alabamina* sp. (1,804 per m²), *Pyrgo* sp. (615 per m²) and *Quinqueloculina suborbicularis* (255 per m²). Species from other taxonomic groups such as polychaete worms, amphipods, isopods, cumaceans, ophiuroid starfish and a sponge were present but at very low numbers.

Site 1500 S, had a moderate to high diversity (18.3 species per replicate, 31 species in total) and a high abundance (11,926 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (7,979 per m²), with significant contributions from *Cibicidoides* sp. (997 per m²), *Alabamina* sp. (700 per m²), *Pyrgo* sp. (700 per m²), *Quinqueloculina suborbicularis* (255 per m²) and *Nummoloculina contraria* (191 per m²). Species from other taxonomic groups such as polychaete worms, amphipods, ostracods and ophiuroid starfish were present but at very low numbers.

Site 1500 W, had a moderate diversity (15.3 species per replicate, 27 species in total) and a moderate abundance (8,382 per m²). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (5,411 per m²), with significant contributions from *Cibicidoides* sp. (912 per m²), *Alabamina* sp. (488 per m²), *Pyrgo* sp. (531 per m²), *Quinqueloculina suborbicularis* (233 per m²), *Nummoloculina contraria* (127 per m²) and *Triloculina insignis* (106 per m²). Species from other taxonomic groups such as polychaete worms, amphipods, isopods, mysids, ostracods and a sponge were present but at very low numbers.

The Control site had a moderate diversity (19.3 species per replicate, 35 species in total) and a high abundance (10,122 per m^2). The biota was numerically dominated by the foraminifera, *Lenticulina* sp. (4,944 per m^2), with significant contributions from *Alabamina* sp.

(1,146 per m²), *Pyrgo* sp. (1,316 per m²), *Cibicidoides* sp. (594 per m²), *Quinqueloculina suborbicularis* (615 per m²), *Nummoloculina contraria* (127 per m²) and *Triloculina insignis* (255 per m²). Species from other taxonomic groups such as polychaete worms, sipunculid worms, molluscs, amphipods, isopods, cumaceans, mysids, ostracods, anemones, ophiuroid starfish and a sponge were present but at very low numbers.

Following the disposal of 50,000m³ of sediment at the disposal centre site, the diversity and density of biota were predictably and statistically significantly depressed at the disposal centre site (DC) when compared to the disposal area boundary sites and the Control sites. However after the disposal of 100,000m³ of sediment at the disposal centre site and with the relocation of the disposal centre site out to 150m east to obtain a sample, a similar pattern was not evident. Following disposal of 150,000m³ of sediment at the disposal centre site, the diversity and density of biota at the disposal centre site were again predictably and statistically significantly depressed (Appendix 8). The 100,000m³ sample indicates the depression of numbers of individuals and species was confined to a relatively small area.

The numbers of species and individuals increases with distance from the disposal centre site. The average numbers of species and individuals at the 500m and 1500m sites were not statistically significantly different from the Control Site, indicating little if any effect, beyond the immediate disposal centre site, as seen in the sediment chemistry data. The average diversity index increases with distance from the disposal centre site, with the disposal centre site statistically significantly lower compared with all the other sites and the average for the 500m sites statistically significantly lower than the Control site. The average diversity index for the 1500m sites was not statistically significantly different from the Control site.

There is no indication the disposal of sediment at the centre of the disposal area has adversely affected benthic biota beyond the disposal area boundary.

No exotic pest species were recorded in the post 150,000m³ survey.

The majority of species are present at very low numbers which limits the statistical analysis, with the exception of foraminifera. When the average numbers of individuals of foraminifera are compared the numbers increase with distance from the disposal centre site. The average numbers of foraminifera are very similar between the 1500m sites and the Control site. However the most abundant species of foraminifera (*Lenticulina* sp.) is absent from the disposal centre site but decreases in abundance, by 16%, from the 500m sites to the Control site. Other than the absence of species from the disposal centre site the disposal sediment is not considered to have had an impact on any individual species recorded.

Differences Over Time

Due to differences in the methodologies and site locations the trial benthic biota data (University of Waikato, 2011) and the post-permitting benthic biota data are not directly comparable. The pre-disposal data have been adjusted to allow inclusion in the data set but any conclusions should be interpreted with some caution.

At the disposal centre site numbers of species, individuals and diversity index have declined statistically significantly following disposal as expected (Figure 3.2, Figure 3.3, Figure 3.4, Appendix 8).

At the Control site the numbers of species increased statistically significantly between the pre-disposal and 10,000m³ post-disposal surveys. But the number of species post-disposal has not varied statistically significantly between consecutive surveys. This is likely the result of the different survey methods and locations between pre and post disposal. The number of individuals increased statistically significantly between the 10,000m³ and 50,000m³ post disposal surveys and is likely the result of the way in which the foraminifera were enumerated. The numbers between the 50,000m³ and 100,000m³ post disposal surveys did not change statistically significantly, however the numbers halved between the 100,000m³ and 150,000m³ post disposal surveys. The large increase in abundance between the 10,000m³ and 50,000m³ post disposal surveys resulted in a statistically significant decrease in the diversity index. There were no statistically significant differences between the 50,000m³, 100,000m³ and 150,000m³ surveys.

At the 1500m sites the numbers of species increased between the pre and 10,000m³ post surveys, again likely the result of the different survey methods and locations between pre and post disposal. The four post disposal surveys have shown little statistically significant variation within sites, at 1500N the numbers of species were statistically significantly lower in the 150,000m³ survey compared to the 10,000m³ survey. At 1500S the numbers of species were statistically significantly higher during the 50,000m³ survey than the 100,000m³ surveys, and in general followed the pattern of changes at the Control site.

At all the 1500m sites the numbers of individuals increased between the 10,000m³ and 50,000m³ surveys and like the Control site this is likely due to the way in which the foraminifera were enumerated. The numbers of individuals decreased statistically significantly between the 50,000m³ and 100,000m³ surveys at the 1500N site. This was the result of a 50% reduction in the numbers of the six most abundant foraminifera species (*Lenticulina* sp., *Elphidium* sp., *Cibicidoides* sp., *Alabamina* sp., *Pyrgo* sp. and *Quinqueloculina suborbicularis*). The cause of the reduction is unknown but there is no evidence it is related to sediment quality effects of disposed sediments. The numbers of individuals decreased at all 1500m sites between the 100,000m³ and 150,000m³ surveys as did the numbers at the Control site. Diversity index values vary at the 1500m sites varied in a similar way to the Control site indicating that any statistically significant differences are natural or related to minor variations in the sampling methods.

On comparison the two most recent sets of data (100,000m³ Aug 2015 and 150,000m³ Nov 2016) showed significantly less of all species in the 150,000m³ samples at the disposal centre site, more polychaete worms, amphipods, ophiuroid starfish, but fewer molluscs, isopods and foraminifera, at the 1500m sites and more polychaete and sipunculid worms, mysid shrimps and sponges but fewer molluscs, amphipods, cumaceans, ostracods and foraminifera in the Control samples.

Species composition varies between the 100,000m³ and 150,000m³ samples with both numerically dominated by foraminifera; however a total of 35 taxa present in the 100,000m³ samples were not found in the 150,000m³ samples. These included 10 polychaete worm species (*Aglaophamus macroura*, *Ancistrosyllis* sp., *Armandia maculata*, *Boccardia* sp.,

Glycinde trifida, Paraonidae Β, Polynoidae, Scalibregmatidae, Serpulidae and Trichobranchidae), Platyhelminthes, 6 species of gastropod (Amalda novaezelandiae, Austrofusus glans, Microvoluta marginata, Solariella tryphenensis, Zeatrophon ambiguus, undentified), a scaphopod, 4 amphipods (Atylidae, Corophium sp., Eusiridae and Phoxocephalidae E), the isopod (*Neastacilla fusiformis*), the crab (*Lyreidus tridentatus*), Cumacean B, Ostracod B, the anthozoa (Sphenotrochus ralphae), the echinoid (Peronella hinemoae), the ascidian (Botryllus schlosseri), a Salp and 4 species of foraminifera (unidentified Miliodida, Astacolus sp., Nodosaria vertebralis, Planularia sp. and unidentified flat sim otolith).

In addition 26 taxa were not recorded in the 100,000m³ survey but were found in the 150,000m³ survey, these included 15 species of polychaete worms (Ampharetidae, *Aonides* sp., Dorvilleidae, Flabelligeridae sp. A, Hesionidae, *Hyalinoecia* sp., *Laonice* sp., *Naineris* sp., Phyllodocidae, *Phylo* sp., Sabellidae, Sigalionidae, Spionidae, Spionidae sp B, Terebellidae), a sipunculid worm, 2 molluscs (*Uberella barrierensis, Cuspidaria willetti*), the amphipod (Haustoriidae), Mysid shrimps, the anthozoa (*Edwardsia* sp.), the holothurian (*Trochodota* sp.), and 4 species of foraminifera (*Ammodiscus* B, Cribrostomoides / Haplophragmoides, *Elphidium* sp B, *Planularia* sp.). Of these 26 taxa, 16 were recorded in the previous monitoring studies (Pre, 10,000m³, 50,000m³).

A total of 133 taxa groups have now been recorded, however the large majority of these species are present at very low numbers with none or only 1 or 2 individuals recorded per survey. This has resulted in apparent significant changes in species composition between surveys. There is no evidence to suggest the overall species composition changes between surveys are the result of any changes associated with the dredge spoil disposal.

Of the more abundant taxa present in both the 100,000m³ and 150,000m³ surveys the foraminifera at the disposal centre site showed decreased abundance as a result of the disposal of sediment. At the 1500m sites the 6 most abundant species of foraminifera showed an average 60% reduction in abundance, however a similar 49% reduction was observed at the Control site. Several less abundant species (*Nummoloculina contraria*, *Triloculina insignis*) showed increased abundance at the Control site but either were reduced at the 1500m sites or showed variable changes around the 1500m perimeter. However the reliability of these less abundant species is poor as they are based on changes of 3 or less individuals between surveys. No other individual taxa were present at sufficient density to show similar trends. However combined taxa groupings showed similar trends between the 1500m sites and the Control site.

Thus it is concluded that no effect as a result of the disposal activity has occurred at or beyond the 1500m disposal boundary following the disposal of 150,000m³ of sediment.

4 <u>REFERENCES</u>

Andrews, H.P; Snee, R.D; Sarner, M.H. (1980).

Graphical display of means. The American Statistician, 34(4), 195-199.

ANZECC (2000)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1, The Guidelines (Chapters 1 - 7). Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). Paper No. 4 - Volume 1 (Chapters 1 - 7) October 2000.

Auckland Regional Council (2002)

Blueprint for monitoring urban receiving environments. Auckland Regional Council Technical Publication, TP168, pp 68

Bioresearches (2013)

Post 10,000m³ Disposal Characterisation Of Seabed Changes, August 2013. *Report prepared for* Coastal Resources Limited. 57 pp.

Bioresearches (2015)

Post 50,000m³ Disposal Characterisation Of Seabed Changes, April 2015. *Report prepared for* Coastal Resources Limited. 60 pp.

Bioresearches (2016)

Post 100,000m³ Disposal Characterisation Of Seabed Changes, August 2015. *Report prepared for* Coastal Resources Limited. 96 pp.

Chapman, P.M; Allard, P.J; Vigers, G.A. (1999)

Development of Sediment Quality Values for Hong Kong Special Administrative Region: A Possible Model for Other Jurisdictions. Marine Pollution Bulletin 38(3): 161–169.

Maritime Safety Authority of New Zealand (1999)

New Zealand Guidelines for Sea Disposal of Waste. Advisory Circular Part 180: Dumping of Waste or Other Matter, Issue No. 180-1 pp86.

Long, E.R; MacDonald, D.D; Smith, S.L; Calder, F.D. (1995)

Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environmental Management* 19:81-97.

Long, E.R; Morgan, L.G. (1991)

The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration. *NOAA Technical Memorandum NOS OMA 52*, 175 pp. + appendices.

Simpson, S.L., Batley, G.E. and Chariton, A.A., (2013)

Revision of the ANZECC/ARMCANZ sediment quality guidelines. *CSIRO Land and Water Report*, *8*(07), p.128.

University of Waikato (2011)

Report 5-Auckland Marine Disposal Ground Monitoring Series, February 2011 Biological Assessment. 14 pp.

5 <u>APPENDICES</u>

Appendix 1 Sediment Gravity Core Photographs.

Sediment Gravity Cores – Disposal Centre Site, 23 November 2016 Figure 5.1

Bioresearches 🐤 A Babbage Company

Figure 5.3 Sediment Gravity Cores – S 100, 23 November 2016

Figure 5.4 Sediment Gravity Cores – N 250, 23 November 2016

Figure 5.5 Sediment Gravity Cores – E 250, 23 November 2016

Figure 5.6 Sediment Gravity Cores – S 250, 23 November 2016

Figure 5.7Sediment Gravity Cores – W 250, 23 November 2016

Figure 5.8 Sediment Gravity Cores – N 375, 23 November 2016

Figure 5.9 Sediment Gravity Cores – S 375, 23 November 2016

Figure 5.10 Sediment Gravity Cores – N 500, 23 November 2016

Figure 5.11 Sediment Gravity Cores – E 500, 23 November 2016

Figure 5.12 Sediment Gravity Cores – S 500, 23 November 2016

Figure 5.13 Sediment Gravity Cores – W 500, 23 November 2016

Figure 5.14 Sediment Gravity Cores – N 1000, 23 November 2016

Figure 5.15 Sediment Gravity Cores – E 1000, 23 November 2016

Figure 5.16 Sediment Gravity Cores – S 1000, 23 November 2016

Figure 5.17 Sediment Gravity Cores – W 1000, 23 November 2016

Figure 5.18 Sediment Gravity Cores – N 1500, 23 November 2016

Figure 5.19 Sediment Gravity Cores – E 1500, 23 November 2016

Figure 5.20 Sediment Gravity Cores – S 1500, 23 November 2016

Figure 5.21 Sediment Gravity Cores – W 1500, 23 November 2016

Figure 5.22 Sediment Gravity Cores – NE 1750, 23 November 2016

Figure 5.24 Sediment Gravity Cores – SW 1750, 23 November 2016

Figure 5.25 Sediment Gravity Cores – NW 1750, 23 November 2016

Figure 5.27 Sediment Gravity Cores - Control B, 23 November 2016

Figure 5.28 Sediment Gravity Cores - Control C, 23 November 2016

50

Appendix 2 Core Statistical Tests

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

Dependent Var Normality Tes Equal Varianc	t (Sh	apiro-Wilk)	-	assed ailed	`	= 0.053) < 0.050)
Group Name	Ν	Missing	Mean	Std D	ev	SEM
DC	2	0	271.250	12.37	74	8.750
100	2	0	233.989	88.11	16	62.307
250	4	0	225.078	8.76	1	4.381
375	2	0	186.984	32.55	50	23.016
500	8	0	184.184	11.34	15	4.011
1000	8	0	182.328	14.19	92	5.018
1500	8	0	183.089	21.74	13	7.687
1750	8	0	184.048	24.00	00	8.485
Control	6	0	189.785	8.13	4	3.321
Source of Varia	tion	DF SS	MS	F		Р
Between Groups	3	8 22799.2	23 2849.9	03 5.79	92 <	0.001
Residual		39 19190.2	280 492.0	58		
Total		47 41989.5	503			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.994

All Pairwise Multiple Comparison Procedures (Tukey Test):

~ ·	~	<i>c</i> ,	D ¹ /
Comparisons	tor	tactor	I lietanco
Compansons		laciol.	Distance

Comparison	Diff of Means	р	q	Р	P<0.050
DC vs. 1000	88.922	9	7.171	<0.001	Yes
DC vs. 1500	88.161	9	7.110	<0.001	Yes
DC vs. 1750	87.202	9	7.032	<0.001	Yes
DC vs. 500	87.066	9	7.021	<0.001	Yes
DC vs. 375	84.266	9	5.372	0.013	Yes
DC vs. Control	81.465	9	6.361	0.002	Yes
DC vs. 250	46.172	9	3.399	0.311	No
DC vs. 100	37.261	9	2.376	0.755	Do Not Test
100 vs. 1000	51.661	9	4.166	0.109	No
100 vs. 1500	50.900	9	4.105	0.119	Do Not Test
100 vs. 1750	49.941	9	4.027	0.134	Do Not Test
100 vs. 500	49.805	9	4.016	0.136	Do Not Test
100 vs. 375	47.005	9	2.997	0.476	
100 vs. Control	44.204	9	3.452	0.292	Do Not Test
100 vs. 250	8.911	9	0.656	1.000	Do Not Test
250 vs. 1000	42.750	9	4.451	0.069	Do Not Test
250 vs. 1500	41.989	9	4.371	0.079	Do Not Test
250 vs. 1750	41.029	9	4.272	0.092	Do Not Test
250 vs. 500	40.894	9	4.257	0.094	Do Not Test
250 vs. 375	38.094	9	2.804	0.564	Do Not Test

250 vs. Control	35.293	9 3.486 0.280 Do Not Test
Control vs. 1000	7.457	9 0.880 0.999 Do Not Test
Control vs. 1500	6.696	9 0.790 1.000 Do Not Test
Control vs. 1750	5.737	9 0.677 1.000 Do Not Test
Control vs. 500	5.601	9 0.661 1.000 Do Not Test
Control vs. 375	2.801	9 0.219 1.000 Do Not Test
375 vs. 1000	4.656	9 0.375 1.000 Do Not Test
375 vs. 1500	3.895	9 0.314 1.000 Do Not Test
375 vs. 1750	2.935	9 0.237 1.000 Do Not Test
375 vs. 500	2.800	9 0.226 1.000 Do Not Test
500 vs. 1000	1.856	9 0.237 1.000 Do Not Test
500 vs. 1500	1.095	9 0.140 1.000 Do Not Test
500 vs. 1750	0.136	9 0.0173 1.000 Do Not Test
1750 vs. 1000	1.720	9 0.219 1.000 Do Not Test
1750 vs. 1500	0.959	9 0.122 1.000 Do Not Test
1500 vs. 1000	0.761	9 0.0970 1.000 Do Not Test

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

Dependent Variable: LayerFailed(P < 0.050)</th>Normality Test (Shapiro-Wilk)Failed(P < 0.050)</td>

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group N Missing Median 25% 75% 2 DC 0 271.250 262.500 280.000 100 2 0 233.989 171.681 296.296 119.309 75.099 185.620 250 4 0 375 2 0 77.687 72.874 82.500 500 8 0 69.684 60.955 72.586 1000 8 0 71.476 61.202 83.921 1500 8 0 73.145 66.614 78.842 1750 8 0 69.419 65.254 73.231 0 73.714 65.947 75.743 Control 6

H = 19.293 with 8 degrees of freedom. (P = 0.013)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.013)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Multiple Comparisons versus Control Group (Dunn's Method) :

Comparison	Diff of Ranks	Q	P<0.05
DC vs Control	22.500	1.968	No
100 vs Control	22.000	1.925	Do Not Test
250 vs Control	13.500	1.494	Do Not Test
500 vs Control	8.500	1.124	Do Not Test
1750 vs Control	7.000	0.926	Do Not Test
375 vs Control	6.500	0.569	Do Not Test
1000 vs Control	1.750	0.231	Do Not Test
1500 vs Control	0.750	0.0992	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

Appendix 3 Sediment Particle Size Results.

Control A

Appendix No.1 - Particle size Report -1685884 - Page 1 of 20

Analysis - Under

100.00	1410	96.70	350	72.38	88.0	26.81	7.80	0.00	0.0500
100.00	1680	98.49	420	75.29	105	41.64	15.6	0.00	0.0600
100.00	2000	99.51	500	78.28	125	54.85	31.0	0.00	0.120
100.00	2380	99.92	590	81.46	149	57.97	37.0	0.00	0.240
100.00	2830	100.00	710	84.73	177	60.95	44.0	0.03	0.490
100.00	3360	100.00	840	88.05	210	64.09	53.0	2.96	0.980
		100.00	1000	91.36	250	66.94	63.0	6.36	2.00
		100.00	1190	94.50	300	69.56	74.0	13.96	3.90
			1						
	1		1						

Control B

Appendix No.1 - Particle size Report -1685884 - Page 2 of 20

Analysis - Under

easurement Det					Weasure	ement Details					
		r Name rodgers						2/12/2016 8:55:			
		e Name 168588				Measurement Date Time 2/12/2016 8:55:13 AM					
		e Name Marine		op		Result Source Measurement					
	Lab N	Number 201622	6/2								
nalysis					Result						
	Particle	e Name Marine	Sediment				Concentration	0.0186 %			
Pa	article Refractive	e Index 1.500					Spar	5.264			
Par	ticle Absorption	n Index 0.200				Uniformity 1.664 Specific Surface Area 716.6 m²/kg D [3,2] 8.37 µm					
	Dispersant	t Name Water									
Dispe	ersant Refractive	e Index 1.330									
	Scattering	Model Mie			D [4,3] 71.0 μm Dv (10) 3.39 μm						
	Analysis	Model General	Purpose								
	Weighted R	Residual 1.24 %					Dv (50)) 35.8 μm			
	Laser Obsc	uration 15.19 %	5				Dv (90)) 192 µm			
equency (compa	itible)										
6-		1					1				
Volume Density (%) 5- 7							\bigwedge				
0 0.01		0.1	1.0	[343] 168588-	10.0 Size Classes (µm) 12-2/12/2016 &55:13.	АМ	00.0	1,000.0	<mark>1 </mark>		
Size (µm) % Vo 0.0500	olume Under 0.00	Size (μm) % Vo 7.80	olume Under 22.77	Size (µm) % 88.0	Volume Under 66.76	Size (µm) % \ 350	olume Under/ 99.98	Size (µm) % V 1410	blume Under 100.00		

Size (µm)	% Volume Under								
0.0500	0.00	7.80	22.77	88.0	66.76	350	99.98	1410	100.00
0.0600	0.00	15.6	35.86	105	71.25	420	100.00	1680	100.00
0.120	0.00	31.0	47.67	125	76.27	500	100.00	2000	100.00
0.240	0.00	37.0	50.56	149	81.88	590	100.00	2380	100.00
0.490	0.00	44.0	53.42	177	87.52	710	100.00	2830	100.00
0.980	2.45	53.0	56.60	210	92.72	840	100.00	3360	100.00
2.00	5.35	63.0	59.76	250	96.75	1000	100.00		
3.90	11.70	74.0	62.94	300	99.28	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories

Created: 23/08/2016 Malvern Instruments Ltd. Printed: 2/12/2016 2:16 PM www.malvern.com

Malvern

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Control C

Appendix No.1 - Particle size Report -1685884 - Page 3 of 20

Analysis - Under

DC

Appendix No.1 - Particle size Report -1685884 - Page 4 of 20

Analysis - Under

easurement Details			Measurement Details				
	Operator Name rodgers		Ana	alysis Date Time 2/12/20	16 9:14:57 AM		
	Sample Name 1685884.4		Measure	ment Date Time 2/12/20	16 9:14:57 AM		
	SOP File Name Marine Sediment.m	sop		Result Source Measure	ement		
	Lab Number 2016226/4						
nalysis			Result				
	Particle Name Marine Sediment			Concentration 0.0085 9	%		
Particle	Refractive Index 1.500			Span 9.517			
Particle A	Absorption Index 0.200			Uniformity 2.949			
1	Dispersant Name Water		Speci	fic Surface Area 1449 m ²	²/kg		
Dispersant	Refractive Index 1.330			D [3,2] 4.14 µm			
5	Scattering Model Mie			D [4,3] 37.2 μm			
	Analysis Model General Purpose		Dv (10) 1.38 μm				
w	eighted Residual 0.91 %			Dv (50) 11.2 μm			
L	aser Obscuration 13.60 %			Dv (90) 107 μm			
L	aser Obscuration 13.60 %			Dv (90) 107 μm			
L equency (compatible)	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible)	aser Obscuration 13.60 %			Dv (90) 107 μm	I		
	aser Obscuration 13.60 %			Dv (90) 107 μm		-	
equency (compatible)	aser Obscuration 13.60 %			Dv (90) 107 μm		-	
equency (compatible)	aser Obscuration 13.60 %			Dv (90) 107 μm		-	
equency (compatible) 4- 3-	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible) 4- 3-	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible) 4- 3-	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible) 4 3 (%) Arisend 2	aser Obscuration 13.60 %			Dv (90) 107 μm		_	
equency (compatible) 4 3 (%) Arisend 2	aser Obscuration 13.60 %			Dv (90) 107 μm		_	
equency (compatible) 4 3 % Also and a second	aser Obscuration 13.60 %			Dv (90) 107 μm		_	
equency (compatible) 4 3 (%) Arisend 2	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible) 4 3 % Also and a second	aser Obscuration 13.60 %			Dv (90) 107 μm			
equency (compatible) 4 3 % Also and a second	aser Obscuration 13.60 %						

Size (µm)	% Volume Under									
0.0500	0.00	7.80	41.88	88.0	87.38	350	99.51	1410	100.00	
0.0600	0.00	15.6	57.13	105	89.70	420	99.90	1680	100.00	
0.120	0.00	31.0	70.21	125	91.78	500	100.00	2000	100.00	
0.240	0.00	37.0	73.36	149	93.62	590	100.00	2380	100.00	
0.490	0.10	44.0	76.37	177	95.21	710	100.00	2830	100.00	
0.980	6.57	53.0	79.53	210	96.61	840	100.00	3360	100.00	
2.00	14.20	63.0	82.36	250	97.83	1000	100.00			
3.90	26.28	74.0	84.86	300	98.87	1190	100.00			

Size Classes (µm)

Malvern Instruments Ltd. www.malvern.com

2.00

3.90

6.29

13.66

63.0

74.0

64.91

67.51

250

300

90.79

94.36

1000

1190

100.00

100.00

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Appendix No.1 - Particle size Report -1685884 - Page 5 of 20

Analysis - Under

500E

Appendix No.1 - Particle size Report -1685884 - Page 6 of 20

Analysis - Under

rement Details	Measurement Details				
Operator Name rodgers	Analysis Date Time 2/12/2016 9:58:59 AM				
Sample Name 1685884.6	Measurement Date Time 2/12/2016 9:58:59 AM				
SOP File Name Marine Sediment.msop	Result Source Measurement				
Lab Number 2016226/6					
is	Result				
Particle Name Marine Sediment	Concentration 0.0103 %				
Particle Refractive Index 1.500	Span 7.017				
Particle Absorption Index 0.200	Uniformity 2.134				
Dispersant Name Water	Specific Surface Area 741.3 m ² /kg				
Dispersant Refractive Index 1.330	D [3,2] 8.09 µm				
Scattering Model Mie	D [4,3] 70.8 µm				
Analysis Model General Purpose	Dv (10) 3.25 μm				
Weighted Residual 0.68 %	Dv (50) 28.6 µm				
Laser Obscuration 9.08 %	Dv (90) 204 μm				
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 100.0 1,000.0 10,000.0				
	ises (μm)				

Size (µm)	% Volume Under								
0.0500	0.00	7.80	24.73	88.0	69.44	350	99.21	1410	100.00
0.0600	0.00	15.6	38.91	105	73.28	420	99.95	1680	100.00
0.120	0.00	31.0	51.40	125	77.43	500	100.00	2000	100.00
0.240	0.00	37.0	54.33	149	81.94	590	100.00	2380	100.00
0.490	0.00	44.0	57.17	177	86.45	710	100.00	2830	100.00
0.980	2.26	53.0	60.22	210	90.76	840	100.00	3360	100.00
2.00	5.38	63.0	63.16	250	94.54	1000	100.00		
3.90	12.44	74.0	66.05	300	97.56	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

3.90

13.62

74.0

66.76

300

96.03

1190

100.00

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Printed: 2/12/2016 2:16 PM

Appendix No.1 - Particle size Report -1685884 - Page 7 of 20

Analysis - Under

0.0600	0.00	15.6	35.97	105	69.71	420	97.30	1680	100.00	
0.120	0.00	31.0	46.93	125	73.92	500	98.64	2000	100.00	
0.240	0.00	37.0	49.68	149	78.23	590	99.43	2380	100.00	
0.490	0.03	44.0	52.45	177	82.38	710	99.85	2830	100.00	
0.980	2.73	53.0	55.59	210	86.27	840	99.99	3360	100.00	
2.00	5.87	63.0	58.75	250	89.84	1000	100.00			
3.90	12.59	74.0	61.93	300	93.06	1190	100.00			

500W

Appendix No.1 - Particle size Report -1685884 - Page 8 of 20

Analysis - Under

	Operator Name rod	laers		Ar	alysis Date Time 2/12/20	6 10:25:01 AM
	Sample Name 168				ement Date Time 2/12/20	
	SOP File Name Ma		SOD		Result Source Measure	
	Lab Number 201					
nalysis				Result		
lalysis	Particle Name Ma	rine Sediment		Result	Concentration 0.0147 %	
Parti	icle Refractive Index 1.5				Span 7.085	
	le Absorption Index 0.2				Uniformity 2.222	
	Dispersant Name Wa			Spec	ific Surface Area 806.3 m	/kg
Dispers	ant Refractive Index 1.3	30			D [3,2] 7.44 µm	
	Scattering Model Mie	e			D [4,3] 86.7 µm	
	Analysis Model Ger	neral Purpose			Dv (10) 2.89 μm	
	Weighted Residual 0.5	8 %			Dv (50) 34.2 μm	
	Laser Obscuration 13.	44 %		Dv (90) 245 μm		
3- 						
Volume Density (%)						
1-		\bigwedge				
0.01	0.1	1. 1. 1. 1.	0			000.0 10,00

Result										
Size	μm)	% Volume Under	Size (µm)	% Volume Under						
0.0	500	0.00	7.80	25.09	88.0	66.24	350	95.93	1410	100.00
0.0	600	0.00	15.6	37.41	105	70.07	420	97.83	1680	100.00
0	.120	0.00	31.0	48.46	125	74.13	500	99.04	2000	100.00
0	.240	0.00	37.0	51.20	149	78.41	590	99.69	2380	100.00
0	.490	0.04	44.0	53.92	177	82.63	710	99.96	2830	100.00
0	.980	3.00	53.0	56.93	210	86.66	840	100.00	3360	100.00
	2.00	6.59	63.0	59.88	250	90.36	1000	100.00		
	3.90	13.78	74.0	62.81	300	93.67	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Appendix No.1 - Particle size Report -1685884 - Page 9 of 20

Analysis - Under

e Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	
24.74	88.0	67.92	350	96.63	1410	100.00	
37.89	105	71.65	420	98.41	1680	100.00	
49.68	125	75.56	500	99.43	2000	100.00	
52.57	149	79.67	590	99.89	2380	100.00	
55.41	177	83.71	710	100.00	2830	100.00	
58.53	210	87.60	840	100.00	3360	100.00	
61.56	250	91.21	1000	100.00			
64.52	300	94.44	1190	100.00			

1000E

Appendix No.1 - Particle size Report -1685884 - Page 10 of 20

Analysis - Under

	Measurement Details
Operator Name rodgers	Analysis Date Time 2/12/2016 10:43:48 AM
Sample Name 1685884.10	Measurement Date Time 2/12/2016 10:43:48 AM
SOP File Name Marine Sediment.msop	Result Source Measurement
Lab Number 2016226/10	
Analysis	Result
Particle Name Marine Sediment	Concentration 0.0144 %
Particle Refractive Index 1.500	Span 8.119
Particle Absorption Index 0.200	Uniformity 2.466
Dispersant Name Water	Specific Surface Area 803.9 m ² /kg
Dispersant Refractive Index 1.330	D [3,2] 7.46 μm
Scattering Model Mie	D [4,3] 81.1 μm
Analysis Model General Purpose	Dv (10) 2.98 μm
Weighted Residual 0.55 %	Dv (50) 29.0 μm
Laser Obscuration 13.19 %	Dv (90) 238 μm
4-	
3	
3- (%) Arite	
Volume Density (%)	
Normal Press, 199	
No Artistano Caracteria de la contrata de la contra	

Size (µm)	% Volume Under								
0.0500	0.00	7.80	25.54	88.0	68.57	350	96.50	1410	100.00
0.0600	0.00	15.6	39.10	105	72.04	420	98.35	1680	100.00
0.120	0.00	31.0	51.12	125	75.70	500	99.42	2000	100.00
0.240	0.00	37.0	53.99	149	79.60	590	99.89	2380	100.00
0.490	0.03	44.0	56.77	177	83.51	710	100.00	2830	100.00
0.980	2.87	53.0	59.78	210	87.34	840	100.00	3360	100.00
2.00	6.26	63.0	62.64	250	90.95	1000	100.00		
3.90	13.50	74.0	65.41	300	94.24	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

0.490

0.980

2.00

3.90

0.03

2.82

6.10

13.09

44.0

53.0

63.0

74.0

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

55

Appendix No.1 - Particle size Report -1685884 - Page 11 of 20

Analysis - Under

1000W

Appendix No.1 - Particle size Report -1685884 - Page 12 of 20

Analysis - Under

leasurement Details Operator Name rodgers	Measurement Details Analysis Date Time 2/12/2016 11:01:55 AM				
	•				
Sample Name 1685884.12	Measurement Date Time 2/12/2016 11:01:55 AM				
SOP File Name Marine Sediment.msop	Result Source Measurement				
Lab Number 2016226/12					
nalysis	Result				
Particle Name Marine Sediment	Concentration 0.0130 %				
Particle Refractive Index 1.500	Span 8.372				
Particle Absorption Index 0.200	Uniformity 2.504				
Dispersant Name Water	Specific Surface Area 868.4 m ² /kg				
Dispersant Refractive Index 1.330	D [3,2] 6.91 μm				
Scattering Model Mie	D [4,3] 71.2 μm				
Analysis Model General Purpose	Dv (10) 2.76 μm				
Weighted Residual 0.63 %	Dv (50) 25.0 μm				
Laser Obscuration 12.91 %	Dv (90) 212 μm				
3					
ensity (3					
And the sense of t					
³	<u> </u>				
•					
0.01 0.1 1.0	10.0 100.0 1,000.0 10,00				
0.01 0.1 1.0	10.0 100.0 1,000.0 10,00 Classes (µm)				
0.01 0.1 1.0 Size C	10.0 100.0 1,000.0 10,00 Classes (µm)				

and drill)	% Volume Under	Size (µm)	% Volume Under						
0.0500	0.00	7.80	27.42	88.0	72.33	350	97.44	1410	100.00
0.0600	0.00	15.6	41.36	105	75.88	420	98.92	1680	100.00
0.120	0.00	31.0	53.72	125	79.47	500	99.71	2000	100.00
0.240	0.00	37.0	56.73	149	83.09	590	100.00	2380	100.00
0.490	0.04	44.0	59.67	177	86.55	710	100.00	2830	100.00
0.980	3.20	53.0	62.89	210	89.82	840	100.00	3360	100.00
2.00	6.92	63.0	65.99	250	92.84	1000	100.00		
3.90	14.75	74.0	68.97	300	95.58	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

2.00

3.90

6.89

14.66

63.0

74.0

66.22

69.12

250

300

93.08

95.81

1000

1190

100.00

100.00

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Appendix No.1 - Particle size Report -1685884 - Page 13 of 20

Analysis - Under

Analysis - Under

Appendix No.1 - Particle size Report -1685884 - Page 14 of 20

1500E

Measurement Details	Measurement Details					
Operator Name rodgers	Analysis Date Time 2/12/2016 11:20:07 AM					
Sample Name 1685884.14	Measurement Date Time 2/12/2016 11:20:07 AM					
SOP File Name Marine Sediment.msop	Result Source Measurement					
Lab Number 2016226/14						
Analysis	Result					
Particle Name Marine Sediment	Concentration 0.0253 %					
Particle Refractive Index 1.500	Span 6.890					
Particle Absorption Index 0.200	Uniformity 2.117					
Dispersant Name Water	Specific Surface Area 755.6 m ² /kg					
Dispersant Refractive Index 1.330	D [3,2] 7.94 μm					
Scattering Model Mie	D [4,3] 85.6 µm					
Analysis Model General Purpose	Dv (10) 3.19 μm					
Weighted Residual 0.53 %	Dv (50) 35.2 μm					
Laser Obscuration 20.87 %	Dv (90) 246 μm					
Frequency (compatible)						
Hequency (compatible)						
4-						
	\frown					
3						
8						
east						
ce contract of the contract of						
olur						
0						
0.01 0.1 1.0	10.0 100.0 1,000.0 10,000.0					
	lasses (μm) 2/2016 11/20/07 4M					
[355] 1685884.14-2/12	2/2010 11.20.07 PM					

Size (um)	% Volume Under	Size (um)	% Volume Under	Size (um)	% Volume Under	Size (um)	% Volume Under	Size (um)	% Volume Under
4 <i>/</i>		4 <i>(</i>		4 <i>7</i>		ų /			
0.0500	0.00	7.80	23.63	88.0	66.34	350	96.26	1410	100.00
0.0600	0.00	15.6	36.49	105	70.22	420	98.29	1680	100.00
0.120	0.00	31.0	47.99	125	74.25	500	99.49	2000	100.00
0.240	0.00	37.0	50.81	149	78.47	590	100.00	2380	100.00
0.490	0.04	44.0	53.60	177	82.61	710	100.00	2830	100.00
0.980	2.74	53.0	56.71	210	86.60	840	100.00	3360	100.00
2.00	5.84	63.0	59.78	250	90.36	1000	100.00		
3.90	12.45	74.0	62.82	300	93.83	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

2.00

3.90

6.62

14.02

63.0

74.0

63.31

66.44

250

300

91.85

95.05

1000

1190

100.00

100.00

Mastersizer - v3.50 Page 1 of 1 Hill Laboratories Created: 23/08/2016

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

Printed: 2/12/2016 2:16 PM

57

Appendix No.1 - Particle size Report -1685884 - Page 15 of 20

Analysis - Under

7.80	27.04	88.0	71.13	350	96.67	1410	100.00
15.6	41.28	105	74.30	420	98.40	1680	100.00
31.0	53.94	125	77.62	500	99.41	2000	100.00
37.0	56.93	149	81.17	590	99.88	2380	100.00
44.0	59.78	177	84.73	710	100.00	2830	100.00
53.0	62.79	210	88.23	840	100.00	3360	100.00
63.0	65.57	250	91.54	1000	100.00		
74.0	68.20	300	94.58	1190	100.00		

1500W

Appendix No.1 - Particle size Report -1685884 - Page 16 of 20

Analysis - Under

easurement		Name redgers		Measurement Details	abusis Date Time 2/12/20	16 11-29-40 AM		
		Name rodgers			alysis Date Time 2/12/20			
	-	Name 1685884.16		Measure	ement Date Time 2/12/20			
		Name Marine Sediment.n	nsop		Result Source Measur	ement		
	Lab N	lumber 2016226/16						
nalysis				Result				
	Particle	Name Marine Sediment			Concentration 0.0164	%		
	Particle Refractive			Span 8.654				
	Particle Absorption	Index 0.200			Uniformity 2.568			
		Name Water		Spec	cific Surface Area 923.8 m	n²/kg		
D	ispersant Refractive	a Index 1.330		4	D [3,2] 6.49 µm	1		
	Scattering	Model Mie			D [4,3] 66.3 µm	1		
	Analysis	Model General Purpose			Dv (10) 2.57 μm	n		
	Weighted Re	esidual 0.61 %			Dv (50) 22.7 μm	n		
	Laser Obscu	uration 16.84 %			Dv (90) 199 μm			
Volume Density (%)					\square			
1 - Volume								
			· · · · · · · · · · · · · · · · · · ·					
0			1.0			,000.0 10,0		
0.01	(

Size (µm)	% Volume Under								
0.0500	0.00	7.80	28.82	88.0	73.71	350	98.17	1410	100.00
0.0600	0.00	15.6	42.95	105	77.14	420	99.33	1680	100.00
0.120	0.00	31.0	55.51	125	80.65	500	99.86	2000	100.00
0.240	0.00	37.0	58.55	149	84.25	590	100.00	2380	100.00
0.490	0.05	44.0	61.49	177	87.73	710	100.00	2830	100.00
0.980	3.53	53.0	64.65	210	91.01	840	100.00	3360	100.00
2.00	7.54	63.0	67.64	250	93.97	1000	100.00		
3.90	15.81	74.0	70.51	300	96.53	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

0.490

0.980

2.00

3.90

0.04

3.13

6.76 14.42

> Mastersizer - v3.50 Page 1 of 1

Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

58

Appendix No.1 - Particle size Report -1685884 - Page 17 of 20

Analysis - Under

	% Volume Under	Size (µm)	% Volume Under							
Ű.	0.00	7.80	25.37	88.0	69.66	350	97.23	1410	100.00	
	0.00	15.6	38.89	105	73.46	420	98.80	1680	100.00	
	0.00	31.0	50.89	125	77.36	500	99.66	2000	100.00	
	0.00	37.0	53.83	149	81.38	590	100.00	2380	100.00	
	0.04	44.0	56.73	177	85.25	710	100.00	2830	100.00	
	2.93	53.0	59.95	210	88.92	840	100.00	3360	100.00	
	6.28	63.0	63.08	250	92.26	1000	100.00			
	13.42	74.0	66.16	300	95.24	1190	100.00			
						0				

1750SE

Appendix No.1 - Particle size Report -1685884 - Page 18 of 20

Analysis - Under

Measurement Details				Measure	ement Details				
	Operator Name rodg	iers			Analy	ysis Date Tim	e 2/12/2016 11:56	:17 AM	
	Sample Name 1685	884.18			Measurem	ent Date Tim	e 2/12/2016 11:56	:17 AM	
	SOP File Name Mari	ne Sediment.msd	op			Result Sourc	e Measurement		
	Lab Number 2016	226/18	40940 						
Analysis				Result					
	Particle Name Mari	ne Sediment			3	Concentratio	n 0.0257 %		
Particle	e Refractive Index 1.50	D				Spa	n 7.715		
Particle	Absorption Index 0.20	D				Uniformit	y 2.353		
	Dispersant Name Wate	er			Specifi	c Surface Are	a 812.4 m ² /kg		
Dispersan	t Refractive Index 1.33	D				D [3,2] 7.39 μm		
	Scattering Model Mie] 79.4 µm		
	Analysis Model Gene	eral Purpose) 2.97 µm		
v	Veighted Residual 0.54) 29.6 µm		
	Laser Obscuration 22.4	2 %) 231 µm		
3 8						$ \rightarrow $			-
Volume Density (%)									_
0-1									
0.01	0.1	1.0		10.0 Classes (μm) /12/2016 11:56:1	100. 17 AM	.0	1,000.0		10,000
esult Size (µm) % Volume	Under Size (um) %	Volume Under	Size (µm) % Volu	ime Under	Size (µm) % Vo	lume Under	Size (µm) % Vo	lume Under	
0.0500	0.00 7.80	25.32	88.0	67.65	350	97.50	1410	100.00	
0.0500	0.00 15.6	20.04	105	71.12	420	00.12	1410	100.00	

0.0500 0.00 7.80 25.32 88.0 67.65 350 97.50 1410 100.00 0.0600 0.00 15.6 38.84 105 71.13 420 99.12 1680 100.00 0.120 0.00 31.0 50.78 125 74.93 500 99.90 2000 100.00 0.240 0.00 37.0 53.61 149 79.15 590 100.00 2380 100.00 0.490 0.05 44.0 56.32 177 83.48 710 100.00 2830 100.00 0.980 3.04 53.0 59.22 210 87.76 840 100.00 3360 100.00 2.00 6.40 63.0 61.95 250 91.74 1000 100.00 3.30 13.47 74.0 64.59 300 95.4 1190 100.00	Size (µm)	% Volume Under								
0.120 0.00 31.0 50.78 125 74.93 500 99.90 2000 100.00 0.240 0.00 37.0 53.61 149 79.15 590 100.00 2380 100.00 0.490 0.05 44.0 56.32 177 83.48 710 100.00 2830 100.00 0.980 3.04 53.0 59.2 210 87.76 840 100.00 2800 100.00 2.00 6.40 63.0 61.95 250 91.74 1000 100.00	0.0500	0.00	7.80	25.32	88.0	67.65	350	97.50	1410	100.00
0.240 0.00 37.0 53.61 149 79.15 590 100.00 2380 100.00 0.490 0.05 44.0 56.32 177 83.48 71.0 100.00 2830 100.00 0.980 3.04 53.0 592.2 210 87.76 840 100.00 3360 100.00 2.00 6.40 63.0 61.95 250 91.74 1000 100.00	0.0600	0.00	15.6	38.84	105	71.13	420	99.12	1680	100.00
0.490 0.05 44.0 56.32 177 83.48 710 100.00 2830 100.00 0.980 3.04 53.0 59.22 210 87.76 840 100.00 3360 100.00 2.00 6.40 63.0 61.95 250 91.74 1000 100.00	0.120	0.00	31.0	50.78	125	74.93	500	99.90	2000	100.00
0.980 3.04 53.0 59.22 210 87.76 840 100.00 3360 100.00 2.00 6.40 63.0 61.95 250 91.74 1000 100.00	0.240	0.00	37.0	53.61	149	79.15	590	100.00	2380	100.00
2.00 6.40 63.0 61.95 250 91.74 1000 100.00	0.490	0.05	44.0	56.32	177	83.48	710	100.00	2830	100.00
	0.980	3.04	53.0	59.22	210	87.76	840	100.00	3360	100.00
3 90 13 47 74 0 64 59 300 95 24 1190 100 00	2.00	6.40	63.0	61.95	250	91.74	1000	100.00		
	3.90	13.47	74.0	64.59	300	95.24	1190	100.00		

Malvern Instruments Ltd. www.malvern.com

0.490 0.980 2.00 3.90

> Mastersizer - v3.50 Page 1 of 1

Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Malvern Instruments Ltd. www.malvern.com

Mastersizer - v3.50 Page 1 of 1 Created: 23/08/2016 Printed: 2/12/2016 2:16 PM

Hill Laboratories

1750SW

Appendix No.1 - Particle size Report -1685884 - Page 19 of 20

Analysis - Under

1750NW

Measurement Details

Appendix No.1 - Particle size Report -1685884 - Page 20 of 20

Operator Name rodgers

Sample Name 1685884.20

Analysis - Under

easurement Details

Analysis Date Time 2/12/2016 12:15:19 PM

Measurement Date Time 2/12/2016 12:15:19 PM

Size (µm)	% Volume Under								
0.0500	0.00	7.80	27.11	88.0	73.22	350	97.83	1410	100.00
0.0600	0.00	15.6	41.28	105	76.67	420	99.24	1680	100.00
0.120	0.00	31.0	54.04	125	80.11	500	99.91	2000	100.00
0.240	0.00	37.0	57.16	149	83.57	590	100.00	2380	100.00
0.490	0.05	44.0	60.25	177	86.92	710	100.00	2830	100.00
0.980	3.35	53.0	63.62	210	90.15	840	100.00	3360	100.00
2.00	7.05	63.0	66.82	250	93.19	1000	100.00		
3.90	14.67	74.0	69.87	300	95.96	1190	100.00		

Malvern Malvern Instruments Ltd. www.malvern.com

0.490

0.980

2.00

3.90

0.04

3.10

6.65

14.16

44.0

53.0

63.0

74.0

59.53

62.63

65.56

68.36

177

210

250

300

Mastersizer - v3.50 Page 1 of 1

Hill Laboratories Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

Malvern Instruments Ltd. www.malvern.com

Malvern

Mastersizer - v3.50 Page 1 of 1

Hill Laboratories

Created: 23/08/2016

Printed: 2/12/2016 2:16 PM

86.25

89.88

93.19

96.07

710

840

1000

1190

100.00

100.00

100.00

100.00

2830

3360

100.00

100.00

60

Appendix 4 Particle Size Statistical Tests

One Way Analysis of Variance

Total

Dependent Normality Equal Varia	Test (S	Shapiro			Failed Passed	(P < 0.050) (P = 1.000)
Group Nan	ne N N	lissing	y Mean	Std Dev	SEM	
DC	1	0	0.000	0.000	0.000	
500	4	0	0.000	0.000	0.000	
1000	1	Δ	0 000	0 000	0 000	

1000	4	0	0.000	0.000	0.000	
1500	4	0	0.000	0.000	0.000	
1750	4	0	0.000	0.000	0.000	
Control	3	0	0.000	0.000	0.000	

Source of Variation	DF	SS	MS	F	Р
Between Groups	4	0.000	0.000	1.000	1.000
Residual	14	0.000	0.000		

18 0.000

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000).

Power of performed test with alpha = 0.050: 1.000

One Way Analysis of Variance

Dependent Va Normality Te Equal Varian	st	(Shapiro		ilk)		Passed Passed	(P = 0.214 (P = 0.465	,
Group Name	Ν	Missing	Μ	ean	Std De	v SEM		
DC	1	0	17	.640	0.000	0.000		
500	4	0	38	.615	2.446	1.223		
1000	4	0	35	.898	2.356	1.178		
1500	4	0	35	.925	3.365	1.683		
1750	4	0	35	.648	2.231	1.116		
Control	3	0	36	.130	3.701	2.137		
Source of V Between Gro Residual Total		os 4	DF 4 8	3 1	5 S 60.418 10.915 71.333	MS 90.104 7.922	F 11.373	P <0.001

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.997

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for	factor: Sand				
Comparison	Diff of Means	р	q	Р	P<0.050
500 vs. DC	20.975	6	9.426	< 0.001	Yes
500 vs. 1750	2.968	6	2.109	0.675	No
500 vs. 1000	2.718	6	1.931	0.746	Do Not Test
500 vs. 1500	2.690	6	1.911	0.753	Do Not Test
500 vs. Control	2.485	6	1.635	0.850	Do Not Test
Control vs. DC	18.490	6	8.045	< 0.001	Yes
Control vs. 1750	0.483	6	0.317	1.000	Do Not Test
Control vs. 1000	0.233	6	0.153	1.000	Do Not Test
Control vs. 1500	0.205	6	0.135	1.000	Do Not Test
1500 vs. DC	18.285	6	8.217	< 0.001	Yes
1500 vs. 1750	0.278	6	0.197	1.000	Do Not Test
1500 vs. 1000	0.0275	6	0.0195	1.000	Do Not Test
1000 vs. DC	18.257	6	8.205	< 0.001	Yes
1000 vs. 1750	0.250	6	0.178	1.000	Do Not Test
1750 vs. DC	18.007	6	8.093	< 0.001	Yes

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance

Dependent Var Normality Tes Equal Varianc	t (Sha	apiro-Wil	lk)	Passed Passed	(P = 0.0 (P = 0.1	,
Group Name	Ν	Missing	Mean	Std De	v SE	м
DC	1	0	56.080	0.000	0.00	00
500	4	0	48.278	2.492	1.24	46
1000	4	0	50.103	1.529	0.76	64
1500	4	0	49.900	2.022	1.01	11
1750	4	0	50.423	1.663	0.83	31
Control	3	0	50.763	2.496	1.44	41
					_	_
Source of Vari	iation) DF	SS	MS	F	Р
Between Group	os	4	50.873	12.718	3.036	0.054
Residual		14	58.650	4.189		
Total		18	109.523			

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.054).

Power of performed test with alpha = 0.050: 0.458

The power of the performed test (0.458) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

One Way Analysis of Variance

Dependent Var Normality Tes Equal Varianc	t (Sh	apiro-Wil	,		(P = 0.683 (P = 0.619	,
Group Name	Ν	Missing	g Mean	Std Dev	v SEM	
DC	1	0	26.280	0.000	0.000	
500	4	0	13.108	0.690	0.345	
1000	4	0	14.000	0.832	0.416	
1500	4	0	14.175	1.382	0.691	
1750	4	0	13.930	0.598	0.299	
Control	3	0	13.107	1.227	0.709	
Source of Var	iatio	n DF	SS	MS	F	Р
Between Group Residual Total	os	4 14 18	154.441 13.323 167.763	38.610 0.952	40.573	<0.001

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor: Clay								
Comparison	Diff of Means	р	q	Р	P<0.050			
DC vs. Control	13.173	6	16.539	<0.001	Yes			
DC vs. 500	13.173	6	17.080	<0.001	Yes			
DC vs. 1750	12.350	6	16.014	<0.001	Yes			
DC vs. 1000	12.280	6	15.923	<0.001	Yes			
DC vs. 1500	12.105	6	15.696	<0.001	Yes			
1500 vs. Control	1.068	6	2.028	0.708	No			
1500 vs. 500	1.068	6	2.189	0.642	Do Not Test			
1500 vs. 1750	0.245	6	0.502	0.999	Do Not Test			
1500 vs. 1000	0.175	6	0.359	1.000	Do Not Test			
1000 vs. Control	0.893	6	1.696	0.830	Do Not Test			
1000 vs. 500	0.893	6	1.830	0.784	Do Not Test			
1000 vs. 1750	0.0700	6	0.144	1.000	Do Not Test			
1750 vs. Control	0.823	6	1.563	0.871	Do Not Test			
1750 vs. 500	0.822	6	1.686	0.833	Do Not Test			
500 vs. Control	0.000833	6	0.00158	1.000	Do Not Test			

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Appendix 5 Sediment Chemistry Results.

Hill Laboratories Limited 1 Clyde Street Hamilton 3216 Private Bag 3205 Hamilton 3240 New Zealand

Page 1 of 3

ANALYSIS REPORT

Client:	Bioresearches	Lab No:	1685884	SPv2
Contact:	S West	Date Received:	24-Nov-2016	
	C/- Bioresearches	Date Reported:	22-Dec-2016	(Amended)
	PO Box 2828	Quote No:		
	Auckland 1140	Order No:	16138	
		Client Reference:	Coastal Resources Limited Area Sediments	d - 150 K Disposal
		Submitted By:	S West	

Sample Type: Sediment

Sample Type: Sediment	1			N		
	Sample Name:	Control A 23-Nov-2016 2:15 pm	Control B 23-Nov-2016 2:00 pm	Control C 23-Nov-2016 1:45 pm	DC 23-Nov-2016 8:45 am	N500 23-Nov-2016 9:30 am
	Lab Number:	1685884.1	1685884.2	1685884.3	1685884.4	1685884.5
Individual Tests						
Dry Matter	g/100g as rcvd	49	49	50	34	48
Particle size analysis*		See attached report	See attached report	See attached report	See attached report	See attached report
Heavy metals, trace As,Cd,Cr,	,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	5	5	5.1	9.5	4
Total Recoverable Cadmium	mg/kg dry wt	0.10	< 0.10	0.12	0.081	0.17
Total Recoverable Chromium	mg/kg dry wt	22	24	25	22	22
Total Recoverable Copper	mg/kg dry wt	5.0	4.8	5.1	29	5.5
Total Recoverable Lead	mg/kg dry wt	4.4	4.5	4.8	26	4.4
Total Recoverable Mercury	mg/kg dry wt	0.047	0.050	0.046	0.123	0.048
Total Recoverable Nickel	mg/kg dry wt	17.1	16.3	17.2	10.0	16.3
Total Recoverable Zinc	mg/kg dry wt	29	31	32	95	30
Total Petroleum Hydrocarbons	s in Soil					
C7 - C9	mg/kg dry wt	< 14	< 13	< 13	< 19	< 14
C10 - C14	mg/kg dry wt	< 30	< 30	< 30	< 40	< 30
C15 - C36	mg/kg dry wt	< 60	< 60	< 60	< 80	< 60
Total hydrocarbons (C7 - C36)) mg/kg dry wt	< 100	< 90	< 100	< 140	< 100
	Sample Name:	E500 23-Nov-2016 12:00 pm	S500 23-Nov-2016 12:15 pm	W500 23-Nov-2016 8:30 am	N1000 23-Nov-2016 9:45 am	E1000 23-Nov-2016 11:45 am
	Lab Number:	1685884.6	1685884.7	1685884.8	1685884.9	1685884.10
Individual Tests						
Dry Matter	g/100g as rcvd	49	50	60	50	49
Particle size analysis*		See attached report	See attached report	See attached report	See attached report	See attached report
Heavy metals, trace As,Cd,Cr,	,Cu,Ni,Pb,Zn,Hg	•				
Total Recoverable Arsenic	mg/kg dry wt	3.6	3.9	4.0	5	5
Total Recoverable Cadmium	mg/kg dry wt	0.16	0.12	0.10	0.11	0.13
Total Recoverable Chromium	mg/kg dry wt	21	21	22	20	23
Total Recoverable Copper	mg/kg dry wt	5.1	5.0	5.0	8.4	4.9
Total Recoverable Lead	mg/kg dry wt	4.2	4.1	4.2	4.2	4.4
Total Recoverable Mercury	mg/kg dry wt	0.046	0.037	0.038	0.038	0.052
Total Recoverable Nickel	mg/kg dry wt	15.1	14.4	16.1	14.8	15.8
Total Recoverable Zinc	mg/kg dry wt	29	28	29	30	31

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

S	Sample Name:	E500	S500	W500	N1000	E1000
-		23-Nov-2016	23-Nov-2016	23-Nov-2016 8:30	23-Nov-2016 9:45	23-Nov-2016
	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	12:00 pm	12:15 pm	am	am	11:45 am
	Lab Number:	1685884.6	1685884.7	1685884.8	1685884.9	1685884.10
Total Petroleum Hydrocarbons	in Soil					
C7 - C9	mg/kg dry wt	< 30	< 30	< 11	< 14	< 13
C10 - C14	mg/kg dry wt	< 60	< 60	< 30	< 30	< 30
C15 - C36	mg/kg dry wt	< 110	< 110	< 50	< 60	< 60
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 190	< 190	< 80	< 100	< 90
S	Sample Name:	S1000 23-Nov-2016	W1000 23-Nov-2016 8:15	N1500 23-Nov-2016	E1500 23-Nov-2016	S1500 23-Nov-2016
	Lab Novabaw	12:30 pm	am	10:00 am	11:00 am	12:45 pm
In dividual Tanka	Lab Number:	1685884.11	1685884.12	1685884.13	1685884.14	1685884.15
Individual Tests		1				
Dry Matter	g/100g as rcvd	49	52	48	51	49
Particle size analysis*		See attached report	See attached report	See attached report	See attached report	See attached report
Heavy metals, trace As,Cd,Cr,C	Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	4.1	3.6	4	4	5
Total Recoverable Cadmium	mg/kg dry wt	0.13	0.094	0.121	0.090	0.11
Total Recoverable Chromium	mg/kg dry wt	23	20	20	20	23
Total Recoverable Copper	mg/kg dry wt	5.0	5.2	4.7	4.2	4.7
Total Recoverable Lead	mg/kg dry wt	4.4	4.0	3.9	3.8	4.1
Total Recoverable Mercury	mg/kg dry wt	0.043	0.045	0.046	0.040	0.037
Total Recoverable Nickel	mg/kg dry wt	16.2	14.4	15.0	14.3	15.8
Total Recoverable Zinc	mg/kg dry wt	30	28	27	26	30
Total Petroleum Hydrocarbons		000040		United Date-		D PLADARO R
C7 - C9	mg/kg dry wt	< 14	< 13	< 14	< 13	< 14
C10 - C14	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
C15 - C36	mg/kg dry wt	< 60	< 50	< 60	< 60	< 60
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 100	< 90	< 100	< 90	< 100
		Constant Constant				
S	Sample Name:	W1500 23-Nov-2016 7:30 am	NE1750 23-Nov-2016 10:45 am	SE1750 23-Nov-2016 1:30 pm	SW1750 23-Nov-2016 2:30 pm	NW1750 23-Nov-2016 2:4 pm
	Lab Number:	1685884.16	1685884.17	1685884.18	1685884.19	1685884.20
Individual Tests	Lub Humber.					
Dry Matter	g/100g as rcvd	52	48	50	48	48
Particle size analysis*	g/100g us 1014	See attached report	See attached report	See attached report	See attached report	See attached report
Heavy metals, trace As,Cd,Cr,C	Cu.Ni.Pb.Zn.Ha					•
Total Recoverable Arsenic	mg/kg dry wt	3	4	5	4	3
Total Recoverable Cadmium	mg/kg dry wt	0.122	0.130	0.115	0.116	0.102
Total Recoverable Chromium	mg/kg dry wt	20	22	23	22	17.4
Total Recoverable Copper	mg/kg dry wt	5.6	4.7	4.6	4.9	4.4
Total Recoverable Lead	mg/kg dry wt	5.2	4.1	4.2	4.2	3.6
Total Recoverable Mercury	mg/kg dry wt	0.045	0.042	0.067	0.050	0.053
Total Recoverable Nickel	mg/kg dry wt	16.0	15.7	15.4	15.6	13.9
Total Recoverable Zinc	mg/kg dry wt	29	28	30	30	25
Total Petroleum Hydrocarbons			20			20
Constant and the second		< 13	< 14	- 13	< 14	< 14
	mg/kg dry wt	< 13		< 13 < 30		< 14
C7 - C9	ma/lea danset					
C10 - C14	mg/kg dry wt	< 30	< 30		< 30	
	mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 30 < 50 < 90	< 30 < 60 < 100	< 60 < 90	< 60 < 100	< 60 < 100

Analyst's Comments

Amended Report: This report replaces an earlier report issued on 05 Dec 2016 at 12:17 pm Reason for amendment: Following a client query [QOWQ 64060], the mercury analysis was repeated on sample 1685884.20. It was found that spot contamination had elevated the initial result and the repeated result is now reported.

Appendix No.1 - Particle size Report -1685884

Lab No: 1685884 v 2

Hill Laboratories

Page 2 of 3

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-20
Heavy metals, trace As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	1-20
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	1-20
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry) , gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-20
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-20
Particle size analysis*	Malvern Laser Sizer particle size analysis. Subcontracted to Earth Sciences Department, Waikato University, Hamilton.	-	1-20

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

1

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 1685884 v 2

Hill Laboratories

Page 3 of 3

Appendix 6 Sediment Chemistry Statistical Tests

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

Dependent Variable: Dry		
Normality Test (Shapiro-Wilk)	Failed	(P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	Ν	Missing	Median	25%	75%
DC	1	0	34.000	34.000	34.000
500	4	0	49.500	48.250	57.500
1000	4	0	49.500	49.000	51.500
1500	4	0	50	48.250	51.750
1750	4	0	48.000	48.000	49.500
Control	3	0	49.000	49.000	50

H = 5.949 with 5 degrees of freedom. (P = 0.311)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.311)

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: Dry Normality Test (Shapiro-Wilk)Failed(P < 0.050)								
Source of Variation	DF	SS	MS	F	Р			
Volume	3	548.336	182.779	37.142	<0.001			
Site	5	54.033	10.807	2.196	0.067			
Volume x Site	15	619.233	41.282	8.389	<0.001			
Residual	56	275.583	4.921					
Total	79	1137.888	14.404					

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for Site : 0.386Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

Group	Mean
10	50.667
50	55.056
100	53.583
150	47.264
Std Err o	of LS Mean = 0.565

Least squ Group DC 500 1000 1500 1750 Control	Mean 53.00 52.62 51.50 51.25 50.31	n 25 00 50 12	SEM 1.10 0.55 0.55 0.55	l 9 5 5 5 5 5	
Least squ Group 10 x DC 10 x 500 10 x 1000 10 x 1750 10 x 001 50 x 00 50 x 1000 50 x 1500 50 x 1500 50 x 1750 50 x Cont 100 x DC 100 x 500 100 x 100 100 x 100 100 x 100 150 x 100 150 x 100 150 x 100 150 x 150 150 x 150 150 x 150 150 x 150 150 x 150)) (rrol)) (rrol)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me 47. 53. 51. 51. 51. 52. 53. 52. 53. 52. 53. 64. 53. 52. 51. 49. 51. 34. 50. 50. 48.	an 000 000 250 000 250 000 250 250 333 000 250 000 250 000 250 000 250 750 000 000 750	SEM 2.218 1.109 1.109 1.109 1.281 2.218 1.109 1.109 1.109 1.109 1.281 2.218 1.109 1.109 1.281 2.218 1.109 1.281 2.218 1.109 1.209	x Site :

Comparisons	for factor	Site within 10
COMPARISONS	IUI IACIUI.	Sile Willin IU

Comparison	Diff of Means	t	Р	P<0.05		
500 vs. DC	6.000	2.419	0.248	No		
1500 vs. DC	4.250	1.714	0.742	No		
1000 vs. DC	4.000	1.613	0.788	No		
Control vs. DC	4.000	1.562	0.796	No		
1750 vs. DC	3.750	1.512	0.800	No		
500 vs. 1750	2.250	1.434	0.819	No		
500 vs. 1000	2.000	1.275	0.877	No		
500 vs. Control	2.000	1.180	0.892	No		
500 vs. 1500	1.750	1.116	0.889	No		
1500 vs. 1750	0.500	0.319	1.000	No		
1500 vs. 1000	0.250	0.159	1.000	No		
1000 vs. 1750	0.250	0.159	1.000	No		
1500 vs. Control	0.250	0.148	0.998	No		
Control vs. 1750	0.250	0.148	0.986	No		
1000 vs. Control	0.000	0.000	1.000	No		
Comparisons for factor: Site within 50						
Comparison	Diff of Means	t	Р	P<0.05		
DC vs. 1750	14.750	5.947	< 0.001	Yes		
DC vs. 500	14.750	5.947	< 0.001	Yes		
DC vc 1500	14.500	5 8/6	<0.001	Voc		

DC vs. 1750	14.750	5.947	<0.001	Yes
DC vs. 500	14.750	5.947	<0.001	Yes
DC vs. 1500	14.500	5.846	<0.001	Yes
DC vs. 1000	14.000	5.645	<0.001	Yes
DC vs. Control	13.667	5.335	<0.001	Yes
Control vs. 1750	1.083	0.639	0.999	No
Control vs. 500	1.083	0.639	0.999	No
Control vs. 1500	0.833	0.492	1.000	No
1000 vs. 1750	0.750	0.478	0.999	No
1000 vs. 500	0.750	0.478	0.998	No
1000 vs. 1500	0.500	0.319	0.999	No
Control vs. 1000	0.333	0.197	0.999	No
1500 vs. 1750	0.250	0.159	0.998	No
1500 vs. 500	0.250	0.159	0.984	No
500 vs. 1750	0.000	0.000	1.000	No

Comparisons for fa	actor: Site wit	hin 100		
Comparison	Diff of Mean		Р	P<0.05
DC vs. 1750	14.250	5.74	5 <0.001	
DC vs. 1500	12.750	5.14		
DC vs. Control	13.000	5.07	5 < 0.001	Yes
DC vs. 1000	12.000	4.83		
DC vs. 500	10.500	4.23		
500 vs. 1750	3.750	2.39		No
500 vs. Control	2.500	1.47		No
1000 vs. 1750	2.250	1.43	4 0.745	No
500 vs. 1500	2.250	1.43	4 0.698	No
1500 vs. 1750	1.500	0.95	6 0.920	No
500 vs. 1000	1.500	0.95	6 0.878	No
Control vs. 1750	1.250	0.73	8 0.917	No
1000 vs. Control	1.000	0.59	0 0.913	No
1000 vs. 1500	0.750	0.47	8 0.866	No
1500 vs. Control	0.250	0.14	8 0.883	No
Comparisons for fa Comparison	Diff of Mean		Р	D<0.05
500 vs. DC	17.750	sι 7.15		P<0.05 Yes
1500 vs. DC	16.000	6.45		
1000 vs. DC	16.000	6.45		
Control vs. DC	15.333	5.98		
1750 vs. DC	14.500	5.84		
500 vs. 1750	3.250	2.07		No
500 vs. Control	2.417	1.42		No
500 vs. 1000	1.750	1.11		No
500 vs. 1500	1.750	1.11		No
1500 vs. 1750	1.500	0.95		No
1000 vs. 1750	1.500	0.95		No
Control vs. 1750	0.833	0.49	2 0.980	No
1500 vs. Control	0.667	0.39		No
1000 vs. Control	0.667	0.39		No
1500 vs. 1000	0.000	0.00	0 1.000	No
			_	
Comparisons for fa				D 40.05
	ff of Means	t	P	P<0.05
50 vs. 150 100 vs. 150	33.000	10.519	< 0.001	Yes Yes
50 vs. 10	30.000 20.000	9.563 6.375	<0.001	Yes
100 vs. 10	17.000	5.419	<0.001 <0.001	Yes
10 vs. 10 10 vs. 150	13.000	4.144	<0.001	Yes
50 vs. 100	3.000	0.956	0.343	No
50 vs. 100	3.000	0.950	0.545	NO
Comparisons for fa	actor: Volume	within 5	00	
	ff of Means	t		< 0.05
100 vs. 150	1.750	1.116	0.848	No
100 vs. 50	1.250	0.797	0.939	No
10 vs. 150	1.250	0.797	0.894	No
10 vs. 50	0.750	0.478	0.951	No
100 vs. 10	0.500	0.319	0.938	No
50 vs. 150	0.500	0.319	0.751	No

Comparisons f	Comparisons for factor: Volume within 1000				
Comparison	Diff of Means	t	Р	P<0.05	
50 vs. 150	3.000	1.913	0.314	No	
50 vs. 10	2.000	1.275	0.688	No	
100 vs. 150	2.000	1.275	0.606	No	
50 vs. 100	1.000	0.638	0.894	No	
100 vs. 10	1.000	0.638	0.776	No	
10 vs. 150	1.000	0.638	0.526	No	
Comparisons f	or factor: Volume	within [•]	1500		
Comparison	Diff of Means	t	Р	P<0.05	
50 vs. 150	2.500	1.594	0.525	No	
50 vs. 100	1.250	0.797	0.939	No	
50 vs. 10	1.250	0.797	0.894	No	
10 vs. 150	1.250	0.797	0.814	No	
100 vs. 150	1.250	0.797	0.674	No	
10 vs. 100	0.000	0.000	1.000	No	
Comparisons f	or factor: Volume	within '	1750		
Comparison	Diff of Means	t	Р	P<0.05	
50 vs. 150	3.750	2.391	0.115	No	
50 vs. 100	2.500	1.594	0.462	No	
10 vs. 150	2.250	1.434	0.495	No	
50 vs. 10	1.500	0.956	0.716	No	
100 vs. 150	1.250	0.797	0.674	No	
10 vs. 100	1.000	0.638	0.526	No	
Comparisons f	or factor: Volume	within	Control		
Comparison	Diff of Means	t	Р	P<0.05	
50 vs. 150	4.000	2.208	0.174	No	
50 vs. 100	2.333	1.288	0.678	No	
50 vs. 10	2.333	1.288	0.596	No	
10 vs. 150	1.667	0.920	0.740	No	
100 vs. 150	1.667	0.920	0.592	No	
10 vs. 100	0.000	0.000	1.000	No	

Dependent Variable: Arsenic Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	Ν	Missing	Median	25%	75%
DC	1	0	9.500	9.500	9.500
500	4	0	3.950	3.675	4.000
1000	4	0	4.550	3.725	5.000
1500	4	0	4.000	3.250	4.750
1750	4	0	4.000	3.250	4.750
Control	3	0	5.000	5.000	5.100

H = 9.348 with 5 degrees of freedom. (P = 0.096)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.096)

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: A Normality Test (Shap Equal Variance Test:	Passed Failed	(P = 0. (P < 0.	,		
Source of Variation	DF	SS	MS	F	Р
Volume	3	17.645	5.882	15.133	<0.001
Site	5	16.952	3.390	8.723	<0.001
Volume x Site	15	27.112	1.807	4.650	<0.001
Residual	56	21.766	0.389		
Total	79	81.360	1.030		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for Site : 0.999Power of performed test with alpha = 0.0500: for Volume x Site : 0.998

Least square means for Volume :

Group	Mean
10	5.774
50	4.337
100	4.704
150	5.139
Std Err o	of LS Mean = 0.159

Least squ Group DC 500 1000 1500 1750 Control		SEN 0 0.31 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15 0 0.15	A 2 66 66 66 66	
Least squ Group $10 \times D$ 10×10 10×15 10×17 $10 \times Cor$ $50 \times D$ 50×50 50×17 50×10 50×10 50×10 100×10 100×10 100×10 100×10 150×100 150×10	p C D0 00 00 50 50 50 50 00 00 50 00 00 50 50 50 50 50 50 50 50 500 500 500 500 500 500 500 500 500 500 500 500 500	eans for Mean 7.500 5.100 5.325 5.525 5.425 5.767 3.600 4.500 4.000 4.250 4.000 4.250 4.000 4.250 4.000 5.700 9.500 3.875 4.425 4.000 4.425 4.000 5.703	0.623 0.312 0.312	x Site :

Comparisons for factor: Site within 10

Comparison	Diff of Means	t	Р	P<0.05	
DC vs. 500	2.400	3.443	0.016	Yes	
DC vs. 1000	2.175	3.120	0.039	Yes	
DC vs. 1750	2.075	2.977	0.054	No	
DC vs. 1500	1.975	2.833	0.074	No	
DC vs. Control	1.733	2.408	0.194	No	
Control vs. 500	0.667	1.400	0.839	No	
1500 vs. 500	0.425	0.964	0.976	No	
Control vs. 1000	0.442	0.928	0.971	No	
1750 vs. 500	0.325	0.737	0.987	No	
Control vs. 1750	0.342	0.718	0.979	No	
1000 vs. 500	0.225	0.510	0.991	No	
Control vs. 1500	0.242	0.508	0.978	No	
1500 vs. 1000	0.200	0.454	0.958	No	
1500 vs. 1750	0.1000	0.227	0.968	No	
1750 vs. 1000	0.100	0.227	0.821	No	
Comparisons for factor: Site within 50					

Comparisons for factor. Site within 50					
Comparison	Diff of Means	t	Р	P<0.05	
Control vs. 1000	1.500	3.150	0.039	Yes	
Control vs. 1750	1.325	2.783	0.098	No	
Control vs. DC	1.900	2.639	0.131	No	
Control vs. 1500	1.250	2.625	0.126	No	
Control vs. 500	1.000	2.100	0.363	No	
500 vs. DC	0.900	1.291	0.895	No	
500 vs. 1000	0.500	1.134	0.935	No	
1500 vs. DC	0.650	0.933	0.970	No	
1750 vs. DC	0.575	0.825	0.976	No	
500 vs. 1750	0.325	0.737	0.976	No	
1000 vs. DC	0.400	0.574	0.985	No	
1500 vs. 1000	0.250	0.567	0.967	No	
500 vs. 1500	0.250	0.567	0.922	No	
1750 vs. 1000	0.175	0.397	0.906	No	
1500 vs. 1750	0.0750	0.170	0.866	No	

Comparisons for factor: Site within 100					
Comparison	Diff of Means	t	Р	P<0.05	
Control vs. 500	1.450	3.045	0.052	No	
Control vs. DC	1.700	2.361	0.265	No	
Control vs. 1000	1.025	2.153	0.376	No	
Control vs. 1500	1.000	2.100	0.389	No	
Control vs. 1750	0.800	1.680	0.680	No	
1750 vs. 500	0.650	1.474	0.794	No	
1750 vs. DC	0.900	1.291	0.869	No	
1500 vs. 500	0.450	1.021	0.950	No	
1500 vs. DC	0.700	1.004	0.932	No	
1000 vs. DC	0.675	0.968	0.915	No	
1000 vs. 500	0.425	0.964	0.874	No	
1750 vs. 1000	0.225	0.510	0.977	No	
1750 vs. 1500	0.200	0.454	0.958	No	
500 vs. DC	0.250	0.359	0.922	No	
1500 vs. 1000	0.0250	0.0567	0.955	No	

Comparisons for factor: Site within 150

Comparison	Diff of Means	t	Р	P<0.05
DC vs. 500	5.625	8.070	<0.001	Yes
DC vs. 1500	5.500	7.891	<0.001	Yes
DC vs. 1750	5.500	7.891	<0.001	Yes
DC vs. 1000	5.075	7.281	<0.001	Yes
DC vs. Control	4.467	6.205	<0.001	Yes
Control vs. 500	1.158	2.433	0.168	No
Control vs. 1500	1.033	2.170	0.269	No
Control vs. 1750	1.033	2.170	0.243	No
Control vs. 1000	0.608	1.278	0.802	No
1000 vs. 500	0.550	1.248	0.770	No
1000 vs. 1500	0.425	0.964	0.874	No
1000 vs. 1750	0.425	0.964	0.809	No
1750 vs. 500	0.125	0.284	0.989	No
1500 vs. 500	0.125	0.284	0.951	No
1750 vs. 1500	0.000	0.000	1.000	No

Comparisons for factor: Volume within DC

Comparison	Diff of Means	t	Р	P<0.05
150 vs. 50	5.900	6.692	<0.001	Yes
150 vs. 100	5.500	6.238	<0.001	Yes
10 vs. 50	3.900	4.423	<0.001	Yes
10 vs. 100	3.500	3.970	<0.001	Yes
150 vs. 10	2.000	2.268	0.054	No
100 vs. 50	0.400	0.454	0.652	No

Comparisons for factor: Volume within 500					
Comparison	Diff of Means	t	Р	P<0.05	
10 vs. 150	1.225	2.779	0.044	Yes	
10 vs. 100	0.850	1.928	0.262	No	
50 vs. 150	0.625	1.418	0.506	No	
10 vs. 50	0.600	1.361	0.447	No	
100 vs. 150	0.375	0.851	0.638	No	
50 vs. 100	0.250	0.567	0.573	No	

Comparisons for factor: Volume within 1000					
Comparison	Diff of Means	t	Р	P<0.05	
10 vs. 50	1.325	3.006	0.024	Yes	
10 vs. 150	0.900	2.042	0.209	No	
100 vs. 50	0.675	1.531	0.431	No	
10 vs. 100	0.650	1.474	0.377	No	
150 vs. 50	0.425	0.964	0.563	No	
100 vs. 150	0.250	0.567	0.573	No	
	or factor: Volume	within '	1500		
Comparison	Diff of Moone				
Comparison	Diff of Means	t	Р	P<0.05	
10 vs. 150	1.525	τ 3.459	Р 0.006	Yes	
		-	0.006		
10 vs. 150	1.525	3.459	0.006 0.027	Yes	
10 vs. 150 10 vs. 50	1.525 1.275	3.459 2.892	0.006 0.027 0.241	Yes Yes	
10 vs. 150 10 vs. 50 10 vs. 100	1.525 1.275 0.825	3.459 2.892 1.871	0.006 0.027 0.241 0.314	Yes Yes No	
10 vs. 150 10 vs. 50 10 vs. 100 100 vs. 150	1.525 1.275 0.825 0.700	3.459 2.892 1.871 1.588	0.006 0.027 0.241 0.314	Yes Yes No No	
10 vs. 150 10 vs. 50 10 vs. 100 100 vs. 150 100 vs. 50	1.525 1.275 0.825 0.700 0.450	3.459 2.892 1.871 1.588 1.021	0.006 0.027 0.241 0.314 0.526	Yes Yes No No No	
10 vs. 150 10 vs. 50 10 vs. 100 100 vs. 150 100 vs. 50 50 vs. 150	1.525 1.275 0.825 0.700 0.450	3.459 2.892 1.871 1.588 1.021 0.567	0.006 0.027 0.241 0.314 0.526 0.573	Yes Yes No No No	
10 vs. 150 10 vs. 50 10 vs. 100 100 vs. 150 100 vs. 50 50 vs. 150	1.525 1.275 0.825 0.700 0.450 0.250 or factor: Volume	3.459 2.892 1.871 1.588 1.021 0.567	0.006 0.027 0.241 0.314 0.526 0.573	Yes Yes No No No	

1.425	3.232	0.012	Yes
1.250	2.836	0.031	Yes
0.900	2.042	0.171	No
0.725	1.645	0.285	No
0.525	1.191	0.420	No
0.175	0.397	0.693	No
	1.250 0.900 0.725 0.525	1.2502.8360.9002.0420.7251.6450.5251.191	1.250 2.836 0.031 0.900 2.042 0.171 0.725 1.645 0.285 0.525 1.191 0.420

Comparisons for factor: Volume within Control

Comparison	Diff of Means	t	Р	P<0.05
10 vs. 150	0.733	1.441	0.637	No
100 vs. 150	0.667	1.310	0.663	No
50 vs. 150	0.467	0.917	0.836	No
10 vs. 50	0.267	0.524	0.937	No
100 vs. 50	0.200	0.393	0.908	No
10 vs. 100	0.0667	0.131	0.896	No

Dependent Variable: Cadmium		
Normality Test (Shapiro-Wilk)	Passed	(P = 0.880)
Equal Variance Test:	Failed	(P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	Ν	Missing	Median	25%	75%
DC	1	0	0.0810	0.0810	0.0810
500	4	0	0.140	0.105	0.168
1000	4	0	0.120	0.0980	0.130
1500	4	0	0.115	0.0950	0.122
1750	4	0	0.116	0.105	0.127
Control	3	0	0.1000	0.1000	0.120

H = 5.086 with 5 degrees of freedom. (P = 0.405)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.405)

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: C Normality Test (Shap Equal Variance Test:			Passed (F Failed (F	P = 0.588) P < 0.050)	
Source of Variation	DF	SS	MS	F	Р
Volume	3	0.00221	0.000736	3.062	0.035
Site	5	0.0176	0.00351	14.612	<0.001
Volume x Site	15	0.00566	0.000377	1.570	0.113
Residual	56	0.0135	0.000240		
Total	79	0.0404	0.000511		

The difference in the mean values among the different levels of Volume is greater than would be expected by chance after allowing for effects of differences in Site. There is a statistically significant difference (P = 0.035). To isolate which group(s) differ from the others use a multiple comparison procedure.

The difference in the mean values among the different levels of Site is greater than would be expected by chance after allowing for effects of differences in Volume. There is a statistically significant difference (P = <0.001). To isolate which group(s) differ from the others use a multiple comparison procedure.

The effect of different levels of Volume does not depend on what level of Site is present. There is not a statistically significant interaction between Volume and Site. (P = 0.113)

Power of performed test with alpha = 0.0500: for Volume : 0.493Power of performed test with alpha = 0.0500: for Site : 1.000Power of performed test with alpha = 0.0500: for Volume x Site : 0.311 Least square means for Volume : Group Mean 10 0.120 50 0.114 0.103 100 150 0.111 Std Err of LS Mean = 0.00395 Least square means for Site : Group Mean SEM DC 0.0565 0.00775 500 0.125 0.00388 1000 0.125 0.00388 1500 0.122 0.00388 0.00388 1750 0.126 Control 0.119 0.00448 Least square means for Volume x Site : SEM Group Mean 10 x DC 0 0640 0.0155 10 x 500 0.133 0.00775 10 x 1000 0.134 0.00775 10 x 1500 0.129 0.00775 0.134 0.00775 10 x 1750 10 x Control 0.127 0.00895 0.0340 0.0155 50 x DC 50 x 500 0.131 0.00775 50 x 1000 0.134 0.00775 50 x 1500 0.123 0.00775 50 x 1750 0.134 0.00775 50 x Control 0.126 0.00895 100 x DC 0.0470 0.0155 100 x 500 0.0967 0.00775 100 x 1000 0.117 0.00775

0.124

0.120

0.137

0.116

0.111

0 1 1 6

150 x Control 0.107 0.00895

0.115 0.00895

0.0810 0.0155

0.00775

0.00775

0.00775

0.00775

0.00775

0 00775

100 x 1500

100 x 1750

100 x Control

150 x DC

150 x 500

150 x 1000

150 x 1500

150 x 1750

Bioresearches 🐤	
A Babbage Company	

Comparisons for factor: Volume

Comparison	Diff of Means	t	Р	P<0.050
10 vs. 100	0.0167	2.993	0.024	Yes
50 vs. 100	0.0103	1.846	0.305	No
10 vs. 150	0.00885	1.585	0.396	No
150 vs. 100	0.00786	1.408	0.417	No
10 vs. 50	0.00640	1.147	0.447	No
50 vs. 150	0.00244	0.438	0.663	No

Comparisons for factor: Site

Comparison	Diff of Means	t	Р	P<0.050
1750 vs. DC	0.0696	8.027	<0.001	Yes
1000 vs. DC	0.0688	7.933	<0.001	Yes
500 vs. DC	0.0681	7.861	<0.001	Yes
1500 vs. DC	0.0651	7.515	<0.001	Yes
Control vs. DC	0.0623	6.955	<0.001	Yes
1750 vs. Control	0.00731	1.235	0.919	No
1000 vs. Control	0.00650	1.098	0.946	No
500 vs. Control	0.00587	0.992	0.957	No
1750 vs. 1500	0.00444	0.810	0.978	No
1000 vs. 1500	0.00362	0.661	0.986	No
500 vs. 1500	0.00300	0.547	0.988	No
1500 vs. Control	0.00288	0.486	0.981	No
1750 vs. 500	0.00144	0.262	0.991	No
1750 vs. 1000	0.000812	0.148	0.986	No
1000 vs. 500	0.000625	0.114	0.910	No

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

Dependent Van Normality Tes Equal Varianc	Passed Passed	`	0.488) 0.744)			
Group Name	Ν	Missing	Mean	Std De	v S	EM
DC	1	0	22.000	0.000	0.	000
500	4	0	21.500	0.577	0.	289
1000	4	0	21.500	1.732	0.	866
1500	4	0	20.750	1.500	0.	750
1750	4	0	21.100	2.511	1.	256
Control	3	0	23.667	1.528	0.	882
Source of Var Between Grou _l Residual Total		0 DF 4 14 18	SS 16.935 40.337 57.272	MS 4.234 2.881	F 1.469	P 0.264

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.264).

Power of performed test with alpha = 0.050: 0.128

The power of the performed test (0.128) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: C Normality Test (Shap Equal Variance Test:	Passed Passed	(P = 0.15 (P = 0.43			
Source of Variation	DF	SS	MS	F	Р
Volume	3	193.327	64.442	35.670	<0.001
Site	5	29.823	5.965	3.302	0.011
Volume x Site	15	128.466	8.564	4.741	<0.001
Residual	56	101.170	1.807		
Total	79	402.590	5.096		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000 Power of performed test with alpha = 0.0500: for Site : 0.699 Power of performed test with alpha = 0.0500: for Volume x Site : 0.999

Least sq Group 10 50 100 150 Std Err c	Mear 24.47 22.16 26.11 21.75	า 2 7 1 3			:
Least sq Group DC 500 1000 1500 1750 Control	Mea 24.37 22.75 23.31 23.31 23.33 24.66	n 75 12 12 37 37	SEN 0.67 0.33 0.33 0.33 0.33 0.33	1 2 6 6 6 6 8	
Least sq Grou 10 x 10 10 x 5 10 x 10 10 x 5 10 x 10 10 x Co 50 x 10 50 x 10 50 x 10 50 x 10 100 x 11 100 x 11 100 x 11 100 x 12 100 x 11 100 x 12 100 x 12 100 x 11 100 x 12 100 x 11 100 x 12 100 x 11 100 x 12 100 x 12 150 x 12 15	p DC 000 500 750 ntrol DC 000 500 750 ntrol DC 500 500 750 500 500 750 500 750 500 750 500 750 75	Ma 24. 24. 25. 24. 25. 24. 25. 24. 23. 22. 24. 23. 22. 24. 23. 22. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	s for ean 000 750 000 750 333 500 500 250 750 000 000 250 750 000 000 000 250 750 000 000 250 750 000 000 250 750 000 000 250 000 000 250 000 00	SEM 1.344 0.672 0.776 0.672 0.776 0.672 0.776 0.672 0.776 0.776 0.672 0.776 0.77	X Site :

Comparisons for factor: Volume							
Comparison	Diff of Means	t	Р	P<0.050			
100 vs. 150	4.358	9.006	<0.001	Yes			
100 vs. 50	3.944	8.151	<0.001	Yes			
10 vs. 150	2.719	5.619	<0.001	Yes			
10 vs. 50	2.306	4.764	<0.001	Yes			
100 vs. 10	1.639	3.387	0.003	Yes			
50 vs. 150	0.414	0.855	0.396	No			

Comparisons for factor: Site

Compansons for i				
Comparison	Diff of Means	t	Р	P<0.050
Control vs. 500	1.917	3.734	0.007	Yes
Control vs. 1500	1.354	2.638	0.141	No
Control vs. 1000	1.354	2.638	0.131	No
Control vs. 1750	1.329	2.590	0.137	No
DC vs. 500	1.625	2.163	0.323	No
DC vs. 1500	1.063	1.414	0.831	No
DC vs. 1000	1.063	1.414	0.798	No
DC vs. 1750	1.038	1.381	0.781	No
1750 vs. 500	0.588	1.236	0.827	No
1000 vs. 500	0.563	1.184	0.810	No
1500 vs. 500	0.563	1.184	0.749	No
Control vs. DC	0.292	0.376	0.993	No
1750 vs. 1000	0.0250	0.0526	1.000	No
1750 vs. 1500	0.0250	0.0526	0.998	No
1000 vs. 1500	0.000	0.000	1.000	No
0		40		
Comparisons for f			_	
Comparison	Diff of Means	t	Р	P<0.05
Control vs. 1000	1.583	1.542	0.873	No
1500 vs. 1000	1.250	1.315	0.951	No
Control vs. 500	1.333	1.299	0.944	No
1750 vs. 1000	1.000	1.052	0.985	No
1500 vs. 500	1.000	1.052	0.979	No
Control vs. DC	1.333	0.859	0.993	No
1750 vs. 500	0.750	0.789	0.994	No
1500 vs. DC	1.000	0.665	0.997	No
Control vs. 1750	0.583	0.568	0.997	No
1750 vs. DC				
1750 VS. DC	0.750	0.499	0.997	No

0.333

0.250

0.250

0.250

0.000

0.325 0.999

0.263 0.998

0.166 0.983

0.000 1.000

0.263

0.991

No

No

No

No

No

Control vs. 1500

1500 vs. 1750

500 vs. 1000

DC vs. 1000

DC vs. 500

Comparisons for f			-	D <0.05		
Comparison Control vs. DC	Diff of Means 6.500	t 4.188	P 0.002	P<0.05 Yes		
1500 vs. DC	5.750	3.826	0.002	Yes		
1000 vs. DC	5.500	3.660	0.003	Yes		
1750 vs. DC	5.250	3.494	0.007	Yes		
500 vs. DC	5.000	3.327	0.017	Yes		
Control vs. 500	1.500	1.461	0.802	No		
Control vs. 1750	1.250	1.218	0.903	No		
Control vs. 1000	1.000	0.974	0.961	No		
1500 vs. 500	0.750	0.789	0.981	No		
Control vs. 1500	0.750	0.731	0.977	No		
1000 vs. 500	0.500	0.526	0.990	No		
1500 vs. 1750	0.500	0.526	0.975	No		
1000 vs. 1750	0.250	0.263	0.991	No		
1750 vs. 500	0.250	0.263	0.957	No		
1500 vs. 1000	0.250	0.263	0.793	No		
Comparisons for f			_	_		
Comparison	Diff of Means	t	Р	P<0.05		
DC vs. 500	11.000	7.320	< 0.001	Yes		
DC vs. 1500	9.750	6.488	< 0.001	Yes		
DC vs. 1750	9.250	6.155	< 0.001	Yes		
DC vs. 1000	9.000	5.989	< 0.001	Yes		
DC vs. Control	8.333	5.369	< 0.001	Yes		
Control vs. 500 1000 vs. 500	2.667 2.000	2.598 2.104	0.113 0.307	No No		
1750 vs. 500	1.750	2.104	0.307	NO		
Control vs. 1500	1.417	1.380	0.445	No		
1500 vs. 500	1.250	1.315	0.730	No		
Control vs. 1750	0.917	0.893	0.905	No		
1000 vs. 1500	0.750	0.789	0.897	No		
Control vs. 1000	0.667	0.649	0.889	No		
1750 vs. 1500	0.500	0.526	0.841	No		
1000 vs. 1750	0.250	0.263	0.793	No		
Comparisons for f		150				
Comparison	Diff of Means	t	Р	P<0.05		
Control vs. 1500	2.917	2.841	0.090	No		
Control vs. 1750	2.567	2.500	0.195	No		
Control vs. 1000	2.167	2.111	0.406	No		
Control vs. 500	2.167	2.111	0.382	No		
Control vs. DC	1.667	1.074	0.976	No		
DC vs. 1500	1.250	0.832	0.995	No		
1000 vs. 1500	0.750 0.750	0.789 0.789	0.994	No No		
500 vs. 1500 DC vs. 1750	0.750	0.789	0.989	No		
1000 vs. 1750	0.400	0.599	0.996 0.999	No		
500 vs. 1750	0.400	0.421	0.999	No		
1750 vs. 1750	0.350	0.421	0.990	No		
DC vs. 500	0.500	0.333	0.983	No		
DC vs. 1000	0.500	0.333	0.933	No		
500 vs. 1000	0.000	0.000	1.000	No		
000 10. 1000	0.000	0.000				

Comparisons for factor: Volume within DC					
Comparison	Diff of Means	t	P	P<0.05	
100 vs. 50	16.500	8.680	<0.001	Yes	
100 vs. 50	12.000	6.313		Yes	
			< 0.001		
100 vs. 10	10	5.261	<0.001	Yes	
10 vs. 50	6.500	3.420	0.004	Yes	
150 vs. 50	4.500	2.367	0.042	Yes	
10 vs. 150	2.000	1.052	0.297	No	
Comparisons	for factor: Volume	within	500		
Comparison	Diff of Means	t	Ρ	P<0.05	
10 vs. 150	2.500	2.630	0.064	No	
100 vs. 150	1.500	1.578	0.473	No	
10 vs. 50	1.500	1.578	0.401	No	
50 vs. 150	1.000	1.052	0.653	No	
10 vs. 100	1.000	1.052	0.506	No	
100 vs. 50	0.500	0.526	0.601	No	
Comparisons	for factor: Volume	within '	1000		
Comparison	Diff of Means	t	Р	P<0.05	
100 vs. 150	3.500	3.683	0.003	Yes	
10 vs. 150	2.250	2.367	0.102	No	
100 vs. 50	2.000	2.104	0.150	No	
50 vs. 150	1.500	1.578	0.319	No	
100 vs. 10	1.250	1.315	0.350	No	
10 vs. 50	0.750	0.789	0.433	No	
•	for factor: Volume				
Comparison	Diff of Means	t	Р	P<0.05	
•				P<0.05 Yes	
Comparison	Diff of Means	t	Р		
Comparison 10 vs. 150	Diff of Means 4.250	t 4.472	P <0.001	Yes	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150	Diff of Means 4.250 3.500 2.500	t 4.472 3.683 2.630	P <0.001 0.003 0.043	Yes Yes Yes	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50	Diff of Means 4.250 3.500 2.500 1.750	t 4.472 3.683 2.630 1.841	P <0.001 0.003 0.043 0.198	Yes Yes Yes No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000	t 4.472 3.683 2.630 1.841 1.052	P <0.001 0.003 0.043 0.198 0.506	Yes Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50	Diff of Means 4.250 3.500 2.500 1.750	t 4.472 3.683 2.630 1.841	P <0.001 0.003 0.043 0.198	Yes Yes Yes No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100	Diff of Means 4.250 3.500 2.500 1.750 1.000	t 4.472 3.683 2.630 1.841 1.052 0.789	P <0.001 0.003 0.043 0.198 0.506 0.433	Yes Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750	t 4.472 3.683 2.630 1.841 1.052 0.789	P <0.001 0.003 0.043 0.198 0.506 0.433	Yes Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100 Comparisons	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume	t 4.472 3.683 2.630 1.841 1.052 0.789 within	P <0.001 0.003 0.043 0.198 0.506 0.433 1750	Yes Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100 Comparisons 10 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650	t 4.472 3.683 2.630 1.841 1.052 0.789 within t 3.840	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002	Yes Yes No No No P<0.05 Yes	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650	t 4.472 3.683 2.630 1.841 1.052 0.789 within t 3.840 3.840	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002	Yes Yes No No No P<0.05 Yes Yes	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 100 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000	t 4.472 3.683 2.630 1.841 1.052 0.789 within t 3.840 3.840 2.104	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.002 0.150	Yes Yes No No No P<0.05 Yes Yes No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 50 100 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 2.000	t 4.472 3.683 2.630 1.841 1.052 0.789 9 within t 3.840 3.840 2.104 2.104	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115	Yes Yes No No No P<0.05 Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparison 10 vs. 150 100 vs. 150 100 vs. 50 100 vs. 50 50 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 2.000 1.650	t 4.472 3.683 2.630 1.841 1.052 0.789 9 within t 3.840 3.840 2.104 2.104 1.736	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115 0.168	Yes Yes No No No P<0.05 Yes Yes No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 50 100 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 2.000	t 4.472 3.683 2.630 1.841 1.052 0.789 9 within t 3.840 3.840 2.104 2.104	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115	Yes Yes No No No P<0.05 Yes Yes No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 50 100 vs. 50 50 vs. 150 10 vs. 100	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 2.000 1.650	t 4.472 3.683 2.630 1.841 1.052 0.789 e within * t 3.840 3.840 2.104 2.104 1.736 0.000	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115 0.168 1.000	Yes Yes No No No P<0.05 Yes Yes No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 50 100 vs. 50 50 vs. 150 10 vs. 100	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 1.650 0.000	t 4.472 3.683 2.630 1.841 1.052 0.789 e within * t 3.840 3.840 2.104 2.104 1.736 0.000	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115 0.168 1.000	Yes Yes No No No P<0.05 Yes Yes No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 100 vs. 50 100 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 50 50 vs. 150 10 vs. 100 Comparisons	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 2.000 1.650 0.000 for factor: Volume	t 4.472 3.683 2.630 1.841 1.052 0.789 e within * t 3.840 3.840 2.104 1.736 0.000 e within *	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.150 0.115 0.168 1.000 Control	Yes Yes No No No P<0.05 Yes Yes No No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 50 50 vs. 150 10 vs. 100 Comparisons 10 vs. 150 10 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 2.000 2.000 1.650 0.000 for factor: Volume Diff of Means 2.000	t 4.472 3.683 2.630 1.841 1.052 0.789 9 within 1 t 3.840 3.840 2.104 2.104 2.104 1.736 0.000 9 within 1 1.822	P <0.001 0.003 0.043 0.198 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115 0.168 1.000 Control P 0.368	Yes Yes No No No P<0.05 Yes Yes No No No P<0.05 No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 10 vs. 150 10 vs. 150 10 vs. 50 50 vs. 150 10 vs. 100 Comparisons 10 vs. 150 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 2.000 1.650 0.000 for factor: Volume Diff of Means 2.000 1.657 Volume	t 4.472 3.683 2.630 1.841 1.052 0.789 within <i>t</i> 3.840 2.104 2.104 1.736 0.000 within <i>t</i> 1.822 1.822 1.519	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.150 0.115 0.168 1.000 Control P 0.368 0.514	Yes Yes No No No Yes Yes Yes No No No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 10 vs. 150 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 2.000 2.000 1.650 0.000 for factor: Volume Diff of Means 2.000 1.657 1.667	t 4.472 3.683 2.630 1.841 1.052 0.789 within <i>t</i> 3.840 2.104 2.104 2.104 1.736 0.000 within <i>t</i> 1.822 1.519 1.519	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.150 0.115 0.168 1.000 Control P 0.368 0.514 0.439	Yes Yes No No No Yes Yes No No No No No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 10 vs. 150 10 vs. 150 10 vs. 50 50 vs. 150 10 vs. 150 10 vs. 150 10 vs. 150 10 vs. 150 10 vs. 150 10 vs. 50 10 vs. 50 10 vs. 50	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 3.650 2.000 1.650 0.000 for factor: Volume Diff of Means 2.000 1.667 1.667 1.333	t 4.472 3.683 2.630 1.841 1.052 0.789 within t 3.840 3.840 2.104 2.104 1.736 0.000 within t 1.822 1.519 1.519 1.215	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.002 0.150 0.115 0.168 1.000 Control P 0.368 0.514 0.439 0.543	Yes Yes No No No Yes Yes No No No No No No No No No No	
Comparison 10 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 10 vs. 50 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 10 vs. 150 10 vs. 100 Comparisons 10 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150	Diff of Means 4.250 3.500 2.500 1.750 1.000 0.750 for factor: Volume Diff of Means 3.650 2.000 2.000 1.650 0.000 for factor: Volume Diff of Means 2.000 1.657 1.667	t 4.472 3.683 2.630 1.841 1.052 0.789 within <i>t</i> 3.840 2.104 2.104 2.104 1.736 0.000 within <i>t</i> 1.822 1.519 1.519	P <0.001 0.003 0.043 0.506 0.433 1750 P 0.002 0.002 0.150 0.115 0.168 1.000 Control P 0.368 0.514 0.439	Yes Yes No No No Yes Yes No No No No No No No	

Dependent Variable: Copper		
Normality Test (Shapiro-Wilk)	Failed	(P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	Ν	Missing	Median	25%	75%
DC	1	0	29.000	29.000	29.000
500	4	0	5.050	5.000	5.400
1000	4	0	5.100	4.925	7.600
1500	4	0	4.700	4.325	5.375
1750	4	0	4.650	4.450	4.850
Control	3	0	5.000	4.800	5.100

H = 10.198 with 5 degrees of freedom. (P = 0.070)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.070)

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: C Normality Test (Shapi Equal Variance Test:	· ·	9 < 0.050) 9 = 0.870)			
Source of Variation	DF	SS	MS	F	Р
Volume	3	140.316	46.772	116.406	<0.001
Site	5	1300.267	260.053	647.220	<0.001
Volume x Site	15	337.788	22.519	56.046	<0.001
Residual	56	22.501	0.402		
Total	79	1675.322	21.207		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for Site : 1.000Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

Group Mean 10 10.094 50 6.462 100 6.879 150 9.074 Std Err of LS Mean = 0.161

Least squ Group DC 500 1000 1500 1750 Control	uare m Mea 23.52 5.41 5.23 4.92 4.80 4.85	n 25 9 1 5 6	s for SEN 0.31 0.158 0.158 0.158 0.158 0.158 0.158	I 7 8 8 8 8 8	
Least squ Group 10 x D 10 x 50 10 x 10 10 x 15 10 x 17 10 x Cor 50 x D 50 x 50 50 x 10 50 x 15 50 x 17 50 x Cor 100 x 15 100 x 10 100 x 10 x 1	b C 00 00 00 00 50 00 50 00 00 00 00 00 50 00 50 00 00 50 00 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000 50 000	Me 36.1 5.1 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	ean 000 25 350 350 375	/oluma SEM 0.634 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317	
150 x 10 150 x 15 150 x 17 150 x Col	500 750	4.8 4.6	875 800 850 967	0.317 0.317 0.317 0.366	, ,

Comparison	Comparison Diff of Means t P P<0.05							
DC vs. 1000	31.150	43.954	<0.001	Yes				
DC vs. 1500	31.150	43.954	< 0.001	Yes				
DC vs. 1750	31.125	43.919	< 0.001	Yes				
DC vs. 500	30.875	43.566	< 0.001	Yes				
DC vs. Control	31.133	42.535	< 0.001	Yes				
500 vs. 1500	0.275	0.614	1.000	No				
500 vs. 1000	0.275	0.614	0.999	No				
500 vs. 1000	0.250	0.558	0.999	No				
500 vs. Control	0.258	0.534	0.999	No				
1750 vs. 1500	0.0250	0.0558	1.000					
				No				
1750 vs. 1000	0.0250	0.0558	1.000	No				
Control vs. 1500	0.0167	0.0344	1.000	No				
Control vs. 1000	0.0167	0.0344	1.000	No				
1750 vs. Control	0.00833	0.0172	1.000	No				
1000 vs. 1500	0.000	0.000	1.000	No				
Comparisons for f	actor: Site within	50						
Comparisons for factor: Site within 50								

Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1750	9.700	13.687	<0.001	Yes
DC vs. 1500	9.475	13.370	<0.001	Yes
DC vs. 1000	9.475	13.370	<0.001	Yes
DC vs. Control	9.600	13.116	<0.001	Yes
DC vs. 500	8.775	12.382	<0.001	Yes
500 vs. 1750	0.925	2.064	0.360	No
500 vs. Control	0.825	1.704	0.588	No
500 vs. 1500	0.700	1.562	0.653	No
500 vs. 1000	0.700	1.562	0.604	No
1000 vs. 1750	0.225	0.502	0.997	No
1500 vs. 1750	0.225	0.502	0.992	No
1000 vs. Control	0.125	0.258	0.998	No
1500 vs. Control	0.125	0.258	0.992	No
Control vs. 1750	0.100	0.207	0.973	No
1000 vs. 1500	0.000	0.000	1.000	No

Comparisons for f	factor: Site wit	hin 100		
Comparison	Diff of Mean	s t	Р	P<0.05
DC vs. 1750	9.700	13.68	7 <0.00	1 Yes
DC vs. Control	9.900	13.52	6 <0.00	1 Yes
DC vs. 1500	9.575	13.51	1 <0.00	1 Yes
DC vs. 1000	9.425	13.29		1 Yes
DC vs. 500	8.925	12.59		
500 vs. Control	0.975	2.014		
500 vs. 1750	0.775	1.729		
500 vs. 1500	0.650	1.450		
500 vs. 1000	0.500	1.116		
1000 vs. Control	0.475	0.981		
1500 vs. Control	0.325	0.671		
1000 vs. 1750	0.275	0.614		
1750 vs. Control	0.200	0.413		
1000 vs. 1500	0.150	0.335		
1500 vs. 1750	0.125	0.279	0.78	1 No
Comparisons for f			_	
Comparison	Diff of Mean		Р	P<0.05
DC vs. 1750	24.350	34.35		
DC vs. 1500	24.200	34.14		
DC vs. 500	23.850	33.65	3 <0.00	1 Yes
DC vs. Control	24.033	32.83	5 <0.00	1 Yes
DC vs. 1000	23.125	32.63	0 < 0.00	1 Yes
1000 vs. 1750	1.225	2.733	8 0.08 ⁻	1 No
1000 vs. 1500	1.075	2.398	0.16	5 No
1000 vs. Control	0.908	1.876	0.420) No
1000 vs. 500	0.725	1.618	0.562	2 No
500 vs. 1750	0.500	1.116	0.848	3 No
500 vs. 1500	0.350	0.781		
Control vs. 1750	0.317	0.654		
500 vs. Control	0.183	0.379		
Control vs. 1500	0.167	0.344		
1500 vs. 1750	0.150	0.335		
Comparisons for f	factor: Volume	within DC		
	of Means	t	, P	P<0.05
10 vs. 50	21.700	24.207	<0.001	Yes
10 vs. 100	21.200	23.649	< 0.001	Yes
150 vs. 50	14.700	16.398	<0.001	Yes
150 vs. 100	14.200	15.840	< 0.001	Yes
10 vs. 150	7.000	7.809	< 0.001	Yes
10 vs. 150 100 vs. 50	0.500	0.558	0.579	No
100 vs. 50	0.500	0.556	0.579	NU
Comparisons for f				D 40 05
•	of Means	t		P<0.05
100 vs. 10	0.750	1.673	0.468	No
100 vs. 150	0.725	1.618	0.446	No
50 vs. 10	0.400	0.892	0.848	No
50 vs. 150	0.375	0.837	0.791	No
100 vs. 50	0.350	0.781	0.684	No
150 vs. 10	0.0250	0.0558	0.956	No
				D:

Comparisons f	or factor: Volume	within 1	000		
Comparison	Diff of Means	t	Р	P<0.05	
150 vs. 50	1.050	2.343	0.129	No	
150 vs. 10	1.025	2.287	0.123	No	
100 vs. 50	0.550	1.227	0.639	No	
100 vs. 10	0.525	1.171	0.572	No	
150 vs. 100	0.500	1.116	0.466	No	
10 vs. 50	0.0250	0.0558	0.956	No	
Comparisons f	or factor: Volume	within 1	500		
Comparison	Diff of Means	t	Р	P<0.05	
100 vs. 150	0.425	0.948	0.923	No	
100 vs. 50	0.400	0.892	0.905	No	
100 vs. 10	0.375	0.837	0.876	No	
10 vs. 150	0.0500	0.112	0.999	No	
10 vs. 50	0.0250	0.0558	0.998	No	
50 vs. 150	0.0250	0.0558	0.956	No	
Comparisons for factor: Volume within 1750					
Comparisons f	or factor: Volume	within 1	750		
Comparisons f Comparison	or factor: Volume Diff of Means	within 1 t	750 P	P<0.05	
				P<0.05 No	
Comparison	Diff of Means	t	Р		
Comparison 100 vs. 50	Diff of Means 0.500	t 1.116	P 0.848	No	
Comparison 100 vs. 50 100 vs. 150	Diff of Means 0.500 0.450	t 1.116 1.004	P 0.848 0.854	No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50	Diff of Means 0.500 0.450 0.275	t 1.116 1.004 0.614	P 0.848 0.854 0.956	No No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150	Diff of Means 0.500 0.450 0.275 0.225	t 1.116 1.004 0.614 0.502	P 0.848 0.854 0.956 0.944	No No No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150 100 vs. 10 150 vs. 50	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500	t 1.116 1.004 0.614 0.502 0.502 0.112	P 0.848 0.854 0.956 0.944 0.854 0.912	No No No No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150 100 vs. 10 150 vs. 50	Diff of Means 0.500 0.450 0.275 0.225 0.225	t 1.116 1.004 0.614 0.502 0.502 0.112	P 0.848 0.854 0.956 0.944 0.854 0.912	No No No No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150 100 vs. 10 150 vs. 50 Comparisons f	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500 or factor: Volume	t 1.116 1.004 0.614 0.502 0.502 0.112 within C	P 0.848 0.854 0.956 0.944 0.854 0.912	No No No No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150 100 vs. 10 150 vs. 50 Comparisons f Comparison	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500 or factor: Volume Diff of Means	t 1.116 1.004 0.614 0.502 0.502 0.112 within C t	P 0.848 0.854 0.956 0.944 0.854 0.912 Control P	No No No No No P<0.05	
Comparison 100 vs. 50 100 vs. 150 10 vs. 50 10 vs. 150 100 vs. 10 150 vs. 50 Comparisons f Comparison 150 vs. 50	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500 or factor: Volume Diff of Means 0.267	t 1.116 1.004 0.614 0.502 0.502 0.112 e within C t 0.515	P 0.848 0.854 0.956 0.944 0.854 0.912 Control P 0.996	No No No No No P<0.05 No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 150 10 vs. 150 100 vs. 10 150 vs. 50 Comparisons f Comparison 150 vs. 50 100 vs. 50 100 vs. 50 150 vs. 10	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500 or factor: Volume Diff of Means 0.267 0.200	t 1.116 1.004 0.614 0.502 0.502 0.112 e within C t 0.515 0.386	P 0.848 0.854 0.956 0.944 0.854 0.912 Control P 0.996 0.998	No No No No No P<0.05 No No	
Comparison 100 vs. 50 100 vs. 150 10 vs. 150 10 vs. 150 100 vs. 10 150 vs. 50 Comparisons f Comparison 150 vs. 50 100 vs. 50 10 vs. 50	Diff of Means 0.500 0.450 0.275 0.225 0.225 0.0500 or factor: Volume Diff of Means 0.267 0.200 0.167	t 1.116 1.004 0.614 0.502 0.502 0.112 within C t 0.515 0.386 0.322	P 0.848 0.854 0.956 0.944 0.854 0.912 Control P 0.996 0.998 0.996	No No No No No P<0.05 No No No	

Dependent Variable: Lead Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks

Group	Ν	Missing	Median	25%	75%
DC	1	0	26.000	26.000	26.000
500	4	0	4.200	4.125	4.350
1000	4	0	4.300	4.050	4.400
1500	4	0	4.000	3.825	4.925
1750	4	0	4.150	3.725	4.200
Control	3	0	4.500	4.400	4.800

H = 8.542 with 5 degrees of freedom. (P = 0.129)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.129)

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: L Normality Test (Shap Equal Variance Test:	Failed Passed	(P < 0.050) (P = 0.671)			
Source of Variation	DF	SS	MS	F	Р
Volume	3	133.745	44.582	893.497	<0.001
Site	5	494.142	98.828	1980.695	<0.001
Volume x Site	15	299.923	19.995	400.732	<0.001
Residual	56	2.794	0.0499		
Total	79	812.860	10.289		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for Site : 1.000Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

Group	Mean
10	7.624
50	4.636
100	5.022
150	7.886
Std Err o	of LS Mean = 0.0569

Least square means for Site :					
Group	Mean	SEI	M		
DC	15.775	0.11	2		
500	4.325	0.05	58		
1000	4.369	0.05	58		
1500	4.369	0.05	58		
1750	4.281	0.05	58		
Control	4.633	0.06	45		
Least square means for Volume x Site :					
Grou	р М	ean	SEM		
10 x D	C 23	.000	0.223		
	~ ~ ~	105	~ ~		

Group	wean	SEIVI
10 x DC	23.000	0.223
10 x 500	4.425	0.112
10 x 1000	4.450	0.112
10 x 1500	4.500	0.112
10 x 1750	4.600	0.112
10 x Control	4.767	0.129
50 x DC	5.400	0.223
50 x 500	4.425	0.112
50 x 1000	4.450	0.112
50 x 1500	4.500	0.112
50 x 1750	4.275	0.112
50 x Control	4.767	0.129
100 x DC	8.700	0.223
100 x 500	4.225	0.112
100 x 1000	4.325	0.112
100 x 1500	4.225	0.112
100 x 1750	4.225	0.112
100 x Control	4.433	0.129
150 x DC	26.000	0.223
150 x 500	4.225	0.112
150 x 1000	4.250	0.112
150 x 1500	4.250	0.112
150 x 1750	4.025	0.112
150 x Control	4.567	0.129

Comparisons for factor: Site within 10						
Comparison	Diff of Means	t	Р	P<0.05		
DC vs. 500	18.575	74.378	<0.001	Yes		
DC vs. 1000	18.550	74.277	<0.001	Yes		
DC vs. 1500	18.500	74.077	<0.001	Yes		
DC vs. 1750	18.400	73.677	<0.001	Yes		
DC vs. Control	18.233	70.691	<0.001	Yes		
Control vs. 500	0.342	2.003	0.402	No		
Control vs. 1000	0.317	1.856	0.473	No		
Control vs. 1500	0.267	1.563	0.652	No		
1750 vs. 500	0.175	1.108	0.892	No		
Control vs. 1750	0.167	0.977	0.912	No		
1750 vs. 1000	0.150	0.950	0.881	No		
1750 vs. 1500	0.1000	0.633	0.951	No		
1500 vs. 500	0.0750	0.475	0.952	No		
1500 vs. 1000	0.0500	0.317	0.939	No		
1000 vs. 500	0.0250	0.158	0.875	No		
Comparisons for factor: Site within 50						

Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1750	1.125	4.505	<0.001	Yes
DC vs. 500	0.975	3.904	0.004	Yes
DC vs. 1000	0.950	3.804	0.005	Yes
DC vs. 1500	0.900	3.604	0.008	Yes
Control vs. 1750	0.492	2.882	0.060	No
DC vs. Control	0.633	2.455	0.159	No
Control vs. 500	0.342	2.003	0.370	No
Control vs. 1000	0.317	1.856	0.434	No
Control vs. 1500	0.267	1.563	0.603	No
1500 vs. 1750	0.225	1.425	0.648	No
1000 vs. 1750	0.175	1.108	0.796	No
500 vs. 1750	0.150	0.950	0.817	No
1500 vs. 500	0.0750	0.475	0.952	No
1500 vs. 1000	0.0500	0.317	0.939	No
1000 vs. 500	0.0250	0.158	0.875	No

Comparisons for	Comparisons for factor: Site within 100					
Comparison	Diff of Mean		Р	P<0.05		
DC vs. 1750	4.475	17.919	<0.001	Yes		
DC vs. 500	4.475	17.919	<0.001	Yes		
DC vs. 1500	4.475	17.919	<0.001	Yes		
DC vs. 1000	4.375	17.518	<0.001	Yes		
DC vs. Control	4.267	16.542	< 0.001	Yes		
Control vs. 1750	0.208	1.221	0.924	No		
Control vs. 500	0.208	1.221	0.902	No		
Control vs. 1500	0.208	1.221	0.873	No		
Control vs. 1000	0.108	0.635	0.995	No		
1000 vs. 1750	0.100	0.633	0.989	No		
1000 vs. 500	0.100	0.633	0.977	No		
1000 vs. 1500	0.1000	0.633	0.951	No		
1500 vs. 1750	0.000	0.000	1.000	No		
1500 vs. 500	0.000	0.000	1.000	No		
500 vs. 1750	0.000	0.000	1.000	No		
Comparisons for	Comparisons for factor: Site within 150					
Comparison Diff of Means t P P<0.05						
DC vs. 1750	21.975	87.992	< 0.001	Yes		
DC vs. 500	21.775	87.191	< 0.001	Yes		
DC vs. 1000	21.750	87.091	< 0.001	Yes		
DC vs. 1500	21.750	87.091	< 0.001	Yes		
DC vs. Control	21.433	83.098	<0.001	Yes		
Control vs. 1750	0.542	3.175	0.024	Yes		
Control vs. 500	0.342	2.003	0.370	No		
Control vs. 1000	0.317	1.856	0.434	No		
Control vs. 1500	0.317	1.856	0.392	No		
1500 vs. 1750	0.225	1.425	0.648	No		
1000 vs. 1750	0.225	1.425	0.581	No		
500 vs. 1750	0.200	1.266	0.612	No		
1500 vs. 500	0.0250	0.158	0.998	No		
1000 vs. 500	0.0250	0.158	0.984	No		
1500 vs. 1000	0.000	0.000	1.000	No		
Comparisons for	factor: Volume	within DC				
•	Diff of Means	t	P P	<0.05		
150 vs. 50	20.600	65.211 <	:0.001	Yes		
10 vs. 50	17.600	55.714 <	:0.001	Yes		
150 vs. 100	17.300	54.764 <	:0.001	Yes		
10 vs. 100	14.300	45.268 <	:0.001	Yes		
100 vs. 50	3.300	10.446 <	:0.001	Yes		
150 vs. 10	3.000	9.497 <	0.001	Yes		
Comparisons for	factor: Volume	within 500				
	Diff of Means		P P<0	.05		
10 vs. 150	0.200		758 N			

oompanoon	Bill of Moulio	•		1 .0100
10 vs. 150	0.200	1.266	0.758	No
10 vs. 100	0.200	1.266	0.694	No
50 vs. 150	0.200	1.266	0.612	No
50 vs. 100	0.200	1.266	0.508	No
10 vs. 50	0.000	0.000	1.000	No
100 vs. 150	0.000	0.000	1.000	No

Comparisons f	Comparisons for factor: Volume within 1000						
Comparison	Diff of Means	t	Р	P<0.05			
50 vs. 150	0.200	1.266	0.758	No			
10 vs. 150	0.200	1.266	0.694	No			
50 vs. 100	0.125	0.791	0.896	No			
10 vs. 100	0.125	0.791	0.817	No			
100 vs. 150	0.0750	0.475	0.868	No			
50 vs. 10	0.000	0.000	1.000	No			
Comparisons f	or factor: Volume	within [•]	1500				
Comparison	Diff of Means	t	Р	P<0.05			
50 vs. 100	0.275	1.741	0.421	No			
10 vs. 100	0.275	1.741	0.366	No			
50 vs. 150	0.250	1.583	0.398	No			
10 vs. 150	0.250	1.583	0.316	No			
150 vs. 100	0.0250	0.158	0.984	No			
50 vs. 10	0.000	0.000	1.000	No			
Comparisons for factor: Volume within 1750							
Comparisons f	or factor: Volume	within [•]	1750				
Comparisons f Comparison	or factor: Volume Diff of Means	e within [,] t	1750 P	P<0.05			
				P<0.05 Yes			
Comparison	Diff of Means	t	Р				
Comparison 10 vs. 150	Diff of Means 0.575	t 3.640	P 0.004	Yes			
Comparison 10 vs. 150 10 vs. 100	Diff of Means 0.575 0.375	t 3.640 2.374	P 0.004 0.101	Yes No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50	Diff of Means 0.575 0.375 0.325	t 3.640 2.374 2.058	P 0.004 0.101 0.166	Yes No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150	Diff of Means 0.575 0.375 0.325 0.250	t 3.640 2.374 2.058 1.583	P 0.004 0.101 0.166 0.316	Yes No No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100	Diff of Means 0.575 0.375 0.325 0.250 0.200	t 3.640 2.374 2.058 1.583 1.266 0.317	P 0.004 0.101 0.166 0.316 0.377 0.753	Yes No No No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100	Diff of Means 0.575 0.375 0.325 0.250 0.200 0.0500	t 3.640 2.374 2.058 1.583 1.266 0.317	P 0.004 0.101 0.166 0.316 0.377 0.753	Yes No No No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100 Comparisons f	Diff of Means 0.575 0.375 0.325 0.250 0.200 0.0500 or factor: Volume	t 3.640 2.374 2.058 1.583 1.266 0.317 within (P 0.004 0.101 0.166 0.316 0.377 0.753 Control	Yes No No No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100 Comparisons f Comparison	Diff of Means 0.575 0.375 0.325 0.250 0.200 0.0500 or factor: Volume Diff of Means	t 3.640 2.374 2.058 1.583 1.266 0.317 within (t	P 0.004 0.101 0.166 0.316 0.377 0.753 Control P	Yes No No No No P<0.05			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100 Comparisons f Comparison 10 vs. 100	Diff of Means 0.575 0.375 0.325 0.250 0.200 0.0500 for factor: Volume Diff of Means 0.333	t 3.640 2.374 2.058 1.583 1.266 0.317 e within (t 1.828	P 0.004 0.101 0.166 0.316 0.377 0.753 Control P 0.365 0.315 0.728	Yes No No No No P<0.05 No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100 Comparisons f Comparison 10 vs. 100 50 vs. 100	Diff of Means 0.575 0.375 0.225 0.250 0.200 0.0500 for factor: Volume Diff of Means 0.333 0.333	t 3.640 2.374 2.058 1.583 1.266 0.317 e within (t 1.828 1.828	P 0.004 0.101 0.166 0.316 0.377 0.753 Control P 0.365 0.315	Yes No No No No P<0.05 No No			
Comparison 10 vs. 150 10 vs. 100 10 vs. 50 50 vs. 150 100 vs. 150 50 vs. 100 Comparisons f Comparison 10 vs. 100 50 vs. 100 10 vs. 150	Diff of Means 0.575 0.375 0.225 0.250 0.200 0.0500 or factor: Volume Diff of Means 0.333 0.333 0.200	t 3.640 2.374 2.058 1.583 1.266 0.317 within t 1.828 1.828 1.828 1.828 1.097	P 0.004 0.101 0.166 0.316 0.377 0.753 Control P 0.365 0.315 0.728	Yes No No No No P<0.05 No No No			

Dependent Variable: Mercury Normality Test (Shapiro-Wilk) Equal Variance Test:				· ·	= 0.875) = 0.581)	
Group Name	Ν	Missing	Mean	Std Dev	SEM	
DC	1	0	0.123	0.000	0.000	
500	4	0	0.0422	0.00556	0.00278	
1000	4	0	0.0445	0.00580	0.00290	
1500	4	0	0.0420	0.00424	0.00212	
1750	4	0	0.0530	0.0104	0.00521	
Control	3	0	0.0477	0.00208	0.00120	
Source of Vari Between Group Residual Total		4	SS 0.00600 0.000582 0.00658	MS 0.00150 0.0000416	F 36.033	P <0.001

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for f					
Comparison	Diff of Means	р	q	Р	P<0.050
DC vs. 1500	0.0810	6	15.885	<0.001	Yes
DC vs. 500	0.0808	6	15.836	<0.001	Yes
DC vs. 1000	0.0785	6	15.395	<0.001	Yes
DC vs. Control	0.0753	6	14.305	<0.001	Yes
DC vs. 1750	0.0700	6	13.728	<0.001	Yes
1750 vs. 1500	0.0110	6	3.411	0.217	No
1750 vs. 500	0.0108	6	3.333	0.236	Do Not Test
1750 vs. 1000	0.00850	6	2.636	0.461	Do Not Test
1750 vs. Control	0.00533	6	1.531	0.880	Do Not Test
Control vs. 1500	0.00567	6	1.627	0.852	Do Not Test
Control vs. 500	0.00542	6	1.555	0.874	Do Not Test
Control vs. 1000	0.00317	6	0.909	0.985	Do Not Test
1000 vs. 1500	0.00250	6	0.775	0.993	Do Not Test
1000 vs. 500	0.00225	6	0.698	0.996	Do Not Test
500 vs. 1500	0.000250	6	0.0775	1.000	Do Not Test

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: N Normality Test (Shap Equal Variance Test:		P < 0.050) P < 0.050)			
Source of Variation	DF	SS	MS	F	Р
Volume	3	0.00138	0.000461	3.103	0.034
Site	5	0.00950	0.00190	12.787	<0.001
Volume x Site	15	0.0175	0.00116	7.833	<0.001
Residual	56	0.00832	0.000149		
Total	79	0.0395	0.000501		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 0.502 Power of performed test with alpha = 0.0500: for Site : 1.000 Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

Mean	
0.0554	
0.0569	
0.0676	
0.0587	
of LS Mea	n = 0.00310
	0.0554 0.0569 0.0676 0.0587

Least square means for Site :							
Group	Mean	SEM					
DC	0.0882	0.00609					
500	0.0501	0.00305					
1000	0.0492	0.00305					
1500	0.0506	0.00305					
1750	0.0485	0.00305					
Control	0.0712	0.00352					

Least square means for Volume x Site :							
Group	Mean	SEM					
10 x DC	0.120	0.0122					
10 x 500	0.0427	0.00609					
10 x 1000	0.0387	0.00609					
10 x 1500	0.0462	0.00609					
10 x 1750	0.0412	0.00609					
10 x Control	0.0433	0.00704					
50 x DC	0.0450	0.0122					
50 x 500	0.0605	0.00609					
50 x 1000	0.0605	0.00609					
50 x 1500	0.0620	0.00609					
50 x 1750	0.0472	0.00609					
50 x Control	0.0660	0.00704					
100 x DC	0.0650	0.0122					
100 x 500	0.0550	0.00609					
100 x 1000	0.0530	0.00609					
100 x 1500	0.0520	0.00609					
100 x 1750	0.0525	0.00609					
100 x Control	0.128	0.00704					
150 x DC	0.123	0.0122					
150 x 500	0.0422	0.00609					
150 x 1000	0.0445	0.00609					
150 x 1500	0.0420	0.00609					
150 x 1750	0.0530	0.00609					
150 x Control	0.0477	0.00704					

Comparisons for factor: Site within 10

compansions for factor. Site within To						
Comparison	Diff of Means	t	Р	P<0.05		
DC vs. 1000	0.0812	5.962	<0.001	Yes		
DC vs. 1750	0.0787	5.779	<0.001	Yes		
DC vs. 500	0.0772	5.669	<0.001	Yes		
DC vs. Control	0.0767	5.447	<0.001	Yes		
DC vs. 1500	0.0737	5.412	<0.001	Yes		
1500 vs. 1000	0.00750	0.870	0.993	No		
1500 vs. 1750	0.00500	0.580	0.999	No		
Control vs. 1000	0.00458	0.492	1.000	No		
500 vs. 1000	0.00400	0.464	0.999	No		
1500 vs. 500	0.00350	0.406	0.999	No		
1500 vs. Control	0.00292	0.313	0.999	No		
1750 vs. 1000	0.00250	0.290	0.997	No		
Control vs. 1750	0.00208	0.224	0.995	No		
500 vs. 1750	0.00150	0.174	0.981	No		
Control vs. 500	0.000583	0.0627	0.950	No		

Comparisons for f			-	D 40.05
Comparison Control vs. 1750	Diff of Means 0.0188	t 2.014	P 0.528	P<0.05 No
1500 vs. 1750	0.0188	2.014	0.526	No
1000 vs. 1750	0.0147	1.537	0.743	No
500 vs. 1750	0.0132	1.537	0.830	No
Control vs. DC	0.0210	1.492	0.812	No
1500 vs. DC	0.0210	1.247	0.914	No
1000 vs. DC	0.0155	1.137	0.934	No
500 vs. DC	0.0155	1.137	0.910	No
Control vs. 500	0.00550	0.591	0.997	No
Control vs. 1000	0.00550	0.591	0.992	No
Control vs. 1500	0.00400	0.430	0.996	No
1500 vs. 1000	0.00150	0.174	1.000	No
1500 vs. 500	0.00150	0.174	0.997	No
1750 vs. DC	0.00225	0.165	0.983	No
500 vs. 1000	0.000	0.000	1.000	No
Comparisons for f	actor: Site withir	n 100		
Comparison	Diff of Means	t	Р	P<0.05
Control vs. 1500	0.0760	8.164	<0.001	Yes
Control vs. 1750	0.0755	8.110	<0.001	Yes
Control vs. 1000	0.0750	8.056	<0.001	Yes
Control vs. 500	0.0730	7.842	<0.001	Yes
Control vs. DC	0.0630	4.476	<0.001	Yes
DC vs. 1500	0.0130	0.954	0.985	No
DC vs. 1750	0.0125	0.917	0.983	No
DC vs. 1000	0.0120	0.881	0.979	No
DC vs. 500	0.01000	0.734	0.988	No
500 vs. 1500 500 vs. 1750	0.00300 0.00250	0.348 0.290	1.000 0.999	No No
500 vs. 1750	0.00200	0.290	0.999	No
1000 vs. 1000	0.001000	0.232	0.999	No
1000 vs. 1750	0.000500	0.0580	0.998	No
1750 vs. 1500	0.000500	0.0580	0.954	No
1100 10. 1000	0.000000	0.0000	0.001	110
Comparisons for f		n 150		
Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1500	0.0810	5.944	<0.001	Yes
DC vs. 500	0.0807	5.925	< 0.001	Yes
DC vs. 1000	0.0785	5.760	< 0.001	Yes
DC vs. Control DC vs. 1750	0.0753 0.0700	5.352 5.137	<0.001 <0.001	Yes Yes
1750 vs. 1750	0.0700	1.276	0.902	No
1750 vs. 500	0.0108	1.247	0.8902	No
1750 vs. 1000	0.00850	0.986	0.959	No
Control vs. 1500	0.00567	0.609	0.996	No
Control vs. 500	0.00542	0.582	0.993	No
1750 vs. Control	0.00533	0.573	0.985	No
Control vs. 1000	0.00317	0.340	0.995	No
1000 vs. 1500	0.00250	0.290	0.988	No
1000 vs. 500	0.00225	0.261	0.958	No
500 vs. 1500	0.000250	0.0290	0.977	No

Comparisons f	or factor: Volume	within F	00	
Comparison	Diff of Means	t	P	P<0.05
150 vs. 50	0.0780	4.525	< 0.001	Yes
10 vs. 50	0.0750	4.351	< 0.001	Yes
150 vs. 100	0.0580	3.365	0.006	Yes
10 vs. 100	0.0550	3.191	0.007	Yes
100 vs. 50	0.0200	1.160	0.439	No
150 vs. 10	0.00300	0.174	0.862	No
100 10. 10	0.00000	0.174	0.002	110
Comparisons f	or factor: Volume	within 5	00	
Comparison	Diff of Means	t	Р	P<0.05
50 vs. 150	0.0182	2.117	0.211	No
50 vs. 10	0.0177	2.059	0.202	No
100 vs. 150	0.0128	1.479	0.465	No
100 vs. 10	0.0123	1.421	0.409	No
50 vs. 100	0.00550	0.638	0.775	No
10 vs. 150	0.000500	0.0580	0.954	No
Comparisons f	or factor: Volume	within 1	000	
Comparison	Diff of Means	t	Ρ	P<0.05
50 vs. 10	0.0217	2.524	0.084	No
50 vs. 150	0.0160	1.856	0.299	No
100 vs. 10	0.0142	1.653	0.355	No
100 vs. 150	0.00850	0.986	0.697	No
50 vs. 100	0.00750	0.870	0.625	No
150 vs. 10	0.00575	0.667	0.507	No
	or factor: Volume			
Comparison	Diff of Means	t	Р	P<0.05
Comparison 50 vs. 150	Diff of Means 0.0200	t 2.321	P 0.136	No
Comparison 50 vs. 150 50 vs. 10	Diff of Means 0.0200 0.0158	t 2.321 1.827	P 0.136 0.315	No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100	Diff of Means 0.0200 0.0158 0.01000	t 2.321 1.827 1.160	P 0.136 0.315 0.685	No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150	Diff of Means 0.0200 0.0158 0.01000 0.01000	t 2.321 1.827 1.160 1.160	P 0.136 0.315 0.685 0.580	No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 10	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575	t 2.321 1.827 1.160 1.160 0.667	P 0.136 0.315 0.685 0.580 0.757	No No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150	Diff of Means 0.0200 0.0158 0.01000 0.01000	t 2.321 1.827 1.160 1.160	P 0.136 0.315 0.685 0.580	No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 10 10 vs. 150	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425	t 2.321 1.827 1.160 1.160 0.667 0.493	P 0.136 0.315 0.685 0.580 0.757 0.624	No No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 Tor factor: Volume	t 2.321 1.827 1.160 1.160 0.667 0.493 • within 1	P 0.136 0.315 0.685 0.580 0.757 0.624 750	No No No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means	t 2.321 1.827 1.160 1.160 0.667 0.493 e within 1 t	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P	No No No No P<0.05
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 10 10 vs. 150 Comparisons f Comparison 150 vs. 10	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118	t 2.321 1.827 1.160 1.160 0.667 0.493 e within 1 t 1.363	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692	No No No No No P<0.05 No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113	t 2.321 1.827 1.160 1.160 0.667 0.493 e within 1 t 1.363 1.305	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666	No No No No No P<0.05 No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600	t 2.321 1.827 1.160 1.160 0.667 0.493 within 1 t 1.363 1.305 0.696	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932	No No No No No P<0.05 No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575	t 2.321 1.827 1.160 1.160 0.667 0.493 within 1 t 1.363 1.305 0.696 0.667	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.880	No No No No No P<0.05 No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525	t 2.321 1.827 1.160 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.880 0.793	No No No No No No No No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 150 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575	t 2.321 1.827 1.160 1.160 0.667 0.493 within 1 t 1.363 1.305 0.696 0.667	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.880	No No No No No P<0.05 No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 10 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50 100 vs. 50 150 vs. 100	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00675 0.00575 0.00525 0.000500	t 2.321 1.827 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.866 0.932 0.832 0.793 0.954	No No No No No No No No No No
Comparison 50 vs. 150 50 vs. 10 50 vs. 100 100 vs. 150 100 vs. 10 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50 100 vs. 50 150 vs. 100 Comparisons f	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 for factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.00525 0.000500 for factor: Volume	t 2.321 1.827 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 e within C	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.866 0.932 0.832 0.793 0.954	No No No No No No No No No No No
Comparison 50 vs. 150 50 vs. 100 100 vs. 150 100 vs. 150 100 vs. 150 Comparisons f Comparisons 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50 100 vs. 50 150 vs. 100 Comparisons f Comparisons f	Diff of Means 0.0200 0.0158 0.01000 0.00575 0.00425 for factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.000500 for factor: Volume Diff of Means	t 2.321 1.827 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 e within C t	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.666 0.932 0.880 0.793 0.954 Control P	No No No No No No No No No No No P<0.05
Comparison 50 vs. 150 50 vs. 100 100 vs. 100 100 vs. 150 100 vs. 10 10 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50 150 vs. 100 Comparisons f Comparison 100 vs. 10	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 for factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.000500 for factor: Volume Diff of Means 0.0847	t 2.321 1.827 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 e within C t 8.507	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.666 0.932 0.880 0.793 0.954 Control P <0.001	No No No No No No No No No No P<0.05 Yes
Comparison 50 vs. 150 50 vs. 100 100 vs. 150 100 vs. 150 100 vs. 150 Comparisons f Comparisons 150 vs. 10 100 vs. 10 50 vs. 10 150 vs. 50 100 vs. 50 150 vs. 100 Comparisons f Comparisons f	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.000500 For factor: Volume Diff of Means 0.0847 0.0803	t 2.321 1.827 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 e within C t	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.666 0.932 0.880 0.793 0.954 Control P	No No No No No No No No No No No P<0.05
Comparison 50 vs. 150 50 vs. 100 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 10 10 vs. 150 Comparisons f Comparison 150 vs. 10 150 vs. 10 150 vs. 50 150 vs. 100 Comparisons f Comparisons f Comparison 100 vs. 10 100 vs. 10 100 vs. 10 100 vs. 150 100 vs. 50	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.00525 0.000500 For factor: Volume Diff of Means 0.0847 0.0803 0.0620	t 2.321 1.827 1.160 1.160 0.667 0.493 within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 within C t 8.507 8.072 6.230	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.666 0.932 0.880 0.793 0.954 Control P <0.001 <0.001	No No No No No No No No No No No No No N
Comparison 50 vs. 150 50 vs. 100 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 Comparisons f Comparison 150 vs. 10 100 vs. 10 150 vs. 50 150 vs. 100 Comparisons f Comparison 150 vs. 100 100 vs. 100 100 vs. 10 100 vs. 150	Diff of Means 0.0200 0.0158 0.01000 0.01000 0.00575 0.00425 For factor: Volume Diff of Means 0.0118 0.0113 0.00600 0.00575 0.00525 0.000500 For factor: Volume Diff of Means 0.0847 0.0803	t 2.321 1.827 1.160 1.160 0.667 0.493 e within 1 t 1.363 1.305 0.696 0.667 0.609 0.0580 e within C t 8.507 8.072	P 0.136 0.315 0.685 0.580 0.757 0.624 750 P 0.692 0.666 0.932 0.666 0.932 0.880 0.793 0.954 Control P <0.001 <0.001	No No No No No No No No No No No P<0.05 Yes Yes

150 vs. 10

0.00433

0.435 0.665

No

One Way Analysis of Variance between Sites after 150,000m³ Disposal.

Dependent Van Normality Tes Equal Varianc	k)	Passed Passed	(P = 0 (P = 0	,		
Group Name	Ν	Missing	Mean	Std D	ev SE	M
DC	1	0	10	0.00	0.0	00
500	4	0	15.475	0.88	8 0.4	44
1000	4	0	15.300	0.84	1 0.4	20
1500	4	0	15.275	0.78	0 0.3	90
1750	4	0	15.150	0.84	3 0.4	21
Control	3	0	16.867	0.49	3 0.2	85
Source of Var Between Grou _l Residual Total		4 4 14 18	SS 35.650 8.932 44.582	MS 8.913 0.638	F 13.970	P <0.001

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons	for factor:	Distance	

Comparison	Diff of Means	р	q	Р	P<0.050
Control vs. DC	6.867	6	10.529	<0.001	Yes
Control vs. 1750	1.717	6	3.980	0.113	No
Control vs. 1500	1.592	6	3.690	0.159	Do Not Test
Control vs. 1000	1.567	6	3.632	0.170	Do Not Test
Control vs. 500	1.392	6	3.226	0.264	Do Not Test
500 vs. DC	5.475	6	8.670	<0.001	Yes
500 vs. 1750	0.325	6	0.814	0.991	Do Not Test
500 vs. 1500	0.200	6	0.501	0.999	Do Not Test
500 vs. 1000	0.175	6	0.438	1.000	Do Not Test
1000 vs. DC	5.300	6	8.393	<0.001	Yes
1000 vs. 1750	0.150	6	0.376	1.000	Do Not Test
1000 vs. 1500	0.0250	6	0.0626	1.000	Do Not Test
1500 vs. DC	5.275	6	8.354	<0.001	Yes
1500 vs. 1750	0.125	6	0.313	1.000	Do Not Test
1750 vs. DC	5.150	6	8.156	<0.001	Yes

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: Nickel Normality Test (Shapiro-Wilk) Equal Variance Test:			Failed Passed	(P < 0.05 (P = 0.27	,
Source of Variation	DF	SS	MS	F	Р
Volume	3	34.328	11.443	34.860	<0.001
Site	5	7.949	1.590	4.843	<0.001
Volume x Site	15	169.068	11.271	34.338	<0.001
Residual	56	18.382	0.328		
Total	79	226.972	2.873		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for Site : 0.925Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

GroupMean1016.0765014.89710014.010

150 14.678 Std Err of LS Mean = 0.146

Least square means for Site :

Group	Mean	SEM
DC	14.200	0.286
500	14.712	0.143
1000	14.956	0.143
1500	14.956	0.143
1750	15.100	0.143
Control	15.567	0.165

		Volume x Site :
Group	Mean	SEM
10 x DC	24.000	0.573
10 x 500	14.375	0.286
10 x 1000	14.250	0.286
10 x 1500	14.200	0.286
10 x 1750	14.700	0.286
10 x Control	14.933	0.331
50 x DC	8.900	0.573
50 x 500	15.875	0.286
50 x 1000	16.175	0.286
50 x 1500	16.075	0.286
50 x 1750	16.125	0.286
50 x Control	16.233	0.331
100 x DC	13.900	0.573
100 x 500	13.125	0.286
100 x 1000	14.100	0.286
100 x 1500	14.275	0.286
100 x 1750	14.425	0.286
100 x Control	14.233	0.331
150 x DC	10.000	0.573
150 x 500	15.475	0.286
150 x 1000	15.300	0.286
150 x 1500	15.275	
150 x 1750	15.150	
150 x Control	16.867	0.331

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): Overall significance level = 0.05

Comparisons for factor: Site within 10

Comparison	Diff of Means	t	Р	P<0.05		
DC vs. 1500	9.800	15.299	<0.001	Yes		
DC vs. 1000	9.750	15.221	<0.001	Yes		
DC vs. 500	9.625	15.026	<0.001	Yes		
DC vs. 1750	9.300	14.519	<0.001	Yes		
DC vs. Control	9.067	13.705	<0.001	Yes		
Control vs. 1500	0.733	1.676	0.649	No		
Control vs. 1000	0.683	1.562	0.696	No		
Control vs. 500	0.558	1.276	0.844	No		
1750 vs. 1500	0.500	1.234	0.828	No		
1750 vs. 1000	0.450	1.111	0.850	No		
1750 vs. 500	0.325	0.802	0.938	No		
Control vs. 1750	0.233	0.533	0.973	No		
500 vs. 1500	0.175	0.432	0.963	No		
500 vs. 1000	0.125	0.309	0.942	No		
1000 vs. 1500	0.0500	0.123	0.902	No		

Companiana fan l	ia ataw. Cita within	. 50		
Comparisons for f			Б	D<0.05
Comparison 1000 vs. DC	Diff of Means 7.275	t 11.357	P <0.001	P<0.05 Yes
1750 vs. DC	7.275	11.357	< 0.001	Yes
1500 vs. DC	7.175	11.279	< 0.001	Yes
Control vs. DC	7.333	11.085	< 0.001	Yes
500 vs. DC	6.975	10.889	< 0.001	Yes
Control vs. 500	0.358	0.819	0.995	No
1000 vs. 500	0.300	0.741	0.996	No
1750 vs. 500	0.250	0.617	0.998	No
1500 vs. 500	0.200	0.494	0.999	No
Control vs. 1500	0.158	0.362	1.000	No
Control vs. 1750	0.108	0.248	1.000	No
1000 vs. 1500	0.100	0.247	0.999	No
Control vs. 1000	0.0583	0.133	0.999	No
1750 vs. 1500	0.0500	0.123	0.990	No
1000 vs. 1750	0.0500	0.123	0.902	No
Comparisons for 1	actor: Sito within	100		
Comparison	Diff of Means	t 100	Р	P<0.05
1750 vs. 500	1.300	3.209	0.033	Yes
1500 vs. 500	1.150	2.839	0.085	No
Control vs. 500	1.108	2.533	0.169	No
1000 vs. 500	0.975	2.407	0.210	No
DC vs. 500	0.775	1.210	0.945	No
1750 vs. DC	0.525	0.820	0.995	No
1750 vs. 1000	0.325	0.802	0.993	No
1500 vs. DC	0.375	0.585	0.999	No
Control vs. DC	0.333	0.504	0.999	No
1750 vs. Control	0.192	0.438	0.999	No
1500 vs. 1000	0.175	0.432	0.996	No
1750 vs. 1500	0.150	0.370	0.993	No
1000 vs. DC	0.200	0.312	0.985	No
Control vs. 1000	0.133	0.305	0.943	No
1500 vs. Control	0.0417	0.0952	0.924	No
Comparisons for f	factor: Site withir	n 150		
Comparison	Diff of Means	t	Р	P<0.05
Control vs. DC	6.867	10.380	<0.001	Yes
500 vs. DC	5.475	8.547	<0.001	Yes
1000 vs. DC	5.300	8.274	<0.001	Yes
1500 vs. DC	5.275	8.235	<0.001	Yes
1750 vs. DC	5.150	8.040	<0.001	Yes
Control vs. 1750	1.717	3.923	0.002	Yes
Control vs. 1500	1.592	3.637	0.005	Yes
Control vs. 1000	1.567	3.580	0.006	Yes
Control vs. 500	1.392	3.180	0.017	Yes
500 vs. 1750	0.325	0.802	0.964	No
500 vs. 1500	0.200	0.494	0.992	No
500 vs. 1000	0.175	0.432	0.988	No
1000 vs. 1750	0.150	0.370	0.976	No
1500 vs. 1750	0.125	0.309	0.942	No
1000 vs. 1500	0.0250	0.0617	0.951	No

	or factor: Volume			
Comparison	Diff of Means	t	Р	P<0.05
10 vs. 50	15.100	18.636	< 0.001	Yes
10 vs. 150	14.000	17.279	<0.001	Yes
10 vs. 100	10.100	12.465	<0.001	Yes
100 vs. 50	5.000	6.171	<0.001	Yes
100 vs. 150	3.900	4.813	<0.001	Yes
150 vs. 50	1.100	1.358	0.180	No
Comparisons f	or factor: Volume	within 5	00	
Comparison	Diff of Means	t	P	P<0.05
50 vs. 100	2.750	6.788	< 0.001	Yes
150 vs. 100	2.350	5.801	< 0.001	Yes
50 vs. 10	1.500	3.703	0.002	Yes
10 vs. 100	1.250	3.086	0.009	Yes
150 vs. 10	1.100	2.715	0.018	Yes
50 vs. 150	0.400	0.987	0.328	No
	or factor: Volume			
Comparison	Diff of Means	t	Р	P<0.05
50 vs. 100	2.075	5.122	<0.001	Yes
50 vs. 10	1.925	4.752	<0.001	Yes
150 vs. 100	1.200	2.962	0.018	Yes
150 vs. 10	1.050	2.592	0.036	Yes
50 vs. 150	0.875	2.160	0.069	No
10 vs. 100	0.150	0.370	0.713	No
Comparisons f	or factor: Volume	within 1	500	
Comparison	Diff of Means	t	Р	P<0.05
50 vs. 10	1.875	4.628	< 0.001	Yes
50 vs. 100	1.800	4.443	< 0.001	Yes
150 vs. 10	1.075	2.654	0.041	Yes
150 vs. 100	1.000	2.468	0.049	Yes
50 vs. 150	0.800	1.975	0.104	No
100 vs. 10	0.0750	0.185	0.854	No
Comparisons f	or factor: Volume			D .0 07
Comparison	Diff of Means	t	Р	P<0.05
50 vs. 100	1.700	4.196	<0.001	Yes
50 vs. 10	1.425	3.517	0.004	Yes
50 vs. 150	0.975	2.407	0.075	No
150 vs. 100	0.725	1.790	0.219	No
150 vs. 10	0.450	1.111	0.469	No
150 vs. 10 10 vs. 100				
10 vs. 100	0.450	1.111 0.679	0.469 0.500	No
10 vs. 100 Comparisons f Comparison	0.450 0.275	1.111 0.679	0.469 0.500	No
10 vs. 100 Comparisons f	0.450 0.275 for factor: Volume Diff of Means 2.633	1.111 0.679 within C	0.469 0.500	No No
10 vs. 100 Comparisons f Comparison	0.450 0.275 for factor: Volume Diff of Means	1.111 0.679 within C t	0.469 0.500 Control P	No No P<0.05
10 vs. 100 Comparisons f Comparison 150 vs. 100	0.450 0.275 for factor: Volume Diff of Means 2.633	1.111 0.679 within C t 5.629	0.469 0.500 Control P <0.001	No No P<0.05 Yes
10 vs. 100 Comparisons 1 Comparison 150 vs. 100 50 vs. 100	0.450 0.275 for factor: Volume Diff of Means 2.633 2.000	1.111 0.679 within C t 5.629 4.275	0.469 0.500 Control P <0.001 <0.001	No No P<0.05 Yes Yes
10 vs. 100 Comparisons f Comparison 150 vs. 100 50 vs. 100 150 vs. 10	0.450 0.275 for factor: Volume Diff of Means 2.633 2.000 1.933	1.111 0.679 within C t 5.629 4.275 4.133	0.469 0.500 Control P <0.001 <0.001 <0.001	No No P<0.05 Yes Yes Yes
10 vs. 100 Comparisons f Comparison 150 vs. 100 50 vs. 100 150 vs. 10 50 vs. 10	0.450 0.275 for factor: Volume Diff of Means 2.633 2.000 1.933 1.300	1.111 0.679 within C t 5.629 4.275 4.133 2.779	0.469 0.500 Control P <0.001 <0.001 <0.001 0.022	No No P<0.05 Yes Yes Yes Yes

Dependent Var Normality Test Equal Varianc	t (Sh	apiro-Will	k)	```	P = 0.373) P = 0.350)	
Group Name	Ν	Missing	Mean	Std Dev	SEM	
DC	1	0	95.000	0.000	0.000	
500	4	0	29.000	0.816	0.408	
1000	4	0	29.750	1.258	0.629	
1500	4	0	28.000	1.826	0.913	
1750	4	0	28.250	2.363	1.181	
Control	3	0	30.667	1.528	0.882	
Source of Vari Between Group Residual Total		DF 4 14 18	SS 4148.383 38.167 4186.550	MS 1037.096 2.726	F 380.419	P <0.001

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for f	actor: Distance				
Comparison	Diff of Means	р	q	Р	P<0.050
DC vs. 1500	67.000	6	51.328	<0.001	Yes
DC vs. 1750	66.750	6	51.137	<0.001	Yes
DC vs. 500	66.000	6	50.562	<0.001	Yes
DC vs. 1000	65.250	6	49.988	<0.001	Yes
DC vs. Control	64.333	6	47.720	<0.001	Yes
Control vs. 1500	2.667	6	2.991	0.334	No
Control vs. 1750	2.417	6	2.710	0.432	Do Not Test
Control vs. 500	1.667	6	1.869	0.769	Do Not Test
Control vs. 1000	0.917	6	1.028	0.975	Do Not Test
1000 vs. 1500	1.750	6	2.120	0.671	Do Not Test
1000 vs. 1750	1.500	6	1.817	0.788	Do Not Test
1000 vs. 500	0.750	6	0.908	0.986	Do Not Test
500 vs. 1500	1.000	6	1.211	0.951	Do Not Test
500 vs. 1750	0.750	6	0.908	0.986	Do Not Test
1750 vs. 1500	0.250	6	0.303	1.000	Do Not Test

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable: Normality Test (Sha Equal Variance Tes	piro-V	Vilk)	Passed Passed	(P = 0.155) (P = 0.335)	
Source of Variation	DF	SS	MS	F	Р
Volume	3	939.669	313.223	219.943	<0.001
Site	5	3812.571	762.514	535.433	<0.001
Volume x Site	15	2801.579	186.772	131.150	<0.001
Residual	56	79.750	1.424		
Total	79	6817.800	86.301		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of Site is present. There is a statistically significant interaction between Volume and Site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000 Power of performed test with alpha = 0.0500: for Site : 1.000 Power of performed test with alpha = 0.0500: for Volume x Site : 1.000

Least square means for Volume :

 Group
 Mean

 10
 38.333

 50
 30.014

 100
 34.222

 150
 40.111

 Std Err of LS Mean = 0.304

Least square means for Site :					
Group	Mean	SEM			
DC	62.000	0.597			
500	30.313	0.298			
1000	30.563	0.298			
1500	30.063	0.298			
1750	30.000	0.298			
Control	31.083	0.344			

Least square i	means for	Volume x Site :
Group	Mean	SEM
10 x DC	80.000	1.193
10 x 500	30.000	0.597
10 x 1000	29.750	0.597
10 x 1500	30.000	0.597
10 x 1750	30.250	0.597
10 x Control	30.000	0.689
50 x DC	31.000	1.193
50 x 500	30.000	0.597
50 x 1000	29.750	0.597
50 x 1500	29.750	0.597
50 x 1750	29.250	0.597
50 x Control	30.333	0.689
100 x DC	42.000	1.193
100 x 500	32.250	0.597
100 x 1000	33.000	0.597
100 x 1500	32.500	0.597
100 x 1750	32.250	0.597
100 x Control	33.333	0.689
150 x DC	95.000	1.193
150 x 500	29.000	0.597
150 x 1000	29.750	0.597
150 x 1500	28.000	0.597
150 x 1750	28.250	0.597
150 x Control	30.667	0.689

Comparisons for fa	actor: Site within	10		
Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1000	50.250	37.663	<0.001	Yes
DC vs. 1500	50.000	37.475	<0.001	Yes
DC vs. 500	50.00	37.475	<0.001	Yes
DC vs. 1750	49.750	37.288	<0.001	Yes
DC vs. Control	50.000	36.285	<0.001	Yes
1750 vs. 1000	0.500	0.593	1.000	No
500 vs. 1000	0.250	0.296	1.000	No
1500 vs. 1000	0.250	0.296	1.000	No
1750 vs. 1500	0.250	0.296	1.000	No
1750 vs. 500	0.250	0.296	1.000	No
Control vs. 1000	0.250	0.274	1.000	No
1750 vs. Control	0.250	0.274	0.998	No
500 vs. 1500	0.000	0.000	1.000	No
500 vs. Control	0.000	0.000	1.000	No
Control vs. 1500	0.000	0.000	1.000	No

Comparisons for f			_	
Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1750	1.750	1.312	0.961	No
Control vs. 1750	1.083	1.189	0.978	No
DC vs. 1500	1.250	0.937	0.997	No
DC vs. 1000	1.250	0.937	0.995	No
500 vs. 1750	0.750	0.889	0.995	No
DC vs. 500	1.000	0.750	0.998	No
Control vs. 1000	0.583	0.640	0.999	No
Control vs. 1500	0.583	0.640	0.997	No
1000 vs. 1750	0.500	0.593	0.997	No
1500 vs. 1750	0.500	0.593	0.992	No
DC vs. Control	0.667	0.484	0.993	No
Control vs. 500	0.333	0.366	0.993	No
500 vs. 1000	0.250	0.296	0.988	No
500 vs. 1500	0.250	0.296	0.946	No
1000 vs. 1500	0.000	0.000	1.000	No
Comparisons for f				
Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1750	9.750	7.308	<0.001	Yes
DC vs. 500	9.750	7.308	<0.001	Yes
DC vs. 1500	9.500	7.120	<0.001	Yes
DC vs. 1000	9.000	6.746	<0.001	Yes
DC vs. Control	8.667	6.289	<0.001	Yes
Control vs. 1750	1.083	1.189	0.935	No
Control vs. 500	1.083	1.189	0.915	No
Control vs. 1500	0.833	0.914	0.973	No
1000 vs. 1750	0.750	0.889	0.964	No
1000 vs. 500	0.750	0.889	0.942	No
1000 vs. 1500	0.500	0.593	0.983	No
Control vs. 1000	0.333	0.366	0.993	No
1500 vs. 1750	0.250	0.296	0.988	No
1500 vs. 500	0.250	0.296	0.946	No
500 vs. 1750	0.000	0.000	1.000	No
Comparisons for f			_	
Comparison	Diff of Means	t	Р	P<0.05
DC vs. 1500	67.000	50.217	<0.001	Yes
DC vs. 1750	66.750	50.029	<0.001	Yes
DC vs. 500	66.000	49.467	<0.001	Yes
DC vs. 1000	65.250	48.905	<0.001	Yes
DC vs. Control	64.333	46.687	<0.001	Yes
Control vs. 1500	2.667	2.926	0.048	Yes
Control vs. 1750	2.417	2.651	0.090	No
1000 vs. 1500	1.750	2.074	0.295	No
Control vs. 500	1.667	1.829	0.411	No
1000 vs. 1750	1.500	1.778	0.397	No
500 vs. 1500	1.000	1.185	0.748	No
Control vs. 1000	0.917	1.006	0.785	No
500 vs. 1750	0.750	0.889	0.759	No
1000 vs. 500	0.750	0.889	0.613	No
1750 vs. 1500	0.250	0.296	0.768	No
				D:

Comparisons	for factor: Volume	within D	C	
Comparison	Diff of Means	t	Р	P<0.05
150 vs. 50	64.000	37.922	<0.001	Yes
150 vs. 100	53.000	31.404	<0.001	Yes
10 vs. 50	49.000	29.034	<0.001	Yes
10 vs. 100	38.000	22.516	<0.001	Yes
150 vs. 10	15.000	8.888	<0.001	Yes
100 vs. 50	11.000	6.518	<0.001	Yes
Comparisons	for factor: Volume	within 5	00	
Comparison		t	Р	P<0.05
100 vs. 150	3.250	3.851	0.002	Yes
100 vs. 50	2.250	2.666	0.049	Yes
100 vs. 10	2.250	2.666	0.039	Yes
10 vs. 150	1.000	1.185	0.563	No
50 vs. 150	1.000	1.185	0.424	No
10 vs. 50	0.000	0.000	1.000	No
Comparisons	for factor: Volume	within 1	000	
Comparison		t	Р	P<0.05
100 vs. 150	3.250	3.851	0.002	Yes
100 vs. 10	3.250	3.851	0.002	Yes
100 vs. 50	3.250	3.851	0.001	Yes
50 vs. 150	0.000	0.000	1.000	No
50 vs. 10	0.000	0.000	1.000	No
10 vs. 150	0.000	0.000	1.000	No
Comparisons	for factor: Volume	within 1	500	
Comparisons Comparison	for factor: Volume Diff of Means	within 1 t	500 P	P<0.05
				P<0.05 Yes
Comparison	Diff of Means	t	Р	
Comparison 100 vs. 150	Diff of Means 4.500	t 5.333	P <0.001	Yes
Comparison 100 vs. 150 100 vs. 50	Diff of Means 4.500 2.750 2.500 2.000	t 5.333 3.259 2.963 2.370	P <0.001 0.009	Yes Yes
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750	t 5.333 3.259 2.963 2.370 2.074	P <0.001 0.009 0.018 0.062 0.084	Yes Yes Yes No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150	Diff of Means 4.500 2.750 2.500 2.000	t 5.333 3.259 2.963 2.370	P <0.001 0.009 0.018 0.062	Yes Yes Yes No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50	Diff of Means 4.500 2.750 2.500 2.000 1.750	t 5.333 3.259 2.963 2.370 2.074 0.296	P <0.001 0.009 0.018 0.062 0.084 0.768	Yes Yes Yes No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250	t 5.333 3.259 2.963 2.370 2.074 0.296	P <0.001 0.009 0.018 0.062 0.084 0.768	Yes Yes Yes No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1	P <0.001 0.009 0.018 0.062 0.084 0.768 750	Yes Yes No No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 50	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004	Yes Yes No No No P<0.05 Yes Yes
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 50 100 vs. 10	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082	Yes Yes No No No P<0.05 Yes Yes No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 50 100 vs. 10 100 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.062	Yes Yes No No No P<0.05 Yes Yes No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparisons 100 vs. 150 100 vs. 10 100 vs. 10 10 vs. 150 50 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.062 0.424	Yes Yes No No No P<0.05 Yes Yes No No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 50 100 vs. 10 100 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.062	Yes Yes No No No P<0.05 Yes Yes No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 10 vs. 150 10 vs. 150 10 vs. 50 Comparisons	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 1.000 1.000 for factor: Volume	t 5.333 3.259 2.963 2.970 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185 1.185	P <0.001	Yes Yes No No No P<0.05 Yes Yes No No No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparisons 100 vs. 150 100 vs. 150 100 vs. 150 100 vs. 150 50 vs. 150 10 vs. 50 Comparisons	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 for factor: Volume Diff of Means	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185 1.185 within C t	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.002 0.424 0.241 Control P	Yes Yes No No No P<0.05 Yes Yes No No No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 150 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparisons Comparisons	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 for factor: Volume Diff of Means 3.333	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185 1.185 1.185 within C t 3.421	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.062 0.424 0.241 Control P 0.007	Yes Yes No No No P<0.05 Yes Yes No No No No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 10 100 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparisons Comparisons Comparisons	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 for factor: Volume Diff of Means 3.333 3.000	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185 1.185 within C t 3.421 3.079	P <0.001 0.009 0.018 0.062 0.084 0.768 750 P <0.001 0.004 0.082 0.062 0.424 0.241 0.241 Control P 0.007 0.016	Yes Yes No No No P<0.05 Yes Yes No No No P<0.05 Yes Yes
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 150 100 vs. 150 10 vs. 50 Comparisons Comparisons Comparisons Comparison 100 vs. 10 100 vs. 50 100 vs. 10 100 vs. 50 100 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 for factor: Volume Diff of Means 3.333 3.000 2.667	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 2.370 1.185 1.185 1.185 within C t 3.421 3.079 2.737	P <0.001	Yes Yes No No No P<0.05 Yes Yes No No No No P<0.05 Yes Yes Yes Yes
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 150 100 vs. 150 10 vs. 50 Comparisons Comparisons Comparisons Comparison 100 vs. 10 100 vs. 50 100 vs. 10 100 vs. 10 100 vs. 10	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 1.000 for factor: Volume Diff of Means 3.333 3.000 2.667 0.667	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 1.185 1.185 within C t 3.421 3.079 2.737 0.684	P <0.001	Yes Yes No No No P<0.05 Yes Yes No No No No No P<0.05 Yes Yes Yes Yes No
Comparison 100 vs. 150 100 vs. 50 100 vs. 10 10 vs. 150 50 vs. 150 10 vs. 50 Comparisons Comparison 100 vs. 150 100 vs. 150 100 vs. 150 10 vs. 50 Comparisons Comparisons Comparisons Comparison 100 vs. 10 100 vs. 50 100 vs. 10 100 vs. 50 100 vs. 150	Diff of Means 4.500 2.750 2.500 2.000 1.750 0.250 for factor: Volume Diff of Means 4.000 3.000 2.000 2.000 1.000 1.000 for factor: Volume Diff of Means 3.333 3.000 2.667	t 5.333 3.259 2.963 2.370 2.074 0.296 within 1 t 4.740 3.555 2.370 2.370 2.370 2.370 1.185 1.185 1.185 within C t 3.421 3.079 2.737	P <0.001	Yes Yes No No No P<0.05 Yes Yes No No No No P<0.05 Yes Yes Yes Yes

Appendix 7 Raw Benthic Biota Data.

Table 5.1Benthic Biota Monitoring Data 23 November 2016 following 150,000m³ SpoilDisposal (numbers per two 100mm diameter cores, numbers per square metre)

			DC									50	0m							
Таха	A	в	C	Ave/m ²	A	в	N	Ave/m ²	А	в	E C	Ave/m ²	А	в	S C	Ave/m ²	А	в	W C	Ave/m ²
PHYLUM ANNELIDA	A	В		Ave/III	A	В		Ave/III	A			Ave/III	A	Б	C	Ave/III	A	Б		Ave/III
CLASS POLYCHAETA		Т	T			Т		1		T	T			r	r			r	T	T
Ampharetidae													1			21				
Aonides sp. Aricidea sp.							1	21	1			21								
Capitellidae							<u> </u>	21				21								
Cirratulidae					1			21		2		42		2		42				
Dorvilleidae																				
Flabelligeridae A Hesionidae						1		21		1		21			1	21 85	1			21
Hesionidae Heteromastus filiformis	-					1	1	42							4	85				
Hyalinoecia sp.							1	21							1	21		1		21
Laonice sp.							1	21												
Lumbrinereis sp.					1		1	42						1	1	42	1	4	1	127
<i>Marphysa</i> sp. Maldanidae					1		1	21 21	1	1		42	2	2		85				
Naineris sp.								21		1		42	2	2		21				
Orbinia sp.													<u> </u>			21				
Paraonidae					1			21		1		21								
Phyllodocidae																				
Phylo sp.						_										01				
Prionospio sp. Rhamphobrachium sp.					1	2		64						1		21				
Sabellidae		+	-		1		1	1		2		42								
Sigalionidae					1	1	1	21	1	-			1							
Spionidae						1	1	42												
Spionidae B											1	21								
Syllidae Sphaerosyllis sp.					1	1	1	21 42		3		64		1	1	21 42	1	1	1	64
Terebellidae					-		-	42		3		04	1	1	1	21	-	1	1	04
Unident damaged pieces																21				
PHYLUM NEMERTEA		<u> </u>	L			<u>L</u>	-	<u>L</u>		L	<u>.</u>	-		<u> </u>	<u> </u>	_		-	L	<u> </u>
Nemertian						1		21												
PHYLUM SIPUNCULA																				
CLASS SIPUNCULIDEA		1		1		1	1	1			1	1		1		01		1		1
Sipunculid worm A Sipunculid worm B															1	21				
PHYLUM MOLLUSCA		<u> </u>	-			<u> </u>	L	<u> </u>			<u> </u>					_				
CLASS GASTROPODA																				
Uberella barrierensis																				
CLASS BIVALVIA																				r.
Cuspidaria willetti								01		0		10								
Nucula hartvigiana Nucula nitidula						1		21		2		42 21					-			
Unident. mussel spat	-									1		21								
PHYLUM ARTHROPODA						1														
CLASS CRUSTACEA																				
ORDER AMPHIPODA		T	T			T		i.		T						1			T	1
Ampeliscidae								01												
Amphilochidae Caprella sp.					1			21							2	42				
Haustoriidae							1	21							2	42				
Liljeborgia sp.							<u> </u>													
Lysianassidae						1		21	1			21			1	21				
Phoxocephalidae A					3		<u> </u>	64					1			21				
Phoxocephalidae D Urothoidae					2		1	64	1			21 21								
Unident. Amphipod species	-											21								
ORDER ISOPODA						1					1									1
Asellota									2			42		1	1	42				
Munna sp.					1		1	42					1			21				
Paranthura flagellata						1		21		1		21		1		21		2		42
ORDER CUMACEA Cumacean A				1		1	1	21				1		1		21		1		21
ORDER MYSIDACEA						1		21								21				21
Mysid			1	21	1		1												1	21
ORDER OSTRACODA		· 1	• •	1	1	1		1		r	T	1				1			r	
Ostracod A					<u> </u>		1	21	I				I					1		21
Ostracod C Ostracod E																				
		1	1	1	1	1	1	1		1	I	1		1	1	1		I	1	1
Tanaidacea spp					1	1		21	1			21			1	21				
PHYLUM COELENTERATA		L	L	<u>_</u>		<u> </u>	L			L	<u>.</u>		1	L	<u> </u>			L	L	<u>L</u>
CLASS ANTHOZOA																				
<i>Edwardsia</i> sp.																				
				1	I	1		01		1		1	L							
Amphiura sp. CLASS HOLOTHUROOIDEA							1	21					1	1		42			2	42

	DC 500m																			
Таха			DC				Ν				Е				S				W	
	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²
PHYLUM PORIFERA																				
CLASS DEMOSPONGIAE																				
Unident. sponge - sandy, flask-shaped																				
PHYLUM FORAMINIFERA																				
CLASS FORAMINIFERA																				
ORDER LITUOLIDA																				
Ammodiscus sp. A										1		21			1	21				
Ammodiscus sp. B																				
Cribrostomoides / Haplophragmoides																				
ORDER MILIODIDA																				
Nummoloculina contraria					4	1		106	2	1	1	85		1	3	85			2	42
<i>Pyrgo</i> spp			1	21	6	5	4	318	18	3	5	552	4	6	5	318	5	7	9	446
Quinqueloculina suborbicularis					5	2		149	4	5	3	255	1	3	2	127		4	2	127
Triloculina insignis						3		64	4	1	2	149	1	1	1	64			1	21
ORDER LAGENIDA																				
Lenticulina spp					80	102	55	5029	144	89	110	7279	120	114	108	7257	52	94	44	4032
ORDER ROTALIIDA																				
Calcarina sp.																				
Cibicidoides sp. 1					8	4	11	488	6	3	2	233	17	3	8	594	11	16	10	785
Alabamina					8	9	8	531	13	5	4	467	27	7	17	1082	10	17	15	891
Elphidium sp. A																				
Elphidium sp. B											1	21		1		21			1	21
<i>Planularia</i> sp.					2	1	1	85												
Unident. Foram - dome shaped																				
Unident. Foram - spine like																				
Unident. Foram - flat sim otolith																				
Total Number Of Species/Taxa	0	0	2	2	18	21	18	37	14	19	9	27	13	18	18	31	7	12	12	18
Total Number Of Individuals	0	0	2	42	127	141	92	7639	199	124		9592	178	148	159	10292	81	149	89	6769
Shannon- Wiener	0.00	0.00	0.69	0.69	1.58	1.32	1.60	1.61	1.14	1.36	0.70	1.16	1.14	1.12	1.36	1.30	1.15	1.34	1.63	1.44

								150)0m											
Таха			Ν				Е		1		S				w			Co	ontro	1
	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²
PHYLUM ANNELIDA																				
CLASS POLYCHAETA																				
Ampharetidae	1			21																
Aonides sp.	-																1			21
Aricidea sp.	-	1		21						1		21	1			21				
Capitellidae	-		1	21						1		21					1			21
Cirratulidae	1			21	1			21		1		21			1	21				
Dorvilleidae	-						1	21												
Flabelligeridae A	1			21		1	1	42		1		21								
Hesionidae																		1		21
Heteromastus filiformis																				
Hyalinoecia sp.	1	2		64	1			21			1	21					1	2	3	127
Laonice sp.																				
Lumbrinereis sp.	2			42	1	2	2	106		5	1	127							3	64
Marphysa sp.	3			64					1	1		42	1		1	42		1		21
Maldanidae			1	21					3			64	1		1	42	4	3		149
Naineris sp.						1		21	-									-		
Orbinia sp.																		1	1	42
Paraonidae		1		21			1	21										<u> </u>	<u> </u>	
Phyllodocidae					1			21	1	1		42								
Phylo sp.					•					· ·				1		21				-
Prionospio sp.		2		42					1			21	2			42				
Rhamphobrachium sp.		~		72						3		64	~			74			<u> </u>	
Sabellidae										Ŭ		01								
Sigalionidae		1		21	1			21									1		<u> </u>	21
Spionidae	1	1		42		1	1	42	3	1	1	106		1	1	42	2	1	<u> </u>	64
Spionidae B	1			21				72				100				74	~	-	<u> </u>	04
Syllidae				21													1		<u> </u>	21
Sphaerosyllis sp.		2		42	3			64					1	1		42	•		<u> </u>	21
Terebellidae		2		72	5			07								74			<u> </u>	
Unident damaged pieces					1			21					1			21				-
PHYLUM NEMERTEA		L	L	L	-	L	L	21		L	L	<u> </u>		L	<u> </u>	21			L	
Nemertian			1	1			1	1	1	1		21		1		1				1
			L				L			<u> </u>		21		<u> </u>					L	<u> </u>
PHYLUM SIPUNCULA									_											
CLASS SIPUNCULIDEA		1				1		1				1							,	·
Sipunculid worm A	2			42														<u> </u>	└──	
Sipunculid worm B																		1		21
PHYLUM MOLLUSCA																				
CLASS GASTROPODA																				
Uberella barrierensis														1		21				
CLASS BIVALVIA																				
Cuspidaria willetti							1	21												
Nucula hartvigiana																			1	21
Nucula nitidula																				
Unident. mussel spat																				

Taxa PHYLUM ARTHROPODA CLASS CRUSTACEA ORDER AMPHIPODA Ampeliscidae Amphilochidae Caprella sp. Haustoriidae Liljeborgia sp. Lysianassidae	A	В	N C	Ave/m ²	A	-	Е				s				w			Co	ontro	1
CLASS CRUSTACEA ORDER AMPHIPODA Ampeliscidae Amphilochidae Caprella sp. Haustoriidae Liljeborgia sp. Lysianassidae		В	С	Ave/m ²	•	D					-									
CLASS CRUSTACEA ORDER AMPHIPODA Ampeliscidae Amphilochidae Caprella sp. Haustoriidae Liljeborgia sp. Lysianassidae	1				~	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²	Α	В	С	Ave/m ²
ORDER AMPHIPODA Ampeliscidae Amphilochidae <i>Caprella</i> sp. Haustoriidae <i>Liljeborgia</i> sp. Lysianassidae	1				_				_								_			
Ampeliscidae Amphilochidae <i>Caprella</i> sp. Haustoriidae <i>Liljeborgia</i> sp. Lysianassidae	1																			
Amphilochidae Caprella sp. Haustoriidae Liljeborgia sp. Lysianassidae			1	21		1		21						1						
Caprella sp. Haustoriidae Liljeborgia sp. Lysianassidae				21				21					1			21				
Haustoriidae <i>Liljeborgia</i> sp. Lysianassidae																				
Lysianassidae		1		21					1			21								
						1		21	1		1	42								
							2	42												
Phoxocephalidae A		1		21			1	21	1			21								
Phoxocephalidae D						2	1	64	1			21	1			21	2	1		64
Urothoidae Unident. Amphipod species							1	21						1		21	2		1	64
ORDER ISOPODA							I	21						1		21	2		I	04
Asellota			1				1	21			1						1	1		21
Munna sp.					1			21							1	21			1	21
Paranthura flagellata	2		1	64	-														1	21
ORDER CUMACEA		1										1				1				
Cumacean A	1	1		42			1	21									1			21
ORDER MYSIDACEA								-												
Mysid			1	21										1		21			1	21
ORDER OSTRACODA	I					1	1						<u> </u>					1	1	
Ostracod A			1	21					1		1	42	1	1		42				
Ostracod C						4		04										1		21
Ostracod E ORDER TANAIDACEA						1		21												L
Tanaidacea spp			1											1				1		
PHYLUM COELENTERATA																				
CLASS ANTHOZOA																				
Edwardsia sp.																		1		21
CLASS OPHIUROIDEA																				
Amphiura sp.	1			21		2		42		1	1	42					1		1	42
CLASS HOLOTHUROOIDEA				1																
Trochodota sp.			2	42		1		21	2	2	1	106								
PHYLUM PORIFERA																				
CLASS DEMOSPONGIAE																				
Unident. sponge - sandy, flask-shaped	1			21			1	21						1		21	2		1	64
PHYLUM FORAMINIFERA																				
CLASS FORAMINIFERA																				
ORDER LITUOLIDA			1											1				1		
Ammodiscus A		1		21			1	21			1	21	1			21	1		1	42
Ammodiscus B	1			21					4		1	21					4		1	40
Cribrostomoides / Haplophragmoides ORDER MILIODIDA	I	I	I	L		1	1		1	1	I	21		I	1	1	1	I	1	42
Nummoloculina contraria	1	3		64		2	1	64	3	4	2	191	1	3	2	127	2	4		127
Pyrgo spp	7	5	5	361	6	13	10	615	11	18	4	700	9	9	7	531	37	20	5	1316
Quinqueloculina suborbicularis	3	2	ľ	106	8	2	2	255	4	7	1	255	6	1	4	233	16	8	5	615
Triloculina insignis	1	1		42	1			21	2	2	1	106	1	3	1	106	6		6	255
ORDER LAGENIDA				1																
Lenticulina spp	65	67	39	3629	87	81	121	6133	149	137	90	7979	74	91	90	5411	75	92	66	4944
ORDER ROTALIIDA	I	r	1								1			1				1		
Calcarina sp.	I		-		L				0-		4-		I	-					-	
Cibicidoides sp. 1	7	21	7	743	74	23	22	2525	27	7	13	997	14	5	24	912	15	11	2	594
Alabamina Elabidium on A	15	6	17	806	36	26	23	1804	14	13	6	700	10	7	6	488	21	15	18	1146
Elphidium sp. A	1	1	2	85	1	1	1	64		2		42	1		2	42 21		1	1	21
Elphidium sp. B Planularia sp.	3	1		85		1	2	64 85		2		42				21				21
Unident. Foram - dome shaped	5			00		-	<u> </u>	00												
Unident. Foram - spine like	1																			
Unident. Foram - flat sim otolith	1																			
Total Number Of Species/Taxa	23	20	11	37	16	19	22	37	20	19	16	31	18	15	13	27	22	17	19	35
Total Number Of Individuals		121		6791			198			208				127		8382		164		
Shannon- Wiener			1.55				1.51		1.41					1.23				1.63		

Appendix 8 Benthic Biota Statistical Tests Data.

Dependent Va Normality Tes Equal Varianc	st (Sh	Passed Passed	(P = 0.520) (P = 0.232)		
Group Name	N	Missing	Mean	Std Dev	SEM
DC	3	0	0.667	1.155	0.667
500 N	3	0	19.000	1.732	1.000
500 E	3	0	14.000	5.000	2.887
500 S	3	0	16.333	2.887	1.667
500 W	3	0	10.333	2.887	1.667
1500 N	3	0	18.000	6.245	3.606
1500 E	3	0	19.000	3.000	1.732
1500 S	3	0	18.333	2.082	1.202
1500 W	3	0	15.333	2.517	1.453
Control	3	0	19.333	2.517	1.453
Source of Varia	ation	DF	SS	MS	F P
Between Group	s	9	902.967	100.330	9.039 < 0.001
Residual		20	222.000	11.100	
Total		29	1124.967		

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for	factor: site			
Comparison	Diff of Means	р	q	P P<0.050
Control vs. DC	18.667	10	9.704	<0.001 Yes
Control vs. 500 W	9.000	10	4.679	0.080 No
Control vs. 500 E	5.333	10	2.773	0.633 Do Not Test
Control vs. 1500 W	4.000	10	2.080	0.889 Do Not Test
Control vs. 500 S	3.000	10	1.560	0.979 Do Not Test
Control vs. 1500 N	1.333	10	0.693	1.000 Do Not Test
Control vs. 1500 S	1.000	10	0.520	1.000 Do Not Test
Control vs. 500 N	0.333	10	0.173	1.000 Do Not Test
Control vs. 1500 E	0.333	10	0.173	1.000 Do Not Test
1500 E vs. DC	18.333	10	9.531	<0.001 Yes
1500 E vs. 500 W 1500 E vs. 500 E	8.667	10 10	4.506	0.101 Do Not Test 0.706 Do Not Test
1500 E vs. 500 E	5.000 3.667	10	2.599 1.906	0.929 Do Not Test
1500 E vs. 1500 W	2.667	10	1.386	0.929 Do Not Test
1500 E vs. 1500 S	1.000	10	0.520	1.000 Do Not Test
1500 E vs. 1500 N	0.667	10	0.347	1.000 Do Not Test
1500 E vs. 500 N	0.000	10	0.000	1.000 Do Not Test
500 N vs. DC	18.333	10	9.531	<0.001 Yes
500 N vs. 500 W	8.667	10	4.506	0.101 Do Not Test
500 N vs. 500 E	5.000	10	2.599	0.706 Do Not Test
500 N vs. 1500 W	3.667	10	1.906	0.929 Do Not Test
500 N vs. 500 S	2.667	10	1.386	0.990 Do Not Test
500 N vs. 1500 N	1.000	10	0.520	1.000 Do Not Test
500 N vs. 1500 S	0.667	10	0.347	1.000 Do Not Test
1500 S vs. DC	17.667	10	9.184	<0.001 Yes
1500 S vs. 500 W	8.000	10	4.159	0.158 Do Not Test
1500 S vs. 500 E	4.333	10	2.253	0.837 Do Not Test
1500 S vs. 1500 W	3.000	10	1.560	0.979 Do Not Test
1500 S vs. 500 S	2.000	10	1.040	0.999 Do Not Test
1500 S vs. 1500 N 1500 N vs. DC	0.333 17.333	10 10	0.173	1.000 Do Not Test <0.001 Yes
1500 N vs. 500 W	7.667	10	9.011 3.986	0.195 Do Not Test
1500 N vs. 500 V	4.000	10	2.080	0.889 Do Not Test
1500 N vs. 1500 W	2.667	10	1.386	0.990 Do Not Test
1500 N vs. 500 S	1.667	10	0.866	1.000 Do Not Test
500 S vs. DC	15.667	10	8.145	<0.001 Yes
500 S vs. 500 W	6.000	10	3.119	0.484 Do Not Test
500 S vs. 500 E	2.333	10	1.213	0.996 Do Not Test
500 S vs. 1500 W	1.000	10	0.520	1.000 Do Not Test
1500 W vs. DC	14.667	10	7.625	0.001 Yes
1500 W vs. 500 W	5.000	10	2.599	0.706 Do Not Test
1500 W vs. 500 E	1.333	10	0.693	1.000 Do Not Test
500 E vs. DC	13.333	10	6.932	0.003 Yes
500 E vs. 500 W	3.667	10	1.906	0.929 Do Not Test
500 W vs. DC	9.667	10	5.025	0.049 Yes

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable Normality Test (Sha Equal Variance Tes	apir	Passed (P = 0.484) Passed (P = 0.876)						
Source of Variation	DF	SS	MS	F	Р			
Volume	4	941.542	235.385	25.411	<0.001			
site	5	1081.998	216.400	23.361	<0.001			
Volume x site	20	1227.223	61.361	6.624	<0.001			
Residual	61	565.056	9.263					
Total	90	4414.418	49.049					

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for site : 1.000Power of performed test with alpha = 0.0500: for Volume x site : 1.000

Least square means for Volume :

Group Mean SEM

Pre8.6760.8201016.6110.7175018.7780.71710017.6670.71715015.1110.717

Least square means for Site :

 Group
 Mean
 SEM

 DC
 7.933
 0.824

 1500 N
 19.567
 0.824

 1500 E
 16.167
 0.824

 1500 S
 16.300
 0.824

 1500 V
 14.933
 0.824

 1500 V
 17.311
 0.732

Least square means for Volume x Site : Mean SEM Group Pre x DC 9.000 2.152 Pre x 1500 N 8.500 2.152 Pre x 1500 E 9.500 2.152 Pre x 1500 S 7.500 2.152 Pre x 1500 W 11.000 2.152 Pre x Control 6.556 1.015 10 x DC 7.333 1.757 10 x 1500 N 27.000 1.757 10 x 1500 E 15.667 1.757 10 x 1500 S 18.000 1.757 10 x 1500 W 13.333 1.757 10 x Control 18.333 1.757 50 x DC 3.667 1.757 50 x 1500 N 23.333 1.757 50 x 1500 E 21.000 1.757 50 x 1500 S 24.000 1.757 50 x 1500 W 18.000 1.757 50 x Control 22.667 1.757 100 x DC 19.000 1.757 100 x 1500 N 21.000 1.757 100 x 1500 E 15.667 1.757 100 x 1500 S 13.667 1.757 100 x 1500 W 17.000 1.757 100 x Control 19.667 1.757 150 x DC 0.667 1.757 150 x 1500 N 18.000 1.757 150 x 1500 E 19.000 1.757 150 x 1500 S 18.333 1.757 150 x 1500 W 15.333 1.757 150 x Control 19.333 1.757

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):

Overall significance level = 0.05

Compariso	ns for factor: Ve	olume		
Comparison	Diff of Means	t	Р	P<0.050
50 vs. Pre	10.102	9.274	< 0.001	Yes
100 vs. Pre	8.991	8.254	< 0.001	Yes
10 vs. Pre	7.935	7.285	< 0.001	Yes
150 vs. Pre	6.435	5.908	< 0.001	Yes
50 vs. 150	3.667	3.614	0.004	Yes
100 vs. 150	2.556	2.519	0.070	No
50 vs. 10	2.167	2.136	0.139	No
10 vs. 150	1.500	1.479	0.374	No
50 vs. 100	1.111	1.095	0.478	No
100 vs. 10	1.056	1.040	0.302	No

Comparisons for	factor: site			
Comparison	Diff of Means	st P	P<0.050	
1500 N vs. DC	11.633	9.981 < 0.001	Yes	
Control vs. DC	9.378	8.509 < 0.001	Yes	
1500 S vs. DC	8.367	7.178 < 0.001	Yes	
1500 S vs. DC 1500 E vs. DC			Yes	
	8.233	7.064 < 0.001		
1500 W vs. DC	7.000	6.006 < 0.001	Yes	
1500 N vs. 1500 W	4.633	3.975 0.002	Yes	
1500 N vs. 1500 E	3.400	2.917 0.044	Yes	
1500 N vs. 1500 S	3.267	2.803 0.053	No	
Control vs. 1500 W	2.378	2.158 0.220	No	
1500 N vs. Control	2.256	2.047 0.241	No	
1500 S vs. 1500 W	1.367	1.173 0.756	No	
1500 E vs. 1500 W	1.233	1.058 0.752	No	
Control vs. 1500 E	1.144	1.038 0.662	No	
Control vs. 1500 S	1.011	0.917 0.594	No	
1500 S vs. 1500 E	0.133	0.114 0.909	No	
Comparisons for	factor: site wi	thin 0		
Comparison	Diff of Means		P<0.05	
1500 W vs. Control	4.444	1.868 0.644	No	
1500 E vs. Control	2.944	1.238 0.969	No	
1500 W vs. 1500 S	3.500	1.150 0.978	No	
DC vs. Control	2.444	1.027 0.988	No	
1500 W vs. 1500 N	2.500	0.821 0.997	No	
1500 N vs. Control	1.944	0.817 0.995	No	
1500 E vs. 1500 S	2.000	0.657 0.998	No	
1500 E vs. 1500 S	2.000	0.657 0.997	No	
DC vs. 1500 S	1.500	0.493 0.999	No	
1500 W vs. 1500 E	1.500	0.493 0.997	No	
1500 S vs. Control	0.944	0.397 0.997	No	
1500 N vs. 1500 S	1.000	0.329 0.996	No	
1500 E vs. 1500 N	1.000	0.329 0.983	No	
DC vs. 1500 N	0.500	0.164 0.983	No	
1500 E vs. DC	0.500	0.164 0.870	No	
O anna an a	· · · · · · · · · · · ·	u		
Comparisons for			D-0.05	
Comparison	Diff of Means		P<0.05	
1500 N vs. DC	19.667	7.914 < 0.001	Yes	
1500 N vs. 1500 W	13.667	5.500 < 0.001	Yes	
1500 N vs. 1500 E	11.333	4.561 < 0.001	Yes	
Control vs. DC	11.000	4.426 < 0.001	Yes	
1500 S vs. DC	10.667	4.292 < 0.001	Yes	
1500 N vs. 1500 S	9.000	3.622 0.006	Yes	
1500 N vs. Control	8.667	3.488 0.008	Yes	
1500 E vs. DC	8.333	3.353 0.011	Yes	
1500 W vs. DC	6.000	2.414 0.124	No	
Control vs. 1500 W	5.000	2.012 0.259	No	
1500 S vs. 1500 W	4.667	1.878 0.286	No	
Control vs. 1500 E	2.667	1.073 0.742	No	
1500 S vs. 1500 E	2.333	0.939 0.727	No	
1500 E vs. 1500 E	2.333	0.939 0.579	No	
Control vs. 1500 V	0.333	0.134 0.894	No	
0011101 v3. 1000 0	0.000	0.134 0.034	NU	

Comparisons for	factor: site wit	hin 50	
Comparison	Diff of Means	t P	P<0.05
1500 S vs. DC	20.333	8.182 < 0.001	Yes
1500 N vs. DC	19.667	7.914 < 0.001	Yes
Control vs. DC	19.000	7.646 < 0.001	Yes
1500 E vs. DC	17.333	6.975 < 0.001	Yes
1500 W vs. DC	14.333	5.768 < 0.001	Yes
1500 S vs. 1500 W	6.000	2.414 0.173	No
1500 N vs. 1500 W	5.333	2.146 0.280	No
Control vs. 1500 W	4.667	1.878 0.417	No
1500 E vs. 1500 W	3.000	1.207 0.842	No
1500 S vs. 1500 E	3.000	1.207 0.795	No
1500 N vs. 1500 E	2.333	0.939 0.885	No
Control vs. 1500 E	1.667	0.671 0.940	No
1500 S vs. Control	1.333	0.537 0.933	No
1500 S vs. 1500 N	0.667	0.268 0.956	No
1500 N vs. Control	0.667	0.268 0.789	No
1500 14 VS. CONTION	0.007	0.200 0.709	INO
Comparisons for	factor: site wit	hin 100	
Comparison	Diff of Means	t PF	P<0.05
1500 N vs. 1500 S	7.333	2.951 0.065	No
Control vs. 1500 S	6.000	2.414 0.233	No
DC vs. 1500 S	5.333	2.146 0.378	No
1500 N vs. 1500 E	5.333	2.146 0.355	No
Control vs. 1500 E	4.000	1.610 0.731	No
1500 N vs. 1500 W	4.000	1.610 0.697	No
1500 W vs. 1500 S	3.333	1.341 0.841	No
DC vs. 1500 E	3.333	1.341 0.805	No
Control vs. 1500 W	2.667	1.073 0.907	No
DC vs. 1500 W	2.000	0.805 0.963	No
1500 E vs. 1500 S	2.000	0.805 0.937	No
1500 N vs. DC	2.000	0.805 0.890	No
1500 W vs. 1500 E	1.333	0.537 0.933	No
1500 N vs. Control	1.333	0.537 0.835	No
Control vs. DC	0.667	0.268 0.789	No
Comparisons for	factor: site wit	hin 150	
Comparison	Diff of Means	t P	P<0.05
Control vs. DC	18.667	7.512 < 0.001	Yes
1500 E vs. DC	18.333	7.377 < 0.001	Yes
1500 S vs. DC	17.667	7.109 < 0.001	Yes
1500 N vs. DC	17.333	6.975 < 0.001	Yes
1500 W vs. DC	14.667	5.902 < 0.001	Yes
Control vs. 1500 W	4.000	1.610 0.697	No
1500 E vs. 1500 W	3.667	1.475 0.756	No
1500 S vs. 1500 W	3.000	1.207 0.879	No
1500 N vs. 1500 W	2.667	1.073 0.907	No
Control vs. 1500 N	1.333	0.537 0.995	No
Control vs. 1500 S	1.000	0.402 0.997	No
1500 E vs. 1500 N	1.000	0.402 0.991	No
1500 E vs. 1500 S	0.667	0.268 0.991	No
Control vs. 1500 E	0.333	0.134 0.989	No
1500 S vs. 1500 N	0.333	0.134 0.894	No
1000 0 13. 1000 1	0.000	5.104 0.00 4	

Comparisor Comparison	s for factor: V	olume with	
100 vs. 150	18.333	7.377 < 0.0	
100 vs. 150	15.333	6.170 < 0.0	
100 vs. 10	11.667	4.695 < 0.0	
100 vs. Pre	10.000	3.599 0.00	
Pre vs. 150	8.333	2.999 0.02	
10 vs. 150	6.667	2.683 0.04	
Pre vs. 50	5.333	1.920 0.2	
10 vs. 50	3.667	1.475 0.3	
50 vs. 150	3.000	1.207 0.4	
Pre vs. 10	1.667	0.600 0.5	51 No
	is for factor: V		
Comparison			
10 vs. Pre	18.500	6.659 < 0.0	
50 vs. Pre	14.833	5.339 < 0.0	
100 vs. Pre	12.500	4.499 < 0.0	
10 vs. 150	9.000	3.622 0.0	
150 vs. Pre	9.500	3.419 0.0	
10 vs. 100	6.000	2.414 0.09	
50 vs. 150	5.333	2.146 0.13	
10 vs. 50	3.667	1.475 0.3	
100 vs. 150	3.000	1.207 0.4	
50 vs. 100	2.333	0.939 0.3	51 No
Comparison	s for factor: V	olume with	
Comparison	Diff of Means	; t	P P<0.05
Comparison 50 vs. Pre	Diff of Means 11.500	t 4.139	P P<0.05 0.001 Yes
Comparison 50 vs. Pre 150 vs. Pre	Diff of Means 11.500 9.500	t 4.139 3.419	P P<0.05 0.001 Yes 0.010 Yes
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre	Diff of Means 11.500 9.500 6.167	t 4.139 3.419 2.220	P P<0.05 0.001 Yes 0.010 Yes 0.217 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre	Diff of Means 11.500 9.500 6.167 6.167	t 4.139 3.419 2.220 2.220	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100	Diff of Means 11.500 9.500 6.167 6.167 5.333	t 4.139 3.419 2.220 2.220 2.146	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333	t 4.139 3.419 2.220 2.220 2.146 2.146	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333 3.333	t 4.139 3.419 2.220 2.220 2.146 1.341	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 10	Diff of Means 11.500 9.500 6.167 5.333 5.333 3.333 3.333 3.333	t 4.139 3.419 2.220 2.146 2.146 1.341	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 10 50 vs. 150	Diff of Means 11.500 9.500 6.167 5.333 5.333 3.333 3.333 2.000	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 0.805	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 10	Diff of Means 11.500 9.500 6.167 5.333 5.333 3.333 3.333 3.333	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 0.805	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 100 50 vs. 150 10 vs. 100 Comparisor	Diff of Means 11.500 9.500 6.167 6.333 5.333 3.333 3.333 2.000 7.105E-015 s for factor: V	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 100 50 vs. 150 10 vs. 100	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333 3.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.458 No 0.468 No 0.668 No 5 1.000 No No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 100 50 vs. 150 10 vs. 100 Comparisor	Diff of Means 11.500 9.500 6.167 6.333 5.333 3.333 3.333 2.000 7.105E-015 s for factor: V	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No win 1500 S P<0.05
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 150 vs. 10 150 vs. 100 150 vs. 100 0 vs. 150 10 vs. 100 Comparison 50 vs. Pre 50 vs. 100	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333 3.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with t P	P P<0.05 0.001 Yes 0.217 No 0.193 No 0.197 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No in 1500 S P<0.05 001 Yes
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 100 150 vs. 150 10 vs. 100 Comparison 50 vs. Pre	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with t P 5.939 <0.0	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No No 0.167 No 0.458 No 0.668 No 5 0.000 No No 0.100 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 150 vs. 10 150 vs. 100 150 vs. 100 0 vs. 150 10 vs. 100 Comparison 50 vs. Pre 50 vs. 100	Diff of Means 11.500 9.500 6.167 6.167 5.333 5.333 3.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500 10.333	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 olume with t P 5.939 < 0.0 4.158 < 0.0	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No No 0.167 No 0.458 No 0.668 No 5 1.000 No No 0.101 Yes 001 Yes 021 Yes
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 150 vs. 10 150 vs. 100 150 vs. 100 0 vs. 150 10 vs. 100 Comparison 50 vs. Pre 50 vs. 100 150 vs. Pre	Diff of Means 11.500 9.500 6.167 5.333 5.333 3.333 2.000 7.105E-015 Ins for factor: V Diff of Means 16.500 10.333 10.833	t 4.139 3.419 2.220 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with 5.939 < 0.0 4.158 < 0.0 3.899 0.00	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 No Yes 001 Yes 012 Yes 02 Yes 03 Yes
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 100 150 vs. 100 150 vs. 100 Comparison 50 vs. Pre 50 vs. 100 150 vs. Pre 10 vs. Pre	Diff of Means 11.500 9.500 6.167 6.167 5.333 3.333 3.333 2.000 7.105E-015 is for factor: V Diff of Means 16.500 10.333 10.833 10.500	t 4.139 3.419 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with t 5.939 <0.0 4.158 <0.0 3.899 0.00 3.899 0.00 3.899 0.00 2.414 0.10	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 NO Yes 001 Yes 001 Yes 03 Yes 07 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 10 150 vs. 100 150 vs. 100 0 vs. 100 Comparison 50 vs. Pre 50 vs. 100 150 vs. Pre 50 vs. 100	Diff of Means 11.500 9.500 6.167 6.333 5.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500 10.333 10.833 10.500 6.000	t 4.139 3.419 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with t 5.939 <0.0 4.158 <0.0 3.899 0.00 3.779 0.00 2.414 0.10	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.197 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 NO Yes 001 Yes 001 Yes 03 Yes 07 No 24 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 100 150 vs. 100 150 vs. 100 0 vs. 150 10 vs. 100 Comparison 50 vs. 100 150 vs. Pre 50 vs. 100 150 vs. Pre 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10	Diff of Means 11.500 9.500 6.167 5.333 5.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500 10.333 10.833 10.500 6.000 5.667	t 4.139 3.419 2.220 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with t 5.939 <0.0 4.158 <0.0 3.899 0.00 3.899 0.00 3.899 0.00 2.414 0.10 2.280 0.12	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.197 No 0.167 No 0.458 No 0.668 No 5 1.000 NO Yes 001 Yes 02 Yes 03 Yes 07 No 15 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 100 150 vs. 100 150 vs. 100 0 vs. 100 Comparison 50 vs. Pre 50 vs. 100 150 vs. Pre 50 vs. 100 50 vs. Pre 50 vs. 10 50 vs. 105 50 vs. 105	Diff of Means 11.500 9.500 6.167 6.333 5.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500 10.333 10.833 10.500 6.000 5.667 6.167	t 4.139 3.419 2.220 2.220 2.146 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with t P 5.939 <0.0 3.899 0.00 3.899 0.00 3.879 0.00 2.414 0.11 2.280 0.12 2.220 0.1	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.157 No 0.167 No 0.558 No 0.458 No 0.668 No 5 1.000 NO Yes 001 Yes 02 Yes 03 Yes 07 No 15 No 15 No
Comparison 50 vs. Pre 150 vs. Pre 10 vs. Pre 100 vs. Pre 50 vs. 100 50 vs. 100 150 vs. 100 150 vs. 100 0 vs. 150 10 vs. 100 Comparison 50 vs. Pre 50 vs. 100 150 vs. Pre 50 vs. 100 150 vs. Pre 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10	Diff of Means 11.500 9.500 6.167 6.333 5.333 3.333 2.000 7.105E-015 as for factor: V Diff of Means 16.500 10.333 10.833 10.500 6.000 5.667 6.167 4.667	t 4.139 3.419 2.220 2.220 2.146 2.146 2.146 1.341 1.341 0.805 2.859E-01 0lume with 5.939 <0.0 4.158 <0.0 3.899 0.00 3.779 0.00 2.414 0.11 2.280 0.11 2.220 0.11 1.878 0.13	P P<0.05 0.001 Yes 0.010 Yes 0.217 No 0.193 No 0.197 No 0.167 No 0.458 No 0.668 No 5 1.000 No Yes 001 Yes 001 Yes 001 Yes 001 Yes 03 Yes 07 No 15 No 15 No 83 No 65 No

	s for factor: V		within P	
Comparison I		t	۲	P<0.05
50 vs. Pre	7.000	2.519	0.135	No
100 vs. Pre	6.000	2.160	0.273	No
50 vs. 10	4.667	1.878	0.417	No
150 vs. Pre	4.333	1.560	0.604	No
100 vs. 10	3.667	1.475	0.610	No
50 vs. 150	2.667	1.073	0.816	No
10 vs. Pre	2.333	0.840	0.874	No
150 vs. 10	2.000	0.805	0.809	No
100 vs. 150	1.667	0.671	0.755	No
50 vs. 100	1.000	0.402	0.689	No

Comparisons for factor: Volume within Control

Comparison	Diff of Means	t	Р	P<0.05
50 vs. Pre	16.111	7.940	< 0.001	Yes
100 vs. Pre	13.111	6.462	< 0.001	Yes
150 vs. Pre	12.778	6.297	< 0.001	Yes
10 vs. Pre	11.778	5.805	< 0.001	Yes
50 vs. 10	4.333	1.744	0.418	No
50 vs. 150	3.333	1.341	0.640	No
50 vs. 100	3.000	1.207	0.652	No
100 vs. 10	1.333	0.537	0.933	No
150 vs. 10	1.000	0.402	0.903	No
100 vs. 150	0.333	0.134	0.894	No

Dependent V Normality T Equal Varia	est	(Shapiro		r m ² Passe Passe	``).917)).829)	
Group Name	N	Missing	Mean	Std Dev	SEM		
DC	3	0	42.441	73.511	42.441		
500 N	3	0	7639.437	1606.756	927.661		
500 E	3	0	9591.738	2669.505	1541.239		
500 S	3	0	10292.020	966.181	557.825		
500 W	3	0	6769.390	2366.080	1366.057		
1500 N	3	0	6790.611	1635.919	944.498		
1500 E	3	0	12456.527	1945.947	1123.493		
1500 S	3	0	11926.010	3440.889	1986.598		
1500 W	3	0	8382.160	514.574	297.089		
Control	3	0	10122.254	2403.187	1387.481		
Source of Va	iria	tion DF	SS		MS	F	Р
Between Gro	ups	9	337592592	2.158 3751	0288.018	9.242 <	0.001
Residual		20	81175830	.436 405	8791.522		

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Total

All Pairwise Multiple Comparison Procedures (Tukey Test):

29 418768422.594

Comparisons for	factor: site				
Comparison	Diff of Means	р	q	Р	P<0.050
1500 E vs. DC	12414.086		10.673		Yes
1500 E vs. 500 W	5687.137	10	4.889	0.059	No
1500 E vs. 1500 N	5665.916	10	4.871	0.061	Do Not Test
1500 E vs. 500 N	4817.090	10	4.141	0.161	Do Not Test
1500 E vs. 1500 W	4074.367	10	3.503	0.336	Do Not Test
1500 E vs. 500 E	2864.789 2334.272	10 10	2.463 2.007	0.761 0.907	Do Not Test
1500 E vs. Control 1500 E vs. 500 S	2334.272 2164.507	10	2.007	0.907	Do Not Test Do Not Test
1500 E vs. 500 S	530.516	10	0.456	1.000	Do Not Test
1500 E vs. 1500 S	11883.569	10	10.217	< 0.001	Yes
1500 S vs. 500 W	5156.620	10	4.433	0.111	Do Not Test
1500 S vs. 1500 N	5135.399	10	4.415	0.114	Do Not Test
1500 S vs. 500 N	4286.573	10	3.685	0.277	Do Not Test
1500 S vs. 1500 W	3543.850	10	3.047	0.514	Do Not Test
1500 S vs. 500 E	2334.272	10	2.007	0.907	Do Not Test
1500 S vs. Control	1803.756	10	1.551	0.979	Do Not Test
1500 S vs. 500 S	1633.991	10	1.405	0.989	Do Not Test
500 S vs. DC	10249.578	10	8.812	<0.001	Yes
500 S vs. 500 W	3522.629	10	3.029	0.522	Do Not Test
500 S vs. 1500 N	3501.409	10	3.010	0.530	Do Not Test
500 S vs. 500 N	2652.582	10	2.281	0.827	Do Not Test
500 S vs. 1500 W	1909.859	10	1.642	0.971	Do Not Test
500 S vs. 500 E	700.282	10	0.602	1.000	Do Not Test
500 S vs. Control	169.765	10	0.146	1.000	Do Not Test
Control vs. DC	10079.813	10	8.666	< 0.001	Yes
Control vs. 500 W	3352.864	10	2.883	0.585	Do Not Test
Control vs. 1500 N	3331.643	10	2.864	0.593	Do Not Test
Control vs. 500 N	2482.817	10	2.135	0.873	Do Not Test
Control vs. 1500 W	1740.094	10	1.496	0.984	Do Not Test
Control vs. 500 E 500 E vs. DC	530.516 9549.297	10 10	0.456 8.210	1.000	Do Not Test Yes
500 E vs. 500 W	2822.348	10	2.426	0.775	
500 E vs. 1500 N	2801.127	10	2.420	0.782	Do Not Test
500 E vs. 500 N	1952.301	10	1.678	0.966	Do Not Test
500 E vs. 1500 W	1209.578	10	1.040	0.999	Do Not Test
1500 W vs. DC	8339.719	10	7.170	0.002	Yes
1500 W vs. 500 W	1612.770	10	1.387	0.990	Do Not Test
1500 W vs. 1500 N	1591.549	10	1.368	0.991	Do Not Test
1500 W vs. 500 N	742.723	10	0.639	1.000	Do Not Test
500 N vs. DC	7596.996	10	6.531	0.005	Yes
500 N vs. 500 W	870.047	10	0.748	1.000	Do Not Test
500 N vs. 1500 N	848.826	10	0.730	1.000	Do Not Test
1500 N vs. DC	6748.170	10	5.802	0.016	Yes
1500 N vs. 500 W	21.221	10	0.0182	1.000	Do Not Test
500 W vs. DC	6726.949	10	5.783	0.016	Yes

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable Normality Test (Sha Equal Variance Tes	apir		Failed Failed	(P < 0.050 (P < 0.050	,	
Source of Variation	DF	SS		MS	F	Р
Volume	4	7809169102.4	51 19522	92275.613	41.839	<0.001
site	5	2425696358.1	03 48513	39271.621	10.397	<0.001
Volume x site	20	3770875105.4	34 18854	13755.272	4.041	<0.001
Residual	61	2846412247.8	77 4666	2495.867		
Total	90	17831787360.2	217 19813	30970.669		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. (P = <0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for site : 1.000Power of performed test with alpha = 0.0500: for Volume x site : 0.998

Least square means for Volume :

GroupMeanSEMPre12133.3091839.693102843.8571610.0815027601.0041610.08110023714.0871610.0811508286.6671610.081

Least square means for site :

GroupMeanSEMDC7916.2591849.8421500 N22966.0371849.8421500 E21426.2831849.8421500 S12013.9251849.8421500 W13044.2091849.842Control12127.9961641.967

Least squar Group		Volume x site : SEM
Pre x DC	15200.921	4830.243
Pre x 1500 N		
Pre x 1500 E	16240.300	4830.243
Pre x 1500 S		
Pre x 1500 W	14421.387	4830.243
Pre x Control	3291.368	2276.998
10 x DC	952.764	3943.877
10 x 1500 N	6582.735	3943.877
10 x 1500 E	2273.642	3943.877
10 x 1500 S	2620.102	3943.877
10 x 1500 W	1992.144	3943.877
10 x Control	2641.756	3943.877
50 x DC	4477.559	3943.877
50 x 1500 N	55767.892	3943.877
50 x 1500 E	38833.806	3943.877
50 x 1500 S	23236.622	3943.877
50 x 1500 W	21178.218	3943.877
50 x Control		
100 x DC	18907.607	3943.877
100 x 1500 N	28669.110	3943.877
100 x 1500 E	37327.139	3943.877
100 x 1500 S		
100 x 1500 W		
100 x Control		
		3943.877
150 x 1500 N		
150 x 1500 E		
150 x 1500 S		
150 x 1500 W		
150 x Control	10122.254	3943.877

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):

Overall significance level = 0.05

Comparisons for factor: Volume					
Comparison	Diff of Means	t	Р	P<0.050	
50 vs. 10	24757.147	10.873	< 0.001	Yes	
100 vs. 10	20870.229	9.166	< 0.001	Yes	
50 vs. 150	19314.337	8.482	< 0.001	Yes	
100 vs. 150	15427.419	6.775	< 0.001	Yes	
50 vs. Pre	15467.695	6.327	< 0.001	Yes	
100 vs. Pre	11580.778	4.737	< 0.001	Yes	
Pre vs. 10	9289.452	3.800	0.001	Yes	
150 vs. 10	5442.810	2.390	0.059	No	
50 vs. 100	3886.917	1.707	0.177	No	
Pre vs. 150	3846.641	1.573	0.121	No	

Comparisons for f	actor: site			
	Diff of Means	t	Р	P<0.050
1500 N vs. DC	15049.778	5.753	< 0.001	Yes
1500 E vs. DC	13510.024	5.164	< 0.001	Yes
1500 N vs. Control	10838.040	4.382	< 0.001	Yes
1500 N vs. 1500 S	10952.112	4.186	0.001	Yes
1500 N vs. 1500 W	9921.827	3.793	0.004	Yes
1500 E vs. Control	9298.286	3.759	0.004	Yes
1500 E vs. 1500 S	9412.358	3.598	0.006	Yes
1500 E vs. 1500 W	8382.074	3.204	0.017	Yes
1500 W vs. DC	5127.951	1.960	0.325	No
Control vs. DC	4211.738	1.703	0.446	No
1500 S vs. DC	4097.666	1.566	0.480	No
1500 N vs. 1500 E	1539.754	0.589	0.962	No
1500 W vs. 1500 S	1030.285	0.394	0.972	No
1500 W vs. Control	916.213	0.370	0.917	No
Control vs. 1500 S	114.072	0.0461	0.963	No
Control vs. 1500 5	114.072	0.0401	0.303	NO
Comparisons for f				
	Diff of Means			<0.05
1500 N vs. Control	13728.467	2.571 0		No
1500 E vs. Control	12948.933	2.425 0		No
DC vs. Control	11909.554	2.230 0		No
1500 W vs. Control	11130.019	2.084 0		No
1500 N vs. 1500 S	10393.792	1.522 0		No
1500 E vs. 1500 S	9614.258	1.407 0		No
DC vs. 1500 S	8574.879	1.255 0		No
1500 W vs. 1500 S	7795.344	1.141 0		No
1500 S vs. Control	3334.675	0.624 0		No
1500 N vs. 1500 W	2598.448	0.380 0		No
1500 E vs. 1500 W	1818.914	0.266 1		No
1500 N vs. DC	1818.914	0.266 0		No
1500 E vs. DC	1039.379	0.152 0		No
DC vs. 1500 W	779.534	0.114 0		No
1500 N vs. 1500 E	779.534	0.114 0	0.910	No
Comparisons for f	actor: site wit	hin 10		
Comparison	Diff of Means	; t	Р	P<0.05
1500 N vs. DC	5629.971	1.009	0.997	No
1500 N vs. 1500 W	4590.592	0.823	0.999	No
1500 N vs. 1500 E	4309.093	0.773	1.000	No
1500 N vs. 1500 S	3962.633	0.710	1.000	No
1500 N vs. Control	3940.980	0.707	0.999	No
Control vs. DC	1688.991	0.303	1.000	No
1500 S vs. DC	1667.338	0.299	1.000	No
1500 E vs. DC	1320.878	0.237	1.000	No
1500 W vs. DC	1039.379	0.186	1.000	No
Control vs. 1500 W	649.612	0.116	1.000	No
1500 S vs. 1500 W	627.958	0.113	1.000	No
Control vs. 1500 E	368.113	0.0660	1.000	No
1500 S vs. 1500 E	346.460	0.0621	1.000	No
1500 E vs. 1500 W	281.499	0.0505	0.998	No
Control vs. 1500 S	21.654	0.00388		No

Comparisons for fa	actor: site wit	hin 50	
Comparison	Diff of Means	st P P<0.05	
1500 N vs. DC	51290.333	9.196 <0.001 Yes	
1500 N vs. 1500 W	34589.674	6.202 <0.001 Yes	
1500 E vs. DC	34356.247	6.160 <0.001 Yes	
1500 N vs. Control	33655.965	6.034 <0.001 Yes	
1500 N vs. 1500 S	32531.270	5.833 <0.001 Yes	
1500 S vs. DC	18759.063	3.363 0.013 Yes	
1500 E vs. 1500 W	17655.588	3.166 0.022 Yes	
Control vs. DC	17634.368	3.162 0.019 Yes	
1500 N vs. 1500 E	16934.086	3.036 0.024 Yes	
1500 E vs. Control	16721.879	2.998 0.023 Yes	
1500 W vs. DC	16700.659	2.994 0.020 Yes	
1500 E vs. 1500 S	15597.184	2.796 0.027 Yes	
1500 S vs. 1500 W	2058.404	0.369 0.976 No	
1500 S vs. Control	1124.695	0.202 0.975 No	
Control vs. 1500 W	933.709	0.167 0.868 No	
Comparisons for fa	actor: site wit	hin 100	
	Diff of Means		
1500 E vs. 1500 S	21666.293	3.885 0.004 Yes	
1500 E vs. DC	18419.532	3.302 0.022 Yes	
1500 E vs. 1500 W	18080.002	3.242 0.025 Yes	
1500 E vs. Control	14854.461	2.663 0.112 No	
1500 N vs. 1500 S	13008.264	2.332 0.226 No	
1500 N vs. DC	9761.503	1.750 0.589 No	
1500 N vs. 1500 W	9421.973	1.689 0.598 No	
1500 E vs. 1500 N	8658.029	1.552 0.659 No	
Control vs. 1500 S	6811.832	1.221 0.835 No	
1500 N vs. Control	6196.432	1.111 0.850 No	
1500 W vs. 1500 S	3586.291	0.643 0.975 No	
Control vs. DC	3565.071	0.639 0.949 No	
DC vs. 1500 S	3246.761	0.582 0.916 No	
Control vs. 1500 W	3225.540	0.578 0.811 No	
1500 W vs. DC	339.531	0.0609 0.952 No	
Comparisons for fa	actor: site wit	hin 150	
	Diff of Means		
1500 E vs. DC	12414.086	2.226 0.364 No	
1500 S vs. DC	11883.569	2.131 0.411 No	
Control vs. DC	10079.813	1.807 0.640 No	
1500 W vs. DC	8339.719	1.495 0.836 No	
1500 N vs. DC	6748.170	1.210 0.944 No	
1500 E vs. 1500 N	5665.916	1.016 0.977 No	
1500 S vs. 1500 N	5135.400	0.921 0.982 No	
1500 E vs. 1500 W	4074.367	0.731 0.994 No	
1500 S vs. 1500 W	3543.850	0.635 0.995 No	
Control vs. 1500 N	3331.644	0.597 0.992 No	
1500 E vs. Control	2334.273	0.419 0.996 No	
1500 S vs. Control	1803.756	0.323 0.996 No	
Control vs. 1500 W	1740.094	0.312 0.985 No	
1500 W vs. 1500 N	1591.549	0.285 0.950 No	
1500 E vs. 1500 S	530.516	0.0951 0.925 No	

Comparison Comparison		olume within DC t P P<0.05
100 vs. 150	18865.166	3.382 0.013 Yes
100 vs. 10	17954.843	3.219 0.018 Yes
100 vs. 50	14430.048	2.587 0.093 No
Pre vs. 150	15158.480	2.431 0.120 No
Pre vs. 10	14248.157	2.285 0.145 No
Pre vs. 50	10723.362	1.720 0.378 No
50 vs. 150	4435.118	0.795 0.894 No
50 vs. 10	3524.795	0.632 0.896 No
100 vs. Pre	3706.686	0.594 0.801 No
10 vs. 150	910.323	0.163 0.871 No
		olume within 1500 N
Comparison		
50 vs. 10	49185.157	8.819 < 0.001 Yes
50 vs. 150	48977.281	8.781 < 0.001 Yes
50 vs. Pre	38748.057	6.214 <0.001 Yes
50 vs. 100 100 vs. 10	27098.782 22086.375	4.859 <0.001 Yes 3.960 0.001 Yes
	22066.375	
100 vs. 150 100 vs. Pre	21676.500	3.923 0.001 Yes 1.868 0.241 No
Pre vs. 10	1049.270	1.674 0.269 No
Pre vs. 10	10229.224	1.640 0.201 No
150 vs. 10	207.876	0.0373 0.970 No
150 vs. 10	207.070	0.0373 0.970 100
		olume within 1500 E
Comparison	Diff of Means	st P P<0.05
Comparison 50 vs. 10	Diff of Means 36560.164	t P P<0.05 6.555 <0.001 Yes
Comparison	Diff of Means 36560.164 35053.497	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10	Diff of Means 36560.164	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150	Diff of Means 36560.164 35053.497 26377.279	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre	Diff of Means 36560.164 35053.497 26377.279 24870.612	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 us for factor: V	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 Is for factor: V Diff of Means	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 as for factor: V Diff of Means 20616.520	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 Is for factor: V Diff of Means	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. 9re 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 9re	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 as for factor: V Diff of Means 20616.520 16610.579	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. 150 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 Is for factor: V Diff of Means 20616.520 16610.579 13040.745	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 as for factor: V Diff of Means 20616.520 16610.579 13040.745 11310.611	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 as for factor: V Diff of Means 20616.529 13040.745 11310.611 9305.909	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. Pre 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 150 vs. 10 150 vs. 10 150 vs. 10 150 vs. 10	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 as for factor: V Diff of Means 20616.520 16610.579 13040.745 11310.611 9305.909 9034.804	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. 9re Pre vs. 10 150 vs. 9re Pre vs. 10 150 vs. 100 Comparison 50 vs. 100 50 vs. 10 50 vs. 10 50 vs. 10 100 vs. 9re 100 vs. 10 150 vs. 100 150 vs. 100 150 vs. 100 150 vs. 100 150 vs. 9re 100 vs. 9re 100 vs. 150	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 Is for factor: V Diff of Means 20616.520 16610.579 13040.745 11310.611 9305.909 9034.804 7575.775 5299.968 3734.836	t P P<0.05 6.555 <0.001
Comparison 50 vs. 10 100 vs. 10 50 vs. 150 100 vs. 150 50 vs. 9re 100 vs. Pre Pre vs. 10 150 vs. 10 Pre vs. 150 50 vs. 100 Comparison 50 vs. 10 50 vs. 10 50 vs. 10 50 vs. 10 150 vs. 10 150 vs. 10 150 vs. 10 150 vs. 10 150 vs. 10 150 vs. 9re	Diff of Means 36560.164 35053.497 26377.279 24870.612 22593.506 21086.839 13966.658 10182.885 3783.773 1506.667 Is for factor: V Diff of Means 20616.520 16610.579 13040.745 11310.611 9305.909 9034.804 7575.775 5299.968	t P P<0.05 6.555 <0.001

Comparison	s for factor: V	olume	within	1500 W
Comparison I	Diff of Means	t	Р	P<0.05
50 vs. 10	19186.074	3.440	0.011	Yes
100 vs. 10	17254.994	3.094	0.027	Yes
50 vs. 150	12796.057	2.294	0.185	No
Pre vs. 10	12429.243	1.993	0.305	No
100 vs. 150	10864.977	1.948	0.292	No
150 vs. 10	6390.017	1.146	0.773	No
50 vs. Pre	6756.831	1.084	0.735	No
Pre vs. 150	6039.226	0.968	0.708	No
100 vs. Pre	4825.751	0.774	0.689	No
50 vs. 100	1931.080	0.346	0.730	No

Comparisons for factor: Volume within Control

Comparison	Diff of Means	t	Ρ	P<0.05
100 vs. Pre	19181.310	4.212	< 0.001	Yes
50 vs. Pre	18820.559	4.133	< 0.001	Yes
100 vs. 10	19830.922	3.556	0.006	Yes
50 vs. 10	19470.171	3.491	0.006	Yes
100 vs. 150	12350.424	2.214	0.170	No
50 vs. 150	11989.672	2.150	0.166	No
150 vs. Pre	6830.887	1.500	0.450	No
150 vs. 10	7480.499	1.341	0.458	No
Pre vs. 10	649.612	0.143	0.987	No
100 vs. 50	360.751	0.0647	0.949	No

· · · · · · · · · · · · · · · · · · ·					Diversity Passed Passed	(P = 0.758) (P = 0.092)
Group Name	Ν	Missing	Mean	Std Dev	SEM	
DC	3	0	0.231	0.400	0.231	
500 N	3	0	1.501	0.154	0.0891	
500 E	3	0	1.066	0.335	0.193	
500 S	3	0	1.208	0.130	0.0751	
500 W	3	0	1.375	0.244	0.141	
1500 N	3	0	1.722	0.182	0.105	
1500 E	3	0	1.594	0.111	0.0643	
1500 S	3	0	1.361	0.126	0.0730	
1500 W	3	0	1.383	0.202	0.116	
Control	3	0	1.791	0.207	0.119	

Source of Variation	DF	SS	MS	F	Р
Between Groups	9	5.288	0.588	11.352	<0.001
Residual	20	1.035	0.0518		
Total	29	6.323			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for	factor: site				
Comparison	Diff of Means	р	q	Р	P<0.050
Control vs. DC	1.560	10	11.878	< 0.001	Yes
Control vs. 500 E	0.725	10	5.519	0.024	Yes
Control vs. 500 S	0.584	10	4.443	0.109	No
Control vs. 1500 S	0.430	10	3.276	0.420	Do Not Test
Control vs. 500 W	0.417	10	3.172	0.462	Do Not Test
Control vs. 1500 W	0.408	10	3.105	0.490	Do Not Test
Control vs. 500 N	0.290	10	2.207	0.851	Do Not Test
Control vs. 1500 E	0.197	10	1.501	0.983	Do Not Test
Control vs. 1500 N	0.0698	10	0.531	1.000	Do Not Test
1500 N vs. DC	1.490	10	11.347	< 0.001	Yes
1500 N vs. 500 E	0.655	10	4.988	0.052	No
1500 N vs. 500 S	0.514	10	3.911	0.214	Do Not Test
1500 N vs. 1500 S	0.361	10	2.745	0.644	Do Not Test
1500 N vs. 500 W	0.347	10	2.641	0.689	Do Not Test
1500 N vs. 1500 W	0.338	10	2.574	0.717	Do Not Test
1500 N vs. 500 N	0.220	10	1.676	0.967	Do Not Test
1500 N vs. 1500 E	0.127	10	0.970	0.999	Do Not Test
1500 E vs. DC	1.363	10	10.378	< 0.001	Yes
1500 E vs. 500 E	0.528	10	4.018	0.188	Do Not Test
1500 E vs. 500 S	0.386	10	2.942	0.559	Do Not Test
1500 E vs. 1500 S	0.233	10	1.775	0.953	Do Not Test
1500 E vs. 500 W	0.220	10	1.671	0.967	Do Not Test
1500 E vs. 1500 W	0.211	10	1.604	0.975	Do Not Test
1500 E vs. 500 N	0.0928	10	0.707	1.000	Do Not Test
500 N vs. DC	1.270	10	9.671	<0.001	Yes
500 N vs. 500 E	0.435	10	3.312	0.406	
500 N vs. 500 S	0.294	10	2.235	0.843	Do Not Test
500 N vs. 1500 S	0.140	10	1.069	0.999	Do Not Test
500 N vs. 500 W	0.127	10	0.965	0.999	Do Not Test
500 N vs. 1500 W	0.118	10	0.898	1.000	
1500 W vs. DC	1.152	10	8.773	<0.001	Yes
1500 W vs. 500 E	0.317	10	2.414	0.780	Do Not Test
1500 W vs. 500 S	0.176	10	1.337	0.992	Do Not Test
1500 W vs. 1500 S	0.0225	10	0.171	1.000	Do Not Test
1500 W vs. 500 W	0.00880		0.0670	1.000	Do Not Test
500 W vs. DC	1.144	10	8.706	< 0.001	Yes
500 W vs. 500 E	0.308	10	2.347	0.804	Do Not Test
500 W vs. 500 S	0.167	10	1.270	0.995	Do Not Test
500 W vs. 1500 S	0.0137	10	0.104		Do Not Test
1500 S vs. DC	1.130	10	8.602	< 0.001	Yes
1500 S vs. 500 E	0.295	10	2.243	0.840	Do Not Test
1500 S vs. 500 S	0.153	10	1.166	0.997	Do Not Test
500 S vs. DC	0.977	10	7.436	0.001	Yes
500 S vs. 500 E	0.141	10	1.076	0.998	Do Not Test
500 E vs. DC	0.835	10	6.359	0.007	Yes

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Two Way Analysis of Variance between Sites and Disposal Volumes.

Dependent Variable Normality Test (Sh Equal Variance Tes	Diversi Failed Failed	(P < 0.050)			
Source of Variation	DF	SS	MS	F	Р
Volume	4	11.628	2.907	36.039	<0.001
site	5	3.988	0.798	9.888	<0.001
Volume x site	20	4.374	0.219	2.711	0.001
Residual	61	4.920	0.0807		
Total	90	25.437	0.283		

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size of a factor's effect depends upon the level of the other factor.

The effect of different levels of Volume depends on what level of site is present. There is a statistically significant interaction between Volume and site. (P = 0.001)

Power of performed test with alpha = 0.0500: for Volume : 1.000Power of performed test with alpha = 0.0500: for site : 1.000Power of performed test with alpha = 0.0500: for Volume x site : 0.915

Least square means for Volume :

Group Mean SEM

Pre1.4970.0765102.2360.0669501.2320.06691001.3730.06691501.3470.0669

Least square means for site :

 Group
 Mean
 SEM

 DC
 1.086
 0.0769

 1500 N
 1.718
 0.0769

 1500 E
 1.489
 0.0769

 1500 S
 1.626
 0.0769

 1500 V
 1.576
 0.0769

 1500 V
 1.576
 0.0769

 1500 V
 1.576
 0.0769

Least square means for Volume x site : Group Mean SEM Pre x DC 1.447 0.201 Pre x 1500 N 1.324 0.201 Pre x 1500 E 1.252 0.201 Pre x 1500 S 1.663 0.201 Pre x 1500 W 1.650 0.201 Pre x Control 1.644 0.0947 10 x DC 1.627 0.164 10 x 1500 N 2.457 0.164 10 x 1500 E 2.293 0.164 10 x 1500 S 2.534 0.164 10 x 1500 W 2.074 0.164 10 x Control 2.432 0.164 50 x DC 0.668 0.164 50 x 1500 N 1.496 0.164 50 x 1500 E 1.105 0.164 50 x 1500 S 1.413 0.164 50 x 1500 W 1.308 0.164 50 x Control 1.401 0.164 100 x DC 1.458 0.164 100 x 1500 N 1.592 0.164 100 x 1500 E 1.203 0.164 100 x 1500 S 1.162 0.164 100 x 1500 W 1.466 0.164 100 x Control 1.357 0.164 150 x DC 0.231 0.164 150 x 1500 N 1.722 0.164 150 x 1500 E 1.594 0.164 150 x 1500 S 1.361 0.164 150 x 1500 W 1.383 0.164 150 x Control 1.791 0.164

All Pairwise Multiple Comparison Procedures (Holm-Sidak method):

Overall significance level = 0.05

Comparisons for factor: Volume						
Comparison	Diff of Means	t	Р	P<0.050		
10 vs. 50	1.004	10.608	< 0.001	Yes		
10 vs. 150	0.889	9.390	< 0.001	Yes		
10 vs. 100	0.863	9.116	< 0.001	Yes		
10 vs. Pre	0.739	7.274	< 0.001	Yes		
Pre vs. 50	0.265	2.606	0.067	No		
100 vs. 50	0.141	1.492	0.532	No		
Pre vs. 150	0.150	1.471	0.469	No		
150 vs. 50	0.115	1.218	0.540	No		
Pre vs. 100	0.124	1.216	0.405	No		
100 vs. 150	0.0259	0.274	0.785	No		

Comparisons for fa	actor: site			
Comparison	Diff of Means	t	Р	P<0.050
Control vs. DC	0.639	6.214	<0.001	
1500 N vs. DC	0.632	5.811		
1500 S vs. DC	0.540	4.968	<0.001	Yes
1500 W vs. DC	0.490	4.506	<0.001	Yes
1500 E vs. DC	0.403	3.708	0.005	Yes
Control vs. 1500 E	0.236	2.292	0.226	No
1500 N vs. 1500 E	0.229	2.103	0.305	No
Control vs. 1500 W	0.149	1.448	0.734	No
1500 N vs. 1500 W	0.142	1.305	0.784	No
1500 S vs. 1500 E	0.137	1.260	0.761	No
Control vs. 1500 S	0.0987	0.960	0.876	No
1500 N vs. 1500 S	0.0916	0.843	0.873	No
1500 W vs. 1500 E	0.0868	0.798	0.813	No
1500 S vs. 1500 W	0.0503	0.462	0.874	No
Control vs. 1500 N	0.00704	0.0684	0.946	No
Commentio and for f				
Comparisons for fa Comparison	Diff of Means	in U t	Р	P<0.05
Control vs. 1500 E	0.392	1.767	-	No
1500 S vs. 1500 E	0.411	1.446		No
Control vs. 1500 N	0.320	1.441		No
1500 W vs. 1500 E	0.398	1.400		No
1500 S vs. 1500 N	0.338	1.191		No
1500 W vs. 1500 N	0.325	1.146		No
Control vs. DC	0.198	0.891		No
1500 S vs. DC	0.216	0.761		No
1500 W vs. DC	0.203		0.989	No
DC vs. 1500 E	0.195	0.685	0.984	No
DC vs. 1500 N	0.122	0.431	0.996	No
1500 N vs. 1500 E	0.0722	0.254	0.998	No
1500 S vs. Control	0.0183	0.0825	1.000	No
1500 S vs. 1500 W	0.0129	0.0454	0.999	No
1500 W vs. Control	0.00543	0.0244	0.981	No
Comparisons for fa				-0.05
Comparison 1500 S vs. DC	Diff of Means 0.907	t 3.911 (<0.05 Yes
1500 S vs. DC 1500 N vs. DC	0.830	3.580		Yes
Control vs. DC	0.806	3.474 (Yes
1500 E vs. DC	0.666	2.874		No
1500 S vs. 1500 W	0.460	1.982		No
1500 W vs. DC	0.447	1.929		No
1500 N vs. 1500 W	0.383	1.650		No
Control vs. 1500 W	0.358	1.545		No
1500 S vs. 1500 E	0.240	1.037		No
1000 C vo. 1000 E	0.240	0.045	0.004	N.a.

0.219

0.164

0.139

0.101

0.0769

0.0245

0.945 0.924

0.705 0.963

0.600 0.959

0.437 0.962

0.331 0.933

0.106 0.916 No

No

No

No

No

No

1500 E vs. 1500 W

1500 N vs. 1500 E

Control vs. 1500 E

1500 S vs. Control

1500 S vs. 1500 N

1500 N vs. Control

Comparisons for fa	actor: site with	in 50		
Comparison	Diff of Means	t	P	P<0.05
1500 N vs. DC	0.828	3.570	0.010	Yes
1500 S vs. DC	0.745	3.212	0.029	Yes
Control vs. DC	0.733	3.159	0.032	Yes
1500 W vs. DC	0.640	2.759	0.088	No
1500 E vs. DC	0.437	1.883	0.520	No
1500 N vs. 1500 E	0.391	1.687	0.638	No
1500 S vs. 1500 E	0.308	1.329	0.848	No
Control vs. 1500 E	0.296	1.276	0.843	No
1500 W vs. 1500 E	0.203	0.876	0.967	No
1500 N vs. 1500 W	0.188	0.811	0.962	No
1500 S vs. 1500 W	0.105	0.453	0.995	No
1500 N vs. Control	0.0953	0.411	0.990	No
Control vs. 1500 W	0.0927	0.400	0.970	No
1500 N vs. 1500 S	0.0829	0.358	0.923	No
1500 S vs. Control	0.0124	0.0535	0.958	No
Comparisons for fa				
Comparison	Diff of Means	t	Ρ	P<0.05
1500 N vs. 1500 S	0.430	1.854	0.655	No
1500 N vs. 1500 E	0.389	1.677	0.766	No
1500 W vs. 1500 S	0.304	1.310	0.941	No
DC vs. 1500 S	0.296	1.277	0.938	No
1500 W vs. 1500 S				
	0.263	1.133	0.964	No
DC vs. 1500 E	0.255	1.100	0.960	No
1500 N vs. Control	0.235	1.012	0.967	No
Control vs. 1500 S	0.195	0.842	0.984	No
Control vs. 1500 E	0.154	0.665	0.993	No
1500 N vs. DC	0.134	0.577	0.993	No
1500 N vs. 1500 W	0.126	0.544	0.988	No
1500 W vs. Control	0.109	0.468	0.983	No
DC vs. Control	0.101	0.435	0.962	No
1500 E vs. 1500 S	0.0409	0.177	0.981	No
1500 W vs. DC	0.00767	0.0331		No
1500 W V3. DC	0.00707	0.0001	0.374	NO
Comparisons for fa	actor: alta with	im 450		
			-	D <0.05
Comparison	Diff of Means		P	P<0.05
Control vs. DC	1.560	6.728	< 0.001	
1500 N vs. DC	1.491	6.428	<0.001	
1500 E vs. DC	1.363	5.878	<0.001	
1500 W vs. DC	1.152	4.970	<0.001	Yes
1500 S vs. DC	1.130	4.873	< 0.001	Yes
Control vs. 1500 S	0.430	1.856	0.507	No
Control vs. 1500 W	0.408	1.759	0.544	No
1500 N vs. 1500 S	0.361	1.555	0.657	No
1500 N vs. 1500 W	0.338	1.458	0.679	No
1500 E vs. 1500 V	0.233	1.005	0.900	No
1500 E vs. 1500 W	0.211	0.908	0.899	No
Control vs. 1500 E	0.197	0.850	0.869	No
1500 N vs. 1500 E	0.127	0.550	0.928	No
Control vo. 1500 N	0 0607	0 201	0.045	No

0.0697

0.0225

0.301 0.945

0.0970 0.923 No

No

Control vs. 1500 N

1500 W vs. 1500 S

		olume within DC s t P	
Comparison			P<0.05
10 vs. 150	1.396	6.018 < 0.001	Yes
100 vs. 150	1.227	5.291 < 0.001	Yes
Pre vs. 150	1.216	4.689 < 0.001	Yes
10 vs. 50	0.958	4.133 < 0.001	Yes
100 vs. 50	0.790	3.406 0.007	Yes
Pre vs. 50	0.778	3.003 0.019	Yes
50 vs. 150	0.437	1.885 0.233	No
10 vs. 100	0.169	0.727 0.851	No
10 vs. Pre	0.180	0.694 0.740	No
100 vs. Pre	0.0115	0.0442 0.965	No
Comparisons	for factor: V	olume within 15	00 N
Comparison			P<0.05
10 vs. Pre	1.132	4.368 < 0.001	Yes
10 vs. 50	0.961	4.143 < 0.001	Yes
10 vs. 100	0.865	3.729 0.003	Yes
10 vs. 150	0.735	3.170 0.017	Yes
150 vs. Pre	0.397	1.532 0.568	No
100 vs. Pre	0.268	1.032 0.839	No
150 vs. 50	0.226	0.973 0.804	No
50 vs. Pre	0.172	0.662 0.883	No
150 vs. 100	0.130	0.559 0.822	No
100 vs. 50	0.0959	0.414 0.681	No
Comparisons	for factor: Ve	olume within 15	00 E
Comparisons Comparison			00 E P<0.05
Comparison	Diff of Mean	st PF	P<0.05
Comparison 10 vs. 50	Diff of Mean 1.188	s t P F 5.124 <0.001	><0.05 Yes
Comparison 10 vs. 50 10 vs. 100	Diff of Mean 1.188 1.090	s t P F 5.124 <0.001 4.701 <0.001	P<0.05 Yes Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre	Diff of Means 1.188 1.090 1.041	s t P F 5.124 <0.001 4.701 <0.001 4.015 0.001	P<0.05 Yes Yes Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150	Diff of Means 1.188 1.090 1.041 0.699	s t P F 5.124 <0.001 4.701 <0.001 4.015 0.001 3.014 0.026	P<0.05 Yes Yes Yes Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50	Diff of Means 1.188 1.090 1.041 0.699 0.489	s t P F 5.124 <0.001 4.701 <0.001 4.015 0.001 3.014 0.026 2.110 0.212	Yes Yes Yes Yes Yes No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100	Diff of Mean 1.188 1.090 1.041 0.699 0.489 0.391	s t P F 5.124 <0.001	Yes Yes Yes Yes Yes No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342	s t P F 5.124 <0.001	P<0.05 Yes Yes Yes No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147	t P F 5.124 <0.001	Yes Yes Yes Yes No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491	t P F 5.124 <0.001	Yes Yes Yes Yes No No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 a for factor: Ve	s t P F 5.124 <0.001	Yes Yes Yes Yes No No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 a for factor: Ve	s t P F 5.124 <0.001	Yes Yes Yes Yes No No No No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparison	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 s for factor: Vo Diff of Means	s t P F 5.124 <0.001	><0.05 Yes Yes Yes No No No No No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. 7re Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparison 10 vs. 100	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 s for factor: Vo Diff of Means 1.372	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	><0.05 Yes Yes Yes No No No No No No No No No Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. 7re Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparison 10 vs. 100 10 vs. 150	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vo Diff of Means 1.372 1.173	$\begin{array}{c ccccc} {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.124 & <0.001 \\ 4.701 & <0.001 \\ 4.015 & 0.001 \\ 3.014 & 0.026 \\ 2.110 & 0.212 \\ 1.687 & 0.399 \\ 1.319 & 0.574 \\ 0.568 & 0.922 \\ 0.423 & 0.893 \\ 0.189 & 0.850 \\ \hline \\ {\bf olume within 15} \\ {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.915 & <0.001 \\ 5.057 & <0.001 \\ \end{array}$	 ><0.05 Yes Yes Yes No No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 100 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparison 10 vs. 100 10 vs. 150 10 vs. 50	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vo Diff of Means 1.372 1.173 1.120	$\begin{array}{c ccccc} {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.124 & <0.001 \\ 4.701 & <0.001 \\ 4.015 & 0.001 \\ 3.014 & 0.026 \\ 2.110 & 0.212 \\ 1.687 & 0.399 \\ 1.319 & 0.574 \\ 0.568 & 0.922 \\ 0.423 & 0.893 \\ 0.189 & 0.850 \\ \hline \\ {\bf olume within 15} \\ {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.915 & <0.001 \\ 5.057 & <0.001 \\ 4.832 & <0.001 \\ \end{array}$	 ><0.05 Yes Yes Yes No No No No No No No No Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 700 150 vs. 700 150 vs. 700 Pre vs. 100 Comparisons Comparisons 10 vs. 100 10 vs. 150 10 vs. 50 10 vs. 50 10 vs. 9re	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vo Diff of Means 1.372 1.173 1.120 0.871	$\begin{array}{c ccccc} {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.124 < 0.001 \\ 4.701 < 0.001 \\ 4.015 & 0.001 \\ 3.014 & 0.026 \\ 2.110 & 0.212 \\ 1.687 & 0.399 \\ 1.319 & 0.574 \\ 0.568 & 0.922 \\ 0.423 & 0.893 \\ 0.189 & 0.850 \\ \hline \\ {\bf blume within 15} \\ {\bf s} & {\bf t} & {\bf P} \\ {\bf F} \\ 5.915 < 0.001 \\ 5.057 < 0.001 \\ 4.832 < 0.001 \\ 3.359 & 0.009 \\ \end{array}$	 <0.05 Yes Yes Yes No No No No No No No No Yes
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 50 150 vs. 700 150 vs. Pre Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparisons Comparisons 10 vs. 150 10 vs. 50 10 vs. 50 10 vs. 9re Pre vs. 100	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vo Diff of Means 1.372 1.173 1.120 0.871 0.501	$\begin{array}{c ccccc} {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.124 & <0.001 \\ 4.015 & 0.001 \\ 3.014 & 0.026 \\ 2.110 & 0.212 \\ 1.687 & 0.399 \\ 1.319 & 0.574 \\ 0.568 & 0.922 \\ 0.423 & 0.893 \\ 0.189 & 0.850 \\ \hline \\ {\bf oblume within 15} \\ {\bf s} & {\bf t} & {\bf P} \\ {\bf F} \\ 5.915 & <0.001 \\ 5.057 & <0.001 \\ 3.359 & 0.009 \\ 1.931 & 0.302 \\ \end{array}$	 <0.05 Yes Yes Yes No No No No No No S <0.05 Yes No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 700 150 vs. 700 150 vs. 700 100 vs. 50 Pre vs. 100 Comparisons Comparisons Comparisons 10 vs. 100 10 vs. 50 10 vs. 50 10 vs. 700 10 vs.	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vo Diff of Means 1.372 1.173 1.120 0.871 0.501 0.302	$\begin{array}{c ccccc} {\bf s} & {\bf t} & {\bf P} & {\bf F} \\ 5.124 & <0.001 \\ 4.015 & 0.001 \\ 4.015 & 0.001 \\ 3.014 & 0.026 \\ 2.110 & 0.212 \\ 1.687 & 0.399 \\ 1.319 & 0.574 \\ 0.568 & 0.922 \\ 0.423 & 0.893 \\ 0.189 & 0.850 \\ \hline \\ {\bf oblume within 15} \\ {\bf s} & {\bf t} & {\bf P} \\ {\bf F} \\ 5.915 & <0.001 \\ 5.057 & <0.001 \\ 4.832 & <0.001 \\ 3.359 & 0.009 \\ 1.931 & 0.302 \\ 1.164 & 0.761 \\ \hline \end{array}$	 <0.05 Yes Yes Yes No No No No No No S <0.05 Yes Yes Yes Yes Yes No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 50 150 vs. 7re Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparisons Comparisons 10 vs. 100 10 vs. 150 10 vs. 7re Pre vs. 100 Pre vs. 100 Pre vs. 100 Pre vs. 100 So vs. 100 Pre vs. 100	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.391 0.342 0.147 0.0981 0.0491 5 for factor: Vol Diff of Means 1.372 1.173 1.120 0.871 0.501 0.302 0.251 0.250 0.199	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 <0.05 Yes Yes Yes No No No No No No No No No S <0.05 Yes No No No No No No No No No
Comparison 10 vs. 50 10 vs. 100 10 vs. Pre 10 vs. 150 150 vs. 50 150 vs. 50 150 vs. 7re Pre vs. 50 100 vs. 50 Pre vs. 100 Comparisons Comparisons Comparisons Comparisons 10 vs. 100 10 vs. 150 10 vs. 9re Pre vs. 100 Pre vs. 100 Pre vs. 150 50 vs. 100 Pre vs. 50	Diff of Means 1.188 1.090 1.041 0.699 0.489 0.342 0.147 0.0981 0.0491 5 for factor: Ve Diff of Means 1.372 1.173 1.120 0.871 0.501 0.302 0.251 0.250	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yes Yes Yes No No No No No No No Yes Yes Yes Yes No No No No No No No No No No No No No

Comparison	s for factor: Vo	lume v	vithin	1500 W
Comparison	Diff of Means	t	Р	P<0.05
10 vs. 50	0.766	3.304	0.016	Yes
10 vs. 150	0.691	2.978	0.037	Yes
10 vs. 100	0.608	2.623	0.085	No
10 vs. Pre	0.424	1.636	0.547	No
Pre vs. 50	0.342	1.318	0.722	No
Pre vs. 150	0.266	1.027	0.842	No
Pre vs. 100	0.184	0.710	0.927	No
100 vs. 50	0.158	0.680	0.874	No
100 vs. 150	0.0823	0.355	0.924	No
150 vs. 50	0.0755	0.326	0.746	No

Comparisons for factor: Volume within Control

Comparison	Diff of Means	t	Ρ	P<0.05
10 vs. 100	1.075	4.636	< 0.001	Yes
10 vs. 50	1.032	4.448	< 0.001	Yes
10 vs. Pre	0.788	4.161	< 0.001	Yes
10 vs. 150	0.641	2.764	0.052	No
150 vs. 100	0.434	1.872	0.336	No
150 vs. 50	0.391	1.685	0.400	No
Pre vs. 100	0.287	1.517	0.439	No
Pre vs. 50	0.244	1.287	0.494	No
150 vs. Pre	0.147	0.776	0.687	No
50 vs. 100	0.0435	0.188	0.852	No

